
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
DNS on Windows Server 2003

By Robbie Allen, Matt Larson, Cricket Liu

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00562-8

Pages: 416

DNS on Windows Server 20003 is a special Windows-oriented edition of the classic DNS and BIND, newly updated to
document the many changes to DNS, large and small, found in Windows Server 2003. Veteran O'Reilly authors, Cricket
Liu, Matt Larson, and Robbie Allen explain the whole system in terms of the new Windows Server 2003, from starting
and stopping a DNS service to establishing an organization's namespace in the global hierarchy.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
DNS on Windows Server 2003

By Robbie Allen, Matt Larson, Cricket Liu

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00562-8

Pages: 416

 Copyright

 Preface

 Versions

 What's New in This Edition

 Organization

 Audience

 Obtaining the Example Programs

 Viewing Microsoft Knowledge Base Articles

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Quotations

 Acknowledgments

 Chapter 1. Background

 Section 1.1. A (Very) Brief History of the Internet

 Section 1.2. On the Internet and Internets

 Section 1.3. The Domain Name System in a Nutshell

 Section 1.4. The History of the Microsoft DNS Server

 Section 1.5. Must I Use DNS?

 Chapter 2. How Does DNS Work?

 Section 2.1. The Domain Namespace

 Section 2.2. The Internet Domain Namespace

 Section 2.3. Delegation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 2.4. Name Servers and Zones

 Section 2.5. Resolvers

 Section 2.6. Resolution

 Section 2.7. Caching

 Chapter 3. Where Do I Start?

 Section 3.1. Which Name Server?

 Section 3.2. Choosing a Domain Name

 Chapter 4. Setting Up the Microsoft DNS Server

 Section 4.1. Our Zone

 Section 4.2. Installing the Microsoft DNS Server

 Section 4.3. The DNS Console

 Section 4.4. Setting Up DNS Data

 Section 4.5. Running a Primary Master Name Server

 Section 4.6. Running a Secondary Name Server

 Section 4.7. Adding More Zones

 Section 4.8. DNS Properties

 Section 4.9. What Next?

 Chapter 5. DNS and Electronic Mail

 Section 5.1. MX Records

 Section 5.2. Adding MX Records with the DNS Console

 Section 5.3. What's a Mail Exchanger, Again?

 Section 5.4. The MX Algorithm

 Section 5.5. DNS and Exchange

 Chapter 6. Configuring Hosts

 Section 6.1. The Resolver

 Section 6.2. Resolver Configuration

 Section 6.3. Advanced Resolver Features

 Section 6.4. Other Windows Resolvers

 Section 6.5. Sample Resolver Configurations

 Chapter 7. Maintaining the Microsoft DNS Server

 Section 7.1. What About Signals?

 Section 7.2. Logging

 Section 7.3. Updating Zone Data

 Section 7.4. Zone Datafile Controls

 Section 7.5. Aging and Scavenging

 Chapter 8. Integrating with Active Directory

 Section 8.1. Active Directory Domains

 Section 8.2. Storing Zones in Active Directory

 Section 8.3. DNS as a Service Location Broker

 Chapter 9. Growing Your Domain

 Section 9.1. How Many Name Servers?

 Section 9.2. Adding More Name Servers

 Section 9.3. Registering Name Servers

 Section 9.4. Changing TTLs

 Section 9.5. Planning for Disasters

 Section 9.6. Coping with Disaster

 Chapter 10. Parenting

 Section 10.1. When to Become a Parent

 Section 10.2. How Many Children?

 Section 10.3. What to Name Your Children

 Section 10.4. How to Become a Parent: Creating Subdomains

 Section 10.5. Subdomains of in-addr.arpa Domains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 10.6. Good Parenting

 Section 10.7. Managing the Transition to Subdomains

 Section 10.8. The Life of a Parent

 Chapter 11. Advanced Features and Security

 Section 11.1. New Ways to Make Changes

 Section 11.2. WINS Linkage

 Section 11.3. Building Up a Large, Sitewide Cache with Forwarders

 Section 11.4. Load Sharing Between Mirrored Servers

 Section 11.5. The ABCs of IPv6 Addressing

 Section 11.6. Securing Your Name Server

 Chapter 12. nslookup and dig

 Section 12.1. Is nslookup a Good Tool?

 Section 12.2. Interactive Versus Noninteractive

 Section 12.3. Option Settings

 Section 12.4. Avoiding the Search List

 Section 12.5. Common Tasks

 Section 12.6. Less Common Tasks

 Section 12.7. Troubleshooting nslookup Problems

 Section 12.8. Best of the Net

 Section 12.9. Using dig

 Chapter 13. Managing DNS from the Command Line

 Section 13.1. Installing the DNS Server

 Section 13.2. Stopping and Starting the DNS Server Service

 Section 13.3. Managing the DNS Server Configuration

 Section 13.4. An Installation and Configuration Batch Script

 Section 13.5. Other Command-Line Utilities

 Chapter 14. Managing DNS Programmatically

 Section 14.1. WMI and the DNS Provider

 Section 14.2. WMI Scripting with VBScript and Perl

 Section 14.3. Server Classes

 Section 14.4. Zone Classes

 Section 14.5. Resource Record Classes

 Chapter 15. Troubleshooting DNS

 Section 15.1. Is DNS Really Your Problem?

 Section 15.2. Checking the Cache

 Section 15.3. Using DNSLint

 Section 15.4. Potential Problem List

 Section 15.5. Interoperability Problems

 Section 15.6. Problem Symptoms

 Chapter 16. Miscellaneous

 Section 16.1. Using CNAME Records

 Section 16.2. Wildcards

 Section 16.3. A Limitation of MX Records

 Section 16.4. DNS and Internet Firewalls

 Section 16.5. Dial-up Connections

 Appendix A. DNS Message Format and Resource Records

 Section A.1. Master File Format

 Section A.2. DNS Messages

 Section A.3. Resource Record Data

 Appendix B. Converting from BIND to the Microsoft DNS Server

 Section B.1. Step 1: Change the DNS Server Startup Method to File

 Section B.2. Step 2: Stop the Microsoft DNS Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section B.3. Step 3: Change the Zone Datafile Naming Convention

 Section B.4. Step 4: Copy the Files

 Section B.5. Step 5: Get a New Root Name Server Cache File

 Section B.6. Step 6: Restart the DNS Server

 Section B.7. Step 7: Change the DNS Server Startup Method to Registry

 Appendix C. Top-Level Domains

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2004, 2001, 1998 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. DNS on Windows Server 2003, the image of a raven, and related trade dress are trademarks of O'Reilly
& Associates. Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
You may not know much about the Domain Name System—yet—but whenever you use the Internet, you use DNS.
Every time you send electronic mail or surf the Web, you rely on the Domain Name System.

You see, while you, as a human being, prefer to remember the names of computers, computers like to address each
other by number. On an internet, that number is 32 bits long, or between zero and four billion or so.[1] That's easy for
a computer to remember because computers have lots of memory ideal for storing numbers, but it isn't nearly as easy
for us humans. Pick 10 phone numbers out of the phone book at random, and then try to recall them. Not easy? Now
flip to the front of the book and attach random area codes to the phone numbers. That's about how difficult it would be
to remember 10 arbitrary Internet addresses.

[1] And, with IP Version 6, it's soon to be a whopping 128 bits long, or between and a 39-digit decimal number.

This is part of the reason we need the Domain Name System. DNS handles mapping between hostnames, which we
humans find convenient, and Internet addresses, which computers deal with. In fact, DNS is the standard mechanism
on the Internet for advertising and accessing all kinds of information about hosts, not just addresses. And DNS is used
by virtually all internetworking software, including electronic mail, remote terminal programs such as telnet, file transfer
programs such as ftp, and web browsers such as Netscape Navigator and Microsoft Internet Explorer.

Another important feature of DNS is that it makes host information available all over the Internet. Keeping information
about hosts in a formatted file on a single computer helps only users on that computer. DNS provides a means of
retrieving information remotely from anywhere on the network.

More than that, DNS lets you distribute the management of host information among many sites and organizations. You
don't need to submit your data to some central site or periodically retrieve copies of the "master" database. You simply
make sure your section, called a zone, is up to date on your name servers. Your name servers make your zone's data
available to all the other name servers on the network.

Because the database is distributed, the system also needs to be able to locate the data you're looking for by searching
a number of possible locations. The Domain Name System gives name servers the intelligence to navigate through the
database and find data in any zone.

Of course, DNS does have a few problems. For example, the system allows more than one name server to store data
about a zone for redundancy's sake, but inconsistencies can crop up between copies of the zone data.

But the worst problem with DNS is that despite its widespread use on the Internet, there's really very little
documentation about managing and maintaining it. Most administrators on the Internet make do with the
documentation their vendors see fit to provide and with whatever they can glean from following Internet mailing lists
and Usenet newsgroups on the subject.

This lack of documentation means that the understanding of an enormously important Internet service—one of the
linchpins of today's Internet—is either handed down from administrator to administrator like a closely guarded family
recipe or relearned repeatedly by isolated programmers and engineers. New zone administrators suffer through the
same mistakes made by countless others.

Our aim with this book is to help remedy this situation. We realize that not all of you have the time or the desire to
become DNS experts. Most of you, after all, have plenty to do besides managing your zones and name servers: system
administration, network engineering, or software development. It takes an awfully big institution to devote a whole
person to DNS. We'll try to give you enough information to allow you to do what you need to do, whether that's running
a small zone or managing a multinational monstrosity, tending a single name server or shepherding a hundred of them.
Read as much as you need to know now, and come back later if you need to know more.

DNS is a big topic—big enough to require three authors, anyway—but we've tried to present it as sensibly and
understandably as possible. The first two chapters give you a good theoretical overview and enough practical
information to get by, and later chapters fill in the nitty-gritty details. We provide a roadmap up front to suggest a path
through the book appropriate for your job or interest.

When we talk about actual DNS software, we'll concentrate on the Microsoft DNS Server, which is a popular
implementation of the DNS specs included in Windows Server 2003 (and in Windows 2000 Server and Windows NT
Server 4.0 before that). We've tried to distill our experience in managing and maintaining zones into this book. (One of
our zones, incidentally, was once one of the largest on the Internet, but that was a long time ago.)

We hope that this book will help you get acquainted with DNS on Windows Server 2003 if you're just starting out, refine
your understanding if you're already familiar with it, and provide valuable insight and experience even if you know it
like the back of your hand.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Versions
This book deals with name servers that run on Windows Server 2003, particularly the Microsoft DNS Server. We will
also occasionally mention other name servers that run on Windows Server 2003, especially ports of BIND, a popular
implementation of the DNS specifications. However, if you need a book on BIND, we suggest this book's sister edition,
DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly). This book is essentially a Windows Server 2003 edition of DNS
and BIND.

We use nslookup, a name server utility program, a great deal in our examples. The version of nslookup we use is the
one shipped with Windows Server 2003. Other versions of nslookup provide similar functionality to that in the Windows
nslookup. We have tried to use commands common to most nslookups in our examples; when this was not possible, we
tried to note it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What's New in This Edition
The first two editions of this book were called DNS on Windows NT and DNS on Windows 2000, and they dealt with
Microsoft's DNS implementation for those operating systems. This new edition has been updated to document the many
changes to DNS, large and small, found in Windows Server 2003. In particular, this edition documents use of the
dnscmd program to manage the Microsoft DNS Server from the command line and development using the WMI DNS
provider to manage the name server programmatically. The book also covers new features of the Microsoft DNS Server
in Windows Server 2003, including conditional forwarding and zone storage in Active Directory (AD) application
partitions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organization
This book is organized, more or less, to follow the evolution of a zone and its administrator. Chapter 1 and Chapter 2
discuss Domain Name System theory. Chapter 3-Chapter 6 help you decide whether to set up your own zones, then
describe how to go about it, should you choose to. Chapter 7-Chapter 11 describe how to maintain your zones,
integrate zone data with Active Directory, configure hosts to use your name servers, plan for the growth of your zones,
create subdomains, and secure your name servers. Chapter 12-Chapter 16 deal with common problems, management
tools, and troubleshooting tools.

Here's a more detailed, chapter-by-chapter breakdown:

Chapter 1 provides a little historical perspective and discusses the problems that motivated the development of
DNS. It presents an overview of DNS theory.

Chapter 2 goes over DNS theory in more detail, including the DNS namespace, domains, and name servers. We
also introduce important concepts such as name resolution and caching.

Chapter 3 covers how to choose and acquire your DNS software if you don't already have it and what to do with
it once you've got it; that is, how to figure out what your domain name should be and how to contact the
organization that can delegate your domain to you.

Chapter 4 details how to set up your first two name servers, including creating your name server database,
starting up your name servers, and checking their operation.

Chapter 5 deals with DNS's MX record, which allows administrators to specify alternate hosts to handle a given
destination's mail. The chapter covers mail-routing strategies for a variety of networks and hosts, including
networks with firewalls and hosts without direct Internet connectivity.

Chapter 6 explains how to configure a Windows resolver.

Chapter 7 describes the periodic maintenance administrators must perform to keep their domains running
smoothly, such as checking name server health and authority.

Chapter 8 covers how to design the namespace for your Active Directory forest, how to use application
partitions for zone storage, and how to enable secure dynamic updates. The chapter ends with a description of
the various resource records used by domain controllers.

Chapter 9 covers how to plan for the growth and evolution of your domain, including how to get big and how to
plan for moves and outages.

Chapter 10 explores the joys of becoming a parent domain. We explain when to become a parent (i.e., create
subdomains), what to call your children, how to create them (!), and how to watch over them.

Chapter 11 goes over name server configuration options that can help you tune your name server's
performance, secure your name server, and ease administration.

Chapter 12 shows the ins and outs of the most popular tools for doing DNS debugging, including techniques for
digging obscure information out of remote name servers.

Chapter 13 examines dnscmd and other command-line utilities that can be used for configuring, managing, and
updating the Microsoft DNS Server.

Chapter 14 details how to program with Microsoft's WMI DNS provider. This chapter includes examples of
reading and modifying name server configurations and updating zone data using scripts written in VBScript and
Perl.

Chapter 15 covers many common DNS problems and their solutions and then describes a number of less
common, harder-to-diagnose scenarios.

Chapter 16 ties up all the loose ends. We cover DNS wildcards, special configurations for networks that connect
to the Internet through firewalls, and hosts and networks with intermittent Internet connectivity via dial-up.

Appendix A contains a byte-by-byte breakdown of the formats used in DNS queries and responses as well as a
list of commonly used resource record types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list of commonly used resource record types.

Appendix B covers migrating from an existing BIND 4 name server to the Microsoft DNS Server.

Appendix C lists the current top-level domains in the Internet domain namespace.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Audience
This book is intended primarily for Windows Server 2003 system administrators who manage zones and one or more
name servers, but it also includes material for network engineers, postmasters, and others. Not all the book's chapters
will be equally interesting to a diverse audience, though, and you don't want to wade through 16 chapters to find the
information pertinent to your job. We hope this roadmap will help you plot your way through the book.

System administrators setting up their first zones

Should read Chapter 1 and Chapter 2 for DNS theory, Chapter 3 for information on getting started and selecting
a good domain name, then Chapter 4 and Chapter 5 to learn how to set up a zone for the first time. Chapter 6
explains how to configure hosts to use the new name servers. Soon after, they should read Chapter 7, which
explains how to "flesh out" their implementation by setting up additional name servers and adding additional
zone data, and Chapter 8, if they plan on using the Active Directory-integration features of the Microsoft DNS
Server. Chapter 12 and Chapter 15 describe useful troubleshooting tools and techniques.

Experienced administrators

May benefit from reading Chapter 6 to learn how to configure DNS resolvers on different hosts and Chapter 7
for information on maintaining their zones. Chapter 8 deals with Active Directory integration, which may be
useful to administrators new to the Microsoft DNS Server. Chapter 9 contains instructions on how to plan for a
zone's growth and evolution, which should be especially valuable to administrators of large zones. Chapter 10
explains parenting—creating subdomains—which is essential reading for those considering the big move.
Chapter 11 covers security features of the Microsoft DNS Server, many of which may be useful for experienced
administrators. Chapter 12 and Chapter 15 describe tools and techniques for troubleshooting, which even
advanced administrators may find worth reading.

System administrators on networks without full Internet connectivity

Should read Chapter 5 to learn how to configure mail on such networks and Chapter 16 to learn how to set up
an independent DNS infrastructure.

Network administrators not directly responsible for any zones

Should still read Chapter 1 and Chapter 2 for DNS theory, Chapter 12 to learn how to use nslookup and dig,
then Chapter 15 for troubleshooting tactics.

Postmasters

Should read Chapter 1 and Chapter 2 for DNS theory, then Chapter 5 to find out how DNS and electronic mail
coexist. Chapter 12, which describes nslookup and dig, will also help postmasters dig mail routing information
out of the domain namespace.

Interested users

Can read Chapter 1 and Chapter 2 for DNS theory, and then whatever else they like!

Note that we assume you're familiar with basic Windows Server 2003 system administration and TCP/IP networking. We
don't assume you have any other specialized knowledge, though. When we introduce a new term or concept, we'll do
our best to define or explain it. Whenever possible, we'll use analogies from Windows (and from the real world) to help
you understand.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Obtaining the Example Programs
The example programs in this book are available from this URL:

http://www.oreilly.com/catalog/dnswinsvr/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Viewing Microsoft Knowledge Base Articles
You can access a Microsoft Knowledge Base (KB) Article by appending the KB number to the end of the following URL:

http://support.microsoft.com/?kbid=

For example, this URL references KB article 810733:

http://support.microsoft.com/?kbid=810733

You can search the Microsoft Knowledge Base by visiting the Microsoft Support web site:

http://support.microsoft.com/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
We use the following font and format conventions:

Italic

Used for new terms where first defined, Registry values, domain names, filenames, and commands when they
appear in the body of a paragraph exactly as a user would type them (for example, run dir to list the files in a
directory). Italic is also used for Windows commands when they are mentioned in passing and not as part of a
command line (for example, to find more information on nslookup, a user could consult the Windows help
system).

Bold

Used for menu names and for text appearing in windows and dialog boxes, such as names of fields, buttons,
and menu options. For example, enter a domain name in the Server name field and then click the OK button.

Constant width

Used for method, class, and object names. Also used for excerpts from scripts or configuration files. For
example, a snippet of Perl:

if (-x "$ENV{systemroot}/system23/dns.exe"){
 print "DNS is installed!\n";
}

Sample interactive sessions showing command-line input and corresponding output are also shown in a constant
width font, with user-supplied input in constant width bold:

C\> more %systemroot%\system32\drivers\etc\hosts
Copyright (c) 1993-1999 Microsoft Corp.
#
This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
#

When a line of code is continued on a second line, we insert a bent arrow to indicate it, like this:

ec4caf62-31b2-4773-bcce-7b1e31c04d25._msdcs.movie.edu. 600 IN CNAME↵
terminator.movie.edu.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "ActionScript: The Definitive Guide, Second Edition, by Colin Moock. Copyright 2001 O'Reilly & Associates,
Inc., 0-596-00369-X."

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How to Contact Us
We at O'Reilly have tested and verified the information in this book to the best of our ability, but mistakes and
oversights do occur. Please let us know about errors you may find, as well as your suggestions for future editions, by
writing to:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for this book where examples, errata, and any plans for future editions are listed. You can access
this site at:

http://www.oreilly.com/catalog/dnswinsvr/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quotations
The quotations that begin each chapter are from the Millennium Fulcrum Edition 2.9 of the Project Gutenberg electronic
text of Lewis Carroll's Alice's Adventures in Wonderland (Chapter 1, Chapter 2, Chapter 5, Chapter 6, Chapter 9,
Chapter 11, and Chapter 16) and Through the Looking-Glass (Chapter 4, Chapter 7, Chapter 8, Chapter 10, and
Chapter 11-15).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
The authors would like to thank their technical reviewers for this edition, Alain Lissoir, Roger Abell, Gil Kirkpatrick, and
Jeff Westhead as well as the technical reviewers for previous editions, Levon Esibov, Jon Forrest, and David Blank-
Edelman, for their invaluable contributions to this book. Paul Robichaux provided assistance from his wealth of
Exchange knowledge for Chapter 5, and John Peterson offered helpful suggestions based on his production Windows
2000 environment.

Robbie would like to thank Cricket and Matt for giving him the opportunity to work on this book. He'd also like to thank
his wife, Janet, for being supportive even though she thinks he needs a break.

Matt would like to thank his wife, Sonja, for her support and unflagging patience, and Cricket for asking him to help
with the book in the first place. He'd also like to thank his current and former managers at VeriSign, Manoj Srivastava
and Aristotle Balogh, for their support.

Cricket owes a debt of gratitude to his wife, Paige, for running the show while he wrote this book. (And when he's not
writing, for that matter.) Additional thanks are due Walt, Dakota, and Annie, for their many sacrifices while Papa was
working, always working. Finally, love and thanks to his grandparents for their support, guidance, and company over
many years.

We would also like to thank the folks at O'Reilly & Associates for their hard work and patience. Credit is especially due
to our editors, Mike Loukides and Deb Cameron.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Background
The White Rabbit put on his spectacles. "Where shall I begin, please your Majesty?" he asked. "Begin at
the beginning," the King said, very gravely, "and go on till you come to the end: then stop."

It's important to know a little ARPAnet history to understand the Domain Name System (DNS). DNS was developed to
address particular problems on the ARPAnet, and the Internet—a descendant of the ARPAnet—is still its main user.

If you've been using the Internet for years, you can probably skip this chapter. If you haven't, we hope it'll give you
enough background to understand what motivated the development of DNS.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 A (Very) Brief History of the Internet
In the late 1960s, the U.S. Department of Defense's Advanced Research Projects Agency, ARPA (later DARPA), began
funding the ARPAnet, an experimental wide area computer network that connected important research organizations in
the U.S. The original goal of the ARPAnet was to allow government contractors to share expensive or scarce computing
resources. From the beginning, however, users of the ARPAnet also used the network for collaboration. This
collaboration ranged from sharing files and software and exchanging electronic mail—now commonplace—to joint
development and research using shared remote computers.

The Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite was developed in the early 1980s and
quickly became the standard host-networking protocol on the ARPAnet. The inclusion of the protocol suite in the
University of California at Berkeley's popular BSD Unix operating system was instrumental in democratizing
internetworking. BSD Unix was virtually free to universities. This meant that internetworking—and ARPAnet connectivity
—were suddenly available cheaply to many more organizations than were previously attached to the ARPAnet. Many of
the computers being connected to the ARPAnet were being connected to local area networks (LANs), too, and very
shortly the other computers on the LANs were communicating via the ARPAnet as well.

The network grew from a handful of hosts to tens of thousands of hosts. The original ARPAnet became the backbone of
a confederation of local and regional networks based on TCP/IP, called the Internet.

In 1988, however, DARPA decided the experiment was over. The Department of Defense began dismantling the
ARPAnet. Another network, the NSFNET, funded by the National Science Foundation, replaced the ARPAnet as the
backbone of the Internet.

In the spring of 1995, the Internet made a transition from using the publicly funded NSFNET as a backbone to using
multiple commercial backbones, run by telecommunications companies, such as SBC and Sprint, and long-time
commercial internetworking players, such as MFS and UUNET.

Today, the Internet connects millions of hosts around the world. In fact, a significant proportion of the non-PC
computers in the world are connected to the Internet. Some commercial backbones carry a volume of several gigabits
per second, tens of thousands of times the bandwidth of the original ARPAnet. Tens of millions of people use the
network for communication and collaboration daily.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 On the Internet and Internets
A word on "the Internet," and on "internets" in general, is in order. In print, the difference between the two seems
slight: one is always capitalized, one isn't. The distinction between their meanings, however, is significant. The Internet,
with a capital "I," refers to the network that began its life as the ARPAnet and continues today as, roughly, the
confederation of all TCP/IP networks directly or indirectly connected to commercial U.S. backbones. Seen up close, it's
actually quite a few different networks—commercial TCP/IP backbones, corporate and U.S. government TCP/IP
networks, and TCP/IP networks in other countries—interconnected by high-speed digital circuits.

A lowercase internet, on the other hand, is simply any network made up of multiple smaller networks using the same
internetworking protocols. An internet (little "i") isn't necessarily connected to the Internet (big "I"), nor does it
necessarily use TCP/IP as its internetworking protocol. There are isolated corporate internets, for example.

An intranet is really just a TCP/IP-based "little i" internet, used to emphasize the use of technologies developed and
introduced on the Internet on a company's internal corporate network. An "extranet," on the other hand, is a TCP/IP-
based internet that connects partner companies, or a company to its distributors, suppliers, and customers.

1.2.1 The History of the Domain Name System

Through the 1970s, the ARPAnet was a small, friendly community of a few hundred hosts. A single file, HOSTS.TXT ,
contained a name-to-address mapping for every host connected to the ARPAnet. The familiar Unix host table,
/etc/hosts, was compiled from HOSTS.TXT (mostly by deleting fields Unix didn't use).

HOSTS.TXT was maintained by SRI's Network Information Center (dubbed "the NIC") and distributed from a single
host, SRI-NIC.[1] ARPAnet administrators typically emailed their changes to the NIC and periodically ftped to SRI-NIC
and grabbed the current HOSTS.TXT file. Their changes were compiled into a new HOSTS.TXT file once or twice a week.
As the ARPAnet grew, however, this scheme became unworkable. The size of HOSTS.TXT grew in proportion to the
growth in the number of ARPAnet hosts. Moreover, the traffic generated by the update process increased even faster:
every additional host meant not only another line in HOSTS.TXT, but potentially another host updating from SRI-NIC.

[1] SRI is the former Stanford Research Institute in Menlo Park, California. SRI conducts research into many
different areas, including computer networking.

When the ARPAnet moved to TCP/IP, the population of the network exploded. Now there was a host of problems with
HOSTS.TXT (no pun intended):

Traffic and load

The toll on SRI-NIC, in terms of the network traffic and processor load involved in distributing the file, was
becoming unbearable.

Name collisions

No two hosts in HOSTS.TXT could have the same name. However, while the NIC could assign addresses in a
way that guaranteed uniqueness, it had no authority over hostnames. There was nothing to prevent someone
from adding a host with a conflicting name and breaking the whole scheme. Adding a host with the same name
as a major mail hub, for example, could disrupt mail service to much of the ARPAnet.

Consistency

Maintaining consistency of the file across an expanding network became harder and harder. By the time a new
HOSTS.TXT file could reach the farthest shores of the enlarged ARPAnet, a host across the network may have
changed addresses or a new host may have sprung up.

The essential problem was that the HOSTS.TXT mechanism didn't scale well. Ironically, the success of the ARPAnet as
an experiment led to the failure and obsolescence of HOSTS.TXT.

The ARPAnet's governing bodies chartered an investigation into a successor for HOSTS.TXT. Their goal was to create a
system that solved the problems inherent in a unified host table system. The new system should allow local
administration of data, yet make that data globally available. The decentralization of administration would eliminate the
single-host bottleneck and relieve the traffic problem. And local management would make the task of keeping data up-
to-date much easier. The new system should use a hierarchical namespace to name hosts. This would ensure the
uniqueness of names.

Paul Mockapetris, then of USC's Information Sciences Institute, was responsible for designing the architecture of the
new system. In 1984, he released RFCs[2] 882 and 883, which describe the Domain Name System. These RFCs were

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new system. In 1984, he released RFCs[2] 882 and 883, which describe the Domain Name System. These RFCs were
superseded by RFCs 1034 and 1035, the current specifications of the Domain Name System. RFCs 1034 and 1035 have
since been augmented by many other RFCs, which describe potential DNS security problems, implementation problems,
administrative gotchas, mechanisms for dynamically updating name servers and for securing zone data, and more.

[2] RFCs are Request for Comments documents, part of the relatively informal procedure for introducing new
technology on the Internet. RFCs are usually freely distributed and contain fairly technical descriptions of the
technology, often intended for implementers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 The Domain Name System in a Nutshell
The Domain Name System is a distributed database. This structure allows local control of the segments of the overall
database, yet data in each segment is available across the entire network through a client/server scheme. Robustness
and adequate performance are achieved through replication and caching.

Programs called name servers constitute the server half of DNS's client/server mechanism. Name servers contain
information about some segments of the database and make that information available to clients, called resolvers.
Resolvers are often just library routines that create queries and send them across a network to a name server.

The structure of the DNS database, shown in Figure 1-1, is similar to the structure of the Windows filesystem. The
whole database (or filesystem) is pictured as an inverted tree, with the root node at the top. Each node in the tree has
a text label, which identifies the node relative to its parent. This is roughly analogous to a "relative pathname" in a
filesystem, like Temp. One label—the null label, or " "—is reserved for the root node. In text, the root node is written as
a single dot (.). In the Windows filesystem, the root is written as a backslash (\).

Figure 1-1. The DNS database versus a Windows filesystem

Each node is also the root of a new subtree of the overall tree. Each of these subtrees represents a partition of the
overall database—a "directory" or "folder" in the Windows filesystem, or a domain in the Domain Name System. Each
domain or directory can be further divided into additional partitions, called subdomains in DNS, like a filesystem's
subdirectories. Subdomains, like subdirectories, are drawn as children of their parent domains.

Every domain has a unique name, like every directory. A domain's domain name identifies its position in the database,
much as a directory's "absolute pathname" specifies its place in the filesystem. In DNS, the domain name is the
sequence of labels from the node at the root of the domain to the root of the whole tree, with dots (.) separating the
labels. In the Windows filesystem, a directory's absolute pathname is the list of relative names read from root to leaf
(the opposite direction from DNS, as shown in Figure 1-2), using a slash to separate the names.

Figure 1-2. Reading names in DNS and in a Windows filesystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In DNS, each domain can be broken into a number of subdomains, and responsibility for those subdomains can be
doled out to different organizations. For example, an organization called EDUCAUSE manages the edu (educational)
domain, but delegates responsibility for the berkeley.edu subdomain to U.C. Berkeley (see Figure 1-3). This is similar to
remotely mounting a filesystem: certain directories in a filesystem may actually be filesystems on other hosts, mounted
from remote hosts. The administrator on host winken, for example (again, Figure 1-3), is responsible for the filesystem
that appears on the local host as the directory /usr/nfs/winken.

Figure 1-3. Remote management of subdomains and of filesystems

Delegating authority for berkeley.edu to U.C. Berkeley creates a new zone, an autonomously administered piece of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delegating authority for berkeley.edu to U.C. Berkeley creates a new zone, an autonomously administered piece of the
namespace. The zone berkeley.edu is now independent from edu, and contains all domain names that end in
berkeley.edu. The zone edu, on the other hand, contains only domain names that end in edu but aren't in delegated
zones like berkeley.edu. berkeley.edu may be further divided into subdomains, like cs.berkeley.edu, and some of these
subdomains may themselves be separate zones, if the berkeley.edu administrators delegate responsibility for them to
other organizations. If cs.berkeley.edu is a separate zone, the berkeley.edu zone doesn't contain domain names that
end in cs.berkeley.edu (see Figure 1-4).

Figure 1-4. The edu, berkeley.edu, and cs.berkeley.edu zones

Domain names are used as indexes into the DNS database. You might think of data in DNS as "attached" to a domain
name. In a filesystem, directories contain files and subdirectories. Likewise, domains can contain both hosts and
subdomains. A domain contains those hosts and subdomains whose domain names are within the domain's subtree of
the namespace.

Each host on a network has a domain name, which points to information about the host (see Figure 1-5). This
information may include IP addresses, information about mail routing, etc. Hosts may also have one or more domain
name aliases, which are simply pointers from one domain name (the alias) to another (the official or canonical domain
name). In Figure 1-5, mailhub.nv . . . is an alias for the canonical name rincon.ba.ca

Figure 1-5. An alias in DNS pointing to a canonical name

Why all the complicated structure? To solve the problems that HOSTS.TXT had. For example, making domain names
hierarchical eliminates the pitfall of name collisions. Each domain has a unique domain name, so the organization that
runs the domain is free to name hosts and subdomains within its domain. Whatever name they choose for a host or
subdomain won't conflict with other organizations' domain names, since it will end in their unique domain name. For
example, the organization that runs hic.com can name a host puella (as shown in Figure 1-6), since it knows that the
host's domain name will end in hic.com, a unique domain name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-6. Solving the name collision problem

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 The History of the Microsoft DNS Server
The first implementation of the Domain Name System was called JEEVES, written by Paul Mockapetris himself. A later
implementation was BIND, an acronym for Berkeley Internet Name Domain, written by Kevin Dunlap for BSD 4.3 Unix.
BIND is now maintained by the Internet Software Consortium.[3]

[3] For more information on the Internet Software Consortium and its work on BIND, see
http://www.isc.org/bind.html.

Although the Microsoft DNS Server can read BIND's configuration and datafiles, it is not BIND. Microsoft wrote its server
from scratch, according to the DNS specifications. The first version of the Microsoft DNS Server was a beta version that
ran on Windows NT 3.51. Microsoft made it available for some time from one of its FTP servers. The first product
version of the DNS Server was shipped with Microsoft Windows NT Server 4.0 (but not with NT Workstation 4.0). The
DNS server shipped with Windows 2000 Server and Windows Server 2003 comes from the same code base as the
Windows NT DNS server—it's really just a later version.

There are other name servers that run on Windows. For example, the Internet Software Consortium distributes free
ports of BIND, including 9.2.2 (the latest released version as of this writing), which run on Windows NT, Windows 2000,
and Windows Server 2003 (see ftp://ftp.isc.org/isc/bind/contrib/).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 Must I Use DNS?
Despite the usefulness of the Domain Name System, there are some situations in which it doesn't pay to use it. There
are other name-resolution mechanisms besides DNS, some of which may be a standard part of your operating system.
Sometimes the overhead involved in managing zones and their name servers outweighs the benefits. On the other
hand, there are circumstances in which you have no other choice but to set up and manage name servers. Here are
some guidelines to help you make that decision.

1.5.1 If You're Connected to the Internet . . .

. . . DNS is a must. Think of DNS as the lingua franca of the Internet: nearly all of the Internet's network services use
DNS. That includes the Web, electronic mail, remote terminal access, and file transfer.

On the other hand, this doesn't necessarily mean that you have to set up and run zones by yourself for yourself. If
you've got only a handful of hosts, you may be able to join an existing zone (see Chapter 3) or find someone else to
host your zones for you. If you pay an Internet service provider for your Internet connectivity, ask if they'll host your
zone for you, too. Even if you aren't already a customer, there are companies who will help out, for a price.

If you have a little more than a handful of hosts, or a lot more, you'll probably want your own zone. And if you want
direct control over your zone and your name servers, you'll want to manage it yourself. Read on!

1.5.2 If You Have Your Own TCP/IP-Based Internet . . .

. . . you probably want DNS. By an internet, we don't mean just a single Ethernet of workstations using TCP/IP (see the
next section if you thought that was what we meant); we mean a fairly complex "network of networks." Maybe you
have several dozen Ethernet segments connected via routers, for example.

If your internet is basically homogeneous and your hosts don't need DNS (say they don't run TCP/IP at all), you may be
able to do without it. But if you've got a variety of hosts, especially if some of those run some variety of Unix, you'll
want DNS. It'll simplify the distribution of host information and rid you of any kludgy host-table distribution schemes
you may have cooked up.

1.5.3 If You Have Your Own Local Area Network or Site Network . . .

. . . and that network isn't connected to a larger network, you can probably get away without using DNS. You might
consider using Microsoft's Windows Internet Name Service (WINS), host tables, or Sun's Network Information Service
(NIS) product.

But if you need distributed administration or have trouble maintaining the consistency of data on your network, DNS
may be for you. And if your network is likely to soon be connected to another network, such as your corporate internet
or the Internet, it would be wise to start up your zones now.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. How Does DNS Work?
" . . . and what is the use of a book," thought Alice, "without pictures or conversations?"

The Domain Name System is basically a database of host information. Admittedly, you get a lot with that: funny dotted
names, networked name servers, a shadowy "namespace." But keep in mind that, in the end, the service DNS provides
is information about internet hosts.

We've already covered some important aspects of DNS, including its client/server architecture and the structure of the
DNS database. However, we haven't gone into much detail, and we haven't explained the nuts and bolts of DNS's
operation.

In this chapter, we'll explain and illustrate the mechanisms that make DNS work. We'll also introduce the terms you'll
need to know to read the rest of the book (and to converse intelligently with your fellow zone administrators).

First, though, let's take a more detailed look at the concepts introduced in the previous chapter. We'll try to add enough
detail to spice it up a little.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 The Domain Namespace
DNS's distributed database is indexed by domain names. Each domain name is essentially just a path in a large inverted
tree, called the domain namespace. The tree's hierarchical structure, shown in Figure 2-1, is similar to the structure of
the Windows filesystem. The tree has a single root at the top.[1] In the Windows filesystem, this is called the root
directory and is represented by a backslash (\). DNS simply calls it "the root." Like a filesystem, DNS's tree can branch
any number of ways at each intersection point, or node. The depth of the tree is limited to 127 levels (a limit you're not
likely to reach).

[1] Clearly this is a computer scientist's tree, not a botanist's.

Figure 2-1. The structure of the DNS namespace

2.1.1 Domain Names

Each node in the tree has a text label (without dots) that can be up to 63 characters long. A null (zero-length) label is
reserved for the root. The full domain name of any node in the tree is the sequence of labels on the path from that
node to the root. Domain names are always read from the node toward the root ("up" the tree), with dots separating
the names in the path.

If the root node's label actually appears in a node's domain name, the name looks as though it ends in a dot, as in
"www.oreilly.com.". (It actually ends with a dot—the separator—and the root's null label.) When the root node's label
appears by itself, it is written as a single dot, ".", for convenience. Consequently, some software interprets a trailing dot
in a domain name to indicate that the domain name is absolute. An absolute domain name is written relative to the root
and unambiguously specifies a node's location in the hierarchy. An absolute domain name is also referred to as a fully
qualified domain name, often abbreviated FQDN. Names without trailing dots are sometimes interpreted as relative to
some domain name other than the root, just as directory names without a leading slash are often interpreted as
relative to the current directory.

DNS requires that sibling nodes—nodes that are children of the same parent—have different labels. This restriction
guarantees that a domain name uniquely identifies a single node in the tree. The restriction really isn't a limitation,
because the labels need to be unique only among the children, not among all the nodes in the tree. The same
restriction applies to the Windows filesystem: you can't give two sibling directories or two files in the same directory the
same name. As illustrated in Figure 2-2, just as you can't have two hobbes.pa.ca.us nodes in the namespace, you can't
have two \Temp directories. You can, however, have both a hobbes.pa.ca.us node and a hobbes.lg.ca.us node, as you
can have both a \Temp directory and a \Windows\Temp directory.

Figure 2-2. Ensuring uniqueness in domain names and Windows pathnames

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-2. Ensuring uniqueness in domain names and Windows pathnames

2.1.2 Domains

A domain is simply a subtree of the domain namespace. The domain name of a domain is the same as the domain
name of the node at the very top of the domain. So, for example, the top of the purdue.edu domain is a node named
purdue.edu, as shown in Figure 2-3.

Figure 2-3. The purdue.edu domain

Likewise, in a filesystem, at the top of the \Program Files directory you'd expect to find a node called \Program Files, as
shown in Figure 2-4.

Figure 2-4. The \Program Files directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-4. The \Program Files directory

Any domain name in the subtree is considered a part of the domain. Because a domain name can be in many subtrees,
a domain name can also be in many domains. For example, the domain name pa.ca.us is part of the ca.us domain and
also part of the us domain, as shown in Figure 2-5.

Figure 2-5. A node in multiple domains

So in the abstract, a domain is just a subtree of the domain namespace. But if a domain is simply made up of domain
names and other domains, where are all the hosts? Domains are groups of hosts, right?

The hosts are there, represented by domain names. Remember, domain names are just indexes into the DNS database.
The "hosts" are the domain names that point to information about individual hosts, and a domain contains all the hosts
whose domain names are within the domain. The hosts are related logically, often by geography or organizational
affiliation, and not necessarily by network or address or hardware type. You might have 10 different hosts, each of
them on a different network and perhaps even in a different country, all in the same domain.

One note of caution: don't confuse domains in DNS with domains in NIS. Though an NIS domain also refers to a group
of hosts and both types of domains have similarly structured names, the concepts are quite different. NIS uses
hierarchical names, but the hierarchy ends there: hosts in the same NIS domain share certain data about hosts and
users, but they can't navigate the NIS namespace to find data in other NIS domains. NT domains, which provide
account-management and security services, also don't have any relationship to DNS domains. Active Directory domains,
however, are closely related to DNS. We discuss that relationship in Chapter 8.

Domain names at the leaves of the tree generally represent individual hosts, and they may point to network addresses,
hardware information, and mail-routing information. Domain names in the interior of the tree can name a host and
point to information about the domain; they aren't restricted to one or the other. Interior domain names can represent
both the domain they correspond to and a particular host on the network. For example, hp.com is both the name of the
Hewlett-Packard Company's domain and a domain name that refers to the hosts that run HP's main web server.

The type of information retrieved when you use a domain name depends on the context in which you use it. Sending
mail to someone at hp.com would return mail-routing information, while telneting to the domain name would look up
the host information (in Figure 2-6 (for example, hp.com's IP address).

Figure 2-6. An interior node with both host and domain data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-6. An interior node with both host and domain data

A domain may have several subtrees of its own, called subdomains.[2]

[2] The terms "domain" and "subdomain" are often used interchangeably, or nearly so, in DNS documentation.
Here, we use "subdomain" only as a relative term: a domain is a subdomain of another domain if the root of the
subdomain is within the domain.

A simple way of determining if a domain is a subdomain of another domain is to compare their domain names. A
subdomain's domain name ends with the domain name of its parent domain. For example, the domain la.tyrell.com
must be a subdomain of tyrell.com, because la.tyrell.com ends with tyrell.com. It's also a subdomain of com, as is
tyrell.com.

Besides being referred to in relative terms, as subdomains of other domains, domains are often referred to by level. On
mailing lists and in Usenet newsgroups, you may see the terms top-level domain or second-level domain bandied about.
These terms simply refer to a domain's position in the domain namespace:

A top-level domain is a child of the root.

A first-level domain is a child of the root (a top-level domain).

A second-level domain is a child of a first-level domain, and so on.

2.1.3 Resource Records

The data associated with domain names is contained in resource records, or RRs. Records are divided into classes, each
of which pertains to a type of network or software. Currently, there are classes for internets (any TCP/IP-based
internet), networks based on the Chaosnet protocols, and networks that use Hesiod software. (Chaosnet is an old
network of largely historic significance.) The internet class is by far the most popular. (We're not really sure if anyone
still uses the Chaosnet class, and use of the Hesiod class is mostly confined to MIT.) In this book, we concentrate on the
internet class.

Within a class, records come in several types, which correspond to the different varieties of data that may be stored in
the domain namespace. Different classes may define different record types, though some types are common to more
than one class. For example, almost every class defines an address type. Each record type in a given class defines a
particular record syntax to which all resource records of that class and type must adhere. (For details on resource
record types and their syntaxes, see Appendix A.)

If this information seems sketchy, don't worry—we'll cover the records in the internet class in more detail later. The
common records are described in Chapter 4, and a more comprehensive list is included as part of Appendix A.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 The Internet Domain Namespace
So far, we've talked about the theoretical structure of the domain namespace and what sort of data is stored in it, and
we've even hinted at the types of names you might find in it with our (sometimes fictional) examples. But this won't
help you decode the domain names you see on a daily basis on the Internet.

The Domain Name System doesn't impose many rules on the labels in domain names, and it doesn't attach any
particular meaning to the labels at a given level of the namespace. When you manage a part of the domain namespace,
you can decide on your own semantics for your domain names. Heck, you could name your subdomains A through Z
and no one would stop you (though they might strongly recommend against it).

The existing Internet domain namespace, however, has some self-imposed structure to it. Especially in the upper-level
domains, the domain names follow certain traditions (not rules, really, as they can be and have been broken). These
traditions help to keep domain names from appearing totally chaotic. Understanding these traditions is an enormous
asset if you're trying to decipher a domain name.

2.2.1 Top-Level Domains

The original top-level domains divided the Internet domain namespace organizationally into seven domains:

com

Commercial organizations, such as Hewlett-Packard (hp.com), Sun Microsystems (sun.com), and IBM
(ibm.com).

edu

Educational organizations, such as U.C. Berkeley (berkeley.edu) and Purdue University (purdue.edu).

gov

Government organizations, such as NASA (nasa.gov) and the National Science Foundation (nsf.gov).

mil

Military organizations, such as the U.S. Army (army.mil) and Navy (navy.mil).

net

Formerly organizations providing network infrastructure, such as NSFNET (nsf.net) and UUNET (uu.net). Since
1996, however, net has been open to any commercial organization, like com is.

org

Formerly noncommercial organizations, such as the Electronic Frontier Foundation (eff.org). Like net, though,
restrictions on org were removed in 1996.

int

International organizations, such as NATO (nato.int).

Another top-level domain called arpa was originally used during the ARPAnet's transition from host tables to DNS. All
ARPAnet hosts originally had hostnames under arpa so they were easy to find. Later, they moved into various
subdomains of the organizational top-level domains. However, the arpa domain remains in use in a way you'll read
about later.

You may notice a certain nationalistic prejudice in our examples: we've used primarily U.S.-based organizations. That's
easier to understand—and forgive—when you remember that the Internet began as the ARPAnet, a U.S.-funded
research project. No one anticipated the success of the ARPAnet, or that it would eventually become as international as
the Internet is today.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Today, these original seven domains are called generic top-level domains or gTLDs. The "generic" contrasts them with
the country-code top-level domains, which are specific to a particular country.

2.2.1.1 Country-code top-level domains

To accommodate the increasing internationalization of the Internet, the implementers of the Internet namespace
compromised. Instead of insisting that all top-level domains describe organizational affiliation, they decided to allow
geographical designations, too. New top-level domains were reserved (but not necessarily created) to correspond to
individual countries. Their domain names followed an existing international standard called ISO 3166.[3] ISO 3166
establishes official, two-letter abbreviations for every country in the world. We've included the current list of top-level
domains as Appendix C.

[3] Except for Great Britain. According to ISO 3166 and Internet tradition, Great Britain's top-level domain name
should be gb. Instead, most organizations in Great Britain and Northern Ireland (i.e., the United Kingdom) use the
top-level domain name uk. They drive on the wrong side of the road, too.

2.2.1.2 New top-level domains

Then, in late 2000, the organization responsible for the management of the Domain Name System, the Internet
Corporation for Assigned Names and Numbers, or ICANN, created seven new generic top-level domains to
accommodate the rapid expansion of the Internet and the need for more domain name "space." A few of these were
truly generic top-level domains, like com, net, and org, while others were closer in purpose to gov and mil: reserved for
use by a specific (and sometimes surprisingly small) community.[4] These new gTLDs are:

[4] ICANN refers to this latter variety as a "sponsored gTLD," and the former as an "unsponsored gTLD."

aero

For the aeronautical industry

biz

Generic

coop

For cooperatives

info

Generic

museum

For museums

name

For individuals

pro

For professionals

2.2.2 Further Down

Within these top-level domains, the traditions and the extent to which they are followed vary. Some of the ISO 3166
top-level domains closely follow the U.S.'s original organizational scheme. For example, Australia's top-level domain,
au, has subdomains such as edu.au and com.au. Some other ISO 3166 top-level domains follow the uk domain's lead
and have organizationally oriented subdomains such as co.uk for corporations and ac.uk for the academic community.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and have organizationally oriented subdomains such as co.uk for corporations and ac.uk for the academic community.
In most cases, however, even these geographically oriented top-level domains are divided up organizationally.

That wasn't originally true of the us top-level domain, though. In the beginning, the us domain had 50 subdomains that
correspond to—guess what?—the 50 U.S. states.[5] Each was named according to the standard two-letter abbreviation
for the state—the same abbreviation standardized by the U.S. Postal Service. Within each state's domain, the
organization was still largely geographical: most subdomains corresponded to individual cities. Beneath the cities, the
subdomains usually corresponded to individual hosts.

[5] Actually, there are a few more domains under us: one for Washington, D.C., one for Guam, and so on.

As with so many namespace rules, though, this structure was abandoned when a new company, Neustar, began
managing us in 2002. Now us—like com and net—is open to all comers.

2.2.3 Reading Domain Names

Now that you know what most top-level domains represent and how their namespaces are structured, you'll probably
find it much easier to make sense of most domain names. Let's dissect a few for practice:

lithium.cchem.berkeley.edu

You've got a head start on this one, as we've already told you that berkeley.edu is U.C. Berkeley's domain.
(Even if you didn't already know that, though, you could have inferred that the name probably belongs to a U.S.
university because it's in the top-level edu domain.) cchem is the College of Chemistry's subdomain of
berkeley.edu. Finally, lithium is the name of a particular host in the domain—and probably one of about a
hundred or so, if they've got one for every element.

winnie.corp.hp.com

This example is a bit harder, but not much. The hp.com domain in all likelihood belongs to the Hewlett-Packard
Company (in fact, we gave you this earlier, too). Their corp subdomain is undoubtedly their corporate
headquarters. And winnie is probably just some silly name someone thought up for a host.

fernwood.mpk.ca.us

Here you'll need to use your understanding of the us domain. ca.us is obviously California's domain, but mpk is
anybody's guess. In this case, it would be hard to know that it's Menlo Park's domain unless you knew your San
Francisco Bay Area geography. (And no, it's not the same Menlo Park that Edison lived in—that one's in New
Jersey.)

daphne.ch.apollo.hp.com

We've included this example just so you don't start thinking that all domain names have only four labels.
apollo.hp.com is the former Apollo Computer subdomain of the hp.com domain. (When HP acquired Apollo, it
also acquired Apollo's Internet domain, apollo.com, which became apollo.hp.com.) ch.apollo.hp.com is Apollo's
Chelmsford, Massachusetts site. daphne is a host at Chelmsford.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Delegation
Remember that one of the main goals of the design of the Domain Name System was to decentralize administration?
This is achieved through delegation. Delegating domains works a lot like delegating tasks at work. A manager may
break up a large project into smaller tasks and delegate responsibility for each of these tasks to different employees.

Likewise, an organization administering a domain can divide it into subdomains. Each of those subdomains can be
delegated to other organizations. This means that an organization becomes responsible for maintaining all the data in
that subdomain. It can freely change the data and even divide its subdomain into more subdomains and delegate those.
The parent domain retains only pointers to sources of the subdomain's data, so that it can refer queriers there. The
domain stanford.edu, for example, is delegated to the folks at Stanford who run the university's networks (see Figure
2-7).

Figure 2-7. stanford.edu is delegated to Stanford University

Not all organizations delegate away their whole domain, just as not all managers delegate all their work. A domain may
have several delegated subdomains and also contain hosts that don't belong in the subdomains. For example, the Acme
Corporation (it supplies a certain coyote with most of his gadgets), which has a division in Rockaway and its
headquarters in Kalamazoo, might have a rockaway.acme.com subdomain and a kalamazoo.acme.com subdomain.
However, the few hosts in the Acme sales offices scattered throughout the U.S. would fit better under acme.com than
under either subdomain.

We'll explain how to create and delegate subdomains later. For now, it's important only that you understand that the
term delegation refers to assigning responsibility for a subdomain to another organization.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Name Servers and Zones
The programs that store information about the domain namespace are called name servers. Name servers generally
have complete information about some part of the domain namespace, called a zone, which they load from a file or
from another name server. The name server is then said to have authority for that zone. Name servers can be
authoritative for multiple zones, too.

The difference between a zone and a domain is important, but subtle. All top-level domains and many domains at the
second level and lower, such as berkeley.edu and hp.com, are broken into smaller, more manageable units by
delegation. These units are called zones. The edu domain, shown in Figure 2-8, is divided into many zones, including
the berkeley.edu zone, the purdue.edu zone, and the nwu.edu zone. At the top of the domain, there's also an edu zone.
It's natural that the folks who run edu would break up the edu domain: otherwise, they'd have to manage the
berkeley.edu subdomain themselves. It makes much more sense to delegate berkeley.edu to Berkeley. What's left for
the folks who run edu? The edu zone, which contains mostly delegation information for the subdomains of edu.

Figure 2-8. The edu domain broken into zones

The berkeley.edu subdomain is, in turn, broken up into multiple zones by delegation, as shown in Figure 2-9. There are
delegated subdomains called cc, cs, ce, me, and more. Each of these subdomains is delegated to a set of name servers,
some of which are also authoritative for berkeley.edu. However, the zones are still separate and may have totally
different groups of authoritative name servers.

Figure 2-9. The berkeley.edu domain broken into zones

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A zone contains all the domain names the domain with the same domain name contains, except for domain names in
delegated subdomains. For example, the top-level domain ca (for Canada) has subdomains called ab.ca, on.ca, and
qc.ca, for the provinces Alberta, Ontario, and Quebec. Authority for the ab.ca, on.ca, and qc.ca domains may be
delegated to name servers in each of the provinces. The domain ca contains all the data in ca plus all the data in ab.ca,
on.ca, and qc.ca. However, the zone ca contains only the data in ca (see Figure 2-10), which is probably mostly
pointers to the delegated subdomains. ab.ca, on.ca, and qc.ca are separate zones from the ca zone.

The zone also contains the domain names and data in any subdomains that aren't delegated away. For example, the
bc.ca and sk.ca (British Columbia and Saskatchewan) subdomains of the ca domain may exist but not be delegated.
(Perhaps the provincial authorities in B.C. and Saskatchewan aren't yet ready to manage their subdomains, but the
authorities running the top-level ca domain want to preserve the consistency of the namespace and implement
subdomains for all of the Canadian provinces right away.) In this case, the zone ca has a ragged bottom edge,
containing bc.ca and sk.ca, but not the other ca subdomains, as shown in Figure 2-11.

Figure 2-10. The domain ca . . .

Figure 2-11. versus the zone ca . . .

Now it's clear why name servers load zones instead of domains: a domain may contain more information than the name
server needs, since it can contain data delegated to other name servers.[6] Since a zone is bounded by delegation, it
will never include delegated data.

[6] Imagine if a root name server loaded the root domain instead of the root zone: it would be loading the entire
namespace!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

namespace!

If you're just starting out, your domain probably won't have any subdomains. In this case, since there's no delegation
going on, your domain and your zone will contain the same data.

2.4.1 Delegating Subdomains

Even though you may not need to delegate parts of your domain just yet, it's helpful to understand a little more about
how the process of delegating a subdomain works. Delegation, in the abstract, involves assigning responsibility for
some part of your domain to another organization. What really happens, however, is the assignment of authority for a
subdomain to different name servers. (Note that we said "name servers," not just "name server.")

Your zone's data, instead of containing information in the subdomain you've delegated, includes pointers to the name
servers that are authoritative for that subdomain. Now if one of your name servers is asked for data in the subdomain,
it can reply with a list of the right name servers to contact.

2.4.2 Types of Name Servers

The DNS specs define two types of name servers: primary masters and secondaries. A primary master name server for
a zone reads the data for the zone from a file on its host. A secondary name server for a zone gets the zone data from
another name server authoritative for the zone, called its master server. Quite often, the master server is the zone's
primary master, but that's not required: a secondary can load zone data from another secondary. When a secondary
starts up, it contacts its master name server and, if necessary, pulls the zone data over. This is referred to as a zone
transfer. Nowadays, the preferred term for a secondary name server is a slave, though many people (and some
software, including Microsoft's DNS console) still use the old term.

Both the primary master and secondary name servers for a zone are authoritative for that zone. Despite the somewhat
disparaging name, secondaries aren't second-class name servers. DNS provides these two types of name servers to
make administration easier. Once you've created the data for your zone and set up a primary master name server, you
don't need to copy that data from host to host to create new name servers for the zone. You simply set up secondary
name servers that load their data from the primary master for the zone. The secondaries you set up will transfer new
zone data when necessary.

Secondary name servers are important because it's a good idea to set up more than one authoritative name server for
any given zone. You'll want more than one for redundancy, to spread the load around, and to make sure that all the
hosts in the zone have a name server close by. Using secondary name servers makes this administratively workable.

Calling a particular name server a primary master name server or a secondary name server is a little imprecise, though.
We mentioned earlier that a name server can be authoritative for more than one zone. Similarly, a name server can be
a primary master for one zone and a secondary for another. Most name servers, however, are either primary for most
of the zones they load or secondary for most of the zones they load. So if we call a particular name server a primary or
a secondary, we mean that it's the primary master or a secondary for most of the zones for which it's authoritative.

2.4.3 Datafiles

The files from which primary master name servers load their zone data are called, simply enough, zone datafiles. We
often refer to them as datafiles. Secondary name servers can also load their zone data from datafiles. Secondaries are
usually configured to back up the zone data they transfer from a master name server to datafiles. If the secondary is
later killed and restarted, it will read the backup datafiles first, then check to see whether its zone data is current. This
both obviates the need to transfer the zone data if it hasn't changed and provides a source of the data if the master is
down.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.5 Resolvers
Resolvers are the clients that access name servers. Programs running on a host that need information from the domain
namespace use the resolver. The resolver handles:

Querying a name server

Interpreting responses (which may be resource records or an error)

Returning the information to the programs that requested it

In Windows Server 2003, the resolver is a set of library routines, linked into programs such as telnet and ftp, and a
system service called the DNS Client, which is responsible for caching records that applications have requested. The
resolver relies almost entirely upon the name servers it queries. It has the smarts to put together a query, to send it
and wait for an answer, and to resend the query if it isn't answered, but that's about all. Most of the burden of finding
an answer to the query is placed on the name server. The DNS specs call this kind of resolver a stub resolver.

Other implementations of DNS have had smarter resolvers that could do more sophisticated things, such as follow
referrals to locate the name servers authoritative for a particular zone.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.6 Resolution
Name servers are adept at retrieving data from the domain namespace. They have to be, given the limited intelligence
of most resolvers. Not only can they give you data about zones for which they're authoritative, they can also search
through the domain namespace to find data for which they're not authoritative. This process is called name resolution
or simply resolution.

Because the namespace is structured as an inverted tree, a name server needs only the domain names and addresses
of the root name servers to find its way to any point in the tree. A name server can issue a query to a root name server
for any domain name in the domain namespace, and the root name server will start the name server on its way.

2.6.1 Root Name Servers

The root name servers know where the authoritative name servers for each of the top-level zones are. (In fact, some of
the root name servers are authoritative for some of the generic top-level zones.) Given a query about any domain
name, the root name servers can at least provide the names and addresses of the name servers that are authoritative
for the top-level zone the domain name ends in. In turn, the top-level name servers can provide the list of authoritative
name servers for the second-level zone that the domain name ends in. Each name server queried either gives the
querier information about how to get "closer" to the answer it's seeking or provides the answer itself.

The root name servers are clearly important to resolution. Because they're so important, DNS provides mechanisms—
such as caching, which we'll discuss a little later—to help offload the root name servers. But in the absence of other
information, resolution has to start at the root name servers. This makes the root name servers crucial to the operation
of DNS; if all the Internet root name servers were unreachable for an extended period, all resolution on the Internet
would fail. To protect against this, the Internet has 13 root name servers (as of this writing) spread across different
parts of the network. One is on PSINet, a commercial Internet backbone; one is on the NASA Science Internet; two are
in Europe; and one is in Japan.

Being the focal point for so many queries keeps the roots busy; even with 13, the traffic to each root name server is
very high. A recent informal poll of root name server administrators showed each root receiving thousands of queries
per second.

Despite the load placed on root name servers, resolution on the Internet works quite well. Figure 2-12 shows the
resolution process for the address of a real host in a real domain, including how the process corresponds to traversing
the domain namespace tree.

Figure 2-12. Resolution of girigiri.gbrmpa.gov.au on the Internet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The local name server queries a root name server for the address of girigiri.gbrmpa.gov.au and is referred to the au
name servers. The local name server asks an au name server the same question, and is referred to the gov.au name
servers. The gov.au name server refers the local name server to the gbrmpa.gov.au name servers. Finally, the local
name server asks a gbrmpa.gov.au name server for the address and gets the answer.

2.6.2 Recursion

You may have noticed a big difference in the amount of work done by the name servers in the previous example. Four
of the name servers simply returned the best answer they already had—mostly referrals to other name servers—to the
queries they received. They didn't have to send their own queries to find the data requested. But one name server—the
one queried by the resolver—had to follow successive referrals until it received an answer.

Why couldn't the local name server simply have referred the resolver to another name server? Because a stub resolver
wouldn't have had the intelligence to follow a referral. And how did the name server know not to answer with a referral?
Because the resolver issued a recursive query.

Queries come in two flavors, recursive and iterative, also called nonrecursive. Recursive queries place most of the
burden of resolution on a single name server. Recursion, or recursive resolution, is just a name for the resolution
process used by a name server when it receives recursive queries. As with recursive algorithms in programming, the
name server repeats the same basic process (querying a remote name server and following any referrals) until it
receives an answer.

Iteration, or iterative resolution, on the other hand, refers to the resolution process used by a name server when it
receives iterative queries.

In recursion, a resolver sends a recursive query to a name server for information about a particular domain name. The
queried name server is then obliged to respond with the requested data or with an error stating either that data of the
requested type doesn't exist or that the domain name specified doesn't exist.[7] The name server can't just refer the
querier to a different name server, because the query was recursive.

[7] The Microsoft DNS Server can be configured to ignore recursive queries. See Chapter 11 for how and why you'd
want to do this.

If the queried name server isn't authoritative for the data requested, it will have to query other name servers to find
the answer. It could send recursive queries to those name servers, thereby obliging them to find the answer and return
it (and passing the buck), or it could send iterative queries and possibly be referred to other name servers "closer" to
the domain name it's seeking. Current implementations are polite and by default do the latter, following the referrals
until an answer is found.[8]

[8] The exception is a name server configured to forward all unresolved queries to a designated name server, called
a forwarder. See Chapter 11 for more information on using forwarders.

A name server that receives a recursive query that it can't answer itself will query the "closest known" name servers.
The closest known name servers are the servers authoritative for the zone closest to the domain name being looked up.
For example, if the name server receives a recursive query for the address of the domain name girigiri.gbrmpa.gov.au,
it will first check whether it knows which name servers are authoritative for girigiri.gbrmpa.gov.au. If it does, it will
send the query to one of them. If not, it will check whether it knows the name servers for gbrmpa.gov.au, and after
that gov.au, and then au. The default, where the check is guaranteed to stop, is the root zone, since every name server
knows the domain names and addresses of the root name servers.

Using the closest known name servers ensures that the resolution process is as short as possible. A berkeley.edu name
server receiving a recursive query for the address of waxwing.ce.berkeley.edu shouldn't have to consult the root name
servers; it can simply follow delegation information directly to the ce.berkeley.edu name servers. Likewise, a name
server that has just looked up a domain name in ce.berkeley.edu shouldn't have to start resolution at the root to look
up another ce.berkeley.edu (or berkeley.edu) domain name; we'll show how this works in the upcoming section on
caching.

The name server that receives the recursive query always sends the same query that the resolver sent it; for example,
for the address of waxwing.ce.berkeley.edu. It never sends explicit queries for the name servers for ce.berkeley.edu or
berkeley.edu, though this information is also stored in the namespace. Sending explicit queries could cause problems:
there may be no ce.berkeley.edu name servers (that is, ce.berkeley.edu may be part of the berkeley.edu zone). Also,
it's always possible that an edu or berkeley.edu name server would know waxwing.ce.berkeley.edu's address. An
explicit query for the berkeley.edu or ce.berkeley.edu name servers would miss this information.

2.6.3 Iteration

Iterative resolution doesn't require nearly as much work on the part of the queried name server. In iterative resolution,
a name server simply gives the best answer it already knows back to the querier. No additional querying is required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a name server simply gives the best answer it already knows back to the querier. No additional querying is required.
The queried name server consults its local data (including its cache, which we'll talk about shortly), looking for the data
requested. If it doesn't find the answer there, it finds the names and addresses of the name servers closest to the
domain name in the query in its local data and returns that as a referral to help the querier continue the resolution
process. Note that the referral includes all of the name servers listed in the local data; it's up to the querier to choose
which one to query next.

2.6.4 Choosing Between Authoritative Name Servers

Some of the card-carrying Mensa members in our reading audience may be wondering how the name server that
receives the recursive query chooses between the name servers authoritative for the zone. For example, we said that
there are 13 root name servers on the Internet today. Does the name server simply query the one that appears first in
the referral? Does it choose randomly?

The Microsoft DNS Server uses roundtrip time (RTT) to choose between name servers authoritative for the same zone.
Roundtrip time is a measurement of how long a remote name server takes to respond to queries. Each time a Microsoft
DNS Server sends a query to a remote name server, it starts an internal stopwatch. When it receives a response, it
stops the stopwatch and makes a note of how long that remote name server took to respond. When the name server
must choose which of a group of authoritative name servers to query, it simply chooses the one with the lowest
roundtrip time.

Before a Microsoft DNS Server has queried a name server, it ranks it according to how many octets its IP address has in
common with the local host's. This is designed to favor remote name servers on the same or nearby networks.

On the whole, this simple but elegant algorithm allows Microsoft DNS Servers to "lock on" to the closest name servers
quickly and without the overhead of an out-of-band mechanism to measure performance.

2.6.5 The Whole Enchilada

What this amounts to is a resolution process that, taken as a whole, looks like Figure 2-13.

Figure 2-13. The resolution process

A resolver queries a local name server, which then sends iterative queries to a number of other name servers in pursuit
of an answer for the resolver. Each name server it queries refers it to another name server that is authoritative for a
zone further down in the namespace and closer to the domain name sought. Finally, the local name server queries the
authoritative name server, which returns an answer. All the while, the local name server uses each response it receives
—whether a referral or the answer—to update the RTT of the responding name server, which will help it decide which
name servers to query to resolve domain names in the future.

2.6.6 Mapping Addresses to Names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One major piece of functionality missing from the resolution process as explained so far is how addresses get mapped
back to domain names. Address-to-name mapping is used to produce output that is easier for humans to read and
interpret (in log files, for instance). It's also used in some authorization checks. Unix hosts map addresses to domain
names to compare against entries in .rhosts and hosts.equiv files, for example. When using host tables, address-to-
name mapping is trivial. It requires a straightforward sequential search through the host table for an address. The
search returns the official hostname listed. In DNS, however, address-to-name mapping isn't so simple. Data, including
addresses, in the domain namespace is indexed by name. Given a domain name, finding an address is relatively easy.
But finding the domain name that maps to a given address would seem to require an exhaustive search of the data
attached to every domain name in the tree.

Actually, there's a better solution that's both clever and effective. Because it's easy to find data once you're given the
domain name that indexes that data, why not create a part of the domain namespace that uses addresses as labels? In
the Internet's domain namespace, this portion of the namespace is the in-addr.arpa domain.

Nodes in the in-addr.arpa domain are labeled after the numbers in the dotted-octet representation of IP addresses.
(Dotted-octet representation refers to the common method of expressing 32-bit IP addresses as four numbers in the
range 0 to 255, separated by dots.) The in-addr.arpa domain, for example, could have up to 256 subdomains, one
corresponding to each possible value in the first octet of an IP address. Each of these subdomains could have up to 256
subdomains of its own, corresponding to the possible values of the second octet. Finally, at the fourth level down, there
are resource records attached to the final octet giving the full domain name of the host at that IP address. That makes
for an awfully big domain: in-addr.arpa, shown in Figure 2-14, is roomy enough for every IP address on the Internet.

Figure 2-14. The in-addr.arpa domain

Note that when read in a domain name, the IP address appears backward because the name is read from leaf to root.
For example, if winnie.corp.hp.com's IP address is 15.16.192.152, the corresponding node in the in-addr.arpa domain is
152.192.16.15.in-addr.arpa, which maps back to the domain name winnie.corp.hp.com.

IP addresses could have been represented the opposite way in the namespace, with the first octet of the IP address at
the bottom of the in-addr.arpa domain. That way, the IP address would have read correctly (forward) in the domain
name. IP addresses are hierarchical, however, just like domain names. Network numbers are doled out much as domain
names are, and administrators can then subnet their address space and further delegate numbering. The difference is
that IP addresses get more specific from left to right, while domain names get less specific from left to right. Figure 2-
15 shows what we mean.

Figure 2-15. Hierarchical names and addresses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Making the first octets in the IP address appear highest in the tree gives administrators the ability to delegate authority
for in-addr.arpa zones along network lines. For example, the 15.in-addr.arpa zone, which contains the reverse-mapping
information for all hosts whose IP addresses start with 15, can be delegated to the administrators of network 15/8. This
would be impossible if the octets appeared in the opposite order. If the IP addresses were represented the other way
around, 15.in-addr.arpa would consist of every host whose IP address ended with 15—not a practical zone to try to
delegate.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.7 Caching
The whole resolution process may seem awfully convoluted and cumbersome to someone accustomed to simple
searches through the host table. Actually, though, it's usually quite fast. One of the features that speeds it up
considerably is caching.

A name server processing a recursive query may have to send out quite a few queries to find an answer. However, it
discovers a lot of information about the domain namespace as it does so. Each time it's referred to another list of name
servers, it learns that those name servers are authoritative for some zone, and it learns the addresses of those servers.
At the end of the resolution process, when it finally finds the data the original querier sought, it can store that data for
future reference, too. The Microsoft DNS Server even implements negative caching: if a name server responds to a
query with an answer that says the domain name or data type in the query doesn't exist, the local name server will also
temporarily cache that information.

Name servers cache all this data to help speed up successive queries. The next time a resolver queries the name server
for data about a domain name the name server knows something about, the process is shortened quite a bit. The name
server may have cached the answer, positive or negative, in which case it simply returns the answer to the resolver.
Even if it doesn't have the answer cached, it may have learned the identities of the name servers that are authoritative
for the zone the domain name is in and be able to query them directly.

For example, say our name server has already looked up the address of eecs.berkeley.edu. In the process, it cached
the names and addresses of the eecs.berkeley.edu and berkeley.edu name servers (plus eecs.berkeley.edu's IP
address). Now if a resolver were to query our name server for the address of baobab.cs.berkeley.edu, our name server
could skip querying the root name servers. Recognizing that berkeley.edu is the closest ancestor of
baobab.cs.berkeley.edu that it knows about, our name server would start by querying a berkeley.edu name server, as
shown in Figure 2-16. On the other hand, if our name server discovered that there was no address for
eecs.berkeley.edu, the next time it received a query for the address, it could simply respond appropriately from its
cache.

Figure 2-16. Resolving baobab.cs.berkeley.edu

In addition to speeding up resolution, caching obviates a name server's need to query the root name servers to answer
any queries it can't answer locally. This means it's not as dependent on the roots, and the roots won't suffer as much
from all its queries.

2.7.1 Time to Live

Name servers can't cache data forever, of course. If they did, changes to that data on the authoritative name servers
would never reach the rest of the network; remote name servers would just continue to use cached data. Consequently,
the administrator of the zone that contains the data decides on a time to live (TTL) for the data. The time to live is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the administrator of the zone that contains the data decides on a time to live (TTL) for the data. The time to live is the
amount of time that any name server is allowed to cache the data. After the time to live expires, the name server must
discard the cached data and get new data from the authoritative name servers. This also applies to negatively cached
data: a name server must time out a negative answer after a period in case new data has been added on the
authoritative name servers.

Deciding on a time to live for your data is essentially deciding on a trade-off between performance and consistency. A
small TTL will help ensure that data in your zones is consistent across the network, because remote name servers will
time it out more quickly and be forced to query your authoritative name servers more often for new data. On the other
hand, this will increase the load on your name servers and lengthen the average resolution time for information in your
zones.

A large TTL reduces the average time it takes to resolve information in your zones because the data can be cached
longer. The drawback is that your information will be inconsistent longer if you make changes to the data on your name
servers.

But enough of this theory—I'll bet you're antsy to get on with things. You have some homework to do before you can
set up your zones and your name servers, though, and we'll assign it in the next chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Where Do I Start?
"What do you call yourself?" the Fawn said at last. Such a soft sweet voice it had!

"I wish I knew!" thought poor Alice. She answered, rather sadly, "Nothing, just now."

"Think again," it said: "that won't do."

Alice thought, but nothing came of it. "Please, would you tell me what you call yourself?" she said
timidly. "I think that might help a little."

"I'll tell you, if you come a little further on," the Fawn said. "I can't remember here."

Now that you understand the theory behind the Domain Name System, we can attend to more practical matters. Before
you set up your zones, you may need to get name server software. While a name server is included as a standard part
of Windows Server 2003, you may want to look at alternatives. Once you've got the software to run your name server,
you need to decide on a domain name for your main zone—which may not be quite as easy as it sounds, because it
entails finding an appropriate place in the Internet namespace. With that decided, you need to contact the
administrators of the parent of the zone whose domain name you've chosen.

One thing at a time, though. Let's talk about how to decide on name server software and where to get it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Which Name Server?
If you plan to set up your own zones and run name servers for them, you'll need name server software first. Even if
you're planning on having someone else run the name servers for your zones, it's helpful to have the software around.
For example, you can use a local name server to test your zone datafiles before giving them to your remote name
server administrator.

Microsoft ships a name server on the Windows Server 2003 CD-ROM, but you have to install it separately from the OS.
This server, which we call the Microsoft DNS Server, is the server we cover in this book. It's notable because it sports a
nice graphical front-end for configuring the server. This isn't the only name server available for Windows Server 2003,
however. There are several others. Many are ports of BIND, which has traditionally been a Unix-based name server. If
you're more comfortable configuring BIND than learning to configure a new name server (even with a GUI), you might
consider running the latest version of BIND (9.2.2 as of this writing) on Windows Server 2003.

BIND 9.2.2 compiles on Windows Server 2003 without any modification of the source code. However, since many
people lack the software necessary to compile it, the Internet Software Consortium distributes a compiled version from
its web site at http://www.isc.org/products/BIND/bind9.html.

If you decide to run BIND on Windows Server 2003, we suggest you pick up a copy of DNS and BIND. That book
concentrates on the BIND implementation; this book emphasizes the Microsoft DNS Server.

3.1.1 Getting the DNS Server

If you've read to this section, we'll assume you've decided to use the Microsoft DNS Server. Before proceeding, you'll
need to install the name server and its configuration front-end from the Windows Server 2003 CD-ROM. For detailed
instructions on this process, see Chapter 4.

3.1.2 Handy Mailing Lists and Usenet Newsgroups

Now that you've installed your name server, it's important to keep abreast of DNS and name server developments.
Three Usenet newsgroups are helpful for this: microsoft.public.windows.server.dns, microsoft.public.win2000.dns and
comp.protocols.dns.bind. The new microsoft.public.windows.server.dns focuses on the Windows Server 2003 version of
the Microsoft DNS Server, but includes discussion of older versions, too. microsoft.public.win2000.dns concentrates on
the Windows 2000 version of the Microsoft DNS Server. comp.protocols.dns.bind is more BIND-centric (as the name
indicates) but is an excellent source of information about the art and practice of running domains and name servers. It
arguably has a better signal-to-noise ratio than the Microsoft newsgroups and is also available as a mailing list, bind-
users@isc.org.[1] A searchable archive of the list can be found at http://www.isc.org/ml-archives/bind-users/.

[1] To ask a question on an Internet mailing list, all you need to do is send a message to the mailing list's address.
If you'd like to join the list, however, you have to send a message to the list's maintainer first, requesting that he
or she add your email address to the list. Don't send this message to the list itself; that's considered rude. You can
reach the maintainer of a mailing list by sending mail to list-request@domain, where list@domain is the address of
the mailing list. So, for example, you can reach the BIND users mailing list's administrator by sending mail to bind-
users-request@isc.org.

Microsoft's online support site, at http://support.microsoft.com/, is a valuable source of information about known bugs
in the name server and updates to the code. Also, be sure to checkout Andras Salamon's "DNS Resource Directory" at
http://www.dns.net/dnsrd/ for pointers to online DNS resources and documentation.

Another mailing list you might be interested in is the namedroppers list. Folks on the namedroppers mailing list are
involved in the IETF working group that develops extensions to the DNS specifications, DNSEXT. For example, the
discussion of a new, proposed DNS record type would probably take place on namedroppers instead of the BIND users
mailing list. For more information on DNSEXT's charter, see http://www.ietf.org/html.charters/dnsext-charter.html.

The address for the namedroppers mailing list is namedroppers@ops.ietf.org, and it is gatewayed into the Internet
newsgroup comp.protocols.dns.std. To join the namedroppers mailing list, send mail to namedroppers-
request@ops.ietf.org with the text "subscribe namedroppers" as the body of the message.

3.1.3 Finding IP Addresses

You'll notice that we gave you a number of domain names of hosts that have ftpable software, and the mailing lists we
mentioned include domain names. This should underscore the importance of DNS: see what valuable software and
advice you can get with the help of DNS? Unfortunately, it's also something of a chicken-and-egg problem: you can't
send email to an address with a domain name in it unless you've got DNS set up, so how can you ask someone on the
list how to set up DNS?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list how to set up DNS?

Well, we could give you the IP addresses for all the hosts we mentioned, but since IP addresses change often (in
publishing timescales, anyway), we'll show you how you can temporarily use someone else's name server to find the
information instead. As long as your host has Internet connectivity and the nslookup program, you can retrieve
information from the Internet namespace.

To look up the IP address for ftp.microsoft.com, for example, you could use:

C:\> nslookup ftp.microsoft.com. 207.69.188.185

This instructs nslookup to query the name server running on the host at the IP address 207.69.188.185 to find the IP
address for ftp.microsoft.com and should produce output such as:

Server: ns1.mindspring.com
Address: 207.69.188.185

Name: ftp.microsoft.com
Address: 207.46.133.140

Now you can ftp to ftp.microsoft.com's IP address, 207.46.133.140.

How did we know that the host at IP address 207.69.188.185 runs a name server? Our ISP, Mindspring, told us—it's
one of their name servers. If your ISP provides name servers for its customers' use (and most do), use one of them. If
your ISP doesn't provide name servers (shame on them!), you can temporarily use one of the name servers listed in
this book. As long as you only use it to look up a few IP addresses or other data, the administrators probably won't
mind. It's considered very rude, however, to point your resolver or query tool at someone else's name server
permanently.

Of course, if you already have access to a host with Internet connectivity and have DNS configured, you can use it to
ftp what you need.

Once you've got a working version of the Microsoft DNS Server, you're ready to start thinking about your domain name.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Choosing a Domain Name
Choosing a domain name is more involved than it may sound because it entails both choosing a name and finding out
who runs the parent zone. In other words, you need to find out where you fit in the Internet domain namespace, then
find out who runs that particular corner of the namespace.

The first step in picking a domain name is finding where in the existing domain namespace you belong. It's easiest to
start at the top and work your way down: decide which top-level domain you belong in, then which of that top-level
domain's subdomains you fit into.

Note that in order to find out what the Internet domain namespace looks like (beyond what we've already told you),
you'll need access to the Internet. You don't need access to a host that already has name service configured, but it
would help a little. If you don't have access to a host with DNS configured, you'll have to "borrow" name service from
other name servers (as in our previous ftp.microsoft.com example) to get you going.

3.2.1 On Registrars and Registries

Before we go any further, we need to define a few terms: registry, registrar, and registration. These terms aren't
defined anywhere in the DNS specs. Instead, they apply to the way the Internet namespace is managed today.

A registry is an organization responsible for maintaining a top-level domain's (well, zone's, really) datafiles, which
contain the delegation to each subdomain of that top-level domain. Under the current structure of the Internet, a given
top-level domain can have no more than one registry.

A registrar acts as an interface between customers and the registry, providing registration and value-added services. It
submits to the registry the zone data and other data (including contact information) for each of its customers in a single
top-level domain.

