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Preface to the Second Edition

In the nine years since the publication of the first edition, we have received
feedback on the text from a number of users, both teachers and students. Most
have been complimentary about the clarity of our exposition, some have pointed
out errors of detail or historical accuracy and others have suggested ways in which
the text could be improved. In this edition we have attempted to retain the style
of exposition, correct the (known) errors and implement various improvements
suggested by users.

When writing the first edition, we took a conscious decision not to root the
mathematical development in a particular method or language that was current
within the formal methods community. Our priority was to give a thorough
treatment of the mathematics as we felt this was likely to be more stable over
time than particular methodologies. In a discipline like computing which evolves
rapidly and where the future direction is uncertain, a secure grounding in theory
is important. We have continued with this philosophy in the second edition.
Thus, for example, Z made no appearance in the first edition, and the object
constraint language (OCL) or the B method make no appearance in this edition.
Although the discipline of computing has indeed changed considerably since
the publication of the first edition, the core mathematical requirements of the
undergraduate curricula have remained surprisingly constant. For example, in
the UK, the computing benchmark for undergraduate courses, published by the
Quality Assurance Agency for Higher Education (QAA) in April 2000, requires
undergraduate programmes to present ‘coherent underpinning theory’. In the
USA, the joint ACM/IEEE Computer Society Curriculum 2001 project lists
‘Discrete Structures’ (sets, functions, relations, logic, proof, counting, graphs
and trees) as one of the 14 knowledge areas in the computing curriculum ‘to
emphasize the dependency of computing on discrete mathematics’.
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Pretace to the Second Edition

In this edition we have included a new section on typed set theory and
subsequently we show how relations and functions fit into the typed world. We
have also introduced a specification approach to mathematical operations, via
signatures, preconditions and postconditions. Computing undergraduates will be
familiar with types from the software design and implementation parts of their
course and we hope our use of types will help tie together the mathematical
underpinnings more closely with software development practice. For the
mathematicians using the text, this work has a payoff in providing a framework
in which Russell’s paradox can be avoided, for example.

The principal shortcoming reported by users of the first edition was the inclusion
of relatively few exercises at a routine level to develop and reinforce the
mathematical concepts introduced in the text. In the second edition, we have
added many new exercises (and solutions) which we hope will enhance the
usefulness of the text to teachers and students alike. Also included are a number
of new examples designed to reinforce the concepts introduced.

We wish to acknowledge, with thanks, our colleagues who have commented
on and thus improved various drafts of additional material included in the
second edition. In particular, we thank Paul Courtney, Gerald Gallacher, John
Howse, Brian Spencer and our reviewers for their knowledgeable and thoughtful
comments. We would also like to thank those—most notably Peter Kirkegaard—
who spotted errors in the first edition or made suggestions for improving the text.
Nevertheless, any remaining shortcomings are ours and we have no one to blame
for them but each other.

RG and JT
April 2001



Preface to the First Edition

This book aims to present in an accessible yet rigorous way the core mathematics
requirement for undergraduate computer science students at British universities
and polytechnics. Selections from the material could also form a one- or two-
semester course at freshman—sophomore level at American colleges. The formal
mathematical prerequisites are covered by the GCSE in the UK and by high-school
algebra in the USA. However, the latter part of the text requires a certain level of
mathematical sophistication which, we hope, will be developed during the reading
of the book.

Over 30 years ago the discipline of computer science hardly existed, except as
a subdiscipline of mathematics. Computers were seen, to a large extent, as
the mathematician’s tool. As a result, the machines spent a large proportion of
their time cranking through approximate numerical solutions to algebraic and
differential equations and the mathematics ‘appropriate’ for the computer scientist
was the theory of equations, calculus, numerical analysis and the like.

Since that time computer science has become a discipline in its own right and has
spawned its own subdisciplines. The nature and sophistication of both hardware
and software has changed dramatically over the same time period. Perhaps less
public, but no less dramatic, has been the parallel development of undergraduate
computer science curricula and the mathematics which underpins it. Indeed, the
whole relationship between mathematics and computer science has changed so
that mathematics is now seen more as the servant of computer science than vice
versa as was the case formerly.

Various communities and study groups on both sides of the Atlantic have studied
and reported upon the core mathematics requirements for computer scientists

educated and trained at various levels. The early emphasis on continuous
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mathematics in general, and numerical methods in particular, has disappeared.
There is now wide agreement that the essential mathematics required for computer
scientists comes from the area of ‘discrete mathematics’. There is, however, less
agreement concerning the detailed content and emphasis of a core mathematics
course.

Discrete mathematics encompasses a very wide range of mathematical topics and
we have necessarily been selective in our choice of material. Our starting point
was a report of the M2 Study Group of the 1986 Undergraduate Mathematics
Teaching Conference held at the University of Nottingham. Their report,
published in 1987, suggested an outline syllabus for a first-year mathematics
course for computer science undergraduates. All the topic areas (with the
exception of probability theory) suggested in the outline are covered in this text.
We have also been influenced in our selection of material by various courses at
the freshman—sophomore level offered by institutions in the USA.

Ultimately the selection, presentation and emphasis of the material in this book
was based on our own judgements. We have attempted to include the essential
mathematical material required by undergraduate computer scientists in a first
course. However, one of our key aims is to develop in students the rigorous
logical thinking which, we believe, is essential if computer science graduates are
to adapt to the demands of their rapidly developing discipline. Our approach is
informal. We have attempted to keep prerequisites to an absolute minimum and
to maintain a level of discussion within the reach of the student. In the process,
we have not sacrificed the mathematical rigour which we believe to be important
if mathematics is to be used in a meaningful way.

Our priority has been to give a sound and thorough treatment of the mathematics.
We also felt that it was important to place the theory in context by including
a selection of the more salient applications. It is our belief that mathematical
applications can be readily assimilated only when a firm mathematical foundation
has been laid. Too frequently, students are exposed to concepts requiring
mathematical background before the background has been adequately provided.
We hope this text will provide such a foundation.

In order to keep the book within manageable proportions and still provide some
applications, we have been forced to omit certain topics such as finite state
machines and formal languages. Although such topics are relevant to computer
scientists and others, we felt that they were not central to the mathematical core
of the text. We believe that the book will provide a sound background for readers
who wish to explore these and other areas.

As our writing of the text progressed and its content was discussed with
colleagues, we became increasingly conscious that we were presenting material
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which lies at the very foundation of mathematics itself. It seems likely that
discrete mathematics will become an increasingly important part of mathematics
curricula at all levels in the coming years. Given our emphasis on a sound and
thorough development of mathematical concepts, this text would be appropriate
for undergraduate mathematicians following a course in discrete mathematics.
The first half of the book could also be recommended reading for the aspiring
mathematics undergraduate in the summer before he or she enters university.

The approximate interdependence of the various parts of the text are shown in
the diagram below. There are various sections which are concerned largely with
applications (or further development) of the theory and which may be omitted
without jeopardizing the understanding of later material. The most notable of
these are §§4.7,5.5,5.6 and 8.7.

Lhepazt]
Levic

3

Cleple: 2
Marazmarzzlsneet
][ Lol

! Surs
Chepuera v
Mol -
algeha i
H Ml nims w o Chaptar 1,847
T Rolzt i,
Chepres? ¥ cahies
apslems et } -
liowcz Chepter R 355 - < i
Ty cdliry Fionione - Lnaper SoE A0

Dopsativrg, dopepdeney

1’—‘—_! . Sormel for e
.r. ¥

-y —

1 baphers
Apchror | T hapes r B RE
EHa B | L Caapler Cind iy

T l: .rl'."li"" -I'\'.' (II':.'

L
Lhapers ¥
[ a1
‘I‘I“'J"Lh"’x IRER TR
i H -

i Apol gtz of
wraph [heomy

Table o interdependence

We wish to acknowledge with thanks our families, friends and colleagues for
their encouragement. In particular we would like to thank Dr Paul Milican, Paul
Douglas and Alice Tomi¢ for their advice and comments on various parts of the
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manuscript. Our reviewers provided many helpful comments and suggestions for
which we are grateful. If the text contains any errors or stylistic misjudgements,
we can only blame each other. The technical services staff at Richmond College
and Jim Revill and Al Troyano at IOP Publishing also deserve our thanks for their
patience with us during the development of this text. Last, but not least, we wish
to thank Pam Taylor for providing (at short notice) the ideas and sketches for the
cartoons.

RG and JT
July 1990
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Chapter 1

Logic

Logic is used to establish the validity of arguments. It is not so much concerned
with what the argument is about but more with providing rules so that the general
form of the argument can be judged as sound or unsound. The rules which logic
provides allow us to assess whether the conclusion drawn from stated premises
is consistent with those premises or whether there is some faulty step in the
deductive process which claims to support the validity of the conclusion.

1.1 Propositions and Truth Values

A proposition is a declarative statement which is either true or false, but not both
simultaneously. (Propositions are sometimes called ‘statements’.) Examples of
propositions are:

1. This rose is white.

2. Triangles have four vertices.
3. 342=4.

4. 6 < 24.

5.

Tomorrow is my birthday.

Note that the same proposition may sometimes be true and sometimes false
depending on where and when it was stated and by whom. Whilst proposition 5 is
true when stated by anyone whose birthday is tomorrow, it is false when stated by
anyone else. Further, if anyone for whom it is a true statement today states it on
any other day, it will then be false. Similarly, the truth or falsity of proposition 1
depends on the context in which the proposition was stated.



2 Logic

Exclamations, questions and demands are not propositions since they cannot be
declared true or false. Thus the following are not propositions:

Keep off the grass.

Long live the Queen!

Did you go to Jane’s party?
Don’t say that.

Y

The truth (T) or falsity (F) of a proposition is called truth value. Proposition 4
has a truth value of true (T) and propositions 2 and 3 have truth values of false (F).
The truth values of propositions 1 and 5 depend on the circumstances in which the
statement was uttered. Sentences 6—9 are not propositions and therefore cannot
be assigned truth values.

Propositions are conventionally symbolized using the letters p, g, r,.... Any
of these may be used to symbolize specific propositions, e.g. p: Manchester is
in Scotland, g: Mammoths are extinct. We also use these letters to stand for
arbitrary propositions, i.e. as variables for which any particular proposition may
be substituted.

1.2 Logical Connectives and Truth Tables

The propositions 1-5 considered in §1.1 are simple propositions since they make
only a single statement. In this section we look at how simple propositions
can be combined to form more complicated propositions called compound
propositions. The devices which are used to link pairs of propositions are
called logical connectives and the truth value of any compound proposition
is completely determined by (a) the truth values of its component simple
propositions, and (b) the particular connective, or connectives, used to link them.

Before we look at the most commonly used connectives we first look at an
operation which can be performed on a single proposition. This operation is called
negation and it has the effect of reversing the truth value of the proposition. We
state the negation of a proposition by prefixing it by ‘It is not the case that. ...
This is not the only way of negating a proposition but what is important is that the
negation is false in all circumstances that the proposition is true, and true in all
circumstances that the proposition is false.

We can summarize this in a table. If p symbolizes a proposition p (or ~p or —p
or —p) symbolizes the negation of p. The following table shows the relationship
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4 Logic

between the truth values of p and those of p.

p

T
F

— |

The left-hand column gives all possible truth values for p and the right-hand
column gives the corresponding truth values of p, the negation of p. A table
which summarizes truth values of propositions in this way is called a truth table.

There are several alternative ways of stating the negation of a proposition. If we
consider the proposition ‘All dogs are fierce’, some examples of its negation are:

It is not the case that all dogs are fierce.
Not all dogs are fierce.
Some dogs are not fierce.

Note that the proposition ‘No dogs are fierce’ is not the negation of ‘All dogs are
fierce’. Remember that to be the negation, the second statement must be false in
all circumstances that the first is true and vice versa. This is clearly not the case
since ‘All dogs are fierce’ is false if just one dog is not fierce. However, ‘No dogs
are fierce’ is not true in this case. (See §1.8.)

Whilst negation is an operation which involves only a single proposition, logical
connectives are used to link pairs of propositions. We shall consider five
commonly used logical connectives: conjunction, inclusive disjunction, exclusive
disjunction, the conditional and biconditional.

Conjunction

Two simple propositions can be combined by using the word ‘and’ between
them. The resulting compound proposition is called the conjunction of its two
component simple propositions. If p and g are two propositions p A g (or p.q)
symbolizes the conjunction of p and g. For example:

p : The sun is shining.
q : Pigs eat turnips.
p A q : The sun is shining and pigs eat turnips.

The following truth table gives the truth values of p A g (read as ‘p and ¢’) for
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each possible pair of truth values of p and ¢.

plqg|PNg
T|T T
T|F F
F|T F
F|F F

From the table it can be seen that the conjunction p A g is true only when both p
and ¢q are true. Otherwise the conjunction is false.

Linking two propositions using ‘and’ is not the only way of forming a
conjunction. The following are also conjunctions of p and g even though they
have nuances which are slightly different from when the two propositions are
joined using ‘and’.

The sun shines but pigs eat turnips.
Although the sun shines, pigs eat turnips.
The sun shines whereas pigs eat turnips.

All give the sense that they are true only when each simple component is true.
Otherwise they would be judged as false.

Disjunction

The word ‘or’ can be used to link two simple propositions. The compound
proposition so formed is called the disjunction of its two component simple
propositions. In logic we distinguish two different types of disjunction, the
inclusive and exclusive forms. The word ‘or’ in natural language is ambiguous in
conveying which type of disjunction we mean. We return to this point after we
have considered the two forms.

Given the two propositions p and g, pV¢q symbolizes the inclusive disjunction of
p and g. This compound proposition is true when either or both of its components
are true and is false otherwise. Thus the truth table for p Vv ¢ is given by:

pPlqg|prVyg
T|T T
T|F T
F|T T
F|F F




6 Logic

The exclusive disjunction of p and ¢ is symbolized by p ¥ ¢. This compound
proposition is true when exactly one (i.e. one or other, but not both) of its
components is true. The truth table for p Y ¢ is given by:

1<

pP=q

oo Be s I B B S
m T 3R
m 4 4™

When two simple propositions are combined using ‘or’, context will often provide
the clue as to whether the inclusive or exclusive sense is intended. For instance,
“Tomorrow I will go swimming or play golf’ seems to suggest that I will not
do both and therefore points to an exclusive interpretation. On the other hand,
‘Applicants for this post must be over 25 or have at least 3 years relevant
experience’ suggests that applicants who satisfy both criteria will be considered,
and that ‘or’ should therefore be interpreted inclusively.

Where context does not resolve the ambiguity surrounding the word ‘or’, the
intended sense can be made clear by affixing ‘or both’ to indicate an inclusive
reading, or by affixing ‘but not both’ to make clear the exclusive sense. Where
there is no clue as to which interpretation is intended and context does not make
this clear, then ‘or’ is conventionally taken in its inclusive sense.

Conditional Propositions

The conditional connective (sometimes called implication) is symbolized by —
(or by D). The linguistic expression of a conditional proposition is normally
accepted as utilizing ‘if ...then ...’ as in the following example:

p : L eat breakfast.
q : I don’t eat lunch.
p — q : If I eat breakfast then I don’t eat lunch.

Alternative expressions for p — ¢ in this example are:

I eat breakfast only if I don’t eat lunch.
Whenever I eat breakfast, I don’t eat lunch.
That I eat breakfast implies that I don’t eat lunch.
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The following is the truth table for p — ¢:

plq|p—>49g
T|T T
T|F F
F|T T
F|F T

Notice that the proposition ‘if p then g’ is false only when p is true and ¢ is
false, i.e. a true statement cannot imply a false one. If p is false, the compound
proposition is true no matter what the truth value of g. To clarify this, consider
the proposition: ‘If I pass my exams then I will get drunk’. This statement says
nothing about what I will do if I don’t pass my exams. I may get drunk or I may
not, but in either case you could not accuse me of having made a false statement.
The only circumstances in which I could be accused of uttering a falsehood is if I
pass my exams and don’t get drunk.

In the conditional proposition p — ¢, the proposition p is sometimes called the
antecedent and g the consequent. The proposition p is said to be a sufficient
condition for ¢ and g a necessary condition for p.

Biconditional Propositions

The biconditional connective is symbolized by <>, and expressed by ‘if and only
if ... then ...’ . Using the previous example:
p : I eat breakfast.
q : Idon’t eat lunch.
p <> q : leat breakfast if and only if I don’t eat lunch (or alternatively, ‘If and
only if I eat breakfast, then I don’t eat lunch’).

The truth table for p <> g is given by:

pla|p<q
T|T| T
T|F| F
F|T| F
F|F| T

Note that for p <> g to be true, p and ¢ must both have the same truth values, i.e.
both must be true or both must be false.
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Examples 1.1

1. Consider the following propositions:
p : Mathematicians are generous.
q : Spiders hate algebra.
Write the compound propositions symbolized by:
®»  pvg
(i) (@APp)
(i) p—q
iv) p<gq.
Solution
(1) Mathematicians are generous or spiders don’t hate algebra (or both).
(ii) It is not the case that spiders hate algebra and mathematicians are
generous.
(iii)  If mathematicians are not generous then spiders hate algebra.
@iv) Mathematicians are not generous if and only if spiders don’t hate algebra.

(As we have seen, these are not unique solutions and there are acceptable
alternatives.)

2. Let p be the proposition ‘Today is Monday’ and ¢ be ‘I’ll go to London’.
Write the following propositions symbolically.
(i)  If today is Monday then I won’t go to London.
(ii)) Today is Monday or I’'ll go to London, but not both.
@iii) I’ll go to London and today is not Monday.
(iv)  If and only if today is not Monday then I'll go to London.
Solution
& p—q
i) pY¥g
(i) gnA
)  peq.
3. Construct truth tables for the following compound propositions.
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) pA
(i) g—p
) pog
Solution
) ——
plq|p|pPVa
T|T|F T
T|F|F F
F|T|T T
F|F|T T
Note that the truth table is built up in stages. The first two columns give
the usual combinations of possible truth values of p and ¢. The third
column gives, for each truth value of p, the truth value of p. When p
is true, p is false and vice versa. The last column combines the truth
values in columns 3 and 2 using the inclusive disjunction connective.
The compound proposition p V ¢ is true when at least one of its two
components is true. This is the case in row 1 (where ¢ is true), row 3 (p
and ¢ are both true) and row 4 (p is true). In the second row, p and g are
both false and hence p V ¢ is false.
(ii)
pla|pla|png
T|T|F|F F
T|F|F|T F
F|T|T|F F
F|F|T|T T

Here we first obtain truth values for p and g by reversing the
corresponding truth values of p and g respectively. Now p A g is only
true when both p and g are true, i.e. in row 4. In all other cases p A g is
false.

(iii)

Plg9|qg|q—>rP
T|T|F T
T|F|T| T
F|T|F T
F|F|T F




10

Logic
(@iv)
Pig9|P|q9|P<q
T|T|F|F T
T|IF|F|T F
F|T|T|F F
FIF|T|T T

We can construct truth tables for compound propositions involving more than two
simple propositions as in the following example.

Construct truth tables for:

@H  p—>(@Anr)
(i) (pvg <r.

Solution

@

(ii)

~

p— (gAr)

~
(S

ey Biev e o I B s e s e s B B I

e e e B R R R S
e I I T T R T RN
I R T IR
=4 = =477

The first three columns list all possible combinations of truth values for
p, g and r. Since each proposition can take two truth values there are
23 = 8 possible combinations of truth values for the three propositions.
Column 4 gives truth values of ¢ A r by comparing the truth values
of ¢ and r individually in columns 2 and 3. Considering the pairs of
truth values in columns 1 and 4 gives the truth values for p — (g A 7).
Remember that this compound proposition is false only when p is true
and g A r is false, i.e. in rows 2, 3 and 4.

Again we build up the truth table column by column to obtain the
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following:
plg|r|p|r|pVvg|(pVg T
T|{T|T|F|F T F
T|IT|F|F|T T T
T|F|T|F|F F T
T|F|F|F|T F F
F|T|T|T|F T F
F|T|F|T|T T T
F|F|T|T|F T F
FIF|F|T|T T T
Exercises 1.1
1. Consider the propositions:

p : Max is sulking.
q : Today is my birthday.

Write in words the compound propositions given by:

®  pnrg
(i) pvg
(i) p—q
iv) g < p.
2. Consider the propositions:

p : Mary laughs.
q : Sally cries.
r : Jo shouts.

Write in words the following compound propositions:

i p—>(@Yr)

(i) (Ag)<p

(i) (p—=> @A —>q)
@iv) pvi(gvr)

(v) (pVvr)<q.
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If p, g and r denote the following propositions:

p : Bats are blind
q : Gnats eat grass

r : Ants have long teeth

express the following compound propositions symbolically.

@
(ii)

(iii)
(iv)

If bats are blind then gnats don’t eat grass.

If and only if bats are blind or gnats eat grass then ants don’t have
long teeth.

Ants don’t have long teeth and, if bats are blind, then gnats don’t
eat grass.

Bats are blind or gnats eat grass and, if gnats don’t eat grass, then
ants don’t have long teeth.

Draw a truth table and determine for what truth values of p and ¢ the
proposition p V q is false.

Draw the truth table for the propositions:

()
(i)
(iii)
@iv)
™)
(vi)

P—>4q

gnAp

(pvag)—> (prg)
(r—q9 Yq

P (pPAg)
(PA@)Y(pV.

Consider the two propositions:

p : John is rich.
q : John is dishonest.

Under what circumstances is the compound proposition ‘If John is honest
then he is not rich’ false?

Given the three propositions p, g and r, construct truth tables for:

@)
(i)
(iii)
@iv)
™)

(pAng)—>r
(pYryng
pA(GVT)
p—>(q@Vr)
(pVq) < (rvp).
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1.3 Tautologies and Contradictions

There are certain compound propositions which have the surprising property that
they are always true no matter what the truth value of their simple components.
Similarly, there are others which are always false regardless of the truth values of
their components. In both cases, this property is a consequence of the structure of
the compound proposition.

Definition 1.1

A tautology is a compound proposition which is true no matter what the
truth values of its simple components.

A contradiction is a compound proposition which is false no matter what
the truth values of its simple components.

We shall denote a tautology by ¢ and a contradiction by f.

Examples 1.2

1. Show that p Vv p is a tautology.

Solution

Constructing the truth table for p Vv p, we have:

plp|pPVD
T|F
F|T| T

Note that p Vv p is always true (no matter what proposition is substituted
for p) and is therefore a tautology.

2. Show that (p A q) V (p A q) is a tautology.
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Solution

The truth table for (p A g) V (p A q) is given below.

pla|prg|pPAqg|(prgV(pPAQ)
T|T| T F T
T|F| F T T
F|T| F T T
F|F| F T T

The last column of the truth table contains only the truth value T and hence we
can deduce that (p A g) V (p A g) is a tautology.

Note that, in the last example, we could have appealed to the result obtained in
the first one where we showed that the inclusive disjunction of any proposition
and its negation is a tautology. In example 1.2.2 we have a proposition p A g
and its negation (p A g). Hence, by the previous result, the inclusive disjunction
(p A q)V (p Aq)is atautology.

The proposition (p A q) V (p A q) is said to be a substitution instance of the
proposition p vV p. The former proposition is obtained from the latter simply
by substituting p A g for p throughout. Clearly any substitution instance of a
tautology is itself a tautology so that one way of establishing that a proposition
is a tautology is to show that it is a substitution instance of another proposition
which is known to be a tautology.

Example 1.3

Show that (p A g) A (p V gq) is a contradiction.

Solution
pla|lqa|prg|p|pVag|(pADADPYVY)
T|T|F F F T F
T|F|T T F F F
F|T|F F T T F
F|F|T F T T F
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The last column shows that (p A g) A (p V q) is always false, no matter what the
truth values of p and g. Hence (p A g) A (p V q) is a contradiction.

Just as any substitution instance of a tautology is also a tautology, so any
substitution instance of a contradiction is also a contradiction. For instance, using
a truth table, we can show that p A p is a contradiction. Since (p — ¢)A (P — q)
is a substitution instance of p A p, we can deduce that this compound proposition
is also a contradiction.

Exercises 1.2

Determine whether each of the following is a tautology, a contradiction or neither:

L. p—>(pVyq)

2. (p—=a NPV

3. (pVvaq)<(@qVp

4. (png)—>p

5. (A AN(PVQ)

6. (p—q9)— (pAg)

7. (PAg)AN(pV Q)

8. (p—=>q VT —p)

9. [p—> @AnN]l<(p—> g A(p—r)

10. [(pvg)—=>71Y(pVQ.

1.4 Logical Equivalence and Logical Implication

Two propositions are said to be logically equivalent if they have identical truth
values for every set of truth values of their components. Using P and Q to denote
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(possibly) compound propositions, we write P = Q if P and Q are logically
equivalent. As with tautologies and contradictions, logical equivalence is a
consequence of the structures of P and Q.

Example 1.4
Show that p v g and p A g are logically equivalent, i.e. that (p vV q) = (p A ¢).
Solution

We draw up the truth table for p Vv g and also for p A ¢q.

pla|pP|q|PVqg|PAG|PAG
T|T|F|F| F T F
T|F|F|T| T F T
F|[T|T|F| T F T
F|F|T|T| T F T

Comparing the columns for p Vv g and for p A g we note that the truth values are
the same. Each is true except in the case where p and ¢ are both true. Hence
pV q and p A g are logically equivalent propositions.

Note that if two compound propositions are logically equivalent, then the
compound proposition formed by joining them using the biconditional connective
must be a tautology, i.e. if P = Q then P < ( is a tautology. This is so because
two logically equivalent propositions are either both true or both false. In either
of these cases the biconditional is true.

The converse is also the case, i.e. if P <> Q is a tautology, then P = Q. This
follows from the fact that the biconditional P <> Q is only true when P and Q
both have the same truth values.

