
Table of Contents
BackCover
Data Structures Demystified
Introduction
Chapter 1: Memory, Abstract Data Types, and Addresses
Data and Memory
Reserving Memory
Memory Addresses
Quiz
Chapter 2: The Point About Variables and Pointers
Pointers
Quiz
Chapter 3: What Is an Array?
Declaring an Array
Multidimensional Arrays
Pointers and Arrays
An Array of Pointers
An Array of Pointers to Pointers
Quiz
Chapter 4: Stacks Using an Array
Inside a Stack
Creating a Stack in C++
Creating a Stack in Java
Stack in Action Using C++
Stack in Action Using Java
Quiz
Chapter 5: Queues Using an Array
Queues Using an Array in C++
Queues Using An Array in Java
Quiz

Chapter 6: What Is a Linked List?
The Structure of a Linked List
Linked Lists Using C++
Linked Lists Using Java
Quiz
Chapter 7: Stacks Using Linked Lists
LinkedList Class
The StackLinkedList Class
StackLinked List Using C++
StackLinked List Using Java
Quiz
Chapter 8: Queues Using Linked Lists
The Linked List Queue
Linked List Queue Using C++
Linked List Queue Using Java
Quiz
Chapter 9: Stacks and Queues: Insert, Delete, Peek, Find
Enhanced LinkedList Class Using C++
Enhanced LinkedList Class Using Java
Quiz
Chapter 10: What Is a Tree?
Parts of a Binary Tree
Why Use a Binary Tree?
Creating a Binary Tree
Binary Tree Using C++
Binary Tree Using Java
Quiz
Chapter 11: What Is a Hashtable?
Developing a Hashtable
Hashtable Using C++
Hashtable Using Java

Quiz
Final Exam
Index
Index_A
Index_B
Index_C
Index_D
Index_E
Index_F
Index_G
Index_H
Index_I
Index_J
Index_K
Index_L
Index_M
Index_N
Index_O
Index_P
Index_Q
Index_R
Index_S
Index_T
Index_U
Index_V
Index_W
List of Figures
List of Tables

Data Structures Demystified
by Jim Keogh and Ken Davidson ISBN:0072253592

McGraw-Hill/Osborne © 2004

Whether you are an entry-level or seasoned designer or
programmer, learn all about data structures in this easy-to-
understand, self-teaching guide that can be directly applied
to any programming language.

Table of Contents
Data Structures Demystified
Introduction
Chapter 1 -Memory, Abstract Data Types, and Addresses
Chapter 2 -The Point About Variables and Pointers
Chapter 3 -What Is an Array?
Chapter 4 -Stacks Using an Array
Chapter 5 -Queues Using an Array
Chapter 6 -What Is a Linked List?
Chapter 7 -Stacks Using Linked Lists
Chapter 8 -Queues Using Linked Lists
Chapter 9 -Stacks and Queues: Insert, Delete, Peek, Find
Chapter 10 -What Is a Tree?
Chapter 11 -What Is a Hashtable?
Final Exam
Index
List of Figures
List of Tables

Back Cover

If you’ve been searching for that quick, easy-to-understand guide
to walk you through data structures, look no further. Data
Structures Demystified is all these things and more. Whether you’re
trying to program stacks and linked lists or figure out hashtables,
here you’ll find step-by-step instructions to get the job done fast.

No longer will you have to wade through thick, dry, academic
tomes, heavy on technical language and information you don’t
need. In Data Structures Demystified, each chapter starts off with
an example from everyday life to demonstrate upcoming concepts,
making this a totally accessible read. The authors go a step further
and offer examples at the end of the chapter illustrating what
you’ve just learned in Java and C++.

This one-of-a-kind self-teaching text offers:

An easy way to understand data structures

A quiz at the end of each chapter

A final exam at the end of the book

No unnecessary technical jargon

A time-saving approach

About the Authors

Jim Keogh is a member of the faculty of Columbia University, where
he teaches courses on Java Application Development, and is a
member of the Java Community Process Program. He developed the
first e-commerce track at Columbia and became its first
chairperson. Jim spent more than a decade developing advanced
systems for major Wall Street firms and is also the author of several
best-selling computer books.

Ken Davidson is a member of the faculty of Columbia University,
where he teaches courses on Java Application Development. Ken

has spent more than a decade developing advanced systems for
major international firms.