Registration is the process by which a customer tells a registrar which name servers to delegate a subdomain to and
provides the registrar with contact and billing information. The registrar makes these changes through the registry.

To give you some concrete examples of how this works in the real world, Public Interest Registry runs the org registry.
VeriSign, Inc. currently acts as the registry for the com and net top-level domains. There are dozens of registrars for
com, net, and org, including Network Solutions—a former subsidiary of VeriSign. An organization called EDUCAUSE runs
the edu registry and is its only registrar. But before we get too off-track, let's get back to our story.

3.2.2 Where in the World Do I Fit?

If your organization is attached to the Internet outside of the United States, you first need to decide whether you'd
rather request a subdomain of one of the generic top-level domains, such as com, net, and org, or a subdomain of your
country's top-level domain. The generic top-level domains aren't exclusively for U.S. organizations. If your company is
a multi- or transnational company that doesn't fit in any one country's top-level domain, or if you'd simply prefer a
generic top-level to your country's top-level domain, you're welcome to register in one. If you choose this route, skip to
"The generic top-level domains" later in this chapter.

If you opt for a subdomain under your country's top level, you should check whether your country's top-level domain is
registered and, if it is, what kind of structure it has. Consult our list of the current top-level domains (Appendix C) if
you're not sure what the name of your country's top-level domain would be.

Some countries' top-level domains, such as New Zealand's nz, Australia's au, and the United Kingdom's uk, are divided
organizationally into second-level domains. The names of their second-level domains, such as co or com for commercial
entities, reflect organizational affiliation. Others, like France's fr domain and Denmark's dk domain, are divided into a
multitude of subdomains managed by individual universities and companies, such as the University of St. Etienne's
domain, univ-st-etienne.fr, and the Danish Unix Users Group's dkuug.dk. Many top-level domains have their own web
sites that describe their structure. If you're not sure of the URL for your country's top-level domain's web site, start at
http://www.allwhois.com, a directory of links to such web sites.

If your country's top-level domain doesn't have a web site explaining how it's organized, but you have some idea of
which subdomain you belong in, you can use a DNS query tool such as nslookup to find the email address of the
technical contact for the subdomain. (If you're uncomfortable with our rushing headlong into nslookup without giving it
a proper introduction, you might want to skim Chapter 12.)

To find out whom to ask about a particular subdomain, you'll have to look up the corresponding zone's start of authority
(SOA) record. In each zone's SOA record, there's a field that contains the electronic mail address of the zone's technical
contact.[2] (The other fields in the SOA record provide general information about the zone—we'll discuss them in more
detail later.)

[2] The subdomain and the zone have the same domain name, but the SOA record really belongs to the zone, not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[2] The subdomain and the zone have the same domain name, but the SOA record really belongs to the zone, not
the subdomain. The person at the zone's technical contact email address may not manage the whole subdomain
(there may be additional delegated subdomains beneath), but he should certainly know the purpose of the
subdomain.

For example, if you're curious about the purpose of the csiro.au subdomain, you can find out who runs it by looking up
csiro.au's SOA record:

C:\> nslookup - 207.69.188.185
Default Server: ns1.mindspring.com
Address: 207.69.188.185

> set type=soa Look for start of authority data
> csiro.au. for csiro.au.
Server: ns1.mindspring.com
Address: 207.69.188.185

csiro.au
 origin = zas.csiro.au
 mail addr = hostmaster.csiro.au
 serial = 2003071501
 refresh = 10800 (3H)
 retry = 3600 (1H)
 expire = 3600000 (5w6d16h)
 minimum ttl = 3600 (1H)

The mail addr field is the Internet address of csiro.au's contact. To convert the address into Internet email address
format, you'll need to change the first "." in the address to an "@". So hostmaster.csiro.au becomes
hostmaster@csiro.au.[3]

[3] This form of Internet mail address is a vestige of two former DNS records, MB and MG. MB (mailbox) and MG
(mail group) were to be DNS records specifying Internet mailboxes and mail groups (mailing lists) as subdomains
of the appropriate domain. MB and MG never took off, but the address format they would have dictated is used in
the SOA record, maybe for sentimental reasons.

3.2.2.1 whois

The whois service can also help you figure out the purpose of a given domain. Unfortunately, there are many whois
servers—most good administrators of top-level domains run one—and they don't talk to each other, like name servers
do. Consequently, the first step to using whois is finding the right whois server.

One of the easiest places to start your search for the right whois server is at http://www.allwhois.com (see Figure 3-1).
We mentioned earlier that this site has a list of the web sites for each country code's top-level domain; it also sports a
unified whois search facility.

Figure 3-1. The www.allwhois.com web site

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Say you were wondering what the ad.jp domain was for. You can enter ad.jp in the text box at the top of
http://www.allwhois.com/ and the web site will query the right whois server and show you the results, as in Figure 3-2.

Figure 3-2. Information about ad.jp from the jp whois server

Obviously, this is a useful web site if you're looking for information about a domain outside of the U.S.

Once you've found the right web site or the right contact, you may have found the registrar. Outside the U.S., many
domains have a single registrar. A few, though, such as Denmark's dk and Great Britain's co.uk and org.uk, have
multiple registrars. However, the process we've described will still lead you to them.

3.2.3 Back in the U.S.A.

In true cosmopolitan spirit, we covered international domains first. But what if you're from the good ol' U.S. of A.?

If you're in the U.S., where you belong depends mainly upon what your organization does, how you'd like your domain
names to look, and how much you're willing to pay. If your organization falls into one of the following categories, you
may want to consider joining us:

K-12 (kindergarten through twelfth grade) schools

Community colleges and technical vocational schools

State and local government agencies

That's because these organizations have historically registered under us, according to the namespace design
documented in RFC 1480. In that design, a high school, for example, would register under k12.<state>.us, where
<state> is the two-letter postal abbreviation for the state in which the school is located.

However, even these organizations don't need to follow this rigid structure. Many K-12 schools, community colleges,
and government agencies register subdomains of org or even com. The registry that runs us has relaxed the restrictions
placed on us registrants, too: now you can register in either the "locality space" (<state>.us) or the "expanded space."
In the "expanded space," you could register (for example) acme.us rather than acme.co.us.

Many people, however, prefer the better-known generic top-level domains. For information on registering in one of
those, read on.

3.2.3.1 The generic top-level domains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As we said, there are many reasons why you might want to ask for a subdomain of one of the generic top-level
domains, such as com, net, and org: you work for a multi- or transnational company, you like the fact that they're
better-known, or you just prefer the sound of your domain name with "com" on the end. Let's go through a short
example of choosing a domain name under a generic top-level domain.

Imagine you're the network administrator for a think tank in Hopkins, Minnesota. You've just gotten a connection to the
Internet through a commercial ISP. Your company has never had so much as a dialup link, so you're not currently
registered in the Internet namespace.

Since you're in the United States, you have the choice of joining either us or one of the generic top-level domains. Your
think tank is world-renowned, though, so you feel us wouldn't be a good choice. A subdomain of a generic top-level
domain would be best.

But which one? As of this writing, there are five open to anyone:

biz

A new generic top-level domain

com

The original generic top-level domain, and the best known

info

A new generic top-level domain

net

Originally used by networking organizations, but now open to anyone

org

Originally used by nonprofit and other noncommercial organizations, but now open to anyone

The think tank is known as The Gizmonic Institute, so you decide gizmonics.com might be an appropriate domain name.
Now you've got to check whether the name gizmonics.com has been taken by anyone, so you use an account you have
at the University of Minnesota:

C:\> nslookup
Default Server: ns.unet.umn.edu
Address: 128.101.101.101

> set type=any Look for any records
> gizmonics.com. for gizmonics.com.
Server: ns.unet.umn.edu
Address: 128.101.101.101

gizmonics.com nameserver = ns1.11l.net
gizmonics.com nameserver = ns2.11l.net

Whoops! Look like gizmonics.com is already taken (who would have thought?). Well, gizmonic-institute.com is a little
longer, but still intuitive:[4]

[4] If you're having a hard time figuring out a good domain name, many registrars' web sites provide suggestions
for free. For example, www.nameboy.com will recommend various combinations of "gizmonic" and "institute," even
using rhyming words.

C:\> nslookup
Default Server: ns.unet.umn.edu
Address: 128.101.101.101

> set type=any Look for any records
> gizmonic-institute.com. for gizmonic-institute.com.
Server: ns.unet.umn.edu
Address: 128.101.101.101

*** ns.unet.umn.edu can't find gizmonic-institute.com.: Non-existent host/domain

gizmonic-institute.com is free, so you can go on to the next step: picking a registrar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gizmonic-institute.com is free, so you can go on to the next step: picking a registrar.

3.2.3.2 Choosing a registrar

Choose a registrar? Welcome to the brave new world of competition! Before the spring of 1999, a single company,
Network Solutions, Inc., was both the registry and sole registrar for com, net, and org, as well as edu. To register a
subdomain of any of these generic top-level domains, you had to go to Network Solutions.

In June 1999, ICANN, the organization that manages the domain namespace (we mentioned them in the last chapter)
introduced competition to the registrar function of com, net, and org. There are now dozens of com, net, and org
registrars from which you can choose (see http://www.internic.net/regist.html).

We won't presume to tell you how to pick a registrar, but take a look at the price and any other services the registrar
provides that interest you. See if you can get a nice package deal on registration and aluminum siding, for example.

3.2.4 Checking That Your Network Is Registered

Before proceeding, you should check whether or not your IP network or networks are registered. Some registrars won't
delegate a subdomain to name servers on unregistered networks, and network registries (we'll talk about them shortly)
won't delegate an in-addr.arpa zone that corresponds to an unregistered network.

An IP network defines a range of IP addresses. For example, the network 15/8 is made up of all IP addresses in the
range 15.0.0.0 to 15.255.255.255. The network 199.10.25/24 starts at 199.10.25.0 and ends at 199.10.25.255.

A Sidebar on CIDR
Once upon a time, when we wrote the first edition of this book, the Internet's 32-bit address space was
divided up into three main classes of networks: Class A, Class B, and Class C. Class A networks were
networks in which the first octet (the first eight bits) of the IP address identified the network, and the
remaining bits were used by the organization that was assigned the network to differentiate hosts on the
network. Most organizations with Class A networks also subdivided their networks into subnetworks, or
subnets, adding another level of hierarchy to the addressing scheme. Class B networks devoted two octets
to the network identifier and two to the host; Class C networks gave three octets to the network identifier
and one to the host.

Unfortunately, this small/medium/large system of networks didn't work well for everyone. Many
organizations were large enough to require more than a Class C network, which could accommodate at
most 254 hosts, but too small to warrant a full Class B network, which could serve 65,534 hosts. Many of
these organizations were allocated Class B networks anyway. Consequently, Class B networks quickly
became scarce.

To help solve this problem and create networks that were just the right size for all sorts of organizations,
Classless Inter-Domain Routing, or CIDR (pronounced "cider"), was developed. As the name implies, CIDR
does away with the old Class A, Class B, and Class C network designations. Instead of allocating either
one, two, or three octets to the network identifier, the allocator could assign any number of contiguous
bits of the IP address to the network identifier. So, for example, if an organization needed an address
space roughly four times as large as a Class B network, the powers-that-be could assign it a network
identifier of 14 bits, leaving 18 bits (four Class B's worth) of space to use.

Naturally, the advent of CIDR made the "classful" terminology outdated—although it's still used a good
deal in casual conversation. Now, to designate a particular CIDR network, we specify the particular high-
order bit value assigned to an organization, expressed in dotted octet notation, and how many bits identify
the network. The two terms are separated by a slash. So 15/8 is the old, Class A-sized network that
begins with the eight-bit pattern 00001111. The old, Class B-sized network 128.32.0.0 is now 128.32/16.
And the network 192.168.0.128/25 consists of the 128 IP addresses from 192.168.0.128 to
192.168.0.255.

The InterNIC was once the official source of all IP networks; they assigned all IP networks to Internet-connected
networks and made sure no two address ranges overlapped. Nowadays, the InterNIC's old role has been largely
assumed by Internet service providers (ISPs), who allocate space from their own networks for customers to use. If you
know your network came from your ISP, the larger network from which your network was carved is probably registered
(to your ISP). You may still want to double-check that your ISP took care of registering their network, but you don't
have to (and probably can't) do anything yourself, except nag your ISP if they didn't register their network. Once
you've verified their registration, you can skip the rest of this section and move on.

It's not necessary to register RFC 1918 address space (e.g., the networks 10/8,
192.168/16). In fact, you can't since these networks are used by so many different
organizations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your network was assigned by the InterNIC, way back when, or you are an ISP, you should check to see whether
your network is registered. Where do you go to check whether your network is registered? Why, to the same
organizations that register networks, of course. These organizations, called regional Internet registries, or RIRs, each
handle network registration in some part of the world. In North America, ARIN, the American Registry of Internet
Numbers (http://www.arin.net), hands out IP address space and registers networks. In Asia and the Pacific, APNIC, the
Asia Pacific Network Information Center (http://www.apnic.net), serves the same function. In Europe, it's the RIPE
Network Coordination Centre (http://www.ripe.net). And Latin America and the Caribbean are served by LACNIC, the
Latin America and Caribbean Internet Addresses Registry (http://www.lacnic.net). Each RIR may also delegate
registration authority for a region; for example, ARIN delegates registration authority for Mexico to a registry in that
country. Be sure to check for a network registry local to your country.

If you're not sure your network is registered, the best way to find out is to use the whois services provided by the
various network registries to look for your network. Here are the URLs for each registry's whois web page:

ARIN

http://www.arin.net/whois/index.html

APNIC

http://www.apnic.net/search/index.html

RIPE

http://www.ripe.net/perl/whois/

LACNIC

http://lacnic.net/cgi-bin/lacnic/whois?lg=EN

If you find out your network isn't registered, you'll need to get it registered before setting up your in-addr.arpa zones.
Each registry has a different process for registering networks, but most involve money changing hands (from your
hands to theirs, unfortunately).

You may find out that your network is already assigned to your ISP. If this is the case, you don't need to register
independently with the RIR.

Once all your Internet-connected hosts are on registered networks, you can register your zones.

3.2.5 Registering Your Zones

Different registrars have different registration policies and procedures, but most, at this point, handle registration
online, through their web sites. Since you found or chose your registrar earlier in the chapter, we'll assume you know
which web site to use.

The registrar will need to know the domain names and addresses of your name servers and enough information about
you to send you a bill or charge your credit card. If you're not connected to the Internet, give them the IP addresses of
the Internet hosts that will act as your name servers. Some registrars also require that you already have operational
name servers for your zone. (Those that don't may ask for an estimate of when the name servers will be fully
operational.) If that's the case with your registrar, skip ahead to Chapter 4 and set up your name servers. Then contact
your registrar with the requisite information.

Most registrars will also ask for some information about your organization, including an administrative contact and a
technical contact for your zone (who can be the same person). If your contacts aren't already registered in the
registrar's whois database, you'll also need to provide information to register them in whois. This includes their names,
surface mail addresses, phone numbers, and electronic mail addresses. If they are already registered in whois, just
specify their whois "handles" (unique alphanumeric IDs) in the registration.

There's one more aspect of registering a new zone that we should mention: cost. Most registrars are commercial
enterprises and charge money for registering domain names. Network Solutions, the original registrar for com, net, and
org, charges $35 per year to register subdomains under the generic top-level domains. (If you've already registered a
subdomain under com, net, or org and haven't received a bill recently, it'd be a good idea to check your contact
information with whois to make sure they've got a current address and phone number for you.)

If you're directly connected to the Internet, you should also have the in-addr.arpa zones corresponding to your IP
networks delegated to you. (For information on IPv6 reverse-mapping, see Chapter 11.) For example, if your company
was allocated the network 192.201.44/24, you should manage the 44.201.192.in-addr.arpa zone. This will let you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

was allocated the network 192.201.44/24, you should manage the 44.201.192.in-addr.arpa zone. This will let you
control the IP address-to-name mappings for hosts on your network. Chapter 4 also explains how to set up your in-
addr.arpa zones.

Earlier in this chapter, we asked you to find the answers to several questions: is your network a slice of an ISP's
network? Is your network, or the ISP network that your network is part of, registered? If so, with which RIR? You'll
need these answers to have your in-addr.arpa zones delegated to you.

If your network is part of a larger network registered to an ISP, you should contact the ISP to have the appropriate
subdomains of their in-addr.arpa zone delegated to you. Each ISP uses a different process for setting up in-addr.arpa
delegation. Your ISP's web page is a good place to research that process. If you can't find the information there, try
looking up the SOA record for the in-addr.arpa zone that corresponds to your ISP's network. For example, if your
network is part of UUNET's 153.35/16 network, you could look up the SOA record of 35.153.in-addr.arpa to find the
email address of the technical contact for the zone.

If your network is registered directly with one of the regional Internet registries, contact them to get your in-addr.arpa
zone registered. Each network registry makes information on its delegation process available on its web site.

Now that you've registered your zones, you'd better take some time to get your house in order. You've got some name
servers to set up, and in the next chapter, we'll show you how.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Setting Up the Microsoft DNS Server
"It seems very pretty," she said when she had finished it, "but it's rather hard to understand!" (You see
she didn't like to confess, even to herself, that she couldn't make it out at all.) "Somehow it seems to fill
my head with ideas—only I don't exactly know what they are!"

If you have been diligently reading each chapter of this book, you're probably anxious to get a name server running.
This chapter is for you. Let's set up a couple of name servers. Some of you may have read the table of contents and
skipped directly to this chapter. (Shame on you!) If you are one of those people who cuts corners, be aware that we
may use concepts from earlier chapters and expect you to understand them.

Several factors influence how you should set up your name servers. The biggest factor is what sort of access you have
to the Internet: complete access (for example, you can ftp to ftp.uu.net), limited access (limited by a security firewall),
or no access at all. This chapter assumes you have complete access. We'll discuss the other cases in Chapter 16.

In this chapter, we'll set up two name servers for a fictitious domain as an example for you to follow in setting up your
own domain. We'll cover the topics in this chapter in enough detail for you to get your first two name servers running.
Subsequent chapters will fill in the holes and go into greater depth. If you already have your name servers running,
skim through this chapter to familiarize yourself with the terms we use or just to verify that you didn't miss something
when you set up your servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Our Zone
Our fictitious zone serves a college. Movie University studies all aspects of the film industry and researches novel ways
to distribute films. One of our most promising projects is research into using IP as a distribution medium. After visiting
our registrar's web site, we have decided on the domain name movie.edu. A recent grant has enabled us to connect to
the Internet.

Movie U. currently has two Ethernets, and we have plans for another network or two. The Ethernets have network
addresses 192.249.249/24 and 192.253.253/24. A portion of our host table contains the following entries:

127.0.0.1 localhost

These are our killer machines.

192.249.249.2 robocop.movie.edu robocop
192.249.249.3 terminator.movie.edu terminator bigt
192.249.249.4 diehard.movie.edu diehard dh

These machines are in horror(ible) shape and will be replaced
soon.

192.253.253.2 misery.movie.edu misery
192.253.253.3 shining.movie.edu shining
192.253.253.4 carrie.movie.edu carrie

A wormhole is a fictitious phenomenon that instantly transports
space travelers over long distances and is not known to be
stable. The only difference between wormholes and routers is
that routers don't transport packets as instantly--especially
ours.

192.249.249.1 wormhole.movie.edu wormhole wh wh249
192.253.253.1 wormhole.movie.edu wormhole wh wh253

The network is pictured in Figure 4-1.

Figure 4-1. The Movie University network

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Installing the Microsoft DNS Server
Our plan for the Movie U. network is to run name servers on two hosts: terminator and wormhole. But a fresh
installation of Windows Server 2003 doesn't include the DNS server by default, so we need to install it on these
hosts.[1]

[1] We cover one method for installation here, but you could also install the DNS server using Active Directory, as
described later in this section.

Start by selecting Start Manage Your Server. This brings up the administrator's one-stop-shopping application,
Manage Your Server, as shown in Figure 4-2.

Figure 4-2. Manage Your Server

Choose Add or remove a role. The next window is titled Preliminary Steps and we don't show it, but it just
admonishes you to have the computer connected to the network and any peripherals and to have your installation
media handy. After clicking Next on this screen, you might (or might not)[2] see the Configuration Options screen,
which gives you the option to install several common services all at once or pick and choose a custom configuration. We
don't show this screen either, but choose Custom configuration and click Next.

[2] The Configuration Options screen is apparently displayed only when you add the first role. After that, Windows
assumes you know what you're doing and doesn't offer this shortcut to install multiple roles at once.

Now you're presented with the Server Role window, shown in Figure 4-3. Select DNS server as shown in the figure
and click Next.

Figure 4-3. The Server Role window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The resulting window, Summary of Selections, describes the actions about to be taken. Click Next to install the DNS
server and do some preliminary configuration. After the installation from the media completes, the Configure Your
Server Wizard starts the Configure a DNS Server Wizard, which is shown in Figure 4-4.

Figure 4-4. Configure a DNS Server Wizard

If you want to, at this point you can review the checklists, but since we're walking you through this process, select
Next and you'll see the Select Configuration Action window shown in Figure 4-5.

Figure 4-5. Select Configuration Action Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The wizard can helpfully create both forward- and reverse-mapping zones for you, but we're going to show you how to
do that outside the wizard. That's why we suggest you select the third option, Configure root hints only. Don't be
scared off by the warning that this step is for advanced users only. Here's what's happening: after the wizard
completes, your newly installed name server will not be authoritative for any zones and it will know only about the
Internet's root name servers. So it will know how to contact other name servers (starting with the root name servers)
to resolve domain names, but it won't know anything in particular about your organization's zones—yet.[3] Click Next
and the wizard shows one more window telling you that it's done. After clicking Finish on that window, you're back to
the Configure Your Server Wizard's last window. Click Finish and, congratulations—you've installed the DNS server.

[3] A name server that isn't authoritative for any zones is called a caching-only server. We describe this in more
detail in Chapter 9.

4.2.1 Active Directory

We should point out that there's another way to install the DNS server and it has to do with Active Directory. You can
promote a server to be a domain controller by running Manage Your Server and selecting the Domain Controller
role. Active Directory requires that certain information about Active Directory domains be present in DNS. When you
create the first domain controller for an Active Directory domain, the domain controller installation process tries to add
this necessary information to the appropriate DNS zone. If this process fails, the Installation Wizard offers to install the
DNS Server on the domain controller and create the appropriate zones so the critical information related to Active
Directory can be added and will be present in DNS.

If your organization already has a domain controller or two set up, it's possible that those domain controllers are
running the DNS server and that some zones have already been created. If that's the case, you won't need to follow all
the steps in the rest of the chapter: you won't need to create your zones, but you'll still need to add information about
your hosts to DNS. Just be aware that as you take a look at what's in your zones, you might find that extra information
related to Active Directory.

We're going to talk a lot more about Active Directory and how it uses DNS in Chapter 8, but it's not too early to
highlight the close relationship between Active Directory and DNS.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 The DNS Console
To manage a Microsoft DNS Server and maintain your DNS data, you'll use a tool called the DNS console, a snap-in for
the Microsoft Management Console (MMC). MMC is a general-purpose program that hosts administrative tools.
Introduced in Windows 2000, MMC replaced the "one-off" administrative tools found in Windows NT 4.0, such as DNS
Manager, WINS Manager, DHCP Manager, and the like. The DNS console has a graphical user interface and is capable of
managing multiple name servers. The DNS console is located on the Administrative Tools menu, provided you've
already installed the DNS Server. The DNS console communicates with the Microsoft DNS Server using a proprietary
management protocol built on Microsoft's RPC (remote procedure call) mechanism. That means the DNS console is able
to manage only Microsoft DNS Servers and not other name servers, such as BIND.

The main DNS console window looks like Figure 4-6 (or will look like it, after we've set everything up in the course of
this chapter).

Figure 4-6. The DNS console main window

The left pane is called the console tree. It shows name servers, zones, and domains. The right pane shows either
informational messages or resource records.

This particular DNS console knows about only one name server, terminator. That name server is authoritative for three
zones: movie.edu, 249.249.192.in-addr.arpa, and 253.253.192.in-addr.arpa. The DNS console segregates forward-
lookup zones (which hold primarily address records) and reverse-lookup zones (which hold primarily pointer records). If
any of these zones had subdomains, they would show up as subfolders under the appropriate zone. For example,
comedies.movie.edu would be represented as a folder called comedies under movie.edu.

Let's take a look at the menus at the top of the window. The File, Window, and Help menus control the MMC
application itself and, to be honest, they're not that interesting. The File menu has just two choices: Options and Exit.
Options has a single window that lets you reset any changes you've made to the DNS console's configuration. This
window has no effect on the settings of any name servers managed by the DNS console, however; name server
configuration is stored separately from DNS console configuration. The Window menu has the expected options to
manage MMC subwindows, but you'll find that all the DNS administrative action happens in a single window for the DNS
console. Choosing New Window produces another DNS console window; we haven't found a need to have more than
one DNS console window open, but you might find multiple windows useful. Finally, the Help menu has the usual
suspects: Help Topics brings up the MMC help system, which offers quick jumps to help with the MMC application and
the DNS console.

The Action and View menus are included in all MMC snap-ins. The really important commands are in the Action
menu: add new name servers, create zones and domains, and create resource records. You can also delete objects and
view object properties. We'll explain the various commands throughout this chapter.

But let's take a moment to go over the choices on the View menu. Since this is a standard MMC menu, not all the
options are useful with the DNS console. For example, Choose Columns allows you to customize the columns in the
right pane. That's nice, except that they don't need customization. In our opinion, you'll always want to see all available
columns in whatever DNS console view you're looking at. The next set of choices is Large Icons, Small Icons, List,
and Detail, and the selection determines the display format in the right pane. We recommend choosing Detail when
you first start the DNS console and leaving the view that way forever; otherwise, you don't necessarily see all the
columns and the useful information displayed in them.

Next is Advanced, which toggles between a more basic, or beginner's, view and an advanced view more suitable for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next is Advanced, which toggles between a more basic, or beginner's, view and an advanced view more suitable for
you DNS experts out there. Windows Server 2003 has fewer differences between advanced and nonadvanced views.
The main difference is whether or not the DNS console displays some additional information in the console tree on the
left. Advanced mode shows an icon allowing access to the name server's cache of records from previous lookups. We'll
talk more about the name server's cache later in this chapter.

The Filter selection brings up a dialog box like the one shown in Figure 4-7. Filtering is handy when you've got a really
large zone with hundreds or even thousands of resource records. Rather than displaying them all in the righthand pane,
you can limit the display with this option.

Figure 4-7. Filter dialog box

Customize is another standard choice on the View menu. It controls which MMC menus and toolbars appear. We
recommend leaving these options at their default settings, as shown in Figure 4-8, since those settings are optimal.

Figure 4-8. Customize dialog box

But enough about the DNS console's generic knobs and switches. Let's move on to some DNS administrative tasks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.4 Setting Up DNS Data
Let's configure the first of Movie U.'s name servers. We'll use the DNS console for most of this process, so start it up if
you haven't already done so. You don't have to run the DNS console on the machine running the name server, but for
now it's easier if you do. You'll also need to have Administrator privileges to use the DNS console; otherwise, you'll only
be able to start the application, not manage any name servers with it.

4.4.1 Adding a New Server to the DNS Console

The first step is configuring the DNS console to manage the primary master name server for your zone. The primary
master for a zone—also called just the primary—stores information about the zone on its disk. You make all changes to
your zone on the primary master.

Select Action Connect To DNS Server and specify where the name server you want to manage—the primary
master—is running. As you can see in Figure 4-9, you can choose either the local machine or specify a name server
running somewhere else. If the name server isn't local, enter its name or IP address. Leave the box checked, which
causes the DNS console to immediately contact the server to obtain its status and a list of any zones it might already be
authoritative for.

Figure 4-9. Specifying the location of a name server to manage

The DNS console adds an icon in the left pane for that name server, as in Figure 4-10.

Figure 4-10. The DNS console with a new server

It's important to understand what we just did here. We told the DNS console about a name server for it to manage and
it added that name server to its configuration. The DNS console did not start the name server on the target machine. If
the name server isn't already installed and running, the DNS console can't manage it and will complain with the
message, "The server is unavailable. Would you like to add it anyway?"

Selecting Connect to DNS Server adds that name server to the list of servers the DNS console knows about. As you
might expect, selecting the server and choosing Action Delete (or just pressing the Delete key) removes the
server from the DNS console's configuration but doesn't change anything on the name server itself. The server will still
be running—you can use Connect to DNS Server to add it, and you'll be right back where you started.

4.4.2 Creating a New Zone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now it's time to create the movie.edu zone. Select the name server on the left where you want to create the zone.
(There's only one server now, terminator, but the DNS console could know about multiple servers.) Choose Action

 New Zone. You'll see the New Zone Wizard, as in Figure 4-11.

Figure 4-11. New Zone Wizard, first window

To continue, click Next. In the next window (see Figure 4-12), you have three choices for the type of zone: Primary
zone, Secondary zone, and Stub zone. For now, choose Primary zone and click Next. Notice that the option to
store this zone's data in Active Directory is greyed out. Microsoft calls this feature Active Directory integration and we'll
talk about it more in Chapter 8.

Figure 4-12. New Zone Wizard, second window

Now you need to choose whether this is a forward- or reverse-mapping zone, as shown in Figure 4-13. movie.edu is, of
course, a forward-mapping zone, so make that selection and click Next.

Figure 4-13. New Zone Wizard, third window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-13. New Zone Wizard, third window

Getting tired of all these windows yet? In the next one, shown in Figure 4-14, type the domain name of the zone, which
is movie.edu. Click Next.

Figure 4-14. New Zone Wizard, fourth window

Now you need to specify the file that will hold all the zone information, as shown in Figure 4-15.

Figure 4-15. New Zone Wizard, fifth window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The zone file, also called a zone datafile, is the zone's permanent storage location. It's the file on the name server's
disk where all the information about the zone is stored: it contains all the zone's resource records. Other name servers
require you to edit the zone datafile to make changes to the zone, but the DNS console allows you to avoid editing the
file by hand. As a result, you probably won't see the zone datafiles very much. We'll talk about their format later in this
chapter.

Even if you won't be looking at it often, you need to specify a zone datafile name when you create a zone. The server
expects these files to be in %SystemRoot%\System32\DNS. Microsoft's suggested naming convention uses the domain
name of the zone followed by the .dns extension. (Notice that the DNS console has filled in the filename based on the
zone name.) You can name the zone file whatever you want, but as long as the DNS console fills in the field for you, we
recommend sticking with its suggestion. You may be familiar with other naming conventions, such as db. followed by
the zone's domain name (e.g., db.movie.edu). In fact, that's the recommendation in our sister book, DNS and BIND. In
the case of the DNS console, however, it's best to go along with Microsoft's default .dns extension.

When you've entered a filename (or left the automatically chosen name alone), click Next to display the window shown
in Figure 4-16, which asks you to choose this zone's policy for dynamic updates. Dynamic updates are a relatively
recent extension to the DNS protocol that we describe in detail in Chapter 11. Briefly, they allow another entity—such
as a domain controller or a DHCP server—to update the contents of a zone by sending a message to the name server
over the network. The alternative (and traditional) way to make changes to the zone involves using the DNS console as
we're about to describe. As you might guess, allowing just anyone to send messages to your name server to change
your zone is a significant security risk! That's why the DNS console asks you up front, when creating the zone, how you
want to handle dynamic updates. Some Windows components, such as domain controllers and DHCP servers, use
dynamic updates to keep DNS information up to date, so it's possible you'll want to enable this feature eventually. But
for now, check the third option, Do not allow dynamic updates, to leave dynamic update disabled while we set
things up.

Figure 4-16. New Zone Wizard, sixth window

Click Next and you'll see the confirmation window shown in Figure 4-17.

Figure 4-17. New Zone Wizard confirmation window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click Finish to create the zone. If we double-click on terminator in the left pane, then double-click on Forward
Lookup Zones and select the movie.edu zone, we see a window like the one pictured in Figure 4-18. The DNS console
has created the zone and a few resource records. Let's talk about them one by one.

Figure 4-18. The DNS console with a new zone

4.4.2.1 The SOA record

The first record displayed is the start of authority, or SOA, resource record for the movie.edu zone. It's a little tricky to
see that the name of this record is really movie.edu, since the DNS console displays (same as parent folder) in the
Name column. You need to look at the domain name selected in the left pane to know the domain name of this
resource record.

The SOA record indicates that this name server is the best source of information for the data within this zone. Our
name server is authoritative for the movie.edu zone because of the SOA record. An SOA record is required in each
zone, and there can be one, and only one, SOA record in a zone.

Double-click the SOA record to view its details. You'll see a window like the one in Figure 4-19.

Figure 4-19. The movie.edu SOA record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's skip that first field, Serial number, for now—don't worry, we'll cover it later in the chapter—and go on to the next
field. The second field is the name of the primary master name server for this zone. (You may hear it called the MNAME
field, which is its official name.) The third field contains the email address of the person in charge of the zone (to turn
this field into an email address, you replace the first dot with an at sign, @). The DNS console defaults to a username of
hostmaster, but in other zones you might see root, postmaster, or administrator as the email address. Name servers
won't use these names—they are meant for human consumption. If you notice a problem in someone's zone, you can
send an email message to the listed email address.

Most of the remaining fields are for use by secondary name servers (also known as slave name servers) and are
discussed when we introduce secondary name servers later in this chapter. For now, assume these are reasonable
values.

4.4.2.2 The NS record

The next record is an NS (name server) resource record. There should be one NS record for each name server
authoritative for the zone. Like the SOA record, NS records are attached to the zone's domain name. In our example,
the NS records are attached to movie.edu. Right now there's only one name server (the primary master), but as we
configure secondary name servers, we'll add NS records. The DNS console created an NS record for terminator because
it's a name server—the primary master name server—for movie.edu.

4.4.2.3 The A record

The final automatically created record is an address record or A record. Address records fulfill the main purpose of DNS:
they provide name-to-address mapping. Each A record maps a domain name, like terminator.movie.edu, to an IP
address, like 192.249.249.3.

Every NS record needs a corresponding A record in some zone. Think about it: an NS record says, "To find out
information about this zone, go to this name server." To use the NS record, you need the IP address of the name server
it specifies. In this case, the name of the name server, terminator.movie.edu, is contained in the movie.edu zone we
just created, so the DNS console automatically created the A record for terminator.movie.edu to specify its IP address.
When you create a new zone, the DNS console creates an address record for the primary name server. It uses the
hostname configured in the primary master's DNS configuration.

Note that some abbreviating is going on in the DNS console's display. The DNS console displays only terminator, but
the fully qualified domain name of this host is terminator.movie.edu. The DNS console normally displays a relative (that
is, abbreviated) domain name on the right, so you have to look at what zone or domain is selected on the left to
construct the fully qualified domain name. And recall that when records are attached to the name of the zone (which is
the case for the SOA and NS records here), the DNS console displays the somewhat cryptic phrase (same as parent
folder) in the Name column.

You're probably anxious to add resource records for the rest of your zone, but it's best to create the reverse-mapping
(in-addr.arpa) zones first.

4.4.3 Creating a New Reverse-Mapping Zone

Zones like movie.edu handle mapping names to addresses using A records. But mapping addresses back to names—
reverse mapping—is just as important. As you may recall from Chapter 2, a special portion of the namespace, the in-
addr.arpa domain, is designated for reverse mapping. There's one domain name in in-addr.arpa for every possible IP
address, and PTR (pointer) records attached to a domain name provide the actual reverse mapping. Just think of a PTR
record as the opposite of an A record.

So after we create movie.edu, we're not done. Movie U. has two /24 networks, 192.249.249/24 and 192.253.253/24.
We need to create the corresponding in-addr.arpa zones for reverse mapping with the DNS console: 249.249.192.in-
addr.arpa and 253.253.192.in-addr.arpa.

The process for creating an in-addr.arpa zone is the same as that for creating any other zone. Select terminator in the
left pane and choose Action New Zone. Follow the prompts in the New Zone Wizard as we did earlier, except
this time choose Reverse lookup zone in the third window. Figure 4-20 shows the fourth window of the New Zone
Wizard when creating a reverse-mapping zone.

Figure 4-20. Specifying the network number or name of a reverse-mapping zone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-20. Specifying the network number or name of a reverse-mapping zone

We specified the network number (see the selected field), and the DNS console automatically calculated the zone name
(see the grayed-out field). Click Next and the wizard concludes as shown earlier.

Select the newly created zone in the left pane to see its contents in the right pane. Note that, just as it did with the
movie.edu zone, the DNS console automatically creates the SOA record and an NS record.

For Movie U., we'll repeat this process to create the 253.253.192.in-addr.arpa zone. You create in-addr.arpa zones
according to the networks you have. Usually there's one in-addr.arpa zone per /24 (or smaller) network. Larger
networks are often broken into several in-addr.arpa zones to make management easier. The zones usually correspond
to subnets. This topic is covered in more detail in Chapter 10.

4.4.4 Adding Resource Records

Now that we've created Movie U.'s zones, we can add information about all its machines. Each machine requires two
resource records: an A record in the movie.edu zone to provide name-to-address mapping and a PTR record in the
appropriate in-addr.arpa zone to provide address-to-name mapping. Adding the A record is intuitive, but it's easy to
forget about the PTR record. The DNS console makes the job easier with the New Host command, which creates an A
record and a PTR record in one pass.

Select a forward-mapping zone (like movie.edu) and choose Action New Host (A). Enter the name of the host
and its IP address. To create the PTR record as well, you also need to check the Create associated pointer (PTR)
record box. The window looks like the one in Figure 4-21.

Figure 4-21. The New Host window

You'll notice that we typed a relative domain name (robocop) and not a fully qualified domain name
(robocop.movie.edu). The DNS console is being helpful here and saving you some typing: it appends the domain name
of the zone selected in the left pane (i.e., the zone that you're adding the new host to) to create a fully qualified domain
name as shown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name as shown.

4.4.4.1 Aliases

Looking back at Movie U.'s host table in the beginning of the chapter, you'll see that some hosts have aliases. (The
aliases are any additional names after the first one listed.) For example, terminator is also known as bigt. A special
resource record called the CNAME record is used to make an alias. The name of this record is confusing because CNAME
is short for canonical name, which means the "real" name of the host. But a CNAME record doesn't make a canonical
name; it makes an alias. All other types of records make a canonical name. We recommend thinking of it this way:
CNAME records point to canonical names while other record types make canonical names.

To create an alias, select the zone to which you want to add the record on the left, and choose Action New Alias
(CNAME). You'll see a window that looks like the one in Figure 4-22.

Figure 4-22. Creating a CNAME record

The input shown in Figure 4-22 will generate an alias from bigt.movie.edu to terminator.movie.edu. The Fully
qualified domain name (FQDN) field shows the full name of the alias, which resides in the current zone. But the
name that the alias points to (labeled Fully qualified name (FQDN) for target host) can point anywhere, to any
domain name. We could alias bigt.movie.edu to www.whitehouse.gov if we wanted to. An important note, however: if
you leave off the domain in the canonical name field, the zone's domain name is not appended automatically. You
should always enter a fully qualified domain name in the last field.

It's important to know that the name server handles CNAME records in a different manner than aliases are handled in
the host table. When a name server looks up a name and finds a CNAME record, it replaces the alias with the canonical
name and looks up the new name. For example, when the name server looks up bigt.movie.edu, it finds a CNAME
record pointing to terminator.movie.edu. Then it looks up terminator.movie.edu, and its address is returned.

One thing you must remember about aliases like bigt is that they should never appear in the data portion (that is, on
the right side) of a resource record. Stated differently, always use the canonical name (terminator) in the data portion
of the resource record. Notice that the NS records use the canonical name.

Sometimes you can use an A record to get the effect of an alias. Suppose you have a router, like wormhole, and you
want to check one of the interfaces. One common troubleshooting technique is to ping the interface to verify that it is
responding. If you ping the name wormhole, the name server returns the addresses of both interfaces. ping uses the
first address in the list. But which address is first?

The solution is to create two A records for wormhole. We could use the New Host command to create them as we did
earlier in this chapter, but we'll show you another way. The Other New Records command lets you choose from 22
different resource records to create. Choose Action Other New Records and you'll see a window like Figure 4-
23. Select a record type to see its description. We've selected Host (A), and after we select Create Record we'll see
the same New Host window that we showed earlier, which we'll use to add an A record for wh249.movie.edu.

Figure 4-23. Other new records window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With the host table, we chose the address we wanted by using either wh249 or wh253—each name referred to one of
the host's addresses. To provide equivalent capability with DNS, we didn't make wh249 and wh253 into aliases (CNAME
records). That would result in both addresses for wormhole being returned when we looked up the alias. Instead, we
used address records. Now, to check the operation of the 192.253.253.1 interface on wormhole, we ping wh253 since it
refers to only one address. The same applies to wh249.

As a general rule, if a host is multihomed (i.e., has more than one network interface),
create an address (A) record for each alias unique to one address. Create a CNAME record
for each alias common to all the addresses.

4.4.4.2 One more note about PTR records

We now have two A records, wormhole.movie.edu and wh249.movie.edu, pointing to the same address,
192.249.249.1. We also have a PTR record pointing from 1.249.249.192.in-addr.arpa to wormhole.movie.edu. (This
record was added automatically to the 249.249.192.in-addr.arpa zone by the New Host option. Remember that
addresses are looked up as names: the IP address is reversed, and in-addr.arpa is appended.) Thus, 192.249.249.1
maps to wormhole.movie.edu and not to wh249.movie.edu. Should you create another PTR record that maps
192.249.249.1 to wh249.movie.edu? You can create two PTR records—it's perfectly legal—but most systems are not
prepared to see more than one name for an address. We recommend that you don't bother with multiple PTR records
since so few systems can use them.

4.4.5 Where Is All This Information Stored?

You may be wondering what's happened to all the resource records we've been entering. Where are they being stored?
The answer is: in the memory of the DNS server process. We mentioned earlier that the DNS console communicates
with the DNS server using an RPC mechanism. As you add records to a zone with the DNS console, they are added "on
the fly" to the name server's memory. Of course, the name server's memory is transient—when the name server
process stops, its memory is lost. Obviously it needs a permanent storage location, too.

This is where the zone datafiles specified when we created the zones come in. The zone datafiles are the zones'
permanent storage location, holding all the zones' resource records. If you use the DNS console to make a change to a
zone, the copy of the zone in the name server's memory is changed, and a flag is set to update that zone's datafile. The
name server updates the zone datafile when it exits, unless you tell it to update the file sooner. Choosing Action
Update Server Data Files (available when a name server is selected in the left pane) causes the name server to
update the zone datafiles of all the zones for which it's a primary (if the version of a zone in the server's memory is
more recent than the version on disk). There's also a per-zone version of this command: with a primary zone selected
in the left pane, selecting Action Update Server Data File causes the server to update only that zone's file. To
avoid losing data, we recommend using Action Update Server Data File(s) after a batch of changes—use it like
you use the Save command in other applications. Of course, the difference here is that the server will save your data if
it exits gracefully. You don't have to use Action Update Server Data File(s) after a batch of changes, but it
doesn't hurt anything and you'll sleep better.

As you've probably guessed, when the name server starts up, it reads the zone datafiles into memory. When you select
Action Refresh or press F5, the DNS console queries the name server and updates the console's display.

If you've been keeping track, you'll realize that DNS information exists in three places: zone datafiles, the name
server's memory, and the DNS console's window. The diagram in Figure 4-24 helps explain how the information flows.

Figure 4-24. Where everything is stored

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-24. Where everything is stored

4.4.6 The Zone Datafiles

Let's take a look at the zone datafiles for Movie U. After inputting the remaining host table entries, we end up with the
display shown in Figure 4-2. (Of course, this view shows only the contents of movie.edu. The 249.249.192.in-addr.arpa
and 253.253.192.in-addr.arpa zones are populated with PTR records.)

Next we select Action Update Server Data Files, and the server generates three files in
%SystemRoot%\System32\DNS: movie.edu.dns, 249.249.192.in-addr.arpa.dns, and 253.253.192.in-addr.arpa.dns.
We include them here.

4.4.6.1 Contents of movie.edu.dns

;
; Database file movie.edu.dns for movie.edu zone.
; Zone version: 17
;

@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 17 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS terminator.movie.edu.

;
; Zone records
;

bigt CNAME terminator.movie.edu.
carrie A 192.253.253.4
dh CNAME diehard.movie.edu.
diehard A 192.249.249.4
misery A 192.253.253.2
robocop A 192.249.249.2
shining A 192.253.253.3
terminator A 192.249.249.3
wh CNAME wormhole.movie.edu.
wh249 A 192.249.249.1
wh253 A 192.253.253.1
wormhole A 192.253.253.1
 A 192.249.249.1

4.4.6.2 Contents of 249.249.192.in-addr.arpa.dns

;
; Database file 249.249.192.in-addr.arpa.dns for 249.249.192.in-addr.arpa zone.
; Zone version: 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; Zone version: 7
;

@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 7 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS terminator.movie.edu.

;
; Zone records
;

1 PTR wormhole.movie.edu.
2 PTR robocop.movie.edu.
3 PTR terminator.movie.edu.
4 PTR diehard.movie.edu.

4.4.6.3 Contents of 253.253.192.in-addr.arpa.dns

;
; Database file 253.253.192.in-addr.arpa.dns for 253.253.192.in-addr.arpa zone.
; Zone version: 7
;

@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 7 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS terminator.movie.edu.

;
; Zone

 records
;

1 PTR wormhole.movie.edu.
2 PTR misery.movie.edu.
3 PTR shining.movie.edu.
4 PTR carrie.movie.edu.

4.4.7 Zone Datafile Format

The format of zone datafiles is specified in the DNS standards. That means all name servers, whether Microsoft DNS
Server or the BIND name server, can read each other's zone datafiles.

You've probably already guessed that the semicolon is the comment character. It can appear anywhere on a line, and
anything to the right is considered a comment and is ignored by the name server. Blank lines are okay, too.

Each resource record must start in the first column of the file—no preceding whitespace. (Don't be confused by the
examples in this book, which are indented because of the way the book is formatted.) Resource records are case-
insensitive—you can use uppercase or lowercase. The name server doesn't preserve the case, though. It matches the
case of the reply to the case of the query. For example, if a record is written as terminator in the zone datafile but you
query for Terminator, the server responds with Terminator.

Resource records are broken up into fields, with any amount of whitespace (tabs or spaces) separating the fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resource records are broken up into fields, with any amount of whitespace (tabs or spaces) separating the fields.

The first field, called the owner, is the domain name of the record. Put another way, it's the node in the namespace to
which the resource record is attached. You've seen the domain name on the left side of the right pane of the DNS
console.

The next field in our examples is the class, IN, which stands for Internet. Other classes exist, but none of them are
currently in widespread use. Our examples use only the IN class.

The field after that is the record type. We've already discussed the SOA, NS, A, PTR, and CNAME record types, and
you've probably browsed through the list of other record types in the DNS console's Other New Records window. The
type simply specifies what type of data is associated with the domain name on the right: A means IP address, NS
means the name of an authoritative name server, and so on.

That's a good lead-in to the final field, the RDATA or resource record data field. This field holds the kind of data
specified by the record type. It can be divided into multiple subfields, depending on the type. For example, A records
specify only one parameter, an IP address, but the SOA record specifies seven parameters (remember all those fields in
Figure 4-19?).

Speaking of the SOA record, you'll notice in the examples that it's the only record spanning multiple lines. If you ever
have to edit zone datafiles by hand, you can use parentheses to allow a resource record to span multiple lines. This
trick works for all record types, not just SOA.

Domain names appear a lot in resource records. The left side of every resource record is a domain name, and the right
side (RDATA field) of many record types also contains domain names (for example, NS and SOA records). Using a fully
qualified domain name in each case is perfectly legal, but it would be a lot of work: imagine having to type movie.edu
at the end of every hostname if you were entering these files by hand. Fortunately, abbreviations are allowed. You need
to understand the abbreviations because the Microsoft DNS Server uses them in records it generates.

4.4.7.1 Appending domains

Every zone has a domain name: it's just the name of the zone. (This probably strikes you as pretty obvious.) This
domain name is the key to the most useful shortcut. This domain name is the origin of all the data in the datafile. The
origin is appended to all domain names in the file not ending in a dot. The origin is different for each file because each
file is associated with a different zone, each of which has a different domain name.

Since the origin is appended to names, instead of entering robocop's address in movie.edu.dns as this:

robocop.movie.edu. IN A 192.249.249.2

the server generated it like this:

robocop A 192.249.249.2

The server also used another shortcut and omitted the class, IN. If you omit the class on a record, the previous record's
class is used. Since this file uses only the IN class, it makes sense to specify it once on the first record in the file and
leave it off the subsequent records. In that case, the first record's class applies to all the other records.

In 192.249.249.in-addr.arpa.dns, this is the long way to write this record:

2.249.249.192.in-addr.arpa. IN PTR robocop.movie.edu.

But since 249.249.192.in-addr.arpa is the origin, the server generated:

2 PTR robocop.movie.edu.

Notice that all the fully qualified domain names in the file end in a dot. That tells the server that this domain name is
complete and should be left alone. Suppose you forgot the trailing dot. An entry like this:

robocop.movie.edu A 192.249.249.2

turns into an entry for robocop.movie.edu.movie.edu, not what you intended at all.

4.4.7.2 @ notation

If the domain name is the same as the origin, the name can be specified with an at sign (@). This is most often seen in
the SOA record in datafiles generated by hand, but the Microsoft DNS Server also uses the @ notation in NS records. In
the movie.edu.dns file in the previous example, the @ stands for movie.edu. Of course, in the 249.249.192.in-
addr.arpa.dns file, the @ stands for 249.249.192.in-addr.arpa, and in the 253.253.192.in-addr.arpa.dns file . . . well,
you get the idea.

4.4.7.3 Repeat last name

If there is a space or a tab in column one, the name from the last resource record is used. This shortcut gets used when
a name has multiple resource records. This example shows two address records for one name:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a name has multiple resource records. This example shows two address records for one name:

wormhole A 192.253.253.1
 A 192.249.249.1

In the second address record, the name wormhole is implied. You can use this shortcut even if the resource records are
of different types—for example, if wormhole also had a TXT (arbitrary text) record.

4.4.8 The Loopback Address

Those of you familiar with the BIND name server may be wondering if we forgot about the loopback address. If we were
setting up a BIND name server, it would need one additional zone datafile to cover the loopback network: the special
address that hosts use to direct traffic to themselves. This network is (almost) always 127.0.0.0, and the host number
is (almost) always 127.0.0.1. Therefore, the name of this file would be 0.0.127.in-addr.arpa.dns, and it would look like
the other in-addr.arpa.dns files.

The following would be the contents of the 0.0.127.in-addr.arpa.dns file:

@ IN SOA terminator.movie.edu. administrator.movie.edu. (
 1 ; serial number
 3600 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ NS terminator.movie.edu.

;
; Zone records
;

1 PTR localhost.

Why do name servers need this file? Think about it for a second. No one was given responsibility for network 127.0.0.0,
yet systems use it for a loopback address. Since no one has direct responsibility, everyone who uses it is responsible for
it individually. If you omit this file on a name server, it will still operate. However, a lookup of 127.0.0.1 might fail: the
name server will send the query to a root name server that might not be configured to map 127.0.0.1 to a name.

With the Microsoft DNS Server, you don't have to worry about creating this file and making your name server
authoritative for the in-addr.arpa zone corresponding to network 127.0.0.0. The server is authoritative for this zone by
default. It's called an automatically created zone and is visible in the DNS console only in advanced mode. Select View

 Advanced and you can see the three automatically created zones shown in Figure 4-25.

Figure 4-25. The DNS console showing automatically created zones

We've drilled down into the 127.in-addr.arpa zone to show that there's a PTR record for 1.0.0.127.in-addr.arpa pointing
to the domain name localhost. In other words, the Microsoft DNS Server reverse-maps the IP address 127.0.0.1 to the
domain name localhost "out of the box" without any work on your part.

The 0.in-addr.arpa and 255.in-addr.arpa zones are empty, save for NS and A records. Some hosts attempt to reverse-
map the IP addresses 0.0.0.0 and 255.255.255.255, and these zones cause the local server to return an immediate
Name Error (also known as NXDOMAIN, which is short for nonexistent domain) for those queries rather than asking a
root name server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root name server.

4.4.9 The Root Hints Data

Besides your local information, the name server also needs to know where the name servers for the root zone are.
(Remember that the resolution process starts at the root zone, so knowing which name servers are authoritative for the
root zone is critical.) This information is stored in a file called the root name server hints file, which is named
%SystemRoot%\System32\DNS\cache.dns on your name server. The Microsoft DNS Server ships with a version of this
file that looks like this (or at least it did when this book was published):

;
; cache.dns -- DNS CACHE FILE
;
; Initial cache data for root domain servers.
;
; YOU SHOULD CHANGE:
; -> Nothing if connected to the Internet. Edit this file only when
; updated root name server list is released.
; OR
; -> If NOT connected to the Internet, remove these records and replace
; with NS and A records for the DNS server authoritative for the
; root domain at your site.
;
; Note, if you are a root domain server, for your own private intranet,
; no cache is required, and you may edit your boot file to remove
; it.
;

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/named.root
; on server FTP.INTERNIC.NET
;
; last update: Nov 5, 2002
; related version of root zone: 2002110501
;
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; formerly TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; formerly NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; formerly NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;
; formerly NS.NIC.DDN.MIL
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; formerly AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;
; formerly NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; operated by VeriSign, Inc.
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30
;
; housed in LINX, operated by RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;
; operated by IANA
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;
; housed in Japan, operated by WIDE
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
; End of File

The domain name "." refers to the root zone.

This information can also be retrieved from the Internet host ftp.rs.internic.net (198.41.0.7). Use anonymous FTP to
retrieve the file named.root from the domain subdirectory. However, you probably won't ever need to update your
server's cache.dns file. Because the ability to reach the root name servers is so important, the Microsoft DNS Server
goes out of its way to make sure its list of root name servers is always up to date. It views the contents of cache.dns
somewhat suspiciously and doesn't use that list of name servers directly. (That's why this file is called the root hints.)
Rather, when the server starts up, it chooses a root name server from cache.dns at random and asks it for the current
list of root name servers. After all, who would know the current list of root name servers better than one of the root
name servers? The list returned is the one used by the name server to start the resolution process and is the list you
see when you drill down in the left pane of the DNS console. The DNS server also overwrites the contents of cache.dns
with the updated list. As a result, if you've started the DNS server even just once, your cache.dns will look different
than the one shown here because the server doesn't preserve the comments when it overwrites the file.

You can also view this information from within the DNS console. Select a name server in the left pane and choose
Action Properties Root Hints tab to see a window like the one shown in Figure 4-26.

Figure 4-26. Root Hints window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you may be wondering what the 3600000s in the file are for. In older versions of this file, this number was
99999999. It dates back to the behavior of early versions of BIND. The BIND name server used to put the contents of
the root hints file directly into its cache, and it had to know how long to keep these records active. The 99999999s
meant a very long time. The root name server data was to be kept active for as long as the server ran. Since both BIND
and the Microsoft DNS Server now store the root hints data in a special place and don't discard it if it times out, the TTL
is unnecessary. But it's not harmful to have the 3600000s, and it makes for interesting DNS folklore when you pass
responsibility to the next name server administrator.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.5 Running a Primary Master Name Server
Your primary name server is already up and running; you've been talking to it via the DNS console. You've created a
zone and populated it with information. You directed the server to write out zone datafiles with the Action
Update Server Data Files command. In the interest of completeness, next we'll show you how to stop and restart the
server and then check the Event Log for any messages or errors.

4.5.1 Starting and Stopping the DNS Server

You can start and stop the DNS server in several ways. First, you can control it just like any other Windows Server 2003
service: with the Services MMC snap-in. Select Start Administrative Tools Services. You'll see a window
like Figure 4-27.

Figure 4-27. Windows Server 2003 services control window

Your system should look like this: the server should be running (that is, it should be started). Select the server as we've
done by clicking anywhere on the DNS Server line. Select Action Stop. After the server stops, select Action

 Start. In a few seconds, the server should be running again. You can also use the handy links in the upper left of
the right pane to stop and start the service.

While you've got this window open, check to make sure that the DNS server is being started automatically when the
system is booted. You want to see Automatic in the Startup Type column (and not Manual or Disabled). To change
the startup behavior, double-click on the service and choose the appropriate behavior in the Startup Type field of the
resulting window.

You can also start and stop the DNS server from within the DNS console. With the server selected in the left pane,
select Action All Tasks. You'll see a menu with choices that include Start, Stop, and Restart. (The latter does
just what you'd expect: stops, then starts, the server.)

Finally, you can start and stop the DNS server from the command line: net start dns starts the server, and net stop dns
stops it. Of course, this command must be run on the system on which the DNS server is running, which is not
necessarily the same system on which the DNS console is running. See Chapter 13 for more information on managing
DNS from the command line.

4.5.2 Check the Event Log for Messages and Errors

Now you need to check the Event Log. In previous versions of Windows, you had to start the Event Viewer (by selecting
Start Administrative Tools Event Viewer) separately, but in Windows Server 2003, events for the DNS
server can be viewed right from within the DNS console. Expand the Event Viewer tab under a name server in DNS
console's left pane. Click on DNS Events and you'll see a window like the one shown in Figure 4-28.

Figure 4-28. Viewing events in DNS console

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-28. Viewing events in DNS console

DNS Server Event ID 3 is "The DNS server has shutdown," and Event ID 2 is "The DNS server has started." (More
events are listed in Chapter 7.) These first two events are just what you want to see: a normal server shutdown and
startup. We're reading from bottom to top since the default view shows newest events first. We also cleared the Event
Log before we stopped and started the server—that's why only these two events are showing.

If there were any other messages or errors, we'd take steps to correct them now. To be honest, we didn't expect any
problems because we entered all the data via the DNS console. Since it performs syntax and sanity checking, it's hard
to enter bad data that will make the name server upset enough to complain in the Event Log. Still, it doesn't hurt to
check. If you ever start editing zone datafiles by hand (which we don't recommend), you'll definitely need to check the
Event Log.

4.5.3 Testing Your Setup with nslookup

If you have correctly set up your local domain and your connection to the Internet is up, you should be able to look up
a local and a remote domain name. We'll step you through the lookups with nslookup. This book contains an entire
chapter on this topic (Chapter 12), but we will cover nslookup in enough detail here to do basic name-server testing.

4.5.3.1 Look up a local name

You can use nslookup to look up any type of resource record, and it can be directed to query any name server. By
default, it looks up A (address) records using the name server on the local system. To look up a host's address with
nslookup, run nslookup with the host's name as the only argument. A lookup of a local name should return almost
instantly.

We ran nslookup to look up carrie:

C:\> nslookup carrie
Server: terminator.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

If looking up a local name works, your local name server has been configured properly for your domain. If the lookup
fails, you'll see something like this:

*** terminator.movie.edu can't find carrie: Non-existent domain

This means that either carrie is not in your zone—check the DNS console or the zone datafile—or some name server
error occurred (but you should have caught the error when you checked the Event Log).

4.5.3.2 Look up a local address

When nslookup is given an address to look up, it knows to send a PTR query instead of an address query. We ran
nslookup to look up carrie's address:

C:\> nslookup 192.253.253.4
Server: terminator.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

If looking up an address works, your local name server has been configured properly for your in-addr.arpa domain. If
the lookup fails, you'll see the same error message as when you looked up a name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the lookup fails, you'll see the same error message as when you looked up a name.

4.5.3.3 Look up a remote name

The next step is to use the local name server to look up a remote name, such as ftp.uu.net or another system you
know on the Internet. Don't forget to add a period at the end of your input so the system doesn't automatically append
the domain name, movie.edu.

This command may not return as quickly as the last one. If nslookup fails to get a response from your name server, it
will wait a few seconds before giving up.

C:\> nslookup ftp.uu.net.
Server: terminator.movie.edu
Address: 192.249.249.3

Name: ftp.uu.net
Address: 192.48.96.9

If this lookup works, your name server knows where the root name servers are and how to contact them to find
information about domains other than your own. If it fails, there is a problem with the root hints file or the network.
The root hints file might be empty or missing address records for the root name servers. Or perhaps the network is
broken somewhere and you can't reach the name servers for the remote domain. Try a different remote domain name.

If these first three lookups succeeded, congratulations! You have a primary master name server up and running. At this
point, you are ready to start configuring your secondary name server.

4.5.3.4 One more test

While you are testing, though, run one more test. Try having a remote name server look up a name in your zone. This
will work only if your parent name servers have already delegated your zone to the name server you just set up. If your
parent required you to have your two name servers running before delegating your zone, skip ahead to the next
section.

To make nslookup use a remote name server to look up a local name, give the local host's name as the first argument
and the remote server's name as the second argument. Again, if this doesn't work, it may take 30 seconds or so before
nslookup gives you an error message. For instance, to have vnsc-pri.sys.gtei.net look up carrie, we'd enter:

C:\> nslookup carrie vnsc-pri.sys.gtei.net.
Server: vnsc-pri.sys.gtei.net.
Address: 4.2.2.1

Name: carrie.movie.edu
Address: 192.253.253.4

If the first two lookups worked but using a remote name server to look up a local name failed, you may not be
registered with your parent name server. That is not a problem at first because systems within your zone can look up
the names of other systems within and outside your zone. You'll be able to send email and ftp to local and remote
systems. Some systems won't allow FTP connections if they can't map your host's address back to a name. But not
being registered will shortly become a problem. Hosts outside of your zone cannot look up names within your zone. You
will be able to send email to friends in remote domains, but you won't get their responses. To fix this problem, contact
someone responsible for your parent zone and have them check the delegation of your zone.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.6 Running a Secondary Name Server
You need to set up another name server for robustness. You can (and probably will) set up more than two name
servers. Two servers are the minimum. If you have only one name server and it goes down, no one can look up names
in your zone. A second name server splits the load with the first server or handles the whole load if the first server is
down. You could set up another primary master name server, but we don't recommend it. Set up a secondary name
server instead.

How does a server know if it is a primary master or a secondary for a zone? The DNS server configuration information
in the Registry tells the server it is a primary master or a secondary on a per zone basis. The NS records don't tell us
which server is the primary master for a zone and which servers are secondaries for a zone—they only say who the
servers are. (Globally, DNS doesn't care; as far as the actual name resolution goes, secondary servers are as good as
primary master servers.)

What is different between a primary master name server and a secondary name server? The crucial difference is where
the server gets its data. A primary master name server reads its data from files. A secondary name server loads its
data over the network from another name server. This process is called a zone transfer.

A secondary name server is not limited to loading zones from a primary master name server; a secondary can load
from another secondary. The big advantage of secondary name servers is that you maintain only one set of zone
datafiles: the ones on the primary master name server. You don't have to worry about synchronizing the files among
name servers; the secondaries do that for you.

A secondary name server doesn't need to retrieve all of its datafiles over the network; the cache.dns file is the same as
on a primary master, so you'll need a local copy on the secondary. Fortunately, the DNS server installation process
includes this file.

4.6.1 Add a New Server to the DNS Console

The first step in configuring a secondary server is to add the server to the DNS console's world view. Just as we did
when configuring the primary master, select Action Connect to DNS Server, then enter the name or IP address
of the secondary. In this case our secondary will be wormhole with IP address 192.249.249.1. Of course, the DNS
server has to be installed and running on the secondary-to-be for the DNS console to be able to manage it.

4.6.2 Create a New Zone

This new server will be a secondary for every zone on the primary, so we'll have to go through the new zone process
for each zone. Let's start with movie.edu. Select Action New Zone. This time, select Secondary zone in the
second window of the wizard. In the third window, select Forward lookup zone. The fourth window is shown in Figure
4-29.

Figure 4-29. Creating a new secondary zone: specifying the zone's domain name

In the Zone name field, enter the domain name of the zone (in this case, movie.edu). Click Next to move to the next
window, shown in Figure 4-30.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window, shown in Figure 4-30.

Figure 4-30. Creating a new secondary zone: specifying master servers

At this point, the processes of creating a primary master zone and a secondary zone really diverge. This is the screen
where you specify where this name server will get the zone data. In this example, we're making wormhole a secondary
for the movie.edu zone. We need to tell wormhole to load the zone from terminator, the primary master. In fact, on this
screen you can specify multiple IP addresses. In advanced (and complicated) configurations, a secondary can
sometimes get the zone information from multiple primaries or multiple sources. The DNS console supports those
configurations. You could also just specify the IP address of another secondary after that of the primary: in case the
primary is down, this secondary can load from another secondary. Of course, Movie U. doesn't have another secondary
(yet).

For now, we just specify terminator's IP address, 192.249.249.3, then click Next. The final window in the process is the
same as when creating a primary zone: it just tells you that you're done now and asks you to click Finish. We'll omit
showing it to you.

When you're done, the new secondary immediately initiates a zone transfer to the primary to download the zone.
Within a few seconds you should be able to double-click the secondary's icon for the zone and see the records in the
zone.

4.6.3 Add an NS Record for the New Secondary Name Server

Your new secondary won't be much good if the rest of the world doesn't know about it. As a general rule, when you add
another name server for a zone, you also need to add an NS record for it. (We'll discuss the exceptions to this in
Chapter 9.)

You need to add an NS record for the secondary on the zone's primary. (Remember that all changes to a zone are
made on the primary and propagate automatically to the secondaries. Don't get confused by the fact that the DNS
console lets you see all your name servers—you make the changes only to the zone's primary.) In our case, we need to
add an NS record for wormhole to the movie.edu zone. So we click on movie.edu under terminator and select Action

 Properties. Click on the Name Servers tab and you'll see a window like the one in Figure 4-31.

Figure 4-31. NS records for the movie.edu zone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This window shows that right now there's only one NS record for the movie.edu zone, which specifies
terminator.movie.edu as an authoritative name server. To add another, click Add and you'll see the window shown in
Figure 4-32.

Figure 4-32. Adding an NS record

Enter the name and IP address of the secondary name server and click OK.

4.6.4 Don't Forget the in-addr.arpa Zones!

Now repeat this secondary zone creation process with the 249.249.192.in-addr.arpa and 253. 253.192.in-addr.arpa
zones.

4.6.5 SOA Values

Remember this SOA record for the movie.edu zone?

@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 17 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

We never explained what the values in between the parentheses were for.

The serial number applies to all the data within the zone. Think of it as a version number for the zone. When we created
this zone with the DNS console, the serial number began at 1. The DNS console automatically increments the serial
number in a zone's SOA record whenever you make a change to the zone. The current serial number of 17 shows we've
made a few changes since creating the zone. If you look at SOA records from other zones, you might see the date
encoded in the serial number—for example, 2000102301. This format is YYYYMMDDNN, where YYYY is the year, MM is
the month, DD is the day, and NN is a count of how many times the zone data was modified that day. Note that you
can't use this convention with the DNS console. It just increments the serial number by one each time a change is made
and doesn't understand the date encoding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and doesn't understand the date encoding.

When a secondary name server contacts a primary master server for zone data, it first asks for the serial number of the
data. If the secondary's serial number is lower than the primary's, the secondary's zone data is out of date. In this
case, the secondary pulls a new copy of the zone. As you might guess, if you ever modify the zone datafiles on the
primary master by hand, you must increment the serial number, too. Updating zone datafiles is covered in Chapter 7.

The next four fields specify various time intervals in seconds:

refresh

The refresh interval tells the secondary how often to check that its data is up to date. To give you an idea of the
system load this feature causes, a secondary will make one SOA query per zone per refresh interval. The
default value generated by the DNS console when the zone was created, one hour, is reasonably aggressive.
Most users will tolerate a delay of half a working day for things like name server data to propagate when they
are waiting for their new workstation to be operational. If you provide one-day service for your site, consider
raising this value to eight hours. If your data doesn't change very often, or if all your secondaries are spread
over long distances (as the root name servers are), consider a longer value, such as 24 hours.

retry

If a secondary fails to reach the primary name server(s) after the refresh period (the hosts or hosts could be
down), it starts trying to connect every retry seconds. The retry interval is usually shorter than the refresh
interval, but it doesn't have to be.

expire

If a secondary fails to contact the primary server(s) for expire seconds, the secondary expires its data. Expiring
the data means the secondary stops giving out answers about the data because the data is too old to be useful.
Essentially, this field says: at some point, the data is so old that having no data is better than having stale data.
We think Microsoft's default expire time of 86,400 seconds (24 hours) is awfully short. Expire times on the
order of a week are common, and the interval can be longer (up to a month) if you frequently have problems
reaching your updating source. The expiration time should always be much larger than the retry and refresh
intervals; if the expire time is smaller than the refresh interval, your secondaries will expire their data before
trying to load new data.

default TTL

TTL stands for time to live. This value applies to all the resource records in the zone datafile. The name server
supplies this TTL in query responses, allowing other servers to cache the data for the TTL interval. If your data
doesn't change much, you might consider using a minimum TTL of several days. One week is about the longest
value that makes sense. The default value of 3,600 seconds (one hour) is very short, which we don't
recommend because of the amount of DNS traffic it causes.

What values you choose for your SOA record will depend upon the needs of your site. In general, longer times cause
less loading on your systems and lengthen the propagation of changes; shorter times increase the load on your systems
and speed up the propagation of changes. We find the following values work well for most sites; they're also a good
starting point if you're not sure what values to use:

 10800 ; Refresh 3 hours
 3600 ; Retry 1 hour
 2592000 ; Expire 30 days
 86400 ; Minimum TTL 1 day

Some final notes about TTL values. First, the DNS console only displays TTL values on individual records if you're in
advanced mode. Check out the setting on the View menu. Second, the DNS console displays TTLs in a somewhat
cryptic fashion. Take a look back at the NS record we added in Figure 4-32. Notice the TTL specified as 0: 1: 0: 0.
"What the heck is that?" you ask. Well, the first field is days, then hours, minutes, and seconds. So rather than display
a value in seconds and make you do the math, the DNS console lets you specify a TTL in a more convenient way.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.7 Adding More Zones
Now that you have your name servers running, you might want to handle more zones. What needs to be done? Nothing
special, really. Just use the DNS console to select the appropriate server in the left pane, then choose Action
New Zone. Follow the instructions earlier in this chapter according to whether you are creating a primary or a
secondary zone.

At this point, it's useful to repeat something we said in an earlier chapter. Calling a given name server a primary master
name server or secondary name server is a little silly. Name servers can be authoritative for more than one zone (and
almost always are). A name server can be a primary master for one zone and a secondary for another. Most name
servers, however, are either primary masters for most of the zones they load or secondaries for most of the zones they
load. So if we call a particular name server a primary master or a secondary, we mean that it's the primary master or a
secondary for most of the zones it loads.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.8 DNS Properties

Let's finish this chapter with an explanation of the Action Properties selection. The Properties selection on the
Action menu is context-sensitive. When selected, the DNS console displays the properties of the highlighted resource
record, zone, or server.

4.8.1 Resource Record Properties

Select a resource record on the right by single-clicking it. Then choose Action Properties. The window should
look familiar: it's the same one you used to add the record. You can get the same effect by simply double-clicking the
record, too.

4.8.2 Zone Properties

The zone properties window is viewed by selecting a zone on the left and choosing Action Properties. Unlike
resource record properties, some zone information can be changed only from this window. It has five tabs:

General

This window shows the name of the zone's datafile as well as indicating whether it's a primary or secondary
zone. The type of the zone can be changed from primary to secondary or vice versa. (Dynamic updates and
aging/scavenging are advanced topics that we'll cover in Chapter 11 and Chapter 7, respectively.) The window
for the movie.edu zone is shown in Figure 4-33.

Start of Authority (SOA)

This window shows the zone's SOA record. The display is the same as the window shown way back in Figure 4-
19 and is no different than if you double-click the SOA record in the right panel.

Name Servers

We've already seen this window—see Figure 4-31.

WINS

The WINS tab is covered in Chapter 11.

Zone Transfers

The Zone Transfers tab and settings are also covered in Chapter 11.

Figure 4-33. Zone properties window, General tab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.8.3 Server Properties

You can view the server properties by selecting a server on the left and choosing Action Properties. It has seven
tabs:

Interfaces

This window allows you to specify the interfaces on which the server will listen for queries. If you have multiple
interfaces (as for virtual web hosting), you might not need them all to be listed here. The default behavior is for
the server to listen on all interfaces. The window is shown in Figure 4-34.

Figure 4-34. Server properties, Interfaces tab

Forwarders, Advanced, Debug Logging, Event Logging, and Monitoring

These tabs are all covered in Chapter 11.

Root Hints

We discussed this window earlier (see Figure 4-26).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.9 What Next?
In this chapter, we showed you how to set up a primary master and a secondary name server. There is more work to
do to complete setting up your local domain: you need to modify your DNS data for email, configure the other hosts in
your domain to use name servers, and possibly start up more name servers. These topics are covered in the following
chapters.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. DNS and Electronic Mail
And here Alice began to get rather sleepy, and went on saying to herself, in a dreamy sort of way, "Do
cats eat bats? Do cats eat bats?" and sometimes "Do bats eat cats?" for, you see, as she couldn't
answer either question, it didn't much matter which way she put it.

I'll bet you're drowsy too, after that looong chapter. Thankfully, this chapter discusses a topic that will probably be very
interesting to you system administrators and postmasters: how DNS affects electronic mail. And even if it isn't
interesting to you, at least it's shorter than the last chapter.

One of the advantages of the Domain Name System over host tables is its support for advanced mail routing. When
mailers had only the HOSTS.TXT file (and its derivatives, /etc/hosts in the Unix world and
%SYSTEMROOT%\system32\drivers\etc\HOSTS under Windows) to work with, the best they could do was to attempt
delivery to a host's IP address. If that failed, they could either defer delivery of the message and try again later or
bounce the message back to the sender.

DNS offers a mechanism for specifying backup hosts for mail delivery. The mechanism also allows hosts to assume
mail-handling responsibilities for other hosts. This lets diskless hosts that don't run mailers, for example, have mail
addressed to them processed by their servers.

DNS, unlike host tables, allows arbitrary names to represent electronic mail destinations. You can—and most
organizations on the Internet do—use the domain name of your main forward-mapping zone as an email destination. Or
you can add domain names to your zone that are purely email destinations and don't represent any particular host. A
single logical email destination may also represent several mail servers. With host tables, mail destinations were hosts,
period.

Together, these features give administrators much more flexibility in configuring electronic mail on their networks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 MX Records
DNS uses a single type of resource record to implement enhanced mail routing, the MX record. Originally, the MX
record's function was split between two records, the MD (mail destination) and MF (mail forwarder) records. MD
specified the final destination to which a message addressed to a given domain name should be delivered. MF specified
a host that would forward mail on to the eventual destination, should that destination be unreachable.

Early experience with DNS on the Internet showed that separating the functions didn't work very well. A mailer needed
both the MD and MF records attached to a domain name (if both existed) to decide where to send mail—one or the
other alone wouldn't do. But an explicit lookup of one type or another (either MD or MF) would cause a name server to
cache just that record type. So mailers either had to do two queries, one for MD and one for MF records, or they could
no longer accept cached answers. This meant that the overhead of running mail was higher than that of running other
services, which was eventually deemed unacceptable.

The two records were integrated into a single record type, MX, to solve this problem. Now a mailer just needed all the
MX records for a particular domain name destination to make a mail-routing decision. Using cached MX records was
fine, as long as the TTLs matched.

MX records specify a mail exchanger for a domain name: a host that will either process or forward mail for the domain
name (through a firewall, for example). "Processing" the mail means either delivering it to the individual to whom it's
addressed or gatewaying it to another mail transport, such as X.400. "Forwarding" means sending it to its final
destination or to another mail exchanger "closer" to the destination via SMTP, the Internet's Simple Mail Transfer
Protocol. Sometimes forwarding the mail involves queuing it for some amount of time, too.

In order to prevent mail routing loops, the MX record has an extra parameter, besides the domain name of the mail
exchanger: a preference value. The preference value is an unsigned 16-bit number (between 0 and 65535) that
indicates the mail exchanger's priority. For example, the MX record:

peets.mpk.ca.us. IN MX 10 relay.hp.com.

specifies that relay.hp.com is a mail exchanger for peets.mpk.ca.us at preference value 10.

Taken together, the preference values of a destination's mail exchangers determine the order in which a mailer should
use them. The preference value itself isn't important, only its relationship to the values of other mail exchangers. Is it
higher or lower than the values of this destination's other mail exchangers? Unless other records are involved, this:

plange.puntacana.dr. IN MX 1 listo.puntacana.dr.
plange.puntacana.dr. IN MX 2 hep.puntacana.dr.

does exactly the same thing as:

plange.puntacana.dr. IN MX 50 listo.puntacana.dr.
plange.puntacana.dr. IN MX 100 hep.puntacana.dr.

Mailers should attempt delivery to the mail exchangers with the lowest preference values first. This may seem a little
counterintuitive—the most preferred mail exchanger has the lowest preference value. But since the preference value is
an unsigned quantity, this lets you specify a "best" mail exchanger at preference value 0.

If delivery to the most-preferred mail exchanger(s) fails, mailers should attempt delivery to less-preferred mail
exchangers (those with higher preference values), in order of increasing preference value. That is, mailers should try
more-preferred mail exchangers before they try less-preferred mail exchangers. More than one mail exchanger may
share the same preference value, too. This gives the mailer its choice of which to send to first. The mailer must try all
the mail exchangers at a given preference value before proceeding to the next higher value, though.

For example, the MX records for oreilly.com might be:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Interpreted together, these MX records instruct mailers to attempt delivery to oreilly.com by sending to:

1. ora.oreilly.com first

2. Either ruby.oreilly.com or opal.oreilly.com next

3. The remaining preference 10 mail exchanger (the one not used in step 2)

Of course, once the mailer successfully delivers the mail to one of oreilly.com's mail exchangers, it can stop. A mailer
successfully delivering oreilly.com mail to ora.oreilly.com doesn't need to try ruby.oreilly.com or opal.oreilly.com.

Note that oreilly.com isn't a particular host; it's the domain name of O'Reilly & Associates' main forward-mapping zone.
O'Reilly & Associates uses the domain name as the email destination for everyone who works there. It's much easier for
correspondents to remember the single email destination oreilly.com than to remember which host—ruby.oreilly.com?
amber.oreilly.com?—each employee has an email account on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

amber.oreilly.com?—each employee has an email account on.

This requires, of course, that the administrator of the mailer on ora.oreilly.com maintain a file of aliases for all email
users at O'Reilly, forwarding their mail to the hosts on which they read it, or run a server that offers users remote
access to their mail stores, such as a POP or IMAP server. What if a destination doesn't have any MX records, but has
one or more A records? Will a mailer simply not deliver mail to that destination? Well, it depends on the mail server.
Both Microsoft Exchange and the SMTP servers provided with Windows Server 2003 require the presence of a valid MX
record for any domain name to which you want to deliver mail. However, Sendmail, a popular mail transport agent from
the Unix world, is different. Recent versions of Sendmail can be compiled to deliver mail to a destination with no MX
records but at least one A record. Most vendors have compiled their Sendmails this way. Sendmail Version 8, compiled
"out of the box," will try the address of a mail destination without MX records. Check your vendor's documentation if
you're not sure whether your mail server will send mail to destinations with only address records.