In example 1.4, we showed that p v g and p A ¢ are logically equivalent by
constructing their truth tables and comparing truth values. An alternative method
would have been to show that (p vV q) <> (p A ¢q) is a tautology and to deduce
from this the logical equivalence of p vV g and p A q.

Example 1.5

Show that the following two propositions are logically equivalent.
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@) If it rains tomorrow then, if I get paid, I’ll go to Paris.
(ii) If it rains tomorrow and I get paid then I’ll go to Paris.
Solution

Define the following simple propositions:

p : It rains tomorrow.
q : 1 get paid.
r : I'll go to Paris.

We are required to show the logical equivalence of p — (¢ — r) and (p Ag) —
r. We can do this in one of two ways:

(a) establish that p — (¢ — r) and (p A g) — r have the same truth values,
or
(b) establish that [p — (¢ — r)] < [(p A g) — r] is a tautology.

Using the first method we complete the truth table for p — (g — r) and (p A
q) —>r.

plag|r|q—r|p—=>@—=>r)|pAq|(pAqg) —T
T|T|T| T T T T
T|T|F| F F T F
T|E|T| T T F T
T|EF|F| T T F T
F|T|T| T T F T
F|T|F| F T F T
F|F|T| T T F T
F|F|F| T T F T

Since the truth values of p — (¢ — r) and (p A q) — r are the same for each
set of truth values of p, ¢ and r, we can deduce the logical equivalences of these
compound propositions. Completing one further column of the truth table for
[p = (g = r)] < [(p A q) — r] would show this to be a tautology and would
establish the logical equivalence of the two propositions by the second method.

Another structure-dependent relation which may exist between two propositions
is that of logical implication. A proposition P is said to logically imply a
proposition Q if, whenever P is true, then Q is also true.
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Note that the converse does not apply, i.e. Q may also be true when P is false.
For logical implication all we insist on is that Q is never false when P is true. We
shall symbolize logical implication by I~ so that ‘ P logically implies Q’ is written
P+ Q.

Example 1.6
Show thatg F (p V q).
Solution

We must show that, whenever ¢ is true, then p V g is true. Constructing the truth
table gives:

pla|prVvq
T|T| T
T|F| T
FIT| T
F|F| F

From a comparison of the second and third columns we note that, whenever g is
true (first and third rows), p Vv ¢ is also true. Note that p V g is also true when
q is false (second row) but this has no relevance in establishing that ¢ logically
implies p V q.

We showed that ‘P = Q’ and ‘P <> Q is a tautology’ mean exactly the same. A
similar line of argument can be used to establish that ‘P -+ Q’ and ‘P — Qisa
tautology’ are identical statements. If we have P = Q then Q is never false when
P is true. Since this is the only situation where P — Q would be false then we
must have P — Q is a tautology. Conversely, if P — ( is a tautology then the
truth of P guarantees the truth of Q and hence we have P F Q.

Example 1.7
Show that (p < g) A g logically implies p.
Solution

As with example 1.5 we can show that [(p <> ¢) A g] F p in one of two ways.
We can either show that p is always true when (p <> g) A g is true or we can
show that [(p <> g) A g] — p is a tautology.
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The truth table for (p <> g) A g is given by:

Pla|lpreqg|(peqgng
T|T T T
T|F F F
F|T F F
F|F T F

Comparing the fourth column with the first, we see that p is true whenever
(p < q) A q is true (first row only). Therefore [(p <> g) A q] F p.

Alternatively, we could complete a further column of of the truth table for
[(p < g) A q] — p and show this to be a tautology.

Exercises 1.3

1.

2.

Prove that (p — ¢q) = (p V q).

Prove that (p A g) and (p — §) are logically equivalent propositions.
Prove that (p Y ¢) = (p Y ).

Prove that p logically implies (¢ — p).

Prove that (g — p) + (p — ¢q).

Prove the following logical implications:

@ (Prgtgq

i (pAgtp

(iii) [(p—>¢qg)Aplkgq

iv) [(p—=a)A@pVvrIk(gvr)
V) pkE@—p

vi) [(pvg)AnglE p.

Prove that the exclusive disjunction of p and ¢ is logically equivalent to
the negation of the biconditional proposition p < q.

Show that the biconditional proposition p <> ¢ is logically equivalent to
the conjunction of the two conditional propositions p — ¢g and ¢ — p.
(Thus, in the biconditional p <> ¢, proposition p is a necessary and
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sufficient condition for ¢ and g is a necessary and sufficient condition for
P

Establish the following logical equivalences:

N (pP=>9=pEArg)

i) (peog=@A PAG)A(GAD)
(i) (pve)=(BAG

iv) (Y =(@PAGAN(@GAP).

(These results show that any compound proposition involving the
disjunctive (either form), conditional or biconditional connectives can
be written in a logically equivalent form involving only negation and
conjunction.)

Consider a new connective, denoted by |, where p|q is defined by the
following truth table:

Plq|rlg
T|T| F
T|EF| T
F|T| T
F|F| T

Show that:

@®  p=(rlp)
(i) (pAg) = (ploI(plg).

Use the results for exercise 1.3.9 above to deduce that a proposition
involving any of the five familiar connectives can be written in a logically
equivalent form which uses only the connective denoted by |.

1.5 The Algebra of Propositions

The following is a lit of some important logical equivalences, all of which can be
verified using one of the techniques described in §1.4. These laws hold for any
simple propositions p, g and r and also for any substitution instance of them.

(Recall that we use ¢ to denote a tautology and f to denote a contradiction.)
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Idempotent laws

PAP=DP
pVp=p.

Commutative laws

PAG=qAp
pPVag=qVp
pY¥gq=q¥p
p<qg=q < p.

Associative laws

(pPA@ ANr=pA(gAT)
(pvgvr=pvi(gVr)
(PYq)¥Yr=pY(g¥r)
(peq)or=p<s(gor).

Absorption laws

pA(PVg)=p
pVv(pAg)=p.

Distributive laws
pA@Vr)=(pPAgV(pAT)

pV@@nAr)=(@V@oA(pVr)

Involution law

p=p
De Morgan’st laws
PV4=DpAg
PAgq=pVq.

+ Named after the British mathematician Augustus de Morgan (1806-71) who became the first
professor of the new University of London in 1828 and the first president of the London Mathematical
Society in 1865.
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Identity laws
pvf=p
PANL=Dp
pVI=t
pAf=Tf.
Complement laws
pVp=t
pAP=f
f =t
r=f.

The Duality Principle

Given any compound proposition P involving only the connectives denoted by A
and Vv, the dual of that proposition is obtained by replacing A by V, V by A, t by
f and f by t. For example, the dual of (p A q) vV pis (p VvV q) A p. The dual of

(pVHNgis(pAat)Vag.

Notice that we have not stated how to obtain the dual of a compound proposition
containing connectives other than conjunction and inclusive disjunction. This
does not matter since we have shown that propositions containing the other
connectives can all be written in a logically equivalent form involving only
negation and conjunction (see exercise 1.3.9).

DUALITY PRIVCIFLE



The Algebra of Propositions 23

The duality principle states that, if two propositions are logically equivalent, then
so are their duals. The principle is evident in several of the laws of the algebra
of propositions stated above. In many cases the logical equivalences are stated in
pairs where one member of the pair is the dual of the other.

Replacement Rule

Suppose that we have two logically equivalent propositions P; and P», so that
P1 = P,. Suppose also that we have a compound proposition Q in which P
appears. The replacement rule says that we may replace P; by P, and the
resulting proposition is logically equivalent to Q. Thus substituting a logically
equivalent proposition for another in a compound proposition does not alter the
truth value of that proposition.

Although we have not formally proved the replacement rule, it is clearly
reasonable if we consider the truth table. Substituting truth values of P, for P;
makes no difference to the truth table since, if P and P are logically equivalent,
they have the same truth values for each set of truth values of their components.

The replacement rule and the laws of the algebra of propositions give us a means
of establishing logical equivalences between propositions without drawing up a
truth table. We demonstrate this in the following example.

Example 1.8

Provethat (p Ag) VvV (p V q) = p.

Solution

(pAg)V(pAg) (DeMorgan’slaws)

(BAQ)V PV
=pA(@Vqg) (distributive laws)
=pAt (complement laws)

p (identity laws)

Il
=
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1.6 More about Conditionals

Given the conditional proposition p — g, we define the following:

(a) the converseof p > g: ¢q — p
(b) the inverseof p > ¢q: p— g
(c) the contrapositiveof p - g : g — p.

The following truth table gives values of the conditional together with those for
its converse, inverse and contrapositive.

plg|\Pp—~>q9|9—>pP|P—>q|q—>P
T|T T T T T
T|F F T T F
F|T T F F T
F|F T T T T

From the table we note the following useful result: a conditional proposition
p — q and its contrapositive g — p are logically equivalent, i.e. (p — ¢q) =
(@ — p)

Note that a conditional proposition is not logically equivalent to either its converse
or inverse. However, the converse and inverse of a proposition are logically
equivalent to each other.

Example 1.9

State the converse, inverse and contrapositive of the proposition ‘If Jack plays his
guitar then Sara will sing’.

Solution
We define: p: Jack plays his guitar

q: Sara will sing
so that: p — q: If Jack plays his guitar then Sara will sing.
Converse: q — p: If Sara will sing then Jack plays his guitar.
Inverse: p — ¢: If Jack doesn’t play his guitar then Sara won’t sing.
Contrapositive: g — p: If Sara won’t sing then Jack doesn’t play his guitar.



Arguments 25

As we have shown, ‘If Jack plays his guitar then Sara will sing’ and ‘If Sara won’t
sing then Jack doesn’t play his guitar’ are equivalent propositions.

Exercise 1.4

1. Prove each of the following logical equivalences using the method of
example 1.8.
®  (pApVpVvVp =t
(i) (pA@QANg=pArg.

(i) pA(pAg)=p.
) pAllpve Vv (pVvr]=p.
V) gnAllpvae)r(@nrpl=q.

2. Use the method of example 1.8 to show that p A (g V p) is logically
equivalent to p A g. State the dual of each of these two propositions and
show that the two dual propositions are also logically equivalent.

3. State the converse, inverse and contrapositive of the proposition: ‘If it’s

not Sunday then the supermarket is open until midnight’.

1.7 Arguments

An argument consists of a set of propositions called premises together with
another proposition, purported to follow from the premises, called the conclusion.
We say that the argument is valid if the conjunction of the premises logically
implies the conclusion. Otherwise the argument is said to be invalid. Thus if we

have premises P, P2, ..., P, and a conclusion Q, then the argument is valid if
(PIANP,A---AP)EQ,ie. if (PLAPyA--- A P,) — Q is atautology. What
this means (see §1.4) is that whenever Py, P;, ..., P, are all true, then Q must be

true. This makes sense since it ensures that, in a valid argument, a set of premises
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all of which are true cannot lead to a false conclusion.

VAL ARGUMENT

Examples 1.10

1. Test the validity of the following argument: ‘If you insulted Bob then Il
never speak to you again. You insulted Bob so I’ll never speak to you
again.’

Solution

We define: p: You insulted Bob.
q: I'll never speak to you again.

The premises in this argument are: p — ¢ and p.
The conclusionis: g.

We must therefore investigate the truth table for [(p — ¢g) A p] — ¢q. If this
compound proposition is a tautology, then the argument is valid. Otherwise it is

not.
plg|p~>q|p>Ap|l(p—>g9)Apl—>gq
T|T T T T
T|F F F T
FI|T T F T
F|F T F T
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This shows that the argument is valid.
2. Test the validity of the following argument: ‘If you are a mathematician

then you are clever. You are clever and rich. Therefore if you are rich
then you are a mathematician.’

Solution
Define: p: You are a mathematician.
q: You are clever.

r: You are rich.

The premises are: p — g andg Ar.
The conclusionis: r — p.

We must test whether or not [(p — ¢) A (g A7r)] = (r — p) is a tautology.

~

(p—=g) AN(g AT) | r=>p|[(p—>qg) A (g AT)]—=>(F—p)
T T

\
S

J
Q
_Q

IR
P
I
e e R
Mmoo a4 oo 4>
M m 4T T

H =S a A
H =S E T AR

From the last column we see that [(p — ¢g) A (g Ar)] = (r — p) is not a
tautology and hence the argument is not valid.

Exercise 1.5

Test the validity of the following arguments.

1. If you gamble you’re stupid. You’re not stupid therefore you don’t
gamble.
2. If I leave college then I’ll get a job in a bank. I’m not leaving college so

I won’t get a job in a bank.
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James is either a policeman or a footballer. If he’s a policeman then he
has big feet. James hasn’t got big feet so he’s a footballer.

If I could swim I’d come sailing with you. I can’t swim so I’m not coming
sailing with you.

If you find this difficult then you’re stupid or you haven’t done your
homework. You’ve done your homework and you’re not stupid therefore
you won’t find this difficult.

You can go out if and only if you do the washing up. If you go out
then you won’t watch television. Therefore you either watch television or
wash up but not both.

If I graduate in June then I’ll go on holiday in the summer. In the summer
I’ll get a job or I'll go on holiday. I won’t go on holiday in the summer
so I won’t graduate in June.

If there are clouds in the sky then the sun doesn’t shine and if the sun
doesn’t shine then the temperature falls. The temperature isn’t falling so
there are no clouds in the sky.

I shall be a lawyer or a banker (but not both). If I become a lawyer then I
shall never be rich. Therefore I shall be rich only if I become a banker.

If you are eligible for admission then you must be under 25 and if you are
not under 25 then you do not qualify for a scholarship. Therefore if you
qualify for a scholarship, you are eligible for admission.

1.8 Predicate Logic

Consider the following argument: ‘Everyone who has green eyes is not to be
trusted. Bill has green eyes. Therefore Bill is not to be trusted.” Expressing this
in our propositional notation would given us an argument with premises p and g
and a conclusion r. Our notation gives us no means of showing that different
propositions are making statements about the same thing. Two propositions
as similar as ‘Bill has green eyes’ and ‘Jeff has green eyes’ would have to be
symbolized by p and g. We have as yet no means of expressing the fact that both
propositions are about ‘green eyes’.
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A predicate describes a property of one or several objects or individuals.
Examples of predicates might be:

(a) ...is red.

(b) ... has long teeth.

(c) ...enjoys standing on his head.

(d) ... has spiky leaves.

(e) ...cannot be tolerated under any circumstances.

The space in front of these predicates can be filled in with the names of objects
or individuals where appropriate to form a proposition which may be true or
false in the usual way. For instance (a) could be prefixed by ‘that door’, ‘this
flower’, ‘your nose’ or any other object. Propositions of this kind consist of a
subject together with a predicate describing whatever property the subject is said
to possess.

We shall symbolize these propositions in a different way from before so as to
distinguish their two component parts. We shall use capital letters to refer to
predicates, so that we might define:

R :isred.
T : has long teeth.
H : enjoys standing on his head.

Lower-case letters will be used to denote particular objects or individuals. For
instance:

r : this rose.

Jj : James.
We can then form simple propositions as follows:

R(r) : This rose is red.
R(j) : James is red.
H (j) : James enjoys standing on his head.

Notice that the attribute symbol is written to the left of the symbol representing
the particular object or individual. If R is the predicate ‘is red’, we can write R(x)
to denote ‘x is red’ where x can be replaced by any object or individual. Note that
R(x) is not itself a proposition since it cannot be declared true or false. However,
it becomes a proposition once x is replaced by a particular object or individual.
The letter x is a variable which serves as a place marker to indicate where we
may substitute the names of objects or individuals in order to form propositions.
For this reason, R(x) is called a propositional function.
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We can negate propositional functions. If R(x) denotes ‘x is red’ then the
negation of R(x), denoted by —R(x) (or R(x)), is the propositional function
interpreted as ‘x is not red’.

Substituting a particular ‘value’ for x in a propositional function is not the only
way of converting it to a proposition. This can also be achieved through the use
of quantifiers.

The Universal Quantifier

Consider the proposition ‘All rats are grey’. One way in which we could
paraphrase this propositionis: ‘Forevery x, if x is arat, then x is grey’. This gives
us a way of symbolizing the proposition using the predicate symbols described
earlier. Suppose we define:

R(x) : x is arat.

G(x) : x is grey.

We denote ‘for every x’ by Vx and we can then write ‘All rats are grey’ as:
Vx[R(x) — G(x)].

The symbol V is called the universal quantifier. The quantified variable Vx is
read as ‘for all x” or ‘for every x’.

Example 1.11

Symbolize the proposition ‘Every day I go jogging’.
Solution

Define the following:

D(x) : x is a day.
J(x) : x is when I go jogging.

Then ‘Every day I go jogging’ can be paraphrased ‘For every x, if x is a day, then
x is when I go jogging’. We can express this proposition symbolically by:

Vx[D(x) — J(x)].
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The Existential Quantifier

Consider the proposition ‘Some rats are grey’. Here we assert that there is at least
one rat which is grey. We could paraphrase this proposition as ‘There exists at
least one x such that x is a rat and x is grey’. Thus if we define:

R(x) : x isarat
G(x) : x is grey

and denote ‘there exists at least one x’ by Jx, then ‘Some rats are grey’ can be
written:

A[R(x) A G(X)].

The symbol 3 is called the existential quantifier and 3x is read as ‘there exists at
least one x” or ‘for some x’.

Example 1.12

1. Symbolize ‘Some people think of no one but themselves’.

Solution

Define:  P(x) : x is a person
N(x) : x thinks of no one but himself.

Then ‘Some people think of no one but themselves’ can be written:
x[P(x) A N(x)].

2. Symbolize ‘Some of the children didn’t apologize’.

Solution

Define: C(x) : x is a child
A(x) : x apologized.

Then ‘Some of the children didn’t apologize’ can be written using the negation of
A(x) thus:
Ax[C(x) A —=AX)].

3. Symbolize the proposition ‘Nobody likes cheats’.
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Solution

Define:  P(x) : x is a person
C(x) : x likes cheats.

What we want to say here is that there does not exist an x where x is a person and
x likes cheats. We can symbolize this by negating the existential quantifier thus:

—3x[P(x) A C(x)].

Note that we can use the connectives A, V, —, etc between the propositional
functions P (x), C(x) even though these are not propositions. Thus if we define:

P(x) : x is a person
C(x) : x cheats
T (x) : x talks loudly

then the expression
Vx[P(x) — {T(x) A C(x)}]

symbolizes ‘Everybody cheats and talks loudly’.

In example 1.12.2 we symbolized the proposition ‘Some of the children didn’t
apologize’ as Ix[C(x) A —A(x)]. There is a sense in which this proposition
seems to refer to some particular group of children which the speaker has in mind
rather than children in general. The predicate ‘is a child’ in this example seems
to mean ‘is a member of a particular group of children’. This particular group of
children is called the universe of discourse and we can consider the variable x to
be restricted to members of this set.

If we define the universe of discourse carefully, we can shorten the proposition
Ax[C(x) A =A(x)] to the simple form Ix[—A(x)] where it is understood that
x belongs to the particular group of children that the speaker has in mind. The
expression Ix[—A(x)] then states that, within this universe of discourse, at least
one x exists who didn’t apologize.

When the universe of discourse is not specified it is assumed to be the complete
universe of objects or individuals referred to in the proposition. ‘All rats are grey’
is assumed to be a statement about all rats in the universe unless the context makes
it clear that some subset of these is intended.

In determining the truth value of quantified propositions, it is important that we
are clear about the universe of discourse. For instance, the proposition ‘Some of
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the children didn’t apologize’ may be true in one universe of discourse but false
in another.

Example 1.13

Define the following:

F(x) : x is greater than five
E(x) : x is an even number

N(x) : x is negative.

Consider the following universes of discourse:

@

(i)
(iii)

integers (i.e. whole numbers)
real numbers
negative integers.

Determine the truth values of each of the following propositions in each universe
of discourse.

(a) dx F(x)

(b) VxN(x)

(c) Vx[F(x) A E(x)]

(d  Ix[-N®]

Solution

(a) This proposition states that there exists an x which is greater than five.
This is true for the universe of integers and for the universe of real
numbers. It is false if x is restricted to negative integers.

(b) The proposition here is ‘For every x, x is negative’. This is false for
integers and for real numbers but it is true for the universe of negative
integers.

(c) Here we have ‘For every x, x is greater than five and even’. This is false
in all three universes.

(d) This proposition is “There exists an x which is not negative’. This is true

for integers and for real numbers but is false for negative integers.
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Two-Place Predicates

Consider the predicate ‘is heavier than’. In order to convert this predicate into a
proposition, the names of two objects or individuals are necessary. For instance,
using this predicate, we may form the proposition ‘A brick is heavier than a
hamster’. The predicate ‘is heavier than’ is an example of a two-place predicate.
If H denotes this predicate, then H (x, y) denotes the propositional function ‘x is
heavier than y’.

Two-place predicates can be quantified using the universal and existential
quantifiers. However, two quantifiers are necessary to produce a proposition from
a two-variable propositional function. The quantified expressions Vx F (x, y) and
dx F(x, y) are not propositions but propositional functions of the single variable

y.

Suppose we have:

Px,y):x+y=7

where the universe of discourse for each variable is the real numbers. The
following propositions are possible:

1. Vx3yP(x,y) 2. dyVxP(x,y)
3. Vy3axP(x,y) 4, IxVyP(x,y)
5. VyVxP(x,y) 6. VxVyP(x,y)
7. dy3IxP(x,y) 8. Ix Iy P(x, y).

Note that the propositions are read from left to right and that the order of
quantified variables is important. Consider for instance propositions 1 and 2. The
first states that, for every x, there exists at least one y such that, x + y = 7. This
is clearly true. On the other hand, proposition 2 states that there exists at least one
y such that, for every x, x + y = 7. This is not true since a single y value cannot
be found for every x. Each value of x needs a different value of y to balance the
equation x + y = 7. Thus the propositions Vx 3y P(x, y) and 3y Vx P(x, y) are
not equivalent statements. For similar reasons, propositions 3 and 4 are also not
equivalent.

The propositions VxVyF(x,y) and VyVxF(x,y) are equivalent for any
propositional function F(x,y), i.e. they have identical truth values. In
the example above, 5 and 6 are equivalent (false) propositions. Similarly
dx 3y F(x, y) and Ay Ix F (x, y) are equivalent propositions for any propositional
function F(x, y). Hence 7 and 8 are equivalent (true) propositions.
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The proposition Vx F(x) states that, for all x in the universe of discourse, x
has the property defined by the predicate F'. The negation of this proposition,
—Vx F(x), states that ‘It is not the case that all x have the property defined by F”,
i.e. there is at least one x that does not have the property F'. This is symbolized by
Ax[—F (x)]. So, for any propositional function F(x), the propositions =Vx F(x)
and Ix[—F (x)] have the same truth values and are therefore equivalent, i.e.

—Vx F(x) = Ix[~F(x)].

Similarly, the negation of 3x F (x), symbolized by —3x F (x), states that there does
not exist an x within the universe of discourse that has the property defined by F.
This is the same as saying that, for all x, x does not have the property F, i.e.
Vx[—F (x)]. Thus we have

—dxF(x) = Vx[—F(x)]

for all propositional functions F(x).

We can also show that
—Ix[-F(x)] = VxF(x)

since

—3Ax[~F(x)] = Vx[-—F(x)] (by the second result above)
=VxF(x) (by the involution law).

Similarly we can show that
=Vx[—F(x)] = 3xF(x).

For doubly quantified propositional functions, equivalences can be established by
repeated applications of the rules above. For instance:

—IyVxP(x,y) =Vy[-VxP(x, y)]
=Vydx[-P(x, y)].

The negation of other similar propositions can be obtained in the same way.

Example 1.14

We define the following on the universe of men.

M (x) : x is mortal.

C(x) : x lives in the city.



36 Logic

Symbolize the negations of the following propositions changing the quantifier.

@) All men are immortal.
(i) Some men live in the city.
Solution

@) The proposition given can be symbolized by Vx[—M (x)]. The negation
of this proposition is given by

=Vx[—-M(x)] = AxM(x).
The resulting proposition is ‘Some men are mortal’.
(ii) ‘Some men live in the city’ is symbolized by 3xC (x). Its negation is
—3IAxC(x) = Vx[-C(x)].

That is, ‘All men live out of the city’.

Exercises 1.6

1. Suppose the following predicates and individuals are defined:

: Maria

3

: Maria’s son
: works in the city
: rides a bicycle

T A

: is a chicken farmer.

Symbolize the following:

@) Maria works in the city and her son is a chicken farmer.

(i)  If Maria rides a bicycle then her son works in the city.

(iii)) Maria works in the city and rides a bicycle but her son is not a
chicken farmer.

(iv)  Everyone who works in the city is a chicken farmer.

(v)  Everyone who works in the city and doesn’t ride a bicycle is a
chicken farmer.

(vi) Some people who work in the city and ride a bicycle are not
chicken farmers.
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If no-one working in the city rides a bicycle then Maria doesn’t
work in the city and her son is not a chicken farmer.
No chicken farmers work in the city and ride a bicycle.

Translate the following into symbolic form using one-place predicates.
Define predicates used and, where necessary, define the universe of
discourse.

@)
(i)
(iii)
@iv)
™)

(vi)
(vii)
(viii)
(ix)
(%)
(xi)
(xii)

All babies cry a lot.

Nobody can ignore him.

Some students can’t write a good essay.

Not everybody approves of capital punishment.

There are people who have had a university education and live in
poverty.

Every time it rains I forget my umbrella.

All of my friends believe in nuclear disarmament.

All Fred’s children are rude or stupid.

Somebody set off the fire alarm and everybody left the building.
Not all rats are dirty and carry disease.

Everybody who doesn’t like snails has no taste.

Some toys are dangerous and no child should be given them.