Data Structures Demystified
James Keogh
& Ken Davidson

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or
book distributors outside the U.S.A., please see the International Contact Information page
immediately following the index of this book.

Data Structures Demystified

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 FGR FGR 01987654
ISBN 0-07-225359-2

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Wendy Rinaldi

Project Editor
Jennifer Malnick

Acquisitions Coordinator

Athena Honore

Technical Editor
Jeff Kent

Copy Editor
Sally Engelfried

Proofreader
Linda Medoff

Indexer
Claire Splan

Composition
Jean Butterfield, Tara A. Davis

Illustrators
Kathleen Edwards, Melinda Lytle

Cover Series Design
Margaret Webster-Shapiro

Cover Illustration
Lance Lekander

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources,
McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

This book is dedicated to Anne, Sandy, Joanne,
Amber-Leigh Christine, and Graaf, without whose
help and support this book couldn’t be written.
—Jim
To Janice, Jack, Alex, and Liz.
—Ken

About the Authors

Jim Keogh is a member of the faculty of Columbia University, where he teaches courses on
Java Application Development, and is a member of the Java Community Process Program.
He developed the first e-commerce track at Columbia and became its first chairperson. Jim

spent more than a decade developing advanced systems for major Wall Street firms and is
also the author of several best-selling computer books.

Ken Davidson is a member of the faculty of Columbia University, where he teaches courses
on Java Application Development. Ken has spent more than a decade developing advanced
systems for major international firms.

Introduction
This book is for everyone who wants to learn basic data structures using C++ and Java
without taking a formal course. It also serves as a supplemental classroom text. For the
best results, start at the beginning and go straight through.

If you are confident about your basic knowledge of how computer memory is allocated and
addressed, then skip the first two chapters, but take the quiz at the end of those chapters
to see if you are actually ready to jump into data structures.

If you get 90 percent of the answers correct, you’re ready. If you get 75 to 89 percent
correct, skim through the text of Chapters 1 and 2. If you get less than 75 percent of the
answers correct, then find a quiet place and begin reading Chapters 1 and 2. Doing so will
get you in shape to tackle the rest of the chapters on data structures. In order to learn data
structures, you must have some computer programming skills—computer programming is
the language used to create data structures. But don’t be intimidated; none of the
programming knowledge you need goes beyond basic programming in C++ and Java.

This book contains a lot of practice quizzes and exam questions, which are similar to the
kind of questions used in a data structures course. You may and should refer to the chapter
texts when taking them. When you think you’re ready, take the quiz, write down your
answers, and then give your list of answers to a friend. Have your friend tell you your score,
but not which questions were wrong. Stay with one chapter until you pass the quiz. You’ll
find the answers in Appendix B.

There is a final exam in Appendix A, at the end of the book, with practical questions drawn
from all chapters of this book. Take the exam when you have finished all the chapters and
have completed all the quizzes. A satisfactory score is at least 75 percent correct answers.
Have a friend tell you your score without letting you know which questions you missed on
the exam.

We recommend that you spend an hour or two each day; expect to complete one chapter
each week. Don’t rush. Take it at a steady pace. Take time to absorb the material. You’ll
complete the course in a few months; then you can use this book as a comprehensive
permanent reference.

Chapter 1: Memory, Abstract Data Types, and Addresses
What is the maximum number of tries you’d need to find your name in a list of a million
names? A million? No, not even close. The answer is 20—if you structure the list to make it
easy to search and if you search the structure with an efficient searching technique.
Searching lists is one of the many ways data structures help you manipulate data that is
stored in your computer’s memory. However, before you can understand how to use data
structures, you need to have a firm grip on how computer memory works. In this chapter,
you’ll explore what computer memory is and why only zeros and ones are stored in
memory. You’ll also learn what a Java data type is and how to select the best Java data
type to reserve memory for data used by your program.

A Tour of Memory
Computer memory is divided into three sections: main memory, cache memory in the
central processing unit (CPU), and persistent storage. Main memory, also called random
access memory (RAM), is where instructions (programs) and data are stored. Main
memory is volatile; that is, instructions and data contained in main memory are lost once the
computer is powered down.