Even though nearly all mailers will deliver mail to a destination with just an address record and no MX records, it's still a
good idea to have at least one MX record for each legitimate mail destination. Most mailers, including Sendmail, will
always look up the MX records for a destination first when there is mail to deliver. If the destination doesn't have any
MX records, a name server—usually one of your authoritative name servers—still must answer that query, and then
Sendmail will go on to look up A records. That takes extra time, slows mail delivery, and adds a little load to your
zone's authoritative name servers. If you simply add an MX record for each mail destination pointing to a domain name
that maps to the same address that an address lookup would return, the mailer will have to send only one query, and
the mailer's local name server will cache the MX record for future use.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Adding MX Records with the DNS Console
Now that you're familiar with MX records as they appear in zone datafiles, let's cover how to add them with the DNS
console. First, right-click on the domain name of the zone to which you'd like to add the MX record. You'll see the drop-
down menu shown in Figure 5-1.

Figure 5-1. Adding an MX record to a zone

Choose New Mail Exchanger from the pop-up menu. A small window, shown in Figure 5-2, is displayed.

Figure 5-2. Adding an MX record for terminator.movie.edu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Figure 5-2, we're adding an MX record for terminator.movie.edu at preference 10, pointing to terminator.movie.edu
itself. The record that's added to the zone datafile looks like this:

terminator IN MX 10 terminator.movie.edu.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 What's a Mail Exchanger, Again?
The idea of a mail exchanger is probably new to many of you, so let's go over it in a little more detail. A simple analogy
should help here: imagine that a mail exchanger is an airport, and instead of setting up MX records to instruct mailers
where to send messages, you're advising your in-laws about which airport to fly into when they come to visit you.

Say you live in Los Gatos, California. The closest airport for your in-laws to fly into is San Jose, the second closest is
San Francisco, and the third Oakland. (We'll ignore other factors such as price of the ticket, Bay Area traffic, etc.) Don't
see the parallel? Then picture it like this:

los-gatos.ca.us. IN MX 1 san-jose.ca.us.
los-gatos.ca.us. IN MX 2 san-francisco.ca.us.
los-gatos.ca.us. IN MX 3 oakland.ca.us.

The MX list is just an ordered list of destinations that tells mailers (your in-laws) where to send messages (fly) if they
want to reach a given email destination (your house). The preference value tells them how desirable it is to use that
destination—you can think of it as a logical "distance" from the eventual destination (in any units you choose), or simply
as a "top ten"-style ranking of the proximity of those mail exchangers to the final destination.

With this list, you're saying, "Try to fly into San Jose, and if you can't get there, try San Francisco and Oakland, in that
order." It also says that if you reach San Francisco, you should take a commuter flight to San Jose. If you wind up in
Oakland, you should try to get a commuter to San Jose or at least to San Francisco.

What makes a good mail exchanger, then? The same qualities that make a good airport:

Size

You wouldn't want to fly into tiny Reid-Hillview Airport to get to Los Gatos because the airport's not equipped to
handle large planes or many people. (You'd probably be better off landing a big jet on Interstate 280 than at
Reid-Hillview.) Likewise, you don't want to use an emaciated, underpowered host as a mail exchanger; it won't
be able to handle the load.

Uptime

You know better than to fly through Denver International Airport in the winter, right? Then you should know
better than to use a host that's rarely up or available as a mail exchanger.

Connectivity

If your relatives are flying in from far away, you've got to make sure they can get a direct flight to at least one
of the airports in the list you give them. You can't tell them their only choices are San Jose and Oakland if
they're flying in from Helsinki. Similarly, you've got to make sure that at least one of your hosts' mail
exchangers is reachable to anyone who might conceivably send you mail.

Management and administration

How well an airport is managed has a bearing on your safety while flying into or just through the airport and on
how easy it is to use. Think of these factors when choosing a mail exchanger. The privacy of your mail, the
speed of its delivery during normal operations, and how well your mail is treated when your hosts go down all
hinge upon the quality of the administrators who manage your mail exchangers.

Keep this example in mind because we'll refer to it again later.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 The MX Algorithm
That's the basic idea behind MX records and mail exchangers, but there are a few more wrinkles you should know
about. To avoid routing loops, mailers need to use a slightly more complicated algorithm than what we've described
when they determine where to send mail.[1]

[1] This algorithm is based on RFC 974, which describes how Internet mail routing works.

Imagine what would happen if mailers didn't check for routing loops. Let's say you send mail from your workstation to
nuts@oreilly.com, raving (or raging) about the quality of this book. Unfortunately, ora.oreilly.com is down at the
moment. No problem! Recall oreilly.com's MX records:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Your mailer falls back and sends your message to ruby.oreilly.com, which is up. ruby.oreilly.com's mailer then tries to
forward the mail on to ora.reilly.com but can't because ora.oreilly.com is down. Now what? Unless ruby.oreilly.com
checks the sanity of what she is doing, she'll try to forward the message to opal.oreilly.com or maybe even to herself.
That's certainly not going to help get the mail delivered. If ruby.oreilly.com sends the message to herself, we have a
mail routing loop. If ruby.oreilly.com sends the message to opal.oreilly.com, opal.oreilly.com will either send it back to
ruby.oreilly.com or send it to herself, and we again have a mail routing loop.

To prevent this from happening, mailers discard certain MX records before they decide where to send a message. A
mailer sorts the list of MX records by preference value and looks in the list for the canonical domain name of the host
on which it's running. If the local host appears as a mail exchanger, the mailer discards that MX record and all MX
records in which the preference value is equal or higher (that is, equally or less-preferred mail exchangers). That
prevents the mailer from sending messages to itself or to mailers "farther" from the eventual destination.

Let's think about this in the context of our airport analogy. This time, imagine you're an airline passenger (a message)
trying to get to Greeley, Colorado. You can't get a direct flight to Greeley, but you can fly to either Fort Collins or
Denver (the two next-highest mail exchangers). Since Fort Collins is closer to Greeley, you opt to fly to Fort Collins.

Now, once you've arrived in Fort Collins, there's no sense in flying to Denver, away from your destination (a lower-
preference mail exchanger). (And flying from Fort Collins to Fort Collins would be silly, too.) So the only acceptable
flight to get you to your destination is now a Fort Collins-Greeley flight. You eliminate flights to less-preferred
destinations to prevent frequent-flyer looping and wasteful travel time.

One caveat: most mailers will look only for their local host's canonical domain name in the list of MX records. They don't
check for aliases (domain names on the left side of CNAME records). Unless you always use canonical names in your MX
records, there's no guarantee that a mailer will be able to find itself in the MX list, and you'll run the risk of having your
mail loop.

If you do list a mail exchanger by an alias and it unwittingly tries to deliver mail to itself, most mailers will detect the
loop and bounce the mail with an error. Here's the error message from recent versions of sendmail:

554 MX list for movie.edu points back to relay.isp.com
554 <root@movie.edu> . . . Local configuration error

The moral: in an MX record, always use the mail exchanger's canonical name.

One more caveat: the hosts you list as mail exchangers must have address records. A mailer needs to find an address
for each mail exchanger you name or else it can't attempt delivery there.

To go back to our oreilly.com example, when ruby.oreilly.com received the message from your workstation, her mailer
would have checked the list of MX records:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Finding the local host's domain name in the list at preference value 10, ruby.oreilly.com's mailer would discard all the
records at preference value 10 or higher (the records in bold):

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

leaving only:

oreilly.com. IN MX 0 ora.oreilly.com.

Since ora.oreilly.com is down, ruby.oreilly.com would defer delivery until later and queue the message.

What happens if a mailer finds itself at the highest preference (lowest preference value) and has to discard the whole

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What happens if a mailer finds itself at the highest preference (lowest preference value) and has to discard the whole
MX list? Some mailers attempt delivery directly to the destination host's IP address as a last-ditch effort. In most
mailers, however, it's an error. It may indicate that DNS thinks the mailer should be processing (not just forwarding)
mail for the destination, but the mailer hasn't been configured to know that. Or it may indicate that the administrator
has ordered the MX records incorrectly by using the wrong preference values.

Say, for example, the folks who run acme.com add an MX record to direct mail addressed to acme.com to a mailer at
their Internet service provider:

acme.com. IN MX 10 mail.isp.net.

Most mailers need to be configured to identify their aliases and the names of other hosts for which they process mail.
Unless the mailer on mail.isp.net is configured to recognize email addressed to acme.com as local mail, it will assume
it's being asked to relay the mail and attempt to forward the mail to a mail exchanger closer to the final destination.[2]

When it looks up the MX records for acme.com, it will find itself as the most-preferred mail exchanger and will bounce
the mail back to the sender.

[2] Unless, of course, mail.isp.net's mailer is configured not to relay mail for unknown domains. In this case, it
would simply reject the mail.

You may have noticed that we tend to use multiples of 10 for our preference values. Ten is convenient because it allows
you to insert other MX records temporarily at intermediate values without changing the other weights, but otherwise
there's nothing magical about it. We could just as easily have used increments of 1 or 100—the effect would have been
the same.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.5 DNS and Exchange
If you're running Microsoft Exchange Server, you need to know how it interoperates with DNS, whether or not you're
using the Microsoft DNS Server. Here are some subtle differences between the various versions of Exchange that run on
Windows NT, Windows 2000, and Windows Server 2003:

If you're using Exchange 4.x or 5.x on Windows NT, you can run Exchange without DNS. However, before you
can install the Internet Mail Service (IMS, which is what Microsoft calls its SMTP server), you must have A and
MX records defined for the host and domain on which you're installing the IMS. You also need to make sure that
the Exchange server's DNS settings are set correctly so it can look up mail forwarders for outgoing mail.

If you're using the SMTP server that comes with the Windows NT Option Pack, Internet Information Server 4.x,
Windows 2000, or Windows Server 2003, you need an MX record if you want to receive mail; to send mail you
only need access to a name server.

If you're using Active Directory, you'll find that your need for DNS is pervasive: Active Directory depends on
DNS to find domain controllers, global catalog servers, and other services. We'll cover the DNS needs of Active
Directory in Chapter 8.

Exchange 2000 uses Active Directory as its directory service, so it is totally dependent on the underlying OS's
DNS setup. In particular, Exchange 2000 needs access to SRV records so it can find global catalog servers,
instant messaging hosts, and domain controllers. Don't worry—SRV records are also covered in Chapter 8.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Configuring Hosts
They were indeed a queer-looking party that assembled on the bank—the birds with draggled feathers,
the animals with their fur clinging close to them, and all dripping wet, cross, and uncomfortable.

Now that you or someone else in your organization has set up name servers for your zones, you'll want to configure the
hosts on your network to use them. That involves configuring those hosts' resolvers, which you can do by telling the
resolvers which name servers to query and which domain names to search. This chapter covers these topics and
focuses on the Windows 2000, Windows XP, and Windows Server 2003 resolvers (which are basically the same). It also
briefly describes configuring the resolver in Windows 95, Windows 98, and Windows NT.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 The Resolver
We introduced resolvers way back in Chapter 2, but we didn't say much more about them. The resolver, you'll
remember, is the client half of the Domain Name System. It's responsible for translating a program's request for host
information into a query to a name server and for translating the response into an answer for the program.

We haven't done any resolver configuration yet because the occasion for it hasn't arisen. When we set up our name
servers in Chapter 4, the resolver's default behavior worked just fine for our purposes. But if we'd needed the resolver
to do more than or behave differently from the default, we would have had to configure the resolver.

There's one thing we should mention up front: what we describe in the next few sections is the behavior of the
Windows 2000, Windows XP, and Windows Server 2003 resolvers. There are lots of other resolvers, though. Every
version of Windows has its own resolver, and the configuration and behavior of each one is slightly different.[1] Unix
hosts normally use some variant of the BIND resolver, discussed in O'Reilly's DNS and BIND, and many Unix vendors
have extended their resolvers' functionality. Still, the basic concepts behind the operation of each resolver are quite
common.

[1] Installing a Service Pack can also change resolver behavior.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Resolver Configuration
So, what exactly does the resolver allow you to configure? Most resolvers let you configure at least three aspects of
their behavior: the DNS suffix,[2] the search list, and the name server(s) that the resolver queries.

[2] We're using the Windows term here for clarity. You may know the DNS suffix as the default domain if you've
configured the BIND resolver before.

6.2.1 DNS Suffix

The DNS suffix is the DNS domain in which a system resides. Under certain circumstances, the resolver uses the DNS
suffix to generate the search list (which we discuss next). Don't confuse the DNS suffix, which is obviously a DNS
domain name, with the name of the Active Directory domain of which the system is a member. The two values are
usually the same because the DNS suffix defaults to a host's Active Directory domain, but they don't have to be. As
we'll see in a moment, you can configure a host's DNS suffix to be different from the Active Directory domain of which
it's a member. We're going to talk much more about domain names—both DNS and Active Directory—in Chapter 8. But
for now, it's not necessary to know anything more about Active Directory domains to understand resolver configuration.

All configuration options for the Windows NT 4.0 resolver were found in a single window. The Windows 2000, Windows
XP, and Windows Server 2003 resolvers' configuration settings, however, are located on three separate windows. The
first of these windows is where you change a host's DNS suffix. To get there in Windows 2000, open the Control
Panel, double-click on System, then click the Network Identification tab. In Windows XP, open the Control Panel,
click on Switch to Classic View, double-click System, and finally click the Computer Name tab. In Windows Server
2003, open the Control Panel and choose System, then click the tab labeled Computer Name. In any case, a
window very much like the one in Figure 6-1 appears. (This is the version from Windows Server 2003.)

Figure 6-1. Computer Name tab

Here you see the host's fully qualified domain name, which Windows refers to as the Full computer name. It's the
concatenation of the host's single-label computer name and its primary DNS suffix. The value listed as Domain is not
the DNS suffix; it's the host's Active Directory domain. To change the primary DNS suffix, click Change (Properties in
Windows 2000), and you'll see a window like the one shown in Figure 6-2.

Figure 6-2. Computer Name Changes window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. Computer Name Changes window

You can change the computer name—the first label of the host's name—only from this window. The Member of box
again refers to Active Directory domain membership, which, strictly speaking, doesn't affect resolver behavior. To
change the DNS suffix, click on More to display the window shown in Figure 6-3.

Figure 6-3. DNS Suffix window

Here—finally!—is where you can change the DNS suffix. This window also shows the only linkage between Active
Directory and DNS resolver behavior. A host's DNS suffix stays the same as its Active Directory domain as long as the
Change primary DNS suffix when domain membership changes box is checked, which is the default setting. By
unchecking this box and changing the Primary DNS suffix of this computer setting, you can decouple the DNS
default domain and Active Directory domain. You do this only if you want your hosts to reside in (that is, be named in)
a different domain than your Active Directory domain. Few organizations who set up Active Directory want to do this,
and Microsoft does not recommend setting the primary DNS suffix to any value other than the DNS name of an Active
Directory domain to which the computer is joined. But enough about Active Directory until Chapter 8.

The Windows 2000 and Windows Server 2003 resolvers also support a different DNS suffix for each network interface
on the system. In fact, each network interface (or adapter in Windows parlance) has its own resolver configuration.
Getting to the connection-specific resolver configuration windows is a little involved, though: in Windows Server 2003,
click on Start, then Control Panel, then Network Connections. This brings up the window shown in Figure 6-4.

Figure 6-4. Network Connections window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-4. Network Connections window

This particular host has one LAN network interface. Right-click on the local area network adapter and choose
Properties. This brings up a window like the one shown in Figure 6-5.

Figure 6-5. Local Area Connection Properties window

(If you know which network interface you want to configure, Windows Server 2003 lets you skip this last step by
choosing the name of the network adapter from the menu that cascades from the right of Network Connections.)

Double-click on Internet Protocol (TCP/IP). This displays the second of the three windows used for resolver
configuration, which is shown in Figure 6-6.

Figure 6-6. Internet Protocol (TCP/IP) Properties window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Further resolver configuration options are available by clicking the Advanced button and selecting the DNS tab, which
produces the third and final window with resolver settings; it's shown in Figure 6-7.

Figure 6-7. Advanced TCP/IP Settings window, DNS tab

The connection-specific DNS suffix is set in the field on the screen in Figure 6-7. Connection-specific DNS suffixes do
affect resolver behavior (as we'll talk about in the next section, which discusses the search list), but their primary
purpose is to assist with DNS registration. As we discuss in Chapter 8, hosts running Windows 2000, Windows XP, and
Windows Server 2003 automatically register their names in DNS. You'd specify a connection-specific suffix if your host
connects to multiple networks and needs a different fully qualified domain name on each network. For example,
perhaps one interface is connected to a network in which the host is named diehard.movie.edu and another interface is
connected to a network in which the host has a different fully qualified domain name, such as diehard.fx.movie.edu.

6.2.2 Search List

The primary DNS suffix and any connection-specific suffixes determine the default search list. The search list was
designed to make users' lives a little easier by saving them some typing. The idea is to search one or more domains for
incomplete names—that is, names that might not be fully qualified domain names.

Most Windows networking commands that take a domain name as an argument, such as ftp and ping, apply the search
list to those arguments.

With the Windows resolver, a user can indicate that a domain name is fully qualified by adding a trailing dot to it.[3] For
example, the trailing dot in the command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, the trailing dot in the command:

[3] Note that we said the resolver can handle a trailing dot. Some programs, particularly mail user agents, don't
deal correctly with a trailing dot in email addresses. They cough even before they hand the domain name in the
address to the resolver.

C:\> ftp ftp.oreilly.com.

means "don't bother searching any other domains; this domain name is fully qualified." This is analogous to the leading
backslash in full pathnames in the Windows filesystem. Pathnames without a leading backslash are interpreted as
relative to the current working directory while pathnames with a leading backslash are absolute, anchored at the root.

The default search list includes the primary DNS suffix and any connection-specific suffixes. If the Append parent
suffixes of the primary DNS suffix box is checked (see Figure 6-7), each of the primary DNS suffix's parent domains
with two or more labels is also included in the default search list. So on a Windows 2000, Windows XP, or Windows
Server 2003 host configured with a primary DNS suffix of cv.hp.com and the Append parent suffixes of the primary
DNS suffix box checked, the default search list would contain first cv.hp.com, the primary DNS suffix, then hp.com
(the primary DNS suffix's parent), but not com, as it has only one label.[4]

[4] One reason resolvers don't append just the top-level domain is that there are few hosts at the second level of
the Internet's namespace, so just tacking on com or edu to foo is unlikely to result in the domain name of a real
host. Also, looking up the address of foo.com or foo.edu might well require sending a query to a root name server,
which taxes the roots and can be time-consuming.

The search list is usually applied after the name is tried as-is. As long as the argument you type has at least one dot in
it, it's looked up exactly as you typed it before any element of the search list is appended. If that lookup fails, the
search list is applied.

Why is it better to try the argument first if it contains one or more dots? From experience, people who wrote resolvers
found that, more often than not, if a user bothered to type in a name with even a single dot in it, he was probably
typing in a fully qualified domain name without the trailing dot. Better to see right away whether the name was a fully
qualified domain name than to create nonsense domain names unnecessarily by appending the elements of the search
list to it.

Thus, a user typing:

C:\> telnet pronto.cv.hp.com

causes a lookup of pronto.cv.hp.com first since the name contains three dots, which is certainly more than one. If the
resolver doesn't find an address for pronto.cv.hp.com, it then tries pronto.cv.hp.com.cv.hp.com, and, if necessary,
pronto.cv.hp.com.hp.com.

A user typing:

C:\> telnet asap

on the same host causes the resolver to look up first asap.cv.hp.com and then asap.hp.com, if necessary, but not just
asap.

Note that application of the search list stops as soon as a prospective domain name finds the needed data. In the asap
example, the search list would never get around to appending hp.com if asap.cv.hp.com resolved to an address.

6.2.2.1 Setting the search list manually

What if you don't like the default search list you get when you set your local domain? Windows lets you set the search
list explicitly, domain name by domain name, in the order in which you want the domains searched. You do this with
the Append these DNS suffixes (in order) field on the main resolver configuration window (see Figure 6-8).

Figure 6-8. A search order example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add as many domain names as you like to this field,[5] in the order in which you want them appended, and this
becomes the host's search list. Setting the search list with Append these DNS suffixes (in order) overrides the
default search list.

[5] Or so it appears; we stopped after adding 10.

The user interface is simple to use: click Add to add a domain name to the list, select a domain name and click
Remove to remove it from the list or click Edit to change the domain name. You can also use the Up and Down arrow
buttons to reorder the list. The basic search algorithm still applies: the resolver looks up domain name arguments as-is
if they contain at least one dot.

The settings shown in Figure 6-8, for example, instruct the resolver to search the corp.hp.com domain first, then
paloalto.hp.com, then both domains' parent, hp.com.

This setup might be useful on a host whose users frequently access hosts in both corp.hp.com and paloalto.hp.com. On
the other hand, the configuration shown in Figure 6-9 has the resolver search only corp.hp.com (and not that domain's
parent, hp.com) when the search list is applied.

Figure 6-9. Another search order example

This might be useful if the host's users access hosts only in the local domain or if connectivity to the parent name
servers isn't good, because the configuration minimizes unnecessary queries to the parent name servers.

6.2.3 Name Servers to Query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This section discusses how to tell your resolver which name servers to query. By default, the resolver looks for a name
server running on the local host, which is why we could use nslookup on terminator and wormhole right after we
configured their name servers. You can, however, instruct the resolver to look to another host for name service. This
configuration is sometimes called a DNS client.

The DNS server addresses, in order of use field (see Figure 6-7) tells the resolver the IP addresses of the name
server(s) to query. What's potentially confusing is that the information in this field is linked to the Use the following
DNS server addresses field in the main TCP/IP properties window (see Figure 6-6). You can specify as many name
servers as you want[6] in the DNS server addresses, in order of use field. As with the list of DNS suffixes in Figure
6-8, the Add, Edit, and Remove buttons have the expected effect. You can also use the Up and Down arrows to
reorder the list of addresses. The first two addresses show up as the Preferred DNS server and Alternate DNS
server[7] on the main TCP/IP properties window. Likewise, changes made to the Preferred DNS server and
Alternate DNS server fields are reflected in this list.

[6] As with the DNS suffix list, we stopped after entering 10 values.

[7] Kudos to Microsoft for clarifying their labels. In previous versions of Windows, name servers were sometimes
labeled Primary DNS and Secondary DNS. This sometimes misled users into listing the primary master and
secondary name servers for some zone or another in those fields. Besides, "DNS" is an abbreviation for "Domain
Name System," not "domain name server."

The settings in Figure 6-7 instruct the resolver to send queries to the name servers running at IP addresses
192.249.249.3 and 192.249.249.1. Typically, you configure the resolvers on your hosts to query your own name
servers, but you can configure your resolver to query almost anyone's name server. Of course, configuring your host to
use someone else's name server without first asking permission is presumptuous, if not downright rude, and using one
of your own usually gives you better performance, so we'll consider this only an emergency option.

If you want the resolver to query the name server running on the local host, you have two choices: you can specify the
address of one of the host's adapters, or you can specify the loopback IP address of 127.0.0.1.

6.2.3.1 Query behavior

The way the Windows 2000, Windows XP, and Windows Server 2003 resolvers determine which of the name servers
you specify to query is significantly different than in other versions of Windows. Older versions of Windows send a query
to the first name server specified. If that name server doesn't respond—say it's down or there's a network problem—
the resolver tries subsequent name servers in the order configured, waiting a few seconds between each query. If it
queries all configured name servers without getting a response, it cycles through the list again—six more times on
some Windows resolvers! In the case of Windows NT 4.0 SP3, if three name servers are configured and none of them
are responding, the resolver tries for 75 seconds before finally giving up.

Microsoft's customers must have complained about this long resolver timeout, because things changed drastically with
the release of Service Pack 4 for Windows NT 4.0. The resolver retransmission algorithm became much more
aggressive. The Windows 2000, Windows XP, and Windows Server 2003 resolvers exhibit the same behavior.

Here's how these resolvers behave after applying the search list to determine the name to look up:

1. The resolver first checks its local cache, which is systemwide (and therefore shared by all applications calling
the resolver). If the desired record is not in the cache, the resolver has to send at least one query to a name
server.

2. The resolver queries the first name server of the preferred network adapter and waits just one second.

3. If no answer is received, the resolver resends the query simultaneously to the first name server configured for
each network adapter and waits two seconds. If the host has only one network adapter, this step is skipped.

4. If no answer is received, the resolver resends the query simultaneously to all name servers configured for all
adapters and waits two seconds.

5. If no answer is received, the resolver resends the query simultaneously to all name servers configured for all
adapters and waits four seconds.

6. If no answer is received, the resolver resends the query simultaneously to all name servers configured for all
adapters and waits eight seconds.

7. If after all this time no name server has returned an answer, the resolver gives up.

What does the resolver do after it gives up? It times out and returns an error to the calling application. Typically this
results in an error like:

C:\> ping tootsie
Bad IP address tootsie.

Adding up all the waiting time, you can see that the maximum timeout is much less than in older resolvers: 17 seconds
(1+2+2+4+8), as opposed to 75 seconds for Windows NT 4.0 SP3—quite a difference!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(1+2+2+4+8), as opposed to 75 seconds for Windows NT 4.0 SP3—quite a difference!

As soon as the resolver receives a positive answer during this process, it stops and returns that answer to the calling
application. A positive answer is a list of resource records answering the query. If the resolver receives a negative
answer (indicating that a domain name doesn't exist or that the particular type of record queried doesn't exist for a
domain name), it doesn't immediately halt and return that answer. Instead, it just removes from consideration all name
servers configured on the network adapter from which it received a negative answer for the duration of that query
round. Only if it receives a negative answer from a name server configured for each adapter does it return a negative
answer. If the resolver receives even a single positive answer from a name server, it returns that. The net effect of this
mechanism is that if the resolver is configured to query name servers on multiple adapters that have different "views"
of the namespace, the resolver sees the aggregate view.

The resolver also tracks the response time of individual name servers and shuffles the fastest-responding one to the top
of the list. In other words, it adaptively changes the order of the name servers you specify (although these changes are
not permanent, nor are they reflected in the resolver configuration windows). As you can see from the retransmission
algorithm, the first name server gets only two or three seconds to reply before the resolver begins blasting queries to
all configured name servers. By tracking how fast individual name servers respond and favoring the best performer, the
resolver tries to minimize simultaneous querying.

The newer resolvers add another twist: if no name servers from a particular adapter respond during a query round, all
name servers from that adapter are ignored—that is, not queried—for 30 seconds. This penalty-box treatment cuts
down on unnecessary retransmission: if a network connection appears to be dead, there's no sense trying its name
servers for every query.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Advanced Resolver Features
The Windows 2000, Windows XP, and Windows Server 2003 resolvers have some advanced features that are worth
describing here.

6.3.1 Caching

The Windows 2000, Windows XP, and Windows Server 2003 resolvers store every record they receive in a shared cache
available to all programs on the system. The Windows NT 4.0 resolver caches, but only on a per-process basis. For
example, if you have two different web browsers running (say, Internet Explorer and Netscape Navigator), each has its
own copy of the resolver with a separate cache. Windows 98, 95, and 3.1 resolvers don't do any caching.

The Windows 2000, Windows XP, and Windows Server 2003 resolvers obey the TTL (time to live) field on resource
records they cache, up to a maximum of 24 hours by default. So if a record specifies a TTL longer than that, the
resolver rounds down to 24 hours. This maximum TTL is configurable with a Registry setting:

MaxCacheTtl
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters
Data type: REG_DWORD
Default value: 86,400 seconds (= 24 hours)

(On Windows 2000, this Registry value is called MaxCacheEntryTtlLimit.)

The Windows 2000 and Windows Server 2003 resolvers also support negative caching. Windows Server 2003 caches
negative responses for fifteen minutes by default, while Windows 2000 caches them for only five. This negative caching
timeout is also configurable with a Registry setting:

MaxNegativeCacheTtl
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters
Data type: REG_DWORD
Default value: 900 seconds (= 15 minutes)

(On Windows 2000, this Registry value is called NegativeCacheTime.) To disable negative caching altogether, set this
value to zero.

To view the resolver's cache, use ipconfig /displaydns. To clear the cache, type ipconfig /flushdns. To disable caching on
Windows XP or Windows Server 2003, you can use the command:

C:\> net stop dnscache

However, this only lasts until the next reboot. To disable caching permanently, go to Services (in the Administrative
Tools program group) and set the DNS Client service's Startup type to Disabled.

6.3.2 Subnet Prioritization

Subnet prioritization is analogous to the BIND resolver's address-sorting feature. When the resolver receives multiple
address records for the same domain name, it examines the IP address in each record and adjusts the order of the
records before returning the list to the calling application: any records with IP addresses on the same subnets as the
host on which the resolver is running are moved to the top of the list. Since most applications use addresses in the
order returned by the resolver, this behavior causes traffic to remain on local networks.

For example, Movie University has two mirrored web servers on two different subnets:

www.movie.edu. IN A 192.253.253.101
www.movie.edu. IN A 192.249.249.101

Let's say the resolver on terminator.movie.edu (192.249.249.3) sends a query and receives these records. It sorts the
record with address 192.249.249.101 to the top of the list because terminator shares a network with that address.

Note that this behavior defeats the round-robin feature implemented by most name servers. Round robin refers to the
name server behavior of rotating the order of multiple address records in successive responses to distribute the load
among the servers (again taking advantage of the behavior of most applications to use the first address in the list
returned by the resolver). With subnet prioritization enabled, the order of the records is subject to shuffling by the
resolver. You can disable subnet prioritization with a Registry setting:

PrioritizeRecordData
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters
Data type: REG_DWORD
Range: 0 - 1
Default value: 1 (Subnet prioritization enabled)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Other Windows Resolvers
Since you probably have hosts running other versions of Windows on your network, it's helpful to know how these
resolvers behave, too.

6.4.1 Windows 95

Windows 95 includes its own TCP/IP stack with a DNS resolver. In fact, Windows 95 actually includes two TCP/IP
stacks: one for TCP/IP over LANs and another for TCP/IP over dial-up connections. To get to the main DNS
configuration panel, go to the Control Panel, then select Network. Select TCP/IP, then click the Properties button.
This brings up a new dialog, which looks similar to the one in Figure 6-10. Choose the tab labeled DNS Configuration.

Figure 6-10. Resolver configuration under Windows 95

Configuration using this panel is fairly self-explanatory: first select Enable DNS to turn on DNS resolution, then fill in
the PC's hostname (in this case, the first label of its domain name) in the Host field and the local domain name
(everything after the first dot) in the Domain field. Add the IP addresses of up to three name servers you want to
query, in the order in which you want to query them, under DNS Server Search Order. Finally, fill in the domain
names in the search list under Domain Suffix Search Order in the order in which you want them appended. If you
leave out the Domain Suffix Search Order, the Windows 95 resolver derives one from the local domain name in the
same way a Windows 2000 resolver does: appending successive parent domains with at least two labels.

One interesting note about Windows 95: you can configure a different set of name servers for each dial-up connection
you might have to an ISP in the Dial-Up Networking (DUN) configuration. To configure DUN-specific resolver settings,
double-click on the My Computer icon on your desktop, then double-click on Dial-Up Networking, right-click on the
name of the connection whose resolver settings you'd like to configure, and select Properties. Select the Server
Types tab and click on TCP/IP Settings. You'll see the window shown in Figure 6-11.

Figure 6-11. DUN resolver configuration under Windows 95

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-11. DUN resolver configuration under Windows 95

If you leave the Server assigned name server addresses radio button checked, the resolver retrieves the name
servers it should query from the server you dial into. If you check Specify name server addresses and specify the
addresses of one or two name servers, Windows 95 tries to use those name servers when the DUN connection is active.

This is really useful if you use multiple ISPs and each has its own name servers. However, configuring name servers in
the TCP/IP Properties panel overrides the DUN-specific name servers. To use the DUN-specific name server feature,
you must leave the TCP/IP Properties panel blank except for enabling DNS and specifying the local hostname. This
limitation is due to a lack of integration between the dial-up and LAN TCP/IP stacks and is corrected in DUN 1.3. See
Knowledge Base article 191494 for details.

6.4.2 Windows 98

The resolver in Windows 98 is almost identical to Windows 95's resolver. (Graphically, in fact, it is identical, so we won't
show you any screenshots.) The major differences between the two resolvers are due to the fact that Windows 98 ships
with Winsock 2.0.[8] Winsock 2.0, for example, sorts responses as we described in the previous section on subnet
prioritization. For details, see Knowledge Base article 182644.

[8] The version of Winsock in Windows 95 can be upgraded to 2.0; see Knowledge Base article 182108.

Configuring DUN-specific name servers also works with Windows 98. The resolver queries the name servers listed in the
TCP/IP Properties panel and the DUN-specific name servers simultaneously and takes the first positive answer it
receives from either set. If the resolver receives only negative answers, it returns a negative answer.

6.4.3 Windows NT 4.0

In Windows NT, LAN resolver configuration is done from a single panel that looks remarkably similar to Windows 95's,
since NT 4.0 incorporated the Windows 95 "shell." In fact, other than the presence of the new Edit button and the
handy little arrows that allow you to reorder name servers and elements of the search list, there's really no semantic
difference between them, as shown in Figure 6-12.

Figure 6-12. Resolver configuration under Windows NT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-12. Resolver configuration under Windows NT

To get to the DNS Configuration panel, go to the Control Panel, click on Network, and select the Protocols tab.
Double-click on TCP/IP Protocol, then select the DNS tab.

Windows NT also allows users to configure resolver settings specific to particular dial-up networking connections. To
configure these, click on the My Computer icon, select Dial-Up Networking, pull down the top selection box, and
choose the name of the DUN connection whose resolver you'd like to configure. Then click on the More pull-down and
select Edit Entry then Modem Properties. Select the Server tab on the resulting window, and click on the TCP/IP
Settings button. You'll see the same window you'd see in Windows 95 (shown earlier).

If you leave the Server assigned name server addresses radio button checked, the resolver retrieves the name
servers it should query from the server you dial into. If you check Specify name server addresses and specify the
addresses of one or two name servers, Windows NT uses those name servers when the DUN connection is active. When
you drop the DUN connection, NT reverts to using the LAN resolver's settings.

The Windows NT 4.0 resolver caches name-to-address mappings on a per-process basis, according to the TTL on the
returned address records, as mentioned earlier.

Microsoft updated the resolver fairly extensively in Windows NT 4.0, Service Pack 4. The SP4 resolver supports subnet
prioritization. See Microsoft Knowledge Base article 196500 for details. The SP4 resolver also lets you turn off caching
in the resolver using a Registry value. For details, see Knowledge Base article 187709. The SP4 resolver uses the same,
more aggressive retransmission algorithm as the Windows 2000 resolver. See Knowledge Base article 198550 for more
information.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.5 Sample Resolver Configurations
Let's go over what some Windows Server 2003 resolver configurations look like on real hosts. Resolver configuration
needs vary depending on whether or not a host runs a local name server, so we'll cover both cases: hosts using remote
name servers and hosts running name servers locally.

6.5.1 Remote Name Server

We, as the administrators of movie.edu, have been asked to configure a professor's new workstation, which doesn't run
a name server. Deciding which domain the workstation belongs in is easy: there's only movie.edu to choose from.
However, the professor is working with researchers at Pixar on new shading algorithms, so perhaps it'd be wise to put
pixar.com in her workstation's list of DNS suffixes to append.

The new workstation is on the 192.249.249.0 network, so the closest name servers are wormhole.movie.edu
(192.249.249.1) and terminator.movie.edu (192.249.249.3). As a rule, you should configure hosts to first use the
closest name server available. (The closest possible name server is a name server on the local host; the next closest is
a name server on the same subnet or network.) In this case, both name servers are equally close, but we know that
wormhole is bigger (it's a faster host, with more capacity).

Since this particular professor is known to get awfully vocal when she has problems with her computer, we'll also add
terminator.movie.edu (192.249.249.3) as a backup name server. That way, if wormhole is down for any reason, the
professor's workstation can still get name service (assuming terminator and the rest of the network are up).

Figure 6-13 shows what her workstation's resolver configuration will look like.

Figure 6-13. Example resolver configuration

6.5.2 Local Name Server

Next, we have to configure the university mail hub, postmanrings2x, to use DNS. postmanrings2x is shared by all
groups in the movie.edu domain. We've recently configured a name server on the host to help cut down the load on the
other name servers, so we should make sure the resolver queries the name server on the local host first.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

other name servers, so we should make sure the resolver queries the name server on the local host first.

If we decide we need a backup name server—a prudent decision—we can add a name server to the DNS server
addresses, in order of use field. Whether or not we configure a backup name server depends largely on the reliability
of the local name server. A robust name server implementation will keep running for longer than some operating
systems, so there may be no need for a backup. If the local name server has a history of problems, though—say it
hangs occasionally and stops responding to queries—it's prudent to add a backup name server.

To add a backup name server, we just list the local name server first in the list of DNS suffixes to append and then list
one or two backup name servers. Since we'd rather be safe than sorry, we're going to add two backup name servers.
postmanrings2x is on the 192.249.249.0 network, too, so terminator and wormhole are the closest name servers to it
(besides its own). The final configuration is shown in Figure 6-14.

Figure 6-14. Another example resolver configuration

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Maintaining the Microsoft DNS Server
"Well, in our country," said Alice, still panting a little, "you'd generally get to somewhere else—if you
ran very fast for a long time as we've been doing."

"A slow sort of country!" said the Queen. "Now, here, you see, it takes all the running you can do, to
keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!"

This chapter discusses a number of related topics pertaining to name server maintenance. We'll talk about commands
you can (and can't) send to a running name server, modifying the zone datafiles, and keeping the root name server
cache file up to date. We'll also list common Event Log messages.

This chapter doesn't cover troubleshooting problems. Maintenance involves keeping your data current and watching
over your name servers as they operate. Troubleshooting involves putting out fires—those little DNS emergencies that
flare up periodically. Firefighting is covered in Chapter 15.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 What About Signals?
Those of you familiar with the BIND name server know that it's possible to signal a running name server to perform
certain tasks, such as rereading its configuration file or turning on debugging information. The Microsoft DNS Server
has no exact analog to a BIND name server's signals, but you can still make it perform certain tasks while running.
We'll go over the tasks possible using signals on a BIND name server and show how to accomplish the same thing (if
possible) with the Microsoft DNS Server:

Restart the name server

You can signal a BIND name server to reread its configuration file and zone datafiles. There's no comparable
Microsoft DNS Server command. If the server obtains its configuration information from the Registry (the
default mode), this command isn't necessary: as you make configuration changes with the DNS console, they
take effect immediately in the running name server. If the server is using a BIND-style boot file, you must stop
and restart the server after making a change to the boot file. For more information on the server "boot
method," see Appendix B.

Dump a copy of the name server's internal database to a file

A BIND server can dump its entire memory database of authoritative data, cached data, and root name server
"hints" to a file. There's no direct Microsoft DNS Server equivalent, but you can come close—all this information
is visible in the DNS console. To see authoritative data, just select the appropriate zone. By selecting the
Cached Lookups folder, you can see the contents of the name server's cache as well as the list of root name
servers it's using.[1]

[1] You can see the Cached Lookups folder only if the DNS console is showing the advanced view: select
View Advanced.

Dump name server statistics to a file

You can't dump the Microsoft DNS Server's usage statistics to a file, but you can view them from Performance
Monitor, a Microsoft Management Console snap-in. Statistics are covered in detail at the end of this chapter.

Start/stop writing debugging information to a file

The Microsoft DNS Server can log several different kinds of debugging-related information to a file. This
behavior is controlled from the Debug Logging tab of the server properties window, where you can select the
types of debugging information that should be logged.

Log all queries

As with a BIND server, you can also direct the Microsoft DNS Server to log individual queries processed. The
default options on the Debug Logging tab cause the server to record all queries received (and responses sent)
when debug logging is turned on.

The main thing you can do to a running Microsoft DNS Server is stop it and start it again. What happens when you stop
and start the server? Remember that the name server answers queries from its in-memory database. This database
includes three kinds of information: authoritative data (zones for which the server is a primary or secondary), cached
data (answers from other name servers), and root name server "hints" (the list of root name servers from the root
name server cache file, cache.dns). When you stop the name server, this data is lost.

When you restart the server, it reloads the authoritative data from the zone datafiles on its disk. Zones for which the
server is a primary are loaded and not read again for the lifetime of the server process. (Of course, you can make a
change to a primary zone with the DNS console and direct the server to write to the zone datafile with Action
Update Server Data Files, but the server reads the zone datafile only at startup.) Zones for which the server is a
secondary are also loaded from the zone datafiles. But for each zone, the server queries its master (usually the zone's
primary) for the SOA record to compare serial numbers. If the master's serial number is larger than the serial number
in the zone just loaded from disk, the server performs a zone transfer.

The server also reads cache.dns at startup. In Chapter 4, we described how root name server information is used not
directly, but as a "hint" to find the current list of root name servers: the server queries a root name server from
cache.dns for the current list of root name servers, and the results are the first records in the cache. Remember, the
cache is empty when the server starts up.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Logging
The Windows Server 2003 Microsoft DNS Server is much improved over its predecessors when it comes to logging and
debugging. Previous versions of the server were like a "black box" you couldn't see inside of. But now you can direct
the server to write several different kinds of helpful logging and debugging information while it's running.

To enable this feature, right-click on a server in the left pane of the DNS console, choose Properties, then select the
Debug Logging tab. The window looks like the one shown in Figure 7-1.

Figure 7-1. Server properties, Debug Logging tab

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Updating Zone Data
For nearly all changes to your zones, you'll use the DNS console. In Chapter 4 we described how to add a name server
to the DNS console, create zones, and create resource records. Deleting these objects is easy: just select the object by
left-clicking it, then press Delete (or select Action Delete). Modifying objects is also straightforward. Name
server names and zone names cannot be changed but must be deleted and added with the new name. For example, if
the name of a name server you're managing changes, you have to delete the name server within the DNS console and
replace it with the new name. The same thing goes if you change the name of a zone, say from movie.edu to
movie.net.

Changing resource record data is easy, too. Just double-click the record in the right pane (or select it with a single click
and choose Action Properties). You'll see the same window as when you added the record. Note that you can
change resource record data (also called RDATA) but not the name of the record (the owner). In other words, you can
change the right side of the record but not the left side (as viewed in the DNS console's righthand pane or in the zone
datafile). So you can change the IP address of terminator's A record, but you can't change terminator to terminator2. If
you need to change the owner, you'll have to delete the record and replace it with the new owner.

7.3.1 Adding and Deleting Resource Records by Hand

Most of the time, you really should use the DNS console to make changes to your zones. However, the DNS console
isn't suited for some tasks—sometimes you might want to edit the zone datafiles by hand. For example, adding,
deleting, or changing a lot of records at once is tough with the DNS console but easy with a little Perl code or a good
text editor. If you run a name server for long enough, you'll eventually want to make a change outside the DNS
console.

Editing by hand is a little complicated because you have to manually perform some steps that the DNS console does for
you automatically. The following list describes what to do:

1. Remember that all changes must be made on a zone's primary name server. This is the case whether you're
using the DNS console or editing by hand. If you make changes to the zone datafile on a secondary, the next
zone transfer from the primary will overwrite your work.

2. If you've made any changes using the DNS console since you started the name server (that usually means since
the last reboot), stop the name server. Here's why: when you change a zone with the DNS console, the change
takes effect in the primary name server's memory right away, but the zone datafile on disk is not updated
immediately. The name server sets an internal "update pending" flag to remind itself that that zone's datafile
needs updating. If you select Action Update Server Data Files, all the zone datafiles of changed zones
are updated and any flags are cleared. But if the server stops (whether it's halted by you or by a system reboot
—or for any other reason) and some zones have their update pending flags set, the server updates the
corresponding zone datafiles before terminating. So you can see what happens if you make a change by hand
but forget about a recent change made with the DNS console: when you stop and restart the server to put the
manual change into effect, the zone datafile gets updated, and your manual editing is lost.

3. Find the zone datafile of the zone you want to change. Recall from Chapter 4 that the zone datafiles are stored
in %SystemRoot%\system32\dns and the default naming convention is the name of the zone followed by the
.dns extension—for example, movie.edu.dns.

4. Bring up the zone datafile in your favorite text editor. Notepad is a good choice; Microsoft Word isn't. Whatever
you use, make sure you eventually save the file in plain text format. That's why we like Notepad—you can't
save a file as anything but plain text.

5. Increment the serial number in the SOA record at the top of the file. (See the next section for more information
on SOA serial numbers.) Since the SOA record is at the top of the file, it's a good idea to update it first so you
won't forget to do it later.

6. Make whatever changes you need to make. If you're adding a host, you might need MX records in addition to
the A record. For example, we added the following resource records to movie.edu.dns when we added the new
host cujo to our network:

cujo IN A 192.253.253.5
 IN MX 10 cujo
 IN MX 20 terminator

7. When you're done, don't forget to save the file!

8. Don't forget to add PTR records! If you're adding a host, you should add a PTR record to the appropriate in-
addr.arpa zone for each of its IP addresses. This step is easy to forget because the DNS console adds PTR
records for you automatically. And remember—if you change an in-addr.arpa zone, don't forget to increment
the serial number in its SOA record. Our new host cujo has only one IP address, 192.253.253.5, so we added
one PTR record to the 253.253.192.in-addr.arpa.dns file:

5 IN PTR cujo.movie.edu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5 IN PTR cujo.movie.edu.

Your changes won't take effect until you restart the primary name server: stop it, and then start it again. This is
another task handled by the DNS console. When you make changes with the DNS console, the changes take effect
immediately in the name server's memory and are written to disk later. Editing by hand reverses the process: you
make the changes first on disk and have to restart the name server to get the changes into its memory.

Secondary name servers load the new data after some length of time within the time interval defined in the SOA record
for refreshing their data. Sometimes your users won't want to wait for the secondaries to pick up the new data—they'll
want it available right away. Can you force a secondary to load the new information right away? If you've enabled zone
change notification, the secondaries will pick up the new data quickly because the primary notifies the secondary of
changes within 15 minutes of the change. (See Chapter 11 for more information on zone change notification.) If you
don't have notification set up, you should! But you can get the same effect the hard way by restarting the name server
on each of the secondaries. When the name server starts up, it does a serial number compare with its master for every
zone for which it's a secondary. If it discovers an out-of-date zone, it immediately performs a zone transfer.

To delete a host, remove all the resource records pertaining to it from the appropriate zone datafiles. Make sure you
remove the A record, any MX records, and the PTR record. Also be sure to increment the serial number in each zone
datafile you modify and restart your primary name server. (But, realistically, deleting hosts is best done with the DNS
console.)

7.3.2 SOA Serial Numbers

Every zone has a serial number. Every time the data in a file is changed, the zone's serial number must be
incremented. If the serial number is not incremented, secondary name servers for the zone will not pick up the updated
data. The change is simple. If the original datafile had the following SOA record:

@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 24 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

the updated datafile would have the following SOA record:

@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 25 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

(Recall from Chapter 4 that "@" expands to the current origin of the zone datafile, which is usually the name of the
zone. In this example, the "@" stands for movie.edu.) This simple change is the key to distributing the data to all of
your secondaries. Failing to increment the serial number is the most common mistake made when updating by hand.
The first few times you make a change manually, you'll remember to update the serial number because this process is
new and you are paying close attention. After modifying zone datafiles becomes second nature (we bet you can't wait
for that), you'll make some quick little change, forget to update the serial number . . . and none of the secondaries will
pick up the new data. Eternal vigilance is the price of modifying zone datafiles by hand.

There are several good ways to manage serial numbers, which are just integers. The obvious way is just to use a
counter: increment the serial number by one each time the file is modified. That's what the DNS console does. Every
time it updates a zone, it increments the zone's serial number. If you make changes with the DNS console, you're
locked into this method. If you modify the zone datafiles only by hand, you have other options, such as deriving the
serial number from the date. For example, you could use the eight-digit number formed by <year><month><day>.
Suppose today is March 5, 2004. In this form, your serial number would be 20040305. This scheme allows only one
update per day, though, and that may not be enough. Add another two digits to this number to indicate how many
times the file has been updated that day. The first number for March 5, 2004, would then be 2004030500. The next
modification that day would change the serial number to 2004030501. This scheme allows 100 updates per day.
Whatever scheme you choose (or are forced to go along with), the serial number must be less than or equal to
2,147,483,647.[2] And since you probably want to use the DNS console at least some of the time, you may just want to
follow its numbering scheme.

[2] For the curious, that value is 231 - 1. Serial numbers are unsigned 32-bit integers, but for complicated historical
reasons, serial numbers in the bottom half of the space are equivalent to serial numbers in the top half. For more
information on serial numbers, see RFC 1982.

7.3.3 Additional Records

After you've been running a name server for a while, you may want to add data to your name server to help you
manage your domain. Have you ever been stumped when someone asked you where one of your hosts is? Maybe you
don't even remember what kind of host it is. Administrators have to manage larger and larger populations of hosts
these days, making it easy to lose track of this information. The name server can help you out. And if one of your hosts
is acting up and someone notices remotely, the name server can help them get in touch with you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is acting up and someone notices remotely, the name server can help them get in touch with you.

So far, we've covered records critical to everyday operation: SOA, NS, A, CNAME, MX, and PTR. Name servers need
these records to operate, and applications look up data of these types. Two other useful resource record types are TXT
(text) and RP (Responsible Person); these can be used to tell you the machine's location and who is responsible for it.
But DNS defines still more data types. For a list of the most useful resource records, see Appendix A.

7.3.3.1 General text information

TXT stands for TeXT. These records contain simply a list of strings. The Microsoft DNS Server supports one string of up
to 255 characters per TXT record. TXT records can be used for anything you want; a common use is to list a host's
location. Creating a TXT record is easy: just highlight the zone or domain in the DNS console's left pane and select
Action Other New Records. In the Resource Record Type window, choose Text (TXT), select Create
Record, and fill in the fields as shown in Figure 7-2.

Figure 7-2. Creating a TXT record

The TXT record shown in Figure 7-2 looks like this in a zone datafile:

cujo IN TXT "Location: machine room dog house"

7.3.3.2 Responsible Person

Domain administrators will undoubtedly develop a love/hate relationship with the Responsible Person (RP) record. The
RP record can be attached to any domain name, internal or leaf, and indicates who is responsible for that host or
domain. This enables you to locate the miscreant responsible for the host peppering you with DNS queries, for example.
But it also leads people to you when one of your hosts acts up.

The record takes two arguments as its record-specific data: an electronic mail address in domain name format and a
domain name, which points to additional data about the contact. The electronic mail address is in the same format the
SOA record uses: it substitutes a dot (.) for the at sign (@). The next argument is a domain name, which must have a
TXT record associated with it. The TXT record contains free-format information about the contact, such as a full name
and phone number. You can omit either field and specify the root (.) as a placeholder instead. For example, let's say
that the Movie U. Network Hotline is responsible for the host robocop. It also happens that the Movie U. hotline reads all
mail sent to root@movie.edu. You'd add the RP record shown in Figure 7-3 with Action Other New Records.

Figure 7-3. Creating an RP record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'd also add the TXT record shown in Figure 7-4 for hotline.movie.edu.

Figure 7-4. Creating an associated TXT record

Here's what these records would look like in a zone datafile:

robocop IN RP root.movie.edu. hotline.movie.edu.
hotline IN TXT "Movie U. Network Hotline, (415) 555-4111"

Note that a TXT record for root.movie.edu isn't necessary since it's only the domain name encoding of an electronic
mail address (i.e., root@movie.edu), not a real domain name.

7.3.4 Keeping cache.dns Current

As we explained in Chapter 4, the cache.dns file tells your server where the servers for the root zone are. We also
explained that, unlike a BIND name server (which never modifies the cache file), a Microsoft DNS Server updates
cache.dns with its current notion of the root name servers every time it exits.

The root name servers don't change very often, but they do change. A Microsoft DNS Server that starts with a proper
cache file should, in theory, always have the current list of root name servers in its cache file. A good practice and a
part of maintaining your name server is to check your cache.dns file a couple times a year. In Chapter 4, we told you to
get the current cache file by ftping to ftp.rs.internic.net. That's probably the best method to keep the file current.
Remember that you must stop the name server before updating cache.dns! If you don't, the cache file you install will be
overwritten the next time the server does stop.

You can use dig, a utility that works like nslookup, to retrieve the current list of roots just by running:

C:\> dig @a.root-servers.net . ns > cache.dns

See Chapter 12 for more details about using dig.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 Zone Datafile Controls
The datafiles for all name servers, whether Microsoft or BIND, can include two control entries: $ORIGIN and $INCLUDE.
$ORIGIN changes the origin, and $INCLUDE inserts a new file into the current file. These control entries are not
resource records; they facilitate the maintenance of DNS data. They were designed back in the "good old days" as a
shortcut for people who had to edit zone datafiles by hand. If you make changes to your zones with the DNS console
only, you won't encounter these controls: the Microsoft DNS Server doesn't use them in the zone datafiles it generates.
However, some day you might need to work with zone datafiles created by hand, so it's important that you understand
these controls.

7.4.1 Changing the Origin in a Datafile

The default origin for a DNS datafile is just the domain name of the zone. The origin is a domain name that is appended
automatically to all names not ending in a dot. This origin can be changed within the zone datafile using $ORIGIN,
which must be followed by a domain name. (Don't forget the trailing dot if you give the full domain name!) From that
point in the file on, the new origin will be appended to all names not ending in a dot.

If we didn't have the DNS console to make changes and had to edit files by hand, we'd run into times when $ORIGIN
would save us some work. For example, if your name server were responsible for a number of subdomains, you could
use the $ORIGIN entry to reset the origin and simplify the files. For example, from the movie.edu zone datafile:

$ORIGIN classics.movie.edu.
maltese IN A 192.253.253.100
casablanca IN A 192.253.253.101

$ORIGIN comedy.movie.edu.
mash IN A 192.253.253.200
twins IN A 192.253.253.201

We'll discuss creating subdomains in Chapter 10.

7.4.2 Including Other Datafiles

To continue our example of editing zone datafiles by hand: once you've subdivided your domain like this, you might find
it more convenient to keep the subdomain records in separate files. The $INCLUDE statement would let you do this:

$ORIGIN classics.movie.edu.
$INCLUDE classics.dns

$ORIGIN comedy.movie.edu.
$INCLUDE comedy.dns

To simplify the file even further, the new origin can be specified on the $INCLUDE line:

$INCLUDE classics.dns classics.movie.edu.
$INCLUDE comedy.dns comedy.movie.edu.

When you specify the origin on the $INCLUDE line, it applies only to the particular file that you're including. For
example, the comedy.movie.edu origin applies only to the names in comedy.dns. After comedy.dns has been included,
the origin returns to what it was before $INCLUDE, even if comedy.dns contained an $ORIGIN entry.

Remember that, strictly speaking, you don't need to know anything about these directives to create subdomains with
the DNS console, and the Microsoft DNS Server doesn't generate zone datafiles using these shortcuts. But you do need
to know about them to complete your knowledge of zone datafiles.

7.4.3 Keeping Everything Running Smoothly

A significant part of maintenance is being aware when something has gone wrong—before it becomes a real problem. If
you catch a problem early, chances are it'll be that much easier to fix. As the adage says, an ounce of prevention is
worth a pound of cure.

This isn't quite troubleshooting—we'll devote an entire chapter to troubleshooting (Chapter 15)—but you can think of it
as "pre-troubleshooting." Troubleshooting (the pound of cure) is what you have to do if you ignore maintenance, after
your problem has developed complications, when you need to identify the problem by its symptoms.

The next two sections deal with preventive maintenance: looking periodically at the Event Log and the name server
statistics to see whether any problems are developing. Consider this a name server's medical checkup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.4 Common Event Log Messages

The Microsoft DNS Server logs events to the System Log. To view the events, you can either use the Event Viewer
(which you start with Start Administrative Tools Event Viewer) or click on the Event Viewer folder for a
given server in the DNS console's left pane. The DNS server logs to a special category called, appropriately enough,
DNS Server. If you use the Event Viewer, make sure you're looking at the correct log messages by selecting DNS
Server in the left pane. To save space, when we describe an event we won't show a screenshot of the complete event.
Instead, we'll list just the description from the event detail. (Double-click an event to see its details.) We'll also list the
Event ID in parentheses after the text of the event.

When the server starts up (either at boot time or because you restarted it) and is ready to answer queries, you'll see
this event:

The DNS Server has started. (ID 2)

For a healthy server, you should see this event after booting. If you stop the server manually, you'll see this event:

The DNS Server has shutdown. (ID 3)

If a server is a secondary for a zone, it will notify you every time it performs a zone transfer:

A more recent version, version 2000120500 of zone movie.edu was found at DNS server
at 192.249.249.3. Zone transfer is in progress. (ID 6522)

The DNS server wrote version 2000120500 of zone movie.edu to file movie.edu.dns.
(ID 3150)

You'll also see that last message on the primary when you make a change to a zone through the DNS console and
select Action Update Server Data Files. After the server writes the updated file to disk, it logs that event.

If the primary is not authoritative for the zone—another error condition—you'll see this on the secondary:

Zone transfer request for secondary zone movie.edu refused by master server at 192.
249.249.3. Check the zone at the master server 192.249.249.3 to verify that zone
transfer is enabled to this server. To do so, use the DNS console, and select master
server 192.249.249.3 as the applicable server, then in secondary zone movie.edu
Properties, view the settings on the Zone Transfers tab. Based on the settings you
choose, make any configuration adjustments there (or possibly in the Name Servers
tab) so that a zone transfer can be made to this server. (ID 6525)

Unfortunately, if the name server simply can't reach the primary (e.g., if it has gone down), the DNS server never logs
an error.

On the other hand, a server that's a primary for a zone will notify you when a secondary does a zone transfer:

The DNS server successfully completed transfer of version 3 of zone movie.edu to DNS
server at 192.249.249.1. (ID 6001)

If you're missing the cache file, cache.dns, or a zone datafile, the server will log a flurry of messages. A missing or
empty cache file produces these events:

The DNS server could not open the file dns\cache.dns. Check that the file exists in the
%SystemRoot%\System32\Dns directory and that it contains valid data. The event data is
the error code. (ID 1000)

The DNS server could not find or open zone file dns\cache.dns. in the %SystemRoot%\
System32\Dns directory. Verify that the zone file is located in this directory and that
it contains valid data. (ID 1004)

The DNS server is not root authoritative and no root hints were specified in the cache.dns file.
Where the server is not a root server, this file must specify root hints in the form of at
 least one name server (NS) resource record, indicating a root DNS server and a corresponding
host (A) resource record for that root DNS server. Otherwise, the DNS server will be
unable to contact the root DNS server on startup and will be unable to answer queries for
names outside of its own authoritative zones. To correct this problem, use the DNS console
to update the server root hints. For more information, see the online Help. (ID 707)

The DNS server does not have a cache or other database entry for root name servers.
Either the root hints file, cache.dns, or Active Directory must have at least one name
server (NS) resource record, indicating a root DNS server and a corresponding host (A)
resource record for that root DNS server. Otherwise, the DNS server will be unable to
contact the root DNS server on startup and will be unable to answer queries for names
outside of its own authoritative zones. To correct this problem, use the DNS console to
update the server root hints. For more information, see the online Help. (ID 706)

The somewhat cryptic message "The event data is the error code" makes more sense when viewing the message in
Event Viewer. This message means there's a specific error code listed in the Data field at the bottom of the Event
Properties window for this event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties window for this event.

A missing zone datafile, say movie.edu.dns, generates these events:

The DNS server could not open the file dns\movie.edu.dns. Check that the file exists in the
%SystemRoot%\System32\Dns directory and that it contains valid data. The event data is the
error code. (ID 1000)

The DNS server could not find or open zone file dns\movie.edu.dns. in the %SystemRoot%\
System32\Dns directory. Verify that the zone file is located in this directory and that
it contains valid data. (ID 1004)

The server also logs a syntax error in a zone datafile. If you always make changes to your zones using the DNS
console, you shouldn't see syntax errors. Editing by hand can get you into trouble, though. Here's what happens when
the server encounters a syntax error (the exact error messages will vary based on the kind of syntax error):

The DNS server could not parse an unexpected token "terminator.movie.edu." in zone file
movie.edu.dns at line 24. Although the DNS server continues to load, ignoring this token,
it is recommended that you either correct the token or remove the resource record from
the zone file, which is located in the %SystemRoot%\System32\Dns directory. (ID 1504)

The DNS server is ignoring an invalid resource record in zone file movie.edu.dns at line 24.
See the previously logged event for a description of the error.
Although the DNS server continues to load, ignoring this RR, it is recommended that you
investigate the error associated with this record and either correct it or remove it from
the zone file. (ID 1508)

For a list of most of the events logged by the Microsoft DNS Server, see article 259302 in the Microsoft Knowledge
Base. This article lists events for the Windows 2000 version of the DNS Server since a Windows 2003 list was not
available when this book went to press. However, in our experience, many of the events are identical between the
Windows 2000 and Windows Server 2003 versions of the DNS Server.

7.4.5 Understanding Name Server Statistics

You should periodically look over the statistics on some of your name servers. Name server statistics are viewed with
the System Monitor. To start it, select Start Administrative Tools Performance. Make sure System
Monitor is selected in the left pane, right-click in the right pane, and select Add Counters. Select DNS in the
Performance object pull-down list. You'll see a list of all the server parameters that you can monitor in real time. A
brief explanation of each parameter is available in the Windows online help system document entitled "Monitoring DNS
server performance." To view this document, choose Start Help and type Monitoring DNS Server Performance in
the search box and press Enter. Click the help topic button in the left pane and click on the document link when it
appears.

Selecting all parameters is not useful—it produces too much information. To get an idea of the amount of memory being
used by the server, choose Caching Memory and Database Node Memory. To see how busy the server is—that is,
how many queries it is handling—look at Total Query Received/sec and Total Response Sent/sec. To select
several parameters, hold down the Ctrl key while single-clicking. When you've selected all the ones you want, choose
Add, then Close. Note that you have to save this list if you want to avoid selecting the list of parameters again. Select
File Save As to produce a .msc file that you can use for subsequent monitoring sessions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.5 Aging and Scavenging
Now let's shift gears a bit and discuss one other aspect of maintenance that may be applicable to some of your servers.
If you have any zones with dynamic update enabled, they are prone to stale records. (See Chapter 11 for a description
of dynamic update.) Stale records are A or PTR records that were dynamically added but were not properly removed
when no longer necessary. Most DHCP clients—including Windows clients—don't release their addresses on shutdown,
which means they don't send the corresponding dynamic update message to remove their A records (nor does the
DHCP server send a dynamic update message to remove the PTR record). Imagine a transient host, such as a laptop,
that receives but never releases an address, leaving A and PTR records in DNS. Microsoft refers to these records as
stale, and the DNS server in Windows Server 2003 can track their age and remove, or scavenge, them when they are
no longer necessary.

The DNS server knows a record is not stale when it receives a dynamic update request for it. A Windows 2000 or
Windows XP host sends a dynamic update message for its A record (and PTR record, if configured with a static address)
every 24 hours by default. These same Windows hosts also send dynamic updates on lease renewal. An update of an
existing record is called a refresh. (Before sending the update to make any changes, clients actually probe for a record's
existence by sending a dynamic update message with only a prerequisite section. The DNS server counts such a
message as a refresh, too.) A refresh is the signal to the server that a particular client is still alive and using its records.

The idea behind aging and scavenging is to remove records that haven't been refreshed within a certain interval. The
primary master server stores a timestamp for each resource record in zones with aging and scavenging enabled. Every
time a record is created, modified, or refreshed, the server updates the timestamp with the current time. If the primary
master is Active Directory-integrated, it replicates these timestamps to the other servers (since all primary masters
may need to perform aging and scavenging). A large number of dynamic updates means a large number of refresh
events and corresponding timestamp updates, which means a lot of replication traffic if the zone is Active Directory-
integrated.

To reduce the replication burden of this algorithm, Microsoft introduced the concept of a "no-refresh" interval. After a
record is refreshed and its timestamp is updated, the server will not process additional refresh events (nor update the
record's timestamp) for the length of the no-refresh interval. Note that each record has its own refresh or no-refresh
timer ticking away. The record can still be changed, though, which does cause its timestamp to be updated. Remember,
a refresh is just a dynamic update that doesn't cause any changes[3] because the records specified in the update are
already present in the zone. The no-refresh interval is like a cooling-off period that cuts down on replication: since
refresh events aren't recorded during this interval, a record's timestamp isn't updated and therefore doesn't have to be
replicated.

[3] Or the prerequisite check we described.

The DNS server's default refresh and no-refresh interval are both seven days. Aging and scavenging is enabled on a
zone-by-zone basis. At a configurable interval, the server makes a scavenging pass to remove any stale records in
zones enabled for aging and scavenging. Stale records have a timestamp older than the current time minus the no-
refresh interval minus the refresh interval. Figure 7-5 shows the phases of a record from creation through refreshing to
scavenging. Since this record was never refreshed, it's eligible for scavenging. Figure 7-6 corresponds to another record
from a live client that is sending periodic dynamic updates to keep its A record refreshed. This record won't be
scavenged.

Figure 7-5. Nonrefreshed record

Figure 7-6. Periodically refreshed record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-6. Periodically refreshed record

7.5.1 Configuring Aging and Scavenging

Aging and scavenging is disabled by default since its improper use is dangerous. If you set the refresh and no-refresh
intervals too low, records that aren't stale can be inadvertently removed. A global setting controls aging and scavenging
for the entire DNS server. It's located on the Advanced tab of the server properties window, which is shown in Figure
7-7. The Scavenging period setting controls how often the server makes a scavenging pass through all authoritative
zones.

Figure 7-7. Enabling aging and scavenging for an entire server

Once aging and scavenging has been enabled on a given server, you must still enable it for a particular zone. From the
General tab of a zone's properties window, click the Aging button to produce a window like the one shown in Figure 7-
8. Click Scavenge stale resource records to enable aging and scavenging for this zone. The refresh and no-refresh
intervals are set on a per-zone basis.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

intervals are set on a per-zone basis.

Figure 7-8. Enabling aging and scavenging for a particular zone

In addition, a DNS server may be configured to apply the zone's values to all the existing and future zones.

7.5.2 When Scavenging Occurs

The server stores a parameter called StartScavenging for each primary zone, which is the time after which the zone is
eligible for scavenging. A DNS server performs a zone-scavenging pass only if the current time is greater than
StartScavenging. (In addition, scavenging must be enabled for the server and the zone, and dynamic update must be
enabled for the zone.) The StartScavenging parameter is set to the current time plus the refresh interval of the zone
when the following events happen:

When scavenging is enabled for the zone

When dynamic update is enabled for the zone

When the zone is loaded

When the zone is resumed

7.5.3 Other Notes on Aging and Scavenging

Static records (i.e., those added with the DNS console) are considered "permanent." They have a creation/refresh
timestamp of zero and are ignored during a scavenging pass.

The DNS server needs to retain each record's creation/refresh timestamp across server restarts, which means writing
this information to disk. For Active Directory-integrated zones, this information goes in—surprise!—Active Directory. For
standard zones, the server has to store the information in the zone datafile. Thus, for standard zones with aging and
scavenging enabled, the zone datafile format includes an extra field that is compatible only with name servers running
on Windows 2000 or Windows Server 2003. An outbound zone transfer of a zone with aging and scavenging enabled is
not affected, so you can still have other name servers as secondaries. But if aging and scavenging is enabled for a
zone, you can't take the actual zone file from a Windows Server 2003 name server and load it on, say, a BIND name
server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Integrating with Active Directory
"The face is what one goes by, generally," Alice remarked in a thoughtful tone.

With the release of Windows 2000, Microsoft replaced the Windows NT Security Account Manager (SAM) with Active
Directory (AD), which serves as the repository for information about users, groups, computers, and other network
resources. In contrast to the SAM, Active Directory is built on several well-known standards including the Lightweight
Directory Access Protocol (LDAP) for accessing and manipulating data, Kerberos for authentication, and—you guessed it
—DNS for name resolution.

In fact, using DNS for name resolution is one of the major improvements of Active Directory over Windows NT, which
relied on the Windows Internet Naming Service (WINS). Microsoft made the decision to develop WINS in the early days
of Windows NT because, at the time, DNS did not support dynamic update capability, which Microsoft needed for its
clients. As a result, many companies had to implement both services: DNS for standard Internet-based name resolution
and WINS for the Windows NT environment. This often pitted the NT administrators against the DNS administrators
because of the need to maintain two separate namespaces. Over time, dynamic update support was added to DNS, and
WINS failed to garner industry support—in no small part because it was a proprietary Microsoft offering.

Even with the opportunity to get rid of WINS, migrating to Active Directory hasn't always resulted in a harmonious
union between AD and DNS administrators. While Windows NT had virtually no DNS requirement, Active Directory is at
the opposite extreme. It is completely dependent on DNS. If DNS becomes unavailable, clients may fail to authenticate
or log in to Active Directory, and domain controllers will not be able to replicate changes throughout the forest. This
highly visible dependency on DNS requires that the AD and DNS administrators work closely together (assuming they
are in separate groups) and agree on implementation details, which can sometimes be a challenge. It is not uncommon
for DNS administrators to be reluctant to delegate part of the namespace for Active Directory, and AD administrators
are often hesitant to entrust a critical component to another group and forgo the advantages of AD-integrated DNS.

This chapter explores many of the key DNS-related issues you need to be aware of when implementing and supporting
Active Directory. We cover how Active Directory uses DNS for service advertisement and domain controller location;
and, conversely, how Active Directory can be used to enhance DNS by providing robust replication and security for zone
data. We do not—in fact, cannot in a single chapter—cover the numerous other Active Directory components. For more
information on designing, implementing, and automating Active Directory, see Active Directory, Second Edition
(O'Reilly) by our own Robbie Allen. For examples on how to perform common Active Directory administrative tasks, see
Active Directory Cookbook (O'Reilly), also by Robbie.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Active Directory Domains
One of the first issues you have to consider when implementing an Active Directory infrastructure is how many domains
you need and what to name them. Active Directory domain names are DNS domain names, but—and this is important—
not every DNS domain name is an Active Directory domain name.[1] So while an organization's Active Directory
namespace resembles its DNS namespace, the two don't have to be identical.

[1] And every square is a rectangle, but not all rectangles are squares. All registered mail is certified, but not all
certified mail is registered. You get the idea.

The number of domains you create in your forest is largely dependent on your administrative and replication
requirements. A domain is mastered by one or more domain controllers, which are servers that have writeable copies of
the data (about users, groups, computers, etc.) contained in the domain. Unfortunately, Active Directory is not like
DNS, where a single name server can be authoritative for multiple zones. A domain controller can be authoritative only
for a single Active Directory domain. To create a new Active Directory domain, you have to install a new domain
controller—your existing domain controllers cannot be used. However, Active Directory uses a multimaster replication
system, unlike DNS, and consequently any domain controller can process updates and replicate the changes to the
other domain controllers in the domain.

8.1.1 Domains, Domain Trees, and Forests

Domain trees and forests are two important Active Directory concepts. A domain tree is simply a collection of one or
more domains that share a common namespace. The fx.movie.edu and movie.edu domains would be considered part of
the movie.edu domain tree; however, the example.com domain, if created after movie.edu, would be in a separate
domain tree called example.com. If the domain you create does not contain the full name of the parent domain or
forest root domain, it is considered part of a separate domain tree.

A forest is a collection of one or more domain trees. The domains in the movie.edu domain tree and the example.com
domain tree could be part of the same forest. A domain tree is based on a common namespace, but a forest is not.

A forest is named after the first domain created in the forest. If movie.edu was the first domain we created, the forest
is automatically named movie.edu. We can then create additional domains for fx.movie.edu and example.com all
belonging to the movie.edu forest. Another option is to create the example.com domain in its own forest, which has
certain implications for user access.

All domains within a forest, regardless of which domain tree they are part of, are trusted by each other from an
authentication and authorization perspective. For this reason, the forest is considered the primary security boundary in
Active Directory. By making the example.com domain part of the movie.edu forest, users in example.com, by default,
have read access to much of the information in the movie.edu domains, and vice versa. Also, users in example.com can
have control delegated to them over objects in the movie.edu domains and vice versa. If example.com is created in a
separate forest, the users in that domain do not have access to the movie.edu forest, and they cannot have access
delegated to it (unless a special cross-forest trust is created between the two forests).[2]

[2] Windows Server 2003 supports a new trust type called forest trust, which allows you to have a single transitive
trust that spans two forests. If you want to understand more about how trusts work, get Active Directory (O'Reilly).

8.1.2 Domain Models

Two Active Directory domain models are commonly used. Your choice of domain model is important because it dictates
DNS requirements, as we discuss later. One model consists of an empty root domain with geographic or organizational
subdomains. We recommend that you do not create organizational-based subdomains if you can help it since they are
very likely to change at some point.[3]

[3] Fortunately, a new feature of Windows Server 2003 allows you to rename domains, but the process is arduous.
For more information on renaming domains, see
http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx.

Some of the benefits of the multidomain model include the ability to delegate administration for management of
portions of a forest, greater control over how data is replicated within the forest, and decreased exposure to problems
that can impact a single domain. For example, if an application went out of control and mistakenly started creating tons
of objects in a domain, at some point the hard disk on the domain controllers in that domain would fill up. The domain
would then enter an unstable and possibly unusable state. However, the domain controllers in other domains would
continue to function without much impact. This example is admittedly contrived, but it shows you the benefits of
autonomy in the multidomain model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

autonomy in the multidomain model.

The downsides of this model include the increased support costs of setting up additional domain controllers—remember
that each domain must have its own set of domain controllers—and additional domain configuration (configuring
security, group policy objects, organizational units, etc.). Also, finding data in a multidomain forest is not always easy.
Since data can be spread across several domains, you have to query the global catalog to perform forestwide searches.
The global catalog contains a read-only copy of the objects in all domains in the forest. The drawback to the global
catalog is that it contains only a subset of the attributes of objects. If the global catalog doesn't contain the attribute
you want, you have to perform an additional query against the domain the object resides in after you've queried the
global catalog.

The other common domain model is simply a single domain. Over time, many organizations have come to recognize the
increased support costs associated with supporting additional domains and have found that their initial reasons for
needing multiple domains may no longer be valid. With a single domain, you typically need fewer domain controllers,
which results in decreased costs. Also, the global catalog does not play as big a role because you do not need to search
across multiple domains.

The downside to the single domain model is decreased flexibility in replicating data. Since all of your objects are in a
single domain, wherever you need to deploy a domain controller, you have to replicate all of the objects in the domain
to it. This type of model does not lend itself well to branch office deployments where you have a lot of domain
controllers, many of which may have slow WAN connections.

There are variations to these models, but this should give you the general idea. A good rule of thumb is the fewer
domains the better. And if you can get by with a single domain, that's great.

8.1.3 Three Options for the Root Domain Name

Once you've decided on a domain model, you need to choose a name for your root domain, also known as the forest
root domain. The root domain name is very important because it determines which name servers can be authoritative
for the corresponding DNS namespace. You have three basic options for naming your root domain: use the same name
as an existing DNS domain, create a new subdomain from an existing domain, or use a name that doesn't correspond
to any of your DNS domains (i.e., a disjoint or private namespace). Each option has minor advantages and
disadvantages based on your environment, but, as with most naming convention discussions, the decision is largely
subjective.

8.1.3.1 Same name as an existing DNS domain

Consider Movie University. The apex (or top) of Movie U.'s DNS namespace is movie.edu, with subdomains named
fx.movie.edu, classics.movie.edu, and comedies.movie.edu. This namespace is represented in Figure 8-1.

Figure 8-1. Movie University's namespace

We could root Active Directory's namespace at the root of Movie U's DNS namespace. That would result in movie.edu
being the forest root domain. If we decide that the special effects lab needs a dedicated Active Directory domain, we
can create the fx.movie.edu domain as a child domain in the movie.edu forest. Everyone else at Movie U. can be part of
the movie.edu Active Directory domain, even though individual hosts may fall into different DNS domains. If we did
nothing more, the resource records needed by Active Directory would be added to the movie.edu and fx.movie.edu
zones.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zones.

If your authoritative name servers are not domain controllers and you want to use AD-integrated zones (more on this
later), or you want some other name servers to be authoritative for the zone that contains the Active Directory
resource records, you have to create delegations. All of the required Active Directory-specific resource records are
stored in subdomains of the DNS domain whose name corresponds to the AD domain. These subdomains are named
_msdcs (e.g., _msdcs.movie.edu), _tcp, _udp, _sites, and DomainDNSZones. The forest root domain will also have a
ForestDNSZones subdomain.[4] To delegate the Active Directory DNS responsibilities when the Active Directory
domains are named after an existing DNS domain, you need to delegate those subdomains. In turn, those subdomains
become zones on the delegated servers.

[4] The DomainDNSZones and ForestDNSZones domains are new in Windows Server 2003. They are used to
support application partitions, described later in this chapter.

8.1.3.2 Subdomain of an existing DNS domain

Now let's say that Movie U. wanted to completely separate its AD namespace from its DNS namespace. Another
common approach is to create a subdomain of an existing domain, such as the top-level domain for the organization.
For example, we could name the forest root domain ad.movie.edu or corp.movie.edu. If we still needed to create a
subdomain for the special effects lab, it could be named fx.ad.movie.edu.

This model is the easiest to implement if you want to delegate responsibility for the Active Directory-critical zones to
name servers other than the main set of authoritative name servers for your organization. Instead of delegating
subdomains as in the previous model, you need to delegate only the zone with the same name as the forest root
domain (e.g., ad.movie.edu) from your main forward-mapping zone (e.g., movie.edu).

Microsoft recommends this option for most deployments and uses it for its own corporate
Active Directory deployment.

8.1.3.3 Disjoint or private name

The last major option for naming your forest root domain is not to base it on any of your top-level domain names and
use a disjoint or private name. The most common suffix that is used in this scenario is .local (e.g., movie.local). This
model is typically chosen by organizations that do not want their Active Directory DNS namespace to be public.

In nonproduction forests, we recommend following the guidelines in RFC 2606 and using .test or .example instead of
.local, which are suffixes reserved for testing purposes. If you need to create a lab or test environment that your
general community does not need to access, this is a good model to use. In fact, you can create a forest without
requiring any delegations at all from your main forward-mapping zone, assuming you have control over the resolver
configuration for the clients in the lab. To do this, you would need to create the movie.test forest, enable the DNS
server on one or more domain controllers in the domain, and make the movie.test zone AD-integrated.

In order for clients to resolve DNS names outside of the forest, you would need to point the resolvers on the domain
controllers to each other, and configure forwarders to forward unresolved requests to your organization's main
authoritative name servers. At that point, all you need to do is point the resolvers of the clients that are going to use
the movie.test forest to one of the domain controllers that are running the Microsoft DNS Server in movie.test. Now you
have a fully functional Active Directory forest that didn't require any delegations from your main forward-mapping zone.

Microsoft strongly discourages using a single-label domain name, such as movie, for your
forest root domain name. If you do, it requires additional configuration on your servers.
Microsoft's reasoning behind this is to limit the number of misconfigurations that result in
hammering the top-level root name servers with unnecessary DNS requests.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Storing Zones in Active Directory
One of Microsoft's innovative uses of Active Directory is for storing (and replicating) DNS zone data. A traditional name
server stores copies of the zones it supports in files on a local disk. In this model, you have a primary master name
server that replicates the zone data to secondary name servers. A secondary can process updates to a zone from its
master name server in two different ways. The original method supported by DNS is zone transfer, which allows
secondary name servers to request a full copy of a zone. A newer method, which is an improvement on the zone
transfer process, is incremental zone transfer. With incremental zone transfer, a secondary name server can request
just the updates to the zone that occurred since its last transfer.

Active Directory provides another method for replicating zone content, albeit only for name servers running on domain
controllers. You can make a zone AD-integrated, which means that instead of storing zone content in text files, it is
stored in the Active Directory database. This makes a lot of sense because you take advantage of Active Directory's
multimaster replication scheme, which means that any domain controller that is also a primary name server for the AD-
integrated zone can update it directly, like a primary name server. With AD-integrated zones, replication is handled
automatically, so you don't need to develop your own zone transfer replication topology.