Translate the following into symbolic form using two-place predicates.

()

(i)
(iii)
@iv)

Everybody loves somebody.
Somebody loves everybody.
Everyone is taller than Sam.
All elephants love buns.

Negate each of the following propositions changing the quantifier.
Express the result as a reasonable English sentence.

()
(i)
(iii)
@iv)

Everybody likes strawberry jam.

There are birds that cannot fly.
Sometimes I think you are lazy.
Nobody leaves without my permission.

Consider the following predicates:

Px,y):x>y

Ox,y):x <y
Rx):x—-7=2
Sx):x>09.

If the universe of discourse is the real numbers, give the truth value of



38

Logic

each of the following propositions:

@) IxR(x)

(i) Vy[=S(y)]

(iii)) Vx3IyP(x,y)

(iv)  FyVxQ(x,y)

V) VxVy[P(x,y) Vv Q(x,y)]

(vi)  IxS(x) A VxR(x)

(vi)  Fy Vx[S(y) A O(x, y)]

(viii) Vx Vy[{R(x) A S(»)} — O(x, y)].

1.9 Arguments in Predicate Logic

We return to the argument at the beginning of §1.8: ‘Everyone who has green
eyes is not to be trusted. Bill has green eyes. Therefore Bill is not to be trusted.’

If we define the following on the universe of all human beings:

G(x) : x has green eyes
T (x) : x can be trusted
b : Bill
then the premises of this argument are:
Vx[G(x) > =T (x)] and G(b)
and the conclusion is:
=T (b).

Remember that to establish the validity of an argument, we must show that,
whenever all the premises are true, then the conclusion must be true. We shall
do this in steps. Assuming the premises to be true will allow us to deduce other
true propositions which in turn allow us to guarantee the truth of the conclusion.

We need the following four rules.

1. Universal Specification

This rule states that if the proposition Vx F'(x) is true, then we can deduce that the
proposition F(a) is true for every a in the universe of discourse.
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2. Universal Generalization

If the proposition F(a) is true for every a in the universe of discourse, then we
can conclude that Vx F'(x) is true.

3. Existential Specification

If 3x F (x) is true, then there is an element a in the universe of discourse such that
F(a) is true.

We must be very careful in interpreting this rule. The element a is not arbitrary.
It is one of the elements in the universe which has the property F. That at least
one such element exists is guaranteed by the truth of 3x F(x).

4. Existential Generalization

If F(a) is true for some element a belonging to the universe of discourse then
dx F(x) is true.

Remember that if a compound proposition P is true, then so is any proposition
which is logically equivalent to P. Also, if P is true and P logically implies Q,
then Q is true. Thus if a proposition is true, then so is any proposition logically
implied by it or logically equivalent to it. A list of important logical equivalences
is given on pages 21 and 22.

Below is a list of logical implications which are particularly useful in proving the
validity of arguments. We also give the name commonly used to refer to each of
these ‘rules’. Many of these were established in section 1.4 and in exercises 1.3;
the rest can be verified in the usual way using truth tables.

1. (pAg)FDp (simplification)

2. (pAg)Fgq (simplification)

3. pE(pVvyg (addition)

4. [((pvg)Aplgq (disjunctive syllogism)
5. [(p—>q)Aplkgqg (modus ponens)

6. [(p—=>q) AglFp (modus tollens)

7. [(p—>q)A(g— r)]F(p—r) (hypothetical syllogism)
8. p—=q@tFlp— (pAg)] (absorption).
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Examples 1.15

1. Show that the following is a valid argument: ‘Everyone who has green
eyes is not to be trusted. Bill has green eyes. Therefore Bill is not to be
trusted.’

Solution

With a universe of discourse of ‘people’, we have established that, if b denotes
‘Bill’, the premises are:

Vx[G(x) - =T (x)] and G(b)

and the conclusion is:
=T (b).

Assuming the truth of the premises, we must establish the truth of the conclusion.
We do this as follows:

1. Vx[G(x) = =T (x)] (premise)

2. G(b) —» =T (b) (rule of universal specification)

3. G(b) (premise)

4. —T(b) (follows from 2 and 3 using modus ponens).

The truth of each of the propositions 1-4 is guaranteed for the reason given. We
have shown that the truth of the premises guarantees the truth of the conclusion
and hence that the argument is valid.

2. Show that the following is a valid argument: ‘All students go to parties.
Some students drink too much. Therefore some people who drink too
much go to parties.’

Solution
Once again, we take our universe of discourse as ‘people’.
Define:  S(x) : x is a student
D(x) : x drinks too much
P(x) : x goes to parties.
The premises are:

Vx[S(x) - P(x)] and 3dx[S(x) A D(x)]
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and the conclusion is:
Ax[D(x) A P(x)].

We proceed as follows:

1. Ax[S(x) A D(x)] (premise)

2. S(a) A D(a) (rule of existential specification)

3. Vx[S(x) = P(x)] (premise)

4. S(a) - P(a) (rule of universal specification)

5. S(a) (from 2 using simplification)

6. P(a) (from 4 and 5 using modus ponens)
7. D(a) (from 2 using simplification)

8. D(a) A P(a) (from 6 and 7)

9. Ax[D(x) A P(x)] (rule of existential generalization).

Note that the a in 2 is not arbitrary but is an element in the universe which has the
properties defined by S and D. The a in 4 is the same individual for whom we can
state S(a) — P(a) because we have Vx[S(x) — P(x)], where S(x) — P(x)
holds for all x in the universe of discourse and hence for a.

3. Show that the following is a valid argument: ‘Everyone shouts or cries.
Not everyone cries. So some people shout and don’t cry.

Solution

With our universe of discourse as ‘people’, we define the following:

S(x) : x shouts

C(x) : x cries.

The premises of the argument are: Vx[S(x) vV C(x)] and =VxC (x).

Note that we cannot apply either rule of specification to the second premise in its
current negated form. We therefore write it in the equivalent form: 3x—C (x) (see

§1.8).

We can now validate the argument as follows.

1. Vx[S(x) v C(x)] (premise)

2. dx—C(x) (premise)

3. —C(a) (existential specification)

4. S(a) v C(a) (universal specification)

5. C(a) Vv S(a) (from 4 using the commutative law)

6. S(a) (from 3 and 4 using the disjunctive syllogism rule)
7. S(a) A —=C(a) (from 6 and 3)

8. Ax[S(x) A =C(x)] (existential generalization).
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Note that it was necessary to use the rule of existential specification on the second
premise before using universal specification on the first. This is because if we
first state S(a) v C(a), a is an arbitrary member of the universe. But the property
—C(x) applies only to certain individuals in the universe, so we cannot assume
that it applies to an arbitrary individual a. In other words, an a for which —=C(a)
is true (and the premise asserts that there is at least one such a) must also be one
for which S(a) v C(a) is true, since the latter property is true for any individual
in the universe.

Exercises 1.7

Establish the validity of the following arguments.

Some monkeys eat bananas. All monkeys are primates. Therefore some
primates eat bananas.

All cars are dangerous weapons. No dangerous weapons should be given
to children. Therefore cars should not be given to children.

No reasonable man approves of wars. Jack approves of wars. Therefore
Jack is not a reasonable man.

All gamblers are bound for ruin. No one bound for ruin is happy.
Therefore no gamblers are happy.

All computer scientists are clever or wealthy. No computer scientist is
wealthy. Therefore all computer scientists are clever or witty.

All those who eat apples have strong teeth. All those who don’t eat apples
are unhealthy. Betty hasn’t strong teeth. Therefore Betty is unhealthy.

Some alligators are friendly and sociable. All alligators which are
friendly live in a zoo. Therefore some alligators which live in a zoo are
sociable.

All problems are difficult and frustrating. = Some problems are
challenging. Hence some problems are frustrating and challenging.

All animals with scales are dragons. Some animals which are not dragons
have sharp claws. So there are animals without scales which have sharp
claws.
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10. Everyone who is forty is fat or foolish. No-one is foolish and no-one is
fat. So no-one is forty.



Chapter 2

Mathematical Proof

2.1 The Nature of Proof

The discipline of mathematics is characterized by the concept of proof. In this
chapter we consider the nature of mathematical proof, some of the different
techniques of proof and how a proof should be constructed and written down.

What do mathematicians mean by ‘proof’? The popular view of a mathematical
proof is probably that of a sequence of steps, almost certainly written mainly in
symbols, where each step follows logically from an earlier part of the proof and
where the last line is the statement being proved. Associated with this image is
probably the notion that a proof is the absolute and rigorous test of mathematical
truth. Surprisingly perhaps, this is not quite the view of many mathematicians,
although there is by no means unanimity of opinion amongst the mathematical
professionals themselves. Many hold a more sociological view of the role of a
proof. They see it as essentially an explanation and communication of ideas; a
line of argument sufficient to convince a fellow mathematician of the validity of
the particular result. As the great English mathematician Godfrey Hardy wrote:
‘Strictly speaking there is no such thing as mathematical proof; ... [they are]
rhetorical flourishes designed to affect psychology, ...devices to stimulate the
imagination of students.’

Which, then, is the ‘correct’ view of the nature and significance of the proof of
a mathematical theorem? Probably the best answer is: both! The word ‘proof’
is used to cover a wide spectrum of styles. At one extreme we have very formal
proofs which are rather like the logical arguments considered in chapter 1. Each
step follows from the premises or a previous step by the laws of logic. Indeed, it is
possible to write out such a proof using only symbols and no words but, needless

44
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to say, this is likely to be very difficult to follow. Away from the formal end of
the spectrum are proofs which are more ‘reader-friendly’. A less formal proof
may use a mixture of words, symbols and diagrams of one kind or another. Most
proofs found in mathematical textbooks (and research papers, for that matter) are
not formal. They aim to communicate the essential reasons why a particular result
holds rather than dwelling on rigorous step-by-step detail.

Any proof exposes certain lines of reasoning to scrutiny by others. As such
the mathematical community sets certain standards concerning what should be
regarded as an acceptable proof and what should not. Vague descriptions are not
allowed. Arguments which are clear and coherent, although somewhat informal,
are acceptable even if they gloss over some minor details. It goes without saying
that any proof must be ‘correct’ in that it must not contain any logical errors.

Something which is not sanctioned in mathematics is the drawing of conclusions
based on large numbers of observations. However many times we square an even
number and discover that the result is even, this does not constitute a proof that
the square of an even number is even. It may, however, strengthen our belief that
this is so and encourage us to search for a valid proof. Making judgements about
facts on the basis of observation is known as inductive reasoning. The type of
reasoning where a conclusion is drawn by logical inference is called deductive
reasoning. For mathematicians, the latter is the only form of reasoning which is
acceptable in a proof.

2.2 Axioms and Axiom Systems

To understand more fully what is meant by a proof, formal or informal, we
need to look briefly at the nature of modern mathematics. Most mathematicians
would agree that their subject has as its mode of operation what is known as the
‘axiomatic method’. The use of the axiomatic method was introduced by Euclid
in about 300 BC (although the modern view of the nature of axioms differs in
important ways from Euclid’s).

A mathematical theory, such as set theory, number theory, group theory or
whatever, consists of various components of which the most important are the

following:

1. Undefined terms.
2. Axioms.

3. Definitions.

4. Theorems.

5. Proofs.
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Of these, you probably have a reasonable idea of what we mean by 3, 4 and 5.
That we need to have undefined terms in mathematics may come as a surprise, but
a little reflection should indicate why these are necessary.

Suppose we wish to write the definitive work on, say, set theory. Where do we
begin? The obvious starting point is to say precisely what a set is, so we begin:
Definition 1: A set is ...—what? The problem is that, if we attempt to define
‘set’, we need to do so in terms of something else (a collection, perhaps?), but
now the ‘something else’ is undefined. If we try to define the something else, we
have to do so in terms of something else again, but then the ‘something else again’
is undefined, and so on. Clearly, we want to avoid an infinite string of definitions
(otherwise we could never begin the theory proper) or circularity in our definitions
(‘a set is a collection; a collection is a set’). This forces us to have some terms
which are left undefined. Of course, we can still explain in an intuitive way what
we have in mind when using the undefined terms, but this intuitive explanation is
not strictly part of the theory itself.

Item 2 in our list above—axioms—also needs some clarification. Just as we
cannot define every term which is to be used in a mathematical theory, so we
cannot prove every statement about the theory for much the same reason. In order
to have somewhere to begin, we need to make some statements which will not be
proved. These statements are called axioms. They represent, in a sense, the basic
properties of the theory, its ‘building blocks’.

Note that the truth or falsity of the axioms is not considered; they are merely
statements about the undefined terms which serve to ‘get the theory going’f.
However, they must be consistent amongst themselves in the sense that it must
be possible for them all to be true simultaneously. Axioms which contradict
each other are not acceptable. When it comes to applying a mathematical
theory, the undefined terms are given interpretations and the axioms then become
propositions which are either true or false. Of course, a mathematical theory can
only sensibly be applied if the interpretations of the axioms to the situation under
consideration are true propositions.

An axiomatic theory develops by making definitions and proving theorems.
Definitions are introduced for the convenience of not having to refer everything
back to undefined terms. A theorem is a statement about various terms of
the system which follows from the axioms using the kind of logical reasoning
introduced in chapter 1. The first theorems are proved directly from the axioms;

T As assumptions about undefined terms, the axioms have neither meaning nor truth. Because
mathematics is built from these foundations, it too has no meaning! It was this consequence of the
axiomatic method that Bertrand Russell had in mind when he wrote: ‘Mathematics may be defined
as the subject in which we never know what we are talking about nor whether what we are saying is
true.
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more theorems are then proved using these and so on. The theory spreads out
further and further ‘away from’ the original axioms, but ultimately rests solely on
them. Theorems and their proofs form the heart of (pure) mathematics.

The axiomatic description of mathematics does seem to imply that the subject is
somewhat mechanical. For instance, it should be possible to program a computer
with a system of axioms and the rules of logic and then set it off proving theorems.
Why, then, has this not been successfully achieved? The missing ingredient (in
both the computer and axiomatic description of mathematics) is human intuition.
Usually a theorem originates in a conjecture—a belief that a certain result holds.
Such a belief may arise from the observation of many situations where this was
so and none where it was not. On the other hand, many important mathematical
conjectures were just ‘hunches’—intuitive beliefs that such-and-such must be the
case. However it arose, for a conjecture to be promoted to a theorem, a proof
must be supplied in which a justification for the conjecture is given. Here again
intuition plays an important part in indicating which line of reasoning might lead
to a proof. So although the axiomatic method gives a coherent explanation of
what mathematics is on a formal level, it does not describe or explain at all the
process of doing mathematics. Perhaps only psychologists can hope to do that!

To illustrate these general ideas, consider the following example of an axiom
system. The example is not one which would be of very much interest for
two reasons. Firstly, the axioms are not sufficiently ‘rich’ for us to be able to
prove anything very interesting about the system, and secondly, it does not have
many worthwhile applications. In other words, the example is neither particularly
interesting in its own right, nor in terms of its applicability. However, we hope
that it will serve to clarify the preceding remarks.

Example 2.1
Undefined terms: ‘blub’, ‘glug’ and ‘to lie on’.

Axioms: Al. Every blub lies on at least one glug.
A2. For every glug, there are exactly two blubs which lie on it.
A3. There are exactly five blubs.

Figure 2.1 gives an interpretation of the axiom system with blubs represented as
points and glugs as lines, with the obvious interpretation of ‘to lie on’. Note
that, in this interpretation, each of the axioms is a true proposition. A specific
interpretation of the undefined terms such that the axioms are true propositions is
called a model of the axiom system.

In this interpretation there are five glugs, G1, Ga, . . ., Gs. Is this always the case?
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Hy [T L

Figure 2.1

In other words, given any interpretation of the axioms, are there always five glugs?
If we prove, from the axioms, that there are exactly five glugs then the answer
must be ‘yes’. However, the answer is in fact ‘no’—figure 2.2 gives an alternative
model which has 10 glugs.

Ry (I

Figure 2.2

We can, however, prove from the axioms that there are at least three glugs. This
means that any model of the system must have at least three glugs.

Theorem

There exist at least three glugs.

Proof

Let B be a blub. (Axiom A3 guarantees the existence of a blub.) By axiom Al,
B; lies on some glug, G say, and, by A2, there is another blub, B, say, which
also lies on Gj.

There is another blub B3 which is different from B; and B, (A3) and B3 lies on
some glug G, (Al). G, must be different from G| because Gj cannot have three
blubs lying on it (A2). Axiom A2 tells us that there is another blub lying on Gy.
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There are two possibilities: the other blub of Gy is either B or B», or it is different
from B and B».

In the first case, there are still two blubs not lying on a glug. In the second case,
there is another blub B4 lying on Gy which still leaves one blub ‘glugless’. In
either case there is at least one blub Bs which does not lie on either G or Gj.
Axiom Al tells us that there must be a third glug on which Bs lies. Furthermore
this glug must be different from G and G; by axiom A2.

Therefore there are at least three glugs. ]

Having proved our first theorem about blubs and glugs, we could go on and use
it to prove further theorems—see exercise 2.1.1. Since the ‘blub—glug axiom
system’ is too restrictive to be of much interest, we shall not dwell on it further
here. However, blubs and glugs will reappear in chapter 10 ‘disguised’ as the
vertices and edges of graphs. (See exercise 10.1.18 for another model of this
axiom system.)

Exercises 2.1
These questions refer to the ‘blub—glug axiom system’ described in example 2.1.

1. Prove that there exists a blub which lies on (at least) two different glugs.
(Hint: the theorem of example 2.1 may be of use here.)

2. Give a model of the axiom system which has more than 10 glugs.
Introduce a new axiom to the system which rules out your model. Can
you prove from the axioms of the new system that there are at most 10
glugs? (Avoid, if you can, a new axiom which simply says that there are
at most 10 glugs.)

2.3 Methods of Proof

As we have seen, formal mathematics is based on the axiomatic method.
Beginning with undefined terms and axioms, it develops by proving theorems
using the rules of logic. In this section we consider the essential features of a
proof and we outline some methods of proof.
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To set the scene more precisely, suppose that we are given a system of axioms,
A1, Az, ..., A,. A theorem is a statement about the terms of the system which
is logically implied by the conjunction of the axioms. We can therefore define a
theorem in the system formally as a proposition 7 such that

(AfNAQAN---ANAYFT.

Recall that P + Q if Q is true whenever P is true. In any model of the axiom
system, the axioms have interpretations which are true propositions so that every
theorem has an interpretation which is a true proposition. Thus theorems are
propositions which are true in every model of the axiom system.

What then constitutes a proof of a theorem? Informally, a proof is a valid
argument in which the theorem is the conclusion. The premises may be axioms or
other theorems which have already been proved. Although it must be possible to
prove any theorem with only the axioms as premises, this is clearly uneconomical.
Once a theorem has been proved, it can be used in conjunction with the axioms to
prove other theorems. Hence to prove theorem 7" we must show that

At ANAAN - NANANTIANTAN-ANT,) T

where the A; ( = 1,2,...,n) are axioms and the T (j = 1,2,...,m) are
theorems which have already been proved. We do this by assuming the truth of
the axioms (and hence of the theorems) and showing that this guarantees the truth
of T.

Many theorems are, strictly speaking, quantified propositional functions of the
form VxT (x), where x is a member of a specified universe of discourse. To
prove such a theorem, we in fact prove the proposition which is the universal
specification of Vx T (x), i.e. T (a) for every a in the universe of discourse. Having
shown that the truth of T'(a) follows from the axioms and theorems for any
arbitrary a in the universe of discourse, we can then apply universal generalization
and conclude that Vx T (x) is also true (see §1.9).

Before outlining some techniques of proof, there is a piece of notation which
needs clarifying. The symbol =, read as ‘implies that’, is used between two
propositions where the second ‘follows logically’ from the first. (If P = Q and
also Q = P, we write P & (Q.) What we mean by P = Q is that Q is
logically implied by the conjunction of P and other statements about the terms of
the system, such as axioms and theorems. Hence P = (Q is just shorthand for
(ALANAN- - ANAZANTI AT N - ATy AP) = Q, where the A; and T are axioms
and proved theorems respectively. In a proof, these axioms and theorems may not
be referred to explicitly when it can be assumed that those to whom the proof is
addressed have some background knowledge of the system. For example, we can
write: if x is an arbitrary real number, x2—2 <2 = —2 < x < 2. Note that
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the truth of the second proposition is not a direct logical consequence of the truth
of x2 — 2 < 2 alone. It is also dependent on certain axioms and theorems of the
real numbers, such as: for all real numbers a, b, ¢, ifa < b, thena +c¢ < b + c.
Where the real numbers are concerned, many properties reflected in axioms and
theorems are so familiar that we apply them without thought. In a proof, the
statement P = Q conveys to the reader that the truth of Q follows from the truth
of P and the conjunction of other true propositions with which it is assumed he
or she is familiar.

Deciding what to justify explicitly and what to assume as background knowledge
is part of the art of proof writing. If too much detail is included, the reader will
experience a ‘can’t see the wood for the trees’ feeling and the overall structure
will be hard to discern. Similarly, too heavy an emphasis on symbols may cause
difficulty in understanding the proof. Instead of concentrating on minute levels of
detail, it is more useful to explain the important steps, employing a judicious blend
of natural language and symbols. Of course, sufficient detail needs to be given to
enable the reader to follow the argument and to verify its validity. Exactly how
much detail needs to be supplied will depend on such factors as the mathematical
sophistication of the intended audience and how novel the approach is.

We now give some examples of methods by which a mathematical statement may
be proved. The list is by no means exhaustive but it does give some of the more
common techniques. We shall come across plenty of other examples of proofs in
later chapters.

Direct Proof of a Conditional Proposition
Many mathematical conjectures can be expressed in the form P — Q, i.e. as a
conditional proposition. Their proof therefore consists of showing that
(ALNAAN-- - ANAZANTIATQOAN - - ANTy) (P —> Q)

where the A; and T; are axioms and theorems as before. This is equivalent to
showing that

(ALNAAN-- - NAZANTIATQON - ANTy) > (P —> Q)

is a tautology and, by the logical equivalence of R — (P — Q) and
(R A P)— Q, that

(AiNAAN--NAZANTIANTON - ATy AP) — Q
is a tautology or that

(AiNAAN-- - ANAANTIANTOAN - AT,y AP)E QO
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i.e. that P = Q. So, for a direct proof of a theorem of the form P — Q,
we assume the truth of the axioms and hence of any proved theorems. We also
assume the truth of P and show that the truth of Q necessarily follows.

Examples 2.2

1. Prove that, for every integer n, if n is even, then n2 is even. (The integers
are the ‘whole’ numbers.)

Proof

Let n be an even integer. Then 2 is a factor of n, so n can be expressed as n = 2m
for some integer m. It follows that n? = (2m)? = 4m?2. Now 4m? can be written
as 2(2m?) where 2m? is also an integer. Therefore n? is even. This concludes the
proof. |

Note that we have omitted reasons for certain steps. For instance no specific
reason was given for the fact that (2m)? = 4m?2. This is because it is assumed
that this step is obvious. However, in a more formal proof, missing details would

have to be supplied.

The proof can be written using more mathematical notation. This gives the
following more concise, but still acceptable, version.

Proof

Let n be an integer.

Then
n =2m for some integer m
= n? = (2m)2
= 4m?
=2(2m)?
= n? is an even integer. |

Strictly speaking, what we are asked to prove here is the proposition: Vx[P(x) —
Q(x)], where P(x) is ‘x is even’, Q(x) is ‘x2 is even’ and the universe of
discourse is the integers. What we have in fact proved is the proposition which
is the universal specification of this quantified proposition: P(n) — Q(n) for
any n in the universe of discourse. The assumption P(n) is true is that n is an



Methods of Proof 53

arbitrary even integer, i.e. a ‘typical’ even integer. The proof shows that the truth
of Q(n) follows from this assumption and therefore that P(n) — Q(n) for any n
in the universe of discourse. Universal generalization allows us to conclude that
Vx[P(x) = Q(x)].

2. Prove that, if n and m are integers and 3 is a factor of both n and m, then 3
is a factor of any number of the form nx +my where x and y are integers.

Proof

We are required to prove the conditional proposition
[R(n) A R(m)] — Q(n,m)

where R(n) is ‘3 is a factor of n” and R(m) is ‘3 is a factor of m’ and m and n
are arbitrary integers. The proposition Q(n, m) is given by ‘3 is a factor of any
number of the form nx +my, where x and y are integers’. (We are using universal
specification here as in the last example.)

We make the assumption that R(n) A R(m) is a true proposition, i.e. that n and m
are arbitrary integers such that 3 is a factor of each.

From the truth of ‘3 is a factor of n” we can deduce that n = 3 p for some integer
p. Similarly, from ‘3 is a factor of m’ we can write m = 3¢q for some integer
q. Hence nx +my = 3px 4+ 3qy = 3(px + gy). Since px + gy is an integer,
we conclude that nx + my can be written as three times an integer and hence is
divisible by three. |

This argument may be summarized more symbolically as follows.
Proof

Let m and n be integers both divisible by 3.

Then

3 is a factor of n = n = 3p, where p is an integer
and

3 is a factor of m = m = 3¢g, where ¢ is an integer.
Hence

nx +my = 3px + 3qy
=3(px +qy)
= nx + my is divisible by three. |
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3. What is wrong with the following ‘proof” that 1 = 2?
‘Proof’

We shall ‘prove’ the conditional proposition: ‘For x a real number, if
x =2,thenx =1".

x=2

= x—1=1

= x—1>=1
=x-—1
= x2—2x+1=x—-1
= —2x=x-2
= x(x—2)=x-2
N x(x—2)=x—2
x =2 x—2

= x=1.