Cache memory in the CPU is used to store frequently used instructions and data that either
is, will be, or has been used by the CPU. A segment of the CPU’s cache memory is called a
register. A register is a small amount of memory within the CPU that is used to temporarily
store instructions and data.

A bus connects the CPU and main memory. A bus is a set of etched wires on the
motherboard that is similar to a highway and transports instructions and data between the
CPU, main memory, and other devices connected to a computer (see Figure 1-1).

Figure 1-1: A bus connects the CPU, main memory, persistent storage, and other
devices.

Persistent storage is an external storage device such as a hard disk that stores instructions
and data. Persistent storage is nonvolatile; that is, instructions and data remain stored even
when the computer is powered down.

Persistent storage is commonly used by the operating system as virtual memory. Virtual
memory is a technique an operating system uses to increase the main memory capacity
beyond the random access memory (RAM) inside the computer. When main memory
capacity is exceeded, the operating system temporarily copies the contents of a block of
memory to persistent storage. If a program needs access to instructions or data contained
in the block, the operating system switches the block stored in persistent storage with a
block of main memory that isn’t being used.

CPU cache memory is the type of memory that has the fastest access speed. A close
second is main memory. Persistent storage is a distant third because persistent storage
devices usually involve a mechanical process that inhibits the quick transfer of instructions

and data.

Throughout this book, we’ll focus on main memory because this is the type of memory used
by data structures (although the data structures and techniques presented can also be
applied to file systems on persistent storage).

Data and Memory
Data used by your program is stored in memory and manipulated by various data structure
techniques, depending on the nature of your program. Let’s take a close look at main
memory and how data is stored in memory before exploring how to manipulate data using
data structures.

Memory is a bunch of electronic switches called transistors that can be placed in one of two
states: on or off. The state of a switch is meaningless unless you assign a value to each
state, which you do using the binary numbering system.

The binary numbering system consists of two digits called binary digits (bits): zero and
one. A switch in the off state represents zero, and a switch in the on state represents one.
This means that one transistor can represent one of two digits.

However, two digits don’t provide you with sufficient data to do anything but store the
number zero or one in memory. You can store more data in memory by logically grouping
together switches. For example, two switches enable you to store two binary digits, which
gives you four combinations, as shown Table 1-1, and these combinations can store
numbers 0 through 3. Digits are zero-based, meaning that the first digit in the binary
numbering system is zero, not 1. Memory is organized into groups of eight bits called a
byte, enabling 256 combinations of zeros and ones that can store numbers from 0 through
255.

Table 1-1: Combinations of Two Bits and Their Decimal Value Equivalents

Switch 1 Switch 2 Decimal Value

0 0 0

0 1 1

1 0 2

1 1 3

The Binary Numbering System

A numbering system is a way to count things and perform arithmetic. For example, humans
use the decimal numbering system, and computers use the binary numbering system. Both
these numbering systems do exactly the same thing: they enable us to count things and
perform arithmetic. You can add, subtract, multiply, and divide using the binary numbering
system and you’ll arrive at the same answer as if you used the decimal numbering system.

However, there is a noticeable difference between the decimal and binary numbering
systems: the decimal numbering system consists of 10 digits (0 through 9) and the binary

numbering system consists of 2 digits (0 and 1).

To jog your memory a bit, remember back in elementary school when the teacher showed
you how to “carry over” a value from the right column to the left column when adding two
numbers? If you had 9 in the right column and added 1, you changed the 9 to a 0 and
placed a 1 to the left of the 0 to give you 10:

The same “carry over” technique is used when adding numbers in the binary numbering
system except you carry over when the value in the right column is 1 instead of 9. If you
have 1 in the right column and add 1, you change the 1 to a 0 and place a 1 to the left of
the 0 to give you 10:

Now the confusion begins. Both the decimal number and the binary number seem to have
the same value, which is ten. Don’t believe everything you see. The decimal number does
represent the number 10. However, the binary number 10 isn’t the value 10 but the value 2.

The digits in the binary numbering system represent the state of a switch. A computer
performs arithmetic by using the binary numbering system to change the state of sets of
switches.

Reserving Memory
Although a unit of memory holds a byte, data used in a program can be larger than a byte
and require 2, 4, or 8 bytes to be stored in memory. Before any data can be stored in
memory, you must tell the computer how much space to reserve for data by using an
abstract data type.