One other note about Active Directory-integrated zones: strictly speaking, you don't have to make every domain
controller into a name server for a zone that's AD-integrated within that domain. Since all authoritative servers can be
configured to allow zone transfers, a server that loads a zone from Active Directory happily responds to allowed zone
transfer requests. So you could conceivably make only a zone's primary master name server AD-integrated and have
the secondaries continue to load from the primary, provided those secondaries are not domain controllers of the
domain. However, this defeats one of the purposes of Active Directory integration—letting Active Directory handle zone
replication. The other huge advantage of Active Directory integration is secure dynamic updates, which we'll cover in
detail shortly.

8.2.1 The Impact on Replication

While AD-integrated zones have many advantages, the one potential drawback is how zone data gets replicated in
Active Directory. Under Windows 2000, AD-integrated zones are stored in the System container in a domain. That
means that every domain controller in that domain replicates that zone data regardless of whether the domain
controller is a name server or not. For domain controllers that are not name servers, there is no benefit to replicating
the data, which results in needless replication traffic. This can be a serious issue for those that have large zones with
many domain controllers that are not name servers. Fortunately, a new feature in Windows Server 2003 called
application partitions provides a better alternative.

Another issue with Windows 2000 AD-integrated zones is that domain controllers in subdomains could not replicate the
forest root zone resource records through AD replication. You would have to configure the subdomain domain controller
as a secondary and enable zone transfer. The requirement to replicate forest root records is common in branch office
deployments where a certain amount of autonomy is needed due to potential network outages. Application partitions
also help with this requirement.

8.2.2 Using Application Partitions

Active Directory segregates data into one of three partitions: schema, configuration, or domain. Partitions are used to
organize and replicate data with a similar scope (i.e., forestwide or domainwide) among domain controllers.
Conceptually, partitions are similar to zones. Zones are also used to segregate and replicate data (using zone transfer)
among name servers.

In Windows Server 2003, Microsoft added a new type of partition called an application partition. Whereas the default
partitions have a predefined replication scope, application partitions can be configured to replicate with any domain
controller in a forest. Domain controllers that are configured to contain replicas of an application partition become the
only servers that replicate the data contained within the partition. Application partitions are not limited by domain
boundaries. You can configure domain controllers in completely different domains to replicate an application partition.
For these reasons, application partitions make a lot of sense for storing AD-integrated zones. You no longer have to
store zone data within the domain partition and replicate it to every domain controller in the domain, even if only a few
are name servers. With application partitions, you can configure Active Directory to replicate DNS data only between
the domain controllers running the DNS server in any domain of the forest. To help facilitate the transition from
domain-based storage of zones to application partitions, Microsoft provides a couple of default DNS application
partitions: one default DNS application partition for each domain in a forest and one for the forest itself. During the
installation of a new Windows Server 2003 Active Directory forest, these partitions are created automatically and AD-
integrated zones are stored there. If you upgrade from Windows 2000, the default DNS application partitions are still
created automatically, but existing AD-integrated zones are not moved into them. You have to do that manually.

You are not required to use the default DNS application partitions. You can create your own or continue to use the
System container in the domain partition, which is the only option under Windows 2000. The storage options are
summarized in Table 8-1.

Table 8-1. Storage options for AD-integrated zones

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-1. Storage options for AD-integrated zones
Location Replication scope

cn=System,DomainDN

Example:cn=System,dc=movie,dc=edu

All domain controllers in the domain, regardless of whether they are
a name server. This is the only storage method available under
Windows 2000.

dc=DomainDnsZones,DomainDN

Example:dc=DomainDnsZones,dc=fx,
dc=movie,dc=edu

Domain controllers in the domain that are name servers.

dc=ForestDnsZones,ForestDN

Example:dc=ForestDnsZones,dc=movie,dc=edu
Domain controllers in the forest that are name servers.

AppPartitionDN

Example:dc=DnsData,dc=movie,dc=edu

Domain controllers that have been configured to replicate the
custom application partition.

Application partitions are treated just like Active Directory domains by DNS. Each application partition has a
corresponding DNS domain, which contains records that are used to locate domain controllers that replicate the
partition. For the movie.edu forest root domain, the ForestDnsZones and DomainDnsZones default DNS application
partitions would translate into domaindnszones.movie.edu and forestdnszones.movie.edu DNS domains. For the
fx.movie.edu domain, there would be a domaindnszones.fx.movie.edu DNS domain.

8.2.3 Securing Dynamic Updates

Another huge advantage of storing zones in Active Directory is that you can enable secure dynamic updates. For zones
that are not AD-integrated, you have two options for dynamic updates: allow anyone to make dynamic updates or don't
allow dynamic updates at all. Allowing anyone has obvious drawbacks. A malicious client can easily hijack resource
records in this mode.

However, when a zone is AD-integrated, you have the option to select Secure only for the Dynamic Updates
configuration, found on the General tab for the zone properties in the DNS console. Figure 8-2 shows this window and
the three dynamic update options.

Figure 8-2. Dynamic update options

Microsoft uses access control lists (ACLs) on objects in Active Directory to secure zone data and provide secure dynamic
update capability. A Security tab is available in the DNS console for AD-integrated zones, which allows you to configure
whether a user, group, or computer can create and delete objects (i.e., resource records). By default, authenticated
computers in a forest can create new records in a zone, and only the client that created a record is allowed to modify it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 DNS as a Service Location Broker
By now you probably want to hear more about how Active Directory makes use of DNS. At the beginning of the chapter,
we dropped the little nugget that when DNS is not available, Active Directory clients may fail to log in. The reason for
this is that Active Directory clients use DNS as a service location broker, that is, to find the closest server that is
providing a certain Active Directory service. Prior to Active Directory, Windows clients used NetBIOS and WINS to find
domain controllers, but hosts running Windows 2000 and later use DNS.

Consider the case of a Windows XP Professional host at Movie U. that's been joined to the movie.edu Active Directory
domain. When this system boots up, it sends a series of DNS SRV record queries to its configured name server to find
the closest domain controller for the movie.edu domain.

8.3.1 The SRV Resource Record

Most of the DNS queries sent by Windows clients during the location process are for SRV (service location) records. The
SRV record, introduced in RFC 2052 and updated in RFC 2782, is a general mechanism for locating services. Before we
can talk in detail about exactly how a Windows client finds its domain controller using SRV records, we need to describe
the SRV record itself.

Locating a service or a particular type of server within a zone is a difficult problem if you don't know which host it runs
on. Some administrators have attempted to solve this problem by using service-specific aliases in their zones. For
example, at Movie U. we created the alias ftp.movie.edu and pointed it to the domain name of the host that runs our
FTP archive:

ftp.movie.edu. IN CNAME plan9.fx.movie.edu.

This makes it easy for people to guess a domain name for our FTP archive and separates the domain name people use
to access the archive from the domain name of the host on which it runs. If we were to move the archive to a different
host, we could simply change the CNAME record.

Another option, for clients that understand it, is the SRV record. In addition to simply allowing a client to locate the host
on which a particular service runs, SRV provides powerful features for load balancing and backup services, similar to
what the MX record provides.

A unique aspect of the SRV record is the format of the domain name to which it's attached. Like the service-specific
alias ftp.movie.edu, the domain name that a SRV record is attached to gives the name of the service sought along with
the protocol it runs over, concatenated with a domain name. The labels representing the service name and the protocol
begin with an underscore to distinguish them from labels in the domain name of a host. So, for example:

_ftp._tcp.movie.edu

represents the SRV records someone ftping to movie.edu should retrieve in order to find the movie.edu FTP servers,
while:

_http._tcp.www.movie.edu

represents the SRV records someone accessing the URL http://www.movie.edu should look up in order to find the
www.movie.edu web servers.

The names of the service and protocol must come from the latest Assigned Numbers RFC (the most recent as of this
writing is RFC 1700) or be unique names used only locally. Don't use the port or protocol numbers, just the names.
When entering SRV records through the DNS console, the service name is limited to eight common services.

The SRV record has four resource record-specific fields: priority, weight, port, and target. Priority, weight, and port are
unsigned 16-bit numbers (between 0 and 65,535). Target is a domain name.

Priority works similarly to the preference in an MX record: the lower the number in the priority field, the more desirable
the associated target. When searching for the hosts offering a given service, clients should try targets with the same
priority value before trying those with a higher value in the priority field (lower priority values indicate higher priority—
confusing, eh?).

Weight allows zone administrators to distribute load to multiple targets. Clients should query targets of the same
priority in proportion to their weight. For example, if one target has a priority of zero and a weight of one and another
target has a priority of zero but a weight of two, the second target should receive twice as much load (in queries,
connections, etc.) as the first. It's up to the service's clients to direct that load: they typically use a system call to
choose a random number. If the number is, say, in the top one-third of the range, they try the first target, and if the
number is in the bottom two-thirds of the range, they try the second target.

Port specifies the port on which the service being sought is running. This allows zone administrators to run servers on
nonstandard ports. For example, an administrator can use SRV records to point web browsers at a web server running
on port 8000 instead of the standard HTTP port (80).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on port 8000 instead of the standard HTTP port (80).

Finally, target specifies the hostname of a host on which the service is running (on the port specified in the port field).
Target must be the canonical name of the host (not an alias), with address records attached to it.

So, for the movie.edu FTP server, we might add two SRV records to the movie.edu zone. Adding the first with the DNS
console is shown in Figure 8-3.

Figure 8-3. Adding an SRV record with the DNS console

After adding the second record, the movie.edu zone datafile (movie.edu.dns) contains these records:

_ftp._tcp.movie.edu. IN SRV 1 0 21 plan9.fx.movie.edu.
 IN SRV 2 0 21 thing.fx.movie.edu.

This instructs SRV-capable FTP clients to try the FTP server on plan9.fx.movie.edu's port 21 first when accessing
movie.edu's FTP service and then to try the FTP server on thing.fx.movie.edu's port 21 if plan9.fx.movie.edu's FTP
server isn't available.

The records:

_http._tcp.www.movie.edu. IN SRV 0 2 80 www.movie.edu.
 IN SRV 0 1 80 www2.movie.edu.
 IN SRV 1 1 8000 postmanrings2x.movie.edu.

direct web queries for www.movie.edu (the web site) to port 80 on www.movie.edu (the host) and www2.movie.edu,
with www.movie.edu getting twice the queries www2.movie.edu does. If neither is available, queries go to
postmanrings2x.movie.edu on port 8000.

But don't get excited and add SRV records for your FTP and web servers: currently few clients actually use SRV records
to locate their servers. In fact, we're not aware of any FTP clients or web browsers that look up SRV records. On the
other hand, when Microsoft was looking for a way to have Windows-based clients find their domain controllers, SRV
records fit the bill perfectly.

8.3.2 DC Locator

One of the fundamental issues for clients in any networked environment is finding the optimal server to authenticate
against. The process under Windows NT was not very efficient and could cause clients to authenticate to domain
controllers in the least optimal location. With Active Directory, clients use DNS to locate domain controllers via the DC
locator process. To illustrate at a high level how the DC locator process works, here's an example where a client has
moved from one location to another and needs to find a domain controller (DC).

1. A client previously located in Site A logs in from Site B.

2. When the client boots up, it thinks it is still in Site A, so it proceeds to contact the DC it has cached locally in the
registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registry.

3. The DC in Site A receives the request and realizes that the client should now be talking to a DC in Site B, since
its IP address has changed. In its reply to the client, the DC in Site A refers the client to the DC in Site B.

4. The client then performs a DNS lookup to find a DC in Site B.

5. The client then contacts a DC in Site B. Three things can happen: the DC responds and authenticates the client;
the DC fails to respond (it could be down), so the client attempts to use a different DC in Site B; or the DC fails
to respond and the client fails to find another DC in Site B. In the last case, the client turns back to the DC in
Site A and authenticates with the first server it contacted.

Two things are needed to support the DC locator process: the site topology must be properly defined in Active
Directory, and DNS must contain the necessary Active Directory SRV records, which we describe in the next section. For
a more detailed description of how the DC locator process works, including the specific resource records that are used
during the process, check out Microsoft Knowledge Base articles 247811 and 314861.

8.3.3 Resource Records Used by Active Directory

When you promote a domain controller into a domain, the file %SystemRoot%\System32\Config\netlogon.dns is
generated. This file contains the necessary resource records for the DC to function correctly within Active Directory. The
NetLogon service keeps this file updated based on site membership, GC status, and site coverage.

The contents of the file looks like the following for a DC named terminator.movie.edu in the movie.edu domain with the
IP address 10.1.1.1. We've reordered the file a bit to group records of similar purpose together. Note that some lines
may wrap due to their length.

movie.edu. 600 IN A 10.1.1.1
ec4caf62-31b2-4773-bcce-7b1e31c04d25._msdcs.movie.edu. 600 IN CNAME↵
terminator.movie.edu.
gc._msdcs.movie.edu. 600 IN A 10.1.1.1
_gc._tcp.movie.edu. 600 IN SRV 0 100 3268 terminator.movie.edu.
_gc._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100 3268↵
terminator.movie.edu.
_ldap._tcp.gc._msdcs.movie.edu. 600 IN SRV 0 100 3268 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.gc._msdcs.movie.edu. 600 IN SRV 0 100 3268↵ terminator.movie.edu.
_kerberos._tcp.dc._msdcs.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.dc._msdcs.movie.edu. 600 IN SRV 0 100↵ 88 terminator.movie.edu.
_kerberos._tcp.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100 88↵ terminator.movie.edu.
_kerberos._udp.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kpasswd._tcp.movie.edu. 600 IN SRV 0 100 464 terminator.movie.edu.
_kpasswd._udp.movie.edu. 600 IN SRV 0 100 464 terminator.movie.edu.
_ldap._tcp.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100 389↵
terminator.movie.edu.
_ldap._tcp.pdc._msdcs.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.97526bc9-adf7-4ec8-a096-0dbb34a17052.domains._msdcs.movie.edu. 600 IN SRV↵ 0 100 389 terminator.movie.edu.
_ldap._tcp.dc._msdcs.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.movie.edu. 600 IN SRV 0 100 389↵ terminator.movie.edu.
DomainDnsZones.movie.edu. 600 IN A 10.1.1.1
_ldap._tcp.DomainDnsZones.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.DomainDnsZones.movie.edu. 600 IN SRV 0 100↵ 389 terminator.movie.edu.

Let's go through what these records are actually used for, splitting them up into sections for ease of understanding. To
start with, the first record is for the domain itself:

movie.edu. 600 IN A 10.1.1.1

This A record is for LDAP clients that don't understand SRV records. Since Windows clients use SRV records to locate
the LDAP service on the domain controller, you don't need this A record (the one for movie.edu) unless you're running
other LDAP clients. (And even then, you can just point those clients at the domain controller using its fully qualified
name: terminator.movie.edu, in this case.) It's good that the A record isn't required because a lot of folks already have
an A record at the apex of their DNS namespace. This record usually points to a web server, not to an Active Directory
server. For example, Movie U.'s main web server is accessible via both www.movie.edu and movie.edu.

Next, we have the following record:

ec4caf62-31b2-4773-bcce-7b1e31c04d25._msdcs.movie.edu. 600 IN CNAME↵
terminator.movie.edu.

This CNAME record, found under the _msdcs subdomain, is used by domain controllers during replication. The left side
of the record is the globally unique ID (GUID) for the server. DCs use this record if they know the server's GUID and
want to determine its hostname. If this record isn't present for a DC, other DCs cannot replicate changes from it. The
DNSLint command, available in the Windows Server 2003 Support Tools, can be used to make sure all DCs have this
CNAME record present. Here is an example command line:

C:\> dnslint /ad 10.13.51.18 /s 10.13.52.15 /v

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\> dnslint /ad 10.13.51.18 /s 10.13.52.15 /v

The required /ad switch is optionally followed by the IP address of a DC to perform LDAP queries against. If an IP
address is not specified, the local host is assumed. The /s option, also required, must be followed by the IP address (or
the text localhost) of a DNS server that is authoritative for the_msdcs subdomain of the DC's domain. See Chapter 15
for more on using DNSLint for troubleshooting.

Next, we have this A record:

gc._msdcs.movie.edu. 600 IN A 10.1.1.1

This record is registered only if the DC is a global catalog server. You can query gc._msdcs.movie.edu to obtain a list of
all the global catalog servers in the forest in much the same way you could query the AD domain's A record to get a list
of all the domain controllers for a domain (if you allow registration of that record by domain controllers).

A few more global catalog-specific records are shown next:

_gc._tcp.movie.edu. 600 IN SRV 0 100 3268 terminator.movie.edu.
_gc._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100 3268↵
terminator.movie.edu.
_ldap._tcp.gc._msdcs.movie.edu. 600 IN SRV 0 100 3268 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.gc._msdcs.movie.edu. 600 IN SRV 0 100 3268↵ terminator.movie.edu.

Note that in the case of global catalog SRV records, the fourth record-specific data field—which is used for the port for
the service—is 3268, the global catalog port. You may have also noticed the entries that contain Default-First-Site-
Name. Each global catalog server registers site-specific records so clients can find the optimal global catalog server
based on their site membership. If you renamed the default site and have other sites defined, you will see these site
names used in the SRV records. See the "Site Coverage" sidebar for more information.

Site Coverage
You can create sites in the Active Directory topology that do not have domain controllers located in that
site (i.e., DC-less sites). In this situation, the domain controllers that have the lowest cost as defined by
the site links cover for that site. When a DC covers for a site, it adds site-specific SRV records so that it
advertises itself as a DC that can handle queries for clients in the site. To see a list of the sites that a
particular DC is covering for, run the following nltest command (contained in the Windows Support Tools)
and replace dc01 with the name of the DC you want to query:

C:\> nltest /dsgetsitecov /server:dc01

So why would you want DC-less sites, especially when you could just add the subnets in those sites to the
closest site that contains a domain controller? As far as Active Directory goes, there aren't many benefits
to creating DC-less sites. One possible benefit is that it allows you to mimic your physical network
topology in your site topology. In that situation, it is very likely that you have sites that do not have
domain controllers. The real benefits come in with other services that depend on the site topology, such as
DFS. It is possible that you might need a DFS server in a remote site that does not contain a domain
controller. If you created the DC-less site, the clients in that site would use the local DFS server instead of
one in the next closest site.

Another benefit of DC-less sites is being able to apply group policy at the site level. If you have small sites
that need a distinct group policy, you can create a small site group policy object and apply it to the target
sites.

The next few SRV records are for Kerberos authentication (port 88) and the Kpasswd process (port 464), which allows
users to change passwords:

_kerberos._tcp.dc._msdcs.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.dc._msdcs.movie.edu. 600 IN SRV 0 100↵ 88 terminator.movie.edu.
_kerberos._tcp.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100 88↵ terminator.movie.edu.
_kerberos._udp.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kpasswd._tcp.movie.edu. 600 IN SRV 0 100 464 terminator.movie.edu.
_kpasswd._udp.movie.edu. 600 IN SRV 0 100 464 terminator.movie.edu.

Just as with the global catalog SRV records, there may be more of the site-specific Kerberos records for any additional
sites the DC covers.

The rest of the SRV records are used to represent a domain controller for a particular domain, site, and application
partition. One record to note is the _ldap._tcp.pdc._msdcs.movie.edu. entry, which is registered by the DC that is
acting as the primary domain controller (PDC) emulator for the domain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

acting as the primary domain controller (PDC) emulator for the domain.

_ldap._tcp.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100 389↵
terminator.movie.edu.
_ldap._tcp.pdc._msdcs.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.97526bc9-adf7-4ec8-a096-0dbb34a17052.domains._msdcs.movie.edu. 600 IN SRV↵ 0 100 389 terminator.movie.edu.
_ldap._tcp.dc._msdcs.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.movie.edu. 600 IN SRV 0 100 389↵ terminator.movie.edu.
DomainDnsZones.movie.edu. 600 IN A 10.1.1.1
_ldap._tcp.DomainDnsZones.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.DomainDnsZones.movie.edu. 600 IN SRV 0 100↵ 389 terminator.movie.edu.

Note the last three records—they are for the DomainDnsZones application partition. As we mentioned early, the DC
locator process is used to find domain controllers for domains, but it is also used for application partitions as well. There
will be records like those three for all the application partitions terminator replicates.

Based on all of these records, you can obtain a lot of information about an Active Directory environment by doing
simple DNS queries. Some of the information you can retrieve includes:

Global catalog servers in a forest or a particular site

Kerberos servers in a domain or a particular site

Domain controllers in a domain or a particular site

PDC emulator for a domain

We could go on and on about Active Directory, but this is a book about DNS, so we won't. If you are interested in more
information on Active Directory, see Active Directory, Second Edition and Active Directory Cookbook, both from O'Reilly.
We return to a core DNS issue in the next chapter: growing your domain.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Growing Your Domain
"What size do you want to be?" it asked.

"Oh, I'm not particular as to size," Alice hastily replied; "only one doesn't like changing so often, you
know"

"Are you content now?" said the Caterpillar.

"Well, I should like to be a little larger, sir, if you wouldn't mind"

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 How Many Name Servers?
We set up two name servers in Chapter 4. Two servers are as few as you'll ever want to run and, depending on the size
of your network, you may need to run many more. It is not uncommon to run four or more name servers, with one of
them off-site. How many name servers are enough? You'll have to decide that based on your network. Here are some
guidelines to help out:

Run at least one name server on each network or subnet you have. This removes routers as a point of failure.
Make the most of any multihomed hosts you may have since they are (by definition) attached to more than one
network.

If you have a file server and some diskless nodes, run a name server on the file server to serve this group of
machines.

Run name servers near, but not necessarily on, large multiuser computers. The users and their processes
probably generate a lot of queries and, as administrators, you will work harder to keep a multiuser host up. But
balance their needs against the risk of running a name server—a security-critical server—on a system to which
lots of people have access.

Run one name server off-site. This makes your data available when your network isn't. You might argue that
it's useless to look up an address when you can't reach the host. Then again, the off-site name server may be
available if your network is reachable but your other name servers are down. If you have a close relationship
with an organization on the Internet—say another university or a business partner—they may be willing to run a
secondary for you.

Figure 9-1 shows a sample topology to illustrate how this might work.

Figure 9-1. Sample network topology

Notice that, if you follow our guidelines, you still have a number of hosts on which you could choose to run a name
server. Host d, the file server for hosts a, b, c, and e, could run a name server. Host g, a big, multiuser host, is another
good candidate. But probably the best choice is host f, the smaller host with interfaces on both networks. You'll need to
run only one name server, instead of two, and it will run on a closely watched host. If you want more than one name
server on either network, you can also run one on d or g.

9.1.1 Where Do I Put My Name Servers?

In addition to giving you a rough idea of how many name servers you'll need, these criteria should help you decide
where to run name servers (e.g., on file servers and multihomed hosts). But there are other important considerations
when choosing the right host.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when choosing the right host.

Other factors to keep in mind are the host's connectivity, the software it runs (for example, the Microsoft DNS Server or
BIND), the security of your host, and maintaining the homogeneity of your name servers:

Connectivity

It's important that name servers be well connected. Running a name server on the fastest, most reliable host
on your network won't do you any good if the host is mired in some backwater subnet of your network behind a
slow, flaky serial line. Try to find a host close to your link to the Internet (if you have one) or find a well-
connected Internet host to act as a secondary for your zone. On your own network, try to run name servers
near the network's topological hubs.

It's doubly important that your primary master name server be well connected. For reliable zone transfers, the
primary needs good connectivity to all the secondaries that update from it. And, like any name server, it will
benefit from fast, reliable networking.

Software

Another factor to consider in choosing a host for a name server is the software the host runs. If you bought this
book, we'll assume it's because you want to run the Microsoft DNS Server. Keep in mind that you'll be able to
manage remote name servers with the DNS console only if they're running the Windows 2000 or Windows
Server 2003 versions of the Microsoft DNS Server.

If managing servers with the DNS console isn't important to you (maybe you like the DNS console front-end for
managing zone data, but you're comfortable editing BIND configuration files by hand), you might consider
running some BIND name servers on your network. Newer BIND name servers are fast and robust and can
interoperate with the Microsoft DNS Server. If you do decide to implement some BIND name servers, it would
be a good idea to run the most recent version of BIND, BIND 9. BIND 9 servers can use a more efficient zone
transfer protocol with Microsoft DNS Servers. (See Chapter 11 and Chapter 12 for more information on
interoperability between the Microsoft DNS Server and BIND.)

Security

Since you would undoubtedly prefer that hackers not commandeer your name server to assist them in attacking
your own hosts or other networks across the Internet, it's important to run your name server on a secure host.
Don't run a name server on a big, multiuser system if you can't trust its users. Computers that are dedicated to
hosting network services but don't permit general logins are good candidates for running name servers. If you
have only one or a few really secure hosts, consider running the primary master name server on one of those,
since its compromise would be more significant than the compromise of the secondaries.

Homogeneity

One last thing to take into account is the homogeneity of your name servers. Hopping between Windows and
different versions of Unix can be frustrating and confusing. Avoid running name servers on lots of different
platforms and even on different service packs if you can. You can waste a lot of time porting your scripts (or
ours!) from one operating system to another or looking for the location of nslookup on three different operating
systems.

Though these are really secondary considerations—it's more important to have a name server on a given subnet than to
have it running on the perfect host—do keep these criteria in mind when deciding where to run your name servers.

9.1.2 Capacity Planning

If you have heavily populated< networks or users who do a lot of name server-intensive work, you may find you need
more name servers than we've recommended to handle the load. Likewise, our recommendations may be fine for a
little while, but as people add hosts to your networks or install new name server-intensive programs, you may find your
name servers bogged down by queries.

Just which tasks are "name server-intensive"? Surfing the Web can be, as can sending electronic mail, especially to
large mailing lists. Programs that make lots of remote procedure calls to different hosts can also be name server-
intensive. Even running certain graphical user environments can tax your name server. The astute (and precocious)
among you may be asking, "But how do I know when my name servers are overloaded? What do I look for?" An
excellent question!

Memory utilization is probably the most important aspect of a name server's operation to monitor. dns.exe, the name
server process, can get very large on a name server that is authoritative for many zones. If dns.exe's size, plus the size
of the other processes you run, exceeds the size of your host's real memory, your host may swap furiously ("thrash")
and not get anything done. Another criterion you can use to measure the load on your name server is the load the
name server process places on the host's CPU. Correctly configured name servers don't use much CPU time, so high
CPU usage is often symptomatic of a configuration error. The Performance Monitor (perfmon) tool can help you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CPU usage is often symptomatic of a configuration error. The Performance Monitor (perfmon) tool can help you
characterize your name server's average CPU utilization. To see the name server's CPU utilization, start the
Performance tool (Start Administrative Tools Performance) and select System Monitor in the left
pane. Click on the add icon (shaped like a plus sign) in the right pane. In the resulting window, choose Process under
Performance object, then choose % Processor Time in the left list and dns in the right list, as in Figure 9-2. Click
on the Add button, then the Close button. A chart now shows the percentage of processor time the name server is
using.

Figure 9-2. Adding counters to monitor DNS server CPU utilization

Unfortunately, there are no absolute rules when it comes to acceptable CPU utilization. We offer a rough rule of thumb,
though: 5% average CPU utilization is probably acceptable; 10% is a bit high, unless the host is dedicated to providing
name service.

Another statistic to look at is the number of queries the name server receives per minute (or second, if you have a busy
name server). Again, there are no absolutes here: a multiprocessor server with oodles of RAM running Windows Server
2003 can handle thousands of queries per second without breaking into a sweat, while a less powerful PC might have
problems with more than a few hundred queries per second.

To check the volume of queries your name server is receiving, use the Performance tool again. This time, select DNS
under Performance object. You'll see there are several counters to choose from: you can monitor many different
aspects of the name server's behavior. To see how busy your server is, pay particular attention to these counters:
Total Query Received, Total Query Received/sec, Total Response Sent, and Total Response Sent/sec. More
information about using the Performance tool to monitor name server performance can be found in "Understanding
Name Server Statistics" in Chapter 7.

You should pay special attention to peak periods. For example, Monday morning is often busy because many people like
to respond to mail they've received over the weekend first thing on Mondays.

You might also want to take a sample starting just after lunch, when people are returning to their desks and getting
back to work—all at about the same time. Of course, if your organization is spread across several time zones, you'll
have to use your judgment to determine a busy time.

Even if your host is fast enough to handle the volume of queries it receives, you should make sure the DNS traffic isn't
placing undue load on your network. On most LANs, DNS traffic will be too small a proportion of the network's
bandwidth to worry about. Over slow leased lines or dial-up connections, though, DNS traffic could consume enough
bandwidth to merit concern.

To get a rough estimate of the volume of DNS traffic on your LAN, multiply the number of queries received plus the
number of answers sent in an hour by 800 bits (100 bytes, a rough average size for a DNS message), and divide by
3,600 (seconds per hour) to find the bandwidth utilized. This should give you a feeling for how much of your network's
bandwidth is being consumed by DNS traffic.

To give you an idea of what's normal, the last NSFNET traffic report (in April 1995) showed that DNS traffic constituted
just over 5% of the total traffic volume (in bytes) on its backbone. The NSFNET's figures were based upon actual traffic
sampling, not calculations like ours using the name server's statistics.[1] If you want to get a more accurate idea of the
traffic your name server is receiving, you can always do your own traffic sampling with a LAN protocol analyzer.

[1] We're not sure how representative of the current state of the Internet these numbers are, because it's
extremely difficult to wheedle equivalent numbers out of the commercial backbone providers that succeeded the
NSFNET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSFNET.

If you find that your name servers are overworked, what then? First, it's a good idea to make sure that your name
servers aren't being bombarded with queries by a misbehaving program. To do that, you'll need to find out the sources
of all the queries.

Fortunately, Microsoft introduced some slick logging capabilities in Windows 2000 (the Windows NT version was
woefully lacking in this area). Logging is configured through the Debug Logging tab of the server properties window
(right-click on a name server in the DNS console and choose Properties, then click on the Debug Logging tab). Check
the box labeled Log packets for debugging to enable logging. Be sure to check at least Queries/Transfers under
Packet contents, which logs a record of every query to the file %SystemRoot%\system32\dns\dns.log. A sample
logging properties window is shown in Figure 9-3.

Figure 9-3. The Debug Logging tab of the properties window

When poring over the example, look for hosts sending repeated queries, especially for the same or similar information.
That may indicate a misconfigured or buggy program running on the host or a foreign name server pelting your name
server with queries.

If all the queries appear to be legitimate, add a new name server. Don't put the name server just anywhere, though;
use the logging information to help you decide where it's best to run one. If DNS traffic is gobbling up your LAN, it
won't help to choose a host at random and create a name server there. You need to consider which hosts are sending
most of the queries, then figure out how to best provide them name service. Here are some hints to help you decide:

Look for queries from resolvers on hosts that share the same file server. You could run a name server on that
file server.

Look for queries from resolvers on large, multiuser hosts. You could run a name server there.

Look for queries from resolvers on another subnet. Those resolvers should be configured to query a name
server on their local subnet. If there isn't one on that subnet, create one.

Look for queries from resolvers on the same bridged segment (if you use bridging). If you run a name server on
the bridged segment, the traffic won't need to be bridged to the rest of the network.

Look for queries from hosts connected to each other via another, lightly loaded network. You could run a name
server on the other network.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Adding More Name Servers
When you need to create new name servers for your domain, the simplest recourse is to add secondaries. You already
know how—we went over it in Chapter 4—and once you've set up one secondary, cloning it is a piece of cake. But you
can run into trouble if you add secondaries indiscriminately.

If you run a large number of secondary name servers for a zone, the primary master name server can take quite a
beating just keeping up with the secondaries' polling to check that their zone data is current. There are a number of
courses of action to take for this problem, as described in the sections that follow:

Eliminate the secondary name servers altogether by using Active Directory integration.

Increase the refresh interval so that the secondaries don't check so often.

Direct some of the secondary name servers to load from other secondary name servers.

Create caching-only name servers.

Create partial-secondary name servers.

9.2.1 Active Directory Integration

We discuss Active Directory in Chapter 8. Briefly, this feature eliminates the load on the primary master from
secondaries' polling by eliminating the secondaries! Remember that the main purpose of the primary master/secondary
relationship is zone data replication: the DNS designers created the zone transfer mechanism as a way to spread zone
data among multiple authoritative name servers. Windows stores all kinds of information about the network in Active
Directory and replicates this information, too. With Windows Server 2003, you have the option of storing the definitive
version of your zones' data in Active Directory rather than in zone datafiles on the primary master. All name servers
running on domain controllers load the zone data stored in Active Directory, which also takes care of replicating
changes to the data. See Chapter 8 for more details and instructions on setting up Active Directory.

9.2.2 Secondary Servers

You can have some of your secondaries load zone data from other secondary name servers instead of from a primary
name server. The secondary name server can't tell if it's loading from a primary or another secondary. It's only
important that the name server serving the zone transfer is authoritative for the zone. There's no trick to configuring
this. Instead of specifying the IP address of the primary in the secondary's configuration, you simply specify the IP
address of another secondary

When you go to this second level of distribution, though, be aware that it can take up to twice as long for the data to
percolate from the primary name server to all the secondaries. Remember that the refresh interval is the period after
which the secondary servers check to make sure that their zone data is still current. Therefore, it can take the first-level
secondary servers the entire length of the refresh interval to get a new copy of the zone from the primary master
server. Similarly, it can take the second-level secondary servers the entire refresh interval to get a new copy of the
zone from the first-level secondary servers. The propagation time from the primary master server to all the secondary
servers can therefore be twice the refresh interval.

Fortunately, using the DNS NOTIFY feature, which we'll describe in Chapter 11, avoids this delay. This feature is on by
default and triggers zone transfers soon after the zone is updated on the primary master. Unfortunately, it doesn't work
with any BIND Version 4 secondaries (they'll receive the NOTIFY messages, but will not understand them). Active
Directory-integration, described in Chapter 8, also avoids zone synchronization delays.

If you decide to configure your network with two (or more) tiers of secondary servers, be careful to avoid updating
loops. If we configured wormhole to update from diehard and then accidentally configured diehard to update from
wormhole, neither would ever get data from the primary master. They would merely check their out-of-date serial
numbers against each other and perpetually decide that they were both up-to-date.

9.2.3 Caching-Only Servers

Creating caching-only name servers is another alternative when you need more servers. Caching-only name servers are
name servers not authoritative for any zones (except for the automatically created reverse-mapping zones). The name
doesn't imply that primary master and secondary name servers don't cache—they do—but rather that the only function
this server performs is looking up data and caching it. As with primary master and secondary name servers, a caching-
only name server needs a cache.dns file and the automatically created zones, 0.in-addr.arpa, 127.in-addr.arpa, and
255.in-addr.arpa. The configuration of a caching-only server looks like Figure 9-4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

255.in-addr.arpa. The configuration of a caching-only server looks like Figure 9-4.

Figure 9-4. The DNS console showing a caching-only name server

A caching-only name server can look up domain names inside and outside your zone, as can primary master and
secondary name servers. The difference is that when a caching-only name server initially looks up a name within your
zone, it ends up asking one of your zone's primary master or secondary name servers for the answer. A primary or
secondary would answer the same question out of its authoritative data. Which primary or secondary does the caching-
only server ask? As with name servers outside of your domain, it finds out which name servers serve your zone from
one of the name servers for your parent zone. Is there any way to prime a caching-only name server's cache so it
knows which hosts run primary and secondary name servers for your zone? No, there isn't. You can't use cache.dns
—the cache.dns file is only for root name server hints.

A caching-only name server's real value comes after it builds up its cache. Each time it queries an authoritative name
server and receives an answer, it caches the records in the answer. Over time, the cache grows to include the
information most often requested by the resolvers querying the caching-only name server. And you avoid the overhead
of zone transfers—a caching-only name server doesn't need to do them.

9.2.4 Partial-Secondary Servers

In between a caching-only name server and a secondary name server is another variation: a name server that is a
secondary for only a few of the local zones. We call this a partial-secondary name server (although probably nobody
else does). Suppose movie.edu had 20/24-sized (the old Class C) networks (and a corresponding 20 in-addr.arpa
zones). Instead of creating a secondary server for all 21 zones (all the in-addr.arpa subdomains plus movie.edu), we
could create a partial-secondary server for movie.edu and only those in-addr.arpa zones the host itself is in. If the host
had two network interfaces, its name server would be a secondary for three zones: movie.edu and the two in-addr.arpa
zones.

Let's say we scare up the hardware for another name server. We'll call the new host zardoz.movie.edu, with IP
addresses 192.249.249.9 and 192.253.253.9. We'll create a partial-secondary name server on zardoz, with the
configuration shown in Figure 9-5.

Figure 9-5. The DNS console showing a partial-secondary server

This server is a secondary for movie.edu and only 2 of the 20 in-addr.arpa zones. A "full" secondary would have 20
different zones (plus the three automatically created) under Reverse Lookup Zones.

What's so useful about a partial-secondary name server? They're not much work to administer because their
configuration doesn't change much. On a server authoritative for all the in-addr.arpa zones, we'd need to add and
delete in-addr.arpa zones as our network changed. That can be a surprising amount of work on a large network.

A partial secondary can still answer most of the queries it receives, though. Most of these queries are for data in
movie.edu and the two in-addr.arpa zones. Why? Because most of the hosts querying the name server are on the two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

movie.edu and the two in-addr.arpa zones. Why? Because most of the hosts querying the name server are on the two
networks to which it's connected, 192.249.249/24 and 192.253.253/24. And those hosts probably communicate
primarily with other hosts on their own network. This generates queries for data within the in-addr.arpa zone that
corresponds to the local network.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Registering Name Servers
When you get around to setting up more and more name servers, a question may strike you—do I need to register all
of my primary and secondary name servers with my parent zone? The answer is no. Only those servers you want to
make available to name servers outside of your zone need to be registered with your parent. For example, if you run
nine name servers for your zone, you may choose to tell the parent zone about only four of them. Within your network,
you use all nine servers. Five of those nine servers, however, are queried only by resolvers on hosts that are configured
to query them. Their parent name servers don't delegate to them, so they'll never be queried by remote name servers.
Only the four servers registered with your parent zone are queried by other name servers, including caching-only and
partial-secondary name servers on your network. This setup is shown in Figure 9-6.

Figure 9-6. Registering only some of your name servers

Besides being able to pick and choose which of your name servers are hammered by outside queries, there's a technical
motivation for registering only some of your zone's name servers: there is a limit to how many servers will fit in a UDP
response packet. In practice, around 10 name server records should fit. Depending on the data (how many servers'
names are in the same domain), you can get more or fewer.[2] There's not much point in registering more than 10
servers, anyway—if none of those 10 servers can be reached, it's unlikely the destination host can be reached.

[2] The domain names of the Internet's root name servers were changed because of this. All the roots were moved
into the same domain, root-servers.net, to take the most advantage of domain-name compression and to allow
information about as many roots as possible to be stored in a single UDP packet.

If you've set up a new authoritative name server and you decide it should be registered, make a list of the parents of
the zones for which it's authoritative. You'll need to contact the administrators for each of these parent zones. For
example, let's say we want to register the name server we just set up on zardoz. To get this secondary registered in all
the right zones, we'll need to contact the administrators of edu and in-addr.arpa. (For help determining who runs your
parent zones, see Chapter 3.)

When you contact the administrators of a parent zone, be sure to follow the process they specify (if any) on their web
site. If there's no standard modification process, you'll have to send them the domain name of the zone (or zones) for
which the new name server is authoritative. If the new name server is in the new zone, you'll also need to give them
the IP address(es) of the new name server. In fact, if there's no official format for submitting the information, it's often
best just to send your parent the complete list of registered name servers for the zone, plus any addresses necessary,
in zone datafile format. That avoids any potential confusion.

Since our networks were originally assigned by the InterNIC, we used the Network Modification form at
http://www.arin.net/library/templates/netmod.txt to change our registration. If they hadn't had a template for us to
use, our message to the administrator of in-addr.arpa might have read something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use, our message to the administrator of in-addr.arpa might have read something like this:

Howdy!

I've just set up a new secondary name server on zardoz.movie.edu for the
249.249.192.in-addr.arpa and 253.253.192.in-addr.arpa zones. Would you
please add NS records for this name server to the in-addr.arpa zone?
That would make our delegation information look like:

253.253.192.in-addr.arpa. 86400 IN NS terminator.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS wormhole.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS zardoz.movie.edu.

249.249.192.in-addr.arpa. 86400 IN NS terminator.movie.edu.
249.249.192.in-addr.arpa. 86400 IN NS wormhole.movie.edu.
249.249.192.in-addr.arpa. 86400 IN NS zardoz.movie.edu.

Thanks!

Albert LeDomaine
al@robocop.movie.edu

Notice that we specified explicit TTLs on the NS records. That's because our parent name servers aren't authoritative
for those records; our name servers are. By including them, we're indicating our choice of a TTL for our zone's
delegation. Of course, our parent may have other ideas about what the TTL should be.

In this case, glue data—A records for each of the name servers—isn't necessary, since the domain names of the name
servers aren't within the in-addr.arpa zones. They're within movie.edu, so a name server that was referred to
terminator.movie.edu or wormhole.movie.edu could still find their addresses by following delegation to the movie.edu
name servers.

Is a partial-secondary name server a good name server to register with your parent zone? Actually, it's not ideal
because it's authoritative for only some of your in-addr.arpa zones. Administratively, it may be easier to register only
servers backing up all the local zones; that way, you don't need to keep track of which name servers are authoritative
for which zones. All of your parent zones can delegate to the same set of name servers: your primary master and your
"full" secondaries.

If you don't have many name servers, though, or if you're good at remembering which name servers are authoritative
for which zones, go ahead and register a partial-secondary.

Caching-only name servers, on the other hand, must never be registered. A caching-only name server rarely has
complete information for any given zone; it just has the bits and pieces of the zone that it has looked up recently. If a
parent name server were to mistakenly refer a foreign name server to a caching-only name server, the foreign name
server would send the caching-only name server a nonrecursive query. The caching-only name server might have the
data cached, but then again, it might not. If it didn't have the data, it would refer the querier to the best name servers
it knew (those closest to the domain name in the query)—which might include the caching-only name server itself! The
poor foreign name server might never get an answer. This kind of misconfiguration—actually, delegating a zone to any
name server not authoritative for that zone—is known as lame delegation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 Changing TTLs
An experienced zone administrator needs to know how to set the time to live on his zone's data to his best advantage.
The TTL on a resource record, remember, is the time for which any server can cache that record. So if the TTL for a
particular resource record is 3,600 seconds and a server outside your network caches that record, it will have to
remove the entry from its cache after an hour. If it needs the same data after the hour is up, it'll have to query your
name servers again.

When we introduced TTLs, we emphasized that your choice of a TTL would dictate how current you would keep copies
of your data, at the cost of increased load on your name servers. A low TTL would mean that name servers outside your
network would have to get data from your name servers often and that the data would therefore be kept current. On
the other hand, your name servers would be peppered by the name servers' queries.

You don't have to choose a TTL once and for all, though. You can—and experienced administrators do—change TTLs
periodically to suit your needs.

Suppose we know that one of our hosts is about to be moved to another network. This host houses the movie.edu film
library, a large collection of files our site makes available to hosts on the Internet. During normal operation, outside
name servers cache the address of our host according to the minimum (default) TTL in the SOA record. (We set the
movie.edu TTL to be one day in our sample files.) A name server caching the old address record just before the change
could have the wrong address for as long as a day. A loss of connectivity for a full day is unacceptable, though. What
can we do to minimize the loss of connectivity? We can lower the TTL so that outside servers cache the address record
for a shorter period. By reducing the TTL, we force the outside servers to update their data more frequently, which
means that any changes we make when we actually move the system will be propagated to the outside world quickly.
How short can we make the TTL? Unfortunately, we can't safely use a TTL of zero, which should mean "don't cache this
record at all." (Some older BIND Version 4 name servers can't cope with a zero TTL.) Small TTLs, like 30 seconds, are
okay, though. To add an explicit TTL on an individual resource record, you'll need the DNS console's advanced view so
that you can actually see individual records' TTLs: choose View Advanced.

Click on the domain name of the zone in the left panel, then double-click the record when it appears in the right panel.
The Properties window is displayed, and you can type the TTL. Recall that the subfields in the TTL field are (from left
to right) days, hours, minutes, and seconds.

Figure 9-7 provides an example of an explicit TTL from movie.edu.

Figure 9-7. An explicit TTL on cujo.movie.edu

The record the DNS console adds to the movie.edu zone datafile looks like this:

cujo 3600 IN A 192.253.253.5

Note the explicit TTL of 3,600 seconds (one hour) in the TTL field, overriding the TTL in the zone's SOA record.

You may have seen the last field of the SOA record called simply the "minimum" field (some versions of nslookup
display it that way, for example). So why does it show up in the DNS console as "Minimum (default)"? (To see what we
mean, take a look at the SOA record shown back in Chapter 4 in Figure 4-19.) If the Microsoft DNS Server followed the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mean, take a look at the SOA record shown back in Chapter 4 in Figure 4-19.) If the Microsoft DNS Server followed the
original DNS RFCs, the TTL field in the SOA record would really define the minimum TTL value for all resource records in
the zone. Thus, you could specify only explicit TTLs larger than this minimum. Neither Microsoft nor BIND name servers
work this way, though. In other words, in real life, "minimum" is not really minimum. Instead, the Microsoft DNS Server
implements the minimum TTL field in the SOA record as a "default" TTL—hence the "Minimum (default)" wording. If
there is no TTL on a record, the minimum applies. If there is a TTL on the resource record, the Microsoft DNS Server
allows it even if it is smaller than the minimum. That one record is sent out in responses with the smaller TTL while all
other records are sent out with the "Minimum (default)" TTL from the SOA record.

You should also know that when giving out answers, a secondary supplies the same TTL a primary master does—that is,
if a primary gives out a TTL of one hour for a particular record, a secondary will, too. The secondary doesn't decrement
the TTL according to how long it has been since it loaded the zone. So, if the TTL of a single resource record is set
smaller than the SOA minimum, both the primary and secondary name servers give out the resource record with the
same, smaller TTL. If the secondary name server has reached the expiration time for the zone, it expires the whole
zone. It will never expire an individual resource record within a zone.

The Microsoft DNS Server does allow you to put a small TTL on an individual resource record if you know that the data
is going to change shortly. Thus, any server caching that data caches it only for a brief time. Unfortunately, while the
name server makes tagging records with a small TTL possible, most administrators don't take the time to do it. When a
host changes addresses, you often lose connectivity to it for a while.

More often than not, the host having its address changed is not one of the main hubs on the site, so the outage affects
few people. If one of the mail hubs or a major web server or ftp archive—like the film library—is moving, though, a
day's loss of connectivity may be unacceptable. In cases like this, the administrator should plan ahead and reduce the
TTL on the data to be changed.

Remember that the TTL on the affected data will need to be lowered before the change takes place. Reducing the TTL
on a workstation's address record and changing the workstation's address simultaneously may do you little or no good;
the address record may have been cached seconds before you made the change and may linger until the old TTL times
out. You must also be sure to factor in the time it'll take your secondaries to load from your primary master. For
example, if your minimum TTL is 12 hours and your refresh interval is 3 hours, be sure to lower the TTLs at least 15
hours ahead of time, so that by the time you move the host, all the old, longer TTL records will have timed out. Of
course, if all of your secondaries are using NOTIFY, the secondaries shouldn't take the full refresh interval to sync up.

9.4.1 Changing Other SOA Values

We briefly mentioned increasing the refresh interval as a way of offloading your primary name server. Let's discuss
refresh in a little more detail and go over the remaining SOA values, too.

The refresh value, you'll remember, controls how often a secondary checks whether its zone data is up-to-date. The
retry value becomes the refresh time after the first failure to reach a master name server. The expire value determines
how long zone data can be held before it's discarded when a master is unreachable. Finally, the minimum TTL sets how
long zone information may be cached.

Suppose we've decided we want the secondaries to pick up new information every hour instead of every three hours.
We change the refresh value to one hour in each of the zones. Since retry is related to refresh, we should probably
reduce retry, too—to every 15 minutes or so. Typically, retry is less than refresh, but that's not required. Although
lowering the refresh value will speed up the distribution of zone data, it will also increase the load on the server from
which data is being loaded, since the secondaries will check more often. The added load isn't much, though; each
secondary makes a single SOA query during each zone's refresh interval to check its master's copy of the zone. So with
two secondary name servers, changing the refresh time from three hours to one hour will generate only four more
queries (per zone) to the primary master in any three-hour span.

If all of your secondaries use NOTIFY, of course, refresh doesn't mean as much. But if you have even one BIND Version
4 slave, your zone data may take up to the full refresh interval to reach it.

Some older versions of BIND secondaries stopped answering queries during a zone load. As a result, BIND was modified
to spread out the zone loads, reducing the periods of unavailability. So, even if you set a low refresh interval, your
secondaries may not check exactly as often as you request. BIND Version 4 name servers attempt a certain number of
zone loads and then wait 15 minutes before trying another batch. On the other hand, BIND Version 4.9 and later may
also refresh more often than the refresh interval. These versions of BIND will wait a random number of seconds
between one-half of the refresh interval and the full refresh interval to check serial numbers.

Expiration times on the order of a week—longer if you frequently have problems reaching your updating source—are
common. The expiration time should always be much larger than the retry and refresh intervals; if the expire time is
smaller than the refresh interval, your secondaries will expire their data before trying to load new data. If your zone's
data doesn't change much, you might consider raising the minimum (default) TTL. The SOA's minimum (default) TTL
value is typically one day (86,400 seconds), but you can make it longer. One week is about the longest value that
makes sense for a TTL. If it's longer than that, you may find yourself unable to change bad, cached data in a reasonable
amount of time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 Planning for Disasters
It's a fact of life on a network that things go wrong. Hardware fails, software has bugs, and people occasionally make
mistakes. Sometimes this results in minor inconveniences, like having a few users lose connections. Sometimes the
results are catastrophic and involve the loss of important data and valuable jobs.

Because the Domain Name System relies so heavily on the network, it is vulnerable to network outages. Thankfully, the
design of DNS takes into account the imperfection of networks: it allows for multiple, redundant name servers,
retransmission of queries, retrying zone transfers, and so on.

DNS doesn't protect itself from every conceivable calamity, though. DNS doesn't or can't protect against certain types
of network failures—some of them quite common. But with a small investment of time and money, you can minimize
the threat of these problems.

9.5.1 Outages

Power outages, for example, are relatively common in many parts of the world. In some parts of the U.S.,
thunderstorms or tornadoes may cause a site to lose power or have only intermittent power for an extended period.
Elsewhere, typhoons, volcanoes, or construction work may interrupt electrical service. And you never know when those
of you in California might lose power in a rolling blackout from a lack of electrical capacity.

If all your hosts are down, of course, you don't need name service. Quite often, however, sites have problems when
power is restored. Following our recommendations, they run their name servers on file servers and big, multiuser
machines. And when the power comes up, those machines are naturally the last to boot—because all those disks need
to be checked and fixed first! Which means that all the on-site hosts that are quick to boot do so without the benefit of
name service.

This can cause all sorts of wonderful problems, depending on what services your hosts access when they boot. For
example, your PCs may mount your servers' drives (via net use) when they boot. If they do, they almost certainly
specify the servers' domain names or NetBIOS names.

Using hostnames in commands is admirable because it allows administrators to change the servers' IP addresses
without changing all the startup files on-site. However, if name service isn't available when your PCs boot, the net use
command will fail, which may cause successive commands to fail, too. This will certainly not help your users'
productivity.

9.5.2 Recommendations

Our recommendation is to add the names and IP addresses of critical hosts to your PCs' HOSTS files. Any host whose
name is referenced during the boot process should appear in this file. You can synchronize the file by copying it from
share to share. On Windows Server 2003, the default location for the file is %SystemRoot%\System32\Drivers\Etc,
usually C:\Windows\System32\Drivers\Etc. The format of the file is just like the format of the Unix /etc/hosts file: each
line consists of an IP address (in dotted-octet notation), which starts in the first column, followed by whitespace and the
canonical name of the host. Optionally, one or more aliases may follow the canonical name. For example:

192.249.249.1 wormhole.movie.edu wormhole
192.249.249.3 terminator.movie.edu terminator

Now, if a PC needs to look up wormhole or wormhole.movie.edu when it boots, it will be able to resolve the name.

However, using HOSTS files poses some danger: unless you take care to keep the files up-to-date, their information
may become stale. And since the Windows Server 2003 resolver uses HOSTS before querying a name server, a stale
entry can cause resolution failures that are hard to diagnose.

The best solution to this problem is to run a name server on a host with uninterruptible power. If you rarely experience
extended power loss, battery backup might be enough. If your outages are longer and name service is critical to you,
you should consider an uninterruptible power system (UPS) with a generator of some kind.

If you can't afford luxuries like these, you might just try to track down the fastest booting host around and run a name
server on it. Hosts with small filesystems should boot quickly since they don't have many disks to check.

Once you've located the right host, you'll need to make sure the host's IP address appears in the resolver
configurations of all of your hosts that need full-time name service. You'll probably want to list the backed-up host last
since, during normal operation, hosts should use the name server closest to them. Then, after a power failure, your
critical applications will still have name service, albeit at a small sacrifice in performance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.6 Coping with Disaster
When disaster strikes, it really helps to know what to do. Knowing to duck under a sturdy table or desk during an
earthquake can save you from being pinned under a toppling monitor. Knowing how to turn off your gas can save your
house from conflagration.

Likewise, knowing what to do in a network disaster (or even just a minor mishap) can help you keep your network
running.

9.6.1 Long Outages (Days)

If you lose network connectivity for a long time, your name servers may have problems. If they lose connectivity to the
root name servers for an extended period, they'll stop resolving queries outside their authoritative zone data. If the
secondaries can't reach their master, sooner or later they'll expire the zone.

In case your name service really goes haywire because of the connectivity loss, it's a good idea to keep a sitewide or
workgroup HOSTS file around, as we recommended earlier in this chapter. If your name servers all go down, your hosts
will still be able to resolve the names of hosts in the HOSTS file.

As for secondaries, you can reconfigure a secondary that can't reach its master to run temporarily as a primary master.
Just right-click on the zone's domain name in the DNS console, select Properties, make sure the General tab is
selected, and click on Change to change the zone type from secondary to primary. If more than one secondary for the
same zone is cut off, you can configure one as a primary master temporarily and reconfigure the other to load from the
temporary primary.

9.6.2 Really Long Outages (Weeks)

If an extended outage cuts you off from the Internet—say for a week or more—you may need to restore connectivity to
root name servers artificially to get things working again. Every name server needs to talk to a root name server
occasionally. It's a bit like therapy: the name server needs to contact the root to regain its perspective on the world.

To provide root name service during a long outage, you can set up your own root name servers, but only temporarily.
Once you're reconnected to the Internet, you must shut off your temporary root servers. The most obnoxious vermin
on the Internet are name servers that believe they're root name servers but don't know anything about most top-level
domains. A close second is the Internet name server configured to query—and report—a false set of root name servers.

That said, and our alibis in place, here's what you have to do to configure your own root name server. First, you need
to create the root zone. The root zone will delegate to the highest level zones in your isolated network. For example, if
movie.edu were to be isolated from the Internet, we might create a root zone datafile, root.dns, for terminator:

. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 1 ; Serial
 10800 ; Refresh after 3 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 86400) ; Minimum TTL of 1 day

; Refresh, retry, and expire really don't matter since all
; roots are primaries. Minimum TTL could be longer, since
; the data is likely to be stable.

 IN NS terminator.movie.edu. ; terminator is the temp. root

; Our root only knows about movie.edu and our two
; in-addr.arpa domains

movie.edu. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

249.249.192.in-addr.arpa. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

253.253.192.in-addr.arpa. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

terminator.movie.edu. IN A 192.249.249.3
wormhole.movie.edu. IN A 192.249.249.1
 IN A 192.253.253.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IN A 192.253.253.1

Then we need to add the zone with the DNS console and update all of our name servers (except the new, temporary
root) with a cache.dns file that includes just the temporary root name server (it's best to move the old cache file aside
—we'll need it later, once connectivity is restored).

Here are the contents of the cache.dns file:

. 99999999 IN NS terminator.movie.edu.

terminator.movie.edu. IN A 192.249.249.3

This process will keep movie.edu name resolution going during the outage. Once Internet connectivity is restored, we
can delete the root zone on terminator and restore the original cache files on all our other name servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Parenting
The way Dinah washed her children's faces was this: first she held the poor thing down by its ear with
one paw, and then with the other paw she rubbed its face all over, the wrong way, beginning at the
nose: and just now, as I said, she was hard at work on the white kitten, which was lying quite still and
trying to purr—no doubt feeling that it was all meant for its good.

Once your domain reaches a certain size, or you decide you need to distribute the management of parts of your domain
to various entities within your organization, you'll want to divide the domain into subdomains. These subdomains will be
the children of your current domain on the domain tree; your domain will be the parent. If you delegate responsibility
for your subdomains to another organization, each becomes its own zone, separate from its parent zone. We like to call
the management of your subdomains—your children—parenting.

Good parenting starts with carving up your domain sensibly, choosing appropriate names for your subdomains, and
then delegating the subdomains to create new zones. A responsible parent also works hard at maintaining the
relationship between the name servers authoritative for her zone and its children; she ensures that delegation from
parent to child is current and correct.

Good parenting is vital to the success of your network, especially as name service becomes critical to navigating
between sites. Incorrect delegation to a child zone's name servers can render a site effectively unreachable while the
loss of connectivity to the parent zone's name servers can leave a site unable to reach any hosts outside the local zone.

In this chapter we present our views on when to create subdomains, and we go over how to create and delegate them
in some detail. We also discuss management of the parent-child relationship and, finally, how to manage the process of
carving up a large domain into smaller subdomains with minimal disruption and inconvenience.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 When to Become a Parent
Far be it from us to tell you when you should become a parent, but we will be so bold as to offer you some guidelines.
You may find some compelling reason to implement subdomains that isn't on our list, but here are some of the most
common reasons:

A need to delegate or distribute management of the domain to a number of organizations

The large size of your domain—dividing it would make it easier to manage and offload the name servers for the
domain

A need to distinguish hosts' organizational affiliations by including them in particular subdomains

Once you've decided to have children, the next question to ask yourself is, naturally, how many children to have.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 How Many Children?
Of course, you won't simply say, "I want to create four subdomains." Deciding how many subdomains to implement is
really choosing the organizational affiliations of those subdomains. For example, if your company has four branch
offices, you might decide to create four subdomains, each of which corresponds to a branch office.

Should you create subdomains for each site, for each division, or even for each department? You have a lot of latitude
in your choice because of DNS's scalability. You can create a few large subdomains or many small subdomains. You face
trade-offs whichever you choose, though.

Delegating to a few large subdomains isn't much work for the parent because there's not much delegation to keep track
of. However, you wind up with larger subdomains, which require more memory to load and faster name servers, and
administration isn't as distributed. If you implement site-level subdomains, for example, you may force autonomous or
unrelated groups at a site to share a single namespace and a single point of administration.

Delegating to many smaller subdomains can be a headache for the parent's administrator. Keeping delegation data
current involves keeping track of which hosts run name servers and which zones they're authoritative for. The data
changes each time a subdomain adds a new name server or the address of a name server for the subdomain changes.
If the subdomains are all administered by different people, that means more administrators to train, more relationships
for the parent's administrator to maintain, and more overhead for the organization overall. On the other hand, the
subdomains are smaller and easier to manage, and the administration is more widely distributed, allowing closer
management of zone data.

Given the advantages and disadvantages of either alternative, it may seem difficult to make a choice. Actually, there's
probably a natural division in your organization. Some companies manage computers and networks at the site level;
others have decentralized, relatively autonomous workgroups that manage everything themselves. Here are a few basic
rules to help you find the right way to carve up your namespace:

Don't shoehorn your organization into a weird or uncomfortable domain structure. Trying to fit 50 independent,
unrelated U.S. divisions into four regional subdomains may save you work (as the administrator of the parent
zone), but it won't help your reputation. Decentralized, autonomous operations demand different zones—that's
the raison d'être of the Domain Name System.

The structure of your domain should mirror the structure of your organization, especially your organization's
support structure. If departments run networks, assign IP addresses, and manage hosts, they should also
manage the subdomains.

If you're not sure or can't agree about how the namespace should be organized, try to come up with guidelines
for when a group within your organization can carve off its own subdomain (for example, how many hosts are
needed to create a new subdomain and what level of support the group must provide) and grow the namespace
organically, only as needed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 What to Name Your Children
Once you've decided how many subdomains you'd like to create and what they correspond to, you must choose names
for them. Rather than unilaterally deciding on your subdomains' names, it's considered polite to involve your future
subdomain administrators and their constituencies in the decision. In fact, you can leave the decision entirely to them if
you like.

This can lead to problems, though. It's preferable to use a relatively consistent naming scheme across your
subdomains. This practice makes it easier for users in one subdomain, or outside your domain entirely, to guess or
remember your subdomain names and to figure out in which domain a particular host or user lives.

Leaving the decision to the locals can result in naming chaos. Some will want to use geographical names; others will
insist on organizational names. Some will want to abbreviate; others will want to use full names.

Therefore, it's often best to establish a naming convention before choosing subdomain names. Here are some
suggestions from our experience:

In a dynamic company, the names of organizations can change frequently. Naming subdomains organizationally
in a climate like this can be disastrous. One month the Relatively Advanced Technology group seems stable
enough, the next month they've been merged into the Questionable Computer Systems organization, and the
following quarter they're all sold to a German conglomerate. Meanwhile, you're stuck with well-known hosts in a
subdomain whose name no longer has any meaning.

Geographical names are more stable than organizational names but sometimes not as well known. You may
know that your famous Software Evangelism Business Unit is in Poughkeepsie or Waukegan, but people outside
your company may have no idea where it is (and might have trouble spelling either name).

Don't sacrifice readability for convenience. Two-letter subdomain names may be easy to type, but impossible to
recognize. Why abbreviate "Italy" to "it" and have it confused with your Information Technology organization
when for a paltry three more letters you can use the full name and eliminate any ambiguity?

Too many companies use cryptic, inconvenient domain names. The general rule seems to be the larger the
company, the more indecipherable the domain names. Buck the trend: make the names of your subdomains
obvious!

Don't use existing or reserved top-level domain names as subdomain names. It might seem sensible to use
two-letter country abbreviations for your international subdomains or to use organizational top-level domain
names like net for your networking organization, but doing so can cause nasty problems. For example, naming
your Communications department's subdomain com might impede your ability to communicate with hosts under
the top-level com domain. Imagine the administrators of your com subdomain naming their new Sun
workstation sun and their new HP 9000 hp (they aren't the most imaginative folks): users anywhere within your
domain sending mail to friends at sun.com or hp.com could have their letters end up in your com subdomain,
since the name of your parent zone may be in some of your hosts' search lists.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 How to Become a Parent: Creating Subdomains
Once you've decided on names, creating the child domains is easy. But first, you've got to decide how much autonomy
you're going to give your subdomains. Odd that you have to decide that before you actually create them

Thus far, we've assumed that if you create a subdomain, you'll want to delegate it to another organization, thereby
making it a separate zone from the parent. Is this always true, though? Not necessarily.

Think carefully about how the computers and networks within a subdomain are managed when choosing whether or not
to delegate it. It doesn't make sense to delegate a subdomain to an entity that doesn't manage its own hosts or
networks. For example, in a large corporation, the personnel department probably doesn't run its own computers: IT
(Information Technology) department manages them. So while you may want to create a subdomain for personnel,
delegating management for that subdomain to them is probably wasted effort.

10.4.1 Creating a Subdomain in the Parent's Zone

You can create a subdomain without delegating it, however. How? By creating resource records that refer to the
subdomain within the parent's zone.

Say one day a group of students approaches us, asking for a DNS entry for a web server for student home pages. The
name they'd like is www.students.movie.edu. You might think that we'd need to create a new zone,
students.movie.edu, and delegate to it from the movie.edu zone. Well, that's one way to do it, but it's easier to create
an A record for www.students.movie.edu in the movie.edu zone. We find that few people realize this is perfectly legal.
You don't need a new zone for each new level in the namespace. A new zone would make sense if the students were
going to run students.movie.edu by themselves and wanted to administer their own name servers. But they just want
one A record, so creating a whole new zone is more work than necessary.

It's easy to add this record with the DNS console. First create a students.movie.edu subdomain in the movie.edu zone,
then add the www.students.movie.edu A record. To create the subdomain, right-click on the zone in the left pane and
select New Domain. You'll see a window like the one shown in Figure 10-1.

Figure 10-1. Creating a subdomain in a zone

Enter the name of the new subdomain. You don't need to append movie.edu—the DNS console knows what you mean.
You'll then see a folder icon for the new domain in the DNS console, as shown in Figure 10-2.

Figure 10-2. The students.movie.edu subdomain in the movie.edu zone

To enter the www.students.movie.edu A record, just select the students folder and follow the procedures described

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To enter the www.students.movie.edu A record, just select the students folder and follow the procedures described
previously to add a new host.

In fact, you can even skip the Add Domain step and use the Add Host (A) function to add the host's address record
and implicitly create the students.movie.edu subdomain (if it hasn't already been created). Just specify www.students in
the Name field and voila! You've created an address for www.students.movie.edu.

Now users can access www.students.movie.edu to get to the students' home pages. We could make this setup
especially convenient for students by adding students.movie.edu to their PCs' or workstations' search lists; they'd need
to type only www as the URL to get to the right host.

Did you notice there's no SOA record for students.movie.edu? There's no need for one since the movie.edu SOA record
indicates the start of authority for the entire movie.edu zone. Since there's no delegation to students.movie.edu, it's
part of the movie.edu zone.

10.4.2 Creating and Delegating a Subdomain

If you decide to delegate your subdomains—to send your children out into the world, as it were—you'll need to do
things a little differently. We're in the process of doing it now, so you can follow along with us.

We need to create a new subdomain of movie.edu for our special-effects lab. We've chosen the name fx.movie.edu
—short, recognizable, unambiguous. Because we're delegating fx.movie.edu to administrators in the lab, it'll be a
separate zone. The hosts bladerunner and outland, both within the special-effects lab, will serve as the zone's name
servers (bladerunner will serve as the primary master). We've chosen to run two name servers for the zone for
redundancy—a single fx.movie.edu name server would be a single point of failure that could effectively isolate the
entire special-effects lab. Since there aren't many hosts in the lab, though, two name servers should be enough.

The special-effects lab is on movie.edu's new 192.253.254/24 network. Here are the partial contents of HOSTS:

192.253.254.1 movie-gw.movie.edu movie-gw
fx primary
192.253.254.2 bladerunner.fx.movie.edu bladerunner br
fx secondary
192.253.254.3 outland.fx.movie.edu outland
192.253.254.4 starwars.fx.movie.edu starwars
192.253.254.5 empire.fx.movie.edu empire
192.253.254.6 jedi.fx.movie.edu jedi

First, we make sure the Microsoft DNS Server is installed on the new server, bladerunner. Then we create the new zone
fx.movie.edu on bladerunner using the process described in the section "Creating a New Zone" in Chapter 4. We also
create the corresponding in-addr.arpa zone, 254.253.192.in-addr.arpa. Next, we populate the zone with all the hosts
from our snippet of HOSTS, making sure the DNS console automatically adds the PTR records that correspond to our A
records. We then add MX records for all of our hosts, pointing to starwars.fx.movie.edu and wormhole.movie.edu, at
preferences 10 and 100, respectively.

The zone datafile we end up with, called fx.movie.edu.dns, looks like this:

;
; Database file fx.movie.edu.dns for fx.movie.edu zone.
; Zone version: 22
;

@ IN SOA bladerunner.fx.movie.edu.
administrator.fx.movie.edu. (
 22 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS bladerunner.fx.movie.edu.
@ NS outland.fx.movie.edu.

;
; Zone records
;

@ MX 100 wormhole.movie.edu.
@ MX 10 starwars.fx.movie.edu.

bladerunner A 192.253.254.2
 MX 100 wormhole.movie.edu.
 MX 10 starwars.fx.movie.edu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MX 10 starwars.fx.movie.edu.

empire A 192.253.254.5
 MX 100 wormhole.movie.edu.
 MX 10 starwars.fx.movie.edu.

jedi A 192.253.254.6
 MX 10 starwars.fx.movie.edu.
 MX 100 wormhole.movie.edu.

outland A 192.253.254.3
 MX 100 starwars.fx.movie.edu.
 MX 10 starwars.fx.movie.edu.

starwars A 192.253.254.4
 MX 100 wormhole.movie.edu.
 MX 10 starwars.fx.movie.edu.

Note that we added an NS record for outland.fx.movie.edu even though we didn't strictly need to: the DNS console
would have added it for us when we added outland as a secondary. But adding the NS record lets us restrict zone
transfers to name servers listed in NS records and still set up the secondary on outland. We'll do this for the reverse-
mapping zone, too.

The 254.253.192.in-addr.arpa.dns file ends up looking like this:

;
; Database file 254.253.192.in-addr.arpa.dns for 254.253.192.in-addr.arpa zone.
; Zone version: 14
;

@ IN SOA bladerunner.fx.movie.edu.
administrator.fx.movie.edu. (
 14 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS bladerunner.fx.movie.edu.
bladerunner.fx.movie.edu. A 192.253.254.2
@ NS outland.fx.movie.edu.
outland.fx.movie.edu. A 192.253.254.3

;
; Zone records
;

1 PTR movie-gw.movie.edu.
2 PTR bladerunner.fx.movie.edu.
3 PTR outland.fx.movie.edu.
4 PTR starwars.fx.movie.edu.
5 PTR empire.fx.movie.edu.
6 PTR jedi.fx.movie.edu.

Notice that the PTR record for 1.254.253.192.in-addr.arpa points to movie-gw.movie.edu. That's intentional. The router
connects to the other movie.edu networks, so it really doesn't belong in fx.movie.edu. There's no requirement that all
the PTR records in 254.253.192.in-addr.arpa map into a single zone, although they should correspond to the canonical
names for those hosts.

Now we need to configure bladerunner's resolver. Following the directions in Chapter 6, we configure bladerunner to
send queries to its own IP address. Then we set bladerunner's domain to fx.movie.edu.

Now we'll use nslookup to look up a few hosts in fx.movie.edu and in 254.253.192.in-addr.arpa:

C:\> nslookup
Default Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

> jedi
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

Name: jedi.fx.movie.edu
Address: 192.253.254.6

> set type=mx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> set type=mx
> empire
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

empire.fx.movie.edu MX preference = 10, mail exchanger = starwars.fx.movie.edu
empire.fx.movie.edu MX preference = 100, mail exchanger = wormhole.movie.edu
starwars.fx.movie.edu internet address = 192.253.254.4

> ls fx.movie.edu
[bladerunner.fx.movie.edu]
 fx.movie.edu. NS server = bladerunner.fx.movie.edu
 fx.movie.edu. NS server = outland.fx.movie.edu
 bladerunner A 192.253.254.2
 empire A 192.253.254.5
 jedi A 192.253.254.6
 outland A 192.253.254.3
 starwars A 192.253.254.4
> set type=ptr
> 192.253.254.3
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

3.254.253.192.in-addr.arpa name = outland.fx.movie.edu
> ls 254.253.192.in-addr.arpa
[bladerunner.fx.movie.edu]
 254.253.192.in-addr.arpa. NS server = bladerunner.fx.movie.edu
 254.253.192.in-addr.arpa. NS server = outland.fx.movie.edu
 1 PTR host = movie-gw.movie.edu
 2 PTR host = bladerunner.fx.movie.edu
 3 PTR host = outland.fx.movie.edu
 4 PTR host = starwars.fx.movie.edu
 5 PTR host = empire.fx.movie.edu
 6 PTR host = jedi.fx.movie.edu
> exit

The output looks reasonable, so it's safe to set up a secondary name server for fx.movie.edu and then delegate
fx.movie.edu from movie.edu.

10.4.2.1 An fx.movie.edu secondary

Setting up the secondary name server for fx.movie.edu is simple: use the DNS console to add outland as a new server,
then add two secondary zones, according to the instructions in Chapter 4.

Like bladerunner, outland's resolver will point to the local name server, and we'll configure the local domain to be
fx.movie.edu.

10.4.2.2 On the movie.edu primary master name server

All that's left now is to delegate the fx.movie.edu subdomain to the new fx.movie.edu name servers on bladerunner and
outland. Right-click on the parent domain, movie.edu, in the left pane and choose New Delegation, which starts the
New Delegation Wizard. Click Next in the welcome screen to display a screen like the one shown in Figure 10-3. The
first step is entering the name of the delegated subdomain, which we've done.

Figure 10-3. Entering the name of the delegated subdomain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click Next and you'll be presented with a window to choose the name servers to host (i.e., be authoritative for) the
delegated zone. Our two servers are bladerunner.fx.movie.edu and outland.fx.movie.edu, so we enter the appropriate
information by clicking Add (we have to run through the add process twice, once for each name server), resulting in a
window like Figure 10-4.

Figure 10-4. Choosing name servers for the delegated zone

The final window of the wizard is just for confirmation, so we won't bother to show it. Click Finish and you've delegated
a zone. The DNS console adds a special gray icon for delegated zones; if you select this icon, you'll see the NS records
added by the wizard. These records perform the actual delegation. A sample DNS console view showing the
fx.movie.edu delegation appears in Figure 10-5.

Figure 10-5. The DNS console showing a delegated zone

According to RFC 1034, the domain names in the resource record-specific portion (the "right side") of the
bladerunner.fx.movie.edu and outland.fx.movie.edu NS records must be the canonical domain names for the name
servers. A remote name server following delegation expects to find one or more address records attached to that
domain name, not an alias (CNAME) record. Actually, the RFC extends this restriction to any type of resource record
that includes a domain name as its value—all must specify the canonical domain name.

These two records alone aren't enough, though. Do you see the problem? How can a name server outside of
fx.movie.edu look up information within fx.movie.edu? Well, a movie.edu name server would refer it to the name
servers authoritative for fx.movie.edu, right? That's true, but the NS records in movie.edu give only the names of the
fx.movie.edu name servers. The foreign name server needs the IP addresses of the fx.movie.edu name servers in order
to send queries to them. Who can give it those addresses? Only the fx.movie.edu name servers. A real chicken-and-egg
problem!

The solution is to include the addresses of the fx.movie.edu name servers in movie.edu. Although these aren't strictly
part of the movie.edu zone, delegation to fx.movie.edu won't work without them. Of course, if the name servers for
fx.movie.edu weren't within fx.movie.edu, these addresses—called glue records—wouldn't be necessary. A foreign
name server would be able to find the address it needed by querying other name servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We don't have to worry about adding these records, though—the New Delegation Wizard takes care of it for us.

Also, remember to keep the glue up-to-date. If bladerunner gets a new network interface, and hence another IP
address, you'll need to update the glue data. The DNS console doesn't let you edit the glue records directly, though.
You have use the name server modification window. With the DNS console showing a view like Figure 10-5, double-click
on an NS record in the right pane to produce a window like the one shown in Figure 10-6.

Figure 10-6. Name server modification window

If fx.movie.edu's delegation changes—i.e., a name server gets added or deleted or a name server's IP address changes
—use the Add, Edit, or Remove buttons to make the appropriate changes.

We might also want to include aliases for any hosts moving into fx.movie.edu from movie.edu. For example, if we move
plan9.movie.edu, a server with an important library of public-domain special-effects algorithms, into fx.movie.edu, we
should create an alias under movie.edu pointing the old domain name to the new one. In the zone datafile, the record
would look like this:

plan9 IN CNAME plan9.fx.movie.edu.

This will allow people outside of movie.edu to reach plan9 even though they're using its old domain name,
plan9.movie.edu.

Don't get confused about the zone in which this alias belongs. The plan9 alias record is actually in the movie.edu zone,
so it belongs in the file movie.edu.dns. An alias pointing p9.fx.movie.edu to plan9.fx.movie.edu, on the other hand, is in
the fx.movie.edu zone and belongs in fx.movie.edu.dns.

10.4.2.3 Delegating an in-addr.arpa zone

We almost forgot to delegate the 254.253.192.in-addr.arpa zone! This is a little trickier than delegating fx.movie.edu
because we don't manage the parent zone.

First, we need to figure out what 254.253.192.in-addr.arpa's parent zone is and who runs it. Figuring this out may take
some sleuthing; we covered how to do this in Chapter 3.

As it turns out, the 192.in-addr.arpa zone is 254.253.192.in-addr.arpa's parent. And, if you think about it, that makes
sense. There's no reason for the administrators of 192.in-addr.arpa to delegate 253.192.in-addr.arpa to a separate
authority because, unless 192.253/16 is all one big CIDR block, networks like 192.253.253/24 and 192.253.254/24
don't have anything in common with each other. They may be managed by totally unrelated organizations.

To find out who runs 192.in-addr.arpa, we can use nslookup or whois, as we demonstrated in Chapter 3. Here's how
we'd use nslookup to find the administrator:

C:\> nslookup
Default Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

> set type=soa
> set norecurse
> 253.192.in-addr.arpa.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> 253.192.in-addr.arpa.
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

192.in-addr.arpa
 primary name server = arrowroot.arin.net
 responsible mail addr = bind.arin.net
 serial = 2003070219
 refresh = 1800 (30 mins)
 retry = 900 (15 mins)
 expire = 691200 (8 days)
 default TTL = 10800 (3 hours)
>

So ARIN is responsible for 192.in-addr.arpa. (Remember them from Chapter 3?) All that's left is for us to submit the
form at http://www.arin.net/library/templates/net-end-user.txt to request registration of our reverse-mapping zone.

10.4.2.4 Adding a movie.edu secondary

If the special-effects lab gets big enough, it may make sense to put a movie.edu secondary somewhere on the
192.253.254/24 network. That way, a larger proportion of DNS queries from fx.movie.edu hosts can be answered
locally. It seems logical to make one of the existing fx.movie.edu name servers into a movie.edu secondary, too—that
way, we can make better use of an existing name server instead of setting up a brand-new name server.

We've decided to make bladerunner a secondary for movie.edu. This won't interfere with bladerunner's primary mission
as the primary master name server for fx.movie.edu. A single name server, given enough memory, can be authoritative
for literally thousands of zones. One name server can load some zones as a primary master and others as a
secondary.[1]

[1] Clearly, though, a name server can't be both the primary master and a secondary for a single zone. The name
server gets the data for a given zone either from a local zone datafile (and is a primary master for the zone) or
from another name server (and is a secondary for the zone).

The configuration change is simple: we use the DNS console to add a secondary zone to bladerunner and tell
bladerunner to get the movie.edu zone data from terminator's IP address, per the instructions in Chapter 4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.5 Subdomains of in-addr.arpa Domains
Forward-mapping domains aren't the only domains you can divide into subdomains and delegate. If your in-addr.arpa
namespace is large enough, you may need to divide it, too. Typically, you divide the domain that corresponds to your
network number into subdomains that correspond to your subnets. How that works depends on the type of network you
have and on your network's subnet mask.

10.5.1 Subnetting on an Octet Boundary

Since Movie U. has just three /24 (Class C-sized) networks, one per segment, there's no particular need to subnet
those networks. However, our sister university, Altered State, has a Class B-sized network, 172.20/16. Their network is
subnetted between the third and fourth octet of the IP address; that is, their subnet mask is 255.255.255.0. They've
already created a number of subdomains of their domain: altered.edu, including fx.altered.edu (okay, we copied them);
makeup.altered.edu; and foley.altered.edu. Since each of these departments also runs its own subnet (their Special
Effects department runs subnet 172.20.2/24, Makeup runs 172.20.15/24, and Foley runs 172.20.25/24), they'd like to
divvy up their in-addr.arpa namespace appropriately, too.