This example shows that great care needs to be taken when constructing proofs.
Each step seems to follow logically from the previous ones, yet there is clearly a
flaw in the argument somewhere because it is claiming to prove an absurdity.

The error, in fact, comes right at the end of the proof when both sides of the
equation are divided by x — 2. This division is not allowed because x = 2 and
division by zero is not a valid operation. The correct conclusion to draw from the
equation x(x —2) = x — 2is: eitherx =2 orx = 1.

Proof of a Conditional Proposition using the Contrapositive

Recall that the contrapositive Q — P is logically equivalent to the conditional
proposition P — Q. Hence, if we can establish the truth of the contrapositive,
we can deduce that the conditional is also true. This constitutes an indirect proof
of P — (Q although we may use a direct proof of Q — P since this is itself
a conditional proposition. We assume the truth of Q (together with the relevant
axioms and theorems) and we establish the truth of P.



Methods of Proof 55

Examples 2.3

1. By proving the contrapositive, prove that, for every integer n, if n? is
even, then n is even.

Proof

The proposition to be proved is P(n) — Q(n), where P(n) is ‘n- is even’, Q(n)
is ‘n is even’ and n is an arbitrary integer. The contrapositiveis =Q(n) — —P(n):
if n is odd then n? is odd. We prove this directly by assuming the truth of ‘n is
odd’ and showing that the truth of ‘n~ is odd’ follows.

Let n be an odd integer.

Then
n=2m+ 1 wherem is an integer

= n*=@m+1)°

=4m® +4m + 1

=202m?*+2m) +1 where 2m? + 2m is an integer
= n? is odd. |
2. Prove that, if m and n are positive integers such that mn = 100, then

either m < 10 orn < 10.

Proof

We shall again prove the contrapositive but we must be a little careful. The
proof required is that of P(m,n) — Q(m,n) where P(m,n) is ‘m and n are
arbitrary positive integers such that mn = 100’ and Q(m, n) is the inclusive
disjunction of the two propositions ‘m < 10" and ‘n < 10’. By De Morgan’s
laws (p V ¢) = p A g so that the negation of Q(m, n) is ‘m > 10 and n > 10’.
The contrapositive =Q (m, n) — —P(m, n) is therefore ‘If m and n are arbitrary
integers such that m > 10 and n > 10, then mn # 100’.

Let m and n be positive integers.

Then

m>10 and n > 10
= mn > 100
= mn # 100
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and the theorem is proved. u

3. The following is given as an example of a common incorrect attempt
at a proof. The result to be proved is: If x and y are real numbers,
x2 4+ y?% > 2xy.

Suppose that x and y are arbitrary real numbers such that

Then

= (x —y)?

Since this is clearly always true, we can conclude that x + y2 > 2xy.

What has been proved here is P — ¢, where P is ‘x2 + y> > 2xy for
arbitrary real numbers x and y’ and ¢ is a tautology. But P — ¢ is not
logically equivalent to P and so this does not constitute a valid proof of
P.

Proof by Contradiction

Using a truth table we can readily establish the logical equivalence of P and
P — f, where f is a contradiction (a proposition which is always false). Hence
to prove a theorem T we can instead prove the conditional proposition T — f.
This can be achieved using a direct proof which assumes the truth of axioms and
theorems as usual and also assumes the truth of T (i.e. the falsity of T'). We then
show that this implies a proposition which is patently false, i.e. a contradiction.
Usually, the contradiction takes the form of the conjunction of a proposition and
its negation, O A Q. (Recall that Q A Q = f.) We can then deduce that T — f
is true and hence that the theorem 7 is true.

This method of indirect proof is frequently referred to as ‘proof by contradiction’
or as reductio ad absurdum.
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Examples 2.4

1. Prove that +/2 is not rational. (A rational number is one which can be
written in the form p/q where g # 0 and p and g are integers.)

Proof

The proof of this theorem is a well known example of proof by contradiction. We
assume that +/2 is rational and show that this leads to a contradiction.

Suppose that +/2 is rational, i.e. v/2 = m/n where m and n are integers and
n # 0. We may assume that the fraction m/n is in its ‘lowest terms’, i.e. that m
and n have no common factors. If they do have common factors we simply cancel

them.
Now
V2= m/n
= 2 =m?/n?
= 2n% = m?
= m? is even
= m is even (see example 2.3.1)
= m = 2p for some integer p
= m? = 4p2.

Substituting this result into the equation 2n% = m? gives

2n? = 4p2
= n* = 2p2
= n? is even
= n is even.

We have now shown that both m and n are even, i.e. that they have a common
factor 2. But m and n have no common factors because any such factors
were cancelled at the beginning. Hence we have deduced the conjunction of a
proposition and its negation, i.e. a contradiction, and this proves the theorem. W

2. Prove that there are infinitely many prime numbers. (A prime number
is a positive integer greater than 1 which has no factors other than 1 and



58 Mathematical Proof

itself. It is usual to exclude 1 from being called a prime number for
technical reasons.)

The following is Euclid’s proof of the theorem. It is generally regarded
as a classic example of proof by contradiction.

Proof

Suppose that there are only a finite number, n say, of prime numbers. This means
that we can list all the prime numbers as follows: Py, P, ..., P,.

Consider the product of this complete list of prime numbers: Q = P P> ... P,.
Now Q+1=PP...P, + 1.

The integer Q + 1 is not prime since it is different from P, P,, ..., P,. Therefore
O + 1 must be divisible by some prime number, say P, where P is one of the P;,
i =1,2,...,n. But Q is divisible by P and so clearly P cannot be a factor
of QO + 1 and here is our contradiction. We conclude that our assumption that
the number of prime numbers is finite is false and deduce that there are infinitely
many primes. |

Proof of a Biconditional Proposition

To prove a biconditional proposition P <> Q, we usually appeal to the logical
equivalence of P <+ Q and [(P — Q) A (Q — P)]. Commonly, therefore,
the proof of a biconditional involves two distinct parts, one proving the result
P — Q and the other proving Q — P. Itis fairly commonly the case that one of
the conditionals will be relatively more straightforward to prove than the other.

Examples 2.5

1. Prove that, for any integers x and y, the product xy is even if and only if
X is even or y is even.

Proof

We first prove that, if x is even or y is even then xy is even, using a direct proof.
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Suppose x is even, i.e. x = 2n, for some integer n. Then xy = 2ny so xy is even.
If y is even, an identical argument shows that xy is even. The word ‘similarly’
is used to indicate this and to save us having to repeat the argument. We write:

similarly, if y is even, then xy is even.

We now prove the converse: if xy is even then x is even or y is even. We shall
use a direct proof of the contrapositive: if x and y are odd, then xy is odd.

Now x is odd and y is odd
= x=2n+1, y=2m+ 1 forsome integers m and n.

Then

xy=02n+1)Q2m+1)
=4dmn+2n+2m—+1
=20@2mn+n+m)+1

= xy is odd.
This completes the proof. n
2. Prove that 3x2 — 7x + 4 = x> + 3x — 8 if and only if x = 2 or x = 3.
Proof
32 —Tx+4=x>+3x—38
= 222~ 10x+12=0
= x2—5x+6=0
= x—-—2)x=3)=0
= x=2 or x=23.

To prove the converse we can write:

x=2 or x=3
x—2)(x—3)=0
x2—5x+6=0
2x2—10x+12=0
3x2 —Tx +4=x>+3x —8.

LR
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Note that the steps in the second part of the proof are exactly the same as those in
the first in reverse. We can therefore summarize both parts of the proof as follows:
3x2 —Tx +4=x*43x -8
2x2 —10x+12=0
X —5x+6=0
x—2)x—3)=0
x=2 or x=23. |

S R

The methods of proof which we have considered so far all have a similar structure.
In each case we start by assuming the truth of one particular proposition. We
then show that the truth of another proposition follows given certain background
knowledge, i.e. axioms and theorems already proved. We summarize each of
these methods of proof in the table below.

Method of proof Assume Deduce
Direct proof of P — Q  P; background knowledge 0
Proof of P — Q using  Q; background knowledge P
the contrapositive
Proof of P by P; background knowledge A contradiction, f
contradiction
Proof of the (a) P; background knowledge 0
biconditional P <> Q and
(b) Q; background knowledge P
Use of Counter-Examples

Many mathematical conjectures take the form ‘all As are Bs’ or ‘all objects with
property A have property B’. This could be rewritten as the universally quantified
conditional propositional function Vx[A(x) — B(x)], where A(x) is ‘x is an (or
has the property) A’ and B(x) is ‘x is a (or has the property) B’. The proof of the
conjecture could then take one of the forms described above.

The proposition could also be written Vx B(x) where x is restricted to the universe
of discourse of As (or objects having the property A). As we have already
remarked, the inability to find an x which has not the property B does not
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constitute a proof of the theorem. However many x we find which have the
property B, this is no guarantee that we have failed to find an elusive x which
does not have this property. However, if the universe of discourse is finite, then
(given time if it is large) we can examine every element to check that it has the
property in question. If no element fails the test then the theorem is proved. This
is called proof by exhaustion because it exhausts all the possibilities for x.

FROCE 3Y EXHAUSTION

On the other hand, to disprove a conjecture of the form Vx B(x), we need find
only one member of the universe of discourse which does not have the property
B. We can justify this logically. To disprove Yx B(x) we must prove the negation
—VxB(x). As we have seen (§1.8), this is equivalent to Ix—B(x), i.e. there is at
least one member of the universe which does not have the property B. To prove
this, all we need to do is to demonstrate that such an individual exists. This is the
essence of what is sometimes called ‘proof by counter-example’ (although a more
accurate title would be ‘disproof by counter-example’).

Example 2.6

Prove or disprove the proposition: for all positive integers 7,
f)=n>—n+17

is prime.
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Solution

We begin by trying a few positive integer values: f(1) = 17, f(2) = 19,
f(3) =23, f(4) =29, f(5) =37.

In each of these f(n) is prime, so we might be tempted to suspect that f(n) is
always prime and to wonder how this conjecture might be proved. A few more
examples might show some pattern developing and give us some insight into a
possible method of proof: f(6) = 47, f(7) = 59, f(8) = 73, f(9) = 89,
f£(10) = 107.

Since all of these are prime, our conjecture seems well founded and we may feel
sufficiently confident to commence the attempt to find a valid proof. However, a
little thought together with a degree of mathematical insight will save us wasting
our time. It is not too difficult to see that f(n) could not be prime for every
positive integer n. An obvious counter-example is:

FAH =172 =17+ 17
=17 x 17.

(For centuries mathematicians have attempted to find a formula which will
generate only prime numbers. Pierre de Fermat (1601-65) thought that he had
cracked the problem with the formula 22° + 1 where n is any integer. For
n = 0,1,2,3,4 the formula generates the integers 3, 5, 17, 257 and 65 537 all
of which are prime. However n = 5 gives 4294967 297 which has a factor 641.
Fermat’s conjecture was therefore disproved, although not until nearly 100 years
after his death when Euler discovered this counter-example.)

Exercises 2.2

1. Prove that the sum of two consecutive integers is odd.
2. Prove that, if n is an integer, n? is odd if and only if n is odd.
3. Prove directly that the product of two consecutive integers is even. Use

this result to prove that, if the quadratic equation x> + ax 4+ b = 0 has
solutions which are consecutive integers, then a is odd and b is even.

4. Prove that, if both solutions of x2 4+ ax + b = 0 are even integers, then a
and b are both even integers.

5. Prove that, if m and n and positive integers such that m is a factor of n
and n is a factor of m, then m = n.



Mathematical Induction 63

6. By proving the contrapositive, prove that, if n? is not divisible by 5, then
n is not divisible by 5.

7. Use proof by contradiction to prove that 1 4+ +/2 is not rational.

8. Prove or disprove that, if a, b and c are integers such that a is a factor of
b + ¢, then a is a factor of b or a is a factor of c.

9. Prove that, for any integer n, if n — 2 is divisible by four, then n? —4is
divisible by 16.

10. Prove that the smallest factor greater than 1 of any integer is prime.

2.4 Mathematical Induction

Despite its title, the method of proof known as ‘mathematical induction’ is not an
inductive proof! It could not be so because, as we have already pointed out, the
only acceptable mathematical proofs employ deductive reasoning. Induction has
a role in providing us with information as to what is likely to be true and hence
what is a reasonable conjecture. The problem with any proof is that we need to
know the result before we can commence proving it.

Many mathematical conjectures concern properties of the positive integers.
Consider, for example, the following problem: find a formula for the sum of
the first n odd integers. A useful starting point might be to write down the sums
for some small values of n and see if this gives us any idea as to what might be a
possible conjecture.

Forn =1, the sumis 1.

Forn =2,the sumis 1 + 3 = 4.

Forn = 3,the sumis1+3+5=0.
Forn =4,the sumis1 +3+5+7 = 16.

At this stage we notice that, so far, for each value of n, the sum is n%. We try a
few more to see if our conjecture is well founded.

Forn = 5, the sumis 16 + 9 = 25.
Forn = 6, the sumis 25+ 11 = 36.
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Inductive reasoning leads us to the conjecture that the sum of the first n odd
positive integers is n2. We must now find a proof, based on deduction, that this is
true for all positive integers n.

Mathematical induction is appropriate for proving that a result holds for all
positive integers. It consists of the following steps:

(a) Prove that the conjecture holds forn = 1.
(b) Prove that, for all k > 1, if the result holds for n = k, then it must also
hold for n = k + 1. This is known as the inductive step.

To prove the conditional proposition in (b), we call upon the techniques outlined
in the previous section. However, the inductive step is most commonly established
using a direct proof. We assume that the result holds for n = k. (This assumption
is sometimes known as the inductive hypothesis.) From this we deduce that it
also holds for n = k 4+ 1. Because it holds for n = 1, the inductive step allows
us to deduce that it holds for n = 2, n = 3, etc. The ‘principle of mathematical
induction’ allows us to conclude that the result therefore holds for all positive
integers n. (This principle is usually taken as an axiom of the positive integers.)

Principle of Mathematical Induction
Let S(n) be a proposition concerning a positive integer n. If

(a) S(1) is true, and
(b) for every k > 1, the truth of S(k) implies the truth of S(k + 1),

then S(n) is true for all positive integers n.

An analogy to the process of mathematical induction is an infinite line of fireworks
connected together so that each is set off by the previous one in the line. Although
it has been arranged that the kth firework will ignite the (k + 1)st, nothing happens
until we light the first firework in the line. This sets off the second, which sets off
the third and so on to the end of the (infinite) line.

Let us now subject our conjecture, that the sum of the first n odd positive integers
is n2, to proof by mathematical induction.
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Examples 2.7

1. Prove that the sum of the first n odd positive integers is n>.
Proof
We want to proof that

14+3+54+...=n2

<«~—n terms———

Note that the last term in the sequence is 2n — 1 so that we may write our
conjecture as
14+34+54--+Qn—1)=n%

We follow the steps:
(a) Prove that the conjecture is true forn = 1.

The sum of the first one odd integer is 1 and, forn = 1,1 = n2. So the conjecture
holds forn = 1.

(b) Assume that the conjecture is true for n = k where k > 1 and show that
this implies the truth of the conjecture forn = k + 1.

Suppose that 1 +3 454 - -+ (2k — 1) = k2. Adding the next odd integer, 2k + 1,
to each side of the equation, we have

143454+ 4+Qk—1)+Qk+1)=k>+ 2k + 1)
= (k+ 1>

The left-hand side of this equation is the sum of the first k41 odd numbers and we
have shown, using the inductive hypothesis, that this sum is (k + 1)2. Hence we
have shown that, if the conjecture holds for n = k, then it also holds forn = k+1.
But we have shown that it holds for n = 1, and, by the principle of mathematical

induction, it therefore holds for all positive integers 7. |

2. Prove that, for every positive integer 7, the expression 2712 4 32+1 jg
divisible by 7.

Proof

Let f(n) = 2"12 4 32n+1,

For n = 1, we have f(1) = 23 + 33 = 8 4+ 27 = 35 which is divisible by 7.
Hence the result holds forn = 1.
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Assume that, for some integer k > 1,

where a is an integer. (This is the inductive hypothesis.)

Now

flk+1)= 9 (k+1)+2 + 32(k+1)+1
_ k3 4 3243
— 2 X 2k+2 + 32 X 32k+1
=2 x 2k+2+9 x 32k+1'

At this point we need to use the inductive hypothesis, 2k*2 4 3%+1 = 74, to
substitute for either 22 or 32K+ (it doesn’t matter which).

So, substituting 3%*1 = 74 — 2%*2 gives

Flk+1)=2x 2% 4+ 9(7q — 242
=9 x Ta+2x 2% _9 x 2kt?
=79a — 2k+?%)
=7b where b =9a — 2k*2,

Since b is an integer, we can conclude that f(k 4 1) is divisible by 7. This
completes the inductive step.

Applying the principle of mathematical induction we deduce that 2+2 4 32+1 jg
divisible by 7 for all positive integers n. ]

3.

What is wrong with the following ‘proof’ by induction?
Conjecture: All computers are the same price.

‘Proof’: Let S(n) denote the proposition ‘any group of n computers are
the same price’.

Clearly S(1) is true.

Assume the truth of S(k), i.e. that any group of k computers are the
same price, and consider any collection of £ 4 1 (distinct) computers
denoted by Ci, Ca, ..., Ci, Cx+1. By the inductive hypothesis, all of
C1, Ca, ..., Cy are the same price and also C3, ..., Ck, Cyx4+1 are the
same price. Therefore all of Cy, C», ..., Ci, Cr41 are the same price.

Since Cy, Ca, ..., Ck, Cx+1 was any collection of k + 1 computers, we
have established the inductive step. Hence all computers are the same
price by mathematical induction.
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Solution

Empirical evidence shows that the ‘proved’ statement is false, so the proof
contains some error which must be in the inductive step.

The inductive step relies implicitly on the two groups of computers consisting
of C1,Ca,...,Crand Cy, ..., Ck, Cr+1 having members in common so that the
‘same price’ property can be transferred from the first group to the second. If
k > 2 this is indeed the case, so the inductive step is valid for k > 2. The problem
is that the implication ‘if S(1) is true then S(2) is true’ does not hold as the two
groups in question, C; and C;, do not have members in common.

The ‘proof’ is not valid because we have not established the inductive step for
everyk > 1.

Variations on the Principle of Mathematical Induction

There are various modifications which we can make to the inductive principle.
Suppose, for example, that we wish to prove that a proposition S(n) is true for
all integers greater than or equal to some fixed integer N. The following simple
modification to the principle of induction would achieve this.

(a) Prove that S(N) is true.
(b) Prove that, for every integer k > N, if S(k) is true, then S(k + 1) is true.

This is just the standard method of proof by induction except that we ‘begin’ at N
instead of 1.

Note that, even when required to prove S(n) for all positive integers, sometimes
it can be simpler to begin the induction at n = 0 rather than n = 1. If we do
begin with n = 0, we have in fact proved slightly more than was required, but no
one would quibble with that! In example 2.7.2 for instance, f(0) = 2> +3 =7,
which is clearly divisible by seven. Continuing with the inductive hypothesis and
inductive step as in the example would have shown that 2+2 + 327+1 js divisible
by 7 for all positive integers n and also for n = 0.

A more substantial modification of the inductive method is provided by the so-
called ‘second principle of induction’. The essence of this is that, when we come
to the inductive step, we assume that S(r) is true for all positive integers r less
than or equal to k, rather than just for k itself.
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Second Principle of Induction
Let S(n) be a proposition concerning a positive integer n. If
(a) S(1) is true, and
(b) for every k > 1, the truth of S(r) for all » < k implies the truth of
Stk+1),

then S(n) is true for all positive integers.

This second principle of induction may at first appear to be more general than the
first because we are allowed to assume rather more in order to deduce the truth of
S(k + 1). However, if we let T (n) be the proposition ‘S(r) is true for all positive
integers r < n’ then the two parts of the second principle are:

(a) T (1) is true, and
(b) for every k > 1, the truth of T (k) implies the truth of 7' (k + 1).

This is just the (first) principle of induction for the proposition 7'(n). Thus the
second principle is no more general than the first although it may be simpler to
use in the proofs of certain results.

We summarize the proof of S(n) (where n is a positive integer) using each of the
two principles of induction in the table below.

Assume Deduce
Proof of S(n) using the  (a) Background knowledge S
(first) principle of and
induction (b) S(k); background knowledge  S(k + 1)
Proof of S(n) using the  (a) Background knowledge S
second principle of and
induction ) S(1), SQ2), ..., Sk); Stk+1)

background knowledge

Example 2.8

Prove that every positive integer greater than 1 is either prime or can be expressed
as a product of prime numbers.
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(This is part of a result which has the grand name ‘the fundamental theorem of
arithmetic’. The complete statement of this theorem goes on to say that, for any
given positive integer, its expression as the product of primes is unique apart from
the order in which the prime factors are written.)

Proof

Since the proposition involves integers greater than 1, we begin the induction with
n = 2. The proposition clearly holds for n = 2 since 2 is itself a prime number.

Now suppose that every integer greater than 1 and less than or equal to k is either
prime or can be expressed as the product of prime numbers. Consider the integer
k + 1. There are two possibilities: either it is prime or it is composite (not prime).
If it is prime then there is nothing to prove.

If, on the other hand, k + 1 is composite, then it can be written as k + 1 = rs
where 2 < r < kand 2 < s < k. Now, by our inductive hypothesis, r and s
are prime or can be written as products of prime numbers: r = pyp>... p; and
s =4q1q92...qy wherethe p; i =1,2,...,t)andg; (j = 1,2, ..., u) are prime
numbers.

Hence
k+1=rs
=Pip2...-pPtq192 . .. qu

so that k4 1 can be expressed as the product of prime numbers. The result follows
by the second principle of induction. ]

Inductive Definitions

The use of the inductive principles is not confined entirely to proofs of
propositions about the positive integers; they can also be used to define
mathematical objects or properties which depend upon the positive integers.

Consider the following sequence of ‘Fibonacci numbers’+:

1,1,2,3,5,8,13,21, ...

+ Named after the Italian, Leonardo of Pisa (born c. 1170 and know as Fibonacci), who was reputed
to have used the sequence to model the increase in a population of rabbits over time. Unfortunately,
the model proved to be inaccurate; unrestrained rabbit populations increase more rapidly than the
Fibonacci numbers! However, over the years many ‘occurrences’ of this sequence have been noticed
in nature, art and architecture.
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Each number in the sequence after the first two is the sum of the two preceding
numbers. Denoting the nth Fibonacci number by f;, we can define the sequence
as follows:

fi=1, fr=1 and,forn >3, f= fu1+ fn-2.

This is an example of an inductive definition; we can think of it as a means of
making precise the ‘..." in the sequence of Fibonacci numbers defined above.
The astute reader will have noticed that the inductive definition does not quite
conform to the principles of induction stated above. To begin the inductive
definition, we need to define the first rwo Fibonacci numbers, rather than only
the first one. The following describes the general form of an inductive definition
of some mathematical object or property A, which depends on a positive integer

n.

Inductive Definition
To define A, for all positive integers:

(a) Define explicitly A fork =1,2,...,r.
(b) For k > r,define Ay interms of Ay, ..., Ax_1.

To prove propositions about some object or involving some property which has
been defined inductively, it is natural to use mathematical induction. We end
this chapter with an inductive proof (using the second principle) of a property
of Fibonacci numbers. Note that we need to begin the proof with an explicit
verification of the result for n = 1 and n = 2. (Why is this?)

Example 2.9

Let f, denote the nth Fibonacci number defined inductively above. Prove that
fno < 2m.

Proof

First note that fj = 1 <2 =2"and f = 1 <4 = 22, so the proposition is true
forn =1andn = 2.
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Now suppose that f, < 2" for all positive integers » < k. Then for k > 2,

fr+1 = fi + fr—1 (the inductive definition of f;,)
< 2k 4okt (by the inductive hypothesis)
< 28425 (since 2F-1 < 2k)
=2 x2k
— ok+1

This completes the inductive step. We conclude that f,, < 2" for all positive
integers n. u

Exercises 2.3

1. Prove that, for all positive integers n,

1+2—|—~o+n=%n(n+l).

2. Prove that 2" > n for all positive integers n.
3. Prove that, for all positive integers n, 5" — 1 is divisible by 4.
4, Prove that, for all non-negative integers n,
xH 1
I+x+x2+x3 4 fa =
x—1
where x is a real number, x # 1.
5. Prove that the sum of the squares of the first n positive integers is
nn+1)2n+1)
6 .
6. Prove that the sum of the cubes of the first n positive integers is
nin+17?
> .
7. For all positive integers n, A, is defined inductively as follows:
A1 =3

A, =A,_1+3 forn>2.
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10.

11.

12.

Mathematical Proof

Prove that A,, = 3n.

Prove that, for all integersn > 4,n! > 2". (n!=n(n — 1)(n —2)...1.)
Prove that the sum of the first n even integers is n(n + 1).

Prove that, for all positive integers n, 42"+ 4 372 is divisible by 13.

A, is defined inductively as follows:

A1 =6
Ay =11
A, =3A,_1—2A,_» forn > 3.

Prove that, forn > 1, A, =5 x on—l 41,
Show that, for the Fibonacci sequence,

fnz+2 - fnz-',-l =fufuyz n=12,....




Chapter 3

Sets

3.1 Sets and Membership

The notion of a ‘set’ is one of the basic concepts of mathematics—some would
say the basic concept. Those who have encountered sets in their previous study of
mathematics may be tempted to skip this chapter, regarding sets as rather trivial
objects. Our advice is: don’t! Set theory is non-trivial and we shall be using
set-theoretic terminology and concepts throughout the book.