An abstract data type is a keyword of a programming language that specifies the amount of
memory needed to store data and the kind of data that will be stored in that memory
location. However, an abstract data type does not tell the computer how many bytes to
reserve for the data. The number of bytes reserved for an abstract data type varies,
depending on the programming language used to write the program and the type of
computer used to compile the program.

Abstract data types in Java have a fixed size in order for programs to run in all Java runtime
environments. In C and C++, the size of an abstract data type is based on the register size
of the computer used to compile the program. The int and float data types are the
size of the register. A short data type is half the size of an int , and a long data type
is double the size of an int .

Think of an abstract data type as the term “case of tomatoes.” You call the warehouse
manager and say that you need to reserve enough shelf space to hold five cases of
tomatoes. The warehouse manager knows how many shelves to reserve because she
knows the size of a case of tomatoes.

The same is true about an abstract data type. You tell the computer to reserve space for
an integer by using the abstract data type int . The computer already knows how much
memory to reserve to store an integer.

The abstract data type also tells the computer the kind of data that will be stored at the
memory location. This is important because computers manipulate data of some abstract
data types differently than data of other abstract data types. This is similar to how the
warehouse manager treats a case of paper plates differently than a case of tomatoes.

Table 1-2 contains a list of abstract data types. The first column contains keywords for
each abstract data type. The second column lists the corresponding number of bits that are
reserved in memory for a Java program. The third column shows the range of values that
can be stored in the abstract data type. And the last column is the group within which the
abstract data type belongs.

Table 1-2: Simple Java Data Types.

Data Type Data Type
Size in Bits Range of Values Group

byte 8 –128 to 127 Integers

short
16 16 –32,768 to 32,767 Integers

int
32 32 –2,147,483,648 to

2,147,483,647 Integers

long
64 64

–
9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

Integers

char
16 (Unicode) 16 (Unicode) 65,536 (Unicode) Characters

float
32 32 3.4e-038 to 3.4e+038 Floating-point

double
64 64 1.7e-308 to 1.7e+308 Floating-point

boolean
1 1 0 or 1 Boolean

You choose the abstract data type that best suits the data that you want stored in memory,
then use the abstract data type in a declaration statement to declare a variable. A variable
is a reference to the memory location that you reserved using the declaration statement
(see Chapter 2).

You should always reserve the proper amount of memory needed to store data because
you might lose data if you reserve too small a space. This is like sending ten cases of
tomatoes to the warehouse when you only reserved space for five cases. If you do this, the
other five cases will get tossed aside.

Abstract Data Type Groups

You determine the amount of memory to reserve by determining the appropriate abstract
data type group to use and then deciding which abstract data type within the group is right
for the data.

There are four data type groups:

Integer Stores whole numbers and signed numbers. Great for storing the number of
dollars in your wallet when you don’t need a decimal value.

Floating-point Stores real numbers (fractional values). Perfect for storing bank
deposits where pennies (fractions of a dollar) can quickly add up to a few dollars.

Character Stores a character. Ideal for storing names of things.

Boolean Stores a true or false value. The correct choice for storing a yes or
no or true or false response to a question.

Integers

The integer abstract data type group consists of four abstract data types used to reserve
memory to store whole numbers: byte , short , int , and long , as described in
Table 1-2.

Depending on the nature of the data, sometimes an integer must be stored using a positive
or negative sign, such as a +10 or –5. Other times an integer is assumed to be positive so
there isn’t any need to use a positive sign. An integer that is stored with a sign is called a
signed number; an integer that isn’t stored with a sign is called an unsigned number.

What’s all this hoopla about signed numbers? The sign takes up 1 bit of memory that could
otherwise be used to represent a value. For example, a byte has 8 bits, all of which can
be used to store an unsigned number from 0 to 255. You can store a signed number in the
range of –128 to +127.

C and C++ support unsigned integers. Java does not. An unsigned integer is a value that is
implied to be positive. The positive sign is not stored in memory. All integers in Java are
represented with a sign. Zero is stored as a positive number.

byte Abstract Data Type

The byte abstract data type is the smallest abstract data type in the integer group and is
declared by using the keyword byte (see Figure 1-2). Programmers typically use a byte
abstract data type when sending data to and receiving data from a file or across a network.
The byte abstract data type is also commonly used when working with binary data that
may not be compatible with other abstract data types. Choose a byte whenever you need
tomove data to and from a file or across a network.