Delegating in-addr.arpa subdomains is no different from delegating subdomains of forward-mapping domains. First,
they or their departments create three new zones, 2.20.172.in-addr.arpa, 15.20.172.in-addr.arpa, and 25.20.172.in-
addr.arpa. The 20.172.in-addr.arpa administrators also need to add the NS records with the New Delegation Wizard, as
we described in the fx.movie.edu example earlier in this chapter. Figure 10-7 shows how the second screen of the New
Delegation Wizard would look when adding delegation to the 2.20.172.in-addr.arpa zone:

Figure 10-7. Adding reverse-mapping delegation using the New Delegation Wizard

After running the New Delegation Wizard, the NS records in 20.172.in-addr.arpa.dns would look something like the
following partial listing of the file's contents:

;
; Delegated sub-zone: 15.20.172.in-addr.arpa.
;
15 NS prettywoman.makeup.altered.edu.
prettywoman.makeup.altered.edu. A 172.20.15.2
15 NS priscilla.makeup.altered.edu.
priscilla.makeup.altered.edu. A 172.20.15.3
; End delegation

;
; Delegated sub-zone: 2.20.172.in-addr.arpa.
;
2 NS gump.fx.altered.edu.
gump.fx.altered.edu. A 172.20.2.1
2 NS toystory.fx.altered.edu.
toystory.fx.altered.edu. A 172.20.2.5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

toystory.fx.altered.edu. A 172.20.2.5
; End delegation

;
; Delegated sub-zone: 25.20.172.in-addr.arpa.
;
25 NS blowup.foley.altered.edu.
blowup.foley.altered.edu. A 172.20.25.10
25 NS muppetshow.foley.altered.edu.
muppetshow.foley.altered.edu. A 172.20.25.2
; End delegation

The Altered State administrators needed to use the fully qualified domain names of the name servers in the NS records
because the default origin in this file is 20.172.in-addr.arpa. Strictly speaking, those glue address records aren't needed
since the names of the name servers to which they delegated the zone weren't in the delegated zones. We were a little
chagrined to discover that the DNS console forced us to enter IP addresses for these name servers and then put them
in 20.172.in-addr.arpa.dns. The name server even includes them in a zone transfer of the 20.172.in-addr.arpa zone.
Since the glue records are not required, all that is unnecessary.

10.5.2 Subnetting on a Nonoctet Boundary

What do you do about networks that aren't subnetted neatly on octet boundaries, like subnetted /24 (Class C-sized)
networks? In these cases, you can't delegate along lines that match the subnets. This forces you into one of two
situations: you have multiple subnets per in-addr.arpa zone or you have multiple in-addr.arpa zones per subnet.
Neither is particularly pleasing.

10.5.2.1 Class A and B networks

Let's take the case of the /8 (Class A-sized) network 15/8, subnetted with the subnet mask 255.255.248.0 (a 13-bit
subnet field and an 11-bit host field, or 8,192 subnets of 2,048 hosts). In this case, the subnet 15.1.200.0, for
example, extends from 15.1.200.0 to 15.1.207.255. Therefore, the delegation for that single subdomain in db.15, the
zone datafile for 15.in-addr.arpa, might look like this:

200.1 NS ns-1.cns.hp.com.
200.1 NS ns-2.cns.hp.com.
201.1 NS ns-1.cns.hp.com.
201.1 NS ns-2.cns.hp.com.
202.1 NS ns-1.cns.hp.com.
202.1 NS ns-2.cns.hp.com.
203.1 NS ns-1.cns.hp.com.
203.1 NS ns-2.cns.hp.com.
204.1 NS ns-1.cns.hp.com.
204.1 NS ns-2.cns.hp.com.
205.1 NS ns-1.cns.hp.com.
205.1 NS ns-2.cns.hp.com.
206.1 NS ns-1.cns.hp.com.
206.1 NS ns-2.cns.hp.com.
207.1 NS ns-1.cns.hp.com.
207.1 NS ns-2.cns.hp.com.

That's a lot of delegation for one subnet!

You'd set this up with the DNS console by running the New Delegation Wizard (eight times!) and specifying two labels of
the domain name of the delegated domain, as shown in Figure 10-8.

Figure 10-8. Using the New Delegation Wizard to add reverse-mapping delegation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5.2.2 /24 (Class C-sized) networks

In the case of a subnetted /24 (Class C-sized) network, say 192.253.254/24, subnetted with the mask
255.255.255.192, you have a single in-addr.arpa zone, 254.253.192.in-addr.arpa, that corresponds to subnets
192.253.254.0/26, 192.253.254.64/26, 192.253.254.128/26, and 192.253.254.192/26. This can be a problem if you
want to let different organizations manage the reverse-mapping information that corresponds to each subnet. You can
solve this in one of three ways, none of which is pretty.

10.5.2.2.1 Solution 1

The first solution is to administer the 254.253.192.in-addr.arpa zone as a single entity and not even try to delegate.
This requires either cooperation between the administrators of the four subnets involved or the use of a tool like the
DNS console to allow each of the four administrators to take care of her own data.

10.5.2.2.2 Solution 2

The second solution is to delegate at the fourth octet. That's even nastier than the /8 delegation we just showed. You'll
need at least a couple of NS records per IP address. To set this up with the DNS console, you'd need to create the
254.253.192.in-addr.arpa zone and run the New Delegation Wizard 254 times, one for each usable value in the fourth
octet. Here's how the 254.253.192.in-addr.arpa.dns file might end up looking (we've removed the unnecessary glue A
records for clarity and brevity):

;
; Delegated sub-zone: 1.254.253.192.in-addr.arpa.
;
1 NS ns1.foo.com.
ns1.foo.com. A 10.0.0.1
1 NS ns2.foo.com.
ns2.foo.com. A 10.0.0.2
; End delegation

;
; Delegated sub-zone: 2.254.253.192.in-addr.arpa.
;
2 NS ns1.foo.com.
ns1.foo.com. A 10.0.0.1
2 NS ns2.foo.com.
ns2.foo.com. A 10.0.0.2
; End delegation

 . . .

; Delegated sub-zone: 65.254.253.192.in-addr.arpa.
;
65 NS gw.bar.com.
gw.bar.com. A 10.0.1.1
65 NS relay.bar.com.
relay.bar.com. A 10.0.1.2
; End delegation

; Delegated sub-zone: 66.254.253.192.in-addr.arpa.
;
66 NS gw.bar.com.
gw.bar.com. A 10.0.1.1
66 NS relay.bar.com.
relay.bar.com. A 10.0.1.2
; End delegation

 . . .

;
; Delegated sub-zone: 129.254.253.192.in-addr.arpa.
;
129 NS mail.baz.com.
mail.baz.com. A 10.0.2.1
129 NS www.baz.com.
www.baz.com. A 10.0.2.2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

www.baz.com. A 10.0.2.2
; End delegation

;
; Delegated sub-zone: 193.254.253.192.in-addr.arpa.
;
193 NS mail.baz.com.
mail.baz.com. A 10.0.2.1
192 NS www.baz.com.
www.baz.com. A 10.0.2.2
; End delegation

And so on, all the way down to 254.254.253.192.in-addr.arpa. Of course, on ns1.foo.com, you'd also expect the name
server to be authoritative for 1.254.253.192.in-addr.arpa, and in the zone datafile for 1.254.253.192.in-addr.arpa,
you'd find just the one PTR record (plus an SOA and two NS records):

;
; Database file 1.254.253.192.in-addr.arpa.dns for 1.254.253.192.in-addr.arpa zone.
; Zone version: 4
;

@ IN SOA ns1.foo.com. hostmaster.foo.com. (
 4 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS ns1.foo.com.
ns1.foo.com. A 10.0.0.1
@ NS ns2.foo.com.
ns2.foo.com. A 10.0.0.2

;
; Zone records
;

@ PTR thereitis.foo.com.

When you create the child zone with the DNS console, check the radio button labeled Reverse lookup zone name in
the New Zone Wizard, since with Network ID checked, you can't enter all four octets of the IP address.

Note that the PTR record is attached to the zone's domain name, since the zone's domain name corresponds to just one
IP address. Now, when a 254.253.192.in-addr.arpa name server receives a query for the PTR record for
1.254.253.192.in-addr.arpa, it will refer the querier to ns1.foo.com and ns2.foo.com, which will respond with the one
PTR record in the zone.

10.5.2.2.3 Solution 3

Finally, there's a clever technique that obviates the need to maintain a separate zone datafile for each IP address.[2]

The organization responsible for the overall /24 network creates CNAME records for each of the domain names in the
zone, pointing to domain names in new subdomains, which are then delegated to the proper servers. These new
subdomains can be called just about anything, but names like 0-63, 64-127, 128-191, and 192-255 clearly indicate the
range of addresses each subdomain will reverse map. Each subdomain then contains only the PTR records in the range
for which the subdomain is named.

[2] We first saw this explained by Glen Herrmansfeldt at CalTech in the newsgroup comp.protocols.tcp-ip.domains.
It's now codified as RFC 2317.

Here is an excerpt from the 254.253.192.in-addr.arpa.dns file:

;
; Delegated sub-zone: 0-63.254.253.192.in-addr.arpa.
;

0-63 NS ns1.foo.com.
ns1.foo.com. A 10.0.0.1
0-63 NS ns2.foo.com.
ns2.foo.com. A 10.0.0.2
; End delegation

1 CNAME 1.0-63.254.253.192.in-addr.arpa.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 CNAME 1.0-63.254.253.192.in-addr.arpa.
 . . .

;
; Delegated sub-zone: 128-191.254.253.192.in-addr.arpa.
;

128-191 NS mail.baz.com.
mail.baz.com. A 10.0.2.1
128-191 NS www.baz.com.
www.baz.com. A 10.0.2.2
; End delegation

129 CNAME 129.128.191.254.253.192.in-addr.arpa.
130 CNAME 130.128-191.254.253.192.in-addr.arpa.
2 CNAME 2.0-63.254.253.192.in-addr.arpa.
 . . .

;
; Delegated sub-zone: 64-127.254.253.192.in-addr.arpa.
;

64-127 NS relay.bar.com.
relay.bar.com. A 10.0.1.1
64-127 NS gw.bar.com.
gw.bar.com. A 10.0.1.2
; End delegation

65 CNAME 65.64-127.254.253.192.in-addr.arpa.
66 CNAME 66.64-127.254.253.192.in-addr.arpa.
 . . .

The zone datafile for 0-63.254.253.192.in-addr.arpa, 0-63.254.253.192.in-addr.arpa.dns, can contain just PTR records
for IP addresses 192.253.254.1 through 192.253.254.63.

Here is part of the 0-63.254.253.192.in-addr.arpa.dns file:

;
; Database file 0-63.254.253.192.in-addr.arpa.dns for 0-63.254.253.192.in-addr.arpa zone.
; Zone version: 3
;

@ IN SOA ns1.foo.com. hostmaster.foo.com. (
 3 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS ns1.foo.com.
@ NS ns2.foo.com.

;
; Zone records
;

1 PTR thereitis.foo.com.
2 PTR setter.foo.com.
 . . .

The way this setup works is a little tricky, so let's go over it. A resolver requests the PTR record for 1.254.253.192.in-
addr.arpa, causing its local name server to go look up that record. The local name server ends up asking a
254.253.192.in-addr.arpa name server, which will respond with the CNAME record indicating that 1.254.253.192.in-
addr.arpa is actually an alias for 1.0-63.254.253.192.in-addr.arpa and that the PTR record is attached to that name.
The response will also include NS records telling the local name server that the authoritative name servers for 0-
63.254.253.192.in-addr.arpa are ns1.foo.com and ns2.foo.com. The local name server then queries either ns1.foo.com
or ns2.foo.com for the PTR record for 1.0-63.254.253.192.in-addr.arpa and receives the PTR record.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.6 Good Parenting
Now that the delegation to the fx.movie.edu name servers is in place, we—responsible parents that we are—should
check that delegation using DNSLint, available with the Windows Server 2003 Support Tools.

DNSLint makes it easy to check delegation. With DNSLint, you can look up the NS records for your zone on one of your
zone's authoritative name servers and query each name server listed for the zone's SOA record. The query is
nonrecursive, so the name server queried doesn't query other name servers to find the SOA record. If the name server
replies, DNSLint checks the reply to see whether the aa (authoritative answer) bit in the reply packet is set. If it is, the
name server checks to make sure that the packet contains an answer. If both these criteria are met, the name server is
flagged as authoritative for the zone. Otherwise, the name server is not authoritative, and DNSLint reports an error.

Why all the fuss over bad delegation? Incorrect delegation can slow name resolution or cause the propagation of old
and erroneous root name server information. When a name server is queried for data in a zone for which it is not
authoritative, it does its best to provide useful information to the querier. This "useful information" comes in the form of
NS records for the closest ancestor zone the name server knows. (We mentioned this briefly in Chapter 9, when we
discussed why you shouldn't register a caching-only name server.)

For example, say one of the fx.movie.edu name servers mistakenly receives an iterative query for the address of
carrie.horror.movie.edu. It knows nothing about the horror.movie.edu zone (except for what it might have cached), but
it likely has NS records for movie.edu cached since those are its parent name servers. So it would return those records
to the querier.

In that scenario, the NS records may help the querying name server get an answer. However, it's a fact of life on the
Internet that not all administrators keep their root hints files up-to-date. If one of your name servers follows a bad
delegation and queries a remote name server for records it doesn't have, look what can happen:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3
> set type=ns
> .
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
(root) nameserver = D.ROOT-SERVERS.NET
(root) nameserver = E.ROOT-SERVERS.NET
(root) nameserver = I.ROOT-SERVERS.NET
(root) nameserver = F.ROOT-SERVERS.NET
(root) nameserver = G.ROOT-SERVERS.NET
(root) nameserver = A.ROOT-SERVERS.NET
(root) nameserver = H.ROOT-SERVERS.NETNIC.NORDU.NET
(root) nameserver = B.ROOT-SERVERS.NET
(root) nameserver = C.ROOT-SERVERS.NET
(root) nameserver = A.ISI.EDU These three name
(root) nameserver = SRI-NIC.ARPA servers are no longer
(root) nameserver = GUNTER-ADAM.ARPA roots.

A remote name server tried to "help out" our local name server by sending it the current list of roots. Unfortunately, the
remote name server was corrupt and returned NS records that were incorrect. And our local name server, not knowing
any better, cached that data.

Queries to misconfigured in-addr.arpa name servers often result in bad root NS records because the in-addr.arpa and
arpa zones are the closest ancestors of most in-addr.arpa subdomains, and name servers very seldom cache either in-
addr.arpa's or arpa's NS records. (The roots rarely give them out since they delegate directly to lower-level
subdomains.) Once your name server has cached bad root NS records, your name resolution will almost certainly
suffer: your name server won't be contacting the "official" root name servers, and who knows what information they
will hand out?

Those root NS records may have your name server querying a root name server that is no longer at that IP address or
a root name server that no longer exists at all. If you're having an especially bad day, the bad root NS records may
point to a real, non-root name server that is close to your network. Even though it won't return authoritative root zone
data, your name server will favor it because of its proximity to your network.

10.6.1 Using DNSLint

If our little lecture has convinced you of the importance of maintaining correct delegation, you'll be eager to learn how
to use DNSLint to ensure that you don't join the ranks of the miscreants.

The first step is to use nslookup to look up your zone's NS records on a name server for your parent zone and make
sure they're correct. Here's how we'd check the fx.movie.edu NS records on one of the movie.edu name servers:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sure they're correct. Here's how we'd check the fx.movie.edu NS records on one of the movie.edu name servers:

C:\> nslookup -type=ns fx.movie.edu. terminator.movie.edu.

If everything's okay with the NS records, we'll simply see the NS records in the output:

fx.movie.edu nameserver = bladerunner.fx.movie.edu
fx.movie.edu nameserver = outland.fx.movie.edu

This tells us that all the NS records delegating fx.movie.edu from terminator.movie.edu are correct.

Next, we'll use DNSLint's "lame delegation check" mode to query each of the name servers in the NS records for the
fx.movie.edu zone's SOA record. This will also check whether the response was authoritative:

C:\> dnslint /d fx.movie.edu. -s 192.249.253.2

We have to use the /s switch to tell DNSLint the IP address of one of the authoritative name servers for fx.movie.edu.
Normally it would get this from whois, but whois doesn't contain information about zones as far down in the namespace
as fx.movie.edu.

This command produces HTML output that tells us the status of the fx.movie.edu name servers. Here's the text
equivalent of that output (which you get by using DNSLint's /t switch):

DNSLint Report

System Date: Sat Jul 05 18:58:05 2003

Command run:

dnslint /d fx.movie.edu /t /s 192.253.254.2

Domain name tested:

fx.movie.edu

DNS servers were identified as authoritative for the domain:

DNS server: bladerunner.fx.movie.edu
IP Address: 192.253.254.2
UDP port 53 responding to queries: YES
TCP port 53 responding to queries: Not tested
Answering authoritatively for domain: YES

SOA record data from server:
Authoritative name server: bladerunner.fx.movie.edu
Hostmaster: administrator.fx.movie.edu
Zone serial number: 10
Zone expires in: 1.00 day(s)
Refresh period: 900 seconds
Retry delay: 600 seconds
Default (minimum) TTL: 3600 seconds

Additional authoritative (NS) records from server:
outland.fx.movie.edu 192.253.254.3
bladerunner.fx.movie.edu 192.253.254.2

Mail Exchange (MX) records from server (preference/name/IP address):
100 wormhole.movie.edu 192.253.253.1
10 starwars.fx.movie.edu 192.253.254.4

DNS server: outland.fx.movie.edu
IP Address: 192.253.254.3
UDP port 53 responding to queries: YES
TCP port 53 responding to queries: Not tested
Answering authoritatively for domain: YES

SOA record data from server:
Authoritative name server: bladerunner.fx.movie.edu
Hostmaster: administrator.fx..movie.edu
Zone serial number: 10
Zone expires in: 1.00 day(s)
Refresh period: 900 seconds
Retry delay: 600 seconds
Default (minimum) TTL: 3600 seconds

Additional authoritative (NS) records from server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional authoritative (NS) records from server:
outland.fx.movie.edu 192.253.254.3
bladerunner.fx.movie.edu 192.253.254.2

Mail Exchange (MX) records from server (preference/name/IP address):
10 starwars.fx.movie.edu 192.253.254.4
100 wormhole.movie.edu 192.253.253.1

If one of the fx.movie.edu name servers—outland, for example—were misconfigured, we might see this:

DNS server: outland.fx.movie.edu
IP Address: 192.253.254.3
UDP port 53 responding to queries: YES
TCP port 53 responding to queries: Not tested
Answering authoritatively for domain: NO

SOA record data from server:
Authoritative name server: Unknown
Hostmaster: Unknown
Zone serial number: Unknown
Zone expires in: Unknown
Refresh period: Unknown
Retry delay: Unknown
Default (minimum) TTL: Unknown

This indicates that the name server on outland is running, but it's not authoritative for fx.movie.edu.

If one of the fx.movie.edu name servers weren't running at all, we'd see:

DNS server: outland.fx.movie.edu
IP Address: 192.253.254.3
UDP port 53 responding to queries: NO
TCP port 53 responding to queries: Not tested
Answering authoritatively for domain: Unknown

SOA record data from server:
Authoritative name server: Unknown
Hostmaster: Unknown
Zone serial number: Unknown
Zone expires in: Unknown
Refresh period: Unknown
Retry delay: Unknown
Default (minimum) TTL: Unknown

In this case, the UDP port 53 responding to queries: NO message indicates that DNSLint sent outland a query and didn't get
a response back in an acceptable amount of time.

Although we could have checked the fx.movie.edu delegation using nslookup, DNSLint makes the task especially easy.
We'll see more of DNSLint in Chapter 15.

10.6.2 Managing Delegation

If the special-effects lab gets bigger, we may find that we need additional name servers. We dealt with setting up new
name servers in Chapter 9 and even went over what information to send to the parent zone's administrator. But we
never explained what the parent needed to do.

It turns out that the parent's job is relatively easy, especially if the administrators of the subdomain send complete
information. Imagine that the special-effects lab expands to a new network, 192.254.20/24. They have a passel of new,
high-powered graphics workstations. One of them, alien.fx.movie.edu, will act as the new network's name server.

The administrators of fx.movie.edu (we delegated it to the folks in the lab) send their parent zone's administrators
(that's us) a short note:

Hi!

We've just set up alien.fx.movie.edu (192.254.20.3) as a name server for
fx.movie.edu.
Would you please update your delegation information? I've attached the NS
records you'll need to add.

Thanks,

Arty Segue
ajs@fx.movie.edu

----- cut here -----

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

----- cut here -----

fx.movie.edu. 86400 IN NS bladerunner.fx.movie.edu.
fx.movie.edu. 86400 IN NS outland.fx.movie.edu.
fx.movie.edu. 86400 IN NS alien.fx.movie.edu.

bladerunner.fx.movie.edu. 86400 IN A 192.253.254.2
outland.fx.movie.edu. 86400 IN A 192.253.254.3
alien.fx.movie.edu. 86400 IN A 192.254.20.3

Our job as the movie.edu administrator is straightforward: add the NS and A records to movie.edu. Once again, it's the
New Delegation Wizard to the rescue: select the gray fx.movie.edu folder in the DNS console's left pane and then
double-click on any of the NS records in the right pane. You'll see a window like the one shown previously in Figure 10-
6. Select Add to add the new NS record for alien.fx.movie.edu.

The final step for the fx.movie.edu administrator is to send a similar message to hostmaster@arin.net (administrator of
the 192.in-addr.arpa zone), requesting that the 20.254.192.in-addr.arpa subdomain be delegated to
alien.fx.movie.edu, bladerunner.fx.movie.edu, and outland.fx.movie.edu.

10.6.2.1 Managing delegation with stubs

In the Windows Server 2003 version of the Microsoft DNS Server, Microsoft now supports stub zones, which offer an
automatic way to track changes to delegation. A name server that's configured as a stub for a zone periodically sends
discrete queries for the zone's SOA and NS records, as well as any necessary glue A records. The name server then
uses the NS records to delegate the zone from its parent, and the SOA record governs how often the name server
sends these queries. Now, when the administrators of a subdomain make changes to the subdomain's name servers,
they simply update their NS records (and increment the serial number in the SOA record, of course). The parent zone's
authoritative name servers, configured as stub for the child zone, pick up the updated records within the refresh
interval.

To make the movie.edu name servers stubs for fx.movie.edu, we'd right-click on Forward Lookup Zones in the left
pane of the DNS console and choose New Zone. In the second window of the New Zone Wizard, we'd choose Stub
zone, as shown in Figure 10-9.

Figure 10-9. Adding a stub zone

The next window would prompt us for the name of the stub zone, fx.movie.edu, and the following for the name of the
zone datafile, where we'll accept the default. In the next-to-last window, we'll add the address of an authoritative name
server for fx.movie.edu, which our stub name server can query for the full list of the zone's NS records. (We can list
more than one authoritative name server for robustness, if we like.)

Note that we must configure all movie.edu name servers—including secondaries—as stubs for fx.movie.edu. Since the
fx.movie.edu NS records are part of the fx.movie.edu zone, they won't be included in movie.edu zone transfers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.7 Managing the Transition to Subdomains
We won't lie to you—the fx.movie.edu example we showed you was unrealistic for several reasons. The main one is the
magical appearance of the special-effects lab's hosts. In the real world, the lab would have started out with a few hosts,
probably in the movie.edu zone. After a generous endowment, an NSF grant, or a corporate gift, they might expand the
lab a little and buy a few more computers. Sooner or later, the lab would have enough hosts to warrant the creation of
a new subdomain. By that point, however, many of the original hosts would be well known by their names under
movie.edu.

We briefly touched on using CNAME records in the parent zone (in our plan9.movie.edu example) to help people adjust
to a host's change of domain. But what happens when you move a whole network or subnet into a new subdomain?

The strategy we recommend uses CNAME records in much the same way, but on a larger scale. Using the DNS console,
you can create CNAMEs for hosts. This allows users to continue using the old domain names for any of the hosts that
have moved. When they telnet or ftp (or whatever) to those hosts, however, the command will report that they're
connected to a host in fx.movie.edu:

C:\> telnet plan9

Trying . . .
Connected to plan9.fx.movie.edu.
Escape character is '^]'.

HP-UX plan9.fx.movie.edu A.09.05 C 9000/735 (ttyu1)

login:

Some users, of course, don't notice subtle changes like this, so you should also do some public relations work and notify
folks of the change.

How do you create all these aliases? Well, you could do it manually using the DNS console, CNAME record by CNAME
record. Or you could use a Perl script to create CNAME records for every host in fx.movie.edu.dns:

#
Simple Perl script to create aliases
Run with <script> <domain name of child zone>
#
die "Usage: $0 <child zone>\n" if $#ARGV!=0;

open(ZDF, "$ARGV[0].dns") || die "Couldn't open $ARGV[0]: $!\n";

($label, $parent) = split(/\./, $ARGV[0], 2);
$parent .= ".dns";

open(PZDF, ">>$parent") || die "Couldn't open $parent: $!\n";

while (<ZDF>) {
 if (/\s+IN\s+A\s+/) {
 ($host, $rest) = split(/[\s\.]/, $_, 2);
 printf PZDF "%s IN CNAME %s.%s.\n", $host, $host, $ARGV[0];
 }
};

10.7.1 Removing Parent Aliases

Although parent-level aliases are useful for minimizing the impact of moving your hosts, they're also a crutch of sorts.
Like a crutch, they'll restrict your freedom. They'll clutter up your parent namespace when one of your motivations for
implementing a subdomain may have been making the parent zone smaller. And they'll prevent you from using the
names of hosts in the subdomain as names for hosts in the parent zone.

After a grace period—which should be well advertised to users—you should remove all the aliases, with the possible
exception of aliases for extremely well-known Internet hosts. During the grace period, users can adjust to the new
domain names and modify scripts and the like. But don't get suckered into leaving all those aliases in the parent zone;
they defeat part of the purpose of DNS because they prevent you and your subdomain administrator from naming hosts
autonomously.

You might want to leave CNAME records for well-known Internet hosts or central network resources intact because of
the potential impact of a loss of connectivity. On the other hand, rather than moving the well-known host or central
resource into a subdomain at all, it might be better to leave it at the parent zone level.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.8 The Life of a Parent
That's a lot of parental advice to digest in one sitting, so let's recap the highlights of what we've talked about. The life
cycle of a typical parent goes something like this:

1. You have a single zone with all of your hosts in that zone.

2. You break your zone into a number of subdomains, some of them in the same zone as the parent, if necessary.
You provide CNAME records in the parent zone for well-known hosts that have moved into subdomains.

3. After a grace period, you delete any remaining CNAME records.

4. You handle subdomain delegation updates, either manually or by using stubs, and periodically check delegation.

Okay, now that you know all there is to parenting, let's go on to talk about more advanced name server features. You
may need some of these tools to keep those kids in line.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. Advanced Features and Security
"What's the use of their having names," the Gnat said, "if they won't answer to them?"

In this chapter, we'll cover some of the Microsoft DNS Server's more advanced features and suggest how they might
come in handy in your DNS infrastructure. We cover some new ways to make changes to zone data, how DNS is linked
with WINS and what to do about it, load balancing, using forwarders to set up a sitewide cache, and IPv6. We cover
DNS security as well, though we save some of the hardcore firewall material for Chapter 16.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 New Ways to Make Changes
In Chapter 4 we described the traditional method for making changes to zone data and how those changes are
propagated: any changes to a zone are made on the zone's primary server, and secondary servers periodically poll the
primary to check if the zone has changed. If the zone has new information, the secondaries perform a zone transfer to
download the entire zone. This scheme is effective but inefficient and it's not suitable for every environment. The DNS
console is great for making changes by hand, but what about automated changes (say you want to have a program
change information in a zone)? It can also be frustrating to wait for all the secondaries to be updated with the new
information. And for a large zone, it's a waste of time and bandwidth to transfer the entire zone if only a single record
was added or deleted.

The next three sections describe relatively recent changes to the DNS protocol called dynamic update, NOTIFY, and
incremental zone transfer that work together to address these issues. The Microsoft DNS Server implements all three.

11.1.1 Dynamic Update

Dynamic update was implemented in the Microsoft DNS Server starting with Windows 2000. Like many other protocols
used by Windows, it's an Internet standard, defined in RFC 2136. Dynamic update allows a name server to be updated
by sending it a message over the network. This is a big improvement over the traditional method, which requires a
human to fire up the DNS console to make the change in person. Dynamic update allows nonhumans—i.e., programs—
to easily update DNS information. Dynamic update is now used extensively in Windows: a modern Windows client uses
it to add an A record to DNS for its IP address and recent Windows DHCP servers also use dynamic update to add PTR
records as they assign leases.

No security is built into the dynamic update protocol. It's up to an individual name server to decide whether or not to
accept an update message. About the only means of authentication a name server has is to look at the source IP
address of the dynamic update message, and that's not a very strong means of authentication at all: it's easy to "spoof"
or forge a packet's source IP address. And since a complete dynamic update message travels in a single UDP packet, all
an attacker needs to know is an IP address that the name server accepting dynamic updates trusts. The Bad Guy just
creates a dynamic update with a spoofed source IP address and sends it to the unsuspecting name server.

This deficiency begs for some stronger security based on cryptography, which fortunately has been developed. The DNS
standards community developed a protocol extension to use transaction signatures to sign any kind of DNS message—
including dynamic updates—sent between two parties: client to server, server to server, dynamic updater to server,
etc.

The transaction signatures, or TSIGs for short, in DNS use a technique called HMAC—Keyed-Hashing for Message
Authentication (see RFC 2104)—which employs a shared secret and a one-way cryptographic hash function to sign
data. A shared secret is like a password known only to the two parties involved in exchanging data. A one-way
cryptographic hash function computes a fixed-size checksum based on any amount of input. What differentiates a
cryptographic hash function, such as MD5 or SHA1, from a run-of-the-mill checksum, such as a CRC (Cyclic Redundancy
Check), is that it's computationally infeasible to find two different input streams that produce the same hash output.
With a CRC checksum, on the other hand, the algorithm is easily reversible: given any checksum, it's trivial to calculate
an input stream to generate that checksum. Another property of a good cryptographic hash function is that varying the
input by even a small amount—such as changing just one bit—produces a major change in the hash output. In other
words, the hash output is like a fingerprint of the original input.

A transaction signature is so-named because it's ephemeral: the signature applies only to a single transaction and is not
reusable. Let's say a client wants to send a dynamic update signed with a TSIG to the appropriate name server. After
generating the dynamic update message, it appends the secret it shares with the server to the message and runs
everything through MD5. The output is the TSIG itself, which is placed into a TSIG resource record that goes in the
dynamic update message. Since TSIGs are generated on the fly like this, you see a TSIG record only on a packet
sniffer, never in the DNS console or a zone datafile. Note that TSIG doesn't encrypt the data being sent: it only
authenticates it. HMAC is illustrated in Figure 11-1.

Figure 11-1. HMAC illustrated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One difficulty with TSIG is distributing the shared secrets. Imagine having hundreds of clients that need to send TSIG-
signed dynamic updates to a name server: that would require generating hundreds of keys and distributing them
securely to each client. Microsoft found itself in just such a predicament. As we discussed in Chapter 8, individual
Windows clients do send dynamic updates to name servers. TSIG is a requirement for these transactions to happen
securely, but it's not feasible to statically configure shared secrets on each Windows client. The solution: Kerberos to
the rescue!

Windows Server 2003 (and Windows 2000 before it) uses Kerberos for authentication and authorization. Kerberos
allows two parties who want to communicate securely to negotiate the necessary information to do so. Every Windows
Server 2003 domain controller is a Kerberos Key Distribution Center, or KDC. Every modern Windows client and server
is a Kerberos "principal." Every Kerberos principal shares a secret with the KDC. (This shared secret is generated when
the host is joined to the domain.) The KDC acts as a trusted third party that allows two principals to communicate
securely. For example, suppose a client named Alice wants to send an encrypted message to a client named Bob. Alice
asks the KDC to help negotiate a session key[1] with Bob. Alice and Bob don't (yet) trust each other, but they do trust
the KDC, which facilitates distributing the session key to each of them. This explanation is quite an oversimplification of
how Kerberos actually works, but it does show the underlying concepts.

[1] As the name implies, a session key is a short-lived key usually used for a single conversation.

Microsoft extended TSIG in Windows to use Kerberos. A Windows client that wants to send a TSIG-signed dynamic
update message to a name server doesn't have to be statically configured to share a secret with that server. The client
uses Kerberos to obtain a session key, which serves as a one-time shared secret. This variant of TSIG is called GSS-
TSIG and is documented in an Internet-Draft.[2]

[2] GSS stands for Generic Security Service. At the time of this writing, GSS-TSIG was not yet an Internet standard
but was on track to become one. Internet-Drafts may be found at http://www.ietf.org/1id-abstracts.html/.

The Microsoft DNS Server supports GSS-TSIG for securing dynamic updates, but only for zones that are AD-integrated
(stored in Active Directory as opposed to a zone datafile). GSS-TSIG-secured dynamic updates allow quite fine-grained
access control to a zone's contents. For example, the server can allow only the specific host that added an A record for
itself to change or remove that record. This extra authorization can't be stored in a zone datafile—there aren't the
necessary fields—so the server needs to store a zone in Active Directory to support secure dynamic updates. More
information about AD-integrated zones and secure dynamic updates can be found in Chapter 8.

11.1.2 NOTIFY (Zone Change Notification)

As we described earlier, secondaries have traditionally used a polling scheme to determine when they need a zone
transfer. The polling interval is called the refresh time and it's specified as a field in a zone's SOA record. Other
parameters in the zone's SOA record govern other aspects of the polling mechanism.

But this scheme requires the secondaries to ask the primary, "Has the zone changed yet?", over and over. Wouldn't it
be nice if the primary name server could tell its secondary servers when the information in a zone changed? After all,
the primary name server knows the data has changed: every time a zone is changed with the DNS console or a
dynamic update message is received, the server immediately changes the zone in its memory. The primary's
notification can come soon after the actual modification instead of waiting for the refresh interval to expire.

RFC 1996 describes a mechanism that allows primary servers to notify their secondaries of changes to a zone's data.
The Microsoft DNS Server implements this protocol, called NOTIFY for short.

NOTIFY works like this: when a primary name server notices a change to data in a zone, it sends a special notification
message to all secondary servers for that zone. It uses the list of NS records in the zone to build the list of servers to
notify. The primary removes any NS record corresponding to the local host, which prevents it from sending a
notification message to itself. You can also override using the list of NS records and specify your own list of secondary
servers to notify.

The special NOTIFY request is identified by its opcode in the query header. The opcode for most queries is QUERY.
NOTIFY messages have a special opcode, NOTIFY. Other than that, the request looks much like a query for the SOA
record for the zone: it specifies the zone's domain name, class, and a type of SOA.

When a secondary receives a NOTIFY request for a zone from one of its configured master name servers, it sends a
NOTIFY response. The response tells the master that the secondary received the NOTIFY request and to stop sending
NOTIFY messages for the zone. Then the secondary proceeds just as if the zone's refresh timer had expired: it queries
the master server for the SOA record for the zone the master claimed had changed. If the serial number is higher, the
secondary performs the zone transfer, using an incremental zone transfer if possible (see the next section for details on
this new kind of zone transfer).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this new kind of zone transfer).

Why doesn't the secondary simply take the master's word that the zone has changed? It's possible that a miscreant
could forge NOTIFY requests to our secondaries, causing lots of unnecessary zone transfers that might amount to a
denial-of-service attack against our master server.

If the secondary actually transfers the zone, RFC 1996 says that it should issue its own NOTIFY requests to the other
authoritative name servers for the zone. The idea is that the primary may not be able to notify all the secondary
servers for the zone itself, since it's possible that some secondaries can't communicate directly with the primary and so
use another secondary as their master. The Microsoft DNS Server follows this behavior if NOTIFY is enabled for a
secondary zone (it's disabled by default for secondary zones) and you don't list a specific set of name servers to
NOTIFY.

Here's how this process works in practice: on our network, terminator.movie.edu is the primary for movie.edu, and
wormhole.movie.edu and zardoz.movie.edu are secondaries (as shown in Figure 11-2).

Figure 11-2. movie.edu zone transfer example

When we update movie.edu on terminator, terminator sends NOTIFY messages to wormhole and zardoz. Both
secondaries check to see whether movie.edu's serial number has been incremented and, if they find it has, perform a
zone transfer.

Let's also look at a more complicated zone transfer scheme. In Figure 11-3, a is the primary name server for the zone
and b's master server, but b is c's master server. Moreover, b has two network interfaces.

Figure 11-3. Complex zone transfer example

In this scenario, a notifies both b and c after the zone is updated. b checks to see whether the zone's serial number has
been incremented and initiates a zone transfer. However, c ignores a's NOTIFY message because a is not c's configured
master name server (b is). If b is explicitly configured to notify c, after b's zone transfer completes it sends c a NOTIFY
message, which prompts c to check the serial number b holds for the zone.

Older BIND secondary name servers, and other name servers that don't support NOTIFY, respond with a "Not
Implemented" (NOTIMP) error, wait until their refresh timers expire, and then transfer the zone. The Microsoft DNS
Server just ignores the NOTIMP error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Server just ignores the NOTIMP error.

NOTIFY is controlled on a zone-by-zone basis and is enabled by default for primary zones (and disabled by default for
secondary zones). The controls for NOTIFY are somewhat hidden: highlight a zone in DNS console's left pane, select
Action Properties, and choose the Zone Transfers tab of the zone properties window, which produces a
window like the one shown in Figure 11-4.

Figure 11-4. Zone transfer configuration for movie.edu

Figure 11-5. NOTIFY configuration for movie.edu

Select the Notify button to open the window shown in Figure 11-5, which illustrates the NOTIFY configuration for the
movie.edu zone on the zone's primary, terminator. You have two choices for configuring which servers get NOTIFY
messages for a zone. The first is to check the Servers listed on the Name Servers tab, which lets the server decide
based on the name servers listed in the zone's NS records. (The Name Servers tab of the zone properties window
simply shows the name servers listed in the zone's NS records.) The second choice is to specify exactly which
secondary servers should receive NOTIFY messages. This option is required if you have secondary servers not listed in
the zone's NS records: such secondaries are effectively hidden, and the only way the primary knows to send NOTIFY
messages to them is if you tell it to.

11.1.3 Incremental Zone Transfer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Microsoft DNS Server in Windows 2003 supports a new kind of zone transfer. Incremental zone transfer, or IXFR
for short, is specified in RFC 1995, and it does exactly what you'd expect based on its name. A traditional zone transfer
always transfers the entire contents of a zone, even if only one record has changed. Incremental zone transfers allow a
name server to send a list of just the records that have changed since the last zone transfer (whether it was a full or
incremental one).

This new feature is critical for zones that change frequently. Imagine the scenario with dynamic update: every dynamic
update is a change to the zone that requires a zone transfer. Doing a full zone transfer with every small change wastes
bandwidth and CPU time. The situation is compounded when the zone being updated and transferred is large.

For IXFR to function, the master servers need to keep track of the differences between successive versions of the zone.
A secondary requests an incremental zone transfer and presents its current serial number. The master server calculates
and sends the changes needed on the secondary to make its version of the zone current. If the master server can't
calculate the changes for whatever reason—perhaps the secondary has an old version of the zone and the primary
hasn't kept a record of changes that far back—the primary is allowed to say "Sorry, but you've got to accept a full zone
transfer."

A Microsoft DNS Server acting as a secondary requests an incremental zone transfer by default. If the master server
doesn't support incremental zone transfer, the Microsoft DNS Server asks for a standard full zone transfer. A Microsoft
DNS Server acting as a primary master stores a record of changes going back several versions. The number of versions
the server keeps in memory depends on the zone's size: it keeps 25% of the total number of resource records of the
zone, up to a total of 64,000. For example, given a zone of 100 resource records, the server would store changes
corresponding to the last 25 versions of the zone. It responds with a full zone transfer instead of an incremental when it
doesn't have the necessary information to produce the list of changes to the zone or when the list of changes would be
larger than a full zone transfer.

AD-integrated zones introduce an extra wrinkle. Recall that every server for an AD-integrated zone stores the zone in
Active Directory. Because of Active Directory's multimaster replication scheme, the notion of one server being a
"primary" doesn't apply anymore. Instead, any of the zone's authoritative servers can accept a dynamic update for the
zone. The change is stored locally and replicated to the other servers using Active Directory. This situation means that
different servers can potentially apply changes to the zone in a different order. To maintain a consistent view of
changes to a zone, a secondary must always use the same master server. If a particular master server becomes
unavailable and a secondary is forced to use another, it automatically requests a full zone transfer for the first transfer
from that server to avoid inconsistencies.

11.1.4 More Efficient Zone Transfers

As long as we're on the topic of zone transfers, we should mention another enhancement. A zone transfer comprises
many DNS messages sent end-to-end over a TCP connection. Traditional zone transfers put only a single resource
record in each DNS message. That's a waste of space: you need a full header on each DNS message, even though
you're carrying only a single record. It's like being the only person in a Chevy Suburban. A DNS message can carry
many more records.

The Microsoft DNS Server understands a newer zone-transfer format that puts as many records as possible into a single
DNS message. The resulting "many answers" zone transfer takes less bandwidth because there's less overhead and less
CPU time because less time is spent unmarshaling DNS messages.

The DNS server uses the "many answers" format by default, which is fine if all your secondaries can understand it.
Older BIND name servers (prior to Version 4.9.4) can't cope with this format and require the traditional one.
Fortunately, you can tell the Microsoft DNS Server to use the traditional method with a server properties setting. Right-
click on a server in the left pane of the DNS console and choose Properties, then select the Advanced tab. Click the
box next to BIND secondaries. When this box is checked, the server sends traditional zone transfers to satisfy older
BIND servers. The box is checked by default, but that doesn't affect zone transfers between two Microsoft DNS Servers.
They recognize each other, and the master uses the "many answers" format to the secondary.

You should change this setting only if you have no BIND secondaries or if all your BIND secondaries are running Version
4.9.4 or later.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 WINS Linkage
Our next topic requires a short detour into the world of Microsoft networking. Networks based on NetBT (NetBIOS over
TCP) need to perform name resolution, too: hosts need a way to map NetBIOS names[3] to IP addresses. The way this
name resolution works has evolved over time. In the early days, hosts broadcasted a query on the LAN to resolve a
NetBIOS name. This forced all hosts to listen to every broadcast. Since broadcasts don't leave the local LAN, this
method didn't allow name resolution beyond the local network segment. The next evolutionary step was the LMHOSTS
file, which is just a list of NetBIOS names and IP addresses. Every host needed an LMHOSTS file to resolve names
beyond the local subnet. This model didn't scale very well, either: it was tough to keep the LMHOSTS files up to date
and distribute them. And the introduction of the Dynamic Host Configuration Protocol (DHCP) essentially made basing a
network's NetBIOS name resolution on LMHOSTS files impossible.

[3] A host's NetBIOS name is simply the name by which it's known for NetBT networking purposes. NetBIOS names
are limited to one label of up to 15 octets (that is, no multiple-label names like DNS domain names). On Windows
Server 2003 systems, a host's NetBIOS name is derived automatically from the host's fully qualified DNS name,
which is called the computer name and is set in the System Properties window's Computer Name tab (choose
Control Panel System). The NetBIOS name is forced to be the first label (i.e., everything to the left of the
leftmost dot) of the host's DNS name. Windows 2000 allowed the NetBIOS name to be different from the DNS
name, but that feature didn't carry over to Windows Server 2003.

A detailed description of DHCP is beyond the scope of this book,[4] but suffice it to say that DHCP eliminates the
requirement of configuring a static IP address on every one of your hosts. If those hosts support DHCP, they can
contact a DHCP server when they boot to obtain an IP address and other configuration parameters, such as the IP
addresses of the default router, name servers, and WINS servers.

[4] But see another book from O'Reilly: TCP/IP Network Administration by Craig Hunt.

WINS, which stands for Windows Internet Naming Service, is a Microsoft invention introduced in Windows NT 3.5. The
server component of WINS is an implementation of a NetBIOS Name Server as described in RFCs 1001 and 1002. The
idea is nothing new; the RFCs date from early 1987. The function of a NetBIOS Name Server is simple: it maps
NetBIOS names to IP addresses.

The name and IP address information in a WINS server comes from the various hosts on the network. Once a host sets
its IP address using the value sent by a DHCP server, the host registers its name with the WINS server the DHCP server
told it about. Actually, any modern NetBT host registers its name with a WINS server (if it is configured to use a WINS
server, of course), regardless of how it obtained its IP address (e.g., dynamically from a DHCP server or statically from
a user-input configuration). Modern NetBT hosts also know to contact a WINS server for NetBIOS name resolution,
rather than relying solely on broadcasting or an LMHOSTS file.

So where does DNS fit in to all this? Before Windows 2000's support of dynamic update, it wasn't possible to make the
new name-to-IP address mappings generated by the DHCP server visible to DNS. Microsoft realized there would be
some value to enabling a DNS server to query a WINS server, which knows about names for dynamically assigned IP
addresses. After all, a NetBIOS name in the WINS server is usually the same as a machine's hostname (the first label of
its fully qualified domain name in DNS), which is what it would be in the DNS server if there were an easy way to get it
there. (Remember, we're talking about the days before Windows 2000 with its improved integration with DNS.) So a
Microsoft DNS Server can be configured to ask a WINS server when it receives a query for a domain name that's not in
its zone data.

You may be thinking that a name server contacting a WINS server is kind of silly; isn't there a way for name servers to
know what the DHCP servers are doing directly? There is. In a network with Windows 2000 or Windows Server 2003,
DHCP servers can update name servers using dynamic update after every address assignment, as we discussed earlier
in this chapter. The importance of WINS in recent versions of Windows (Windows 2000 and Windows Server 2003) is
greatly reduced, too. Modern Windows hosts allow domain names (which are resolved with DNS) to be used in places
where previously only NetBIOS names (typically resolved with WINS) were allowed. WINS is still required to support
older, legacy clients. You can find more information about how modern Windows hosts use DNS for hostname lookups
in Chapter 6.

11.2.1 Configuring WINS Lookup

WINS lookup, as it's called, is enabled on a zone-by-zone basis using the WINS tab of a forward zone's properties
window. When the DNS server receives an address (A) record query for which it doesn't know the answer, if the zone
where the record would exist has WINS lookup enabled, the DNS server queries a WINS server. The NetBIOS name
sent to the WINS server is the first label of the domain name in the A record query. For example, if the domain name in
the A record query is terminator.movie.edu, the NetBIOS name queried is terminator. If the WINS server responds with
an IP address for terminator, the DNS server synthesizes an A record for terminator.movie.edu and returns it to the
original querier.

The WINS lookup configuration for the movie.edu zone on the zone's primary, terminator, is shown in Figure 11-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-6. WINS lookup settings for movie.edu

WINS lookup is enabled by checking the Use WINS forward lookup box. You can specify the IP addresses of up to
eight WINS servers, and the DNS server will try them in the order listed.

By default, the WINS lookup configuration you establish on the primary takes effect on the secondaries as well. The
primary inserts a special WINS record that gets transferred with the rest of the zone to the secondaries. If the
secondaries are Microsoft DNS Servers, they understand the WINS record and perform WINS lookups accordingly. If the
secondaries are BIND name servers, they complain about the unknown WINS record. You can suppress sending this
WINS record to the secondaries by checking Do not replicate this record.

The Time to live (TTL) field in the lower left corner specifies the TTL for the synthesized A records that result from
WINS lookups.

Pressing the Advanced button yields a window like that in Figure 11-7. Cache time-out controls how long the DNS
server will cache the synthesized A records. The default value is 15 minutes. That value may seem small, but it's a good
choice: information in the WINS server is transient by nature, so you don't want the DNS server to hold onto it for a
long time. If it needs a name again, the DNS server can just ask the WINS server for it. Lookup time-out controls how
long the DNS server will wait after querying a WINS server. The default is 2 seconds.

Figure 11-7. Advanced WINS lookup settings

You can enable WINS lookup on in-addr.arpa zones, too. It's called WINS reverse lookup, and it's implemented
differently than plain WINS lookup. When the name server receives a PTR query it can't answer and WINS reverse
lookup is enabled for the zone, it sends a NetBIOS Adapter Status request directly to the IP address referenced by the
PTR record. In other words, the name server asks the host directly what its name is. The name server can't ask a WINS
server because lookups based on IP address aren't supported: you can't give a WINS server an IP address and get the
corresponding NetBIOS name back. WINS servers have obviously never heard of Jeopardy! ("The host with IP address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

corresponding NetBIOS name back. WINS servers have obviously never heard of Jeopardy! ("The host with IP address
192.249.249.3.," "What is terminator?")

WINS reverse lookup is configured similarly to WINS lookup: select the WINS-R tab of the zone properties window of
any in-addr.arpa zone. The WINS reverse lookup configuration for the 249.249.192.in-addr.arpa zone on the zone's
primary, terminator, is shown in Figure 11-8.

Figure 11-8. WINS reverse lookup settings for 249.249.192.in-addr.arpa

Use WINS-R lookup enables the NetBIOS Adapter Status requests for unknown PTR records in this zone. Do not
replicate this record has the same effect as its WINS forward-lookup counterpart. If you look in an in-addr.arpa zone
datafile, though, you'll see a WINS-R record instead of a WINS record. The Domain to append to returned name
field takes a DNS domain name that will be appended to the NetBIOS name returned by the host to form a fully
qualified domain name. The Advanced button controls cache and lookup timeouts, just like its WINS forward-lookup
counterpart.

11.2.2 Using WINS Lookup and WINS Reverse Lookup

What's WINS lookup good for? In most networks, not a lot. For one thing, Windows Server 2003 integrates tightly with
DNS so that in a properly configured network, all Windows hosts have forward- and reverse-mapping information in
DNS. (More information about this new integration with DNS is found in Chapter 8.) But let's say you still have a lot of
older Windows hosts on your network. Do you need WINS lookup? Well, we still can't get excited about it. Think about it
this way: the names that get resolved the most are the servers, and they usually have fixed IP addresses and thus
static DNS entries. They're resolved directly in DNS, not via the WINS lookup detour. Most networks don't have much
peer-to-peer networking; your average desktop host usually doesn't offer network services, such as a web server,
name server, and so on. It's the need to reach those kinds of network services that requires DNS name resolution to
work for every host. (Sure, there's a lot of NetBIOS-based file and print sharing among desktop hosts, but that process
uses WINS natively.)

If you do need to support WINS lookup in your network, a big problem with it is that the standard BIND name server
doesn't support it.[5] Many people find that they need WINS lookup after they have a DNS infrastructure in place using
BIND name servers. One option is to replace all those name servers with the Microsoft DNS Server and enable WINS
lookup. That's not realistic for most people. A better, but not perfect, option is to create a new subdomain for DHCP
clients resolvable via WINS lookup and delegate the subdomain to a set of Microsoft DNS Servers.

[5] MetaInfo, a subsidiary of Check Point, has ported BIND to Windows and added WINS lookup and WINS reverse
lookup. See http://www.metainfo.com/.

For example, let's say the folks running the domain acme.com suddenly find themselves with dozens of PCs doing peer-
to-peer networking with DHCP-assigned IP addresses. Since they've already got a BIND infrastructure in place, they
decide to create the domain pcs.acme.com for these PCs. (The domain name could be anything: dhcp.acme.com,
wins.acme.com, whatever.) They configure a couple of Microsoft DNS Servers for this zone and enable WINS lookup.
Finally, they delegate to the pcs.acme.com zone from the acme.com zone.

In practice, we find WINS reverse lookup is much more useful. It's really nice to have complete reverse-mapping
information for your network in DNS. Network-management applications can report names rather than IP addresses.
Web servers can log usage statistics by name and make named-based authorization decisions, such as giving access
only to hosts in the movie.edu domain. Troubleshooting is easier as well. Without WINS reverse lookup, the name
server can't reverse map dynamically assigned IP addresses in networks with older Windows hosts. Of course, for you
to be able to use WINS reverse lookup in your network, all the name servers for your in-addr.arpa zones need to
support it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

support it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Building Up a Large, Sitewide Cache with Forwarders
Certain network connections discourage sending large volumes of traffic off-site, either because the network connection
is pay-per-packet or because it is a slow link with a high delay, as with a remote office's satellite connection to the
company's network. In other cases, a firewall might allow only certain name servers to send queries off the local
network to the Internet. In these situations, you don't necessarily want your name server to follow the standard DNS
resolution algorithm and start by sending a query to a root name server. A solution is called forwarding, which changes
the way a name server resolves queries it can't answer itself.

If you designate one or more servers at your site as forwarders, all off-site queries are sent to the forwarders first. The
idea is that the forwarders handle all off-site queries generated at the site, building up a rich cache of information. For
any given query for a remote domain, there is a high probability that the forwarder can answer the query from its
cache, avoiding the need for the other servers to send packets off-site. Nothing special is done to these servers to
make them forwarders; you modify all the other servers at your site to direct their queries through the forwarders. It's
worth pointing out that the terminology is a little funny: a name server configured to forward (or, if you prefer, with
forwarding enabled) doesn't have an official name, but we use the term forwarding name server. A name server that
receives queries forwarded from forwarding name servers is called a forwarder.

A primary or secondary name server's mode of operation changes slightly when it is directed to use a forwarder. If the
requested information is already in its database of authoritative data and cache data, it answers with this information;
this part of the operation hasn't changed. However, if the information is not in its database, the name server sends the
query to its configured forwarders and waits a short period for an answer before resuming normal operation and
contacting the remote servers itself. What the name server is doing that's different is sending a recursive query to the
forwarder, expecting it to find the answer. At all other times, the name server sends out nonrecursive queries to other
name servers and deals with responses that refer only to other name servers.

Microsoft has introduced a new feature called conditional forwarding that makes forwarding even more flexible under
Windows Server 2003. In prior versions of the Microsoft DNS Server, all queries that couldn't be resolved locally were
sent to the same set of forwarders. Using conditional forwarding, you can configure the DNS server to use a different
set of forwarders depending on the domain name of the query. In our experience, this feature is most useful in large
networks or networks with a restrictive security policy that limits Internet connectivity to certain hosts. For example,
consider a large network where, as in most networks, the name servers need to know how to resolve both internal and
external names. One set of forwarders—call them set A—might have complete knowledge of the organization's
namespace, while a different bunch of forwarders—set B—might have access through the firewall to resolve Internet
domain names. An individual name server is authoritative only for a small number of zones. This name server can
resolve queries for names in its local authoritative zones, but how does it resolve other names? If a query is for an
internal name, the name server needs to forward to the "A" forwarders, but any external names can only be resolved
by the "B" forwarders. With conditional forwarding, such a configuration is a snap.

Forwarding is configured by selecting the Forwarders tab on the server properties window. Figure 11-9 shows how a
movie.edu name server is configured to forward all queries to wormhole and terminator. And remember, forwarding is
configured on every name server except the forwarders themselves—wormhole and terminator in this case.

Figure 11-9. Forwarders configuration tab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To enable forwarding, you need to specify forwarders for a specific domain or the default of All other DNS domains.
The default applies when no other configured domain matches. You can specify up to six forwarders for each domain.
The name server forwards to them in the order in which they're listed, using a default timeout of five seconds per
forwarder; that is, if the first forwarder doesn't respond within five seconds, try the next, wait five more seconds, try
the next, and so on. The forwarding timeout can be changed with the Number of seconds before forward queries
time out field.

When you use forwarders, try to keep your site configuration simple. Otherwise, you can end up with configurations
that are really twisted. Follow these tips:

Avoid having "midlevel" servers forward packets (that is, avoid configuring forwarding on your midlevel name
servers). Midlevel servers mostly refer name servers to subdomain name servers. If they have been configured
to forward packets, do they refer to subdomain name servers, or do they contact the subdomain name server
to find out the answer? Whichever way it works, you're probably making your site configuration too hard for
mere mortals (and subdomain administrators) to understand.

Avoid chaining your forwarders. Don't configure server a to forward to server b, and configure server b to
forward to server c (or worse yet, back to server a).

11.3.1 A More Restricted Forwarding Name Server

You may want to restrict your name servers even further—stopping them from even trying to contact an off-site server
if their forwarder is down or doesn't respond. You can do this by telling the server not to fall back to using the recursive
resolution process if no forwarders respond: check the Do not use recursion for this domain box on the
Forwarders configuration tab (see Figure 11-9). The terminology is confusing: this checkbox has nothing to do with
the kind of query being sent to the forwarders. As we said earlier, a name server that's forwarding always sends a
recursive query to its forwarders. What this checkbox determines is what happens after that recursive query is sent,
which we discuss next. The BIND name server configuration syntax calls this kind of forwarding name server a forward-
only server, which we think is a good name.

A forward-only server is a variation on a server that forwards. It still answers queries from its authoritative data and
cache data. However, it relies completely on its forwarders; it doesn't try to contact other servers for information if the
forwarders don't give it an answer.

However, you must ask yourself if it ever makes sense to use a forward-only server. Such a server is completely
dependent on the forwarders. You can achieve much the same configuration (and dependence) by not running a
forward-only server at all; instead, configure your hosts' resolvers to point to the forwarders you were using. Thus, you
are still relying on the forwarders, but now your applications are querying the forwarders directly instead of having a
forward-only name server query them for the applications. You lose the local caching the forward-only server would do,
but you reduce the overall complexity of your site configuration by running fewer "restricted" name servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.4 Load Sharing Between Mirrored Servers
The Microsoft DNS Server has a feature called round robin (named after the equivalent feature in the BIND name
server): the server rotates address records for the same domain name between responses. For example, if the domain
name foo.bar.baz has three address records for IP addresses 192.1.1.1, 192.1.1.2, and 192.1.1.3, the round-robin
feature causes the name server to give them out first in the order:

192.1.1.1 192.1.1.2 192.1.1.3

then in the order:

192.1.1.2 192.1.1.3 192.1.1.1

and then in the order:

192.1.1.3 192.1.1.1 192.1.1.2

before starting over again with the first order and repeating the rotation ad infinitum.

This functionality is enormously useful if you have a number of equivalent network resources, such as mirrored FTP
servers, web servers, or terminal servers, and you'd like to spread the load among them. You establish one domain
name that refers to the group of resources and configure clients to access that domain name, and the name server
inverse-multiplexes the accesses between the IP addresses you list.

It's a good idea to reduce the records' TTLs, too. This ensures that, if the addresses are cached on an intermediate
name server that doesn't support round robin, they'll time out of the cache quickly. If the intermediate name server
looks up the name again, your authoritative name server can round-robin the addresses again.

Note that this is really load sharing, not load balancing: the name server gives out the addresses in a completely
deterministic way, without regard to the actual load or capacity of the servers servicing the requests. In our example,
the server at address 192.1.1.3 could be a 486 running Linux and the other two servers could be quad-processor
Itanium2s, and the Linux box would still get a third of the load.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.5 The ABCs of IPv6 Addressing
The Microsoft DNS Server supports the new AAAA record necessary for IPv6. We thought some information on the
representation and structure of IPv6 addresses would be appropriate to help you understand the record.

IPv6 addresses are 128 bits long. The preferred representation of an IPv6 address is eight groups of as many as four
hexadecimal digits, separated by colons. For example:

0123:4567:89ab:cdef:0123:4567:89ab:cdef

The first group of hex digits (0123, in this example) represents the most significant (or highest order) four bits of the
address.

Groups of digits that begin with one or more zeros don't need to be padded to four places, so you can also write the
previous address as:

123:4567:89ab:cdef:123:4567:89ab:cdef

Each group must contain at least one digit, though, unless you're using the :: notation. The :: notation allows you to
compress sequential groups of zeros. This comes in handy when you're specifying just an IPv6 prefix. For example, this
notation:

dead:beef::

specifies the first 32 bits of an IPv6 address as dead:beef and the remaining 96 as zeros.

You can also use :: at the beginning of an IPv6 address to specify a suffix. For example, the IPv6 loopback address is
commonly written as:

::1

or 127 zeros followed by a single one. You can even use :: in the middle of an address as a shorthand for contiguous
groups of zeros:

dead:beef::1

You can use the :: shorthand only once in an address since more than one could be ambiguous.

IPv6 prefixes are specified in a format similar to IPv4's CIDR notation. As many bits of the prefix as are significant are
expressed in the standard IPv6 notation, followed by a slash and a decimal count of exactly how many significant bits
there are. So the following three prefix specifications are equivalent (though obviously not equivalently terse):

dead:beef:0000:00f1:0000:0000:0000:0000/64
dead:beef::00f1:0:0:0:0/64
dead:beef:0:f1::/64

11.5.1 IPv6 Forward and Reverse Mapping

Clearly, the existing A record won't accommodate IPv6's 128-bit addresses. RFC 1886 defines the solution: an address
record that's four times as long as an A record. That's the AAAA (pronounced "quad A") record. The AAAA record takes
as its record-specific data the textual format of an IPv6 record as described earlier. So for example, you'd see AAAA
records like this one:

ipv6-host IN AAAA 4321:0:1:2:3:4:567:89ab

RFC 3152 established ip6.arpa, a new reverse-mapping namespace for IPv6 addresses.[6] Each level of subdomain
under ip6.arpa represents four bits of the 128-bit address, encoded as a hexadecimal digit just like in the record-
specific data of the AAAA record. The least significant (lowest order) bits appear at the far left of the domain name.
Unlike the format of addresses in AAAA records, omitting leading zeros is not allowed, so there are always 32
hexadecimal digits and 32 levels of subdomain below ip6.arpa in a domain name corresponding to a full IPv6 address.
The domain name that corresponds to the address in the previous example is:

[6] Several aspects of IPv6 addressing have been a moving target within the Internet standards community. We
should point out that the original domain for IPv6 reverse mapping as defined in RFC 1886 was ip6.int. This domain
was changed to ip6.arpa by RFC 3152 for both technical and political reasons.

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.

These domain names have PTR records attached, just as the domain names under in-addr.arpa do:

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa. IN PTR
mash.ip6.movie.edu.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.6 Securing Your Name Server
Compared to a modern BIND name server, the Microsoft DNS Server is short on security features, but you do have
some options. In this section, we discuss how to prevent unauthorized zone transfers from your servers and how to
"lock down" a name server that receives queries from other name servers on the Internet.

11.6.1 Preventing Unauthorized Zone Transfers

It's important to ensure that only the intended name servers—usually this means the secondary name servers listed in
the zone's NS records—can transfer zones from your primary name server. Users on remote hosts that can query your
name server's zone data can look up data (for example, addresses) only for hosts whose domain names they already
know, one at a time. Users who can start zone transfers from your server can list all the hosts in your zones. It's the
difference between letting random folks call your company's switchboard and ask for John Q. Cubicle's phone number
and sending them a copy of your corporate phone directory.

You control which name servers can perform a zone transfer with settings on the Zone Transfers tab of the zone
properties window (see Figure 11-4). You can allow any host to perform zone transfers, or only those name servers
listed in the zone's NS records, or only a specific set of name servers you list by IP address.

For a primary name server accessible from the Internet, you definitely want to limit zone transfers to just authorized
secondary name servers. You probably don't need to restrict zone transfers on name servers inside your firewall, unless
you're worried about your own employees listing your zone data.

11.6.2 Disabling Recursion on Delegated Name Servers

Some of your name servers answer nonrecursive queries from other name servers on the Internet because those name
servers appear in NS records delegating your zones to them. We'll call these name servers delegated name servers.
You can take special measures to secure your delegated name servers by disabling recursion.

Recall that by default, resolvers send recursive queries, and name servers do the work required to answer the queries.
(If you don't remember how recursion works, refer to Chapter 2.) In the process of finding the answer to recursive
queries, the name servers build up a cache of nonauthoritative information about other zones.

But for security reasons, you don't want delegated name servers to do the extra work required to answer a recursive
query or to build up a cache of data. Answering recursive queries opens them up to a potential denial of service (DoS)
attack: the Bad Guys can send these servers repeated recursive queries, making them do all kinds of unnecessary
work. Answering recursive queries from just anyone is also a bad idea because of caching: the most common spoofing
attacks involve inducing the target name server to query name servers under the Bad Guy's control by sending the
target a recursive query for a domain name in a zone served by the Bad Guy's servers. The Bad Guys can force your
name servers to cache known bad data in this way.

Disabling recursion on delegated servers eliminates these attack vectors. But to do so, you need to make sure these
servers don't receive any legitimate recursive queries. Don't configure any resolvers to use these servers and don't list
a nonrecursive name server as a forwarder. (When a name server is using another server as a forwarder, it sends the
query to the forwarder as a recursive query instead of a nonrecursive query.)

You can induce the Microsoft DNS Server to run as a nonrecursive name server by checking the Disable recursion
(also disables forwarders) box on the Advanced tab of the server properties window. By default, the name server
supports recursion, and this box is unchecked. Disabling recursion doesn't break a delegated server because name
servers send nonrecursive queries between themselves.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. nslookup and dig
"Don't stand chattering to yourself like that," Humpty Dumpty said, looking at her for the first time, "but
tell me your name and your business."

"My name is Alice, but—

"It's a stupid name enough!" Humpty Dumpty interrupted impatiently. "What does it mean?"

"Must a name mean something?" Alice asked doubtfully.

"Of course it must," Humpty Dumpty said with a short laugh

To be proficient at troubleshooting name server problems, you'll need a special tool to make DNS queries, one that
gives you complete control. We'll cover nslookup in this chapter because it's distributed with Windows Server 2003 and
with many other operating systems. We'll also cover another query tool, dig, that isn't part of Windows. It provides
similar functionality and doesn't suffer from nslookup's deficiencies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Is nslookup a Good Tool?
Much of the time you'll use nslookup to make queries in the same way the resolver makes them. Sometimes, though,
you'll use nslookup to query other name servers as a name server would. Which one you emulate will depend on the
problem you're trying to debug. You might wonder, "How accurately does nslookup emulate a resolver or a name
server? Does nslookup actually use the Windows resolver library routines?" No, nslookup uses its own routines for
querying name servers, but those routines are based on the resolver routines. Consequently, nslookup's behavior is
very similar to the resolver's behavior, but it does differ slightly. We'll point out some of those differences. As for
emulating name server behavior, nslookup allows you to query another server with the same query message that a
name server would use, but the retransmission scheme is quite different. Like a name server, though, nslookup can
perform a zone transfer to pull a copy of a zone's data. So nslookup does not exactly emulate either the resolver or the
name server, but it does emulate them well enough to make a good troubleshooting tool. Let's delve into those
differences we've alluded to.

12.1.1 Multiple Servers

nslookup talks to only one name server at a time. This is the major difference between nslookup's behavior and the
resolver's behavior. The resolver makes use of all the name servers listed in the Windows resolver configuration
window. If two name servers are listed, the resolver tries the first name server, then the second, then the first, then
the second, until it receives a response or gives up. The resolver does this for every query. On the other hand, nslookup
tries only the first name server listed. But you want your troubleshooting tool to talk with only one name server so you
can reduce the number of variables when analyzing a problem. If nslookup used more than one name server, you
wouldn't have as much control over your troubleshooting session.

12.1.2 Timeouts

The nslookup timeouts are similar to the resolver timeouts when the resolver is querying only one name server. A name
server's timeouts, however, are based on how quickly the remote server answered the last query, a dynamic measure.
nslookup will never match name server timeouts, but that's not a problem either. When you're querying remote name
servers with nslookup, you probably care only what the response was, not how long it took.

12.1.3 The Search List

nslookup implements the search list just as the resolver code does. Name servers don't implement search lists, so, to
act like a name server, the nslookup search function must be turned off—more on that later.

12.1.4 Zone Transfers

nslookup will do zone transfers just like a name server. Unlike the name server, though, nslookup does not check SOA
serial numbers before pulling the zone data; you'll have to do that manually, if you want to.

12.1.5 Using NetBIOS Names

This last point doesn't compare nslookup to the resolver or name server but rather to ways of looking up names in
general. nslookup, as distributed by Microsoft, uses only DNS; you can't use it to look up NetBIOS names via broadcast,
LMHOSTS, or WINS. Before using nslookup to diagnose your problem, you need to determine if your problem is really
with DNS. For example, if an application is using a different IP address than you expect, perhaps it's treating a value as
a NetBIOS name and not a DNS name. To diagnose this kind of problem, you need to understand how the Windows
resolver, which we discussed in Chapter 6, works. Just remember that nslookup talks only to name servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Interactive Versus Noninteractive
Let's start our tutorial on nslookup by looking at how to start and stop it. You can run nslookup either interactively or
noninteractively. If you want to look up only one piece of data, you should use the noninteractive form. If you plan on
doing something more extensive, such as changing servers or options, use an interactive session.

To start an interactive session, just type nslookup:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ^Z

If you need help, type ? or help.

When you want to exit, type ^Z (Ctrl-Z) and press Enter. You can also exit from nslookup with ^C or ^Break (Ctrl-
Break). This behavior is different from nslookup's operation on a Unix host, where if you send nslookup an interrupt, it
catches it, stops whatever it is doing (like a zone transfer), and gives you the > prompt. There's no way to just
interrupt Microsoft's nslookup: you just have to stop nslookup completely and restart it.

For a noninteractive lookup, include the name you are looking up on the command line:

C:\> nslookup carrie
Server: terminator.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Option Settings
nslookup has its own set of dials and knobs called option settings. All the option settings can be changed. We'll discuss
here what each of the options means. We'll use the rest of the chapter to show you how to use them.

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set all
Default Server: terminator.movie.edu
Address: 192.249.249.3

Set options:
 nodebug
 defname
 search
 recurse
 nod2
 novc
 noignoretc
 port=53
 type=A
 class=IN
 timeout=2
 retry=1
 root=A.ROOT-SERVERS.NET.
 domain=movie.edu
 MSxfr
 IXFRversion=1
 srchlist=movie.edu

> ^Z

Before we get into the options, we need to cover the introductory lines. The default name server is
terminator.movie.edu. This means that every query sent by nslookup will be sent to terminator.

The options come in two flavors: Boolean and value. The options that do not have an equals sign after them are
Boolean options and they are either "on" or "off." The value options can take on different, well, values. How can we tell
which Boolean options are on and which are off? The option is off when a "no" precedes the option's name. nodebug
means that debugging is off. As you might guess, the option search is on.

How you change Boolean or value options depends on whether or not you are using nslookup interactively. In an
interactive session, you change an option with the set command, as in set debug or set domain=classics.movie.edu.
From the command line, you omit the word set and precede the option with a hyphen, as in nslookup -debug or
nslookup -domain=classics.movie.edu. The options can be abbreviated to their shortest unique string—for example,
nodeb for nodebug. In addition to its abbreviation, the querytype option can also be entered simply as type.

Let's go through each of the options:

[no]debug

Debugging is turned off by default. If it is turned on, nslookup displays the complete contents of the response
messages from the name server. See [no]d2 for a discussion of debug level 2.

[no]defname

This option reflects nslookup's BIND heritage. By default, nslookup adds the default domain name to names
without a dot in them. Before search lists existed, the BIND resolver code would add the default domain only to
names without any dots in them; this option reflects that behavior. nslookup can implement the pre-search list
behavior (with search off and defname on), or it can implement the search list behavior (with search on).

[no]search

The search option "overshadows" the default domain name (defname) option. That is, defname applies only if
search is turned off. By default, nslookup appends the domain names in the search list (srchlist) to names that
don't end in a dot. nslookup's search list is constructed from the Append these DNS suffixes field on the DNS
tab of the Advanced TCP/IP Settings window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tab of the Advanced TCP/IP Settings window.

[no]recurse

nslookup requests recursive service by default. This turns on the recursion-desired bit in query messages. The
Windows resolver sends recursive queries in the same way. Name servers, however, send nonrecursive queries
to other name servers.

[no]d2

Debugging at level 2 is turned off by default. If it is turned on, you see the query messages sent to the name
server in addition to the regular debugging output. Turning on d2 also turns on debug. Turning off d2 turns off
d2 only; debug is left on. Turning off debug turns off both debug and d2.

[no]vc

By default, nslookup makes queries using UDP instead of over a TCP connection (virtual circuit). Most Windows
resolver queries are made with UDP, so the default nslookup behavior matches the resolver.

[no]ignoretc

By default, nslookup doesn't ignore truncated messages. If a message is received that has the "truncated" bit
set—indicating that the name server couldn't fit all the important information in the UDP response message
—nslookup doesn't ignore it; it retries the query using a TCP connection instead of UDP.

port=53

The DNS service is on port 53. You can start a name server on another port—for debugging purposes, for
example—and nslookup can be directed to use that port.

type=A

By default, nslookup looks up A (address) resource record types. In addition, if you type in an IP address (and
the nslookup query type is address or pointer), nslookup inverts the address, appends in-addr.arpa, and looks
up PTR (pointer) data instead.

class=IN

The only class that matters is Internet. Well, there's the Hesiod (HS) class, too, if you are an MITer or run
Ultrix.

timeout=2

If the name server doesn't respond within two seconds, nslookup resends the query and waits another two
seconds before giving up and printing a timeout message. The Windows resolver uses different timeouts when
querying a single name server (see Chapter 6).

retry=1

The query is sent just once before giving up. Again, the Windows resolver behaves slightly differently as
discussed in Chapter 6.

root=A.ROOT-SERVERS.NET

A convenience command called root switches your default server to the server named here. Executing the root
command from nslookup's prompt is equivalent to executing server A.ROOT-SERVERS.NET. You can change the
default "root" server with set root=server.

domain=movie.edu

This is the default domain name appended if the defname option is on. If the defname option is not on, no
default domain name is appended.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default domain name is appended.

[no]MSxfr

The Microsoft DNS Server implements a feature that Microsoft calls "fast" zone transfers. Those of you familiar
with the BIND name server know this as the "many answers" zone-transfer format, in which multiple records
are packed into the answer section of a single DNS message during a zone transfer. (The method implemented
by older BIND name servers uses one DNS message per record, which is somewhat wasteful of bandwidth.)
This option indicates whether or not to request one of these "fast" zone transfers.

IXFRversion=1

The Microsoft DNS Server also supports a protocol called incremental zone transfer (IXFR). IXFR requests
include a version number. The default value of 1 corresponds to the IXFR version supported by the Microsoft
DNS Server. At this point, there's no reason to change this value.

srchlist=movie.edu

If search is on, t hese domain names are appended to names that do not end in a dot. The domain names are
listed in the order in which they will be tried and are separated by slashes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Avoiding the Search List
nslookup implements the search list, as the resolver does. When you are debugging, the search list can get in your
way. You need to either turn the search list off completely (set nosearch) or add a trailing dot to the fully qualified
domain name you are looking up. We prefer the latter, as you'll see in our examples.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Common Tasks
You'll come to use nslookup for little chores almost every day: for example, finding out the IP address or MX records for
a given domain name or querying a particular name server for data. We'll cover these common tasks before moving on
to the more occasional stuff.

12.5.1 Looking Up Different Data Types

By default, nslookup looks up the address for a name or the name for an address. You can look up any data type by
changing the querytype, as we show in this example:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> misery Look up address.
Server: terminator.movie.edu
Address: 192.249.249.3

Name: misery.movie.edu
Address: 192.253.253.2

> 192.253.253.2 Look up name.
Server: terminator.movie.edu
Address: 192.249.249.3

Name: misery.movie.edu
Address: 192.253.253.2

> set type=mx Look up MX data.
> wormhole
Server: terminator.movie.edu
Address: 192.249.249.3
wormhole.movie.edu MX preference = 10, mail exchanger = wormhole.movie.edu
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.253.253.1

> set q=any Look up data of any type.
> diehard
Server: terminator.movie.edu
Address: 192.249.249.3

diehard.movie.edu internet address = 192.249.249.4
diehard.movie.edu MX preference = 10, mail exchanger = diehard.movie.edu
diehard.movie.edu internet address = 192.249.249.4

These are only a few of the valid DNS data types, of course. For a more complete list, see Appendix A.

12.5.2 Authoritative Versus Nonauthoritative Answers

If you've used nslookup before, you might have noticed that it sometimes precedes its answers with the phrase "Non-
authoritative answer":

C:\>nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> slate.mines.colorado.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
Name: slate.mines.colorado.edu
Address: 138.67.1.38

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Address: 138.67.1.38

This phrase indicates that the name server is not authoritative for the data in the answer. (Recall that a name server is
authoritative for data when it's a primary or secondary for the zone containing the data.) You'll see a nonauthoritative
response for one of two reasons. The first is that the name server you queried didn't have the data you were looking for
and had to query a remote name server to get it. The remote name server is authoritative for the data (that's the
reason it was queried!) and returns it with the "authoritative answer" bit set in the DNS message header. The Microsoft
DNS Server you queried puts this data in its cache and returns it to you marked nonauthoritative. If you ask for the
same data again, this time the name server can answer from its cache and will mark the data nonauthoritative: that's
the second reason you'll see a nonauthoritative answer.

Authoritative answers are not announced by nslookup: the absence of the nonauthoritative message means the answer
is authoritative.

Notice that we ended the domain name with a trailing dot. The response would have been the same had we left it off.
Sometimes it is critical that you use the trailing dot while debugging, but not always. Rather than stopping to decide if
this name needs a trailing dot, we always add one if we know the name is fully qualified (except, of course, for the
example where we turn off the search list).

12.5.3 Switching Servers

Sometimes you want to query another name server directly—for example, if you think it is misbehaving. You can switch
servers with nslookup by using the server or lserver commands. The difference between server and lserver is that
lserver queries your "local" server—the one you started out with—to get the address of the server you want to switch
to; server uses the default server instead of the local server. This difference is important because the server that you
just switched to may not be responding, as we'll show in this example:

C:\> nslookup
Default Server: relay.hp.com
Address: 15.255.152.2

When we start up, our first server, relay.hp.com, becomes our lserver (this will matter later on in this session):

> server galt.cs.purdue.edu.
Default Server: galt.cs.purdue.edu
Address: 128.10.2.39

> cs.purdue.edu.
Server: galt.cs.purdue.edu
Address: 128.10.2.39

*** galt.cs.purdue.edu can't find cs.purdue.edu: No response from server

At this point we try to switch back to our original name server. But there is no name server running on galt to look up
relay's address:

> server relay.hp.com.
*** Can't find address for server relay.hp.com: No response from server

Instead of being stuck, though, we use the lserver command to have our local server look up relay's address:

> lserver relay.hp.com.
Default Server: relay.hp.com
Address: 15.255.152.2

>

Since the server on galt did not respond—it's not even running a name server—it wasn't possible to look up the address
of relay to switch back to using relay's name server. Here's where lserver comes to the rescue: the local name server,
relay, was still responding, so we used it. Instead of using lserver, we could have recovered by using relay's IP address
directly—server 15.255.152.2.

You can even change servers on a per-query basis. To specify that you'd like nslookup to query a particular server for
information about a given domain name, you can specify the server as the second argument on the line, after the
domain name to look up—like so:

C:\> nslookup
Default Server: relay.hp.com
Address: 15.255.152.2

> saturn.sun.com. ns.sun.com.
Server: ns.sun.com
Address: 192.9.9.3

Name: saturn.sun.com
Address: 192.9.25.2

And, of course, you can change servers from the command line. You can specify the server to query as the argument
after the domain name to look up, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

after the domain name to look up, like this:

C:\> nslookup -type=mx fisherking.movie.edu. terminator.movie.edu.

This instructs nslookup to query terminator.movie.edu for MX records for fisherking.movie.edu.