We shall make no attempt to give a precise definition of a sett. However, we can
describe what we mean by the term: a set is to be thought of as any collection
of objects whatsoever. The objects can also be anything and they are called
elements of the set. The elements contained in a given set need not have anything
in common (other than the obvious common attribute that they all belong to the
given set). Equally, there is no restriction on the number of elements allowed in
a set; there may be an infinite number, a finite number or even no elements at
all. There is, however, one restriction we insist upon: given a set and an object,
we should be able to decide (in principle at least—it may be difficult in practice)
whether or not the object belongs to the set. Clearly a concept as general as this
has many familiar examples as well as many frivolous ones.

T In §2.2 we explained why undefined terms are necessary in mathematics. In an axiomatic treatment
of set theory, it is usual for ‘set’ to be undefined.

73
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Examples 3.1

1. A set could be defined to contain Picasso, the Eiffel Tower and the number
7. This is a (rather strange) finite set.

2. The set containing all the positive, even integers is clearly an infinite set.

3. Consider the ‘set’ containing the 10 best songs of all time. This is not
allowed unless we give a precise definition of ‘best’. Your best? Mine?
Without being more precise this fails the condition that we should be able
to decide whether an element belongs to the set.

Notation

We shall generally use upper-case letters to denote sets and lower-case letters
to denote elements. (This convention will sometimes be violated, for example
when the elements of a particular set are themselves sets.) The symbol € denotes
‘belongs to’ or ‘is an element of’. Thus

a € A means (the element) a belongs to (the set) A

and
a ¢ A means —(a € A) or a does not belong to A.

Defining Sets

Sets can be defined in various ways. The simplest is by listing the elements
enclosed between curly brackets or ‘braces’ { }. The two (well defined) sets in
examples 3.1 could be written:

A = {Picasso, Eiffel Tower, 7}
B=1{2,4,6,8,...}.

In the second of these we clearly cannot list all the elements. Instead we list
enough elements to establish a pattern and use ‘... to indicate that the list
continues indefinitely. Other examples are the following.

For a fixed positive integer n, C, = {1, 2, ..., n}, the set of the first n positive
integers. Again we use ‘...’ to indicate that there are elements in the list which
we have omitted to write, although in this case only finitely many are missing.
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D = { }, the empty set (or null set), which contains no elements. This set is
usually denoted &.

Listing the elements of a set is impractical except for small sets or sets where
there is a pattern to the elements such as B and C, above. An alternative is to
define the elements of a set by a property or predicate (see chapter 1). More
precisely, if P(x) is a single-variable propositional function, we can form the set
whose elements are all those objects a (and only those) for which P(a) is a true
proposition. A set defined in this way is denoted

A={x:PXx)}.
(This is read: the set of all x such that P(x) (is true).)

Note that ‘within A’—that is, if we temporarily regard A as the universe of
discourse—the quantified propositional function Vx P (x) is a true statement.

Examples 3.2

1. The set B above could be defined as B = {n : n is an even, positive
integer}, or B = {n : n = 2m, where m > 0 and m is an integer}, or, with
a slight change of notation, B = {2m : m > 0 and m is an integer}.

Note that, although the propositional functions used are different, the
same elements are generated in each case.

2. The set C,, above could be defined as C,, = {p : p is an integer and
1< p<nl

3. The set {1, 2} could alternatively be defined as {x : x2—3x42=0}. We
say that {1, 2} is the solution set of the equation x> — 3x + 2 = 0.

4. The empty set & can be defined in this way using any propositional
function P(x) which is true for no objects x. For instance, rather
frivolously,

& = {x : x is a green rabbit with long purple ears}.

5. X = {x : x is an honest politician} is not a set unless we define ‘honest’
more precisely.
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Equality of Sets

Two sets are defined to be equal if and only if they contain the same elements; that
is, A = BifVx[x € A < x € B]is atrue proposition, and conversely. The order
in which elements are listed is immaterial. Also, it is the standard convention to
disregard repeats of elements in a listing. Thus the following all define the same
set:

{1, —1,1066, 7}
{—1, 7, 1066, 1}
{1,—3,—3,7,1066, -3, 1}.
We should perhaps note here that there is only one empty set; or, put another way,

all empty sets are equal. This is because any two empty sets contain precisely the
same elements: none!

Also, if P(x) and Q(x) are propositional functions which are true for precisely
the same objects x, then the sets they define are equal, i.e.

x: P} ={x:0)).

For example, {x : (x — 1)2 =4} = {x : (x + )(x — 3) = 0}, since the two
propositional functions P(x) : (x — 1)? = 4 and Qx): (x+1(x—=3)=0are
true for precisely the same values of x, namely —1 and 3.

Definition 3.1

If A is a finite set its cardinality, |A|[, is the number of (distinct) elements
which it contains.

If A has an infinite number of elements, we say it has infinite cardinality,
and write |A| = oo.

Other notations commonly used for the cardinality of A are n(A), #(A) and Z

T There is a more sophisticated approach to cardinality of infinite sets which allows different infinite
sets to have different cardinality. Thus ‘different sizes’ of infinite sets can be distinguished! In this
theory the set of integers has different cardinality from the set of numbers, for example. See §5.5 for
more details of how this distinction can be made.
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Examples 3.3

1. |@| = 0 since & contains no elements.
2. |{m, 2, Attila the Hun}| = 3.

3. IfX ={0,1,...,n}then | X| =n+ 1.
4, {2,4,6,8,...}] = occ.

Although cardinality appears to be a simple enough concept, determining the
cardinality of a given set may be difficult in practice. This is particularly the
case when some or all of the elements of the given set are themselves sets. This is
a perfectly valid construction: the elements of a set can be anything, so certainly
they can be sets.

For example, let X = {{1, 2}}. Then X contains only a single element, namely
the set {1, 2}, so |X| = 1. It is clearly important to distinguish between the
set {1, 2} (which has cardinality 2) and X, the set which has {1, 2} as its only
element. Similarly, the sets @ and {@} are different. The latter is non-empty since
it contains a single element—namely &. Thus [{@}| = 1.

Examples 3.4

1. Let A = {1, {1, 2}}. Note that A has two elements, the number 1 and the
set {1, 2}. Therefore, |A| = 2.

2. Similarly,
{1,2,{1,2}}] = 3,
{2, {1,2}}] = 2,
Ha, {a}} =2,

{2, {2}, {1, 2}}] = 3,
{2, {2, {2}}} =2, etc.
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Exercises 3.1

b

1. List the elements of each of the following sets, using the ‘..." notation
where necessary:
@) {x : x is an integer and —3 < x < 4}
(ii))  {x : x is a positive (integer) multiple of three}
(iii) {x:x=y%?andyisan integer}
iv) {x:Bx-Dx+2)=0}
V) {x:x>20and Bx —1(x+2) =0}
(vi  {x:xisaninteger and 3x — 1)(x 4+ 2) = 0}
(vii) {x : x is a positive integer and 3x — 1)(x + 2) = 0}
(viii) {x : 2x is a positive integer}.
2. Let X = {0, 1, 2}. List the elements of each of the following sets:
(i) {z:z=2xand x € X}
(i) {z:z=x4+ywherex € Xandy € X}
(iii)) {z:x=z4+ywherex € Xandy € X}
(iv) {z:zeXor—ze€ X}
V) {z:z%2€ X}
(vi) {z:zisan integer and z> € X}.
3. Determine the cardinality of each of the following sets:
(i) {x : x is an integer and 1/8 < x < 17/2}
(ii)  {x:4/xis an integer}
(i) {x:xZ=1lor2x%2=1}
@iv) H{a,b,c,{a,b,c}}
v)  Aa,{b,c} {a,b,c}}
(vi)  {{a,b,c} {a, b, c}}
(vii) {a, {a}, {{a}}, {{{a}}}}
(viii) {@, {2}, {{2}}}.
4. Use the notation {x : P(x)}, where P(x) is a propositional function, to

describe each of the following sets.

@) {1,2,3,4,5}.

i)  {3,6,9,12,15,...,27,30}.

i) {1,3,5,7,9,11,...}.

Gav) {2,3,5,7,11,13,17,19,23,...}.
v) {a,e,i,o,u}.
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(vi)  The set of integers which can be written as the sum of the squares
of two integers.

(vii) The set of all integers less than 1000 which are perfect squares.

(viii) The set of all numbers that are an integer multiple of 13.

(ix) {Afghanistan, Albania, Algeria, ..., Zambia, Zimbabwe}.

(x) {Love’s Labour’s Lost, The Comedy of Errors, The Two Gentlemen
of Verona, ..., The Tempest, The Winter’s Tale, The Famous
History of the Life of King Henry VIII}.

3.2 Subsets

Definition 3.2

The set A is a subset of the set B, denoted A C B, if every element of A
is also an element of B. Symbolically, A C B if Vx[x € A — x € B]is
true, and conversely.

If A is a subset of B, we say that B is a superset of A, and write B D A.

Clearly every set B is a subset of itself, B € B. (This is because, for any given
X, X € B — x € B is ‘automatically’ true.) Any other subset of B is called a
proper subset of B. The notation A C B is used to denote ‘A is a proper subset
of B’. Thus A C Bifand onlyif A € B and A # B.

It should also be noted that @ C A for every set A. In this case definition 3.2 is
satisfied in a vacuous way—the empty set has no elements, so certainly each of
them belongs to A. Alternatively, for any object x, the proposition x € & is false
so the conditional (x € @) — (x € A) is true.

Examples 3.5

1. {2,4,6,...} € {1,2,3,...} € {0,1,2,...}. Of course, we could have
used the proper subset symbol C to link these three sets instead.
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2. Similarly: {women} C {people} € {mammals} C {creatures};
{War and Peace} C {novels} C {works of fiction};
{Mona Lisa} C {paintings} C {works of art}; etc.

Again, in each of these we could have used C instead.

3. Let X = {1, {2, 3}}. Then {1} C X but {2, 3} is not a subset of X, which
we can denote by {2,3} € X. However, {2, 3} is an element of X, so
{{2,3}} € X. Care clearly needs to be taken to distinguish between set
membership and subset, particularly when a set has elements which are
themselves sets.

To prove that two sets are equal, A = B, it is sufficient (and frequently very
convenient) to show that each is a subset of the other, A € B and B C A.
Essentially, this follows from the following logical equivalence of compound
propositions:

(P Q)=[(P—> QA (Q— P

We know that A = B if Vx(x € A <> x € B) is a true proposition. In chapter 2
we noted that to prove that a biconditional P < Q is true, it is sufficient to
prove both conditionals P — Q and Q — P are true. It follows that to prove
Vx(x € A < x € B) it is sufficient to prove both Vx(x € A — x € B) and
Vx(x € B— x € A). ButVx(x € A — x € B) is true precisely when A C B
and similarly Vx(x € B — x € A) is true precisely when B € A. In summary:

Theorem 3.1

Two sets A and B are equal if and onlyif A € B and B C A.

Examples 3.6

1. Show that {x : 2x2 4+ 5x —3 =0} C {x : 2x2 + 7x +2 = 3/x}.
Solution
LetA={x:2x2+5x—3=0}and B = {x : 2x%2 + 7x +2 = 3/x}.

We need to show that every element of A is an element of B. The equation
2x2 4 5x — 3 = 0 has solutions x = % andx = —3,50 A = {%, -3}
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Whenx =1,2x2+7x+2=14+1+2=6=3/x,505 € B.
Whenx = —3,2x2+7x +2=18-214+2 = —1 =3/x,s0 -3 € B.
Therefore every element of A is an element of B, so A C B.

2. Let A = {{1}, {2}, {1, 2}} and let B be the set of all non-empty subsets of
{1,2}. Show that A = B.

Solution

A C B since each of the three elements of A is a non-empty subset of {1, 2} and
therefore an element of B.

B C A since every non-empty subset of {1,2} (i.e. every element of B) is
contained in A.

Using theorem 3.1, we conclude that A = B.

3. Prove thatif AC BandC ={x :x € AV x € B},then C = B.
Solution

Let A C B. We will show that B € C and C C B.

Letx € B. Thenx € AV x € Bistrue,sox € C. Thus every element of B also
belongsto C,so B € C.

Now let x € C. Then either x € A or x € B (or both). However, if x € A then it
follows that x € B also, since A C B. Therefore in either case we can conclude
x € B. This shows that every element of C also belongs to B, so C C B.

We have now shown B C C and C C B, so theorem 3.1 allows us to conclude
that B = C.

Since the concept of a set is such a broad one, it is usual to restrict attention to only
those sets which are relevant in a particular context. For example, we would surely
wish to discount sets such as {Genghis Khan, Queen Boadicea, Attila the Hun}
in a study of expert systems! It is convenient to define some universal set which
contains as subsets all sets relevant to the current task or study. Anything outside
the universal set is simply not considered. The universal set is not something
fixed for all time—we can change it to suit different contexts. The universal set is



82 Sets

frequently denoted 7. The universal set is, of course, essentially the universe of
discourse introduced in chapter 1.

Some special sets of numbers which are frequently used as universal sets are the
following.

N = {0, 1, 2, 3, ...} the set of natural numbers.

Z=1{..,-2,—1,0,1,2,...} the set of integers.

Q=1{p/q: p,q € Z and q # 0} the set of fractions or rational numbers.

R = the set of real numbers; real numbers can be thought of as corresponding
to points on a number line or as numbers written as (possibly infinite)
decimals.

C={x+iy:x,y € Randi? = —1} the set of complex numbers.
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Clearly the following subset relations hold amongst these sets:
NCZCQCRCC

Also frequently used are Z+, Q" and R*, the sets of positive integers, rational
numbers and real numbers respectively. Note that N is not equal to Z™ since 0
belongs to the former but not the latter. In addition, we shall sometimes use [E and
O to denote the sets of even and odd integers respectively:

E={2n:neZ}={..,—4,-2,0,24, ..}
O=02n+1:neZ}={..,—3,—1,1,3,5,...}.

+ The notation Z comes from the German word for numbers: Zahlen.
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If a universal set has been defined the notation {x : P(x)} means the set of all x in
the universal set satisfying the property P (x). Therefore if our current universal
setis Z then X = {x : 2x2 + 3x — 2 = 0} is the set {—2}, but if % is Q or R then
X ={-2, %}. In the former case we would probably make the restriction more
explicit and write

X={x:xeZand2x*+3x—2=0}

or, using a slight but useful abuse of the notation,

X={xeZ:2x>+3x —2=0).

Exercises 3.2

State whether each of the following statements is true or false.

)
(ii)
(iii)
@iv)

@

(ii)

2€{1,2,3,4,5) V) @cC{o (o))
{2} €{1,2,3,4,5} i) {@g} o, {g}}
2C{1,2,3,4,5) i) O0eo

{2} € {1,2,3,4,5} (viii) {1,2,3,4,5} =1{5,4,3,2, 1}.

List all the subsets of:

(@ {a.b}
(®)  {a.b,c}
(© f{a}.

Can you conjecture how many subsets a set with n elements will
have?

Does the empty set have any subsets? Explain your answer. Is
your answer consistent with your conjecture from part (i)?

In each of the following cases state whether x € A, x € A, both or

neither:

i x={1}; A={1,2,3}

() x={1}; A = {{1}, {2}, (3}}
(i) x={1}); A=1{1,2,{1,2}}
(v) x=1{1,2}); A={1,2{1,2}}
(v) x={1} A= {{1,2,3}}
(vi) x=1 A= {{1}, {2}, {3}}.
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4. Given that X = {1, 2, 3, 4}, list the elements of each of the following
sets:

@) {A:AC Xand |A| =2}
() {A:ACXand|A| =1}
(iii) {A : A is a proper subset of X}
iv) {A:AC Xandl1 € A}.

5. Let % = {x : x is an integer and 2 < x < 10}. In each of the following
cases, determine whether A C B, B C A, both or neither:

@) A = {x : x is odd} B = {x : x is a multiple of 3}
(i) A = {x : x is even} B = {x : x% is even)
(iii) A = {x:xiseven} B = {x : x is a power of 2}
iv) A={x:2x+1>7) B = {x : x% > 20}
V) A={x:/xeZ} B = {x : x is a power of 2 or 3}
vi) A={x:/x<2) B = {x : x is a perfect square}
(vii) A={x:x2—=3x+2=0} B={x:x+7isa perfect square}.
6. In each of the following cases, prove that A C B:
i A={x:2x2+5x =3}
B ={x:2x2+17x +27 = 18/x}
(i) A = {x :xisapositive integer and x is even}
B = {x : x is a positive integer and x? is even}
(iii) A = {x : x is an integer and x is a multiple of 6}
B = {x : x is an integer and x is a multiple of 3}.
7. Let A be any set and P (x) be any propositional function.

@) Prove that B = {x : x € A and P(x)} is a subset of A.
If B C A what can you deduce about P (x)?
If A = B what can you deduce about P (x)?

(ii) Provethat A isasubsetof C = {x :x € A or P(x)}.
If A C C what can you deduce about P (x)?
If A = C what can you deduce about P (x)?
8. Prove that,if AC BandC ={x :x € A Ax € B}, then C = A.

9. Prove that, if A and B have no elements in common and C = {x :
x € AAx € B}, thenC =g.

10. @) Prove that,if A C Band B € C,then A C C.
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(ii)) Deduce that,if AC B,BC CandC C A,thenA =B =C.

11. Given that A = {1, 2, 3,4}, determine the cardinality of each of the
following sets:

@) {B:BC Aand|B| =2}
(ii)) {B:BZ<C Aand1 € B}
(i) {B:B < Aand{l,2}C B}
iv) {B:B C Aand{l,2}C B}.

12. (Russell’s paradoxf.) Consider the ‘set’ R of all sets which are not
elements of themselves. That is,

R={A:Aisasetand A ¢ A}.

Find a set which is an element of R. Can you find a set which is not an
element of R?

Explain why R is not a well defined set. (Hint: is R itself an element of
R?)

3.3 Operations on Sets

The Venn diagram: is a useful visual representation of sets. In such a diagram
sets are represented as regions in the plane and elements which belong to a given
set are placed inside the region representing it. Frequently all the sets in the
diagram are placed inside a box which represents the universal set. If an element
belongs to more than one set in the diagram, the two regions representing the sets
concerned must overlap and the element is placed in the overlapping region. In
this way the picture represents the relationships between the sets concerned.

7 Bertrand Russell, celebrated mathematician, logician, philosopher, politician, peace campaigner,
Nobel laureate, etc!, communicated this paradox to his fellow mathematician Frege in 1902 just as
Frege had completed a major work in set theory. This and other paradoxes which struck at the heart
of set theory created turmoil in the foundations of mathematics at the time.

% Named after John Venn, the nineteenth-century English mathematician. In fact, diagrams such as
figure 3.1 are more properly called ‘Euler diagrams’ after Leonhard Euler who first introduced them
in 1761. Although both Venn and Euler had precise rules for constructing their diagrams, today the
term ‘Venn diagram’ is used informally to denote any diagram that represents sets by regions in the
plane.
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For example, if A C B the region representing A may be enclosed inside the
region representing B to ensure that every element in the region representing A is
also inside that representing B; see figure 3.1.

. T |

Figure 3.1

Example 3.7

The sets A = {Ann, Alan, Fred, Jack, Mark, Mary, Ruth}
B = {Ann, Janet, Margaret, Mary, Ruth}
C = {Margaret, Mark, Mary, Matthew, Molly}
can be represented by the Venn diagram shown in figure 3.2.

Given sets A and B we can define two new sets as follows.

The intersection of A and B is the set of all elements which belong both to A
and B—itis denoted A N B.

The union of A and B is the set of all elements which belong to A or to B or
to both—it is denoted A U B.

Symbolically:

ANB={x:x € Aandx € B}
AUB ={x:x € Aorx € B orboth}.

There are obvious connections between intersection of sets and conjunction
of propositions, and between union of sets and (inclusive) disjunction of
propositions. If A and B are defined by propositional functions P(x) and Q(x)
respectively, then

ANB={x:Px)AQx)}
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o

Figure 3.2

and

AUB ={x: P(x)V Q(x)}.

These sets can best be visualized by the following Venn diagrams (figures 3.3

and 3.4 respectively) where the regions representing intersection and union are
shaded.

B

i

Figure 3.3

Clearly we can extend the definitions of intersection and union to more than two
sets. Let Ay, Ap, ..., A, be sets.
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ALY

Figure 3.4

Their intersection is:

n
mA,:AlﬂAzﬂmﬂAn
r=1

={x:x€eAjandx € Arand... and x € A,}
= {x : x belongs to each set A, forr =1,2,...,n}.

Their union is:
n

UA,:AIUAQU---UA,,
r=1

={x:x€eAjorx € Ayor...orx € A,}

= {x : x belongs to at least one set A,,r =1, ..., n}.

Sets A and B are said to be disjoint if they have no elements in common; that is,
if AN B = @. In a Venn diagram this may be represented by drawing the regions
representing the two sets to be non-overlapping, as in figure 3.5.

|

Figure 3.5
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Of course, it is important that a universal set has
: = P(x)}. The Venn diagram shown in figure 3.6

A ={x:P(x)}then A = {x
illustrates the complement.

Given a set A, another set we can define is its complement which consists of
denoted A (or A’ or A°).

all those elements in % which do not belong to A. The complement of A is
There is an obvious connection between complement and negation; namely, if

already been defined; otherwise the complement will not be a well defined set.

A—B={x:x€eAandx ¢ B}=ANB.
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3.7

Figure

Related to the complement of a set is the difference or relative complement of
two sets A and B, denoted A — B or A \ B. This set contains all the elements of

A which do not belong to B:
Note that the complement of A is given by A

illustrated in figure 3.7.
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Examples 3.8

1. Let% ={1,2,3,...,10) ={n:n e Z%and n < 10},
A={ne?% :1<n<T7}
B = {n € % : nis a multiple of 3}.

Then A = {1,2,3,4,5,6} and B = {3, 6, 9}.

Therefore:
ANB = {3,6}
AUB =1{1,2,3,4,5,6,9)
A—B={1,2,4,5)
B—A={9)

A=1{7,8,9,10}

B =1{1,2,4,5,7,8,10}
AUB=1{7,8,100=ANB
ANB=1{1,2,4,5,7,8,9,100=AUB
A—B=1{3,6,7,8,9,10} = AU B.

2. @) For each of the following, draw a Venn diagram and shade the

region corresponding to the indicated set.
@ A—-(BNC) ®) (A-—B)UuA-0).

(i1) Showthat A—(BNC)=(A—B)U(A—C)forall sets A, B and
C.

Solution

@) (a)  The region representing A — (B N C) is that part of A that lies
outside B N C. This is represented by the following diagram.
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(b)  Inthe following diagram, the regions representing A—B and A—C
are shaded differently. Then (A — B) U (A — C) is the region which
has either shading.

o

o A- B

LA N

(i1) In the diagrams above, the region representing A — (B N C) in part (a)
is the same as that representing (A — B) U (A — C) in part (b). This
suggests that the two sets are equal. However, a pair of diagrams does not
constitute a proof, so we now prove this using the technique suggested by
theorem 3.1.

Let A, B and C be sets.
First we show A — (BN C) C(A—B)U (A - C).

Letx € A—(BNC). Thenx € Aandx ¢ BNC. Hence x € A and either
x ¢ Borx ¢ C (or both). Therefore eitherx € Aandx ¢ Borx € A
and x ¢ C (or both). It follows that x € A — Borx € A — C (or both).
Hence x € (A — B)U (A — C). We have shown thatif x € A — (BN C)
thenx € (A—B)U(A—C). Therefore A—(BNC) C (A—B)U(A-C).

Secondly we must show that (A —B)U(A—-—C) C A—(BNC).

Letx e (A—B)U(A—-C). Thenx € A— Borx € A — C (or both) so
xe€Aandx ¢ Borx € Aand x ¢ C (or both). Hence x € A and either
x ¢ Borx ¢ C (or both) which implies x € A andx ¢ BN C. Therefore
x € A— (BN C). We have shown that if x € (A — B) U (A — C) then
x € A—(BNC). Therefore (A—B)U(A—C)C A—(BNCOC).

Finally, since we have shown that each set is a subset of the other, we
may conclude (A —B)U(A—-C)=A—-(BNC(C).

Exercises 3.3

1. Draw Venn diagrams and shade the regions representing each of the
following sets:
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i ANB

(i) AUB

(iii) (ANB)U(AUB)
(ivy AN(BUC)

(v) AU(BNC)

(vi) (ANB)-C

(vii) A—(BNC)
(viii) (AUB)—C

(ixy A—(BUC)

x) (A=B)N(A-C).

LetZ ={n:neNAn <10}, A = {2,4,6,8}, B = {2,3,5,7},
C = {1,4,9}. Define (for example, by listing elements) each of the
following sets.

i) ANB (vii AN(BUC)
(i) AUB (vi) BUB
(i) A-B (vii) BNB
(ivv BNC (ixy AUC
vy ANB (x) (A—-C)—B.

Consider the sets A, B, C, D and E represented by the following Venn
diagram. (The sets C and E are represented by shaded regions.) For each
of the following pairs of sets X and Y, state whether X C Y, Y C X,
X NY = & or none of these.

i) X=AUB Y=C
(i) X=ANB Y=D
(i) X=ANB Y=C
(ivy X=E Y=AND

(v X=BNC Y=CUD
(vi X=ANE Y=DUE
(i) X=CUE Y=AUD
(viii X=C—-B Y=DUE
(ix) X=AUD Y=BNE
x) X=A—-E Y=A-D.
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Let7z ={1,2,3,...,9,10} and define sets A, B, C and D as follows.

A=1{2,4,68,10 B=1{3,4,5,6)
C=1{7,8,9,10} D =1{1,3,5,7,9}.

List the elements of each of the following sets.

i) AUB (vi) BNC

i AND (vii) A—(BNC)

(i) BUC (ix) (A—B)U(D-C)
(ivy AN(BUD) x) D-C

(v) BU(AND) (xiy (AUB)—(AUB)
(vii (CND)UB (xii) (C—A)N(A-0).