Figure 1-2: A byte abstract data type in Java reserves 8 bits of main memory.

short Abstract Data Type

The short abstract data type is ideal for use in programs that run on 16-bit computers.
However, most of those computers are on the trash heap and have been replaced by 32-bit
and 64-bit computers! (See Figure 1-3.) Therefore, the short is the least used integer

abstract data type. Choose a short if you ever need to store an integer in a program that
runs on a very old computer.

Figure 1-3: A short abstract data type in Java reserves 16 bits of main memory.

int Abstract Data Type

The int abstract data type is the most frequently used abstract data type of the integer
group for a number of reasons (see Figure 1-4). Choose an int :

For control variables in control loops

In array indexes

When performing integer math

Figure 1-4: An int abstract data type in Java reserves 32 bits of main memory.

long Abstract Data Type

A long abstract data type (see Figure 1-5) is used whenever using whole numbers that
are beyond the range of an int data type (refer to Table 1-2). Choose a long when
storing the net worths of Bill Gates, Warren Buffet, and you in a program.

Floating-Point

Abstract data types in the floating-point group are used to store real numbers in memory. A
real number contains a decimal value. There are two kinds of floating point data types:
float and double (as described in Table 1-2). The float abstract data type is a
single precision number, and a double is a double precision number. Precision of a
number is the number of places after the decimal point that contains an accurate value.

Figure 1-5: A long abstract data type in Java reserves 64 bits of main memory.

The term floating-point refers to the way decimals are referenced in memory. There are
two parts of a floating-point number: the real number, which is stored as a whole number,
and the position of the decimal point within the whole number. This is why it is said that the
decimal point “floats” within the number.

For example, the floating-point value 43.23 is stored as 4323 (no decimal point). Reference
ismade in the number indicating that the decimal point is placed after the second digit.

float Abstract Data Type

The float abstract data type (see Figure 1-6) is used for real numbers that require single
precision, such as United States currency. Single precision means the value is precise up
to 7 digits to the right of the decimal. For example, suppose you divide $53.50 evenly
among 17 people. Each person would get $3.147058823529. Digits to the right of
$3.1470588 are not guaranteed to be precise because of the way a float is stored in
memory. Choose a float whenever you need to store a decimal value where only 7 digits
to the right of the decimal must be accurate. double Abstract Data Type The double
abstract data type (see Figure 1-7) is used to store real numbers that are very large or
very small and require double the amount of memory that is reserved with a float
abstract data type. Choose a double whenever you need to store a decimal value where
more than 7 digits to the right of the decimal must be accurate.

Figure 1-6: A float abstract data type in Java reserves 32 bits of main memory.

Figure 1-7: A double abstract data type in Java reserves 64 bits of main memory.

Characters

A character abstract data type (see Figure 1-8) is represented as an integer value that
corresponds to a character set. A character set assigns an integer value to each character,
punctuation, and symbol used in a language.

Figure 1-8: A char abstract data type in Java reserves 16 bits of main memory.

For example, the letter A is stored in memory as the value 65, which corresponds to the
letter A in a character set. The computer knows to treat the value 65 as the letter A rather
than the number 65 because memory was reserved using the char abstract data type.
The keyword char tells the computer that the integer stored in that memory location is
treated as a character and not a number.

There are two character sets used in programming, the American Standard Code for
Information Interchange (ASCII) and Unicode. ASCII is the granddaddy of character sets
and uses a byte to represent a maximum of 256 characters. However, a serious problem
was evident after years of using ASCII. Many languages such as Russian, Arabic,
Japanese, and Chinese have more than 256 characters in their language. A new character
set called Unicode was developed to resolve this problem. Unicode uses 2 bytes to
represent each character. Choose a char whenever you need to store a single character
in memory.

Boolean Abstract Data Type

A boolean abstract data type (see Figure 1-9) reserves memory to store a boolean
value, which is a true or false represented as a zero or one. Choose a boolean
whenever you need to store one of two possibilities in memory.

Figure 1-9: A boolean abstract data type in Java reserves 1 bit of main memory.