To specify an alternate default server and enter interactive mode, you can use a hyphen in place of the domain name to
look up:

C:\> nslookup - terminator.movie.edu.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 Less Common Tasks
The following sections describe tricks you'll probably have to use less often but are still handy to have in your
repertoire. Most of these will be helpful when you're trying to troubleshoot a DNS problem; they'll enable you to grub
around in the messages the resolver sees and mimic a name server querying another name server or transferring zone
data.

12.6.1 Seeing the Query and Response Messages

If you need to, you can direct nslookup to show you the queries it sends out and the responses it receives. Turning on
debug shows you the responses. Turning on d2 shows you the queries as well. When you want to turn off debugging
completely, you have to use set nodebug, since set nod2 turns off only level 2 debugging. After the following trace,
we'll explain some parts of the message output. If you want, you can pull out your copy of RFC 1035, turn to page 25,
and read along with our explanation.

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set debug
> set type=mx
> oreilly.com.
Server: terminator.movie.edu
Address: 192.249.249.3

Got answer:
 HEADER:
 opcode = QUERY, id = 11, rcode = NOERROR
 header flags: response, want recursion, recursion avail.
 questions = 1, answers = 1, authority records = 0, additional = 1

 QUESTIONS:
 oreilly.com, type = MX, class = IN
 ANSWERS:
 -> oreilly.com
 MX preference = 20, mail exchanger = smtp2.oreilly.com
 ttl = 21598 (5 hours 59 mins 58 secs)
 ADDITIONAL RECORDS:
 -> smtp2.oreilly.com
 internet address = 209.58.173.10
 ttl = 21598 (5 hours 59 mins 58 secs)

Non-authoritative answer:
oreilly.com
 MX preference = 20, mail exchanger = smtp2.oreilly.com
 ttl = 21598 (5 hours 59 mins 58 secs)

smtp2.oreilly.com
 internet address = 209.58.173.10
 ttl = 21598 (5 hours 59 mins 58 secs)
>
> set d2
> oreilly.com.
Server: terminator.movie.edu
Address: 192.249.249.3

This time the query is also shown:

SendRequest(), len 29
 HEADER:
 opcode = QUERY, id = 12, rcode = NOERROR
 header flags: query, want recursion
 questions = 1, answers = 0, authority records = 0, additional = 0

 QUESTIONS:
 oreilly.com, type = MX, class = IN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oreilly.com, type = MX, class = IN

Got answer (67 bytes):

The answer is the same as in the previous example.

Between the dashes are the query and response messages. As promised, we will go through the message contents.
DNS messages are composed of five sections:

Header section

The Header section is present in every query and response. The operation code is always QUERY. (Other
opcodes are used for other DNS operations, such as the Notify and Dynamic Update protocol extensions
described in Chapter 11.) The ID is used to associate a response with a query and to detect duplicate queries or
responses. You have to look in the header flags to see which messages are queries and which are responses.
The string "want recursion" indicates that the querier wants the name server to do all the work. The flag is
parroted in the response. The string "auth. answer," when present, means that the response is authoritative—in
other words, that the response comes from the name server's authoritative data, not from its cache data. (This
response isn't authoritative, so that string is absent.) The response code, rcode, can be one of no error, server
failure, name error (also known as "NXDOMAIN" or "nonexistent domain"), not implemented, or refused. The
server failure, name error, not implemented, and refused response codes cause the nslookup "Server failed,"
"Nonexistent domain," "Not implemented," and "Query refused" errors, respectively. The last four entries in the
Header section are counters—they indicate how many resource records there are in each of the next four
sections.

Question section

A DNS message always contains one and only one question; it includes the name and the requested data type
and class. There is never more than one question. Handling more than one question in a DNS message would
require a redesign of its format. For one thing, the single authority bit would have to be changed, because the
Answer section could contain a mix of authoritative answers and nonauthoritative answers. In the present
design, setting the authoritative answer bit means that the name server is an authority for the domain name in
the Question section.

Answer section

This section contains the resource records that answer the question. There can be more than one resource
record in the response. For example, if the host is multihomed, there will be more than one address resource
record.

Authority section

The Authority section is where name server records are returned. When a response refers the querier to some
other name servers, those name servers are listed here.

Additional section

The Additional records section adds information that may complete information included in other sections. For
instance, if a name server is listed in the Authority section, the name server's address is added to the Additional
records section. After all, to contact the name server, you need to have its address.

12.6.2 Querying Like a Name Server

You can make nslookup send out the same query message a name server would. Name server query messages are not
much different from resolver messages. The primary difference in the query messages is that resolvers request
recursion and name servers seldom do. Recursion is the default with nslookup, so you have to explicitly turn it off. The
difference in operation between a resolver and a name server is that the resolver implements the search list and the
name server doesn't. By default, nslookup implements the search list, so that, too, has to be turned off. Of course,
judicious use of the trailing dot will have the same effect.

In nslookup terms, this means that to query like a resolver, you use nslookup's default settings. To query like a name
server, use set norecurse and set nosearch. On the command line, that's nslookup -norecurse -nosearch.

When a name server gets a query, it looks for the answer in its cache. If it doesn't have the answer and it is
authoritative for the zone, the name server responds that the name doesn't exist or that there is no data for that type.
If the name server doesn't have the answer and it is not authoritative for the zone, it starts walking up the namespace
looking for NS records. There will always be NS records somewhere higher in the domain tree. As a last resort, it will
use the NS records at the root domain, the highest level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use the NS records at the root domain, the highest level.

If the name server received a nonrecursive query, it would respond to the querier by giving the NS records that it had
found. On the other hand, if the original query was a recursive query, the name server would then query the remote
name servers in the NS records that it found. When the name server receives a response from one of the remote name
servers, it caches the response and repeats this process, if necessary. The remote server's response will contain either
the answer to the question or a list of name servers lower in the namespace and closer to the answer.

Let's assume for our example that we are trying to satisfy a recursive query and that we didn't find any NS records until
we checked the com domain. That is, in fact, the case when we ask the name server on terminator.movie.edu about
www.theonion.com—it doesn't find any NS records in its cache until the com domain. From there we switch servers to a
com name server and ask the same question. It directs us to the theonion.com servers. We then switch to a
theonion.com name server and ask the same question:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set norec Query like a name server: turn off recursion.
> set nosearch Turn off the search list.
> www.theonion.com We don't need to dot-terminate since we've turned search off.
Server: terminator.movie.edu
Address: 192.249.249.3

Name: www.theonion.com
Served by:
- a.gtld-servers.net
 192.5.6.30
 COM
- b.gtld-servers.net
 192.33.14.30
 COM
- c.gtld-servers.net
 192.26.92.30
 COM
- d.gtld-servers.net
 192.31.80.30
 COM
- e.gtld-servers.net
 192.12.94.30
 COM
- f.gtld-servers.net
 192.35.51.30
 COM
- g.gtld-servers.net
 192.42.93.30
 COM
- h.gtld-servers.net
 192.54.112.30
 COM
- i.gtld-servers.net
 192.43.172.30
 COM
- j.gtld-servers.net
 192.48.79.30
 COM

Switch to a com name server. You may have to turn recursion back on temporarily, if the name server doesn't have the
address already cached:

> server a.gtld-servers.net.
Default Server: a.gtld-servers.net
Address: 192.5.6.30

Ask the same question of the com name server. It will refer us to name servers closer to our desired answer:

> www.theonion.com.
Server: a.gtld-servers.net
Address: 192.5.6.30

Name: www.theonion.com
Served by:
- ns2.rackspace.com
 207.71.44.121
 theonion.com
- ns.rackspace.com
 207.235.16.2
 theonion.com

Switch to a theonion.com name server—either of them will do:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Switch to a theonion.com name server—either of them will do:

> server ns.rackspace.com.
Default Server: ns.rackspace.com
Address: 207.235.16.2

> www.theonion.com.
Server: ns.rackspace.com
Address: 207.235.16.2

Name: theonion.com
Address: 66.216.104.235
Aliases: www.theonion.com

We hope this example gives you a feeling for how name servers look up names. If you need to refresh your
understanding of what this looks like graphically, see Figures Figure 2-12 and Figure 2-13.

Before we move on, notice that we asked each of the servers the very same question: "What's the address for
www.theonion.com?" What do you think would happen if the com name server itself had already cached
www.theonion.com's address? The com name server would have answered the question out of its cache instead of
referring us to the theonion.com name servers. Why is this significant? Suppose you messed up a particular host's
address in your zone. Someone points it out to you, and you clean up the problem. Even though your name server now
has the correct data, some remote sites find the old, messed-up data when they look up the name. One of the name
servers higher up in the domain tree has cached the incorrect data; when it receives a query for that host's address, it
returns the incorrect data instead of referring the querier to your name servers. What makes this problem hard to track
down is that only one of the "higher up" name servers has cached the incorrect data, so only some of the remote
lookups get the wrong answer—the ones that use this server. Fun, huh? Eventually, though, the "higher up" name
server will time out the old record. If you're pressed for time, you can contact the administrators of the remote name
server and ask them to kill and restart their name servers to flush the cache. Of course, if the remote name server is an
important, much-used name server, they may tell you where to go with that suggestion.

12.6.3 Zone Transfers

You can use nslookup to transfer a whole zone with the ls command. This feature is useful for troubleshooting, for
figuring out how to spell a remote host's name, or just for counting how many hosts are in some remote zone. Since
the output can be substantial, nslookup allows you to redirect the output to a file.

Beware: a lot of hosts won't let you pull a copy of their zones, either for security reasons or to limit the load on their
name server hosts.

nslookup filters zone transfer data: it shows you only some of the zone unless you tell it otherwise. By default, you see
only address and name server data. You will see all of the zone data if you tell nslookup to display data of any type. The
nslookup help (available from the Help and Support Center) or command summary (shown by typing help at the
nslookup prompt) tells you all the parameters to the ls command. We are going to show only the -t parameter, since
the others can be emulated with -t. The -t option takes one argument: the data type to filter. So, to pull a copy of a
zone and see all the MX data, use ls -t mx. Let's do some zone transfers:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ls movie.edu. List NS and A records for movie.edu.
[terminator.movie.edu]
 movie.edu. NS server = terminator.movie.edu
 movie.edu. NS server = wormhole.movie.edu
 carrie A 192.253.253.4
 diehard A 192.249.249.4
 misery A 192.253.253.2
 robocop A 192.249.249.2
 shining A 192.253.253.3
 terminator A 192.249.249.3
 wh249 A 192.249.249.1
 wh253 A 192.253.253.1
 wormhole A 192.253.253.1
 wormhole A 192.249.249.1
> ls -t any movie.edu > /temp/movie.edu.txt List data into \temp\movie.edu.txt.

[terminator.movie.edu]
Received 25 records.

Those forward slashes in the ls command aren't a misprint—nslookup was originally written for Unix as part of the BIND
distribution. Microsoft must have missed the slashes when porting nslookup to Windows.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.7 Troubleshooting nslookup Problems
The last thing you want is to have problems with your troubleshooting tool. Unfortunately, some types of failures render
the troubleshooting tool mostly useless. Other types of nslookup failures are, at best, confusing because they don't give
you any direct information to work with. Although there may be a few problems with nslookup itself, most of the
problems you encounter will be with name server configuration and operation. We'll cover a few odd problems here.

12.7.1 Looking Up the Right Data

This isn't really a problem, per se, but it can be awfully confusing. If you use nslookup to look up a type of data for a
domain name and the domain name exists but no data of the type you're looking for exists, you'll get an error like this:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> movie.edu.

Name: movie.edu

>

Huh? It looks like we got an empty answer. In fact, that's exactly what happened: there are no A records for
movie.edu, and the response from the name server has no records in the Answer section of the message. nslookup
renders this empty response from the name server as an empty response to us. It's not very helpful or clear (previous
versions of nslookup printed a better response).

So what types of records do exist? You can use set type=any to find out:

> set type=any
> movie.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

movie.edu nameserver = terminator.movie.edu
movie.edu nameserver = wormhole.movie.edu
movie.edu
 primary name server = terminator.movie.edu
 responsible mail addr = hostmaster.movie.edu
 serial = 21
 refresh = 900 (15 mins)
 retry = 600 (10 mins)
 expire = 86400 (1 day)
 default TTL = 3600 (1 hour)
movie.edu MX preference = 10, mail exchanger = wormhole.movie.edu
terminator.movie.edu internet address = 192.249.249.3
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.253.253.1
wormhole.movie.edu internet address = 192.253.253.1
wormhole.movie.edu internet address = 192.249.249.1

Why are the IP addresses for terminator and wormhole returned? If you receive the NS records for movie.edu listing
these two hosts as that zone's name servers, chances are the next thing you'll want are those hosts' IP addresses. The
name server anticipates that and sends along address records in the Additional section. The same thing goes for the
movie.edu MX record pointing to wormhole: if you get that record, you'll want wormhole's IP address next. That
explains why wormhole's IP addresses show up twice, but this is arguably a bug in the Microsoft DNS Server.

12.7.2 No PTR Data for Name Server's Address

Here's a cryptic message:

C:\> nslookup
*** Can't find server name for address 192.249.249.3: Non-existent domain
Default Server: UnKnown
Address: 192.249.249.3

>

The "Non-existent domain" message means that there's no PTR record for 3.249.249.192.in-addr.arpa. In other words,
nslookup couldn't find the name for 192.249.249.3, which is the first name server the resolver is configured to query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nslookup couldn't find the name for 192.249.249.3, which is the first name server the resolver is configured to query.
The only reason nslookup looks up this address is to print the "Default Server" startup message. Obviously, this name
server's data is messed up, at least for the 249.249.192.in-addr.arpa zone, so nslookup prints "UnKnown."

12.7.3 Timeouts

What if your resolver is pointing to a name server that isn't running or a host that can't be reached? Here's what
happens:

C:\> nslookup
DNS request timed out.
 timeout was 2 seconds.
*** Can't find server name for address 192.249.249.4: Timed out
Default Server: UnKnown
Address: 192.249.249.4

>

The resolver is configured to use the name server 192.249.249.4 (and only that name server). nslookup tries valiantly
to contact it but times out, prints "UnKnown" for the default server, and gives you a prompt. You can't really do
anything productive without changing servers at this point—after all, no server is running at that IP address—but at
least you've got a prompt.

Occasionally you'll see timeouts during the course of an nslookup session. If you are looking up some remote
information, the name server could fail to respond because it is still trying to look up the item and nslookup gave up
waiting. How can you tell the difference between a name server that isn't running and a name server that is running but
didn't respond? nslookup's responses point out the difference. In this case, the response indicates no name server
process is running:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> movie.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

*** terminator.movie.edu can't find movie.edu.: No response from server

The "No response from server" message is quite misleading because nslookup actually did get a response from the
server. What actually happened was this: nslookup sent a DNS query in a UDP packet addressed to port 53 on
terminator. Since no name server was running on terminator, there was no process listening on UDP port 53 and the
TCP/IP software on terminator responded with an ICMP destination port unreachable message. nslookup received this
response and printed the misleading message shown previously.

If a name server is simply not responding, you'll see the following timeout message:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> movie.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

DNS request timed out.
 timeout was 2 seconds.
*** Request to terminator.movie.edu timed-out

12.7.4 Query Refused

You generally see a "query refused" error message under two conditions. The first is when you attempt a zone transfer
and the server refuses for security reasons (for example, based on the settings in the Zone Transfers tab of the zone
properties window). This is what you'll see:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ls movie.edu This attempts a zone transfer
[terminator.movie.edu]
*** Can't list domain movie.edu.: Query refused
The DNS server refused to transfer the zone movie.edu. to your computer. If this
is incorrect, check the zone transfer security settings for movie.edu. on the DNS
server at IP address 192.249.249.3.
>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>

You might also see a "query refused" error from a name server running a recent version of BIND, which has the ability
to restrict queries to different zones based on the querier's source IP address.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.8 Best of the Net
System administrators have a thankless job. They are asked certain questions, usually quite simple ones, over and over
again. And sometimes, in a creative mood, they come up with a clever way to help their users. When the rest of us find
out about their ingenuity, we can only sit back, smile admiringly, and wish we had thought of it ourselves. Here is one
such case, where a system administrator found a way to communicate the solution to the sometimes perplexing puzzle
of how to end an nslookup session:

C:\> nslookup
Default Server: envy.ugcs.caltech.edu
Address: 131.215.134.135

> quit
Server: envy.ugcs.caltech.edu
Addresses: 131.215.134.135, 131.215.128.135

Name: ugcs.caltech.edu
Addresses: 131.215.128.135, 131.215.134.135
Aliases: quit.ugcs.caltech.edu
 use.exit.to.

leave.nslookup.-.-.-.ugcs.caltech.edu

> exit
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.9 Using dig
That's one way to< deal with what's arguably a shortcoming in nslookup. Another is just to chuck nslookup and use dig,
the Domain Information Groper (a reverse-engineered acronym if we've ever heard one). dig is a powerful DNS query
tool that comes with BIND. Unfortunately, it isn't shipped with Windows Server 2003, but you can get a version of dig
that runs on Windows NT, Windows 2000, and Windows Server 2003 from ftp://ftp.isc.org/isc/bind/contrib/ntbind-
8.4.1/BIND8.4.1Tools.zip. You may also need to download the other DLLs available at
ftp://ftp.isc.org/isc/bind/contrib/ntbind-8.4.1. Follow the installation instructions in the readme1sttools.txt file and note
the Known Problems section of that file. It tells you, for example, that on Windows 2000 and Windows Server 2003, dig
can't read the resolver configuration from the Registry, so it has no idea what name servers to query by default. You'll
need to create the file %SystemRoot%\system32\drivers\etc\resolv.conf that contains at least one line specifying a
name server to query:

nameserver 4.2.2.2

Now, all this might seem like a lot of trouble when nslookup is already installed. But for our DNS troubleshooting
purposes, we left nslookup in the dust years ago. We hope you'll come to appreciate dig as much as we do.

With dig, you specify all aspects of the query you'd like to send on the command line; there's no interactive mode. You
specify the domain name you want to look up as an argument, and the type of query you want to send (e.g., a for
address records, mx for MX records) as another argument; the default is to look up address records. You specify the
name server you'd like to query after an "@." You can use either a domain name or an IP address to designate a name
server.

dig is smart about arguments, too. You can specify the arguments in any order you like, and dig will figure out that mx
is probably the type of record, not the domain name, you want to look up.

One major difference between nslookup and dig is that dig doesn't apply the search list so always give dig fully qualified
domain names as arguments. So:

C:\> dig plan9.fx.movie.edu

looks up address records for plan9.fx.movie.edu using the first name server in resolv.conf, while:

C:\> dig acmebw.com mx

looks up MX records for acmebw.com on the same name server, and:

C:\> dig @wormhole.movie.edu. movie.edu. soa

queries wormhole.movie.edu for the SOA record of movie.edu.

12.9.1 dig's Output Format

dig shows you the complete DNS response message in all its glory with the various sections (header, question, answer,
authority, and additional) clearly called out, and with resource records in those sections printed in master file format.
This can come in handy if you need to use some of your troubleshooting tool's output in a zone datafile or in your root
hints file. For example, the output produced by:

C:\> dig @a.root-servers.net ns .

looks like this:

; <<>> DiG 8.4 <<>> @a.root-servers.net ns .
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13297
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
;; QUERY SECTION:
;; ., type = NS, class = IN

;; ANSWER SECTION:
. 6D IN NS A.ROOT-SERVERS.NET.
. 6D IN NS H.ROOT-SERVERS.NET.
. 6D IN NS C.ROOT-SERVERS.NET.
. 6D IN NS G.ROOT-SERVERS.NET.
. 6D IN NS F.ROOT-SERVERS.NET.
. 6D IN NS B.ROOT-SERVERS.NET.
. 6D IN NS J.ROOT-SERVERS.NET.
. 6D IN NS K.ROOT-SERVERS.NET.
. 6D IN NS L.ROOT-SERVERS.NET.
. 6D IN NS M.ROOT-SERVERS.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. 6D IN NS M.ROOT-SERVERS.NET.

. 6D IN NS I.ROOT-SERVERS.NET.

. 6D IN NS E.ROOT-SERVERS.NET.

. 6D IN NS D.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 5w6d16h IN A 198.41.0.4
H.ROOT-SERVERS.NET. 5w6d16h IN A 128.63.2.53
C.ROOT-SERVERS.NET. 5w6d16h IN A 192.33.4.12
G.ROOT-SERVERS.NET. 5w6d16h IN A 192.112.36.4
F.ROOT-SERVERS.NET. 5w6d16h IN A 192.5.5.241
B.ROOT-SERVERS.NET. 5w6d16h IN A 128.9.0.107
J.ROOT-SERVERS.NET. 5w6d16h IN A 192.58.128.30
K.ROOT-SERVERS.NET. 5w6d16h IN A 193.0.14.129
L.ROOT-SERVERS.NET. 5w6d16h IN A 198.32.64.12
M.ROOT-SERVERS.NET. 5w6d16h IN A 202.12.27.33
I.ROOT-SERVERS.NET. 5w6d16h IN A 192.36.148.17
E.ROOT-SERVERS.NET. 5w6d16h IN A 192.203.230.10
D.ROOT-SERVERS.NET. 5w6d16h IN A 128.8.10.90

;; Total query time: 0 msec
;; FROM: typhoon to SERVER: 198.41.0.4
;; WHEN: Tue Aug 12 14:48:50 2003
;; MSG SIZE sent: 17 rcvd: 436

Let's examine this output section by section.

The first line, beginning with the master file comment character (;) and <<>> DiG 8.4 <<>>, simply parrots the
options we specified in the command line, namely, that we were interested in the NS records that a.root-servers.net
had for the root zone.

The next line, (1 server found), tells us that when dig looked up the addresses associated with the domain name we
specified after the "@," a.root-servers.net, it found one. (If dig finds more than three, the maximum number of name
servers most resolvers can query, it'll report three.)

The line beginning with ->> HEADER <<- is the first part of the header of the reply message that dig received from the
remote name server. The opcode in the header is always QUERY, just as it is with nslookup. The status is NOERROR; it
can be any of the statuses mentioned earlier in this chapter. The ID is the message ID, a 16-bit number used to match
responses to queries.

The flags tell us a bit more about the response. qr indicates that the message was a response, not a query. dig decodes
responses, not queries, so qr will always be present. Not so with aa or rd, though. aa indicates that the response was
authoritative, and rd indicates that the recursion desired bit was set in the query (since the responding name server
just copies the bit from the query to the response). Most of the time rd is set in the query, you'll also see ra set in the
response, indicating that recursion was available from the remote name server. However, a.root-servers.net is a root
name server and has recursion disabled, so it handles recursive queries the same as it does iterative queries. So it
ignores the rd bit and correctly indicates that recursion wasn't available by leaving ra unset.

The last fields in the header indicate that dig asked one question and received 13 records in the answer section, zero
records in the authority section, and 13 records in the additional data section.

The line after the line that contains QUERY SECTION shows us the query dig sent: for the NS records in the IN class for
the root zone. After ANSWER SECTION, we see the 13 NS records for the root name servers, and after ADDITIONAL
SECTION, we have the 13 A records that correspond to those 13 root name servers. If the response had included an
authority section, we'd have seen that, too, after AUTHORITY SECTION.

At the very end, dig includes summary information about the query and response. The first line shows you how long it
took the remote name server to return the response after dig sent the query. The second line shows you from which
host you sent the query and to which name server you sent it. The third line is a timestamp showing when the response
was received. And the fourth line shows you the size of the query and the response, in bytes.

12.9.2 Zone Transfers with dig

As with nslookup, you can use dig to initiate zone transfers. Unlike nslookup, though, dig has no special command to
request a zone transfer. Instead, you simply specify axfr (as the query type) and the domain name of the zone as
arguments. Remember that you can only transfer a zone from a name server that's authoritative for the zone.

So to transfer the movie.edu zone from wormhole.movie.edu, you could use:

C:\> dig @wormhole.movie.edu movie.edu axfr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\> dig @wormhole.movie.edu movie.edu axfr

; <<>> DiG 8.4 <<>> @wormhole.movie.edu movie.edu axfr
; (1 server found)
$ORIGIN movie.edu.
@ 1D IN SOA terminator al.robocop (
 2000091402 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

 1D IN NS terminator
 1D IN NS wormhole
 1D IN NS outland.fx
outland.fx 1D IN A 192.253.254.3
wormhole 1D IN A 192.249.249.1
 1D IN A 192.253.253.1
wh249 1D IN A 192.249.249.1
robocop 1D IN A 192.249.249.2
bigt 1D IN CNAME terminator
cujo 1D IN TXT "Location:" "machine" "room" "dog" "house"
wh253 1D IN A 192.253.253.1
wh 1D IN CNAME wormhole
shining 1D IN A 192.253.253.3
terminator 1D IN A 192.249.249.3
localhost 1D IN A 127.0.0.1
fx 1D IN NS bladerunner.fx
bladerunner.fx 1D IN A 192.253.254.2
fx 1D IN NS outland.fx
outland.fx 1D IN A 192.253.254.3
dh 1D IN CNAME diehard
carrie 1D IN A 192.253.253.4
diehard 1D IN A 192.249.249.4
misery 1D IN A 192.253.253.2
@ 1D IN SOA terminator al.robocop (
 2000091402 ; serial
 3H ; refresh
 1H ; retry
 1W ; expiry
 1H) ; minimum

;; Received 25 answers (25 records).
;; FROM: terminator.movie.edu to SERVER: wormhole.movie.edu
;; WHEN: Tue Aug 12 14:50:03 2003

Note that as with nslookup, the SOA record appears twice, at the beginning and the end of the zone.

12.9.3 dig Options

There are too many dig command-line options to show here, so look at dig's manual page for an exhaustive list. Here's
a list of the most important ones, though, and what they do:

-x address

nslookup is smart enough to recognize an IP address and look up the appropriate domain name in in-addr.arpa,
so why not dig? If you use the -x option, dig assumes that the domain name argument you've specified is really
an IP address, so it inverts the octets and tacks on in-addr.arpa. Using -x also changes the default record type
looked up to ANY, so you can reverse map an IP address with dig -x 10.0.0.1.

-p port

Send queries to the specified port instead of port 53, the default.

+norec[urse]

Turn off recursion (recursion is on by default).

+vc

Send TCP-based queries (queries are UDP by default).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Send TCP-based queries (queries are UDP by default).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Managing DNS from the Command Line
"I daresay you haven't had much practice," said the Queen. "When I was your age, I always did it for
half-an-hour a day. Why, sometimes I've believed as many as six impossible things before breakfast.
There goes the shawl again!"

Knowledgeable administrators can perform tasks much faster using command-line tools than with graphical tools, such
as the DNS console. Fortunately for us, Microsoft has steadily improved in this area, and the DNS command-line tools
available with Windows Server 2003 are just as rich in features as the DNS console. In fact, many query and
configuration tasks can be done only with a command-line tool.

Another benefit of understanding how to use command-line tools is that you can create batch scripts that automate
repetitive processes. In this chapter, we will show you how easy it is to create a simple batch script that installs the
Microsoft DNS Server, configures some name server settings, adds a zone, creates a resource record, and toasts some
bread. All right, maybe it can't toast bread, but you get the idea. And don't worry if scripting isn't your cup of tea;
Windows batch scripts, in their most basic form, contain nothing more than a list of commands to execute. Our script is
a little more complicated than that, but not much.

Throughout this book we've shown you how to configure a Microsoft DNS Server using the DNS console. The command-
line counterpart to the DNS console is dnscmd, which is available in the Windows Support Tools on the Windows Server
2003 CD. dnscmd includes the proverbial kitchen sink of options for managing a Microsoft DNS Server. We spend most
of our time in this chapter reviewing dnscmd. We also cover other useful utilities such as sysocmgr, for installing the
DNS server; and sc, which can be used to query, start, and stop the DNS server. At the end of the chapter, we provide
a list of other DNS-related command-line tools that are useful for querying and troubleshooting DNS.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 Installing the DNS Server
The Microsoft DNS Server is an optional Windows networking component that can be installed from the command line
with the sysocmgr utility, which is installed with the operating system. It can be found in %SystemRoot%\system32.

To use sysocmgr, you first need to create an answer file. An answer file specifies one or more optional components that
you want to install. In our case, we will just install the DNS server. Here is what our answer file looks like:

[netoptionalcomponents]
dns=1

When running sysocmgr, we need to specify two options. The first is /i, followed by a colon and the path to the sysoc.inf
file, which is stored in the %SystemRoot%\inf directory by default. The second option is /u, followed by a colon and the
path to the answer file. If the answer file is stored in the root of the C: drive and is called dns_install.txt, the full
command line would look like this:

C:\> sysocmgr /i:%SystemRoot%\inf\sysoc.inf /u:c:\dns_install.txt

This starts installation of the service. You will see screens pop up as if you were installing the service through the GUI.
You are prompted for the location of the Windows Server 2003 CD files, unless the sysoc.inf file points to a local drive
or network share that contains the \i386 directory that can be found on the CD.

Additional options available with sysocmgr can install the DNS server silently. If you want to suppress all screens during
installation, you can use the /x and /q options. See Figure 13-1 for the complete list of options that are supported.

Figure 13-1. syscomgr command-line options

You can also use sysocmgr to uninstall the DNS server. To do that, change the contents of the dns_install.txt answer
file to the following:

[netoptionalcomponents]
dns=0

Run sysocmgr with the same command-line options shown previously.

For more information about unattended installation options and the syntax of answer files, check out the ref.chm help
file that can be extracted from the \support\tools\deploy.cab file on the Windows Server 2003 CD.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Stopping and Starting the DNS Server Service
There are a couple of options for stopping and starting the DNS server on Windows Server 2003. The net stop and net
start commands have been around since the early days of Windows NT and are commonly used to stop and start
services, if for no other reason than their availability and simplicity. You specify the name of the service after the
command to stop or start it. Here is an example of restarting the DNS server in two steps using these commands:

C:\> net stop dns
The DNS Server service is stopping.
The DNS Server service was stopped successfully.

C:\> net start dns
The DNS Server service is starting.
The DNS Server service was started successfully.

While these commands are certainly easy to use, they don't work on a remote server. If you need to stop, start, or
restart the DNS server on a remote server, you'll need to use the sc utility.

In Windows 2000, the sc utility was available in the Resource Kit. In Windows Server 2003, it's installed with the
operating system, like the syscomgr and net commands we described earlier.

Not only can sc be run against remote servers, but it provides options to perform just about any action you would need
to do against a service. To restart the DNS server on a remote server named matrix, we would use the following
commands:

C:\> sc \\matrix stop dns

SERVICE_NAME: dns
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 3 STOP_PENDING
 (STOPPABLE, PAUSABLE, ACCEPTS_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x1
 WAIT_HINT : 0x7530

C:\> sc \\matrix start dns

SERVICE_NAME: dns
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 2 START_PENDING
 (NOT_STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN))

 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x7d0
 PID : 504
 FLAGS :

As you can see, the second command returned a START_PENDING state. To verify the service started successfully, we
can use the query option:

C:\> sc \\matrix query dns

SERVICE_NAME: dns
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 4 RUNNING
 (STOPPABLE, PAUSABLE, ACCEPTS_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

We recommend using sc instead of the net command. In its most basic form, sc is just as simple but much more
powerful. The following help entry lists all the options supported by sc:

DESCRIPTION:
 SC is a command line program used for communicating with the
 Service Control Manager and services.
USAGE:
 sc <server> [command] [service name] <option1> <option2> . . .

 The option <server> has the form "\\ServerName"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 The option <server> has the form "\\ServerName"
 Further help on commands can be obtained by typing: "sc [command]"
 Commands:
 query-----------Queries the status for a service, or
 enumerates the status for types of services.
 queryex---------Queries the extended status for a service, or
 enumerates the status for types of services.
 start-----------Starts a service.
 pause-----------Sends a PAUSE control request to a service.
 interrogate-----Sends an INTERROGATE control request to a service.
 continue--------Sends a CONTINUE control request to a service.
 stop------------Sends a STOP request to a service.
 config----------Changes the configuration of a service (persistent).
 description-----Changes the description of a service.
 failure---------Changes the actions taken by a service upon failure.
 qc--------------Queries the configuration information for a service.
 qdescription----Queries the description for a service.
 qfailure--------Queries the actions taken by a service upon failure.
 delete----------Deletes a service (from the registry).
 create----------Creates a service. (adds it to the registry).
 control---------Sends a control to a service.
 sdshow----------Displays a service's security descriptor.
 sdset-----------Sets a service's security descriptor.
 GetDisplayName--Gets the DisplayName for a service.
 GetKeyName------Gets the ServiceKeyName for a service.
 EnumDepend------Enumerates Service Dependencies.

 The following commands don't require a service name:
 sc <server> <command> <option>
 boot------------(ok | bad) Indicates whether the last boot should
 be saved as the last-known-good boot configuration
 Lock------------Locks the Service Database
 QueryLock-------Queries the LockStatus for the SCManager Database
EXAMPLE:
 sc start MyService
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Managing the DNS Server Configuration
The DNS server is one of the few Microsoft services that you can configure completely from a command line. The
dnscmd utility has been around since Windows NT. Microsoft has added new options with every major operating system
release. With it, you can modify server settings and create, query, and manipulate zones and resource records. In the
Windows Server 2003 version, there are even dnscmd commands for managing Active Directory application partitions.

Using dnscmd is straightforward. Here is the generic syntax:

dnscmd ServerName Command AdditionalOptions

The ServerName parameter is used to target a remote name server. It is optional and, if not included, runs the
command against the local server (which must be a name server). You can also use a single dot (.) to target the local
server.

The Command parameter is required and corresponds to an action you can perform against the server. The Windows
Server 2003 version of dnscmd supports 37 different commands. Running dnscmd from a command line without
passing any parameters displays the complete list of supported commands.

The AdditionalOptions parameter is optional for some commands, required for some, and not used for others. To see
what additional parameters are needed for a command, run dnscmd Command /? from the command line.

The final point worth mentioning about dnscmd is that it does not communicate with a name server via dynamic
updates, zone transfers, or any other standard DNS communication protocol. Instead, it uses RPC to talk directly to the
DNS Server service on the target name server. This is why, if the DNS Server service is not running on a name server,
you can't run dnscmd against it; start it with sc first.

We will now take a tour through the dnscmd command options (all 37 of them). Normally, we wouldn't go into so much
detail about a utility's options but, unfortunately, much of the Microsoft documentation on dnscmd is inconsistent.
We've tested each command and attempted to provide definitive information about its usage and syntax. A positive side
effect of reading through each command is that you will become well-versed in the capabilities and limitations of the
Microsoft DNS Server.

13.3.1 dnscmd Server Commands

You can view the settings for a name server by using the /Info command. Likewise, you can use the /Config command
to change any of these settings. (Table 14-1 provides a complete list of supported settings.) Commands are also
available to configure the addresses the server listens on (/ResetListenAddresses), configure forwarding
(/ResetForwarders), initiate scavenging (/StartScavenging), clear the server cache (/ClearCache), and view DNS
utilization statistics (/Statistics).

/Info [<PropertyName>]

This command displays the DNS server settings. These settings are stored under the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\DNS\Parameters

If you run this command without other options, all settings and their values are displayed. Alternatively, you
can display a single setting by specifying the name of the setting after the command.

This example displays the ForwardingTimeout setting on matrix:

C:\> dnscmd matrix /info ForwardingTimeout

/Config /<PropertyName> <PropertyValue>

This command sets a server setting. The first parameter should be the name of the property you want to set,
followed by the value.

This example shows how to change the /ForwardingTimeout setting to 3 (seconds) on matrix:

C:\> dnscmd matrix /config /ForwardingTimeout 3

/ResetListenAddresses [<ServerIPAddresses>]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, the Microsoft name server listens for client requests on all networks to which it is directly connected.
With this command, you can limit the networks that the server listens on by specifying a whitespace-separated
list of one or more IP addresses. These IP addresses must be valid addresses configured on network adapters
on the server or the command fails. To reset to the default, run this command without any IP addresses.

This example sets the listen addresses on matrix to 10.13.19.84 and 10.7.19.76:

C:\> dnscmd matrix /resetlistenaddresses 10.13.19.84 10.7.19.76

/ResetForwarders [<ForwarderIPAddresses>]

Use this command to enable forwarding on a name server. Specify a whitespace-separated list of the IP
addresses of the name servers to which it should forward requests. If you run this command without any IP
addresses, it disables forwarding.

This example enables forwarding on matrix and forwards unresolved queries to 10.13.19.84 and 10.7.19.76:

C:\> dnscmd matrix /resetforwarders 10.13.19.84 10.7.19.76

/StartScavenging

This command starts the scavenging process on all zones configured for scavenging on the name server. Even
though it may return a success message, successful scavenging depends on the following:

1. Scavenging must have previously been enabled on the server. This command enables scavenging and
sets it to run every 168 hours (7 days):

C:\> dnscmd matrix /config /scavenginginterval 168

2. Scavenging must have previously been enabled on one or more zones. This command enables
scavenging on the fx.movie.edu zone:

C:\> dnscmd matrix /config fx.movie.edu /aging

3. Resource records must have previously had aging enabled. By default, resource records that are added
via dynamic update have aging enabled. You can also configure a record to be aged when you create it
using the /aging option with the /recordadd command. To enable aging on all resource records in a zone,
see the /ageallrecords command.

This example initiates scavenging on matrix:

C:\> dnscmd matrix /startscavenging

This command causes scavenging to start, but it does not wait for scavenging to complete so it will pretty much
always return success. To see the results of the scavenging, you'll want to view the DNS event log once
scavenging has had enough time to run.

/ClearCache

The Microsoft DNS Server keeps a cache in memory of records that it has resolved locally or through recursive
queries. These records are cached for the duration of the time to live (TTL) setting on each record. If a record
was recently changed and you want to update the cache so the server returns the latest version, you can flush
the cache using this command.

This example clears the server cache on matrix:

C:\> dnscmd matrix /clearcache

/Statistics [<StatNumber>]

The Microsoft DNS Server keeps track of performance statistics related to the number of requests, queries,
updates, zone transfers, packets, and Active Directory reads and writes it processes. This is useful information
for monitoring the utilization of your name server. Running this command without any parameters prints all
statistics.

You can also view a subset of statistics. Several statistics categories group similar metrics together, such as
query-related metrics. You can view a subset of metrics by summing the hexadecimal numbers associated with
the categories you want to see. Here is a list of each category and its number.

Start number Category

000001 Time

000002 Query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

000004 Query2

000008 Recurse

000010 Master

000020 Secondary

000040 Wins

000100 Wire Update

000200 Security

000400 Ds

000800 Internal Update

010000 Memory

040000 Dbase

080000 Records

100000 PacketMem

This example displays the query-related statistics (2 + 4) for matrix:

C:\> dnscmd matrix /statistics 6

Keep in mind that these are numbers are in hex, so 4 + 8 would equal C, not 12.

13.3.2 dnscmd Zone Commands

Over half of the dnscmd command options relate to configuring or querying zones.

/AgeAllRecords <ZoneName> [<NodeName>] [/Tree] [/f]

In order for resource records to be scavenged after a period of time, a timestamp must be associated with the
record. The /AgeAllRecords command allows you to set the current time as the timestamp for all records in a
zone, or for a specific node in a zone. The node name can be any node in the zone, @ to represent all records,
or the name of a subdomain. If you specify a subdomain for the node, use the /tree option to set a timestamp
on all records in the subdomain.

By default, you are prompted for confirmation before records are aged. To disable this prompt, use the /f
option.

This example shows how to age all resource records in the cgi subdomain of the fx.movie.edu zone:

C:\> dnscmd /ageallrecords fx.movie.edu cgi /tree

/Config <ZoneName> /<PropertyName> [<PropertyValue>]

This command configures settings for both name servers and zones. To configure zone settings, specify the
zone name followed by the property name and value (if necessary).

This example turns on aging for the fx.movie.edu zone:

C:\> dnscmd /config fx.movie.edu /aging

/EnumZones [<Filters>]

This command lists the zones stored on a server. Several filter options are available if you want to view a
subset of zones. These include: /Primary, /Secondary, /Forwarder, /Stub, /Cache, /Auto-Created, /Forward,
/Reverse, /Ds, /File, /DomainDirectoryPartition, /ForestDirectoryPartition, /CustomDirectoryPartition,
/LegacyDirectoryPartition, and /DirectoryPartition.

This example enumerates all AD-integrated zones stored on the local server:

C:\> dnscmd /enumzones /ds

/WriteBackFiles [<ZoneName>]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This command allows you to write to persistent storage any updates to the zone that are stored only in
memory. If you do not specify a zone name, changes to any zone stored on the server are written to persistent
storage.

This example writes to disk any changes to the fx.movie.edu zone that are stored in memory:

C:\> dnscmd /writebackfiles fx.movie.edu

/ZoneAdd <ZoneName> <ZoneType> [<ZoneOptions>]

This command adds a zone to a server. The first parameter is the name of the zone, and the second is the zone
type. Based on the zone type, there may be additional zone options that you can also specify. Here is the list of
zone types and associated zone options:

/DsPrimary [/dp <AppPartitionName> | /domain | /forest | /legacy]

/Primary /file <FileName>

/Secondary <MasterIPAddresses> [/file <FileName>]

/Stub <MasterIPAddresses> [/file <FileName>]

/DsStub <MasterIPAddresses> [/dp <AppPartitionName> | /domain | /forest | /legacy]

/Forwarder <MasterIPAddresses> [/Timeout <Time>] [/Slave]

/DsForwarder <MasterIPAddresses> [/Timeout <Time>] [/Slave] [/dp <AppPartitionName> | /domain |
/forest | /legacy]

This example creates an AD-integrated zone named fx.movie.edu and stores it in the forest DNS application
partition:

C:\> dnscmd /zoneadd fx.movie.edu /dsprimary /forest

/ZoneDelete <ZoneName> [/DsDel] [/f]

This command deletes a zone from a server. When deleting an AD-integrated zone, you must specify the /DsDel
option or an error will be returned.

Before deleting the zone, you are prompted to confirm the deletion. The /f option skips the confirmation step.

This example deletes the AD-integrated fx.movie.edu zone from the local server and from Active Directory:

C:\> dnscmd /zonedelete fx.movie.edu /DsDel

/ZoneExport <ZoneName> <ZoneFileName>

This command exports the contents of a zone into a standard zone file. This is useful when troubleshooting AD-
integrated zones, which do not generate zone files.

The first parameter is the zone name, followed by the filename to which to export the zone. This file is created
in %systemroot%\System32\dns on the target server.

This example shows how to export the contents of the fx.movie.edu zone to a file named fx-export.dns:

C:\> dnscmd /zoneexport fx.movie.edu fx-export.dns

/ZoneInfo <ZoneName> [<PropertyName>]

This command displays the settings for a zone. These settings are stored under the following registry key:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\DNS Server\Zones\ZoneName

By default, all settings for a zone are displayed, but you can optionally specify a property name to display the
value for only that setting.

This example displays all settings for the fx.movie.edu zone:

C:\> dnscmd /zoneinfo fx.movie.edu

/ZonePause <ZoneName>

With this command, you can stop the name server from responding to queries for a zone and from processing
updates. Use the /ZoneResume command to restart the zone.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updates. Use the /ZoneResume command to restart the zone.

This example shows how to pause the fx.movie.edu zone:

C:\> dnscmd /zonepause fx.movie.edu

/ZonePrint <ZoneName>

This command prints the resource records for the specified zone. This is similar to the /ZoneExport command,
except that the contents of the zone are printed to the screen instead of to a file. You can obviously redirect the
contents to a file if desired.

This example prints the resource records in the fx.movie.edu zone:

C:\> dnscmd /zoneprint fx.movie.edu

/ZoneRefresh <ZoneName>

This command is run against a secondary name server to force a zone transfer of a particular zone. The zone
transfer occurs only if the serial number in the zone's SOA record on the master server is higher than the serial
number on the secondary server the command is run against.

This example causes the local server to perform a zone transfer of the fx.movie.edu zone if the master server
has a higher SOA serial number:

C:\> dnscmd /zonerefresh fx.movie.edu

/ZoneReload <ZoneName>

This command causes the specified zone to be reloaded from its zone file or from Active Directory for AD-
integrated zones.

This example shows how to reload the fx.movie.edu zone:

C:\> dnscmd /zonereload fx.movie.edu

/ZoneResetMasters <ZoneName> [/local] [<MasterIPAddresses>]

This command sets the list of master IP addresses that the server uses to perform zone transfers for the
specified zone. To remove the current master IP addresses, run this command without any parameters.

If you specify /local against an AD-integrated stub zone, the new master list is "local" to the target server only.
All other servers will use the master list stored in AD.

This example configures 10.7.52.25 as the master server for the fx.movie.edu zone:

C:\> dnscmd /zoneresetmasters fx.movie.edu 10.7.52.25

/ZoneResetScavengeServers <ZoneName> [<ServerIPAddresses>]

For AD-integrated zones that have scavenging enabled, you can limit the servers that perform scavenging with
this command. By default, all servers that have scavenging enabled remove out-of-date records in zones that
also have scavenging enabled. If you omit the list of servers, it reverts to the default, which is all servers
performing a periodic scavenge.

This example shows how to restrict scavenging of the fx.movie.edu zone to the name servers 10.7.19.76 and
10.7.25.63:

C:\> dnscmd /zoneresetscavengeservers fx.movie.edu 10.7.19.76 10.7.25.63

/ZoneResetSecondaries <ZoneName> [<ZoneTransferOptions>] [<NotifyOptions>]

This command configures which secondary servers can perform zone transfers and receive NOTIFY messages
for the specified zone. ZoneTransferOptions is optional and, if included, can be one of the following:

/NoXfr

Zone transfers are not allowed to any server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/NonSecure

Zone transfers are allowed to any server.

/SecureNs

Only servers listed in the NS records for the zone can perform zone transfers.

/SecureList <IPAddresses>

Only servers specified by IPAddresses can perform zone transfers.

NotifyOptions is also optional and can be one of the following:

/NoNotify

Change notifications are not sent to any servers.

/Notify

Change notifications are sent to all servers listed in the NS records for the zone.

/NotifyList <IPAddresses>

Change notifications are only sent to the servers specified by IPAddresses.

This example enables NOTIFY and allows only servers that have NS records in the zone to perform zone
transfers for the fx.movie.edu zone:

C:\> dnscmd /zoneresetsecondaries fx.movie.edu /securens /notify

/ZoneResetType <ZoneName> <ZoneType> [<ZoneOptions>] [/OverWrite_Mem | /OverWrite_Ds]

This command changes the type of a zone. For example, you can change a secondary zone to become a
primary zone. See the ZoneType options for the /ZoneAdd command because they are nearly identical for this
command. The only difference is that for AD-integrated zones, you need to use /DirectoryPartition instead of
/dp to specify the application partition to store the zone in.

The /OverWrite_Mem and /OverWrite_Ds options can be used when converting non-AD-integrated zones to AD-
integrated zones. /OverWrite_Mem causes the contents of the zone in AD to overwrite what is stored locally.
/OverWrite_Ds causes the contents of the locally stored zone to overwrite what is in AD.

This example shows how to change the primary zone fx.movie.edu to be AD-integrated, and store it in the
forest DNS application partition:

C:\> dnscmd /zoneresettype fx.movie.edu /dsprimary forestdnszones.movie.edu

/ZoneResume <ZoneName>

This command can be used to start a zone that has been stopped with the /ZonePause command. When a zone
is paused or stopped, the name server does not answer queries or process updates for the zone.

This example resumes the fx.movie.edu zone:

C:\> dnscmd /zoneresume fx.movie.edu

/ZoneUpdateFromDs <ZoneName>

Name servers that support AD-integrated zones periodically poll Active Directory for changes to those zones. By
default, this happens every five minutes. You can use the /ZoneUpdateFromDs command to force the name
server to check Active Directory for changes. You can also change the polling frequency by running this
command where <Minutes> is how often to poll Active Directory:

C:\> dnscmd /config /dspollinginterval Minutes

This example shows you how to force the local name server to check Active Directory for changes to the
fx.movie.edu zone:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fx.movie.edu zone:

C:\> dnscmd /zoneupdatefromds fx.movie.edu

/ZoneWriteBack <ZoneName>

When a Microsoft DNS Server receives updates for a file-based zone, it does not immediately commit those
changes to disk. Instead, it stores them in memory and periodically writes the changes to its permanent
storage. The /ZoneWriteBack command allows you to manually initiate the write-back action for a zone.

For AD-integrated zones, all changes are written immediately to Active Directory as they are processed.

This example shows how to write to disk any changes stored in memory for the fx.movie.edu zone:

C:\> dnscmd /zonewriteback fx.movie.edu

13.3.3 dnscmd Application Partition Commands

In Windows Server 2003, AD-integrated zones can be stored in application partitions, which we described in Chapter 8.
Not only can you use dnscmd to store a particular zone in an application partition, but you can query, create, delete,
and control which domain controllers replicate an application partition. In short, dnscmd is not only your primary
command-line interface for managing DNS, but for managing DNS application partitions as well.

/CreateBuiltinDirectoryPartitions /domain | /forest | /alldomains

If you install a new Windows Server 2003 Active Directory forest, the default DNS application partitions are
installed automatically. If you delete these application partitions and need to recreate them, you can use this
command. The type of built-in application partition to create is a required parameter. /domain creates a
domainwide application partition (e.g., domaindnszones.movie.edu) for the domain of the server this command
is run against. /forest creates a forestwide DNS application partition (e.g., forestdnszones.movie.edu).
/alldomains creates a domainwide application partition for all domains in the forest. (This does not include the
forestwide application partition.)

This example shows how to create the built-in domainwide DNS application partitions in the forest that the
target server is in:

C:\> dnscmd /CreateBuiltinDirectoryPartitions /alldomains

/CreateDirectoryPartition <AppPartitionName>

This command creates an application partition, which can be used either for replicating AD-integrated zone data
or for other application data.

This example shows how to create an application partition named apps.fx.movie.edu:

C:\> dnscmd /CreateDirectoryPartition apps.fx.movie.edu

/DeleteDirectoryPartition <AppPartitionName>

This command deletes an application partition. Deleting an application partition deletes all objects that are
stored in it.

This example shows how to delete an application partition named apps.fx.movie.edu:

C:\> dnscmd /DeleteDirectoryPartition apps.fx.movie.edu

/DirectoryPartitionInfo <AppPartitionName> [/detail]

Use this command to display information about an application partition. The information includes the
distinguished name in Active Directory, the corresponding crossRef object in the Partitions container, a list of
replica servers, and the number of zones stored (if AD-integrated zones are stored in it). By default, very long
domain names are truncated in the output. You can use the optional /detail switch to make sure long names are
not truncated.

This example displays the properties of the forestdnszones.movie.edu application partition:

C:\> dnscmd /DirectoryPartitionInfo forestdnszones.movie.edu

/EnlistDirectoryPartition <AppPartitionName>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this command, you make the target name server a replica server for the specified application partition.
This causes the server to replicate the contents of the application partition. Note that you cannot use this
command to "enlist" servers that are not running the DNS Server service.

This example causes matrix to become a replica server for the apps.movie.edu application partition:

C:\> dnscmd matrix /EnlistDirectoryPartition apps.movie.edu

/EnumDirectoryPartitions [/custom]

This command prints a list of the application partitions in the forest that the target server is a member of. The
output includes whether the server is enlisted with each application partition or not. /custom is optional and can
be used to display only the non-default application partitions. (These are the ones created by
/CreateBuiltinDirectoryPartitions.)

This example displays all of the custom application partitions in a forest:

C:\> dnscmd /EnumDirectoryPartitions /custom

/UnenlistDirectoryPartition <AppPartitionName>

Whereas the /EnlistDirectoryPartition adds a server to an application partition, this command removes (or
"unenlists") a server from an application partition.

This example removes matrix from the apps.fx.movie.edu application partition:

C:\> dnscmd matrix /UnenlistDirectoryPartition apps.fx.movie.edu

/ZoneChangeDirectoryPartition <ZoneName> [<AppPartitionName> | /domain | /forest | /legacy]

Use this command to move an AD-integrated zone between application partitions and the System container.
The first two parameters must be the name of the zone to move followed by the application partition to move it
to. This can take the form of a FQDN of an application partition, /domain to move it to the default domain
application partition for name servers, /forest for the default forest application partition for name servers, or
/legacy to move it to the System container of a domain.

This example moves the fx.movie.edu zone to the default domain application partition for name servers:

C:\> dnscmd /ZoneChangeDirectoryPartition fx.movie.edu /domain

13.3.4 dnscmd Resource Record Commands

The dnscmd utility can query, create, and delete resource records using the /EnumRecords, /RecordAdd, /RecordDelete,
and /NodeDelete commands. Each of these commands requires the same two parameters following the command
option. The first is the name of the zone (ZoneName) you want to perform the task against. The second is the name of
the node (NodeName) that corresponds to the owner of the target resource record (or records).

/EnumRecords <ZoneName> <NodeName> [/Type <RRType> <RRData>] [/Authority] [/Glue] [/Additional] [/Node |
/Child | /StartChild <Child>] [/Continue | /Detail]

This command has several options that provide flexibility with enumerating resource records in a zone.[1] The
only required parameters are ZoneName and NodeName. If you want to match all resource records, you can
replace NodeName with @ instead of a specific node name. Here are the other optional parameters used to
control the types of records enumerated and the information that is displayed for each.

[1] Besides providing different options for querying records, /EnumRecords is different from the nslookup
command because it uses RPC to communicate with the Microsoft DNS Server instead of the standard DNS
protocol. This also means that the /EnumRecords command does not work with non-Microsoft DNS
Servers.

/Type <RRType>

Restrict the records that are returned to a specific resource record type (RRType).

/Authority

Display only authoritative data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Display only authoritative data.

/Glue

Display any glue information for each record.

/Additional

Display any additional information for each record.

/Node

Display only the records for the specified node.

/Child

Display only the child records of the specified node.

/StartChild <ChildNodeName>

Display only the records starting at a particular child node (i.e., subdomain)

/Continue

Display all matching records regardless of the number. By default, after the buffer has been filled, it
stops displaying records.

/Detail

Display detailed debugging information for each record.

This example displays all records associated with the node matrix in the fx.movie.edu zone:

C:\> dnscmd /enumrecords fx.movie.edu matrix

This example displays all A records in the fx.movie.edu zone:

C:\> dnscmd /enumrecords fx.movie.edu @ /Type A

/NodeDelete <ZoneName> <NodeName> [/tree] [/f]

This command deletes all resource records associated with a node. You can delete a subdomain of records by
specifying the name of the subdomain for <NodeName> along with the /tree option.

By default, you are prompted to confirm the deletion. To disable the confirmation request, use the /f switch.

This example deletes the cgi.fx.movie.edu subdomain and all the resource records contained within it:

C:\> dnscmd /nodedelete cgi.fx.movie.edu /tree

/RecordAdd <ZoneName> <NodeName> [/Aging] [/OpenAcl] [<TTL>] <RRType> <RRData>

This command allows you to create any of the resource records supported by the Microsoft DNS Server. The
first two required parameters are the zone name and node name. You can then specify any of these optional
parameters:

/Aging

Enables aging for the record. If scavenging has been turned on for the server and zone, the record is
deleted after the refresh and no-refresh intervals unless the record is updated.

/OpenAcl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For AD-integrated zones, the ACL on this record is configured so that anyone can modify it initially.
After a client updates the record, only that client (by default) has permission to modify the record. An
administrator who is pre-populating records for clients might use this option. The first time each client
touches the record the record becomes locked down to only that client for future updates.

<TTL>

Time-to-live value for the record.

The next two parameters are required. They are the record type (RRType) and record data (RRData)
fields.

This example adds an A record for matrix in the fx.movie.edu zone:

C:\> dnscmd /recordadd fx.movie.edu matrix A 10.7.19.76

/RecordDelete <ZoneName> <NodeName> <RRType> <RRData> [/f]

While /NodeDelete allows you to delete all of the resource records associated with a specific node, you
can delete individual records with /RecordDelete. After the ZoneName and NodeName parameters, you
must specify the RRType and RRData.

This command prompts for confirmation before proceeding with the deletion. You can disable the
confirmation prompt using the /f option.

This example deletes the A record for matrix in the fx.movie.edu zone:

C:\> dnscmd /recorddelete fx.movie.edu matrix A 10.7.19.76

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.4 An Installation and Configuration Batch Script
Now that we've covered the DNS installation and configuration commands, we'll show you a short batch script that
automates the initial setup of a secondary name server. This script performs the following tasks:

1. Installs the DNS Server service using sysocmgr

2. Adds a zone called fx.movie.edu using dnscmd

3. Configures the server to use a forwarder using dnscmd

4. Adds an A record for the name of the new server in the fx.movie.edu zone on the primary master server using
dnscmd

5. Performs a zone transfer from the primary master server to receive the latest updates using dnscmd

The only other utility used in the script is the sleep command, which is available in the Resource Kit. The sleep
command is used to allow time for the changes initiated by each command to be committed.

Here is the script:

@echo off

:: IP address of primary master server
set PRIMARY_MASTER_IP=64.10.57.21
:: Forward-mapping zone to add to this server
set FWD_ZONE=fx.movie.edu
:: IP address of this server
set SERVER_IP=10.50.23.7

echo Installing the DNS Server service . . .
sysocmgr /i:%windir%\inf\sysoc.inf /u:c:\dns_install.txt
:: The sleep command is part of the Resource Kit
sleep 5

echo Adding a zone . . .
dnscmd /zoneadd %FWD_ZONE% /Secondary %PRIMARY_MASTER_IP%
sleep 5

echo Configuring this server to use a forwarder . . .
dnscmd /resetforwarders %PRIMARY_MASTER_IP%
sleep 5

echo Adding an A record for this server in %FWD_ZONE%
dnscmd %PRIMARY_IP% /recordadd %FWD_ZONE% %COMPUTERNAME% A %SERVER_IP%
sleep 5

echo Performing a zone transfer
dnscmd /zonerefresh %FWD_ZONE%

echo Done

As you can see, the script isn't terribly complex. The @echo off line turns off printing of each command as it is run. You
may want to comment this out if you need to debug the script. Commented lines in batch scripts are designated by :: at
the beginning of the line.

The rest of the code runs the commands to perform the steps we outlined earlier. We used the set command to
initialize some variables that we use throughout the script. The echo command was used to print some status
messages. The output from each command is also displayed.

This example script may not be applicable in your environment, but it should give you an idea of how easy it is to create
simple batch scripts to automate the installation and configuration of your name servers. If you're interested in learning
more about using scripts to manage DNS, see Chapter 14.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.5 Other Command-Line Utilities
The command-line utilities we've seen so far cover the spectrum of installing and configuring the DNS Server service.
There are, however, several other utilities that you are likely to run across as a DNS administrator. They are used for
querying and troubleshooting DNS.

13.5.1 nslookup

The nslookup utility is one of the oldest and most widely used DNS tools. With it, you can perform all types of resource
record queries and even zone transfers. This tool is so important that we spent most of Chapter 12 describing how to
use it.

The nslookup utility is installed by default on Windows 2000, Windows XP, and Windows Server 2003.

13.5.2 ipconfig

The ipconfig utility is most commonly used for releasing and renewing DHCP addresses, but it is also a handy client-side
DNS tool. The DNS-related ipconfig options include the following:

/displaydns

This option displays the contents of the client resolver cache. For each cached resource record, it displays the
Record Name, Record Type, Time To Live (TTL), Data Length, Section, and RR data. If a record resides in the
cache and another query is made for the record, the client uses that record (until the TTL expires) instead of
querying a name server again.

/flushdns

This option erases the contents of the resolver cache. Subsequent lookups are sent to a name server and
cached again by the client after receiving a response.

/registerdns

This option causes the client to refresh its DHCP lease and its network registration (A and PTR records).

The ipconfig utility is installed by default on Windows 2000, Windows XP, and Windows Server 2003.

13.5.3 netdiag

The netdiag utility performs a variety of network connectivity tests, including a DNS test. The netdiag /test:DNS
command iterates over each active network adapter and checks whether the hostname has an A record in the domain
specified by the domain suffix for the adapter. If you receive an error message for the DNS test, you should run netdiag
/test:DNS /debug, which will produce verbose output and help pinpoint the cause of the failure.

If you run netdiag /test:DNS on a domain controller and receive errors, you can run it again with the /fix option to
force all the records in the netlogon.dns file to be refreshed in DNS. See Chapter 8 for more details on the netlogon.dns
file.

The netdiag utility is available in the Windows 2000 and Windows Server 2003 Support Tools.

13.5.4 dcdiag

DNS can be hard to configure correctly when initially building an Active Directory infrastructure. The dcdiag utility
provides two commands that help assess whether your DNS infrastructure is configured correctly to support Active
Directory. The /test:DcPromo option can be used to simulate creating a new forest, domain tree, domain, or replica
domain controller. For this test, you have to include the /DnsDomain: option and the name of the target domain. You
also need to specify one additional option that indicates the type of test to run. These include: /NewForest, /NewTree,
/ChildDomain, and /ReplicaDC. If you use the /NewTree option, you must also include the /ForestRoot: option followed
by the name of the forest root domain. Here is an example command line to test creating a new child Active Directory
domain called matrix:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

domain called matrix:

C:\> dcdiag test:DcPromo /DnsDomain:matrix.movie.edu /ChildDomain

The other dcdiag test is RegisterInDNS. It verifies whether a domain controller can register an A record for its hostname
as well as the various locator records required by Active Directory. The only additional option that is required for this
command is /DnsDomain: followed by the domain that the domain controller is in. Here is an example:

C:\> dcdiag test:RegisterInDNS /DnsDomain:movie.edu

You can specify the /s: option followed by the name of a target domain controller if you
want to run dcdiag remotely.

The dcdiag utility is available in the Windows 2000 and Windows Server 2003 Support Tools, but the DcPromo and
RegisterInDNS tests are available only in the latter.

13.5.5 DNSLint

The DNSLint utility is new in Windows Server 2003 and provides a way to quickly check for the existence of one or
more resource records on several name servers. Additionally, it can check for lame delegations, and the resource
records necessary for Active Directory replication to occur as well as performing connectivity tests for well known email
protocols (i.e., SMTP, POP, and IMAP).

The DNSLint utility is part of the Windows Server 2003 Support Tools. For more information on DNSLint, see Chapter
15.

13.5.6 dnsdiag

The dnsdiag utility can be used to troubleshoot email delivery problems that stem from DNS misconfigurations. It works
by simulating the DNS activity performed by an SMTP agent that is attempting to deliver email. In order for dnsdiag to
work, either Exchange or SMTP service needs to be installed on the computer that dnsdiag is run from. If neither is
installed, you will see a cryptic error stating that ISATQ.dll was not found.

dnsdiag can be found in the Windows Server 2003 Resource Kit.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Managing DNS Programmatically
"It's MY opinion that you never think AT ALL," the Rose said in a rather severe tone.

In the last chapter, we reviewed the dnscmd utility, which can be used to manage a Microsoft DNS Server from the
command line. But what if you want more control over automating your DNS environment with scripts? Until recently,
your only option would have been to run dnscmd from within batch files or from VBScript or Perl scripts. In fact, the
lack of a good DNS API has always been a big shortcoming of Microsoft's DNS solution. Starting with Windows 2000,
Microsoft answered the call by providing a Windows Management Instrumentation (WMI) DNS Provider. WMI is
Microsoft's API of choice for managing and monitoring Windows-based systems and services. With the WMI DNS
Provider, you have complete programmatic control over the Microsoft DNS environment, much like you do with dnscmd
from a command line.

In this chapter, we cover the WMI DNS Provider by providing real-world scripts that should serve as good examples to
get your automation efforts jumpstarted. If you need a more detailed introduction to WMI, check out Alain Lissior's
books from Digital Press: Understanding Windows Management Instrumentation (WMI) Scripting and Leveraging
Windows Management Instrumentation (WMI) Scripting.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 WMI and the DNS Provider
The WMI API was developed by Microsoft in 1998 in response to developers' and system administrators' ever-growing
need for a common, scriptable API to manage the components of the Windows operating systems. Before WMI, if you
wanted to manage some component of the operating system, you had to resort to using one of the component-specific
Win32 APIs, such as the Registry API or Event Log API. Each API typically had its own implementation quirks and
required way too much work to do simple tasks. The other big problem with the Win32 APIs was that scripting
languages, such as VBScript, could not access them. This limited how much an inexperienced programmer or system
administrator could manage systems programmatically. WMI changes all this by providing a single API that can be used
to query and manage the Event Log, the Registry, system processes, the file system, or almost any other operating
system component.

WMI is the Microsoft implementation of the Common Information Model (CIM) developed by the Distributed
Management Task Force (DMTF). The DMTF is an association of various hardware and software companies (e.g., Novell,
Microsoft, Cisco, and HP) developing standards in enterprise management. As large enterprises have many computers
with many software environments, managing these diverse environments can be a real challenge. In order to unify the
management techniques for the sake of simplicity, DMTF defined CIM to represent real-world manageable entities in a
unified way. The CIM object model provides a generic set of definitions for hardware and software components. Vendors
use this generic object model as a basis for extending CIM to support their own products. WMI is based on the CIM
object model and includes extensions that represent the various Windows components.

The WMI DNS Provider was first released as part of the Windows 2000 Resource Kit Supplement 1, but unfortunately, it
wasn't ready for prime time. That version was buggy, didn't include all the documented features, and, in several cases,
behaved differently from what the documentation described. Also, since the DNS Provider was included as part of a
Resource Kit, it was not fully supported by Microsoft, which meant that if you encountered problems, you were largely
on your own. That said, much of the functionality you probably need is present in the Windows 2000 version so it may
be suitable. You can download the Windows 2000 DNS Provider separately from the Resource Kit via anonymous FTP
from the following location: ftp://ftp.microsoft.com/reskit/win2000/dnsprov.zip.

With Windows Server 2003, the DNS Provider is fully functional and supported, although some discrepancies still exist
between the Microsoft documentation and the implementation. It is installed automatically whenever you install the
DNS Server service.

All of our sample code has been tested using the Windows Server 2003 DNS Provider.

14.1.1 Quick Overview

The three main areas of interest when it comes to managing DNS include server configuration, zone management, and
the creation and deletion of resource records. The DNS Provider has several classes to manipulate each of these
components, all stored under the root\MicrosoftDNS namespace. With the MicrosoftDNS_Server class, you can manipulate
server configuration settings, start and stop the DNS Server service, and initiate scavenging. The MicrosoftDNS_Zone
class allows you to create, delete, and modify zone configurations. The MicrosoftDNS_ResourceRecord class and child
classes provide methods for manipulating the various resource record types. Each of these is explained in more detail in
the next few sections.

Several additional classes supported by the DNS Provider manage other aspects of DNS including the root hints
(MicrosoftDNS_RootHints), DNS server cache (MicrosoftDNS_Cache), and server statistics (MicrosoftDNS_Statistics) classes. For
more information on these classes, including sample scripts in VBScript and Perl, search for "DNS WMI Provider" in the
Microsoft Developer Network Library (http://msdn.microsoft.com/library/).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 WMI Scripting with VBScript and Perl
The learning curve to develop WMI scripts is relatively short if you have any experience with a scripting language. In
fact, once you understand how to reference, enumerate, and query objects of a particular class with WMI, it is
straightforward to adapt the code to work with any managed component, including DNS. And fortunately, by
understanding just a few guidelines, you can convert VBScript code to Perl and vice versa.

14.2.1 Referencing an Object

To reference objects in WMI, you use a UNC-style path name. Here is an example of how to reference the C: drive on
the host terminator:

\\terminator\root\CIMv2:Win32_LogicalDisk.DeviceID="C:"

The first part of the path (\\terminator\) is a reference to the computer on which the object resides. To reference the
computer on which the script is running, you can use a dot (.) for the computer name. The second part (root\CIMv2) is
the namespace the object resides in. Each WMI provider uses a namespace to store its associated objects. The third
part (Win32_LogicalDisk) is the class of the object to reference. The fourth part is the key/value pairs representing an
object of that class. Generically, the path can be described as follows:

\\ComputerName\NameSpace:ClassName.KeyName="KeyValue"[,KeyName2="KeyValue2" . . .]

Now that we know how to reference WMI objects, let's instantiate an object using VBScript's GetObject function. In order
for GetObject to understand we are referencing WMI objects, we have to include one additional piece of information: the
moniker. If you've done any Active Directory scripting before, you're probably familiar with the LDAP: and WinNT:
monikers used in ADSI. For WMI, we need to use the winmgmts: moniker:

set objDisk = GetObject("winmgmts:\\terminator" & _
 "\root\CIMv2:" & _
 "Win32_LogicalDisk.DeviceID='C:'")

To accomplish the same thing in Perl, we need to use the Win32::OLE module. (The sidebar details differences between
VBScript and Perl.) Here is the same code written in Perl:

use Win32::OLE;
$objDisk = Win32::OLE->GetObject("winmgmts:\\\\terminator" .
 "\\root\\CIMv2:" .
 "Win32_LogicalDisk.DeviceID='C:'");

Differences Between VBScript and Perl
Here are some of the main differences between VBScript and Perl:

With Perl, you have to use the Win32::OLE module to access the WMI Scripting interface. With
VBScript, you simply need to call the GetObject function.

Perl uses the arrow operator (->) to invoke a method on an object whereas VBScript uses a dot (.).

In Perl, the backslash (\) character is the escape character, so we need to use two backslashes
when using it within double quotes.

Perl uses the dollar sign ($) to indicate a variable whereas VBScript doesn't use a character to
distinguish variables.

VBScript requires an underscore to continue a statement to the next line whereas Perl does not.

Perl uses the dot (.) for concatenation whereas VBScript uses the ampersand (&).

Perl requires that each statement end with a semicolon (;) whereas VBScript assumes the end of
the line is the end of the statement (unless the underscore continuation character is used).

Perl uses pound (#) for comments whereas VBScript uses a single quote (').

If you can keep these differences in mind, along with being able to convert basic language constructs (for
loops, if then else conditionals, etc.), you should have no problems converting VBScript to Perl.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2.2 Enumerating Objects of a Particular Class

Now let's enumerate all logical disks on a machine. To do so, we need to use the InstancesOf method on a WMI object
pointing to the namespace of the provider that contains the class. An example should make this clear:

strComputer = "."
set objWMI = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")
set objDisks = objWMI.InstancesOf("Win32_LogicalDisk")
for each objDisk in objDisks
 Wscript.Echo "DeviceID: " & objDisk.DeviceID
 Wscript.Echo "FileSystem: " & objDisk.FileSystem
 Wscript.Echo "FreeSpace: " & objDisk.FreeSpace
 Wscript.Echo "Name: " & objDisk.Name
 Wscript.Echo "Size: " & objDisk.Size
 WScript.Echo ""
next

Here we get a WMI object pointing to the root\CIMv2 namespace, after which we call the InstancesOf method and pass
the Win32_LogicalDisk class. That method returns a collection of Win32_LogicalDisk objects, which we then iterate over with
a for loop.

Since we used a for loop in the last example, we'll show the equivalent code in Perl:

use Win32::OLE 'in';
my $strComputer = ".";
my $objWMI = Win32::OLE->GetObject("winmgmts:\\\\$strComputer\\root\\cimv2");
my $objDisks = $objWMI->InstancesOf("Win32_LogicalDisk");
for my $objDisk (in $objDisks) {
 print "DeviceID: ", $objDisk->DeviceID,"\n";
 print "FileSystem: ", $objDisk->FileSystem ,"\n";
 print "FreeSpace: ", $objDisk->FreeSpace,"\n";
 print "Name: ", $objDisk->Name,"\n";
 print "Size: ", $objDisk->Size,"\n";
 print "\n";
}

As you can see, the Perl code is very similar to the VBScript code. One thing to note is that we had to import the in
function on the first line, which was later used in the for loop to iterate over the $objDisks collection. VBScript provides
this function natively within the language whereas Perl does not.

Having the capability to easily obtain the instances of a certain type of class is very powerful. As you can imagine, you
could adapt the code to retrieve a list of all CPUs, services, processes, etc., on a computer. The only issue with the last
example is that we needed to know which property methods of the Win32_LogicalDisk class we wanted to print. We can
instead retrieve all properties of the Win32_LogicalDisk class using the Properties_ method on each object as shown here:

strComputer = "."
strWMIClass = "Win32_LogicalDisk"

set objWMI = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")
set objDisks = objWMI.InstancesOf(strWMIClass)
for each objDisk in objDisks
 for each objProp in objDisk.Properties_
 ' Print out NULL if the property is blank
 if IsNull(objProp.Value) then
 Wscript.Echo " " & objProp.Name & " : NULL"
 else
 ' If the value is an array, we need to iterate through each element
 ' of the array
 if objProp.IsArray = TRUE then
 For I = LBound(objProp.Value) to UBound(objProp.Value)
 wscript.echo " " & objProp.Name & " : " & objProp.Value(I)
 next
 else
 ' If the property was not NULL or an array, we print it
 wscript.echo " " & objProp.Name & " : " & objProp.Value
 end if
 end if
 next
 WScript.Echo ""
next

14.2.3 Searching with WQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So far we've shown how to instantiate specific objects, such as a logical drive, and also how to enumerate all the
objects of a particular class using the InstancesOf method. Knowing how to do both of these functions will take us a long
way with WMI, but we are missing one other important capability: the ability to find objects that meet certain criteria.

The creators of WMI found an elegant way to handle this problem. They implemented a subset of the Structured Query
Language (SQL) known as the WMI Query Language (WQL). WQL greatly increases the power of WMI by giving the
programmer complete control over locating objects.

With WQL, we can even perform the same function as the InstancesOf method we used earlier. The following query
retrieves all the Win32_LogicalDisk objects on the system:

select * from Win32_LogicalDisk

We can use any property available on Win32_LogicalDisk objects as criteria in our search. As an example, let's say we
wanted to find all NTFS logical disks that have less than 100 MB of available space. The query would look like the
following:

select * from Win32_LogicalDisk
where FreeSpace < 104857600
and filesystem = 'NTFS'

Pretty easy, huh? Now let's put WQL to use. First, we need to get a WMI object to the namespace we want to query.
After we've done that, we can call the ExecQuery method on that object and pass the WQL query to use. The next
example uses the "less than 100 MB" query we just described to print out all logical disks on the local computer that
match that criterion:

strComputer = "."
set objWMI = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")
set objDisks = objWMI.ExecQuery _
 ("select * from Win32_LogicalDisk " & _
 "where FreeSpace < 104857600 " & _
 "and filesystem = 'NTFS' ")
for each objDisk in objDisks
 Wscript.Echo "DeviceID: " & objDisk.DeviceID
 Wscript.Echo "Description: " & objDisk.Description
 Wscript.Echo "FileSystem: " & objDisk.FileSystem
 Wscript.Echo "FreeSpace: " & objDisk.FreeSpace
next

14.2.4 Authentication with WMI

So far, the examples we've shown assume that the caller of the script has the necessary rights to access the WMI
information on the target machine. In most cases in which you are trying to automate a task that may not be the case.
Luckily, using alternate credentials in WMI is very straightforward.

Previously, to connect to a WMI namespace, we would have used the following:

strComputer = "terminator.movie.edu"
set objWMI = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")

But let's say that the person calling the script does not have any privileges on terminator. We must now use the
following:

strComputer = "terminator.movie.edu"
strUserName = "administrator"
strPassword = "password"

set objLocator = CreateObject("WbemScripting.SWbemLocator")
set objWMI = objLocator.ConnectServer(strComputer, "root\cimv2", _
 strUserName, strPassword)

We've replaced the single call to GetObject with a call to CreateObject to instantiate a WbemScripting.SWbemLocator object.
The SWbemLocator object has a method called ConnectServer, which allows us to specify the target machine, username,
and password.[1] We can then use the object returned from ConnectServer to get the instances of a class, perform a WQL
search, or any other function.

[1] Obviously it is less than ideal to include passwords in plain text scripts. An alternative would be to require the
user to use the runas command to authenticate as the privileged user. If you plan on running the script via
Scheduled Tasks, you can provide credentials when you configure the task.

This was a quick introduction into WMI scripting. We'll cover additional tasks, such as invoking an action or modifying
properties of an object, as we walk through specific DNS examples later in the chapter. Now, back to the good stuff . . .

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.3 Server Classes
Nearly 50 different settings can be configured on a Microsoft DNS Server. They range from scavenging and logging
settings to settings that customize the name server's behavior, such as how zone transfers are sent to secondaries and
whether to round-robin responses that include multiple A records. A name server is represented by an instance of the
MicrosoftDNS_Server class. Table 14-1[2] contains all the property methods defined in the MicrosoftDNS_Server class.

[2] For the latest list of supported properties and methods for any of the DNS Provider classes, check out the MSDN
documentation: http://msdn.microsoft.com/library/en-us/dns/dns/microsoftdns_server.asp. If that link becomes
out of date, you should be able to find the documentation by going to http://msdn.microsoft.com/ and searching
on MicrosoftDNS_Server.

Table 14-1. MicrosoftDNS_Server class properties
Property name Property description

AddressAnswerLimit
Maximum number of records to return for address requests (i.e., A records). This value
can be a number between 5 and 28. The default value is 0, which does not limit the
number of records that can be returned.

AllowUpdate

Determines whether dynamic updates are allowed. The value of this property can be
any sum of the following values:

0

No restrictions.

1

Dynamic updates to SOA records are not allowed.

2

Dynamic updates to NS records at the apex of the zone are not allowed.

4

Dynamic updates to NS records of delegated zones are not allowed.

The default value is 0.

AutoCacheUpdate
Boolean that indicates whether the name server dynamically attempts to update its root
hints (also known as cache) file. The default value is TRUE, which means the server
auto-updates its root hints.

AutoConfigFileZones

Indicates whether the name server attempts to automatically update any zone it knows
about that has an A, NS, or SOA record when the name of the server changes. The
value for this property can be one of the following:

0

None

1

Only zones that have name servers that allow dynamic updates

2

Only zones that have name servers that do not allow dynamic updates

4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4

All zones

The default value is 1.

BindSecondaries
Boolean that if TRUE causes the name server to send zone transfers in a less efficient
(but more interoperable) format to non-Microsoft DNS Servers. The default value is
TRUE.

BootMethod

Determines where the server reads its zone information. The value for this property can
be one of the following:

1

Boot from the zone file.

2

Boot from the Registry.

3

Boot from Active Directory and the Registry.

The default value is 3.

DefaultAgingState Boolean that indicates whether aging is enabled for AD-integrated zones. The default
value is FALSE (not enabled).

DefaultNoRefreshInterval For AD-integrated zones, the default no-refresh interval in hours. The default value is
168 (one week).

DefaultRefreshInterval For AD-integrated zones, the default refresh interval in hours. The default value is 168
(one week).

DisableAutoReverseZones
Boolean that determines whether the name server automatically creates reverse zones
for 0.in-addr.arpa, 127.in-addr.arpa, and 255.in-addr.arpa. The default value is FALSE
(the reverse zones are created).

DisjointNets Boolean that indicates whether the default port binding for a socket used to send
queries to remote name servers can be overridden.

DsAvailable Boolean that indicates whether Active Directory is available on the server.

DsPollingInterval For AD-integrated zones, the interval in minutes to poll Active Directory for updates.
The default value is 5 minutes.

DsTombstoneInterval
For AD-integrated zones, the length of time in seconds for which tombstoned (i.e.,
deleted) records should remain in Active Directory. In 99.99% of deployments the
default of 604800 (one week) should not need changing.

EdnsCacheTimeout
Length of time, in seconds, that the Extension Mechanisms for DNS (EDNS0) version
information about a remote name server is cached. (You can find more information on
EDNS0 in RFC 2671.) Valid values range from 3600 (one hour) to 15724800 (182 days).
The default value is 604800 (one week).