Let ={neZ:1<n< 12, A= {n: nisa divisor of 12},
B = {n : nis a prime number} and C = {n : n is odd}. (Recall that 1 is
not a prime number.)

@) Describe in words each of the following sets:

(a ANB
b)) ANBNC
() BNC
d A-C.
(i)  List the elements of each of the following sets:
(a AUB
b) BNC
(c) AUC
d C-A
(e) ANB.
Giventhat A = {x : P(x)}
B ={x:0(x))}
C={x:Rx)}

define each of the following sets in terms of P(x), Q(x) and R(x) (and
logical connectives):

i ANB
(i) AUB
(i) AN(BUC)
(ivv A—B

(v), A—(BUC)
(vii A—B.

b
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7. For each of the following, draw two Venn diagrams. On one diagram
shade the region represented by the set on the left-hand side of the
equality and on the other diagram shade the region represented by the
set on the right-hand side of the equality. Then prove that the identity for
all sets A, B and C.

i) A—B=A—(ANB)

() ANB-C)=(ANB)—C

(iii) (AUB)—C=(A—C)U(B—C)
(ivy AUB-C)=(AUB)—(ANC)
V) (A—B)—C=A—(BUO).

3.4 Counting Techniques

Some quite complex mathematical results rely for their proofs on counting
arguments: counting the numbers of elements of various sets, the number of ways
in which a certain outcome can be achieved, etc. Although counting may appear
to be a rather elementary exercise, in practice it can be extremely complex and
rather subtle. Mathematicians have devised a number of techniques and results to
deal with counting problems in a branch of the subject called enumeration theory.

One of the simplest counting results is the following, which says that to count
the total number of elements of two disjoint sets A and B, we simply count the
elements of A, count the elements of B and add them.

Counting Principle 1

If A and B are disjoint sets, then

IAUB| = |A| + |B|.

In many applications, of course, more than two sets are involved. The above
principle easily generalizes to the following, which can be proved formally using
mathematical induction (see chapter 2).
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Counting Principle 2

If Ay, Aa, ..., A, are sets, no pair of which have elements in common,
then
[ATUA U - U Ap| = |A1] + |A2| + -+ - + Ayl

Frequently, the sets whose elements are to be counted will not satisfy the rather
stringent condition of the counting principles above—that any pair of them be
disjoint. However, in these situations it is often possible to divide the set
under consideration into subsets which do satisfy the conditions of the counting
principles. One of the simplest results which can be proved in this way is the
following.

Theorem 3.2 (The inclusion-exclusion principle)

If A and B are finite sets then

|AUB| = |A|+ |B| — |AN B.

Proof

We can divide A U B into its subsets A — B, AN B and B — A which satisfy the
condition of counting principle 2; see figure 3.8.

A

o \\\\\\ i
R LA Sy
L
SRR

A=-F ™y iooA
Figure 3.8

Therefore, by counting principle 2,

JAUB| =|A—B|+|ANB|+|B — Al (1)
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The sets A and B can themselves be split into disjoint subsets A — B, A N B and
B — A, AN B respectively. Thus

|A| =]1A—B|+|ANB| 2)

and
|B| =|B — A|+ |ANB|. 3)

It is now a simple exercise to combine equations (1), (2) and (3) to produce the
desired result. |

The inclusion—exclusion principle is so called because to count the elements of
A U B we could have added the number of elements of A and the number of
elements of B, in which case we have included the elements of A N B twice: once
as elements of A and once as elements of B. To obtain the correct number of
elements in A U B, we would then need to exclude those in A N B once, so that
overall they are just counted once.

There are corresponding identities for more than two sets. The result for three
sets is theorem 3.3, the proof of which we leave as an exercise.

Theorem 3.3

If A, B and C are finite sets, then

|JAUBUC| =|A|+|B|+|C|—|ANB|—|BNC]|
—|CNAl+]ANBNC]|.

Example 3.9

Each of the 100 students in the first year of Utopia University’s Computer
Science Department studies at least one of the subsidiary subjects: mathematics,
electronics and accounting. Given that 65 study mathematics, 45 study
electronics, 42 study accounting, 20 study mathematics and electronics, 25 study
mathematics and accounting, and 15 study electronics and accounting, find the
number who study:

@) all three subsidiary subjects;
(i) mathematics and electronics but not accounting;
(iii)  only electronics as a subsidiary subject.
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Solution

Let % = {students in the first year of Utopia’s Computer Science Department}
M = {students studying mathematics}
E = {students studying electronics}
A = {students studying accounting}.

We are given the following information: |%| = 100, |M| = 65, |E| = 45,
|[Al =42, IMNE|=20,|MNA|=25,]ENA| = 15. Also, since every student
takes at least one of three subjects as a subsidiary, Z = M U E U A.

Let [M N E N A| = x. Figure 3.9 shows the cardinalities of the various disjoint
subsets of . These are calculated as follows, beginning with the innermost
region representing M N E N A and working outwards in stages.

pA
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Figure 3.9

By Counting Principle 1,

IMNA =|MNANE|+|(MNA)—E|

SO
(MNA)—E|=IMNA—IMNANE|=25—x.
Similarly
(MNE)—A|l=IMNE|—IMNENA|=20—-x
and

ANE)—M|=|ANE|—|IMNENA|=15—x.

Now consider set M. By Counting Principle 2,

M| =M —(AUE)|+|(MNA)—E|+|(MNE)—A|+|MNENA]
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SO
M —(AUE)|=|M|—|(MNA)—E|—|(MNE)—Al—|MNENA|
=65—-(25—x)— (20 —x) —x
=20+ x.
Similarly
[A—(MUE)|=|Al—|(ANM) —E|—|(ANE)—M|—|MNENA|
=42—-25—x)—(15—x)+x
=2+4x
and

|[E—(MUA)|=|E|—|[(ENM)—A|—|(ENA) —-—M|—|MNENA]|

=45—-20—x)—(15—x)+x
=10+ x.

Now, using Counting Principle 2 again, |[M U A U E| = 100 is the sum of the

cardinalities of its seven disjoint subsets, so:

100=204+x)+24+x)+10+x)+ (25 —x)
+20—-x)+(A5—-x)+x

= 100 =92 + x

= x =8.

We could now re-draw figure 3.9 showing the cardinality of each disjoint subset

of M U A U E. However, this is not necessary to answer the three parts of the
question.

@) Eight students study all three subsidiary subjects.

(i) The number of students who study mathematics and electronics but not
accountingis (M NE) — A|=20—-x =20—8 = 12.

(iii)  The number of students who study only electronics as a subsidiary subject
iS|E—(MUA)|=104+x=10+8=18.

3.5 The Algebra of Sets

From example 3.8.1 and exercise 3.3.7 above, it is clear that the intersection,
union, complement (and hence difference) operations on sets are related to one
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another. For instance,
ANB=AUB

for the sets defined in example 3.8.1. In fact, this equation holds for all sets.

We give below the basic identities connecting the operations of intersection,
union and complement. Compare these with the laws for propositions given in
§1.5. Given the connection between operations on sets and logical connectives
between propositions, each of the set theory laws listed below can be derived
from the corresponding logical equivalence between compound propositions. The
following laws hold for all sets A, B and C.

ldempotent laws

ANA=A
AUA=A.

Commutative laws

ANB=BNA
AUB =BUA.

Associative laws

ANMBNC)=(ANB)NC
AU(BUC)=(AUB)UC.

Absorption laws

AN(AUB)=A
AU(ANB) = A.

Distributive laws

ANBUC)=ANBUANC)
AUMBNC)=AUB)NAUCQC).
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Involution law

A=A
De Morgan’s laws
(AUB)=ANB
(ANB)=AUB
Identity laws
AU =A
ANU = A
AVU =U
ANG =0.
Complement laws
AUA=%
ANA=0
=U
U =@

Although these laws can be derived from the corresponding equivalences between
propositions, they are probably best illustrated using Venn diagrams. For
example, the second of the distributive laws is illustrated by the Venn diagram
in figure 3.10. The Venn diagram of figure 3.10(a) shows the set AU (B N C). In
figure 3.10(b), the two sets A U B and A U C are shaded differently, so the double
shading represents their intersection (A U B) N (A U C). The regions shaded in
figure 3.10(a) and doubly shaded in figure 3.10(b) are the same, indicating that
the two sets are equal.

The other laws may be illustrated similarly. For example, figure 3.11 explains the
first of De Morgan’s laws.

In figure 3.11(a) the complement of A U B is shaded and in figure 3.11(b) A and
B are shaded, the double shading representing A N B. The double-shaded area in
(b) is the same as the shaded area in (a) indicating that the two sets represented
are equal.
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The Duality Principle

Just as a compound proposition involving the connectives A, Vv and negation has
a dual proposition, so, too, does a statement about sets which involves N, U and
complement. The dual of such a statement is obtained by interchanging N and
U everywhere and interchanging & and % everywhere in the original statement.
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For example, the dual of

(ANDYUBNU)UB=U

18

= .

(AUZ)YN(BUZ)N B

For each of the laws of the algebra of sets, its dual is also a law. This suggests the

following duality principle for sets which, although not a mathematical theorem,

is extremely useful.

Duality Principle for Sets

If a statement about sets is true for all sets then its dual statement is

necessarily true for all sets also.

Exercises 3.4

For each of the following set identities, draw a pair of Venn diagrams (as

in figures 3.10 and 3.11) to illustrate the identity.

ANMBUC)=(ANB)UANCQC)

@

BUA

A—-B

(ii)
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(ili)y ANB=AUB
ivv (A—B)NC=(ANC)—B
vy (A—B)U(B—A)=(AUB)—(BNA).

For each of the following nine sets, draw a Venn diagram and shade the
region corresponding to the set. Use your diagrams to identify which sets
are equal.

i) AUB (ivy A—(ANB) (vi) (A= B)U (B —A)
(i) A—B (vv ANB (viii) (AUB)— (AN B)
(iii) AUB (vii BUA (ixy ANB.

For each of the following four sets, draw a Venn diagram and shade the
region corresponding to the set. Use your diagrams to identify which sets
are equal.

@ (ANB)UANC) (i) (ANC)—B
() (A-B)NC (v) AN(BUC).

The laws for the algebra of sets can sometimes be used to give proofs
of set identities that are simpler than showing each set is a subset of the
other (the method used in example 3.8.2(ii)). For example, the following
is an alternative proof of the result in example 3.8.2(ii).

Proof

For all sets A, B and C:

A—(BNC)=AN(BNC) (definition of difference)
=AN(BUC) (De Morgan’s law)
=(ANBYUANC) (distributive law)
=(A—-B)UB-0) (definition of difference).

In a similar way, prove each of the identities given in exercises 3.3.7.

The symmetric difference A % B of sets A and B is defined by:

AxB=(A—B)U(B - A).

@) Using the laws for the algebra of sets, show that, for every set A,
Axd=AandAx A =0.

(ii))  Draw Venn diagrams to illustrate the identity

AN(B*C)=(ANB)*(ANC).
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10.

(This is called the distributive law: we say that intersection is
distributive over symmetric difference.)

(iii)) Find a counter-example to the proposition that, for all sets A, B
and C,
AUB*xC)=(AUB)*x(AUC).

(This shows that union is not distributive over symmetric
difference.)

@) Find sets A and B suchthat A € B and A C B.
(ii)) Find sets A, B and C suchthat (A € Band B C C)and (A C B
and B € C).

Write down the dual of each of the following statements:

i) ANB=(AUB)
(i) AUBN%)=(AUZ)UB
(i) ANB=2.

Note that if statement (iii) is true its dual may not also be true. Explain
why this fact does not violate the principle of duality.

Use theorem 3.2, the counting principles and the algebra of sets to prove
theorem 3.3.

Given that |A| = 55, |B| = 40, |C| = 80, |ANB| = 20, |ANBNC| = 17,
|BNC| =24,and |AUC| = 100, find:

@H 1ANC]
(i) |C—B|
(i) |(BNC)—(ANBNCO).

Draw a Venn diagram and mark on it the cardinalities of the sets
corresponding to each region of the diagram.

If|%| = 150 find [AU B U C|.

In a survey of 1000 households, 275 owned a home computer, 455 a
video, 405 two cars, and 265 households owned neither a home computer,
nor a video, nor two cars. Given that 145 households owned both a home
computer and a video, 195 both a video and two cars, and 110 both two
cars and a home computer, find the number of households surveyed which
owned:

(1) a home computer, a video and two cars;
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(ii))  avideo only;
(iii) two cars, a video but not a home computer;
(iv)  avideo, a home computer but not two cars.

11. In a certain village, there are three sports clubs: the soccer club, the rugby
club and the cricket club. Everyone who belongs to the cricket club
also belongs to the soccer club or rugby club (or both). The following
additional information is known:

42 people belong to the soccer club;

45 people belong to the rugby club;

7 people belong to both the soccer and rugby clubs;

11 people belong to both the soccer and cricket clubs;

28 people belong to both the rugby and cricket clubs;

twice as many people belong only to the soccer club as belong only to
the rugby club.

Find the number of people in the village who belong to
@) all three clubs

(ii)  the cricket club
(iii)  only the soccer club.

3.6 Families of Sets

In section 3.3, we defined the intersection and union of a collection of n sets as
follows:

n

ﬂArzAlﬂAzﬂ---ﬂAnz{x:xeArforeachrzl,Z,...,n}
r=1

and

n
UA,:AlLJAzU---UAn:{x:xeArforsomerz1,2,...,n}.

r=1

In this section we turn our attention to more general ‘families’ or ‘collections’ of
sets which will include the case where there are infinitely many sets in the family.
By a family or collection of sets, we really mean a set of sets, although the terms
‘family of sets’ or ‘collection of sets’ are both in widespread use and we shall use
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the three terms interchangeably. Before we can consider intersections and unions
of arbitrary families of sets, we need first to describe carefully what we mean by
such a family.

In the examples above, we have defined the intersection and union of the
family (or set) of sets {A1, Az, ..., Ap}. In this family, the integers 1,2,...,n
serve as labels to distinguish the various sets in the collection. In principle,
any collection of labels would be suitable; for example, if we were to

choose Alice, Bob, ..., Nina as labels, then we could write the family as
{Axtice, ABobs - - - » Anina}- In practice, the labels 1, 2, . . ., n are usually preferable.
Whatever labels we choose form an indexing set or labelling set / for the
collection. For the collection {Aj, Az, ..., Ay}, the indexing set is I =
{1,2,...,n} and we can write the family as

{Aiiiel}={A1, Az ..., An}.

Using this idea of indexing set, we can define more general families of sets.
For example, any collection of sets that has Z* as the indexing set will contain
infinitely many sets, one corresponding to each positive integer:

(A, r e ZTY = {A}, As, A3, .. ).

If the set of real numbers R is the indexing set then the resulting family of sets
{A, : r € R} also contains infinitely many sets, but this time we cannot list them
even in an infinite list (see §5.5 for further details of the quantitative difference
between the infinite sets Z and R).

An arbitrary family of sets is of the form .% = {A; : i € I} where [ is any
(indexing) set; in such a collection .7, there is exactly one set A, for each element
r of the indexing set /. Recall that the indexing set is just a collection of labels for
the sets in the family %. It is now straightforward to modify the definition given
at the beginning of the section and define the intersection and union of the family
F as follows:

ﬂAi ={x:x € A;foralli € I}

iel
UAi ={x:x € A; forsomei € I}.
iel
Examples 3.10
1. The definitions given above for intersection and union of arbitrary

families of sets include as special cases our previous definitions for finite
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collections of sets. For example, let I = {1, 2}. A corresponding family
of setsis {A1, A2}. Now

ﬂA,-={x:xeA,-fori=1andi=2}={x:x6A1andxEAZ}
iel
=A1NA

UAiz{x:xeAiforizlori=2}={x:xeA10rxeA2}
iel
= A1 UAj.

So the definitions above agree with our previous definitions of
intersection and union of two sets.

Let/ = 7%t =1{1,2,3,...},and foreachi € Z* let A; = {i}. Thus
A1 = {1}, Ay = {2}, etc. Therefore

ﬂ Ai=2 and (] Ai={1.2.3,..}=2".

ieZ™* ieZ*

When the indexing set is Z* we frequently write

o0 o0
ﬂAi for m A; and UAi for U Aj.
i=1 i=1

ieZ+ ieZ+

Let ] = Z% and foreachn € Ztlet A, = {k € Z : k < n}. Thus:

Al=lkeZ: k<l}={..,-3,-2,-1,0,1}
Ay=1lkeZ k<2 =1{..,—-3,-2,—-1,0,1,2}
Ay=1lkeZ k<3 =1{..,—3,-2,—1,0,1,2,3}, etc.

Then
o
ﬂA,,={keZ:k<nfora11neZ+}={keZ:kg1}=A1.
n=1

Note that the family satisfies A} C A) T A3 C---C A, C A1 S+
o

Whenever this is the case, we have [ A, = Aj.
n=1

Now
o0

UAn:{keZ:kgnforsomeneZJr}.
n=1
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Note that every integer k satisfies k < n forsomen € Z*: ifk > 0 we
may take n = k, and if £ < 0 we may take n = 1. Therefore every integer
k belongs to the union of the family so

o
Ja=2.
n=1

Let I = R, the set of real numbers, and for each m € I let A,, be the
set of points in the plane which lie on the line of gradient m which passes
through the origin (0, 0)—figure 3.12. That is,

Am = {(x,y) : x and y are real numbers and y = mx}.

Note that in this case we cannot list the sets in the family {A,, : m € R},
even in an infinite list. This is because the real numbers themselves
cannot be listed in an infinite list x, xp, x3, ... (see §5.5).

Figure 3.12

Then
() An = 10,00}
mel
since the origin (0, 0) is the unique point common to all such lines.

The union

U An

mel
is the whole plane except the positive and negative parts of the y-axis.
Points on the y-axis (except the origin) do not occur in the union because
none of the lines A,, are vertical. The union of the sets A,, can also be
defined by

{(x,y) : x and y are real numbers and x 7= 0} U {(0, 0)}.
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Power Set

Given any set A we can define the set consisting of all subsets of A. Called the
‘power set of A’, this is almost certainly the most widely used and important
example of a family of sets.

Definition 3.3

Let A be any set. The power set of A, denoted £2(A), is the set of all
subsets of A:

P(A) ={B:B C A}.

Notice that the power set of any set A contains & and A since both are subsets of
A. In particular the power set is necessarily non-empty.

The following theorem shows how the power set is related to subset, intersection
and union.

Theorem 3.4
For all sets A and B:
@) A C B if and only if Z(A) C #(B).

(i1) PA)N P (B)=F(AN B).
(iii) P(A)U P(B) C (AU B).

Proof

We shall prove part (i) as an illustration; the proofs of parts (ii) and (iii) are left as
exercises.

To prove the biconditional statement we prove the two conditional statements:
ACB= YA HB) and H(A) S ¥(B)= ACB.

Firstly, suppose A € B. We must show that Z(A) C #(B),solet X € #Z(A).
This means X C A. Since A C B, it follows from exercise 3.2.10(i) that X C B,
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which means that X € Z(B). Since X € Z(A) implies X € #(B), we
conclude that #(A) C & (B), which completes the first half of the proof.

To prove the converse statement, suppose Z(A) € Z(B). Since A € Z(A), it
follows that A € & (B). This means that A C B, which completes the proof. H

Examples 3.11

1. P (D) = {@}
Play = {2, {a}}
Pla, b} = {2, {a}, {b}, {a, b}}
Pla, b, c} ={9, {a}, {b}, {c}, {a, b}, {a, c}, {b, ¢}, {a, b, c}}.

2. Let A = {1,2,3} and B = {1,2}. Determine whether each of the
following is true or false and give a brief justification.
@) B e Z(A)

(i) BeA

(iii)) A e HZ(A)

iv) AC H(A)

(v) B< (A

(vi) {1}, B} € £(A)
(vil) @ e HX(A)

(viii) @ C Z(A).

Solution

@) True: B is a subset of A so B is an element of its power set.

(i) False: B is a set but the elements of A are numbers, so B is not an element
of A.

(iii) True: since A C A it follows that A € £2(A). In fact, as noted above,
this is the case for any set A.

@iv) False: the elements of A are numbers whereas the elements of Z2(A)
are sets (namely subsets of A). Hence the elements of A cannot also be
elements of Z(A),s0 A £ Z(A).

) False: for the same reasons as given in part (iv).

(vi) True: {1} € Z(A) (since {1} € A) and B € Z(A) (part (i)) so
each element of the set {{1}, B} is also an element of #?(A); hence
{{1}, B} € Z(A).

(vii)  True: since @ C A, we have @ € Z(A).

(viii) True: @ C X for every set X and 4 (A) is certainly a set, so @ C F(A).
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Again we emphasize that great care should be taken to use € and C
correctly. For instance, if a € A then {a} C A so {a} € & (A). There is
particular scope for confusion when x and {x} are both elements of a set
X.

Let A ={1,2,{1}}. Then1 € A so {1} C A, and therefore {1} € Z(A).
In this case {1} € A as well, so {{1}} € Z(A). In fact

Z(A) ={@, {1}, {2}, {{1}}. {1, 2}, {1, {1}}, {2, {1}, A}.

Recall that 1, {1}, {{1}} are all different. The first is a number, the second
a set whose only element is a number, and the third a set whose only
element is a set. Clearly we could continue in this way to produce an
infinite sequence of different sets:

{1} {1, ({1 -

Each set in this sequence (except the first) could be defined as the set
whose single element is the previous set in the sequence. More precisely,
if we define

X1 ={1} and X,41 ={X,} forn=1,2,3,...

then the sequence X1, X», X3, ... is identical with the sequence of sets
above. As a final step, let

o0
X = U Xn=UXn.

neZ+* n=1

Note that X is a well defined set: given x we can decide definitely whether
x € Xorx ¢ X. If x is of the form {--- {1} - - -}, where a finite number
of braces appear, then x € X; otherwise x ¢ X.

We could define this union X directly as follows:
X ={x:x={l}orx ={y} where y € X}.

This is an example of a recursively defined set—that is, one defined
partially in terms of itself. Of course, we cannot define a set completely
in terms of itself, which is why we also need x = {1} as part of the
definition.

The idea of recursion—defining something partially in terms of itself—is
important in mathematics and computer science, both theoretically and
practically. In computing, for example, many high-level programming
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languages allow procedures to call themselves: that is, recursive
procedures.

The sets given in example 3.11.1 above suggest that, if A is finite and |A| = n
then | #2(A)| = 2". To prove this let A be the set {aj, a2, ..., a,}. We can form a
subset of A by considering each element ¢; in turn and either including it or not in
the subset. For each element there are two choices (either include it or don’t) and
the choice for each element is independent of the choices for the other elements,
so there are 2" choices altogether. Each of these 2" choices gives a different subset
and every subset of A can be obtained in this way. We have proved the following
theorem (which can also be proved by mathematical induction).

Theorem 3.5

If|A| = n then | Z(A)| = 2.

Some authors use 24 to denote the power set: then theorem 3.5 takes the elegant
form |24| = 2!4l,

Partitions of a Set

It is sometimes important to divide a set into non-intersecting subsets. For
instance, in §3.4, this device was frequently used when counting elements of sets.
Such a division of a set into non-intersecting subsets is called a ‘partition’ of the
set. It is closely related to the important notion of an equivalence relation on a set,
which is introduced in the next chapter.

Definition 3.4

Let A be a set. A partition of A is a family (i.e. a ser) {S; : i € I} of
non-empty subsets of A such that:

@) JS;i=A,and
iel
() SNS;=gifi#j foralli,jel.
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The first condition says that the sets S; in the family ‘fill out’ all of A, and the
second condition says that any pair of sets §;, S; in the partition are disjoint.
Whenever the second condition is satisfied we say that the sets S;, i € I, are
pairwise disjoint. It is useful to visualize the elements S; of the partition as
non-overlapping ‘blocks’ which fit together to form A rather like the pieces of
a jig-saw puzzle—see figure 3.13. Using this analogy, the first condition of
definition 3.4 says that there are no missing pieces to the jigsaw puzzle and
the second condition says that the pieces fit together ‘snugly’ with no overlaps
between pieces. Clearly these are exactly the properties required of the pieces of
a jigsaw puzzle.

Figure 3.13

Perhaps it is worth pointing out that pairwise disjoint is a stronger condition than
requiring the intersection of the whole family to be the empty set. For example, if
A ={1,2}, B ={2,3} and C = {3, 4} then the family {A, B, C} is not pairwise
disjoint since A N B # &, for example. However, A N B N C = &, since there is
no element common to all three sets.

Examples 3.12
1. {{1}, {2, 3}, {4, 5, 6}} is a partition of {1, 2, 3, 4, 5, 6}.
2. Each of the following is a partition of Z, the set of integers.

@) {Z~,{0}, Z"), where Z~ and Z™ are the sets of negative and
positive integers respectively.

(i) {E, O}, where E = {...,—4,-2,0,2,4,6,...}, the set of even
integers, and O = {...,-3,—-1,1,3,5,7,...}, the set of odd
integers.

(iii) {{n}:n e Z}.

Clearly, for any set A we can form a partition in this way by taking the
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sets in the partition to be all the singleton subsets of A. (A singleton set
is simply a set with only one element.)

For each real number «, let L, be the set of points in the plane which lie
on the vertical line through the point (¢, 0):

Ly = {(x,y) : x =« and y is a real number}
={(a,y):y € R}

The family of these sets, {Ly : @ € R}, is a partition of the plane: every
point of the plane lies on one of the lines L, and any two of the lines are
disjoint.

Figure 3.14

Exercises 3.5

1.