Memory Addresses
Imagine main memory as a series of seemingly endless boxes organized into groups of
eight. Each box holds a zero or one. Each group of eight boxes (1 byte) is assigned a
unique number called a memory address, as shown in Figure 1-10. It is very important to
keep this in mind as you learn about data structures; otherwise, you can easily become
confused.

Figure 1-10: The memory address of the first byte is used to reference all bytes
reserved for an abstract data type.

A memory address is indirectly or directly used within a program to access all eight boxes.
For example, say your program tells the computer that you want to copy data stored in
memory location 423—that is, the box whose address is 423. The computer goes to
thatmemory location and copies the data (zero or one) from box 423 and copies data from
the next seven boxes. Those next seven boxes don’t have a memory address. You could
say that those seven boxes share the memory address of box 423.

Real Memory Addresses

Memory addresses are represented so far throughout this chapter as a decimal value, such
as “box 423.” In reality, memory addresses are a 32-bit or 64-bit number, depending on the
computer’s operating system, and are represented as a hexadecimal value.

Hexadecimal is a numbering system similar to the decimal and binary numbering systems.
That is, hexadecimal values are used to count and they are used in arithmetic. The
hexadecimal numbering system has 16 digits from 0 through 9 andAthrough F, which
represents 10 through 15. Here is howmemory address 258,425,506 is represented in
hexadecimal notation 0x0F6742A2.

Abstract Data Types and Memory Addresses

Previously in this chapter you learned that you reservememory for data by using an abstract
data type. Some abstract data types reserve memory in a size that is greater than 1 byte.
For example, the short abstract data type in Java reserves 2 bytes of memory.

Since each byte of memory has its own memory address, you might assume a short has
two memory addresses because it uses 2 bytes of memory. That’s not the case. The

computer uses the memory address of the first byte to reference any abstract data type
that reserves multiple bytes of memory.

Let’s say that space was reserved in memory for a short abstract data type (see Figure
1-10). Two memory locations are reserved, memory addresses 400 and 401. However,
only memory address 400 is used to reference the short . The computer automatically
knows that the value stored in memory address 401 is part of the value stored in memory
address 400 because the space was reserved using an short abstract data type.
Therefore, the computer copies all the bits frommemory address 400 and all the bits
frommemory address 401 whenever a request is made by the program to copy the integer
stored at memory address 400.

Quiz
1. What is an abstract data type?

2. What abstract data type would be used to store a whole number?

3. Explain how a memory address is used to access an abstract data type that is
larger than 1 byte.

4. What is the difference between a float abstract data type and a double
abstract data type?

5. What is precision?

6. Explain how memory is organized within a computer.

7. What is a numbering system?

8. Why is the binary numbering system used in computing?

9. Why don’t you directly specify the number of bytes to reserve in memory to
store data?

10. Explain the impact signed and unsigned numbers have on memory.

Answers

1.
An abstract data type is a keyword of a programming language that specifies the
amount of memory needed to store data and the kind of data that will be stored in that
memory location.

2. An integer: byte, short, int, or long.

3.

Each memory address represents 1 byte of memory. Some abstract data types, such
as an int, reserve 2 bytes of memory. Technically, data stored in this memory
location has two memory address: one address for the first byte of memory and
another address for the second byte of memory. However, the computer references
only the address of the first byte of memory when accessing that memory location.

4.
The double abstract data type is used to store real numbers that are very large or
very small and require double the amount of memory that is reserved with a float
abstract data type.

5. Precision refers the accuracy of the decimal portion of a value.

6.
Memory consists of a series of switches called transistors. Each transistor stores a
binary digit (bit). Transistors are logically organized into groups of 8 switches called a
byte. Each byte is uniquely identified by a memory address.

7.

A numbering system is a logical method used to count and perform arithmetic using
digits to represent items. Each numbering system has a different number of digits. The
decimal numbering systems has 10 digits, from 0 through 9. The binary numbering
systems has 2 digits, 0 and 1. All numbering systems can be used to count and
perform arithmetic, regardless of the number of digits contained in the numbering
system.

8. The binary numbering system is used in computing because it contains 2 digits that can
be stored by changing the state of a transistor. Off represents 0 and On represents 1.

9.
A programmer doesn’t specify the exact number of bytes to reserve in memory
because the computer language determines the most efficient number of bytes to
represent a data type.