EnableDirectoryPartitionSupport Boolean that indicates whether application partition support has been enabled. Valid
only for domain controllers in a forest at the Windows Server 2003 functional level.

EnableDnsSec

Flag indicating whether DNSSEC resource records are returned if queried. The value of
this property can be one of the following:

0

DNSSEC records are returned only if the query specifically queried for it.

1

Return DNSSEC records according to RFC 2535 only if the client query includes
an OPT record

2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DNSSEC records are always returned, basically according to RFC 2535
regardless of whether the client is using EDNSO.

The default is 1.

EnableEDnsProbes When TRUE, the name server probes other DNS servers to determine if they support
EDNSO. The default is 1 (TRUE).

EventLogLevel

Determines the type of events (i.e., errors or warnings) that are logged to the DNS
Event Log. The value of this property can be one of the following:

0

Log nothing.

1

Log errors.

2

Log errors and warnings.

4

Log all events.

The default value is 4.

ForwardDelegations

Determines whether queries for data in delegated subzones are sent to forwarders or
follow the delegation. The value of this property can be one of the following:

0

Automatically send queries referring to delegated subzones to the appropriate
subzone.

1

Forward queries referring to the delegated subzone to the existing forwarders.

The default value is 0.

Forwarders Array of IP addresses the server forwards queries to.

ForwardingTimeout Time in seconds to wait for a response from a forwarded query. The default value is 5
seconds.

IsSlave
Boolean that indicates how the name server responds when forwarded queries do not
receive a response. If FALSE, the server attempts to resolve the query and if TRUE the
server returns a failure. The default value is FALSE.

ListenAddresses Array of addresses the name server can receive queries on.

LocalNetPriority
If TRUE, the name server orders records that have a similar IP address to it at the top
of the response. If FALSE, then no priority is given based on IP address. This is called
"netmask ordering" in the DNS console. The default value is TRUE.

LogFileMaxSize Maximum size in bytes of the DNS debug log. The default value is 500000000.

LogFilePath Filename and path to the DNS debug log. The default is
%SystemRoot%\system32\dns\dns.log.

LogIPFilterList Array of IP addresses used to filter entries written to the DNS debug log

Determines which events should be written to the debug log. The value of this property
can be the sum of any of the following values:

1

Query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LogLevel

Query

16

Notify

32

Update

254

Nonquery transactions

256

Questions

512

Answers

4096

Send

8192

Receive

16384

UDP

32768

TCP

65535

All packets

65536

AD write transaction

131072

AD update transaction

16777216

Full packets

2147483648

Write through

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LooseWildcarding Boolean that indicates whether the server supports wildcards. The default value is
FALSE (do not use loose wildcarding).

MaxCacheTTL Maximum time-to-live value, in seconds, to accept for records from a remote name
server. The default value is 86400 (one day).

MaxNegativeCacheTTL
Maximum time-to-live value, in seconds, to accept from a remote name server for a
negative response (e.g., one that indicates that a particular domain name doesn't exist).
The default value is 86400 (one day).

Name Domain name or IP address of server

NameCheckFlag

Indicates the set of eligible characters to be used in domain names. The value for this
property can be one of the following:

0

Strict RFC ANSI

1

Non-RFC ANSI

2

Multibyte UTF8

3

All characters

The default value is 2.

NoRecursion Boolean indicating whether the name server processes recursive queries. The default
value is FALSE, which means the name server performs recursive resolution.

RecursionRetry Time in seconds before retrying a recursive look up. The default value is 3 seconds.

RecursionTimeout Time in seconds before the name server gives up on processing a recursive query. The
default value is 15 seconds.

RoundRobin Boolean that indicates whether the name server round-robins addresses in responses
that return multiple A records. The default value is TRUE.

RpcProtocol

Protocol to run administrative RPC over. The value of this property can be any sum of
the following:

0

None

1

TCP

2

Named Pipes

3

LPC

The default value is all protocols.

ScavengingInterval Interval in hours between scavenging runs. The default value is 168 hours (one week).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SecureResponses

Boolean that indicates whether the name server exclusively caches records of names in
the same subtree as the server that provided them. If FALSE, all records are cached,
but if TRUE, records are cached only if the name server that responded to the forwarded
query is in the same subtree as the returned record. The default value is TRUE. This
setting is called "Secure cache against pollution" in the DNS console.

SendPort Port number from which the name server sends UDP queries to other name servers. The
default value is 0, which means a port number is randomly selected.

ServerAddresses Array of IP addresses for the server.

StrictFileParsing
Boolean that indicates whether the name server parses zone files strictly, which means
that if bad data is encountered, the zone fails to load. The default value is FALSE, which
means the server continues to load the zone.

UpdateOptions

Flag that restricts the type of records that can be updated via DDNS. Used in
conjunction with AllowUpdate. The value of this property can be any sum of the
following values:

0

No restrictions.

1

Exclude SOA records.

2

Exclude NS records.

4

Exclude delegation NS records.

8

Exclude server host records.

256

Exclude SOA records for secure dynamic updates.

512

Exclude root NS records for secure dynamic updates.

783

On standard dynamic updates, exclude NS, SOA, and server host records for
dynamic updates, and for secure dynamic updates, exclude root NS and SOA
records. Allows delegations and server host updates.

1024

On secure dynamic updates, exclude delegation NS records.

2048

Exclude server host records for secure dynamic updates.

16777216

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16777216

Exclude DS records.

2147483648

Disable dynamic update.

The default value is 0.

Version Name server version.

WriteAuthorityNS
Boolean that indicates whether the server includes NS and SOA records in the authority
section of all successful authoritative responses. The default is FALSE, which means it
writes NS records in the Authority section for referrals only, per RFC 2181.

XfrConnectTimeout Number of seconds the name server waits for a successful TCP connection to a remote
name server when attempting a zone transfer. The default value is 30 seconds.

The MicrosoftDNS_Server class also provides a few methods to initiate certain actions on the name server. Two of the
most useful are StartService and StopService, which allow you to start and stop the DNS Server service. Table 14-2 lists
MicrosoftDNS_Server methods.

Table 14-2. MicrosoftDNS_Server class methods
Method name Method description

GetDistinguishedName For AD-integrated zones, gets the DN of the zone.

StartScavenging Start the scavenging process for zones that have scavenging enabled.

StartService Start the DNS service.

StopService Stop the DNS service.

14.3.1 Listing a Name Server's Properties

The first step to programmatically managing your name server's configuration is to see what settings you currently
have in place and determine whether any need to be modified. With WMI, it's really easy to list all properties for a
name server. The following example shows how to do it:

strServer = "terminator.movie.edu"

' Instantiate a WMI object for the target server
set objDNS = GetObject("winmgmts:\\" & strServer & "\root\MicrosoftDNS")
' Get an instance of the MicrosoftDNS_Server class
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

' Iterate over each property using Properties_
Wscript.Echo objDNSServer.Properties_.Item("Name") & ":"
for each objProp in objDNSServer.Properties_
 if IsNull(objProp.Value) then
 Wscript.Echo " " & objProp.Name & " : NULL"
 else
 if objProp.IsArray = TRUE then
 For I = LBound(objProp.Value) to UBound(objProp.Value)
 wscript.echo " " & objProp.Name & " : " & objProp.Value(I)
 next
 else
 wscript.echo " " & objProp.Name & " : " & objProp.Value
 end if
 end if
next

After getting a WMI object for the DNS Provider (root\MicrosoftDNS), we get a MicrosoftDNS_Server object by looking for
the "." instance. Since there can be only one instance of MicrosoftDNS_Server running on any given computer, we do not
need to worry about multiple objects. After getting a MicrosoftDNS_Server object, we iterate through all the properties of
the object and print each one out. Note that we have added special checks for values that contain arrays in order to
print each element of the array. In that case, we use Lbound and Ubound to iterate over all the values for the array.

14.3.2 Configuring a Name Server

Now that we can see what values have been set on our name server, we can change some of them. We simply need to
set the property method (e.g., EventLogLevel) to the correct value. This example shows how to do it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set the property method (e.g., EventLogLevel) to the correct value. This example shows how to do it:

strServer = "terminator.movie.edu"

on error resume next

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

Wscript.Echo objDNSServer.Name & ":"
' See Table 14-1 for an explanation of each of these settings
objDNSServer.EventLogLevel = 4
objDNSServer.LooseWildcarding = TRUE
objDNSServer.MaxCacheTTL = 900
objDNSServer.MaxNegativeCacheTTL = 60
objDNSServer.AllowUpdate = 3
objDNSServer.Put_

if Err then
 Wscript.Echo " Error occurred: " & Err.Description
else
 WScript.Echo " Change successful"
end if

Note that we had to call Put_ at the end. If we hadn't, none of the changes would have been committed. This is similar
to ADSI's SetInfo method, which must be called after modifying an object's property cache to make the change actually
take effect.

14.3.3 Restarting the DNS Server Service

Some changes you make to a DNS Server require the service to be restarted for the changes to take effect. We can
utilize the StopService and StartService methods as shown in the following example to do this:

strServer = "terminator.movie.edu"

on error resume next

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

objDNSServer.StopService
if Err Then
 WScript.Echo "StopService failed: " & Err.Description
 Wscript.Quit
end if

objDNSServer.StartService
if Err Then
 WScript.Echo "StartService failed: " & Err.Description
 Wscript.Quit
end if

WScript.Echo "Restart successful"

14.3.4 Putting It Together: Configuration Check Script

Building on the examples we've used so far in this chapter, we can now write a robust script to check name server
configurations. Such a script can be very important, especially in large environments with many name servers. Unless
you have a script that routinely checks the configuration on all of your name servers, it's very likely that those servers
will not have an identical configuration. If they don't have identical configurations, then when problems pop up, you
may end up spending a lot of time troubleshooting because of the discrepancies between the name servers.

To perform the configuration checking, we store each setting in a VBScript Dictionary object. For those accustomed to
other languages such as Perl, a Dictionary object is the VBScript analog to a hash or associative array. Another option
would be to store the settings in a text file and read them into a Dictionary object when the script starts up. The
following example shows the configuration check code:

option explicit
on error resume next

Dim arrServers
Dim strUsername, strPassword
Dim dicDNSConfig

' Array of DNS servers to check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Array of DNS servers to check
arrServers = Array("terminator.movie.edu","fx.movie.edu")

' User and password that can modify the config on the DNS servers
strUsername = "dnsadmin"
strPassword = "dnspwd"

' This dictionary object will contain the key value pairs for all the settings
' that you want to check and configure on the DNS servers
Set dicDNSConfig = CreateObject("Scripting.Dictionary")
dicDNSConfig.Add "AllowUpdate", 1
dicDNSConfig.Add "LooseWildCarding", TRUE
dicDNSConfig.Add "MaxCacheTTL", 900
dicDNSConfig.Add "MaxNegativeCacheTTL", 60
dicDNSConfig.Add "EventLogLevel", 0
dicDNSConfig.Add "StrictFileParsing", TRUE
dicDNSConfig.Add "DisableAutoReverseZones", TRUE

Dim arrDNSConfigKeys
arrDNSConfigKeys = dicDNSConfig.keys

Dim objLocator
Set objLocator = CreateObject("WbemScripting.SWbemLocator")

Dim x, y, boolRestart
For x = LBound(arrServers) to UBound(arrServers)
 boolRestart = False

 WScript.echo arrServers(x)

 Dim objDNS, objDNSServer
 Set objDNS = objLocator.ConnectServer(arrServers(x), "root\MicrosoftDNS", _
 strUserName, strPassword)
 set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

 for y = 0 To dicDNSConfig.Count - 1
 Dim strKey
 strKey = arrDNSConfigKeys(y)

 WScript.Echo " Checking " & strKey
 if dicDNSConfig.Item(strKey) <> objDNSServer.Properties_.Item(strKey) then
 objDNSServer.Properties_.Item(strKey).value = dicDNSConfig(strKey)
 objDNSServer.Put_
 boolRestart = TRUE
 if Err Then
 WScript.Echo " Error setting " & strKey & " : " & Err.Description
 Wscript.Quit
 else
 WScript.Echo " " & strKey & " updated"
 end if
 end if
 Next

 if boolRestart then
 objDNSServer.StopService
 if Err Then
 WScript.Echo "StopService failed: " & Err.Description
 Wscript.Quit
 end if

 objDNSServer.StartService
 if Err Then
 WScript.Echo "StartService failed: " & Err.Description
 Wscript.Quit
 end if
 WScript.Echo "Restarted"
 end if

 WScript.Echo ""
next

Besides the use of the Dictionary object, most of the script is a combination of the other three examples shown so far in
this chapter. We added a server array so that you can check multiple servers at once. For each server, the script simply
checks each key in the Dictionary object to see if its value matches the key on the name server. If not, it modifies the
server and commits the change via Put_. After it's done looping through all the settings, it restarts the DNS Server
service if a change has been made to its configuration. It then proceeds to the next server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

service if a change has been made to its configuration. It then proceeds to the next server.

One enhancement that would make the process even more automated would be to dynamically query the list of name
servers instead of hard-coding them in an array. You would need to look up the NS records for one or more zones that
your name servers are authoritative for. As long as an NS record is added for each new name server, the script would
automatically discover new name servers on subsequent runs. Later in the chapter, we show how to query name
servers with the DNS Provider.

14.3.5 Monitoring Server Performance

If you've ever wanted a programmatic way to access the output of the dnscmd /statistics command, now you have one.
The MicrosoftDNS_Statistic class provides complete access to all the performance metrics you can get using dnscmd or
Performance Monitor. And it's easy too! Check out this script, which prints out all of the statistics:

strServer = "terminator.movie.edu "

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objStats = objDNS.ExecQuery("Select * from MicrosoftDNS_Statistic ")
for each objStat in objStats
 WScript.Echo " " & objStat.Name & " : " & objStat.Value
next

And if you want to access only a subset of the metrics (for example, all of the entries that start with "Records") you
only need to modify the WQL query slightly:

set objStats = objDNS.ExecQuery("Select * from MicrosoftDNS_Statistic " & _
 where Name like 'Records%' ")
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.4 Zone Classes
The MicrosoftDNS_Zone class offers a plethora of properties and methods to aid in managing your zones. Even if you are
using AD-integrated zones, which help reduce the amount of work required to maintain DNS, inevitably you need to
configure a zone's settings or create additional zones. In Tables Table 14-3 and Table 14-4, available properties and
methods for the MicrosoftDNS_Zone class are listed.

Table 14-3. MicrosoftDNS_Zone class properties
Property name Property description

Aging Boolean that indicates whether scavenging is enabled for the zone. The default value is
FALSE, which means it is disabled.

AllowUpdate

Flag indicating whether dynamic updates are allowed. The value for this property can be
one of the following:

0

No updates allowed.

1

Zone accepts both secure and nonsecure updates.

2

Zone accepts secure updates only.

The default for new zones is 0.

AutoCreated
Boolean that indicates whether the zone was auto-created , as is the case with the
standard reverse zones (e.g., 255.in-addr.arpa) that are automatically created by
default.

AvailForScavengeTime Time period when scavenging can be run (if configured for the zone).

DataFile Name of the zone datafile.

DisableWINSRecordReplication Boolean that if TRUE indicates that WINS record replication is disabled. The default value
is FALSE (WINS record replication does occur).

DsIntegrated Boolean that indicates whether the zone is AD-integrated.

ForwarderSlave Boolean that indicates whether the name server relies entirely on its forwarders when
resolving domain names in this zone. This can override the server IsSlave setting.

ForwarderTimeout Number of seconds the name server waits after forwarding a query for domain names in
this zone before trying to resolve the query itself. This overrides the server setting.

LastSuccessfulSoaCheck Number of seconds from January 1, 1970, GMT since the zone's serial number was
checked.

LastSuccessfulXfr Number of seconds from January 1, 1970, GMT since the last successful zone transfer
from a master.

LocalMasterServers If zone is a secondary, this contains the list of master name servers to request zone
transfers from. This overrides the MasterServers setting, which can be stored in AD.

MasterServers If zone is a secondary, this contains the list of master name servers to request zone
transfers from.

NoRefreshInterval For AD-integrated zones, the no-refresh interval in hours. If not specified, the default
server no-refresh interval is used.

Notify If set to 1, the name server notifies secondaries of zone changes.

NotifyServers Name servers that are notified when there are changes to the zone.

Paused Flag indicating whether the zone is paused and therefore not responding to requests.

RefreshInterval For AD-integrated zones, the refresh interval in hours. If not specified, the default server
refresh interval is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reverse If TRUE, the zone is a reverse-mapping (in-addr.arpa) zone. If FALSE, zone is a forward-
mapping zone.

ScavengeServers Array of IP addresses of servers that are allowed to perform scavenging for the zone. If
this is not set, any authoritative server in the zone can perform scavenging.

SecondaryServers IP addresses of name servers allowed to receive zone transfers.

SecureSecondaries

Flag indicating whether zone transfers are allowed only to name servers specified in
SecondariesIPAddressesArray. The value for this property can be one of the following:

0

Send zone transfers to all secondary servers that request them.

1

Send zone transfers only to name servers that are authoritative for the zone.

2

Send zone transfers only to servers specified in SecondaryServers.

3

Do not send zone transfers.

The default is 0 for standard primary zones and 3 for AD-integrated zones.

Shutdown Boolean that if TRUE means the zone has expired (or shut down).

UseWins Boolean that indicates whether the zone uses WINS lookups. The default is FALSE, which
disables WINS lookups.

ZoneType Type of zone: DS Integrated,[3] Primary, or Secondary.

[3] Most people refer to zones stored in Active Directory as AD-integrated. The WMI DNS Provider consistently uses
DS Integrated instead.

Table 14-4. MicrosoftDNS_Zone class methods
Method name Method description

AgeAllRecords Age part or all of a zone.

ChangeZoneType Convert zone to a different type and make it AD-integrated.

CreateZone Create a new zone.

ForceRefresh Force secondary to update its zone from master.

GetDistinguishedName Get distinguished name of the zone.

PauseZone Cause the name server not to respond to queries for the zone.

ReloadZone Reload the contents of the zone. This may be necessary after making changes to a zone that
you want to take effect immediately.

ResetSecondaries Specify list of secondaries.

ResumeZone Cause the name server to start responding to queries for the zone after pausing the zone.

UpdateFromDS Reload the zone data from Active Directory; valid only for AD-integrated zones.

WriteBackZone Save zone data to a file.

14.4.1 Creating a Zone

Creating a zone with the DNS Provider is a straightforward operation. You need to get a WMI object for the DNS
namespace, instantiate an object from the MicrosoftDNS_Zone class, and call CreateZone on that object. The next example
shows how to do this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shows how to do this:

strNewZone = "movie.edu."
strServer = "terminator.movie.edu"

on error resume next

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSZone = objDNS.Get("MicrosoftDNS_Zone")
strNull = objDNSZone.CreateZone(strNewZone,0,TRUE)

if Err then
 WScript.Echo "Error occurred creating zone: " & Err.Description
else
 WScript.Echo "Zone created . . . "
end if

The three parameters we passed into CreateZone include the zone name, the zone type flag, and the AD-integrated flag.
A zone type of 0 creates a primary zone. When the AD-integrated flag is set to true, the primary zone is AD-integrated;
if it is false, it is a standard primary. At the time of this writing, Microsoft had conflicting documentation about these
parameters and their valid values. Refer to the MSDN Library for more information; hopefully, they'll get it straight
eventually.

14.4.2 Configuring a Zone

Configuring a zone is not too different from configuring a name server. The primary difference is in how you instantiate
a MicrosoftDNS_Zone object. In order to use the Get method on a WMI object, you have to specify the keys for the class
you want to instantiate. For the MicrosoftDNS_Zone class, the keys include ContainerName, DnsServerName, and Name. In
this case, ContainerName and Name are both the name of the zone. We retrieve DnsServerName by getting a
MicrosoftDNS_Server object as we've done earlier in the chapter.

The following example lists all of the properties of the movie.edu zone before it modifies the AllowUpdate property and
commits the change:

strZone = "movie.edu."
strServer = "terminator.movie.edu"

on error resume next

set objDNS = GetObject("winMgmts:\\" & strServer & "\root\MicrosoftDNS")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objDNSZone = objDNS.Get("MicrosoftDNS_Zone.ContainerName=""" & strZone & _
 """,DnsServerName=""" & objDNSServer.Name & _
 """,Name=""" & strZone & """")

' List all of the properties of the zone
Wscript.Echo objDNSZone.Name
for each objProp in objDNSZone.Properties_
 if IsNull(objProp.Value) then
 Wscript.Echo " " & objProp.Name & " : NULL"
 else
 if objProp.IsArray = TRUE then
 For I = LBound(objProp.Value) to UBound(objProp.Value)
 wscript.echo " " & objProp.Name & " : " & objProp.Value(I)
 next
 else
 wscript.echo " " & objProp.Name & " : " & objProp.Value
 end if
 end if
next

' Modify the zone
objDNSZone.AllowUpdate = 1
objDNSZone.Put_

WScript.Echo ""
if Err then
 Wscript.Echo "Error occurred: " & Err.Description
else
 WScript.Echo "Change successful"
end if

14.4.3 Listing the Zones on a Server

The last zone example we'll show lists the configured zones on a specific name server. To make the following example a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last zone example we'll show lists the configured zones on a specific name server. To make the following example a
little more robust, we've added logic to make the script configurable so it can be run against any name server using the
specified credentials. That is accomplished by using the ConnectServer method on the SWbemLocator object.

strServer = "terminator.movie.edu"
strUsername = "dnsadmin"
strPassword = "dnspwd"

Set objLocator = CreateObject("WbemScripting.SWbemLocator")
Set objDNS = objLocator.ConnectServer(strServer, "root\MicrosoftDNS", _
 strUsername, strPassword)
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")
set objZones = objDNS.ExecQuery("Select * from MicrosoftDNS_Zone " & _
 "Where DnsServerName = '" & _
 objDNSServer.Name & "'")
WScript.Echo objDNSServer.Name
for each objZone in objZones
 WScript.Echo " " & objZOne.Name
next

To retrieve the list of zones, we used a WQL query with ExecQuery to find all MicrosoftDNS_Zone objects that had a
DnsServerName equal to the name of the server we are connecting to.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.5 Resource Record Classes
Resource records are the basic unit of information in DNS. A name server's primary job is to respond to queries for
resource records. Most people don't realize they are generating queries for resource records with nearly every network-
based operation they do, including accessing a web site, pinging a host, or logging into Active Directory.

The WMI DNS Provider fully supports querying and manipulating resource records. Tables Table 14-5 and Table 14-6
list the supported properties and methods for the MicrosoftDNS_ResourceRecord class, which implements a generic
interface for resource records.

Table 14-5. MicrosoftDNS_ResourceRecord class properties
Property name Property description

ContainerName Name of the WMI container that holds the resource record (RR). This is usually the same as the
name of the zone.

DnsServerName Domain name of the name server that contains the RR.

DomainName Domain name of the node that is associated with the RR.

OwnerName Owner of the RR.

RecordClass Class of the RR. 1 represents IN.

RecordData Resource record data.

TextRepresentation
Textual representation of the RR. For example:

www.movie.edu. 1800 IN CNAME www1.movie.edu.

Timestamp Time RR was last refreshed.

TTL Time-to-live or maximum time a name server may cache the RR.

Table 14-6. MicrosoftDNS_ResourceRecord class methods
Method name Method description

CreateInstanceFromTextRepresentation
Creates a new instance of a MicrosoftDNS_ResourceRecord subclass based on 1) the
textual representation of the resource record, 2) server name, and 3) the
container or zone name. A reference to the new object is returned as an out
parameter.

GetObjectByTextRepresentation
Gets an instance of the appropriate MicrosoftDNS_ResourceRecord subclass as
specified by 1) the textual representation of the resource record, 2) server name,
and 3) the container or zone name.

The MicrosoftDNS_ResourceRecord class by itself is not enough. There are over two dozen types of resource records, and
many have additional fields that don't have corresponding methods in the generic interface. To solve this problem,
subclasses of MicrosoftDNS_ResourceRecord were created for each supported record type. Each subclass provides specific
methods to access any field supported by the resource record type. Each supported resource record has a subclass with
a name in the format of MicrosoftDNS_RRTypeType where RRType is the name of the record type, such as SRV, A, or PTR.

14.5.1 Finding Resource Records in a Zone

With the marriage of DNS and WMI, sending DNS queries has never been so easy. By using WQL, you can write
complex query routines that would not have been possible previously. To list all of the resource records on a server,
you simply need to execute the WQL query select * from MicrosoftDNS_ResourceRecord against the target server. The
following example shows how to run the query against the local name server:

set objDNS = GetObject("winMgmts:root\MicrosoftDNS")
set objRR = objDNS.ExecQuery("Select * from MicrosoftDNS_ResourceRecord")
for Each objInst in objRR
 WScript.Echo objInst.TextRepresentation
next

The TextRepresentation method is available to all resource record types since it's defined in MicrosoftDNS_ResourceRecord. It
returns a text string representing the resource record, such as the following:

www.movie.edu. IN A 192.10.4.5

If you want to limit the query to only a specific zone, change the WQL query to include criteria for ContainerName, such

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to limit the query to only a specific zone, change the WQL query to include criteria for ContainerName, such
as the following:

Select * from MicrosoftDNS_ResourceRecord
Where ContainerName = 'ZoneName'

Since Active Directory stores all of the global catalog servers for a forest and domain controllers for a domain in DNS,
you can write scripts to access this information and integrate it into your applications. The following example does
exactly this by selecting all SRV records with a particular OwnerName. To find all global catalog servers in a forest, you
can look up _ldap._tcp.gc._msdcs.ForestRootDNSName ; to find all domain controllers in a domain, look up
_ldap._tcp.dc._msdcs.DomainDNSName.

option explicit

Dim strDomain
strDomain = "movie.edu"

Dim objDNS, objRRs, objRR
set objDNS = GetObject("winMgmts:root\MicrosoftDNS")
set objRRs = objDNS.ExecQuery("Select * from MicrosoftDNS_SRVType " & _
 " Where OwnerName = '_ldap._tcp.gc._msdcs." & _
 strDomain & "'")
WScript.Echo "Global Catalogs for " & strDomain
for Each objRR in objRRs
 Wscript.Echo " " & objRR.DomainName
next

Wscript.Echo

set objRRs = objDNS.ExecQuery("Select * from MicrosoftDNS_SRVType " & _
 " Where OwnerName = '_ldap._tcp.dc._msdcs." & _
 strDomain & "'")
WScript.Echo "Domain Controllers for " & strDomain
for Each objRR in objRRs
 Wscript.Echo " " & objRR.DomainName
next

14.5.2 Creating Resource Records

With the DNS Provider, creating resource records can be done in a couple of steps. The
CreateInstanceFromTextRepresentation method takes the following parameters: the domain name of the name server to
create the record on, the domain name of the zone to add the record to, and the textual representation of the resource
record. It also provides an out parameter that is a MicrosoftDNS_ResourceRecord object representing the newly created
record.

The following example goes through the process of creating both an A and a PTR record. Both records are typically
necessary when adding a new host to DNS:

option explicit

Dim strRR, strReverseRR, strDomain, strReverseDomain

' A record to add
strRR = "matrix.movie.edu. IN A 192.168.64.13"
strDomain = "movie.edu"

' PTR record to add
strReverseRR = "13.64.168.192.in-addr.arpa IN PTR matrix.movie.edu"
strReverseDomain = "168.192.in-addr.arpa."

Dim objDNS, objRR, objDNSServer, objRR2, objOutParam
set objDNS = GetObject("winMgmts:root\MicrosoftDNS")
set objRR = objDNS.Get("MicrosoftDNS_ResourceRecord")
set objDNSServer = objDNS.Get("MicrosoftDNS_Server.Name="".""")

' Create the A record
Dim strNull
strNull = objRR.CreateInstanceFromTextRepresentation(_
 objDNSServer.Name, _
 strDomain, _
 strRR, _
 objOutParam)

set objRR2 = objDNS.Get(objOutParam)
WScript.Echo "Created Record: " & objRR2.TextRepresentation
set objOutParam = Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set objOutParam = Nothing

' Create the PTR record
strNull = objRR.CreateInstanceFromTextRepresentation(_
 objDNSServer.Name, _
 strReverseDomain, _
 strReverseRR, _
 objOutParam)

set objRR2 = objDNS.Get(objOutParam)
WScript.Echo "Created Record: " & objRR2.TextRepresentation

The WMI DNS Provider fills a much-needed gap for programmatic management of a Microsoft DNS environment. In this
chapter, we gave an overview of WMI and covered the classes used for managing name server and zone configuration
along with the available properties and methods. We described how to query, add, and delete resource records with the
DNS Provider and showed how you can get a list of Active Directory domain controllers using a simple WQL query.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Troubleshooting DNS
"Of course not," said the Mock Turtle. "Why, if a fish came to me, and told me he was going on a
journey, I should say, `With what porpoise?' "

"Don't you mean `purpose'?" said Alice.

"I mean what I say," the Mock Turtle replied, in an offended tone. And the Gryphon added, "Come, let's
hear some of your adventures."

In Chapter 12, we demonstrated how to use nslookup to make queries. In this chapter, we'll show you how to use
nslookup—plus traditional TCP/IP networking tools like trusty ol' ping—to troubleshoot real-life problems with DNS.

Troubleshooting, by its nature, is a tough subject to teach. You start with any of a world of symptoms and try to work
your way back to the cause. We can't cover the whole gamut of problems you may encounter on the Internet, but we
do our best to show you how to diagnose the most common of them. And along the way, we hope to teach you
troubleshooting techniques that will be valuable in tracking down more obscure problems that we don't document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 Is DNS Really Your Problem?
Before we launch into a discussion of how to troubleshoot a DNS problem, we should make sure you know how to tell
whether a problem is caused by DNS, not by another naming service. On Windows hosts, figuring out whether the
culprit is actually DNS can be difficult. Windows supports a whole panoply of naming services: DNS, WINS, HOSTS,
LMHOSTS, and more. The stock Windows Server 2003 version of nslookup, however, doesn't pay any attention to these
other naming services. You can run nslookup on a Windows Server 2003 box and query the name server til the cows
come home while the service with the problem is using a different naming service.

How do you know where to put the blame? First, you need to consider what kind of program is having the problem. If
it's a TCP/IP client, such as telnet or ftp, the possible culprits are DNS and the HOSTS file. If it's a utility that supports
NetBIOS naming, such as net (as in net use), the likely suspects also include WINS and the LMHOSTS file. Other clients,
such as ping, that also take either a DNS name or a NetBIOS name as an argument can use any of these naming
services.

Next, consider the order in which Windows uses the naming services. You should look through the various services in
that order when troubleshooting the problem.

These hints should help you identify the guilty party or at least exonerate one suspect. If you narrow down the suspects
and DNS is still implicated, you'll just have to read this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 Checking the Cache
As we've said earlier, you can check the contents of your name server's cache with the DNS console. This can come in
handy if you suspect that your name server has cached bad or out-of-date data from another server. To inspect a
server's cache, click the plus sign to the left of the name of the server in the DNS console's left pane. You'll see a folder
named Cached Lookups. Either click on the plus sign to the left of it or double-click the folder icon or the label to
expand the next level, then do the same on the label . (root). This shows you the top-level domains for which your
name server has cached data. Expand your way to the domain name to which the cached data you're looking for is
attached. In Figure 15-1, we've clicked our way down to acmebw.com to look for cached data.

Figure 15-1. NS and A records for acmebw.com in the cache

As you can see in the right pane, our name server has cached seven NS records and one A record for acmebw.com. If
we double-clicked net and then acmebw, we could find the cached addresses of these name servers, too.

If you'd like to see the TTL on the cached data, double-click on a record in the right pane. Provided the DNS console is
in advanced view mode (select View Advanced), the resulting window shows the record's TTL. For example, in
Figure 15-2, we've double-clicked the acmebw.com A record.

Figure 15-2. The TTL on a cached record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure to refresh the DNS console with Action Refresh or F5 before checking the TTL, or the TTL you see may
be bigger than the current TTL.

If you right-clicked the record, you may have noticed a Delete Record selection. Now there's something you can't do
in BIND. Using the DNS console, you can actually delete cached data record by record! If you know that some records
in your name server's cache are out of date, you can delete them and let your name server pick up updated records
from an authoritative name server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.3 Using DNSLint
DNSLint, which we introduced back in Chapter 8, can also come in handy when you're troubleshooting. In Chapter 8,
we mostly used it to verify the registration of records by Domain Controllers. But DNSLint can also come in handy in
detecting delegation problems, as we showed in Chapter 9.

To use DNSLint to check delegation, use the /d command-line option. Specify the domain name of the zone whose
delegation you'd like to check as the argument. For example:

C:\> dnslint /d movie.edu

This produces a report on movie.edu's delegation, displayed in a browser window. If you're checking a zone that's not
registered on the InterNIC's whois servers (i.e., a subdomain of com or net), you'll also need to specify the /s option
and, as an argument, the IP address of a name server authoritative for the zone.

By default, DNSLint checks DNS over UDP. You can instruct it to test DNS over TCP, too, using the /test_tcp option.

Finally, you can use the /c option to tell DNSLint to check connectivity to the mail ports (SMTP, POP, and IMAP, by
default) on the mail servers it finds for the zone. If you don't want it to check all three, you can enumerate the
protocols to check after the option; for example:

C:\> dnslint /d movie.edu /c smtp,imap

Here's some sample DNSLint output (in text format, generated using /t):

DNSLint Report

System Date: Sat Jul 05 18:58:05 2003

Command run:

dnslint /d fx.movie.edu /t /s 192.253.254.2 /c smtp

Domain name tested:

fx.movie.edu

DNS servers were identified as authoritative for the domain:

DNS server: bladerunner.fx.movie.edu
IP Address: 192.253.254.2
UDP port 53 responding to queries: YES
TCP port 53 responding to queries: Not tested
Answering authoritatively for domain: YES

SOA record data from server:
Authoritative name server: bladerunner.fx.movie.edu
Hostmaster: administrator.fx.movie.edu
Zone serial number: 10
Zone expires in: 1.00 day(s)
Refresh period: 900 seconds
Retry delay: 600 seconds
Default (minimum) TTL: 3600 seconds

Additional authoritative (NS) records from server:
outland.fx.movie.edu 192.253.254.3
bladerunner.fx.movie.edu 192.253.254.2

Mail Exchange (MX) records from server (preference/name/IP address):
100 wormhole.movie.edu 192.253.253.1
10 starwars.fx.movie.edu 192.253.254.4

DNS server: outland.fx.movie.edu
IP Address: 192.253.254.3
UDP port 53 responding to queries: YES
TCP port 53 responding to queries: Not tested
Answering authoritatively for domain: YES

SOA record data from server:
Authoritative name server: bladerunner.fx.movie.edu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Authoritative name server: bladerunner.fx.movie.edu
Hostmaster: administrator.fx..movie.edu
Zone serial number: 10
Zone expires in: 1.00 day(s)
Refresh period: 900 seconds
Retry delay: 600 seconds
Default (minimum) TTL: 3600 seconds

Additional authoritative (NS) records from server:
outland.fx.movie.edu 192.253.254.3
bladerunner.fx.movie.edu 192.253.254.2

Mail Exchange (MX) records from server (preference/name/IP address):
10 starwars.fx.movie.edu 192.253.254.4
100 wormhole.movie.edu 192.253.253.1

Network Connectivity Tests

E-mail server: starwars.fx.movie.edu
IP address: 192.253.254.4

SMTP response: 220 starwars.fx.movie.edu ESMTP Postfix

POP response: Not Tested
IMAP response: Not Tested

E-mail server: wormhole.movie.edu
IP address: 192.253.253.1

SMTP response: 220 wormhole.movie.edu ESMTP Postfix

POP response: Not

 Tested
IMAP response: Not Tested

==
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.4 Potential Problem List
Let's go through some common real-world DNS problems. Many of these problems are easy to recognize and correct.
We cover these problems as a matter of course—they're some of the most common problems because they're caused
by some of the most common mistakes. Here are the contestants, in no particular order.

15.4.1 1. Forget to Increment Serial Number

This particular problem occurs only if you make changes to your zone datafile by hand, without using the DNS console.
The DNS console remembers to increment the serial number in the SOA record each time it changes zone data, so you
don't have to worry about it. However, this also means that you probably won't be in the habit of updating the serial
number, so you may forget when making that one-off manual modification.

The main symptom of this problem is that secondary name servers don't pick up any changes you make to the zone on
the primary server. The secondaries think the zone data hasn't changed since the serial number is still the same.

How do you check if you remembered to increment the serial number? Unfortunately, that's not so easy. If you don't
remember what the old serial number was and your serial number gives you no indication of when it was updated,
there's no direct way to tell whether it has changed.[1] When you start the primary, it loads the updated zone datafile
regardless of whether you've changed the serial number. About the best you can do is to use nslookup to compare the
data returned by the primary and by a secondary. If they return different data, you probably forgot to increment the
serial number. If you can remember a recent change you made, you can look for that data. If you can't remember a
recent change, you can try transferring the zone from a primary and from a secondary, sorting the results, and using a
file-comparison tool to compare them.

[1] On the other hand, if you encode the date into the serial number, as many people do (for example,
2004010500 is the first rev of data on January 5, 2004), you may be able to tell at a glance whether you updated
the serial number when you made the change. However, the DNS console makes this almost impossible since it
just increments by one for each change.

The good news is that, although determining whether the zone was transferred is tricky, making sure the zone is
transferred is simple. Just increment the serial number on the primary's copy of the zone by double-clicking the SOA
record in the DNS console and clicking the Increment button on the Start of Authority (SOA) tab. The secondaries
should pick up the new data within their refresh interval, or sooner if they use NOTIFY.

15.4.2 2. Forget to Restart Primary Master Server

Like the last problem, you'll see this problem only if you make changes to your zone datafiles by hand. The DNS console
adds and deletes data on the fly, so there's no need to restart your primary master name server.

If you're not using the DNS console, though, you may forget to restart your primary master name server after editing a
zone datafile. The name server won't know to load the new data—it doesn't automatically check the file to see if it has
changed. Consequently, any changes you've made won't be reflected in the name server's data: new zones won't be
loaded, and new records won't percolate out to the secondaries.

To check when you last restarted the name server, use the Event Viewer to scan the DNS Server event log for Event ID
2, which contains the following text:

The DNS server has started.

The date and time on these events tell you the last time you restarted the name server.

If the time of the restart doesn't correlate with the time you made the last change, use the DNS console to stop and
restart the name server and reload its data. Check that you incremented the serial numbers on the zone datafiles you
changed, too.

15.4.3 3. Name Server Loses Manual Changes

One final but important note about making manual changes: remember that the Microsoft DNS Server periodically
updates its zone datafiles. Each time you make changes to a zone's data using the DNS console, a write is pending:
before the name server exits, it must rewrite the zone's datafile or it will lose the changes you made. Think of this as a
dirty page in memory: the operating system must write it to disk before exiting.

If you make a manual change to a zone datafile while a write is pending, you'll mysteriously lose the change when the
name server exits. Say you add delegation to a new subdomain of movie.edu while the server is running and a write is
pending. After you've made the change, you have to stop the server and start it again to get it to read the zone data
again. But as the server exits, it rewrites the movie.edu zone datafile, and your delegation disappears. If you're

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

again. But as the server exits, it rewrites the movie.edu zone datafile, and your delegation disappears. If you're
watching the DNS Server event log carefully (like you should be), you'll see a message like this before the server stops:

The DNS server wrote version 37 of zone movie.edu to file movie.edu.dns.

Once you force the server to rewrite its zone datafiles with Action Update Server Data Files, the server is in
sync with the zone datafiles and doesn't have to rewrite them on exit. So, if you're going to make manual changes to
the zone datafiles, you should either stop the server first (although that means your server won't answer queries while
you make the change), or use the DNS console to sync the server with the zone datafiles and then make the change.

15.4.4 4. Secondary Server Can't Load Zone Data

If a secondary name server can't get the current serial number for a zone from its master server, you won't be warned
about it initially. However, if the problem persists and the secondary can't determine within the expire interval whether
or not its data is up to date, it expires the zone. On a Microsoft DNS Server, you'll see a message like this in the DNS
Server event log:

Zone movie.edu expired before it could obtain a successful zone transfer or update
from a master server acting as its source for the zone.
The zone has been shut down.

Once the zone has expired and the name server has shut it down, you'll start getting Query refused errors when you
query the name server for data in the zone:

C:\> nslookup robocop wormhole.movie.edu.
Server: wormhole.movie.edu
Addresses: 192.249.249.1, 192.253.253.1

*** wormhole.movie.edu can't find robocop.movie.edu: Query refused

Three leading causes of this problem are a loss in connectivity to the master server due to network failure, an incorrect
IP address configured for the master server, and a syntax error in the zone datafile on the master server.

First, use the DNS console to check the address of the master server(s) from which the secondary is attempting to load
data. Right-click the domain name of the zone in the left pane, choose Properties, and look at the General tab, shown
in Figure 15-3.

Figure 15-3. Zone properties window showing master server(s)

Make sure that's really the IP address of the master name server. If it is, check connectivity to that IP address:

C:\> ping 192.249.249.3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\> ping 192.249.249.3
Pinging 192.249.249.3 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

If the master server isn't reachable, make sure that the server's host is really running (for example, is powered on) or
look for a network problem.

You may also want to check that the master server is returning authoritative responses to queries for data in the zone.
If the master server is responding as not authoritative for the zone, the secondary won't transfer the zone from it.
Here's how you could use nslookup to check for an authoritative response for the zone's SOA record from the master
server:

C:\> nslookup -norec -type=SOA movie.edu. 192.249.249.3

This command sends a nonrecursive query for the SOA record for movie.edu to the name server at 192.249.249.3. We
need to send a nonrecursive query so that the name server at 192.249.249.3 doesn't try to forward the query to
another server.

If this master server is correctly configured, the answer to this query should be authoritative. (Remember that unless
nslookup reports "Non-authoritative answer," the answer is authoritative.) A nonauthoritative reply may indicate that
the master server had a problem loading the zone, usually because of a syntax error in the zone datafile. We've never
seen a Microsoft DNS Server go nonauthoritative for a zone based on a syntax error in a zone datafile, but older BIND
name servers exhibit this behavior. So if your name server is a secondary to a zone whose primary master is a BIND
name server that's not claiming authority for the zone, a syntax error could be your problem. Contact the administrator
of the master server and have him check his name server's syslog output for indications of a syntax error.

If the answer to the query is authoritative but the secondary server still can't transfer the zone successfully, you can
use the nslookup's ls command to try to transfer the zone manually (ls, as we said in Chapter 12, performs a zone
transfer). If you see an error like this, it's a good bet that the master server restricts zone transfers:

C:\> nslookup - 192.249.249.3
Default Server: terminator.movie.edu
Address: 192.249.249.3
> ls movie.edu
[terminator.movie.edu]
*** Can't list domain movie.edu: Query refused
>

Contact the administrator of the master server and ask whether he is restricting zone transfers. Ask him to check the
options on the Zone Transfers tab of the Properties window for the zone you're trying to transfer (if he's running the
Microsoft DNS Server). If the remote server is running BIND, ask if he's using the xfrnets or allow-transfer features to
restrict zone transfers.

Once the problem has been cleared up and your server successfully transfers the zone, you'll see messages like these
in the DNS Server event log:

A more recent version, version 212 of zone movie.edu was found at DNS server at
192.249.249.3. Zone transfer is in progress.

The DNS server wrote version 212 of zone movie.edu to file movie.edu.dns.

15.4.5 5. Add Address to Zone, but Forget to Add Corresponding PTR Record

Because the mappings from hostnames to IP addresses are disjointed from the mappings from IP addresses to
hostnames in DNS, it's easy to forget to add a PTR record for a new host. Adding the A record is intuitive, but many
people who are used to host tables assume that adding an address record takes care of the reverse mapping, too.
That's not true—you need to add a PTR record for the host to the appropriate in-addr.arpa zone. Thankfully, the DNS
console makes that easy by providing a checkbox to Create associated pointer (PTR) record when you choose New
Host.

Neglecting to add the PTR record for a host usually causes that host to fail authentication checks. For example, users on
the host won't be able to ssh or scp to other hosts. The servers these programs talk to need to be able to map the
connection's IP address to a domain name to check authorization files.

In addition, some large FTP archives, including ftp.uu.net, used to refuse anonymous ftp access to hosts whose IP
addresses don't map back to domain names. ftp.uu.net's FTP server emitted a message that read, in part:

530- Sorry, we're unable to map your IP address 140.186.66.1 to a hostname
530- in the DNS. This is probably because your nameserver does not have a
530- PTR record for your address in its tables, or because your reverse
530- nameservers are not registered. We refuse service to hosts whose
530- names we cannot resolve.

That made the reason you couldn't use anonymous ftp pretty evident. Other FTP sites, however, didn't bother printing
informative messages; they simply denied service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

informative messages; they simply denied service.

nslookup is handy for checking whether or not you've forgotten the PTR record:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> beetlejuice Check for a hostname-to-address mapping.
Server: terminator.movie.edu
Address: 192.249.249.3

Name: beetlejuice.movie.edu
Address: 192.249.249.23

> 192.249.249.23 Now check for a corresponding address-to-hostname mapping.
Server: terminator.movie.edu
Address: 192.249.249.3

*** terminator.movie.edu can't find 192.249.249.23: Non-existent domain

On the primary master for 249.249.192.in-addr.arpa, a quick check of the DNS console or the 249.249.192.in-
addr.arpa.dns file tell you whether the PTR record has been added to the zone yet.

15.4.6 6. Wrong Domain Name in RDATA of Record

When you add CNAME, MX, and NS records with the DNS console, remember to specify the fully qualified domain name
of the host for the resource record-specific data. The DNS console assumes that the name you type as the RDATA field
is fully qualified. So if you try to create a CNAME record as shown in Figure 15-4, the CNAME record looks like this in
the zone datafile:

bigt IN NS terminator.

This is probably not what you intended, since there's no top-level terminator domain. You probably assumed the DNS
console would append the name of the zone to the name if you left off the dot. Nope.

Figure 15-4. Creating a CNAME record (the wrong way)

These mistakes are easy to discover if you simply examine the zone datafile (after Action Update Server Data
Files) or use nslookup:

C:\> nslookup -type=cname bigt.movie.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

bigt.movie.edu canonical name = terminator

15.4.7 7. Loss of Network Connectivity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Though the Internet is more reliable today than it was back in the wild and woolly days of the ARPANET, network
outages are still relatively common. These failures usually look like poor performance:

C:\> nslookup nisc.sri.com.
Server: terminator.movie.edu
Address: 192.249.249.3

DNS request timed out.
 timeout was 2 seconds.
DNS request timed out.
 timeout was 4 seconds.
DNS request timed out.
 timeout was 8 seconds.
*** Request to terminator.movie.edu timed-out

Using nslookup, you can look up the names and addresses of the name servers your name server needs to talk to in
order to resolve the name:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set type=ns
> sri.com.
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
sri.com nameserver = ns.sri.com
sri.com nameserver = nsf.algx.net
sri.com nameserver = ns1.sri.com

ns.sri.com internet address = 128.18.30.66
ns1.sri.com internet address = 128.18.30.65
> com.
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
com nameserver = j.gtld-servers.net
com nameserver = k.gtld-servers.net
com nameserver = l.gtld-servers.net
com nameserver = m.gtld-servers.net
com nameserver = a.gtld-servers.net
com nameserver = b.gtld-servers.net
com nameserver = c.gtld-servers.net
com nameserver = d.gtld-servers.net
com nameserver = e.gtld-servers.net
com nameserver = f.gtld-servers.net
com nameserver = g.gtld-servers.net
com nameserver = h.gtld-servers.net
com nameserver = i.gtld-servers.net

Then you can check your host's connectivity to those servers. Odds are, ping won't have much better luck than your
name server did. If it does, you should check that the remote name servers are really running:

C:\> ping 128.18.30.66 Ping first sri.com name server.
Pinging 128.18.30.66 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
C:\> ping 128.18.30.65 Ping second sri.com name server.
Pinging 128.18.30.65 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Now all that's left to do is to locate the break in the network. Utilities like tracert and pathping can help you determine
whether the problem is on your network, on the destination network, or somewhere in the middle.

You should also use common sense when tracking down the break. If, for example, your ping testing showed that you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You should also use common sense when tracking down the break. If, for example, your ping testing showed that you
couldn't reach any of the Internet's root name servers, it's not likely that each root's local network went down or that
the Internet's commercial backbone networks collapsed entirely. Occam's razor says that the simplest condition that
could cause this behavior—namely, the loss of your network's link to the Internet—is the most likely cause.

15.4.8 8. Missing Subdomain Delegation

Even though registrars do their best to process requests as quickly as possible, it may take some time for your
subdomain's delegation to appear in the parent zone's name servers. If your parent zone isn't one of the generic top-
level domains, your mileage may vary. Some parents are quick and responsive; others are slow and inconsistent. Just
like in real life, though, you're stuck with them.

Until your delegation data appears in your parent zone's name servers, your name servers can look up data in the
Internet domain namespace, but no one else on the Internet (outside of your domain) will know how to look up data in
your namespace.

That means that even though you can send mail outside of your domain, the recipients won't be able to reply to it.
Furthermore, no one can telnet to, ftp to, or even ping your hosts by name.

Remember that this applies equally to any in-addr.arpa subdomains you may run. Until the parent delegates those
subdomains to your servers, name servers on the Internet won't be able to reverse-map addresses on your networks.

To determine whether or not your zone's delegation has made it into your parent zone's name servers, query a parent
name server for the NS records for your zone. If the parent name server has the data, any name server on the Internet
can find it:

 C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> server arrowroot.arin.net. Query a 192.in-addr.arpa name server.
Default Server: arrowroot.arin.net
Address: 198.133.199.110

> set norecurse Instruct the server to answer out of
> set type=ns its own data and to look for NS records
> 249.249.192.in-addr.arpa. for 249.249.192.in-addr.arpa.
Server: arrowroot.arin.net
Address: 198.133.199.110

*** arrowroot.arin.net can't find 249.249.192.in-addr.arpa.: Non-existent domain

Here, the delegation clearly hasn't been added yet. You can either wait patiently, or if an unreasonable amount of time
has passed since you requested delegation from your parent zone, you can contact your parent zone's administrator
and ask what's up.

15.4.9 9. Incorrect Subdomain Delegation

Incorrect subdomain delegation is another familiar problem on the Internet. Keeping delegation up-to-date requires
human intervention—informing your parent zone's administrator of changes to your set of authoritative name servers.
Consequently, delegation information often becomes inaccurate as administrators make changes without letting their
parents know. Far too many administrators believe that setting up delegation is a one-shot deal: they let their parents
know which name servers are authoritative once, when they set up their zones, and then they never talk to them again.
They don't even call on Mother's Day.

An administrator may add a new name server, decommission another, and change the IP address of a third, all without
telling the parent zone's administrator. Gradually, the number of name servers correctly delegated to by the parent
zone dwindles. In the best case this leads to long resolution times, as querying name servers struggle to find an
authoritative name server for the zone. If the delegation information becomes badly out of date and the last
authoritative name server host is brought down for maintenance, the information within the zone becomes inaccessible.

If you suspect bad delegation, whether from your parent to your zone, from your zone to one of your children, or from
a remote zone to one of its children, you can check with nslookup:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> server a.gtld-servers.net. Set server to the parent name server you suspect has bad delegation.
Default Server: a.gtld-servers.net
Address: 198.41.0.4

> set type=ns Look for NS records
> hp.com. for the zone in question.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> hp.com. for the zone in question.
Server: a.gtld-servers.net
Address: 198.41.0.4

Non-authoritative answer:
hp.com nameserver = RELAY.HP.COM
hp.com nameserver = HPLABS.HPL.HP.COM
hp.com nameserver = NNSC.NSF.NET
hp.com nameserver = HPSDLO.SDD.HP.COM

Authoritative answers can be found from:
hp.com nameserver = RELAY.HP.COM
hp.com nameserver = HPLABS.HPL.HP.COM
hp.com nameserver = NNSC.NSF.NET
hp.com nameserver = HPSDLO.SDD.HP.COM
RELAY.HP.COM internet address = 15.255.152.2
HPLABS.HPL.HP.COM internet address = 15.255.176.47
NNSC.NSF.NET internet address = 128.89.1.178
HPSDLO.SDD.HP.COM internet address = 15.255.160.64
HPSDLO.SDD.HP.COM internet address = 15.26.112.11

Let's say you suspect that the delegation to hpsdlo.sdd.hp.com is incorrect. Query hpsdlo for data in the hp.com zone,
and check the answer:

> server hpsdlo.sdd.hp.com.
Default Server: hpsdlo.sdd.hp.com
Addresses: 15.255.160.64, 15.26.112.11

> set norecurse
> set type=soa
> hp.com.
Server: hpsdlo.sdd.hp.com
Addresses: 15.255.160.64, 15.26.112.11

Non-authoritative answer:
hp.com
 origin = relay.hp.com
 mail addr = hostmaster.hp.com
 serial = 1001462
 refresh = 21600 (6 hours)
 retry = 3600 (1 hour)
 expire = 604800 (7 days)
 minimum ttl = 86400 (1 day)

Authoritative answers can be found from:
hp.com nameserver = RELAY.HP.COM
hp.com nameserver = HPLABS.HPL.HP.COM
hp.com nameserver = NNSC.NSF.NET
RELAY.HP.COM internet address = 15.255.152.2
HPLABS.HPL.HP.COM internet address = 15.255.176.47
NNSC.NSF.NET internet address = 128.89.1.178

If hpsdlo really were authoritative, it would have responded with an authoritative answer. The administrator of the
hp.com zone can tell you whether hpsdlo should be an authoritative name server for hp.com, so that's who you should
contact.

Checking delegation is even easier with DNSLint, which we introduced in Chapter 8. To check hp.com's delegation, we
could have run just:

C:\> dnslint /d hp.com
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.5 Interoperability Problems
The Microsoft DNS Server has a few interoperability issues with BIND name servers. Most of these involve zone
transfers.

15.5.1 The WINS and WINS-R Records

Zone transfers sometimes fail because of Microsoft's proprietary WINS and WINS-R records. When a Microsoft DNS
Server is configured to consult a WINS server for names it can't find in a given zone, it inserts a special record into the
zone datafile. The record looks like this:

@ IN WINS <IP address of WINS server>

When configured to use WINS-R for reverse-mapping queries, the Microsoft DNS Server adds a similar WINS-R record
to reverse-mapping zones.

Unfortunately, neither WINS nor WINS-R is a standard record type in the IN class. Consequently, any BIND secondaries
that transfer this zone will choke on these records and refuse to load the zone. Here's the message the administrator of
the BIND server might see in his syslog output:

May 23 15:58:43 terminator named-xfer[386]: "fx.movie.edu IN 65281" - unknown type (65281)

The workaround for this problem is to configure the Microsoft DNS Server to filter out the proprietary record before
transferring the zone. You do this by selecting the zone in the left pane of the DNS console, right-clicking it, and
selecting Properties. For a forward-mapping zone, click on the WINS tab in the resulting properties window, which is
shown in Figure 15-5.

Figure 15-5. "Do not replicate this record" checkbox

Checking Do not replicate this record filters out the WINS record for that zone.

For a reverse-mapping zone, click on the WINS-R tab, shown in Figure 15-6. Check Do not replicate this record to
prevent the name server from including the record in zone transfers.

Figure 15-6. "Do not replicate this record" (for WINS-R) checkbox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-6. "Do not replicate this record" (for WINS-R) checkbox

15.5.2 BIND Secondaries for Active Directory-Integrated Zones

Another problem related to zone transfers can crop up when running a BIND or other non-Microsoft name server as a
secondary to an AD-integrated zone. The serial number in an AD-integrated zone can vary on otherwise synchronized
Microsoft DNS Servers. If a BIND secondary is configured to use multiple master name servers and the first of these
isn't available, the second master may respond with a lower serial number, despite the fact that it has the same version
of the zone as the previous master.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.6 Problem Symptoms
Some problems, unfortunately, aren't as easy to identify as the ones we've listed. You'll probably experience some
misbehavior that you won't be able to attribute directly to its cause, often because any of a number of problems may
cause the symptoms you see. For cases like this, we'll suggest some of the common causes of these symptoms and
ways to isolate them.

15.6.1 Can't Look Up Local Name

The first thing to do when a program like telnet or ftp can't look up a local name is to use nslookup to try to look up the
same name. When we say "the same name," we mean literally the same name—don't add a domain name and a trailing
dot if the user didn't type either one. Don't query a different name server than the user did.

As often as not, the user mistyped the name or misunderstood how the search list works and just needs direction.
Occasionally, you'll turn up real host configuration errors, such as a mistake in the resolver configuration (e.g., the
wrong IP address for a name server). You can check for errors like this using nslookup's set all command.

If nslookup points to a problem with the name server, rather than with the host's configuration, check for the problems
associated with the type of name server. If the name server is the primary master for the zone but it doesn't respond
with data you think it should:

Check that the zone or zone datafile contains the data in question.

Ensure that the domain names in the records are correct (problem 6).

If the name server is a secondary server, you should first check whether or not its master has the correct data. If it
does, and the secondary doesn't:

Make sure you've incremented the serial number on the primary (problem 1).

Look for a problem on the secondary in updating the zone (problem 4).

If the primary doesn't have the correct data, of course, diagnose the problem on the primary.

If the problem server isn't authoritative for the zone that contains the data, check that your parent zone's delegation to
your zone exists and is correct (problems 8 and 9). Remember that to that name server, your zone looks just like any
other remote zone. Even though the host it runs on may be inside your zone, the name server must be able to locate
an authoritative server for your zone from your parent zone's servers.

15.6.2 Can't Look Up Remote Names

If your local lookups succeed but you can't look up names outside your local zones, there is a different set of problems
to check:

Can you ping the remote zone's name servers? Maybe you can't reach the remote zone's servers because of
connectivity loss (see problem 7).

Is the remote zone new? Maybe its delegation hasn't yet appeared (see problem 8). Alternatively, the
delegation information for the remote zone may be wrong or out of date, due to neglect (see problem 9).

Does the domain name actually exist on the remote zone's servers? Does it exist on all of them (see problems
1, 2, and 4)?

15.6.3 Wrong or Inconsistent Answer

If you get the wrong answer when looking up a local name or you get an inconsistent answer, depending on which
name server you ask or when you ask, first check the synchronization between your name servers:

Are they all holding the same serial number for the zone? Did you forget to increment the serial number on the
primary after you made a manual change (see problem 1)? If you did, the name servers may all have the same
serial number, but they will answer differently out of their authoritative data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

serial number, but they will answer differently out of their authoritative data.

Did you forget to restart the primary after making a manual change (see problem 2)? Then the primary returns
(via nslookup, for example) a different serial number than the serial number in the zone datafile.

Are the secondaries having trouble updating from the primary (see problem 4)?

Is the name server's round-robin feature rotating the addresses of the domain name you're looking up?

If you get these results when looking up a name in a remote zone, you should check whether the remote zone's name
servers have lost synchronization. You can use tools like nslookup to determine whether the remote zone's
administrator has forgotten to increment the serial number, for example. If the name servers answer differently from
their authoritative data but show the same serial number, the serial number probably wasn't incremented. If the
primary's serial number is much lower than the secondary's, the primary's serial number was probably accidentally
reset. We usually assume a zone's primary name server is running on the host listed as the origin in the SOA record.

You probably can't determine conclusively that the primary hasn't been restarted, though. It's also difficult to pin down
updating problems between remote name servers. In cases like this, if you've determined that the remote name
servers are giving out incorrect data, contact the zone administrator and (gently) relay what you've found. This helps
the administrator track down the problem on the remote end.

15.6.4 Lookups Take a Long Time

Long name resolution periods are usually due to one of two problems:

Connectivity loss (see problem 7), which you can diagnose with tools like ping and tracert

Incorrect delegation information (see problem 9), which points to the wrong name servers or the wrong IP
addresses

Usually, sending a few pings points to one or the other of these causes. Either you can't reach the name servers at all,
or you can reach the hosts but the name servers aren't responding.

Sometimes, though, the results are inconclusive. For example, the parent name servers may delegate to a set of name
servers that don't respond to pings or queries, but connectivity to the remote network seems all right (a tracert, for
example, gets you to the remote network's "doorstep"—the last router between you and the host). Is the delegation
information so badly out of date that the name servers have long since moved to other addresses? Are the hosts simply
down? Or is there really a remote network problem? Usually, finding out requires a call or a message to the
administrator of the remote zone. (And remember, whois gives you phone numbers!)

That's about all we can think of to cover. It's certainly a less than comprehensive list, but we hope it'll help you solve
the more common problems you encounter with DNS and give you ideas about how to approach the rest. Boy, if we'd
only had a troubleshooting guide when we started!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. Miscellaneous
"The time has come," the Walrus said, "To talk of many things: Of shoes—and ships—and sealing-wax—
Of cabbages—and kings—And why the sea is boiling hot—And whether pigs have wings."

It's time we tied up loose ends. We've already covered the mainstream of DNS, but we haven't explored a handful of
interesting niches. Some of these, like instructions on how to set up DNS on a network without Internet connectivity,
may actually be useful; others may just be interesting. But we can't in good conscience send you out into the world
without completing your education!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.1 Using CNAME Records
We talked about CNAME resource records in Chapter 4. We didn't tell you everything about CNAME records, though; we
saved that for this chapter. When you set up your first name servers, you didn't care about the subtle nuances of the
magical CNAME record. Maybe you didn't realize there was more to it than we explained; maybe you didn't care. Some
of this trivia is interesting; some is arcane. We'll let you decide which is which.

16.1.1 CNAMEs Attached to Interior Nodes

If you've ever renamed your zone because of a company reorganization, you may have considered creating a single
CNAME record that pointed from the zone's old domain name to the new domain name. For instance, if the
fx.movie.edu zone were renamed to magic.movie.edu, we'd be tempted to create a single CNAME record to map all the
old names to the new names:

fx.movie.edu. IN CNAME magic.movie.edu.

With this record in place, you'd expect a lookup of empire.fx.movie.edu to result in a lookup of
empire.magic.movie.edu. Unfortunately, this doesn't work—you can't have a CNAME record attached to an interior node
like fx.movie.edu if it owns other records. Remember that fx.movie.edu has an SOA record and NS records, so
attaching a CNAME record to it violates the rule that a domain name be either an alias or a canonical name, not both.
So, instead of using a single CNAME record to rename a complete zone, we'll have to do it the old-fashioned way—a
CNAME record for each individual host within the zone:

empire.fx.movie.edu. IN CNAME empire.magic.movie.edu.
bladerunner.fx.movie.edu. IN CNAME bladerunner.magic.movie.edu.

If the subdomain isn't delegated and consequently doesn't have an SOA record and NS records attached to it, you can
create an alias for fx.movie.edu, but it will apply only to the domain name fx.movie.edu and not to domain names
under fx.movie.edu.

16.1.2 CNAMEs Pointing to CNAMEs

You may have wondered whether it was possible to have an alias (CNAME record) pointing to another alias. This might
be useful in situations where an alias points from a domain name outside of your zone to a domain name inside your
zone. You may not have any control over the alias outside of your zone. What if you want to change the domain name
to which it points? Can you simply add another CNAME record?

The answer is yes: you can chain together CNAME records. The Microsoft DNS Server supports it, and the RFCs don't
expressly forbid it. But, while you can chain CNAME records, is it a wise thing to do? The RFCs recommend against it
because of the possibility of creating a CNAME loop and because it slows resolution. You may be able to do it in a pinch,
but you probably won't find much sympathy if something breaks.

16.1.3 CNAMEs in the Resource Record Data

For any other record besides a CNAME record, you must have the canonical domain name in the resource record data.
Applications and name servers won't operate correctly otherwise. As we mentioned back in Chapter 5, for example,
many mailers recognize only the canonical name of the local host on the right side of an MX record. If a mailer doesn't
recognize the local host, it won't strip out the right MX records when paring down the MX list and may deliver mail to
itself or to less-preferred mail exchangers, causing mail to loop.

16.1.4 Looking Up CNAMEs

At times you may want to look up a CNAME record itself, not data for the canonical name. With nslookup, this is easy to
do. You can set the query type either to cname or to any and then look up the name:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> set query=cname
> bigt
Server: wormhole.movie.edu
Address: 192.249.249.1

bigt.movie.edu canonical name = terminator.movie.edu
> set query=any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> set query=any
> bigt
Server: wormhole.movie.edu
Address: 192.249.249.1

bigt.movie.edu canonical name = terminator.movie.edu

16.1.5 Finding Out a Host's Aliases

One thing you can't easily do with nslookup—or any query tool, for that matter—is find out a host's aliases. With the
host table, it's easy to find both the canonical name of a host and any aliases. No matter which you look up, they're all
there together on the same line, as shown in the following excerpt from HOSTS:

192.249.249.3 terminator.movie.edu terminator bigt

With DNS, however, if you look up the canonical name, all you get is the canonical name. There's no easy way for the
name server or the application to know whether aliases exist for that canonical name:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> terminator
Server: wormhole.movie.edu
Address: 192.249.249.1

Name: terminator.movie.edu
Address: 192.249.249.3

If you use nslookup to look up an alias, you'll see that alias and the canonical name. nslookup reports both the alias and
the canonical name in the packet. But you won't see any other aliases that might point to that canonical name:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> bigt
Server: wormhole.movie.edu
Address: 192.249.249.1

Name: terminator.movie.edu
Address: 192.249.249.3
Aliases: bigt.movie.edu

You can find out all the CNAMEs for a host in a particular zone by transferring the whole zone and picking out the
CNAME records in which that host is the canonical name. You can have nslookup filter on CNAME records:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> ls -t cname movie.edu
[wormhole.movie.edu]
 bigt terminator.movie.edu
 wh wormhole.movie.edu
 dh diehard.movie.edu

You can also do this with dnscmd:

C:\> dnscmd /enumrecords movie.edu @ /type A

This method won't show you aliases in other zones that point to the canonical name, though.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.2 Wildcards
Something else we haven't covered yet is DNS wildcards. At times you want a single resource record to cover any
possible name, rather than creating zillions of resource records that are all the same except for the domain name to
which they apply. DNS reserves a special character, the asterisk (*), to be used in a DNS datafile as a wildcard name. It
will match any number of labels in a name, as long as that name isn't an exact match with a name already in the DNS
database.

Most often, you'd use wildcards to forward mail to non-Internet-connected networks. Suppose our site weren't
connected to the Internet, but we had a host that would relay mail between the Internet and our network. We could
add a wildcard MX record to the movie.edu zone for Internet consumption that points all our mail to the relay. Here is
an example:

*.movie.edu. IN MX 10 movie-relay.nea.gov.

Since the wildcard matches one or more labels, this resource record would apply to names like terminator.movie.edu,
empire.fx.movie.edu, or casablanca.bogart.classics.movie.edu. The danger with wildcards is that they clash with search
lists. This wildcard also matches cujo.movie.edu.movie.edu, making wildcards dangerous to use in your internal zone
data. Remember that some mailers apply the search list when looking up MX records:

C:\>nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> set type=mx Look up MX records
> cujo.movie.edu for cujo.movie.edu.
Server: wormhole.movie.edu
Address: 192.249.249.1

cujo.movie.edu.movie.edu This isn't a real host's name!
 preference = 10, mail exchanger = movie-relay.nea.gov

What are the limitations of wildcards? Wildcards do not match names for which there is already data. Suppose you did
use wildcards within your zone data:

*.movie.edu. IN MX 10 mail-hub.movie.edu.
et.movie.edu. IN MX 10 et.movie.edu.
jaws.movie.edu IN A 192.253.253.113

Mail to terminator.movie.edu will be sent to mail-hub, but mail to et.movie.edu will be sent directly to et. An MX lookup
of jaws.movie.edu would result in a response that says there is no MX data for that name. The wildcard doesn't apply
because an A record exists. Can you use wildcards safely within your zone data? Yes. We'll cover that case a little later
in this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.3 A Limitation of MX Records
While we are on the topic of MX records, let's talk about how they can result in mail taking a longer path than
necessary. The MX records are a list of data returned when a name is looked up. The list isn't ordered according to
which mail exchanger is closest to the sender. Here is an example of this problem: Your non-Internet-connected
network has two hosts capable of relaying Internet mail to your network. One host is in the U.S., and one host is in
France. Your network is in Greece. Most of your mail comes from the U.S., so you have someone maintain your zone
and install two wildcard MX records—giving the highest preference to the U.S. relay and a lower preference to the
France relay. Since the U.S. relay is at a higher preference, all mail will go through that relay (as long as it is
reachable). If someone in France sends you a letter, it will travel across the Atlantic to the U.S. mail relay and back
across the Atlantic from the U.S. mail relay to your network in Greece because there is nothing in the MX list to indicate
that the French relay is closer to that sender.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.4 DNS and Internet Firewalls
The Domain Name System wasn't designed to work with Internet firewalls. It's a testimony to the flexibility of DNS that
you can configure DNS to work with, or even through, an Internet firewall.

That said, configuring the Microsoft DNS Server to work in a firewalled environment, although not difficult, takes a
good, complete understanding of DNS. Describing it also requires a large portion of this chapter, so here's a roadmap.

We start by describing the two major families of Internet firewall software: packet filters and application gateways. The
capabilities of each family have a bearing on how you'll need to configure your DNS servers to work through the
firewall. The next section details the two most common DNS architectures used with firewalls, forwarders, and internal
roots, and describes the advantages and disadvantages of each. Finally, we discuss split namespaces and the
configuration of the bastion host, the host at the core of your firewall system.

16.4.1 Types of Firewall Software

Before you start configuring your DNS servers to work with your firewall, it's important that you understand what your
firewall is capable of. Your firewall's capabilities will influence your choice of DNS architecture and will determine how
you implement it. If you don't know the answers to the questions in this section, track down someone in your
organization who does know and ask. Better yet, work with your firewall's administrator when designing your DNS
architecture to ensure it will coexist with the firewall.

Note that this is far from a complete explanation of Internet firewalls. These few paragraphs describe only the two most
common types of Internet firewalls and only in enough detail to show how the differences in their capabilities affect
name servers. For a comprehensive treatment of Internet firewalls, see Elizabeth Zwicky, Simon Cooper, and D. Brent
Chapman's Building Internet Firewalls (O'Reilly).

16.4.1.1 Packet filters

The first type of firewall we'll cover is the packet-filtering firewall. Packet-filtering firewalls operate largely at the
transport and network levels of the TCP/IP stack (layers three and four of the OSI reference model, if you dig that).
They decide whether to route a packet based upon packet-level criteria, such as the transport protocol (e.g., whether
it's TCP or UDP), the source and destination IP addresses, and the source and destination ports (see Figure 16-1).

Figure 16-1. Packet filters operate at the network and transport layers of the stack

What's most important to us about packet-filtering firewalls is that you can typically configure them to selectively allow
DNS traffic between hosts on the Internet and your internal hosts. That is, you can let an arbitrary set of internal hosts
communicate with Internet name servers. Some packet-filtering firewalls can even permit your name servers to query
name servers on the Internet, but not vice versa. All router-based Internet firewalls are packet-filtering firewalls. Check
Point's FireWall-1, Cisco's PIX, and NetScreen's products are popular commercial packet-filtering firewalls.

16.4.1.2 Application gateways

Application gateways operate at the application protocol level, several layers higher in the OSI reference model than
most packet filters (see Figure 16-2). In a sense, they "understand" the application protocol in the same way a server
for that particular application would. An FTP application gateway, for example, can make the decision to allow or deny a
particular FTP operation, like a RETR (a get) or a STOR (a put).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

particular FTP operation, like a RETR (a get) or a STOR (a put).

Figure 16-2. Application gateways operate at the application layer of the stack

The bad news, and what's important for our purposes, is that most application gateway-based firewalls handle only
TCP-based application protocols. DNS, of course, is largely UDP-based, and we know of no application gateways for
DNS. This implies that if you run an application gateway-based firewall, your internal hosts will likely not be able to
communicate directly with name servers on the Internet.

The Firewall Toolkit from Trusted Information Systems (TIS, now part of Network Associates), a suite of application
gateways for common Internet protocols, such as Telnet, FTP, and http, was used to build some of the first Internet
firewalls. Many other firewall products include application gateways for various protocols. Note that these two
categories of firewalls are really just generalizations. The state of the art in firewalls changes very quickly, and by the
time you read this, you may have a firewall that includes an application gateway for DNS. Which family your firewall
falls into is important only because it suggests what that firewall is capable of; what's more important is whether your
particular firewall will let you permit DNS traffic between arbitrary internal hosts and the Internet.

16.4.2 A Bad Example

The simplest configuration is to allow DNS traffic to pass freely through your firewall (assuming you can configure your
firewall to do that). That way, any internal name server can query any name server on the Internet, and any Internet
name server can query any of your internal name servers. You don't need any special configuration.

Unfortunately, this is a bad idea, for two reasons:

Version control

The developers of the Microsoft DNS Server are constantly finding and fixing security-related bugs in the code.
Consequently, it's important to run a recent version of the server, especially for name servers that are directly
exposed to the Internet. If one or just a few of your name servers communicate directly with name servers on
the Internet, upgrading them to a new version is easy. If all of the name servers on your network do, upgrading
all of them is more difficult.

Possible vector for attack

Even if you're not running a name server on a particular host, a hacker might be able to take advantage of the
fact that you allow DNS traffic through your firewall to attack that host. For example, a coconspirator working
on the inside could set up a Telnet daemon listening on the host's DNS port, allowing the hacker to telnet right
in.

For the rest of this chapter, we'll try to set a good example.

16.4.3 Internet Forwarders

Given the dangers of allowing bidirectional DNS traffic through the firewall unrestricted, most organizations elect to limit
the internal hosts that can "talk DNS" to the Internet. With an application gateway firewall, or any firewall without the
ability to pass DNS traffic, the only host that can communicate with Internet name servers is the bastion host (see
Figure 16-3).

Figure 16-3. A small network, showing the bastion host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-3. A small network, showing the bastion host

With a packet-filtering firewall, the firewall's administrator can configure the firewall to let any set of internal name
servers communicate with Internet name servers. Often, a small set of hosts runs name servers under the direct
control of the network administrator (see Figure 16-4).

Figure 16-4. A small network, showing select internal name servers

Internal name servers that can query name servers on the Internet directly don't require any special configuration.
Their root hints files contain the Internet's root name servers, which enables them to resolve Internet domain names.
Internal name servers that can't query name servers on the Internet, however, need to know to forward queries they
can't resolve to one of the name servers that can. This is done with the Forwarders tab on the server's Properties
window, described in Chapter 11.

Figure 16-5 illustrates a common forwarding setup, with internal name servers forwarding queries to a name server
running on a bastion host.

Figure 16-5. Using forwarders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At Movie U., we put in a firewall to protect ourselves from the Big Bad Internet several years ago. Ours is a packet-
filtering firewall, and we negotiated with our firewall administrator to allow DNS traffic between Internet name servers
and two of our name servers, terminator.movie.edu and wormhole.movie.edu. (These negotiations involved the
exchange of Krispy Kreme doughnuts.) Figure 16-6 shows how we configured the other internal name servers at the
university.

Figure 16-6. Internal name server forwarding configuration

When configuring different internal name servers, we vary the order in which the forwarders appear to help spread the
load among them.

When an internal name server receives a query for a name it can't resolve locally, such as an Internet domain name, it
forwards that query to one of our forwarders, which can resolve the name using name servers on the Internet. Simple!

16.4.3.1 The trouble with forwarding

Unfortunately, it's a little too simple. Forwarding starts to get in the way once you delegate subdomains or build an
extensive network. To explain what we mean, consider an internal caching-only name server, darkcity.movie.edu.
darkcity.movie.edu is configured to use our two forwarders to resolve domain names. What happens when
darkcity.movie.edu receives a query for a name in fx.movie.edu? Naturally, it'll forward the query to one of the
forwarders. The response it gets may include NS records for fx.movie.edu, but darkcity.movie.edu will never use those
NS records (unless they're looked up explicitly). It'll keep sending fx.movie.edu queries to the forwarders, even though
it's perfectly capable of querying the fx.movie.edu name servers directly.

Now imagine the scale of the network is much larger: a corporate network that spans continents, with tens of
thousands of hosts and hundreds or thousands of name servers. All of the internal name servers that don't have direct
Internet connectivity—the vast majority of them—use a small set of forwarders. There are several things wrong with
this picture:

Single point of failure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the forwarders fail, your name servers lose the ability to resolve both Internet domain names and internal
domain names that they don't have cached or authoritative data.

Concentration of load

The forwarders will have an enormous query load placed on them. This is both because of the large number of
internal name servers that use them and because the queries are recursive and may require a good deal of
work to answer.

Inefficient resolution

Imagine two internal name servers authoritative for west.acmebw.com and east.acmebw.com, respectively,
both on the same network segment in Boulder, Colorado. Both are configured to use the company's forwarder
in Bethesda, Maryland. To resolve a name in east.acmebw.com, the west.acmebw.com name server sends a
query to the forwarder in Bethesda. The forwarder in Bethesda then sends a query back to Boulder to the
east.acmebw.com name server, the original querier's neighbor. The east.acmebw.com name server replies by
sending a response back to Bethesda, which the forwarder sends back to Boulder.

In a traditional configuration using iterative queries, the west.acmebw.com name server would quickly have
learned that an east.acmebw.com name server was next door and would favor it (because of its low roundtrip
time). Using forwarders "short-circuits" the normally efficient resolution process.

The upshot is that forwarding is fine for small networks and simple namespaces but usually inadequate for large
networks and complex namespaces. We found this out the hard way at Movie U. as our network grew and we were
forced to find an alternative.

16.4.3.2 Using stub zones

We can solve this problem by using stub zones, which we introduced in Chapter 10. In that chapter, we used stub zones
to track delegation information. However, we can also use them to load certain NS records into our name server's cache
and thereby disable forwarding for a domain.

We add movie.edu as a stub zone on our caching-only name server, as shown in Figure 16-7. With the stub zone
configured, darkcity.movie.edu retrieves movie.edu's NS records and any necessary glue A records from the name
server we designate. More importantly, when it has queries in the movie.edu domain, it sends them directly to the
name servers designated in those NS records rather than forwarding the queries.

Figure 16-7. Adding movie.edu as a stub zone

We also need to set this up for any internal reverse-mapping zones to avoid having those sent to the forwarders.

If we set this up on all internal name servers that aren't authoritative for movie.edu and all of our reverse-mapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we set this up on all internal name servers that aren't authoritative for movie.edu and all of our reverse-mapping
zones (they don't need it), we end up with a fairly robust resolution architecture that minimizes our exposure to the
Internet: it uses efficient, resilient iterative name resolution to resolve internal domain names, and forwarders only
when necessary to resolve Internet domain names. If our forwarders fail or we lose our connection to the Internet, we
lose only our ability to resolve Internet domain names.

16.4.4 Internal Roots

If you want to avoid the scalability problems of forwarding and don't want to deal with stub zones, you can set up your
own root name servers. These internal roots serve only the name servers in your organization. They'll know about only
the portions of the namespace relevant to your organization.

What good are they? By using an architecture based on root name servers, you gain the scalability of the Internet
namespace (which should be good enough for most companies), plus redundancy, distributed load, and efficient
resolution. You can have as many internal roots as the Internet has roots—13 or so—whereas having that many
forwarders may be an undue security exposure and a configuration burden. Most of all, the internal roots don't get used
frivolously. Name servers need to consult an internal root only when they time out the NS records for your top-level
zones. Using forwarders, name servers may have to query a forwarder once per resolution.

The moral of our story is that if you have, or intend to have, a large namespace and lots of internal name servers,
internal root name servers scale better than any other solution.