List the elements of #(A) in the following cases:

@) A=/{a,b,c,d}

(i) A={{1},{1,2}}

(i) A ={{1},{1,2},{1,2,3}}
iv) A= 21,2}

W) A= ZWW).

Let A = {1,2,3,4,5,6,7,8,9,10}. Determine whether each of the
following is a partition of A. If the set is not a partition, explain why
not.

@ {1,2,{3,4},{5,6}, {7, 8}, {9, 10}}
(i) {1, 2}, {3,4},{5,6}, {7, 8}, {9, 10}}
(i) {{1.3,5,7,9},{2.4, 8}, {10}

(v) {1, 5}, {2,6,10}, {3}, {4,7,9}, {8}}
(v)  {{2,8,10},{1,6},{3,4,5},{7,8,9}}.
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Which of the following are partitions of the set {2, 3,7, 9, 10}?

@ {{2,31(3,7,9} {104}
G - {{2,10}, {3, 7}, {91}
(i) {{2.3,4},{7,9,10}}
Gv) {2}, {3}, {7}, {9}, {103}
V)  {2,3,7,9,10}

i) {{2,3,7.9,10}}

(vii) {{10,3},{7,2}}

(viii) {{2,9, 10}, {3,7}, @}.

@) How many partitions are there of the set {a, b, ¢, d}?
(i)  Find all the partitions, if any, of the empty set &.

Let {A,, : m € R} be the family of sets defined in example 3.10.4—that
is, A,y is the set of points in the plane lying on the line y = mx.

Is {A,, : m € R} a partition of the plane? Explain your answer.

Which of the following families of sets are partitions of the set Z of
integers? Explain your answers.

i) {nn+1}:nelZ)
(i) {{=n,n}:neZt
(i) {{n,n%n3}:neZ)
v) {{2n:neZ),{2n+1:n¢€Z}}.

Which of the following are partitions of R, the set of real numbers?
Explain your answers.

@i) {I, . neZ},wherel, ={x e R:n<x<n+1}
Gi)) {Jp:neZ},whereJ,={xeR:n<x<n+1}.
(i) {Kp:neZ},whereK,={xeR:n<x <n+1}.

Define a sequence of sets X, X1, X2,... by Xo = & and, forn > 0,
Xn+1 = Xn ) {Xn}'

List the elements of X, X», and X3.
What is the cardinality of X,,?

Give a recursive definition for the union

o0
X=X
n=0
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(This sequence of sets was invented/discovered in the 1920s by the
mathematician, and later theoretical computer scientist, John von
Neumann (1903-57)+. His idea was to start with only the empty set and
‘create’ the natural numbers. Von Neumann defined the natural number n
to be the set X,.)

9. Prove parts (ii) and (iii) of theorem 3.4.

Find sets A and B such that #(A) U Z(B) is a proper subset of
P (AU B).

10. Use the Principle of Mathematical Induction to prove Theorem 3.5.

3.7 The Cartesian Product:

The order in which the elements of a (finite) set are listed is immaterial; in
particular, {x, y} = {y, x}. In some circumstances, however, order is significant.
For instance, in coordinate geometry the points with coordinates (1, 2) and (2, 1),
respectively, are distinct. We therefore wish to define, in the context of sets,
something akin to the coordinates of points used in analytical geometry.

In order to deal with situations where order is important, we define the ordered
pair (x, y) of objects x and y, to be such that

(x,y)=(x,y) ifandonlyifx =x"andy =y’ *)

With this definition it is clear that (x, y) and (y, x) are different (unless x = y),
so the order is significant. It could be argued, with justification, that we have not
really defined the ordered pair, but merely listed a property which we desire of it.
Those who are concerned about the way we have plucked the ordered pair out of
thin air, as it were, should note that (x, y) can be defined in terms of (unordered)
sets considered earlier. (See exercise 3.6.1 for a way of doing this.) We have
not formally defined the ordered pair in this way because the particular choice
of definition (and there is more than one way of defining (x, y)) is unimportant.
What is significant about the ordered pair is precisely the property (*) above.

T To some extent this discovery of von Neumann’s was anticipated some 20 years earlier by Bertrand
Russell.

+ Named after the French mathematician and philosopher René Descartes (1596—1650), the founder
of analytical geometry.
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We are now in a position to define the Cartesian product of two sets, a concept
which is fundamental to several later chapters.

Definition 3.5

The Cartesian product, X x Y, of two sets X and Y is the set of all ordered
pairs (x, y) where x belongs to X and y belongs to Y:

XxY={(x,y):xeXandye Y}

When X =Y, itis usual to denote X x X by X2, This is read as ‘X two’ and not
‘X squared’.

Note that, if either X or Y (or both) is the empty set then X x Y is also the empty
set. For example, if X = @ then there are no elements x to place in the first
position of the ordered pair (x, y), so there are no ordered pairsin X x Y.

If X and Y are both non-empty,then X x ¥ =Y x X ifand only if X = Y. The
implication in one direction is obvious; if X = Y thenclearly X x ¥ =Y x X.
For the converse, we prove its contrapositive: if X # Y then X x ¥ # ¥ x X.
Now, if X # Y then either there exists an element x* which belongs to X but not
to Y, or there exists an element y* which belongs to Y but not to X (or both). In
the former case, choose any element y € Y—we can make such a choice since
we are assuming that Y in non-empty. Now the ordered pair (x*, y) belongs to
X x Y, but does not belong to ¥ x X since x* ¢ Y. In the latter case we choose
an element x € X; then (x, y*) belongs to X x Y butnotto Y x X, since in this
case y* ¢ X. Therefore in either case we can find an element which belongs to
X x Y butnotto Y x X, so the sets are not equal.

Examples 3.13
1. IfX ={1,2}and Y = {a, b, c} then
X xY =A{(,a),(,b),(1,c), 2,a), (2,b), (2, c)}.

The elements of the sets X, Y and X x Y can be represented systematically
on a single Venn diagram, as in figure 3.15.

2. If X = Y = R, the set of real numbers, then X x ¥ = Rx R = R? which
is the coordinate geometry representation of the (two-dimensional) plane.
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The corresponding diagram to figure 3.15 in this case is the plane with its
usual rectangular coordinate axes. A point P in the plane is represented
by an ordered pair (x, y) of real numbers—its coordinates.

3. Let X = {main courses offered by a certain restaurant} and ¥ = {desserts
offered by the same restaurant}. The X x Y is the set of all (two-course)
meals which can be ordered at the restaurant.

Diagrams such as figure 3.15 above and the coordinate geometry picture of the
plane R2 = R x R are useful ways of visualizing Cartesian products. We
can mimic these to obtain a pictorial way of representing an arbitrary Cartesian
product X x Y, given in figure 3.16. The sets X and Y are drawn as one-
dimensional regions, rather than the usual two-dimensional ones in a Venn
diagram. Thatis, X and Y are drawn as line segments, with elements belonging to
them placed on the line segment. It is convenient to draw these lines perpendicular
to one another with the line representing X horizontal. The Cartesian product is
then represented as the rectangular region which lies above X and to the right of
Y, and the ordered pair (x, y) is placed in this rectangle at the point vertically
above x and horizontally to the right of y.

This type of diagram is useful for visualizing the intersections and unions of
Cartesian products, and it also indicates other properties of the Cartesian product
which are perhaps not so apparent from the ordered pair definition. For example,
if we choose an element x* € X and keep it fixed, then the set

X} xY ={(x*y) :yeY)

is a ‘copy’ of Y in the sense that for every y € Y there corresponds one and
only one element (x*, y) € {x*} x Y. This subset {x*} x ¥ of X x Y can be
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visualized in figure 3.16 as the vertical line in X x Y which lies above the point
in X representing the element x*. We shall consider this kind of correspondence
in more detail in chapter 5.

The ordered pair (x,y) may be generalized to an ordered n-tuple
(x1, x2, ..., X,) with the property that

(X1, X2, oy Xp) = (X], X5, .0y X))
if and only if x; = x|, x2 = x), ..., x, = x,,.
Again we should note that the ordered n-tuple can be defined formally in terms of
(unordered) sets. In particular, if ordered pairs have already been defined in terms

of (unordered) sets (as indicated in exercise 3.6.1 below), then ordered n-tuples
can be defined inductively using ordered pairs. (See exercise 3.6.7 for the details.)

QORLCERED r TUFLE
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The Cartesian product of n sets is now a natural generalization of the case of two

sets.

The Cartesian product of the sets X1, X5, ..., X, is

X1 x Xy x---x X,

Definition 3.6

={(x1,x2,...,x3):x1 € X1andx2 € Xy and ... and x,, € X,,}

={(x1,x2,...,xy) :x; € X;fori =1,2,...,n}

Again we write X" (which is read ‘X n’ rather than ‘X to the (power) n’) in the
case where X; = X fori = 1,2,...,n. For the general case, the Cartesian
product X1 x X5 x --- x X, is sometimes abbreviated

n
X X,.

r=1

Examples 3.14

1.

IfA={1,2}, B ={a,b}and C = {a, B} then

AxBxC={(l,a,a),(,a,p),d,b,a),(1,b,B),(2,a,x),
(2,a,B),2,b,a),(2,b, B)}.

It is harder to picture the Cartesian product of three sets, A x B x C, in a
diagram similar to figure 3.16 for two sets, but clearly its elements could
be displayed in a three-dimensional region. Of course, for the Cartesian
product of n sets, an n-dimensional region would be required, which is
even more difficult to visualize!

As in the case of two sets, if any one (or more) of the sets X, (for
r=1,2,...,n)is empty then so, too, is their Cartesian product

n
X X;.
r=1

For instance, if X; = @ then there is no element x; to place in the jth
position of the ordered n-tuple, so there can be no ordered n-tuples at all.
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If X = X, = --- = X;, = R, then the Cartesian product R” is the
set of all n-tuples of real numbers (xy, x2,...,x,). The set R” is a
coordinate representation of real n-dimensional space, which again is
somewhat (!) difficult to visualize. One of the reasons why ordered n-
tuples are important is that they provide a framework for studying and
understanding ‘n-dimensional sets’, whether in mathematics, computer
science or elsewhere.

Of course, for the case n = 3, the set R is (or can be identified
with) three-dimensional space familiar to those who have studied three-
dimensional geometry.

We can extend example 3.13.3 by adding starters to the menu! Let
V = {starters offered by a certain restaurant} and, as before, X =
{main courses offered by the restaurant}, ¥ = {desserts offered by the
restaurant}. Then an ordered triple (v, x,y) € V x X x Y comprises a
starter v, main course x and dessert y and so represents a three course
meal. Therefore the Cartesian product V x X x Y represents the set of
all three course meals offered by the restaurant.

If X and Y are finite sets with |X| = n and |Y| = m, then it is clear from the
‘coordinate grid’ diagram of X x Y (see figure 3.15) that the Cartesian product
has nm elements. That is,

X x Y| =|X]| x|Y].

This result clearly generalizes to the following for n sets, which may be proved
formally using mathematical induction.

If X1, X», ..., X, are finite sets then

Theorem 3.6

|X1 > Xo X x X | = [ X ] X [ Xaf X X[ X

We now turn to the question of how the Cartesian product operation behaves with
respect to the other set theory operations such as intersection and union. Before
we consider the general situation, let’s look at two examples to see what is likely
to happen in general.
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Examples 3.15

1.

Let A ={a,b,c,d},X ={x,y,z}and Y = {y, z, t}. Then
XNY ={y, z}

SO

Ax(XNY)={(a,y),(a, z),b,y), b 2),(y),(2),d,y)d, )}
Now
A x X ={(a,x),(a,y),(a, z), b, x), b, y), b, 2), (c,x),
(c,y),(c,2),d,x),d,y), (d,2)},
and
AxY ={(a,y),(a,z2),(at), Dy, b 2, b1, (),
(c,2),(c,1),(d,y), (d,2),d, 1)}
Therefore
(AxX)NAxY)={(a,y)(a, 2, b,y), b, 2), (), (),
d,y),d,z2)}.
Therefore, for the sets in this example,
AXx(XNY)=AxX)N(AXY),

so we may wish to investigate whether this identity is true for all sets A,
XandY.

To investigate whether a similar identity may hold for unions, consider
thesets A ={a,b}, X ={x,y}and Y = {y,z}. Then XU Y = {x, y, z},
SO

Ax (XUY)={(a,x),(a,y), @, z), b x) b, y), b, 2}
= {(a,x), (a,y), (b, x), (b, y)}
U{(a, ), (a,z), (b, y), (b, 2)}
=(AxX)U(AXY).

The results suggested by these examples do in fact hold for all sets A, X and Y.
We list below identities which indicate how the Cartesian product behaves with
respect to the intersection and union operations.
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Theorem 3.7

(1) For all sets A, X and Y
AX(XNY)=AxX)N(AXY)

and
XNY)YxA=XxA)NK x A).

(This says that the Cartesian product is distributive over
intersection.)

(i) Forall sets A, X and Y
AX(XUY)=(AxX)U(AXY)

and
(XUY)xA=(XxA U x A).

(This says that the Cartesian product is distributive over union.)

Proof

We shall prove the first identity in part (i) only—the others are left as exercises
(3.6.9).

Let (a,x) € A x (X NY). By the definition of the Cartesian product, this means
thata € Aandx € (XNY). Thusx € X, so (a, x) belongsto A x X;andx € Y,
so (a, x) belongs to A x Y as well. Therefore (a, x) € (A x X)N (A x Y), which
provesthat A x (XNY)C(AXx X)N(A XY).

To prove the subset relation the other way round as well, let
(a,x) e(AxX)N(AXY).

Then (a,x) € (A x X),soa € Aandx € X; and (a¢,x) € (A xY), so
a € Aand x € Y. Thereforea € A and x € (X NY) which means that
the ordered pair (a, x) belongs to the Cartesian product A x (X N Y). Hence
AxX)NAXxY)CTAXx(XNY).

The conclusion that the sets A x (X N'Y) and (A x X) N (A x Y) are equal now
follows, since each is a subset of the other. [ |
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Figure 3.17 illustrates the identity proved above. The sets X and Y are both drawn
as vertical line segments, which are kept distinct to avoid confusion over where
one begins and the other ends. This means that it is more difficult to represent
their intersection adequately—we have indicated X N Y by a thickened line on
both X and Y. The Cartesian products A x X and A x Y are shaded differently,
the region of double shading representing (A x X) N (A x Y). It is clear from
the diagram that this doubly shaded region corresponds to the Cartesian product
Ax (XNY).
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Finally, we state how the Cartesian product behaves with respect to the subset
relationship. The proof of theorem 3.8 is left as an exercise (3.6.12). Before
attempting to prove this, it is advisable to draw a ‘coordinate grid’ diagram to
represent the situation.

Theorem 3.8

@) For all sets A, B and X, A € B implies (A x X) C (B x X).
(i1) If X is non-empty, then (A x X) C (B x X) implies A C B.
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(Kuratowski’s definitionf of the ordered pair.) If (x, y) is defined by
(x, y) = {{x}, {x, y}}, show that

(x,y)=(a,b) ifandonlyifx =aandy =b.

In each of the following cases list the elements of X x Y, and draw a
‘coordinate grid’ diagram similar to figure 3.15:

() X=1{1,2,3,4) Y =1{a,b)
Gi) X =1{1,2) Y ={a,b,c.d, e}
Gi) X ={(1,2)} Y ={a,b,c.,d,e).

Let A ={1,2,3,4}, B ={3,4,5}, X = {a,b},Y = {b,c,d}. List the
elements of each of the following sets.

@) (ANB)x(XNY)
(i) (AxX)N(BxY)
(i) (AxY)N (B xX)
(iv) (ANX)xY

(V) (ANB)x(XUY)
(vi) (Ax X)U (B xY).

In a simple library catalogue, each book has just four properties or
attributes: title, author, class number, publication date. We assume that
each book has a single author (co-authored books, such as this one, are
listed only by their first named author) and that the class number is a
positive decimal (for example, 314.25). Further, we assume that the
library holds at most one copy of any book. Then each book in the
library’s stock corresponds to a unique quadruple of the form

(title, author, class number, year of publication).

Let C (for ‘collection’) denote the set of all such quadruples
corresponding to the books held in the library’s collection. Then C C
T x A x RY x Z where T is the set of all titles of books in the library’s
collection and A denotes the set of all authors of books in the library’s
collection. Informally, we can think of C as ‘being’ the set of all books in

7 Named after the twentieth-century Polish mathematician Kazimierz Kuratowski, whose name is
also associated with a theorem about planar graphs—see chapter 10.
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the library’s collection. Of course, this is not strictly correct since a book
is not an ordered quadruple; however, there is an ‘exact correspondence’
between real books in the collection and quadruples in the set C. (The
precise nature of such an ‘exact correspondence’ will be made clear in
chapter 5.)

(i)  Explain briefly why C is a proper subsetof T x A x Rt x Z.
(ii)) Let D = {n € Z : there exists (¢, a, x,n) € C}.

Describe in words what the set D represents in terms of the
library’s collection. What is the significance for the library of the
smallest element of D?

(i) Let S = {(t,a,x,n) € C : a = Shakespeare}. Describe
informally in words the set S.

(iv) Define formally (in a similar manner to the set S defined in part
(iii)) the set of all books in C authored by ‘Garnier’.

(v)  Suppose {(t,a,x,n) € C : x = 514.3} = &. What does this tell
us about the library’s collection?

(vi) Suppose {(t,a,x,n) € C : t = ‘Crime & Punishment’ A a =
‘Dostoyevsky’} # &. What does this tell us about the library’s
collection?

Note: Representing objects by n-tuples corresponding to various
attributes is a useful and extremely common way of organizing data. See
sections 4.7 and 5.6 for a brief introduction to relational databases which
are founded on the use of n-tuples in this way.

If X x Y = X x Z does it necessarily follow that Y = Z? Explain your
answer.

Let

0, 1]={xeR:0<x < 1} O0,)={xeR:0<x <1}
0,D)={xeR:0<x <1} 0,1]={xeR:0<x < 1}.

Describe (geometrically) each of the following sets:

@) [0, 1T x [0, 1]
i) (0,1) x (0, 1)
(i) [0,1) x (0, 1]
@iv) [0, 1] x (O, 1).



10.

11.

The Cartesian Product 127

@) Defining the ordered triple (x, y, z) in terms of ordered pairs by

(x,y,2) = ((x,¥),2)

show that (x,y,z) = (a,b,c) ifand only if x = @, y = b and
z=c.

(ii) If, for n > 3, ordered n-tuples are defined inductively by

(x17x21 LR 7xn) = ((x11x21 e 7xnfl)7xn)

show that (x1, x2,...,x,) = (¥1, y2, ..., yn) if and only if x; =
y; foreachi =1,2,...,n.

Let A ={a,b}and X = {1, 2, 3}.
@) List all the non-empty subsets of A and all the non-empty subsets

of X.

(i)  List all the non-empty subsets of A x X which are of the form
B x Y forsome B C A and some Y C X.

(iii) Write down a subset of A x X that is not of the form B x Y for
some B € A andsome Y C X.

Prove the identities omitted from the proof of theorem 3.7. That is, for all
sets A, X and Y:

Q) (XNY)xA=(XxANY xA)
(i) Ax(XUY)=(AxX)U(AxY)
(i) (XUY)xA=(XxA)U®Y x A).

Using theorem 3.7 and the laws for the algebra of sets, show that, for all
sets A, B, X and Y,

Q) ANBXxXNY)=AxX)NAXxY)N(BxX)N(B xY)
(i) (AUB)x (XUY)=(AxX)U(AxY)U(B x X)U(B x Y).

Draw diagrams to represent these identities. (Hint: for clarity in the
diagram representing identity (ii), it is best to draw the sets A and B
as if disjoint, and the sets X and Y also as if disjoint.)

@) Prove that, for all sets A, B, X and Y,

(ANB)x (XNY)=(AxX)N(BxY)
=(AxY)N(B x X).
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Draw a diagram to represent each of these identities.

(ii)) Findsets A, B, X and Y such that

(AUB) X (XUY)# (Ax X)U(B xY).

12. Prove theorem 3.8.
13. Prove that, for non-empty sets A, B, X and Y,

(AxB)C(XxY) ifandonlyif AC XandB C Y.

14. Prove each of the following identities, and draw diagrams to illustrate
each:

i) (A—B)xX=(AxX)—(BxX)
() A—-B)xX—-Y)=AxX)—[(AxY)U®Bx X))

3.8 Types and Typed Set Theory

In software engineering, the notion of ‘types’ plays an important role
in the various phases of software development: specification, design and
implementation. Objects of different types behave differently and have different
operations associated with them. In a software system managing a library, for
example, objects classified as being of the type ‘book’ clearly have rather different
properties than objects classified as being of the type ‘borrower’. Similarly, in
programming languages, variables need to be declared to be of type ‘integer’,
‘real’, ‘string’ and so forth, again because these types have different properties.
In this section we will introduce types from a mathematical point of view and
consider how we can formally define various operations on a type.

Consider the set of integers Z. Various operations are defined on this set, such as
addition, subtraction, multiplication and so on. In other words, given two integers
n and m, we can define n +m, n — m, n x m, etc. This is rather obvious, but note
that the subset relation is not defined on the set of integers; if m and n are integers,
then n € m is meaningless. Similarly, the operations defined in chapter 1—
conjunction, disjunction, implication, etc—are not defined on the set of integers;
if n and m are integers then n A m, n vV m and n — m are all meaningless.
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Each operation defined on Z has a ‘signature’ which describes the ‘inputs’ and
‘outputs’ of the operation. The operations of addition, subtraction, multiplication
each take two integers as ‘input’ and give a single integer as ‘output’. For
example, we could input 2 and 5 into the addition operation and obtain output
7; similarly inputting 2 and 5 into the subtraction or multiplication operation
would give output —3 or 10 respectively. We say that each of these operations
has signature

Integer, Integer — Integer

reflecting the fact that two integers are required for input and a single integer is
the result of performing the operation.

Some integer operations take as their input a single integer. For example, the
‘negation’ operation or the ‘square’ operation both operate on a single integer.
Input 3 into the ‘negation’ operation and the output is —3; similarly, input —2 and
the output is —(—2) = 2. Or, for the ‘square’ operation, input 3 (or —3) and the
output is 9. Each of these operations thus has signature

Integer — Integer.

We can now informally define the ‘type’ Integer to comprise the set of integers
Z together with the operations that are defined on integers and their signatures.
In general, a type 7 has a set of allowed values that variables of the type can
take, together with a collection of operations in which variables of the type can
participate as inputs or ‘arguments’.

Other ‘standard’ types include:

Real the type of the real numbers.

Boolean the type of logical expressions (propositions and propositional
functions).

String the type of strings of characters (such as ‘agxp nyt’ or ‘Hello Paul!

How are you?’).

Usually, (mathematical) operations have as input one or more arguments of the
same type, but the output is frequently of a different type to the input(s). For
example, if n and m are integers then n + m and n < m are both meaningful
expressions but of a different nature: the value of n + m is another integer but the
value of n < m is either ‘true’ or ‘false’. More precisely, ‘n < m’ is a proposition
or propositional function (depending on whether the integers n and m are given
specified values) and so is of type Boolean. Therefore the ‘less than or equal’
operation has signature

Integer, Integer — Boolean .
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Examples 3.16

We summarize some (but not all) of the operations defined on the type
Integer, together with their signatures.

Addition —+ _: Integer, Integer — Integer.

The notation _ + _ means that addition is an ‘infix’ operation where
the sign of the operation comes in between the two integer ‘arguments’.
The two ‘underscores’ on either side of the addition sign represent
placeholders which will be filled by the two integer input values.

Subtraction and multiplication have the same signature as addition.

Subtraction — — _: Integer, Integer — Integer

Multiplication — X _: Integer, Integer — Integer.

As noted above, negation takes a single integer as argument and returns
the integer with the sign changed. For example, the negation of 2 is
—2, the negation of —5 is 5, the negation of 0 is 0 (=—0). Negation
is a ‘prefix’ operation because the operation sign precedes the input
argument; it has the following signature.

Negation — _: Integer — Integer.

Note that negation and subtraction are different operations because they
have different signatures. Some people very sensibly use different words
for the two operations: they say ‘minus’ for subtraction and ‘negative’
for negation.

2-3 ‘two minus three’
-3 ‘negative three’
2—(=3) ‘two minus negative three’.

Each of the order operations < (less than), < (less than or equal to), >
(greater than) and > (greater than or equal to) are infix operations with
the same signature. For example ‘less than or equal to’ has signature:

— < _: Integer, Integer — Boolean.

The operation ‘divides’ means ‘is a factor of” or ‘goes exactly into’. For
example, 6 divides 48 but 6 does not divide 15. What is the signature of
the operation? It takes two integers as arguments, m and n say, and the
result is either true or false. Hence the expression ‘m divides n’ has a
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Boolean value (true or false) depending on whether m is or is not a factor
of n. Therefore the operation has the following signature. (Note that m|n
is read as ‘m divides n’.)

Divides _|— : Integer, Integer — Boolean.

The ‘absolute value’ or ‘modulus’ operation, |_|, takes a single integer
as input and returns a non-negative integer as output. If the input value
is greater than or equal to zero then the operation ‘leaves it alone’; if
the input value is negative then the operation returns the corresponding
positive value. For example, 3| = 3, | — 3| = 3, |0] = 0, etc. The
absolute value operation has signature:

|_| : Integer — Integer.

Recall that Boolean is the type of logical expressions and we know
that such expressions can have one of two values, T (true) or F (false).
Therefore the set of values of the Boolean type is {T,F}. Some of the
operations defined on the type Boolean , together with their signatures are
given below. The values returned by these operations are defined by the
truth tables given in chapter 1.

negation —_: Boolean — Boolean

conjunction _ A _: Boolean , Boolean — Boolean
disjunction _V _: Boolean, Boolean — Boolean
exclusive disjunction _V _: Boolean, Boolean — Boolean
conditional _ — _ : Boolean, Boolean — Boolean
biconditional _ < _: Boolean, Boolean — Boolean .