10.
The sign takes up 1 bit of memory that could otherwise be used to represent a value.
For example, a byte has 8 bits, all of which can be used to store an unsigned number
from 0 to 255. You can store a signed number in the range of –128 to +127.

Chapter 2: The Point About Variables and Pointers
Some programmers cringe at the mere mention of the word “pointer” because it brings to
mind complex, low-level programming techniques that are confounding. Hogwash. Pointers
are child play, literally. Watch a 15-month-old carefully and you’ll notice that she points to
things she wants, and that’s a pointer in a nutshell. A pointer is a variable that is used to
point to a memory address whose content you want to use in your program. You’ll learn all
about pointer variables in this chapter.

Declaring Variables and Objects
Memory is reserved by using a data type in a declaration statement. The form of a
declaration statement varies depending on the programming language you use. Here is a
declaration statement for C, C++, and Java:
int myVariable;

There are three parts to this declaration statement:

Data type Tells how much memory to reserve and the kind of data that will be
stored in that memory location

Variable name A name used within the program to refer to the contents of that
memory location

Semicolon Tells the computer this is an instruction (statement)

Primitive Data Types and User-Defined Data Types

In Chapter 1, you were introduced to the concept of abstract data types, which are used to
reserve computer memory. Abstract data types are divided into two categories, primitive
data types and user-defined data types. A primitive data type is defined by the
programming language, such as the data types you learned about in the previous chapter.
Some programmers call these built-in data types.

The other category of abstract data type, a user-defined data type, is a group of primitive
data types defined by the programmer. For example, let’s say you want to store students’
grades in memory. You’ll need to store 4 data elements: the student’s ID, first name, last
name, and grade. You could use primitive data types for each data element, but primitive
data types are not grouped together; each exists as separate data elements.

A better approach is to group primitive data types into a user-defined data type to form a
record. You probably heard the term “record” used when you learned about databases.
Remember that a database consists of one or more tables. A table is similar to a
spreadsheet consisting of columns and rows. A row is also known as a record. A user-
defined data type defines columns (primitive data types) that comprise a row (a user-
defined data type).

The form used to define a user-defined data type varies depending on the programming
language used to write the program. Some programming languages, such as Java, do not
support user-defined data types. Instead, attributes of a class are used to group together
primitive data types; this is discussed later in this chapter.

In the C and C++ programming languages, you define a user-defined data type by defining
a structure. Think of a structure as a stencil of the letter A. The stencil isn’t the letter A, but