16.4.4.1 Where to put internal root name servers

Since name servers "lock on" to the closest root name server by favoring the one with the lowest roundtrip time, it pays
to pepper your network with internal root name servers. If your organization's network spans the U.S., Europe, and the
Pacific Rim, consider locating at least one internal root name server on each continent. If you have three major sites in
Europe, give each of them an internal root.

16.4.4.2 Forward-mapping delegation

Here's how an internal root name server is configured. An internal root delegates directly to any zones you administer.
For example, on the movie.edu network, the root zone's datafile would contain:

;
; Delegated sub-zone: movie.edu.
;
movie.edu NS terminator.movie.edu.
terminator.movie.edu A 192.249.249.3
movie.edu NS wormhole.movie.edu.
wormhole.movie.edu A 192.249.249.1
wormhole.movie.edu A 192.253.253.1
movie.edu NS zardoz.movie.edu.
zardoz.movie.edu A 192.249.249.9
zardoz.movie.edu A 192.253.253.9
; End delegation

On the Internet, this information would appear in the edu name servers' zone datafiles. On the movie.edu network, of
course, there aren't any edu name servers, so you delegate directly to movie.edu from the root.

Notice that this example doesn't contain delegation to fx.movie.edu or any other subdomain of movie.edu. The
movie.edu name servers know which name servers are authoritative for all movie.edu subdomains, and all queries for
information in those subdomains pass through the movie.edu name servers, so there's no need to delegate them here.

16.4.4.3 in-addr.arpa delegation

We also need to delegate from the internal roots to the in-addr.arpa zones that correspond to the networks at the
university:

;
; Delegated sub-zone: 249.249.192.in-addr.arpa.
;
249.249.192.in-addr.arpa NS terminator.movie.edu.
terminator.movie.edu A 192.249.249.3
249.249.192.in-addr.arpa NS wormhole.movie.edu.
wormhole.movie.edu A 192.249.249.1
wormhole.movie.edu A 192.253.253.1
249.249.192.in-addr.arpa NS zardoz.movie.edu.
zardoz.movie.edu A 192.249.249.9
zardoz.movie.edu A 192.253.253.9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zardoz.movie.edu A 192.253.253.9
; End delegation

;
; Delegated sub-zone: 253.253.192.in-addr.arpa.
;
253.253.192.in-addr.arpa NS terminator.movie.edu.
terminator.movie.edu A 192.249.249.3
253.253.192.in-addr.arpa NS wormhole.movie.edu.
wormhole.movie.edu A 192.249.249.1
wormhole.movie.edu A 192.253.253.1
253.253.192.in-addr.arpa NS zardoz.movie.edu.
zardoz.movie.edu A 192.249.249.9
zardoz.movie.edu A 192.253.253.9
; End delegation

;
; Delegated sub-zone: 254.253.192.in-addr.arpa.
;
254.253.192.in-addr.arpa NS bladerunner.fx.movie.edu.
bladerunner.fx.movie.edu A 192.253.254.2
254.253.192.in-addr.arpa NS outland.fx.movie.edu.
outland.fx.movie.edu A 192.253.254.3
254.253.192.in-addr.arpa NS alien.fx.movie.edu.
alien.fx.movie.edu A 192.253.254.86
; End delegation

;
; Delegated sub-zone: 20.254.192.in-addr.arpa.
;
20.254.192.in-addr.arpa NS bladerunner.fx.movie.edu.
bladerunner.fx.movie.edu A 192.253.254.2
20.254.192.in-addr.arpa NS outland.fx.movie.edu.
outland.fx.movie.edu A 192.253.254.3
20.254.192.in-addr.arpa NS alien.fx.movie.edu.
alien.fx.movie.edu A 192.253.254.86
; End delegation

Notice that we did include delegation for the 254.253.192.in-addr.arpa and 20.254.192.in-addr.arpa zones, even
though they both correspond to the fx.movie.edu zone. We didn't need to delegate to fx.movie.edu because we'd
already delegated to its parent, movie.edu. The movie.edu name servers delegate to fx.movie.edu, so by transitivity
the roots delegate to fx.movie.edu. Since neither of the other in-addr.arpa zones is a parent of 254.253.192.in-
addr.arpa or 20.254.192.in-addr.arpa, we needed to delegate both zones from the root.

As we've explained earlier, we don't need to add address records for the three Special Effects name servers,
bladerunner.fx.movie.edu, outland.fx.movie.edu, and alien.fx.movie.edu, because a remote name server can already
find their addresses by following delegation from movie.edu. However, the New Delegation Wizard adds their addresses
anyway. Oh, well.

16.4.4.4 The root.dns file

All that's left is to add a root zone with an SOA record and NS records for this internal root name server and any
others:

;
; Database file root.dns for . zone.
; Zone version: 1
;
@ IN SOA rainman.movie.edu. hostmaster.movie.edu. (
 1 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;

@ NS rainman.movie.edu.
rainman.movie.edu A 192.249.249.254
@ NS awakenings.movie.edu
awakenings.movie.edu A 192.253.253.254

rainman.movie.edu and awakenings.movie.edu are the hosts running internal root name servers. We shouldn't run an
internal root on a bastion host because if a name server on the Internet accidentally queries it for data it's not
authoritative for, the internal root will respond with its list of roots—all internal!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authoritative for, the internal root will respond with its list of roots—all internal!

So the whole root.dns file (by convention, we call the root zone's datafile root.dns) looks like this:

;
; Database file root.dns for . zone.
; Zone version: 4
;

@ IN SOA rainman.movie.edu. hostmaster.movie.edu. (
 1 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;
@ NS rainman.movie.edu.
rainman.movie.edu A 192.249.249.254
@ NS awakenings.movie.edu.awakenings.movie.edu
 A 192.253.253.254

;
; Zone records
;

;
; Delegated sub-zone: movie.edu.
;
movie.edu NS terminator.movie.edu.
terminator.movie.edu A 192.249.249.3
movie.edu NS wormhole.movie.edu.
wormhole.movie.edu A 192.249.249.1
wormhole.movie.edu A 192.253.253.1
movie.edu NS zardoz.movie.edu.
zardoz.movie.edu A 192.249.249.9
zardoz.movie.edu A 192.253.253.9
; End delegation

;
; Delegated sub-zone: 249.249.192.in-addr.arpa.
;
249.249.192.in-addr.arpa NS terminator.movie.edu.
terminator.movie.edu A 192.249.249.3
249.249.192.in-addr.arpa NS wormhole.movie.edu.
wormhole.movie.edu A 192.249.249.1
wormhole.movie.edu A 192.253.253.1
249.249.192.in-addr.arpa NS zardoz.movie.edu.
zardoz.movie.edu A 192.249.249.9
zardoz.movie.edu A 192.253.253.9
; End delegation

;
; Delegated sub-zone: 253.253.192.in-addr.arpa.
;
253.253.192.in-addr.arpa NS terminator.movie.edu.
terminator.movie.edu A 192.249.249.3
253.253.192.in-addr.arpa NS wormhole.movie.edu.
wormhole.movie.edu A 192.249.249.1
wormhole.movie.edu A 192.253.253.1
253.253.192.in-addr.arpa NS zardoz.movie.edu.
zardoz.movie.edu A 192.249.249.9
zardoz.movie.edu A 192.253.253.9
; End delegation

;
; Delegated sub-zone: 254.253.192.in-addr.arpa.
;
254.253.192.in-addr.arpa NS bladerunner.fx.movie.edu.
bladerunner.fx.movie.edu A 192.253.254.2
254.253.192.in-addr.arpa NS outland.fx.movie.edu.
outland.fx.movie.edu A 192.253.254.3
254.253.192.in-addr.arpa NS alien.fx.movie.edu.
alien.fx.movie.edu A 192.253.254.86

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alien.fx.movie.edu A 192.253.254.86
; End delegation

;
; Delegated sub-zone: 20.254.192.in-addr.arpa.
;
20.254.192.in-addr.arpa NS bladerunner.fx.movie.edu.
bladerunner.fx.movie.edu A 192.253.254.2
20.254.192.in-addr.arpa NS outland.fx.movie.edu.
outland.fx.movie.edu A 192.253.254.3
20.254.192.in-addr.arpa NS alien.fx.movie.edu.
alien.fx.movie.edu A 192.253.254.86
; End delegation

Creating the root zone with the DNS console on both of the internal root name servers, rainman and awakenings, is just
like creating any primary zone: right-click on the server's name in the left pane, then choose New Zone. For the zone's
domain name, choose "." (a single dot). The DNS console helpfully uses root.dns as the default filename for this zone.

If you don't have a lot of idle hosts sitting around that you can turn into internal roots, don't despair! Any internal name
server (i.e., one that's not running on a bastion host or outside your firewall) can serve double duty as an internal root
and as an authoritative name server for whatever other zones you need it to load. Remember, a single name server can
be authoritative for many, many zones, including the root zone.

16.4.4.5 Configuring other internal name servers

Once you've set up internal root name servers, configure all the name servers on hosts anywhere on your internal
network to use them. Any name server running on a host without direct Internet connectivity (i.e., behind the firewall)
should list the internal roots in its root hints file:

;
; Root Name Server Hints File:
;
; These entries enable the DNS server to locate the root name servers
; (the DNS servers authoritative for the root zone).
; For historical reasons this is often referred to as the
; "Cache File"
;

@ NS rainman.movie.edu.
@ NS awakenings.movie.edu
rainman.movie.edu A 192.249.249.254
awakenings.movie.edu A 192.253.253.254

To edit the root hints, you can open a name server's properties window and choose the Root Hints tab, shown in
Figure 16-8. From here, you can delete the old root name servers and add the two new ones.

Figure 16-8. Editing the root hints

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've got one name server running with the new root hints, you can use the Copy from Server button to tell
other name servers to import its list of root name servers.

Name servers running on hosts using this root hints file can resolve domain names in movie.edu and in Movie U.'s in-
addr.arpa domains but not names outside of those domains.

16.4.4.6 How internal name servers use internal roots

To tie together how this whole scheme works, let's go through an example of name resolution on an internal caching-
only name server using these internal root name servers. First, the internal name server receives a query for a domain
name in movie.edu, say the address of gump.fx.movie.edu. If the internal name server doesn't have any "better"
information cached, it starts by querying an internal root name server. If it has communicated with the internal roots
before, it has a roundtrip time associated with each, which tells it which of the internal roots is responding to it most
quickly. It sends a nonrecursive query to that internal root for gump.fx.movie.edu's address. The internal root answers
with a referral to the movie.edu name servers on terminator.movie.edu, wormhole.movie.edu, and zardoz.movie.edu.
The caching-only name server follows up by sending another nonrecursive query to one of the movie.edu name servers
for gump.fx.movie.edu's address. The movie.edu name server responds with a referral to the fx.movie.edu name
servers. The caching-only name server sends the same nonrecursive query for gump.fx.movie.edu's address to one of
the fx.movie.edu name servers and finally receives a response.

Contrast this with the way a forwarding setup would have worked. Let's imagine that instead of using internal root
name servers, our caching-only name server were configured to forward queries first to terminator.movie.edu and then
to wormhole.movie.edu. In that case, the caching-only name server would have checked its cache for the address of
gump.fx.movie.edu and, not finding it, would have forwarded the query to terminator.movie.edu. terminator.movie.edu
would have queried an fx.movie.edu name server on the caching-only name server's behalf and returned the answer.
Should the caching-only name server need to look up another name in fx.movie.edu, it would still ask the forwarder,
even though the forwarder's response to the query for gump.fx.movie.edu's address probably contained the names and
addresses of the fx.movie.edu name servers.

16.4.4.7 The trouble with internal roots

Unfortunately, just as forwarding has its problems, internal root architectures have their limitations. Chief among these
is the fact that your internal hosts can't see the Internet namespace. On some networks this isn't an issue, because
most internal hosts don't have direct Internet connectivity. The few that do can have their resolvers configured to use a
name server on the bastion host. Some of these hosts probably need to run proxy servers to allow other internal hosts
access to services on the Internet.

On other networks, however, the Internet firewall or other software may require that all internal hosts have the ability
to resolve names in the Internet namespace. For these networks, an internal root architecture won't work.

16.4.5 A Split Namespace

Many organizations would like to advertise different zone data to the Internet than they do internally. In most cases,
much of the internal zone data is irrelevant to the Internet because of the organization's Internet firewall. The firewall
may not allow direct access to most internal hosts and may also translate internal, unregistered IP addresses into a
range of IP addresses registered to the organization. Therefore, the organization may need to trim out irrelevant
information from the external view of the zone or change internal addresses to their external equivalents.

Unfortunately, the Microsoft DNS Server doesn't support automatic filtering and translation of zone data. Consequently,
many organizations manually create what have become known as "split namespaces." In a split namespace, the real
namespace is available only internally, while a pared-down, translated version of it, called the shadow namespace, is
visible to the Internet.

The shadow namespace contains the name-to-address and address-to-name mappings of only those hosts that are
accessible from the Internet through the firewall. The addresses advertised may be the translated equivalents of
internal addresses. The shadow namespace may also contain one or more MX records to direct mail from the Internet
through the firewall to a mail server.

Since Movie U. has an Internet firewall that greatly limits access from the Internet to the internal network, we elected
to create a shadow namespace. For the movie.edu zone, we need to give out information about only the domain name
movie.edu (an SOA record and a few NS records), the bastion host (postmanrings2x.movie.edu), and our new external
name server, ns.movie.edu, which also functions as an external web server, www.movie.edu. The address of the
external interface on the bastion host is 200.1.4.2, while the address of the name/web server is 200.1.4.3. The shadow
movie.edu zone datafile looks like this:

;
; Database file movie.edu.dns for movie.edu zone.
; Zone version 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; Zone version 1
;
@ IN SOA ns.movie.edu. hostmaster.movie.edu. (
 1 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;
@ NS ns.movie.edu.
ns A 200.1.4.3
@ NS ns1.isp.net
ns1.isp.net. A 200.1.0.2

;
; Zone records
;
@ A 200.1.4.3
@ MX 10 postmanrings2x.movie.edu.
@ MX 100 mail.isp.net.
* MX 10 postmanrings2x.movie.edu.
 MX 100 mail.isp.net.
ns A 200.1.4.3
 MX 10 postmanrings2x.movie.edu.
 MX 100 mail.isp.net.
postmanrings2x A 200.1.4.2
 MX 10 postmanrings2x.movie.edu.
 MX 100 mail.isp.net.
www CNAME movie.edu.

Note that there's no mention of any of the subdomains of movie.edu, including any delegation to the name servers for
those subdomains. That information isn't necessary, since there's nothing in any of the subdomains you can get to from
the Internet and inbound mail addressed to hosts in the subdomains is caught by the wildcard.

The 4.1.200.in-addr.arpa.dns file, which we need to reverse map the two Movie U. IP addresses that hosts on the
Internet might see, looks like this:

;
; Database file 4.1.200.in-addr.arpa.dns for 4.1.200.in-addr.arpa zone
;
@ SOA ns.movie.edu. hostmaster.movie.edu. (
 1 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; default TTL

;
; Zone NS records
;
@ NS ns.movie.edu.
ns.movie.edu. A 200.1.4.3
@ NS ns1.isp.net.
ns1.isp.net. A 200.1.0.2

;
; Zone records
;
2 PTR postmanrings2x.movie.edu.
3 PTR ns.movie.edu.

As a precaution, we need to make sure that the resolver on our bastion host isn't configured to use the server on
ns.movie.edu. Since that server can't see the real, internal movie.edu, using it would render postmanrings2x.movie.edu
unable to map internal names to addresses or internal addresses to names.

16.4.5.1 Configuring the bastion host

The bastion host is a special case in a split-namespace configuration. The bastion host has a foot in each environment:
one network interface connects it to the Internet and another connects it to the internal network. Now that we have
split our namespace in two, how can our bastion host see both the Internet namespace and our internal namespace? If
we configure it with the Internet's root name servers in its root hints file, it will follow delegation from the Internet's
edu name servers to an external movie.edu name server with shadow zone data. It would be blind to our internal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

edu name servers to an external movie.edu name server with shadow zone data. It would be blind to our internal
namespace, which it needs to see to log connections, deliver inbound mail, and more. On the other hand, if we
configure it with our internal roots it won't see the Internet namespace, which it clearly needs to do in order to function
as a bastion host. What to do?

If we have internal name servers that can resolve both internal and Internet domain names—using the forwarding
configuration earlier in this chapter, for example—we can simply configure the bastion host's resolver to query those
name servers. But if we use forwarding internally, depending on the type of firewall we're running, we may also need to
run a forwarder on the bastion host itself. If the firewall won't pass DNS traffic, we'll need to run at least a caching-only
name server, configured with the Internet roots, on the bastion host so that our internal name servers will have
somewhere to forward their unresolved queries.

If our internal name servers don't support per-zone forwarding, the name server on our bastion host must be
configured as a secondary for movie.edu and any in-addr.arpa zones in which it needs to resolve addresses. This way, if
it receives a query for a domain name in movie.edu, it'll use its local authoritative data to resolve the name. (If our
internal name servers support conditional forwarding and are configured correctly, the name server on our bastion host
will never receive queries for names in movie.edu.) If the domain name is in a subdomain of movie.edu, it'll follow NS
records in the zone data to query an internal name server for the name. Therefore, it doesn't need to be configured as
a secondary for any movie.edu subdomains, such as fx.movie.edu, just the "topmost" zone (see Figure 16-9).

Figure 16-9. A split DNS solution

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.5 Dial-up Connections
Another relatively recent development in networking that presents a challenge to DNS is the dial-up Internet
connection. When the Internet was young and DNS was born, there was no such thing as a dial-up connection. With the
enormous explosion in the Internet's popularity and the propagation of Internet service providers who offer dial-up
Internet connectivity to the masses, a whole new breed of problems with name service has been introduced.

We'll separate dial-up connections into two categories: simple dial-up, by which we mean a single computer that
connects to the Internet occasionally, when a user manually initiates a connection; and dial-on-demand, which means
one or more computers that connect to the Internet automatically whenever they generate traffic bound for the
Internet. Often, the device that makes this dial-on-demand connectivity possible is a small dial-up router with an analog
modem or ISDN interface.

16.5.1 Simple Dial-up

The easiest way to deal with simple dial-up is to use a name server provided by your ISP. Most ISPs run name servers
for their subscribers' use. And in most cases, the addresses of your ISP's name servers are assigned to your resolver
when you dial in. Occasionally, however, you'll need to configure them yourself. If you're not sure whether your ISP
provides name servers for your use or if you don't know what their IP addresses are, check their web site, send them
email, or—as a last resort—give them a call.

Some operating systems, including all modern versions of Windows, will let you define a set of name servers for a
particular dial-up provider. So, for example, you can configure one set of name servers to use when you dial up SBC
and another to use when you dial up your office. Unfortunately, if you're still using Windows 95, defining name servers
for your LAN connection overrides all your precious dial-up settings.

This configuration is usually adequate for most casual dial-up users. Name resolution fails unless the dial-up connection
is up, but that's not likely to be a problem since there's no use for Internet name service without Internet connectivity.
If you have special needs that aren't addressed by this configuration, take a look at the recommendations in the next
section.

16.5.2 Dial-on-Demand

A more sophisticated dial-up solution is dial-on-demand. Dial-on-demand Internet connections often use dedicated
hardware, such as a small dial-up router, to provide connectivity whenever it's needed. If you initiate a connection to
the Internet from the "remote" end of a dial-on-demand router, it dials up another router on the Internet and routes
your packets across. If the connection is idle for more than a specified amount of time, the router drops the connection.

The challenge with DNS is to keep a local name server from continuously bringing the dial-on-demand connection up
and down like a yo-yo. This could be costly, because you sometimes pay a premium for connection setup with
technologies such as ISDN.

The most important strategy for minimizing this off-net traffic is to configure your resolvers to use a minimal search list
(or DNS suffix list, as it's called in Windows). The default Windows search list (which you get when you don't specify an
explicit list of DNS suffixes to search) searches the ancestors of your local domain, which can cause unnecessary
remote traffic. For instance, say your local domain is tinyoffice.majorcorp.com, and you have a dial-on-demand
connection to Majorcorp's enterprise network. On hosts without an explicit DNS suffix list, your default search list
includes:

tinyoffice.majorcorp.com
majorcorp.com

A user typing telnet foo.tinyoffice.majorcorp.com to log into the workstation next to him might inadvertently cause
lookups of both of these addresses:

foo.tinyoffice.majorcorp.com.tinyoffice.majorcorp.com
foo.tinyoffice.majorcorp.com.majorcorp.com

before the correct domain name, foo.tinyoffice.majorcorp.com, is looked up.[1] Since your local name server is probably
authoritative for tinyoffice.majorcorp.com, it can tell that the first domain name,
foo.tinyoffice.majorcorp.com.tinyoffice.majorcorp.com, is bogus. (It ends in com.tinyoffice.majorcorp.com, so it would
require the existence of a com subdomain of your local domain, and there isn't one.) But it can't tell about the second
domain name without talking to a majorcorp.com name server first. If there isn't one locally, it'll have to bring up that
dial-on-demand connection.

[1] The exact behavior depends on which version of Windows the user is running. Older versions of Windows exhibit
this behavior, but newer versions of Windows try to resolve any domain names containing at least one dot by
themselves before appending the search list. You'll find more details about resolver behavior in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

themselves before appending the search list. You'll find more details about resolver behavior in Chapter 6.

The easiest way to prevent these unnecessary queries is to trim the parent domain out of your search list explicitly by
setting a DNS suffix list in the resolver configuration. In this example, a DNS suffix list tinyoffice.majorcorp.com (just
one entry) would probably cause fewer failed off-site lookups.

If many of the names your users look up are in your parent zone, you might also consider configuring your local name
server as a secondary for your parent zone. At least that way you'll bring up the link at most only once per refresh
interval to resolve names in your parent zone. The same logic could be applied to nearly any zone your local name
server queries often.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. DNS Message Format and Resource
Records
This appendix outlines the format of DNS messages and enumerates the most common resource record types. The
resource records are shown in their textual format, as you would specify them in a zone datafile, and in their binary
format, as they appear in DNS messages.

We've included the portions of RFC 1035, written by Paul Mockapetris, that deal with the textual format of master files
(what we called zone datafiles) or with the DNS message format (for those of you who need to parse DNS packets).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.1 Master File Format
(From RFC 1035, pages 33-35)

The format of these files is a sequence of entries. Entries are predominantly line-oriented, though parentheses can be
used to continue a list of items across a line boundary, and text literals can contain CRLF within the text. Any
combination of tabs and spaces acts as a delimiter between the separate items that make up an entry. The end of any
line in the master file can end with a comment. The comment starts with a semicolon (;).

The following entries are defined:

blank[comment]

$ORIGIN domain-name [comment]

$INCLUDE file-name [domain-name] [comment]

domain-namerr [comment]

blankrr [comment]

Blank lines, with or without comments, are allowed anywhere in the file.

Two control entries are defined: $ORIGIN and $INCLUDE. $ORIGIN is followed by a domain name and resets the
current origin for relative domain names to the stated name. $INCLUDE inserts the named file into the current file and
may optionally specify a domain name that sets the relative domain name origin for the included file. $INCLUDE may
also have a comment. Note that an $INCLUDE entry never changes the relative origin of the parent file, regardless of
changes to the relative origin made within the included file.

The last two forms represent RRs. If an entry for an RR begins with a blank, then the RR is assumed to be owned by
the last stated owner. If an RR entry begins with a domain-name, then the owner name is reset.

rr contents take one of the following forms:

[
TTL] [
class]
type RDATA
[
class] [
TTL]
type RDATA

The RR begins with optional TTL and class fields, followed by a type and RDATA field appropriate to the type and class.
Class and type use the standard mnemonics; TTL is a decimal integer. Omitted class and TTL values default to the last
explicitly stated values. Since type and class mnemonics are disjoint, the parse is unique.

domain-names make up a large share of the data in the master file. The labels in the domain name are expressed as
character strings and separated by dots. Quoting conventions allow arbitrary characters to be stored in domain names.
Domain names that end in a dot are called absolute and are taken as complete. Domain names that do not end in a dot
are called relative; the actual domain name is the concatenation of the relative part with an origin specified in an
$ORIGIN, $INCLUDE, or argument to the master file-loading routine. A relative name is an error when no origin is
available.

character-string is expressed in one of two ways: as a contiguous set of characters without interior spaces, or as a string
beginning with " and ending with ". Inside a "-delimited string any character can occur, except for " itself, which must
be quoted using a backslash (\).

Because these files are text files, several special encodings are necessary to allow arbitrary data to be loaded. In
particular:

.

Of the root.

@

A free-standing @ is used to denote the current origin.

\X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\X

X is any character other than a digit (0-9), and \ is used to quote that character so that its special meaning
does not apply. For example, \. can be used to place a dot character in a label (not implemented by BIND
4.8.3).

\DDD

Each D is a digit in the octet corresponding to the decimal number described by DDD. The resulting octet is
assumed to be text and is not checked for special meaning (not implemented by BIND 4.8.3).

()

Parentheses are used to group data that crosses a line boundary. In effect, line terminations are not recognized
within parentheses. (BIND 4.8.3 allows parentheses only on SOA and WKS resource records.)

;

A semicolon is used to start a comment; the remainder of the line is ignored.

A.1.1 Time to Live

(From RFC 2308, pages 7-8)

The Master File format [RFC 1035 Section 5] is extended to include the following directive:

$TTL <TTL> [comment]

All resource records appearing after the directive, and which do not explicitly include a TTL value, have their TTL set to
the TTL given in the $TTL directive.

The remaining of the current meanings, of being the TTL to be used for negative responses, is the new defined meaning
of the SOA minimum field.

A.1.2 Character Case

(From RFC 1035, page 9)

For all parts of the DNS that are part of the official protocol, all comparisons between character strings (e.g., labels,
domain names, etc.) are done in a case-insensitive manner. At present, this rule is in force throughout the domain
system without exception. However, future additions beyond current usage may need to use the full binary octet
capabilities in names, so attempts to store domain names in 7-bit ASCII or use of special bytes to terminate labels, etc.,
should be avoided.

A.1.3 Types

Following is a list of common resource record types. The textual representation is used in master files. The binary
representation is used in DNS queries and responses. These resource records are described on pages 13-21 of RFC
1035.

A (address) (From RFC 1035, page 20)

Textual representation

owner ttl class A address

Example

localhost.movie.edu. IN A 127.0.0.1

Binary representation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Binary representation

Address type code: 1
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ADDRESS

Is a 32-bit Internet address.

CNAME (canonical name) (From RFC 1035, page 14)

Textual representation

owner ttl class CNAME canonical-dname

Example

wh.movie.edu. IN CNAME wormhole.movie.edu.

Binary representation

CNAME type code: 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

CNAME

Is a domain-name that specifies the canonical or primary name for the owner. The owner name is an alias.

MX (mail exchanger) (From RFC 1035, page 17)

Textual representation

owner ttl class
MX preference exchange-dname

Example

ora.com. IN MX 0 ora.ora.com.
 IN MX 10 ruby.ora.com.
 IN MX 10 opal.ora.com.

Binary representation

MX type code: 15
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / EXCHANGE /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PREFERENCE

Is a 16-bit integer that specifies the preference given to this RR among others at the same owner. Lower values
are preferred.

EXCHANGE

Is a domain-name that specifies a host willing to act as a mail exchange for the owner name.

NS (name server) (From RFC 1035, page 18)

Textual representation

owner ttl class NS
 name-server-dname

Example

movie.edu. IN NS terminator.movie.edu

Binary representation

NS type code: 2
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / NSDNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NSDNAME

Is a domain-name that specifies a host which should be authoritative for the specified class and domain.

PTR (pointer) (From RFC 1035, page 18)

Textual representation

owner ttl class
PTR dname

Example

1.249.249.192.in-addr.arpa. IN PTR wormhole.movie.edu.

Binary representation

PTR type code: 12
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / PTRDNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PTRDNAME

Is a domain-name that points to some location in the domain name space.

SOA (start of authority) (From RFC 1035, pages 19-20)

Textual representation

owner ttl class SOA s
ource-dname mbox (serial refresh retry expire minimum)

Example

movie.edu. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 1 ; Serial
 10800 ; Refresh after 3 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 86400) ; Minimum TTL of 1 day

Binary representation

SOA type code: 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / RNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | SERIAL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | REFRESH |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RETRY |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | EXPIRE |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | MINIMUM |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MNAME

Is the domain-name of the name server that was the original or primary source of data for this zone.

RNAME

Is a domain-name that specifies the mailbox of the person responsible for this zone.

SERIAL

Is the unsigned 32-bit version number of the original copy of the zone. Zone transfers preserve this value. This
value wraps and should be compared using sequence space arithmetic.

REFRESH

Is a 32-bit time interval before the zone should be refreshed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Is a 32-bit time interval before the zone should be refreshed.

RETRY

Is a 32-bit time interval that should elapse before a failed refresh should be retried.

EXPIRE

Is a 32-bit time value that specifies the upper limit on the time interval that can elapse before the zone is no
longer authoritative.

MINIMUM

Is the unsigned 32-bit minimum TTL field that should be exported with any RR from this zone.

TXT (text) (From RFC 1035, page 20)

Textual representation

owner ttl class TXT txt-strings

Example

cujo.movie.edu. IN TXT "Location: machine room dog house"

Binary representation

TXT type code: 16
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TXT-DATA /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

TXT-DATA

Is one or more character-strings.

A.1.4 New Types from RFC 1183

RP (Responsible Person—experimental)

Textual representation

owner ttl class
 RP mbox-dname txt-dname

Example

; The current origin is fx.movie.edu
@ IN RP ajs.fx.movie.edu. ajs.fx.movie.edu.
bladerunner IN RP root.fx.movie.edu. hotline.fx.movie.edu.
 IN RP richard.fx.movie.edu. rb.fx.movie.edu.
ajs IN TXT "Arty Segue, (415) 555-3610"
hotline IN TXT "Movie U. Network Hotline, (415) 555-4111"
rb IN TXT "Richard Boisclair, (415) 555-9612"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rb IN TXT "Richard Boisclair, (415) 555-9612"

Binary representation

RP type code: 17
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAILBOX /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TXTDNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MAILBOX

Is a domain-name that specifies the mailbox for the responsible person.

TXTDNAME

Is a domain-name for which TXT RRs exist. A subsequent query can be performed to retrieve the associated TXT
resource records at txt-dname.

A.1.5 New Types from RFC 1886

AAAA (IPv6 Address)

Textual representation

owner ttl class
AAAA ipv6-address

Example

bridgetjones.movie.edu. IN AAAA 4321:0:1:2:3:4:567:89ab

Binary representation

Address type code: 28
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 | |
 | |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ADDRESS

Is a 128-bit Internet Protocol Version 6 address.

A.1.6 New Types from RFC 2052

SRV (service location)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Textual representation

owner ttl class
SRV priority weight port target

Example

_http._tcp.movie.edu. IN SRV 1 2 80 www.fx.movie.edu.
 IN SRV 1 1 8080 www1.fx.movie.edu.

Binary representation

SRV type code: 33
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PRIORITY |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | WEIGHT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PORT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TARGET /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PRIORITY

Is, as for MX, the priority of this target host. A client MUST attempt to contact the target host with the lowest-
numbered priority it can reach; target hosts with the same priority SHOULD be tried in pseudorandom order.
The range is 0-65535.

WEIGHT

Is a load-balancing mechanism. When selecting a target host among those that have the same priority, the
chance of trying this one first SHOULD be proportional to its weight. The range of this number is 1-65535.
Domain administrators are urged to use Weight 0 when there isn't any load balancing to do, to make the RR
easier to read for humans (less noisy).

PORT

Is the port on this target host of this service. The range is 0-65535. This is often as specified in Assigned
Numbers but need not be.

TARGET

Is, as for MX, the domain name of the target host. There MUST be one or more A records for this name.
Implementors are urged, but not required, to return the A record(s) in the Additional Data section. Name
compression is to be used for this field. A Target of "." means that the service is decidedly not available at this
domain.

A.1.7 Classes

(From RFC 1035, page 13)

CLASS fields appear in resource records. The following CLASS mnemonics and values are defined:

IN

1: the Internet

CS

2: the CSNET class (obsolete—used only for examples in some obsolete RFCs)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2: the CSNET class (obsolete—used only for examples in some obsolete RFCs)

CH

3: the CHAOS class

HS

4: the Hesiod class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.2 DNS Messages
To write programs that parse DNS messages, you need to understand the message format. DNS queries and responses
are most often contained within UDP datagrams. Each message is fully contained within a UDP datagram. If the query
and response are sent over TCP, they are prefixed with a 2-byte value indicating the length of the query or response,
excluding the 2-byte length. The format and content of the DNS messages are as follows.

A.2.1 Message Format

(From RFC 1035, page 25)

All communications inside of the domain protocol are carried in a single format called a message. The top-level format
of the message is divided into five sections (some of which are empty in certain cases), which are shown here:

 +---------------------+
 | Header |
 +---------------------+
 | Question | the question for the name server
 +---------------------+
 | Answer | RRs answering the question
 +---------------------+
 | Authority | RRs pointing toward an authority
 +---------------------+
 | Additional | RRs holding additional information
 +---------------------+

The Header section is always present. The header includes fields that specify which of the remaining sections are
present, and also specify whether the message is a query or a response, a standard query or some other opcode, etc.

The names of the sections after the header are derived from their use in standard queries. The Question section
contains fields that describe a question to a name server. These fields are a query type (QTYPE), a query class
(QCLASS), and a query domain name (QNAME). The last three sections have the same format: a possibly empty list of
concatenated resource records (RRs). The Answer section contains RRs that answer the question; the Authority section
contains RRs that point toward an authoritative name server; and the Additional records section contains RRs which
relate to the query, but are not strictly answers for the question.

A.2.2 Header Section Format

(From RFC 1035, pages 26-28)

The header contains the following fields:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ID

Is a 16-bit identifier assigned by the program that generates any kind of query. This identifier is copied into the
corresponding reply and can be used by the requester to match up replies to outstanding queries.

QR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Is a 1-bit field that specifies whether this message is a query (0), or a response (1).

OPCODE

Is a 4-bit field that specifies the kind of query in this message. This value is set by the originator of a query and
copied into the response. The values are:

0

A standard query (QUERY)

1

An inverse query (IQUERY)

2

A server status request (STATUS)

3-15

Reserved for future use

AA (Authoritative Answer)

Is valid in responses and specifies that the responding name server is an authority for the domain name in the
Question section. Note that the contents of the Answer section may have multiple owner names because of
aliases. The AA-bit corresponds to the name which matches the query name, or the first owner name in the
Answer section.

TC (TrunCation)

Specifies that this message was truncated due to length greater than that permitted on the transmission
channel.

RD (Recursion Desired)

May be set in a query and is copied into the response. If RD is set, it directs the name server to pursue the
query recursively. Recursive query support is optional.

RA (Recursion Available)

Is set or cleared in a response, and denotes whether recursive query support is available in the name server.

Z

Is reserved for future use. Must be 0 in all queries and responses.

RCODE (Response Code)

Is a 4-bit field set as part of responses. The values have the following interpretation:

0

No error condition.

1

Format Error. The name server was unable to interpret the query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format Error. The name server was unable to interpret the query.

2

Server Failure. The name server was unable to process this query due to a problem with the name
server.

3

Name Error. Meaningful only for responses from an authoritative name server, this code signifies that
the domain name referenced in the query does not exist.

4

Not Implemented. The name server does not support the requested kind of query.

5

Refused. The name server refuses to perform the specified operation for policy reasons. For example, a
name server may not wish to provide the information to the particular requester, or a name server may
not wish to perform a particular operation (e.g., zone transfer) for particular data.

6-15

Reserved for future use.

QDCOUNT

Is an unsigned 16-bit integer specifying the number of entries in the Question section.

ANCOUNT

Is an unsigned 16-bit integer specifying the number of resource records in the Answer section.

NSCOUNT

Is an unsigned 16-bit integer specifying the number of name server resource records in the Authority records
section.

ARCOUNT

Is an unsigned 16-bit integer specifying the number of resource records in the Additional records section.

A.2.3 Question Section Format

(From RFC 1035, pages 28-29)

The Question section is used to carry the "question" in most queries, i.e., the parameters that define what is being
asked. The section contains QDCOUNT (usually 1) entries, each of the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / QNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QCLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

QNAME

Is a domain name represented as a sequence of labels, in which each label consists of a length octet followed
by that number of octets. The domain name terminates with the zero length octet for the null label of the root.
Note that this field may be an odd number of octets; no padding is used.

QTYPE

Is a 2-octet code that specifies the type of the query. The values for this field include all codes valid for a TYPE
field, together with some more general codes which can match more than one type of RR.

QCLASS

Is a 2-octet code that specifies the class of the query. For example, the QCLASS field is IN for the Internet.

QCLASS values (From RFC 1035, page 13)

QCLASS fields appear in the Question section of a query. QCLASS values are a superset of CLASS values; every CLASS
is a valid QCLASS. In addition to CLASS values, the following QCLASS is defined:

*

255 Any class

QTYPE values (From RFC 1035, pages 12-13)

QTYPE fields appear in the Question part of a query. QTYPES are a superset of TYPEs, hence all TYPEs are valid QTYPEs.
Also, the following QTYPEs are defined:

AXFR

252 A request for a transfer of an entire zone

MAILB

253 A request for mailbox-related records (MB, MG, or MR)

MAILA

254 A request for mail agent RRs (obsolete; see MX)

*

255 A request for all records

A.2.4 Answer, Authority, and Additional Section Format

(From RFC 1035, pages 29-30)

The Answer, Authority, and Additional sections all share the same format: a variable number of resource records, where
the number of records is specified in the corresponding count field in the header. Each resource record has the following
format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / /
 / NAME /
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | CLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TTL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RDLENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
 / RDATA /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NAME

Is a domain name to which this resource record pertains.

TYPE

Is two octets containing one of the RR type codes. This field specifies the meaning of the data in the RDATA
field.

CLASS

Is two octets that specify the class of the data in the RDATA field.

TTL

Is a 32-bit unsigned integer that specifies the time interval (in seconds) that the resource record may be cached
before it should be discarded. Values of 0 are interpreted to mean that the RR can only be used for the
transaction in progress, and should not be cached.

RDLENGTH

Is an unsigned 16-bit integer that specifies the length in octets of the RDATA field.

RDATA

Is a variable-length string of octets that describes the resource. The format of this information varies according
to the TYPE and CLASS of the resource record. For example, if the TYPE is A and the CLASS is IN, the RDATA
field is a 4-octet ARPA Internet address.

A.2.5 Data Transmission Order

(From RFC 1035, pages 8-9)

The order of transmission of the header and data described in this document is resolved to the octet level. Whenever a
diagram shows a group of octets, the order of transmission of those octets is the normal order in which they are read in
English. For example, in the following diagram, the octets are transmitted in the order they are numbered:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 1 | 2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 3 | 4 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 5 | 6 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Whenever an octet represents a numeric quantity, the left most bit in the diagram is the high order or most significant
bit. That is, the bit labeled 0 is the most significant bit. For example, the following diagram represents the value 170
(decimal).

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1 0 1 0 1 0 1 0|
 +-+-+-+-+-+-+-+-+

Similarly, whenever a multi-octet field represents a numeric quantity, the left most bit of the whole field is the most
significant bit. When a multi-octet quantity is transmitted the most significant octet is transmitted first.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.3 Resource Record Data

A.3.1 Data Format

In addition to 2- and 4-octet integer values, resource record data can contain domain-names or character-strings.

Domain name (From RFC 1035, page 10)

Domain names in messages are expressed in terms of a sequence of labels. Each label is represented as a one octet
length field followed by that number of octets. Since every domain name ends with the null label of the root, a domain
name is terminated by a length byte of zero. The high order two bits of every length octet must be zero, and the
remaining six bits of the length field limit the label to 63 octets or less.

Message compression (From RFC 1035, page 30)

In order to reduce the size of messages, the domain system utilizes a compression scheme which eliminates the
repetition of domain names in a message. In this scheme, an entire domain name or a list of labels at the end of a
domain name is replaced with a pointer to a prior occurrence of the same name.

The pointer takes the form of a two octet sequence:

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 1 1| OFFSET |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The first two bits are ones. This allows a pointer to be distinguished from a label, since the label must begin with two
zero bits because labels are restricted to 63 octets or less. (The 10 and 01 combinations are reserved for future use.)
The OFFSET field specifies an offset from the start of the message (i.e., the first octet of the ID field in the domain
header). A zero offset specifies the first byte of the ID field, etc.

Character string (From RFC 1035, page 13)

character-string is a single length octet followed by that number of characters. character-string is treated as binary
information, and can be up to 256 characters in length (including the length octet).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. Converting from BIND to the Microsoft
DNS Server
This appendix covers the steps necessary to convert a BIND Version 4 name server to a Microsoft DNS Server. This
process is straightforward, since the Microsoft DNS Server can read a BIND Version 4-style configuration file to obtain
its configuration. If you're running BIND Version 8 or 9, you're no doubt aware that the configuration file format is
drastically different. Unfortunately, the Microsoft DNS Server can't read this version of the BIND configuration file. You
should still read through this appendix to see what's involved in the conversion, but you'll need to manually
"downgrade" your BIND configuration file to a format readable by the Microsoft DNS Server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.1 Step 1: Change the DNS Server Startup Method to File
The first step is directing the DNS server to obtain its configuration from a file rather than the Registry or an Active
Directory server (or a combination of both). Start the DNS console, right-click on the server name in the left pane, and
choose Properties. In the server properties window, click on the Advanced tab, which produces a window like the one
shown in Figure B-1.

Figure B-1. Changing the DNS server startup method

Change the Load zone data on startup parameter to From file and click OK.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.2 Step 2: Stop the Microsoft DNS Server
The next step is stopping the DNS server: right-click on the server name in the DNS console's left pane and choose All
Tasks Stop.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.3 Step 3: Change the Zone Datafile Naming Convention
This step is optional. Chances are, your BIND zone datafiles don't follow the same naming convention used by the
Microsoft DNS Server. Recall from Chapter 4 that the Microsoft convention is the name of the zone followed by the .dns
extension—for example, movie.edu.dns. You can continue to use your current naming convention, but if you add new
zones with the DNS console, they'll have the .dns extensions unless you go out of your way to make the names
conform to your scheme. If you're not particularly attached to your naming scheme and don't want to fight the DNS
console every time you create a new zone, this Perl script will rename your zone datafiles in the .dns style and modify
your named.boot file accordingly:

name-convert.pl--Convert zone datafile naming convention in a BIND
named.boot file to Microsoft *.dns format
#

die "usage: name-convert.pl path-to-named.boot\n" unless $ARGV[0];

open (BOOTIN, $ARGV[0]) || die "Can't open boot file for reading: $!\n";
open (BOOTOUT, ">boot") || die "Can't open boot file for writing: $!\n";

while (<BOOTIN>) {
 $dir="$1/" if /^directory\s+(.+).*$/;
 &changeit (1, $1, $2) if /^primary\s+(.+)\s+(.+)$/;
 &changeit (2, $1, $5, $2) if /^secondary\s+([\w\.]+)\s+(((\d{1,3}\.){3}\
 d{1,3}\s+)+)(.+)$/;
 &changeit (3, "cache", $1) if /^cache\s+\.\s+(.+)$/;
}

sub changeit {
 local ($zonetype, $zonename, $oldfilename, $mastersips) = @_;
 $newfilename="$zonename.dns";
 rename ($dir.$oldfilename, $dir.$newfilename) || print "Error renaming
 $oldfilename to $newfilename!\n";
 if ($zonetype == 1) {
 print BOOTOUT "primary $zonename $newfilename\n";
 } elsif ($zonetype == 2) {
 print BOOTOUT "secondary $zonename $mastersips $newfilename\n";
 } else {
 print BOOTOUT "cache . $newfilename\n";
 }
}

The script takes one argument, the name of the name server boot file. For example:

name-convert.pl /etc/named.boot

It outputs a file called boot in the current directory, which is a Microsoft DNS Server boot file with the zone datafile
names changed. It's probably easiest to run the script on the BIND name server (which is probably running on Unix and
therefore has Perl installed), then copy over boot and the newly renamed .dns zone datafiles.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.4 Step 4: Copy the Files
The next step is copying the necessary files from the BIND name server's machine to the Windows Server 2003
machine. You'll need to copy the name server configuration file, called the boot file (which is usually /etc/named.boot)
and all the zone datafiles for which the BIND server is a primary master. The zone datafiles will be in the directory
specified by the directory directive in the boot file. The files should be copied to the %SystemRoot%\system32\dns
directory on the Windows server. The named.boot file goes in that directory, too, but you need to rename it to just
boot. One final note: only the primary, secondary, and cache directives are supported. Any other directives are ignored.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.5 Step 5: Get a New Root Name Server Cache File
Now is a good time to make sure you've got the latest and greatest root name server cache file. Follow the instructions
in Chapter 4 to retrieve the file from ftp.rs.internic.net. Be sure the name matches the one in the boot file's cache
directive. If you went through the name conversion process (step two), the file should be called cache.dns.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.6 Step 6: Restart the DNS Server
Restart the DNS server. The server will now read the BIND boot file for its configuration information and—here's the
nice part—update its configuration information in the Registry to match what it read from the boot file.

If you want to the server to use the boot file permanently, you're finished now. You can even add or delete zones using
the DNS console; the server will update the boot file. That's a nice improvement over Windows NT, which silently
converted back to loading startup data from the Registry if you made any changes with its DNS Manager administration
tool.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.7 Step 7: Change the DNS Server Startup Method to Registry
Finally, you can configure the DNS server to load its configuration information from the Registry or Active Directory (or
both). Using the instructions from step one above, change the boot method back to From registry or From Active
Directory and registry.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. Top-Level Domains
The following table lists all the two-letter country codes and all the top-level domains that aren't countries. Not all of
the countries are registered in the Internet namespace at the time of this writing, but there aren't many missing.

Domain Country or organization

AC Ascension Island

AD Andorra

AE United Arab Emirates

AERO Aviation Community

AF Afghanistan

AG Antigua and Barbuda

AI Anguilla

AL Albania

AM Armenia

AN Netherlands Antilles

AO Angola

AQ Antarctica

AR Argentina

ARPA ARPA Internet

AS American Samoa

AT Austria

AU Australia

AW Aruba

AZ Azerbaijan

BA Bosnia and Herzegovina

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina Faso

BG Bulgaria

BH Bahrain

BI Burundi

BIZ Commercial

BJ Benin

BM Bermuda

BN Brunei Darussalam

BO Bolivia

BR Brazil

BS Bahamas

BT Bhutan

BV Bouvet Island

BW Botswana

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BY Belarus

BZ Belize

CA Canada

CC Cocos (Keeling) Islands

CD Congo, Democratic Republic of the

CF Central African Republic

CG Congo

CH Switzerland

CI Côte d'Ivoire

CK Cook Islands

CL Chile

CM Cameroon

CN China

CO Colombia

COM Generic (formerly Commercial)

COOP Cooperatives

CR Costa Rica

CU Cuba

CV Cape Verde

CX Christmas Island

CY Cyprus

CZ Czech Republic

DE Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican Republic

DZ Algeria

EC Ecuador

EDU Education

EE Estonia

EG Egypt

EH Western Sahara

ER Eritrea

ES Spain

ET Ethiopia

FI Finland

FJ Fiji

FK Falkland Islands (Malvinas)

FM Micronesia, Federated States of

FO Faroe Islands

FR France

GA Gabon

GB United Kingdom (in practice, the United Kingdom uses "UK" for its top-level domain)

GD Grenada

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GD Grenada

GE Georgia

GF French Guiana

GG Guernsey, Alderney, and Sark (British Channel Islands)

GH Ghana

GI Gibraltar

GL Greenland

GM Gambia

GN Guinea

GOV U.S. Federal Government

GP Guadeloupe

GQ Equatorial Guinea

GR Greece

GS South Georgia and the South Sandwich Islands

GT Guatemala

GU Guam

GW Guinea-Bissau

GY Guyana

HK Hong Kong

HM Heard Island and McDonald Islands

HN Honduras

HR Croatia

HT Haiti

HU Hungary

ID Indonesia

IE Ireland

IL Israel

IM Isle of Man

IN India

INFO Generic

INT International entities

IO British Indian Ocean Territory

IQ Iraq

IR Iran, Islamic Republic of

IS Iceland

IT Italy

JE Jersey (British Channel Island)

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KG Kyrgyzstan

KH Cambodia

KI Kiribati

KM Comoros

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

KN Saint Kitts and Nevis

KP Korea, Democratic People's Republic of

KR Korea, Republic of

KW Kuwait

KY Cayman Islands

KZ Kazakhstan

LA Lao People's Democratic Republic

LB Lebanon

LC Saint Lucia

LI Liechtenstein

LK Sri Lanka

LR Liberia

LS Lesotho

LT Lithuania

LU Luxembourg

LV Latvia

LY Libyan Arab Jamahiriya

MA Morocco

MC Monaco

MD Moldova, Republic of

MG Madagascar

MH Marshall Islands

MIL U.S. Military

MK Macedonia, the Former Yugoslav Republic of

ML Mali

MM Myanmar

MN Mongolia

MO Macao

MP Northern Mariana Islands

MQ Martinique

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MUSEUM Museums

MV Maldives

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NAME Individuals

NC New Caledonia

NE Niger

NET Generic (formerly Networking Organizations)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NET Generic (formerly Networking Organizations)

NF Norfolk Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NU Niue

NZ New Zealand

OM Oman

ORG Generic (formerly Organizations)

PA Panama

PE Peru

PF French Polynesia

PG Papua New Guinea

PH Philippines

PK Pakistan

PL Poland

PM St. Pierre and Miquelon

PN Pitcairn

PR Puerto Rico

PRO Professionals

PS Palestinian Territory, Occupied

PT Portugal

PW Palau

PY Paraguay

QA Qatar

RE Réunion

RO Romania

RU Russian Federation

RW Rwanda

SA Saudi Arabia

SB Solomon Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH St. Helena

SI Slovenia

SJ Svalbard and Jan Mayen

SK Slovakia

SL Sierra Leone

SM San Marino

SN Senegal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SO Somalia

SR Suriname

ST Sao Tome and Principe

SU Union of Soviet Socialist Republics

SV El Salvador

SY Syrian Arab Republic

SZ Swaziland

TC Turks and Caicos Islands

TD Chad

TF French Southern Territories

TG Togo

TH Thailand

TJ Tajikistan

TK Tokelau

TL Timor-Leste (still uses TP)

TM Turkmenistan

TN Tunisia

TO Tonga

TP See TL

TR Turkey

TT Trinidad and Tobago

TV Tuvalu

TW Taiwan, Province of China

TZ Tanzania, United Republic of

UA Ukraine

UG Uganda

UK United Kingdom

UM United States Minor Outlying Islands

US United States

UY Uruguay

UZ Uzbekistan

VA Holy See (Vatican City State)

VC Saint Vincent and The Grenadines

VE Venezuela

VG Virgin Islands (British)

VI Virgin Islands (U.S.)

VN Viet Nam

VU Vanuatu

WF Wallis and Futuna

WS Samoa

YE Yemen

YT Mayotte

YU Yugoslavia

ZA South Africa

ZM Zambia

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ZM Zambia

ZW Zimbabwe

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of DNS on Windows Server 2003 is an African white-necked raven (Corvus albicollis), a
subspecies of raven, the largest of the crow-like birds at about 24 inches long. The sexes look alike; the female is
slightly smaller. Perceived as spirited or even impudent, the raven has a distinctive hoarse carrying call. They are
excellent flyers, hovering and gliding, and are safe in flight from predators. Ravens are scavengers and eat carrion and
small live animals, as well as some plants. They sometimes hide and store excess food, and will occasionally carry food
in their feet.

African raven nests, built in niches in rocks, are crafted of an underlying stick structure, covered by grass, dirt, and
rocks, then smaller twigs with soft materials such as moss or rags, and finally a layer of grass or similar plant material.
Ravens lay 3 to 6 mottled grayish-green eggs, and the young hatch after 18 to 20 days of incubation. Both parents (a
pair mated for life) will change the nest lining materials to adjust for changes in temperature and climate.

The raven is a popular figure, both profane and sacred, in many legends. Ravens, along with their relatives, jays and
crows, have long been considered omens of evil in folklore, possibly due to the supposed annual tribute in feathers paid
to the Devil; this legend is probably based on the molting of feathers every summer, during which the raven stays
relatively well hidden--only this and nothing more. The Old Testament lists ravens among "unclean" birds; also fed
Elijah by the brook. Other ancient and medieval cultures considered the raven a symbol of virility or wisdom. An ancient
Norse saga describes the use of ravens by ocean navigators as guides to land, and Norse mythology describes ravens
as scouts for Odin. Native American folklore tells that the raven created the world and its creatures.

Because it preys on locusts, mice, and rats, the white-necked raven is generally welcomed in Africa (despite the
occasional theft of domestic fowl). Like that of many other wild animals, the raven's habitat is dwindling with expansion
of the human population.

Matt Hutchinson was the production editor for DNS on Windows Server 2003 . Octal Publishing, Inc. provided
production services. Sarah Sherman, Reg Aubry, and Claire Cloutier provided quality control.

Edie Freedman designed the cover of this book, based on her series design. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's
ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Nancy Kotary.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

* (asterisk) wildcard
. (dot)
 in domain names
 root domain
 trailing
@ (at sign)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

A records 2nd
 stale
aa (authoritative answer) bit
AAAA ipv6-address records
absolute pathnames
access to name servers
Active Directory
 application partitions
 dnscmd commands
 domains
 integration 2nd 3rd
 resource records
 service location broker
 sites
 zones 2nd
AD-integrated zones
 application partitions
 BIND
 classes
 dnscmd commands
adding
 aliases
 caching-only name servers
 CNAME records
 domains
 MX records
 name servers
 NS records
 primary master name servers
 resource records 2nd
 secondary name servers 2nd 3rd 4th
 servers
 subdomains
 zones 2nd 3rd
Additional section (DNS messages)
AdditionalOptions parameter
address-to-name mapping
addresses
 address type
 forward/reverse mapping
 in MX records
 incorrect
 IP
 local 2nd
 loopback 2nd
 mapping 2nd 3rd
 network numbers, registering
 records
 round robin
 types
administration
 administrators, contacting
 capacity planning
 delegation 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 disasters, preventing and handling
 mail exchangers
 servers
 subdomains
 WMI
 scripting
aging
algorithms, MX records
aliases
 to other aliases
 creating
 deleting
 determining
 in MX records
allwhois.com web site
Answer section (DNS messages)
APNIC registry
appending
 origin in zone datafiles
 parent suffixes
applications
 gateways
 name servers
 nslookup
arguments, search lists
ARIN registry
arpa domain 2nd
ARPAnet
at sign (@)
attacks
authentication
 Kerberos
 WMI
authority
 aa bit
 delegating
 nslookup and
 root domains
 SOA records
 unauthorized zone transfers
 zones
Authority section (DNS messages)
automating secondary name servers

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

backups, battery power
bastion hosts, configuring
batch scripts
benefits of use, DNS
BIND
 AD-integrated zones
 interoperability with Microsoft DNS Server
 name servers
 obtaining
 ports of 2nd
 versions of
 WINS records and
Boolean options, nslookup
boundaries
 nonoctets
 octets

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

cache.dns file 2nd
caching 2nd 3rd
 caching-only name servers 2nd
 checking
 forwarding servers
 negative caching
 root name servers
canonical domain names
capacity planning
case sensitivity
chaining
Chaosnet class
characters
Check Point 2nd
children
 domains
 naming
 selecting number of
CIDR (Classless Inter-Domain Routing) 2nd
CIM (Common Information Model)
Class A networks, subnetting
Class B networks, subnetting
Class C networks, subnetting
CLASS mnemonics
classes
 class option, nslookup
 objects
 resource records 2nd
 servers
 zones
Classless Inter-Domain Routing (CIDR)
clients
 domain controllers
 name servers
 resolvers
 caching
 configuring 2nd
 subnet prioritization
 Windows 2000
 Windows 95
 Windows 98
 Windows NT 4.0
 Windows XP
 service location broker
closest known name servers
CNAME records 2nd
 adding/creating
 name servers and
 transition to subdomains
collisions
com domain
Command parameter
command-line tools
Common Information Model (CIM)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

computer names, modifying
conditional formatting, forwarding name servers
configuration
 Active Directory
 names
 sites
 aging
 application partition
 batch script, example
 check script, example
 dial-up connections
 DNS console
 adding resource records
 adding servers
 adding zones
 creating zones
 formatting loopback addresses
 formatting zone datafiles
 mapping zones
 searching root hints
 starting primary master name servers
 starting secondary name servers
 storing resource records
 viewing zone datafiles
 firewalls
 internal name servers
 large sitewide caches
 managing
 master file formats
 name servers
 resolvers 2nd 3rd
 caching
 subnet prioritization
 Windows 2000
 Windows 95
 Windows 98
 Windows NT 4.0
 Windows Server 2003
 Windows XP
 resource records 2nd
 scavenging
 searching
 security 2nd
 servers
 subdomains
 delegating
 in-addr.arpa domains
 life cycles
 naming children
 parent
 transitions
 TTL 2nd
 TXT records
 WINS lookup
 WINS reverse lookup
 zones 2nd
Configure Your Server Wizard
connections
 ARPAnet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dial-up
 extranets
 Internet
 internets
 master name servers
 multiple name servers
 troubleshooting
consistency
 in domain names
controls, zone datafiles
converting BIND to Microsoft DNS servers
copying files
cost of registering domains
creating subdomains

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

d2 option (nslookup) 2nd
data types, nslookup and
databases
 indexes
 structure of
 whois
datafiles
 controls
 zones 2nd 3rd
DC-less sites, creating
dcdiag
Debug Logging tab
debug option (nslookup) 2nd
debugging [See also troubleshooting]
 nslookup and 2nd
 writing
default domain, with nslookup
default search lists 2nd [See also searching]
defname option (nslookup)
delegation 2nd
 checking 2nd
 disabling
 DNSLint
 forward-mapping
 in-addr.arpa domain 2nd 3rd
 lame
 managing
 nonoctet boundaries and
 number of
 octet boundaries and
 of authority
 parents
 registration and
 subdomains 2nd
 creating without
 troubleshooting 2nd
deleting
 aliases
 hosts
 objects
 records
 resource records
 stale
DHCP (Dynamic Host Configuration Protocol) 2nd
diagnostics 2nd [See also troubleshooting]
 inconsistent answers
 names
 remote hostnames
 response time
dial-on-demand connections
dial-up connections
Dictionary object
dig (Domain Information Groper)
directories

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 namespaces
disabling recursion
disadvantages of use, DNS
disaster planning
disjoint domain names
Distributed Management Task Force (DMTF)
dividing in-addr.arpa domains
DMTF (Distributed Management Task Force)
DNS (Domain Name System)
 benefits of use
 clients
 disadvantages of use
 disasters, preventing and handling
 dynamic update protocol
 message format
 resources for
 structure of
 suffixes
 troubleshooting
DNS console
 addresses, checking
 aliases
 CNAME records
 configuring
 adding resource records
 adding servers
 adding zones
 creating zones
 formatting loopback addresses
 formatting zone datafiles
 mapping zones
 starting primary master name servers
 starting secondary name servers
 storing resource records
 using root hints
 viewing zone datafiles
 error messages
 MX records 2nd
 name servers 2nd
 NS records 2nd
 Properties selection in
 reverse lookup
 reverse-mapping
 secondary name servers
 subdomains
 TTL on resource records
 WINS lookup
 WINS reverse lookup
 zones 2nd
DNS NOTIFY
DNS Provider
 resource records
 zones
DNS Server
 logging
 signals
dnscmd commands
 application partitions
 resource records

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 zones
dnsdiag
DNSEXT
DNSLint
 testing delegation
 troubleshooting
documentation
 BIND
 firewalls
 network numbers
domain controllers
 application partitions
 promoting
 searching
Domain Information Groper [See dig]
Domain Name System [See DNS]
domain names 2nd 3rd
 choosing
 CIDR and
 consistency of
 FQDNs
 mapping
 MX records
 reading
 resolving
 resource records and
 servers for
 subdomains
 visibility of
domains 2nd 3rd
 Active Directory
 adding
 appending
 CNAME records
 controllers [See domain controllers]
 default 2nd
 delegating 2nd 3rd 4th
 forests
 generic top-level
 hosts
 in-addr.arpa 2nd
 international
 levels of
 life cycles
 managing transition to subdomains
 models
 names [See domain names]
 parenting
 registering
 root
 searching for
 shadow namespaces
 state- and city-level
 subdomains
 testing setup
 top-level 2nd
 trees
 troubleshooting
 whois service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 zones versus
dot (.)
 root domain
 trailing
dotted-octet representation
dumping servers
Dunlap, Kevin
Dynamic Host Configuration Protocol [See DHCP]
dynamic updates 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

edu domain
EDUCAUSE
email
 administrator address
 mail exchangers 2nd
 MX records
 routing loops
encryption
enumeration of objects
errors [See also troubleshooting]
 messages
 nonexistent domain (nslookup)
 rcodes for
 SERVFAIL
Event Log
Event Viewer
 DNS console
example programs, obtaining 2nd
existing domains
expire value
expiring cached data
 changing TTL
extensions
extranets

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

files
 cache.dns
 updating
 copying
 HOSTS.TXT
 root name server hints
 root.dns
 troubleshooting
 zone data 2nd 3rd
filesystems
 remote management
Filter option, View menu (DNS console)
filtering packets (firewalls)
finding
 IP addresses
 namespaces
 root hints
 whois services
Firewall Toolkit (Network Associates)
firewalls 2nd
first-level domains
forests
 application partitions
 domains
formatting
 DNS messages
 zone datafiles
forward mapping for IPv6 addresses
forwarders
forwarding servers
FQDNs (fully qualified domain names)
fully qualified domain names (FQDNs)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

gateways 2nd
generic top-level domains [See gTLDs]
geographic domain names
 choosing
 list of
Gizmonic Institute
glue records
gov domain
gTLDs (generic top-level domains) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Header section (DNS messages)
Hesiod (HS) class
history
 of DNS
 of Microsoft DNS Server
homogeneity of multiple name servers
hostnames, mapping
hosts
 adding/deleting
 aliases
 determining
 searching
 bastion
 DNS suffixes
 domains
 names
 errors in
 mail exchangers
 remote
 RP records
HOSTS.TXT file
 outages and
HS (Hesiod) class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

ignoretc option (nslookup)
in-addr.arpa domain 2nd 3rd
 delegating
 internal roots and
 misconfigured servers
 reverse-mapping
 secondary zone creation and
 zones
incremental zone transfers [See IXFR]
incrementing serial numbers
indexes, subdomains as
installing Microsoft DNS Servers 2nd
 batch scripts
 executing
int domain
integrating Active Directory
interfaces
 Perl/VBScript
 WMI
Interfaces tab, Server Properties window (DNS console)
interior nodes, CNAME records
internal name servers, configuring
internal root name servers
 internal name servers and
internationalization
 list of
Internet
 connections
 dial-up connections
 domain namespaces
 firewalls 2nd
 overview of
 split namespaces
Internet Protocol (IP), finding addresses [See IP]
Internet service providers (ISPs)
Internet Software Consortium
internets
 classes of
 overview of
InterNIC
interoperability, troubleshooting
inverse queries
IP (Internet Protocol)
 finding addresses
ip6.int namespace
ipconfig
IPv6 addresses, mapping for
ISPs (Internet service providers)
iterative (nonrecursive) queries
IXFR (incremental zone transfer)
 nslookup and

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

JEEVES

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

KB (Microsoft Knowledge Base)
Kerberos authentication

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

labels, text
lame delegation
LANs (local area networks)
 traffic
life cycle of parents
limitations of MX records
lists
 name server properties
 search
 zones
load
load sharing
local
 addresses
 domain, in MX records
 name servers
 names 2nd
 networks
 nslookup and
local area networks [See LANs]
location, selecting for name servers
logging
 Event Viewer
 overworked name servers
 queries
logical disks, enumerating
loopback address
loops
ls command (nslookup) 2nd
lserver command (nslookup)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

mail addr field
mail exchangers 2nd
mailing lists
 namedroppers
maintenance
 aging
 disaster planning
 Event Viewer
 scavenging
 servers
 zone datafile controls
management
 delegation
 filesystems
 primary master name servers
 resource records
 servers 2nd
 subdomains 2nd
 WMI
 scripting
 zones
manual configuration
 resource records
 search lists
manual searches, nslookup
mapping
 addresses 2nd
 hostnames
 reverse 2nd
master file formats
master server
MB records
MD records
memory
 resource records
messages 2nd
 Event Viewer
MF records
MG records
Microsoft DNS Server
 aging and scavenging, enabling
 batch scripts
 classes
 converting BIND name server to
 executing
 forwarding
 from command line
 history of
 incremental zone transfer
 installing
 interoperability with BIND
 managing
 monitoring
 resources for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 restarting 2nd 3rd
 security
 selecting
 starting/stopping
 troubleshooting
 checking caches
 version control
 zone transfers
Microsoft Exchange Server
Microsoft Knowledge Base (KB)
Microsoft Management Console (MMC)
Microsoft web site, support
MicrosoftDNS_ResourceRecord class
MicrosoftDNS_Server class
MicrosoftDNS_Statistic class
MicrosoftDNS_Zone class
mil domain
minimum TTL
mirroring servers
MMC (Microsoft Management Console)
MNAME field (DNS console)
mnemonics, CLASS
Mockapetris, Paul 2nd
models, domain
modification
 computer names
 DNS suffixes
monitoring performance
moving files
multiple domains
multiple name servers
 nslookup
 registering
multiple networks
MX records 2nd
 adding
 limitation of
 routing loops

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Name Server Modification window (DNS console)
name servers 2nd 3rd
 accessing
 adding 2nd
 BIND, converting to Microsoft DNS Server
 caching-only
 capacity of
 closest known
 configuring
 conventions
 deleting
 forwarders
 forwarding servers
 homogeneity
 internal roots and
 listing properties
 local
 looking up
 losing manual changes
 master
 Microsoft DNS
 misconfigured, in-addr.arpa domain
 nonrecursive
 NOTIFY protocol
 NS records and
 nslookup
 off-site
 primary
 properties of
 querying 2nd
 records
 recursion
 registering
 remote
 root 2nd 3rd 4th 5th
 secondary
 security
 selecting
 selecting number of
 troubleshooting 2nd
 types of
 viewing statistics
 zones
name-to-address mapping for IPv6 addresses
namedroppers mailing list 2nd
names
 address mapping
 caching
 children
 CNAME records
 collisions
 domains
 Active Directory
 aliases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 disjoint/private
 root domains
 selecting
 as subtrees
 local
 modifying
 NetBIOS
 relative
 resolution 2nd
 split namespaces
 suffixes
 troubleshooting
 WINS
namespaces
 directories
 domains
 Internet
 name servers
 finding
 ip6.int
 split
 visibility of
negative caching
net domain
NetBIOS
netdiag
Network Associates Firewall Toolkit
Network Information Center [See NIC]
Network Information Service [See NIS]
Network Solutions, Inc. 2nd
networks
 CIDR
 DNS
 history of DNS
 Internet
 internets
 LANs 2nd
 loopback
 registering 2nd
 servers
 subnetting
 TCP/IP
 troubleshooting
New Delegation Wizard
New Host window (DNS console)
New Zone Wizard
 DNS console
newsgroups 2nd
NIC (Network Information Center)
 whois service 2nd
NIS (Network Information Service) 2nd
no-refresh interval
nod2 option (nslookup) 2nd
nodebug option (nslookup) 2nd
nodefname option (nslookup)
nodes 2nd
 domains
 sibling
noignoretc option (nslookup)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nonauthoritative nslookup answers
nonexistent domain error (nslookup)
nonoctet boundaries, subnetting on
nonrecursive queries 2nd
norecurse option (nslookup) 2nd
nosearch option (nslookup) 2nd
NOTIFY protocol
 requests and responses
novc option (nslookup)
NS records 2nd
 adding 2nd
NSFNET traffic reports
nslookup program 2nd 3rd 4th 5th 6th
 aliases
 CNAME records
 customizing
 delegation
 domain setup, testing
 host configuration errors, checking
 mimicking
 name servers
 queries, tracing
 querying other servers
 searching
 troubleshooting 2nd
 using dig utility instead of
 zone transfers
number of domains, configuring
numbers, ARIN registry

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

objects
 enumerating
 modifying
 referencing
 searching
octets
 subnetting on/off octet boundaries
off-site name server
opcodes
optimizing zones
options
 dig
 nslookup
org domain
origin, zone datafile
outages 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

packet-filtering firewalls
packets, truncated
parents
 aliases
 children
 configuring
 delegating
 delegation
 domains
 life cycles
 naming
 of in-addr.arpa domains
 parent-level aliases
 suffixes
partial-secondary name servers
partitions
 application
 dnscmd commands
pathnames
peak periods of activity
performance
 capacity planning
 mail exchangers
 monitoring
 SOA values
 troubleshooting
Perl
port option (nslookup)
power outages
preference values (MX records)
primary master name server 2nd
 configuring
 DNS console and
 NOTIFY
 registering
 running
 signals
 zones
 creation and
 transfers and
prioritization of subnets
private domain names
programming
 configuration check script
 WMI
 Perl/VBScript
promoting domain controllers
Properties selection (DNS console)
properties, name servers
protocols
 DHCP
 NOTIFY
 TCP/IP
PTR records

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 missing
 multiple
 stale
Public Interest Registry

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

quad A records
queries
 caching and
 dig
 inverse
 iterative (nonrecursive)
 logging
 name servers
 nonauthoritative nslookup answers
 nonrecursive
 nslookup
 customizing
 implementing
 mimicking servers with
 troubleshooting
 recursive 2nd 3rd
 refused
 trace of
 troubleshooting
 volume of
 WQL
querytype option (nslookup) 2nd
Question section (DNS messages)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

rcodes (response codes)
RDATA field, troubleshooting
records
 AAAA ipv6-address
 classes
 CNAME
 deleting
 incremental zone transfers
 MX 2nd
 adding
 limitations
 routing loops
 name servers
 NS
 PTR
 troubleshooting
 refreshing
 resource
 classes
 creating
 data
 dnscmd commands
 modifying
 types
 wildcards
 round robin
 RP 2nd
 searching
 SOA 2nd 3rd 4th
 modifying
 serial numbers
 SRV 2nd
 stale
 TXT 2nd
recurse option (nslookup)
recursion 2nd
 caching and
 disabling
 queries
 resolution
references, objects
refresh interval 2nd
 no-refresh interval
 records
 secondary servers
refused queries
regional Internet registries (RIRs)
registrars 2nd
 selecting
registration 2nd 3rd
 name servers
 networks
 zones
registries 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RIRs
Registry
 maximum TTL
 modifying
relative names
remote hostnames 2nd
remote management
 filesystems
 subdomains
remote name servers
replication
 AD-integrated zones
 application partitions
resolution 2nd
 caching and
 iterative (nonrecursive)
 names
 root name servers
 roundtrip time
resolvers 2nd 3rd 4th
 caching
 configuring 2nd 3rd
 nslookup versus 2nd
 stub
 subnet prioritization
 TTL
 Windows 2000
 Windows 95
 Windows 98
 Windows NT 4.0
 Windows Server 2003
 Windows XP
resource records
 Active Directory
 case sensitivity
 classes 2nd
 CNAMEs in
 creating
 data
 dnscmd commands
 domain names in
 modifying
 properties of
 scavenging
 stale
 storing
 TTL
 types
 wildcards
 zones
resources 2nd
response codes (rcodes)
responses
 inconsistent
 time for
 tracing
Responsible Person records [See RP]
restarting servers 2nd 3rd 4th
restrictions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 forwarding servers
 servers
retry interval 2nd 3rd
reverse mapping 2nd
 for IPv6 addresses
 zones
RIPE Network Coordination Centre
RIRs (regional Internet registries)
root command (nslookup)
root domains
 naming
root hints, searching
root name servers 2nd 3rd
 caching
 hints file
 setting with nslookup
root.dns file
round robin
roundtrip time
routing
 CIDR
 loops
 MX records
RP (Responsible Person) records 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

scalability, forwarding and
scavenging
scripting
 configuration check
 WMI
 Perl/VBScript
search option (nslookup)
searching [See also finding]
 CNAME records
 configuring
 DNS suffixes
 domain controllers
 domains
 hosts
 IP addresses
 names
 namespaces
 nslookup
 resource records
 root hints
 RP records
 SRV records
 suffixes
 turning off
 whois services
 wildcards
 WQL
second-level domains
secondary name servers 2nd
 adding 2nd
 automating
 configuring
 expired zones
 loading from other secondaries
 NOTIFY protocol
 partial-secondary servers
 registering
 running
 zone transfers and
security 2nd
 DHCP
 dynamic updates 2nd
 encryption
 firewalls 2nd
 forwarders
 forwarding servers
 load sharing
 multiple name servers
 root name servers
 split namespaces
 transaction signatures
 WMI
selection
 of children

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 of domain names
 of name servers 2nd
 of registrars
sendmail program
serial numbers
 incrementing
 nslookup and
 zones
server command (nslookup)
Server Properties window (Microsoft DNS Server)
ServerName parameter
servers
 adding
 batch scripts
 BIND
 cache.dns file
 caching
 classes
 DNS console
 dumping
 Event Viewer
 executing
 forwarding
 installing 2nd
 load sharing
 logging
 managing 2nd
 Microsoft DNS Server
 Microsoft Exchange Server
 monitoring
 name
 capacity of
 configuring
 conventions
 listing properties
 local
 losing manual changes
 querying
 records
 remote
 selecting
 troubleshooting
 types of
 viewing statistics
 zones
 NOTIFY protocol
 nslookup
 customizing
 searching
 troubleshooting
 primary master name
 restarting 2nd 3rd 4th
 secondary name
 security 2nd
 signals
 troubleshooting 2nd
 checking caches
 whois
 searching

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WINS
 zones
 adding
 adding resource records
 creating
 formatting loopback addresses
 formatting zone datafiles
 listing
 mapping
 searching root hints
 storing resource records
 viewing zone datafiles
SERVFAIL errors
service location broker
service location records [See SRV records]
services
 batch scripts
 executing
 managing
 restarting
 whois
 searching
 WINS
set all command (nslookup)
set command (nslookup)
shadow namespaces
sibling nodes
signals
 troubleshooting
signals to primary name server, troubleshooting
simple dial-up connections
Simple Mail Transfer Protocol (SMTP)
sites, Active Directory
SMTP (Simple Mail Transfer Protocol)
SOA (start of authority) 2nd 3rd
 records 2nd 3rd
 serial numbers
software
 firewall
 multiple name servers
 name servers
 nslookup
split namespaces
srchlist option (nslookup)
SRV (service location) records 2nd
stale records, troubleshooting
start of authority [See SOA]
starting/stopping DNS server
 from DOS command line 2nd
StartService method
state-level domains
statistics, name servers
StopService method
storage, Active Directory zones 2nd
stub resolvers
stub zones
 delegation
 troubleshooting
subdirectories

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subdomains 2nd 3rd 4th 5th [See also domains]6th
 choosing
 delegation 2nd 3rd 4th
 troubleshooting
 determining
 in-addr.arpa domains
 life cycles
 non-U.S.
 parents
 configuring
 naming children
 reading
 remote management
 size
 SOA records
 transitions
 troubleshooting
subnetting networks
 Class A and B
 Class C
 on/off octet boundaries
 prioritization
subtrees
 domains
suffixes
 modifying
 searching
support, Microsoft web site

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

TCP (Transmission Control Protocol)
 virtual circuits
TCP/IP (Transmission Control Protocol/Internet Protocol) 2nd
 nslookup and
temporary root servers
testing
 delegation
 domain setups
text labels
TeXT records [See TXT records]
TextRepresentation method
time to live [See TTL]
timeouts
 nslookup 2nd
 troubleshooting
TIS Firewall Toolkit
TLDs (top-level domains)
 choosing
 generic (gTLDs)
 Internet
 list of
 naming subdomains as
 registries and
 root name servers
tools
 command-line
 dig
 DNS console
 DNSLint 2nd
 Firewall Toolkit
 nslookup
 customizing
 searching
 troubleshooting
top-level domains [See TLDs]
tracert utility
tracing queries and responses
traffic 2nd 3rd
 dial-on-demand and
 root name servers
trailing dot (.)
 in domain names
transaction signatures (TSIGs)
transfers
 incremental zone
 zones
 nslookup
 unauthorized
transitions, subdomains
translation
 caching
 configuring 2nd
 resolvers
 subnet prioritization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Windows 95
 Windows 98
 Windows NT 4.0
Transmission Control Protocol [See TCP]
Transmission Control Protocol/Internet Protocol [See TCP/IP]
trees
 domain namespaces
 Internet
 domains
troubleshooting
 aging
 command-line tools
 configuration check script
 connections
 delegation, checking
 dial-up connections
 dig
 disasters
 DNS
 DNSLint
 Event Viewer
 files
 host configuration errors
 inconsistent responses
 interoperability
 manual changes
 Microsoft support
 name servers
 nslookup 2nd
 preventive measures
 PTR records
 recursion
 scavenging
 serial numbers
 servers 2nd
 checking caches
 signals
 stub zones
 subdomains
 delegation
 unauthorized zone transfers
 WINS reverse lookup and
 zones 2nd
truncated packets
TSIGs (transaction signatures) 2nd
TTL (time to live)
 changing
 master file formats
 minimum
 modifying
 resolvers
TXT (TeXT) records 2nd
types
 of addresses
 of name servers
 of resource records

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

UDP response packets 2nd
unauthorized zone transfers
uninterruptible power system (UPS)
Update Server Data Files command (DNS console)
updating
 cache.dns file
 dynamic updates
 glue records
 security
 SOA records
 zones
UPS (uninterruptible power system)
us domain, registering under
USC Information Sciences Institute
Usenet newsgroups 2nd
utilities [See also tools]
 DNS console
 using

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

values, CLASS
VBScript
vc option (nslookup)
VeriSign registrar/registry 2nd
version control
View menu (DNS console)
 Filter option
viewing
 name server statistics
 zone datafiles
virtual circuits

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

wantrecursion string
whois databases
whois service 2nd 3rd
 network registration, checking
 searching
wildcards
Windows 2000 resolver
Windows 95 resolver
Windows 98 resolver
Windows filesystems
Windows Internet Naming Service [See WINS]
Windows Management Instrumentation [See WMI]
Windows NT 4.0 resolvers
Windows Server 2003 resolver
Windows XP resolver
WINS (Windows Internet Naming Service) 2nd
 lookup
 records
 reverse lookup
wizards
 Configure Your Server
 New Delegation
 New Zone
WMI (Windows Management Instrumentation)
 scripting
WMI DNS Provider
WMI Query Language (WQL)
WQL (WMI Query Language)
writing debugging information

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Zone Properties window (Microsoft DNS Server)
zones 2nd 3rd 4th
 Active Directory 2nd
 application partitions
 BIND
 classes
 CNAME records
 configuration
 creating 2nd 3rd
 datafiles
 controls
 domains
 manual changes to
 dnscmd commands
 domains
 selecting
 expired
 in-addr.arpa
 incremental transfers
 listing
 MX records
 name servers
 selecting
 naming conventions
 NOTIFY
 nslookup
 parents
 properties of
 registering 2nd
 resource records
 reverse-mapping
 secondary name servers
 serial numbers
 SOA records 2nd
 split namespaces
 stale resource records and
 stub zones
 managing delegation
 troubleshooting
 subdomains
 transfers 2nd 3rd
 nslookup
 optimizing
 unauthorized
 updating
 WINS lookup

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