	Data Structures Demystified James Keogh & Ken Davidson McGraw-Hill/Osborne New York €€Chicago €€San Francisco €€Lisbon €€LondonMadrid €€Mexico City €€Milan €€New Delhi €€San JuanSeoul €€Singapore €€Sydney €€Toronto McGraw-Hill/Osborne2100 Powell Street, 10th FloorEmeryville, California €94608U.S.A. To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact McGraw-Hill/Osborne at the above address. For information on translations or book distributors outside the U.S.A., please see the International Contact Information page immediately following the index of this book. Data Structures Demystified Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with the e
	Introduction This book is for everyone who wants to learn basic data structures using C++ and Java without taking a formal course. It also serves as a supplemental classroom text. For the best results, start at the beginning and go straight through. If you are confident about your basic knowledge of how computer memory is allocated and addressed, then skip the first two chapters, but take the quiz at the end of those chapters to see if you are actually ready to jump into data structures. If you get 90 percent of the answers correct, you’re ready. If you get 75 to 89 percent correct, skim through the text of Chapters 1 and 2. If you get less than 75 percent of the answers correct, then find a quiet place and begin reading Chapters 1 and 2. Doing so will get you in shape to tackle the rest of the chapters on data structures. In order to learn data structures, you must have some computer programming skills—computer programming is the language used to create data structures. But don’t be i
	Chapter 1: Memory, Abstract Data Types, and Addresses What is the maximum number of tries you’d need to find your name in a list of a million names? A million? No, not even close. The answer is 20—if you structure the list to make it easy to search and if you search the structure with an efficient searching technique. Searching lists is one of the many ways data structures help you manipulate data that is stored in your computer’s memory. However, before you can understand how to use data structures, you need to have a firm grip on how computer memory works. In this chapter, you’ll explore what computer memory is and why only zeros and ones are stored in memory. You’ll also learn what a Java data type is and how to select the best Java data type to reserve memory for data used by your program. A Tour of Memory Computer memory is divided into three sections: main memory, cache memory in the central processing unit �⠀䌀倀唀), and persistent storage. Main memory, also called random access mem
	Chapter 1: Memory, Abstract Data Types, and Addresses
	Data and Memory Data used by your program is stored in memory and manipulated by various data structure techniques, depending on the nature of your program. Let’s take a close look at main memory and how data is stored in memory before exploring how to manipulate data using data structures. Memory is a bunch of electronic switches called transistors that can be placed in one of two states: on or off. The state of a switch is meaningless unless you assign a value to each state, which you do using the binary numbering system. The binary numbering system consists of two digits called binary digits �⠀戀椀琀猀): zero and one. A switch in the off state represents zero, and a switch in the on state represents one. This means that one transistor can represent one of two digits. However, two digits don’t provide you with sufficient data to do anything but store the number zero or one in memory. You can store more data in memory by logically grouping together switches. For example, two switches enabl
	Reserving Memory Although a unit of memory holds a byte, data used in a program can be larger than a byte and require 2, 4, or 8 bytes to be stored in memory. Before any data can be stored in memory, you must tell the computer how much space to reserve for data by using an abstract data type. An abstract data type is a keyword of a programming language that specifies the amount of memory needed to store data and the kind of data that will be stored in that memory location. However, an abstract data type does not tell the computer how many bytes to reserve for the data. The number of bytes reserved for an abstract data type varies, depending on the programming language used to write the program and the type of computer used to compile the program. Abstract data types in Java have a fixed size in order for programs to run in all Java runtime environments. In C and C++, the size of an abstract data type is based on the register size of the computer used to compile the program. The int and
	Memory Addresses Imagine main memory as a series of seemingly endless boxes organized into groups of eight. Each box holds a zero or one. Each group of eight boxes �⠀ 戀礀琀攀) is assigned a unique number called a memory address, as shown in Figure 1-10. It is very important to keep this in mind as you learn about data structures; otherwise, you can easily become confused. Figure 1-10: The memory address of the first byte is used to reference all bytes reserved for an abstract data type. A memory address is indirectly or directly used within a program to access all eight boxes. For example, say your program tells the computer that you want to copy data stored in memory location 423—that is, the box whose address is 423. The computer goes to thatmemory location and copies the data �⠀稀攀爀漀 漀爀 漀渀攀) from box 423 and copies data from the next seven boxes. Those next seven boxes don’t have a memory address. You could say that those seven boxes share the memory address of box 423. Real Memory Addre
	Quiz 1. What is an abstract data type? 2. What abstract data type would be used to store a whole number? 3. Explain how a memory address is used to access an abstract data type that is larger than 1 byte. 4. What is the difference between a float abstract data type and a double abstract data type? 5. What is precision? 6. Explain how memory is organized within a computer. 7. What is a numbering system? 8. Why is the binary numbering system used in computing? 9. Why don’t you directly specify the number of bytes to reserve in memory to store data? 10. Explain the impact signed and unsigned numbers have on memory. Answers 1. An abstract data type is a keyword of a programming language that specifies the amount of memory needed to store data and the kind of data that will be stored in that memory location. 2. An integer: byte, short, int, or long. 3. Each memory address represents 1 byte of memory. Some abstract data types, such as an int, reserve 2 bytes of memory. Technical
	Chapter 2: The Point About Variables and Pointers Some programmers cringe at the mere mention of the word “pointer” because it brings to mind complex, low-level programming techniques that are confounding. Hogwash. Pointers are child play, literally. Watch a 15-month-old carefully and you’ll notice that she points to things she wants, and that’s a pointer in a nutshell. A pointer is a variable that is used to point to a memory address whose content you want to use in your program. You’ll learn all about pointer variables in this chapter. Declaring Variables and Objects Memory is reserved by using a data type in a declaration statement. The form of a declaration statement varies depending on the programming language you use. Here is a declaration statement for C, C++, and Java: int myVariable; There are three parts to this declaration statement: Data type Tells how much memory to reserve and the kind of data that will be stored in that memory location Variable name A name used within th
	Chapter 2: The Point About Variables and Pointers