The type Real has the set of real numbers R as its set of values. Many
of the operations defined on the type Integer are also defined on the type
Real. Some of the operations defined on Real are given below, together
with their signatures. We shall meet other operations on the type later.

Addition _+ _: Real, Real — Real
Subtraction _ — _: Real, Real — Real
Multiplication _ X _: Real, Real — Real
Division _/_: Real, Real — Real
Negation —_ : Real — Real

Less than or equal to _ < _: Real, Real — Boolean
Less than _ < _: Real, Real — Boolean
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Greater than or equal to _ > _: Real, Real — Boolean
Greater than _ > _: Real, Real — Boolean
Square _ 2 Real — Real
Square root = Real — Real.

Typed Set Theory

Typed set theory is a more restricted version of set theory than the version
considered in the previous sections of this chapter. In typed set theory, all the
elements of a set are required to have the same type. Thus, for example, a set
containing an element of type Real and an element of type String is not permitted.
The notation for describing typed sets is slightly different to the notation we used
previously for ‘untyped’ sets. If 7 is a type then the notation x : 7 means ‘x is of
type Z°. It is similar to x € A (‘x belongs to A’) but gives more information as
it indicates the operations in which x may participate as an argument. We use the
notation {x : 7 | P(x)} to define the set of all elements of type 7 for which the
propositional function P (x) is true. We read {x : 7 | P(x)} as ‘the set of all x of
type 7 such that P (x) (is true)’. For example, {x : Real | x2 = 2} = {—+/2, V/2}.

In typed set theory every element and every set is required to have a specified
type. Any set whose elements are all of type 7 itself has type Set[7] which
simply indicates that it is a set of ‘things’ of type 7. Thus a set of the form
{x : 7| P(x)} has type Set[]].

Examples 3.17

1. Let A= {n: Integer| —2 <n<3}and B ={n: Real | -2 < n < 3}.
Then A has type Set[Integer] and B has type Set[Real]. Also note that
A is finite whereas B is infinite: A = {—2, —1,0, 1, 2, 3} but B contains
all real numbers between —2 and 3 (inclusive) and it is impossible to list
them.

2. We assume a type Person has been defined which is the type of all people,
living or deceased. Although we shall not consider them here, we can
imagine some of the operations defined on this type: motherOf, age,
gender, maritalStatus, etc. Given this type, we can define various sets
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of people; for example:

A = {x : Person | x is/was UK Prime Minister during
part of the period 1970-99}
= {Blair, Callaghan, Heath, Major, Thatcher, Wilson}
B = {x : Person | x is/was US President during
part of the period 1970-99}
= {Bush, Carter, Clinton, Ford, Nixon, Reagan}
C = {x : Person | x was born on 29 February}

D = {x : Person | x has Spanish nationality}.

Each of these sets has type Set[Person].

3. Let A = {1, 2, 3}; then A : Set[Integer]. What is the type of & (A), the
power set of A? Recall that the elements of &2 (A) are the subsets of A:

2(A) ={@,{1},{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The elements of & (A) have type Set[Integer] so &?(A) itself has type
Set[Set [ Integer]] because it is a set of sets of integers.

4. Consider the informal definition of a set as ‘the set of all cities in
Canada.” In order to be able to define this as a ryped set, we need to
assume the existence of a type City, say, which is the type of cities.
(We could imagine some of the operations that might be defined on this
type: Population(—) : City — Integer, Mayor(_) : City — Person,
Country(—) : City — Nation, and so on.) Provided City is a defined
type, we can then define:

A = {x : City | x is in Canada}
= {Ottawa, Montreal, Vancouver, ...} : Set[City].

Operations on Typed Sets

The usual set theory operations—intersection, union, complement, and so on—
are defined on typed sets. However, only sets of the same type can ‘participate
in’ these operations. For example, if we were to attempt to form the union of a
set of integers with a set of people, say, the result would not be a well formed
typed set because its elements would not all be of the same type. For a fixed type
T, the signatures of the standard operations on the type Set[7] are given below.
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Intersection, union and difference are infix operations which take as arguments
two sets of the same type and produce another set of the same type. Thus their
signatures are the following.

Intersection _N_: Set[T], Set[T] — Set[T]
Union —U_: Set[T], Set[T] — Set[T]
Difference _— _: Set[T], Set[T] — Set[T].

Subset

If A : Set[T]and B : Set[T]then A C B is either true or false. (Note that ‘subset’
behaves rather like ‘less than or equal’ in this respect.) Therefore ‘subset’ takes
two sets of the same type as arguments and returns a Boolean expression so it has
signature:

_ C _: Set[T], Set[T] — Boolean.

Membership

For x € A to be defined, we require x and A to have appropriate types. More
precisely, we require x : 7 and A : Set[7] so that the types ‘match’. Given this,
what is the type of the statement x € A? As with subset, ‘A C B’, the expression
‘x € A’ is either true or false depending on whether or not x really is a member
of the set A. Therefore set membership has signature

_€ _:T, Set[T] — Boolean.

This means that the placeholder to the left of the membership symbol € can take a
value of type 7 and the placeholder on the right takes a value of type Set[7]. Note
that the set membership operation is unusual for a mathematical operation in that
the types of its two inputs are necessarily different, 7 and Set[7] respectivelyt.

Empty Set

What is the type of the empty set &? Given the signature of ‘subset’ defined
above, we can only compare sets of the same type:

+ It is interesting to note that, in typed set theory, Russell’s paradox disappears. (See exercise 3.2.12
for a discussion of Russell’s paradox.) Indeed, in Principia Mathematica, their monumental work on
the foundations of mathematics, Russell and Whitehead use a theory of types to avoid the paradox.
The reason the paradox does not occur in typed set theory is that we are unable to form the set that
gives rise to the difficulty. If A : Set[7]then A ¢ A, which is just shorthand for —(A € A), is not
an allowed expression because it does not conform to the signature of ¢ (or €). Hence we are unable
to form the (typed) set R in exercise 3.2.12 that gives rise to the paradox.
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writing & C {1, 2, 3} implies that the empty set & must be of type Set [ Integer],
writing @ C {1.23, —19.857, 7} implies that & is of type Set[Real],

writing @ C {Blair, Callaghan, Heath, Major, Thatcher, Wilson} implies that
& is of type Set[Person], etc.

There seems to be a difficulty here since we have stated that each set must have
a unique type. The way round this problem is to define one empty set of each
type. Thus there is an empty set of integers (containing no integers) which has
type Set[Integer], an empty set of real numbers (containing no real numbers)
which has type Set[Real], an empty set of people (containing no people) which
has type Set[Person], and so on. We shall continue to use & to denote each of
these empty sets. It should usually be clear from the context which empty set is
being represented by &.

Using a single notation to stand for several different concepts is called
overloading the notation. Actually, we do this all the time in mathematics. For
example, we use a single symbol + to represent addition of integers, real numbers,
matrices (see chapter 6), elements of an Abelian group (see chapter 8), and so
forth. Similarly we use the symbol — to represent both subtraction and negation
of integers and of real numbers, and the difference of sets, etc. So using @ to
denote the empty set of each type should not cause any difficulty.

Power Set

In example 3.17.3, we saw that if A is of type Set[Integer] then its power set
F(A) is of type Set[Set [ Integer]]. This generalizes to sets of any type. If a set
A has type Set[7] then any subset also has type Set[T]; therefore the elements of
P (A) have type Set[7] so Z(A) itself has type Set[Set[7]]. Since the power set
operation takes a single set A as input and produces a single set &(A) as output,
it has signature

P(_): Set[T] — Set[Set[T]].

Cardinality

For finite setst, the cardinality operation takes a set as argument and returns an
integer value, namely the number of elements in the set. Hence cardinality has
signature:

|—| : Set[T] — Integer.

+ To include infinite sets, we would need to augment the [ nteger type by adding a special symbol
oo to produce a new type [ nteger* whose set of values is Z U {oo}. Then cardinality would have

signature |_| : Set[T] — Integer™.
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Notice that, according to the signatures of N, U and — defined above, we can only
form the union, intersection and difference of sets that are of the same type. Thus,
for example, if A : Set[S] and B : Set[T] then A N B is meaningless in typed
set theory unless § = 7. Similarly, if x : § and A : Set[7] then x € A is also
meaningless unless § = 7. (Actually, this is not quite true. As we shall see
shortly, it is possible for § to be a ‘subtype’ of 7 and, in this case, A N B and
x € A are properly defined—see example 3.18.3.)

In fact, this phenomenon occurs in other situations in mathematics, even if we
have not formally defined types. For example, if m and n are integers then the
expression (m < n) + 3 is meaningless because the first argument of the addition
operation is m < n which is of type Boolean whereas addition requires two
integers (or two reals) as arguments.

In each of these cases, there is an operation whose arguments do not match the
signature of the operation. Type checking an expression means verifying that,
for each operation in the expression, the types of its arguments agree with those
specified by the signature of the operation. For example, if the expression includes
N then both its arguments must be sets of the same type; if it includes + then both
arguments must be integers (or both real numbers), and so on.

Examples 3.18

Suppose the following type declarations have been made:

k,n,m : Integer
X,y : Real
P, Q : Boolean
Anne, Brian : Person.
For each of the following statements or terms, decide whether it is meaningful

(in other words, whether it ‘type checks’) and, if so, what is the type of the
expression. (Assume the ‘obvious’ operations are defined on the type Person.)

1. n>m.
‘Greater than or equal’ is an infix operation that takes two integers as
arguments, which is what we have here. Thus the expression type checks

(i.e. it is meaningful). The expression has type Boolean .

2. (n>m)—+k.
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This does not type check so is not meaningful. We noted above that
n > m has type Boolean but + does not take a Boolean type as either
argument.

n—+x.

Surprisingly, perhaps, this does not type check because addition (as given
in examples 3.16) is defined between two integers or two real numbers.
Addition either has signature _ + _ : Integer, Integer — Integer or
_+ _: Real, Real — Real but the given expression attempts to add an
integer to a real.

However n+x clearly ought to be a meaningful expression—we have not
previously had any difficulty in adding, say, 7 and 4.32! The way round
this difficulty is to regard Integer as a subtype of Real. This means that
we may substitute an integer value in any expression that requires a real
argument. Clearly this can always be done: it amounts to regarding the
integer 3, for example, as a real number 3.00. With this convention the
expression n + x is meaningful and has type Real.

Anne IsOlderThan Brian.

Assuming that IsOlderThan is an infix operation with signature
_IsOlderThan_ : Person , Person — Boolean

then the expression type checks and gives a Boolean result.

n + Age(Anne).

This is meaningful provided Age has signature Person — Integer so
that both n and Age(Anne) are of type Integer; then the expression
has type Integer. (Alternatively, we could define Age to have signature
Person — Real, then the expression would also have type Real.)

x<y)V(P— Q).

This type checks as both x < y and P — Q have type Boolean. The
expression has type Boolean.

Age(Anne) + 5 = Brian.
This is not meaningful since Age(Anne) + 5 : Integer and Brian : Person

but equality is only defined for values of the same type. Note that,
however, Age(Anne) + 5 = Age(Brian) is meaningful and has type
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Boolean because now both sides of the = sign have the same type:
Integer.

8. (x +y) < (Brian IsSonOf Anne).

We assume IsSonOf has signature _IsSonOf_ : Person, Person —
Boolean. Then the given expression does not type check since x + y :
Real and Brian IsSonOf Anne : Boolean but <> requires both arguments
to have type Boolean.

Defining Operations: Preconditions and Postconditions

So far we have only defined the signature of various operations defined on Integer,
Boolean, Set[T] and so on. We have not defined the behaviour of any of the
operations. This may not seem very important because we are all agreed what
addition means for integers or intersection for sets and so on. However, being
able to define precisely what an operation achieves is extremely important in
software specification. To build a piece of software, it is vital to be able to
define exactly what each component should do. Unfortunately, there are many
examples of software failures because this precise specification stage has not been
properly completed. We shall describe a way of specifying the behaviour of an
operation using logical expressions as ‘preconditions’ and ‘postconditions’ for
the operation. To keep the discussion as simple as possible, we shall restrict our
examples to familiar mathematical operations.

A precondition is a condition that must be fulfilled before an operation can be
invoked and a postcondition is a condition that is fulfilled as a result of the
operation being invoked. We can think of the precondition and postcondition
as defining a contract between the operation and any user of the operation. To
satisfy the contract, the user is ‘obliged’ to supply values to the operation which
satisfy the precondition; the operation is then ‘required’ to return a value which
satisfies the postcondition. Note also that such a ‘contract’ only specifies what an
operation should do and not how it should do it.

Examples 3.19

1. Consider the operation of division of real numbers. The operation takes
two real numbers x and y as input and produces a single real number x /y
as output. Therefore division has signature

_/_: Real, Real — Real.
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However, division by zero is meaningless so x/y is only defined when
y # 0. If we are to ‘feed in’ two real numbers to the division operation,
we had better ensure that the second of them is non-zero. This defines the
precondition: y # 0.

Provided the precondition is satisfied, the result of performing the
division operation on real numbers x, y is the real number which is ‘x
divided by y’. How can we define this number without simply asserting
that it is x divided by y? For example, if we input 7 and 4, what is the
property that the output number /4 must satisfy? Suppose we have a
‘division operation machine’ that gives answers rounded to three decimal
places; we input w and 4 and the machine returns the answer 0.792. Is
the machine functioning correctly? The simplest test is to multiply the
output by 4: 0.792 x 4 = 3.168 which is not the value of & correct to
three decimal places. Therefore the division machine is faulty. In general,
assuming that the operation of multiplication has been defined, the real
number 7 that is the result of dividing x by y is defined by the equation
x =r x y. This equation is the postcondition.

We can now give the full description of the division operation. It has three
parts: signature, precondition and postcondition.

_/—:x:Real, y: Real — r : Real
precondition y#0

postcondition X=rXxy.

Note that we have extended the usual signature expression by adding
labels for the input and output variables. This is so that we can refer
to particular inputs and the output in the precondition and postcondition.
For example, the precondition must state that it is the second of the two
arguments that does not take a zero value. Hence we need to be able to
distinguish between the two input variables.

This specification of division is the required contract between the
operation and its user. The user is obliged to ‘feed in’ real numbers x
and y satisfying the precondition y # O; then the operation will keep
its side of the contract by producing a real number » (which is the value
of x/y) satisfying the postcondition: x = r x y. The contract does not
specify how the operation will calculate the value r = x/y—provided the
result satisfies the postcondition, any method of calculation is acceptable.
If we were required to implement the division operation as a software
routine then the method of calculation would be important in terms of the
speed of the operation and accuracy of the output. However, as far as the
specification of the operation is concerned, these issues are not relevant.
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Consider the ‘square root’ operation defined on real numbers. Since the
operation takes a real number as input and returns a real number value, it
has signature

= Real — Real.

What should be the precondition(s) and postcondition(s)? Imagine a
square root machine as a ‘black box’; we input a real number into the
machine and out comes another real number.

v T

To determine the precondition, consider what real numbers we are
allowed to ‘feed into’ the machine without ‘breaking it’ (we imagine that
feeding in an illegal value is likely to break the machine). We cannot feed
in a negative number since the square root of a negative real number is not
defined (in the context of the type Real). But this is the only restriction—
any other real number is an allowed input. Therefore the precondition is
x > 0 where x is the input value.

To determine the postcondition, suppose we feed in the value x and the
real number r is the resulting output. What test(s) would need to be
carried out on the output 7 in order to determine whether the machine was
working properly? For example, suppose we feed in 7 and the machine
(working to three decimal places, as before) outputs the answer 2.615. Is
it working correctly? Since 2.615% = 2.615 x 2.615 = 6.838 to three
decimal places (which is not equal to 7), we conclude the machine is not
functioning properly.

In general, if we ‘feed in’ x (satisfying the precondition x > 0) the
output r should satisfy »2 = x if the machine is working properly and
this equation forms part of the postcondition. We are assuming here
that the ‘square’ operation has been defined and properly specified—see
example 3(i) below. If the square operation has not been specified then
we vzvould need to use the equation r X r = x in the postcondition in place
of r=- =x.

In fact there is another condition which must be satisfied. It is a common
but erroneous belief that \/x means ‘the positive or negative square root
of x’. In fact, the symbol |/ means ‘the non-negative square root of’. For

example, V4 = 2 and not +2. (The equation x2 = 4 has two solutions,
namely 2 = +/4 and —2 = —+/4, and these are frequently summarized
as ++/4 which is probably the cause of the error.) This means that there
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is another part of the postcondition which says that the output should be
non-negative: r > 0.

Putting all the pieces together gives the following specification of the
square root operation.

=i x: Real — r: Real
precondition x>0
postcondition r>0Ar?=x.

The following are some further specifications of operations given with
somewhat briefer explanation. In general, each specification has
a signature, precondition and postcondition although sometimes no
precondition is required.

@) square _2:x: Real — r: Real
precondition There is no precondition since we are allowed
to ‘feed in’ any real number to the ‘square
operation’
postcondition r=x X X.
(ii)  absolute value |_|:x: Real — r : Real
precondition none (from now on we shall simply miss
out the precondition part if there is no
precondition)
postcondition xZ20->r=x)AMx<0—->r=—x).
(i)  ‘floor’ or ‘integer part’ -] :x: Real — n : Integer.

The floor or integer part of a real number is the largest integer
that is less than or equal to the given real number. For example,
[8.74] =8, |w] =3, |—2.38]) = -3, [4] =4, etc.

postcondition m<x)Am+1>x).

The postcondition uses < and > each with one Integer and one
Real argument. We have defined these operations to have signature
Real, Real — Real (or Integer, Integer — Integer). Therefore,
in the postcondition, we are assuming that Integer is a subtype of
Real and that, in each operation, we are substituting a value of
type Integer for the first argument of the operation with signature

Real, Real — Real.

(iv) intersection _N_:A:Set[T], B:Set[T] — C : Set[T]
postcondition forallx : T, x e C < (x € AAx €B).
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)

(vi)

(vii)

(viii)

(ix)

(x)

The output set should be the intersection of the two input sets,
C = AN B, and the postcondition defines this intersection. In this
case, to capture the required defining property of A N B, we need
to quantify over all elements of type 7.

union _U_:A:Set[T], B:Set[T] — C : Set[T]
postcondition forallx : T, x e C < (x € AVxeB).

difference _—_:A:S8et[T], B: Set[T] — C : Set[T]
postcondition forallx : T, x e C < (x € AAXx ¢ B).

empty set

It may seem odd to think of the empty set as an operation at all.
However, for every type 7, there is an empty set of type Set[7].
We can think of the empty set operation as delivering an empty
set of type Set[7] ‘automatically’ without having first to receive
an input. This means that there is no input type and hence no
precondition. We can define:

empty set &= C: Set[T]
postcondition forall x : T, =(x € C).

The postcondition characterizes the empty set as the set that
contains no element of type 7. Any operation like this that has
no input type is called a constant.

subset _C _:A:Set[T], B: Set[T] — Boolean
postcondition forallx : 7,AC B < (x € A— x € B).

set equality _=_:1A:Set[T], B: Set|T] — Boolean
postcondition A=B < (ACBABCA).

husband of HusbandOf(_) : p : Person — q : Person.

In the following specification of HusbandOf we assume the
operations IsFemale, IsMarried and IsMarriedTo have clear
meanings (and have been properly specified). See exercise 3.7.6
for the specification of further operations on the type Person .

precondition IsFemale(p) A IsMarried(p)
postcondition —IsFemale(q) A p IsMarriedTo q.
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Suppose the following type declarations have been made.

k,m,n : Integer x,y,2: Real P, Q : Boolean .

Where necessary, assume that Integer is a subtype of Real; for example,
the division operation for real numbers _/_ : Real, Real — Real can
take integer arguments (although the result will always be of type Real).

(a)

(b)

State the type of each of the following terms.

(i) m+ (k x n) iv), P« Q
i) x< -2 vy PVx#y)
(i) m—-n=2xk i) m/k)+z.

Determine whether each of the following expressions is
meaningful (that is, ‘type checks’).

(i) x x (k/n) iv) (m=m)— (PV Q)
(i) PAGKZ=Y) v) —(m<k
i) (PAx)>y vi) (—m) <k.

Consider the type Person of all human beings (living and deceased).
Various operations are to be defined on the type. Define the signature
of each of the following operations. In some cases you will need to make
choices regarding the meaning of the operation. You may assume the
existence of other types that you require. For example, suppose Name
is an operation which returns the family name of a person. You may
assume the existence of the type String, which is the type of a person’s
family name, and then define Name to have the following signature:

Name(_) : Person — String.

Operation Comment

Height Gives a person’s height in metres in the form

Height(Jack) = 1.913.

DateOfBirth ~ Assume that Date is a defined type.

YearOfBirth
Age Gives the age in years (i.e. age last birthday).
Mother Gives a person’s mother.

IsOlderThan An infix operation; for particular p and gq,

p IsOlderThan q gives the truth value of ‘p is
older than ¢g’.
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CitizenOf Gives the country of the person’s nationality. Assume
that Nation is a defined type.
What happens if we allow dual (or multiple)
nationality?

Children Gives the set of children of a particular person.

IsTallerThan

Qualifications

Siblings Gives the set of siblings of a person.

When quantifying over propositional functions, it is often necessary
to specify the types of the variables. We use the following obvious
generalization of the notation introduced in chapter 1.

Vx : 7, P(x) means ‘for all x of type 7, P(x) (is true)’
dx : 7, P(x) means ‘there exists (at least one) x of type
T such that P(x) (is true)’.

Determine whether of not each of the following statements is true or false.
(In some cases you will need to make assumptions about the operations
involved—see question 2 above.)

()  3n: Integer,n’> =2

(i) 3x: Real,x:=2

(iii) Vn: Integer,n —1 <n

(iv) Vx : Real,3n : Integer,n > x

(V)  Vx : Person, Mother(x) IsOlderThan x
(vi) 3Jx: Real, x> <0

(vii) 3Ax : Person, IsQueen(x)

(viii) Fx Iy : Person, Age(x) = Age(y)

(ix) Vn: Integer, Im : Integer,m > n

(x)  Vn: Integer,(n <0)V (n = 0).

Determine whether or not each of the following statements is true. Note
that, for a statement to be true, it must first be meaningful (that is, it must
type check).

(1) Vn : Integer,n <n+ 1

(i) Vx: Person,x >0

(iii) Vn: Integer,n+1 >0

(iv) 3In: Integer,n+1>0

(V)  Vx:Real,x>>0

(vi) 3x: Real,x%:=3

(vil) Vx : Person,dn : Integer, Age(x) = n
(vill) 3In : Integer, Vx : Person, Age(x) =n
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(ix) In3dm : Integer, (n < m) A (n2 > m2)

(xX) VPVQ : Boolean, (P <> Q) Vv (P <> —Q) (Hint: draw up a truth
table)

(xi)  Vx : Real,3n : Integer,n > x

(xil) Vx : Real, (x> < 0) = (x <0).

Suppose that, on the type Integer, the operations of addition and
multiplication are given and are fully specified. Suppose also that there
is an operation IsPositive with signature

IsPositive(_) : Integer — Boolean

such that IsPositive(n) is true when n is greater than zero and false
otherwise.

Write down complete specifications for each of the following operations.
That is, write down preconditions (if any are necessary) and
postconditions which define the operation. To begin with, you may
only use addition, multiplication and IsPositive (together with equality).
However, once an operation has been defined, it may then be used in
subsequent specifications. In many cases there is more than one way of
correctly specifying the operation.

) subtraction — — _: Integer, Integer — Integer

(i1) negation —_: Integer — Integer

(iii) greater than — > _: Integer, Integer — Boolean
@iv) is negative IsNegative(_) : Integer — Boolean

) less than _ < _: Integer, Integer — Boolean
(vi) reciprocal 1/_: Integer — Real

(vii)  greaterthanorequalto _ > _: Integer, Integer — Boolean
(viii) less than or equal to — < —: Integer, Integer — Boolean
(ix) even IsEven(_) : Integer — Boolean

(%) odd IsOdd(_) : Integer — Boolean

(xi)  mod —mod_ : Integer, Integer — Integer

The operation ‘n mod &’ gives the remainder when # is divided
by k. For example, 2mod 3 = 2,4mod 3 = 1,38 mod 3 = 2,
180mod3 =0,52mod5 =2,17 mod 7 = 3, etc.

(xii) divides _|— : Integer, Integer — Boolean.
Recall that n|m is true if n is a factor of m (that is, ‘n goes exactly
into m’) and is false otherwise.
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In this question, you may assume the type Person has the following
operations already specified.

®

(i)

(iii)

(iv)

)

IsMarried(p) p is married
IsFemale(p) p is female
IsChildOf (p, q) pis achild of g

IsMarriedTo(p, q) p is married to ¢

Write down the signatures of IsMarried, IsFemale, IsChildOf and
IsMarriedTo.

The operation WifeOf (p) is to be defined as returning the wife of
p. Write down informal (in English) and formal preconditions and
postconditions for WifeOf. In your formal version, you may use
any of the operations above, but no others.

Sons(p) is to be defined as returning the set (which may be empty)
of sons of p : Person. Write down the signature, informal (in
English) and formal preconditions and postconditions for Sons,
again using only the operations above.

An operation f is defined on the set of people as follows:

signature f(o) : p: Person — q : Person
precondition none
postcondition (g = f(p)) < (IsMale(q) A IsChildOf (p, q))

In ordinary English, describe what output the function f produces.

Write a formal specification for the function FatherInLaw, that is
to return a person’s father-in-law (the father of their spouse).

A type Pet is to be defined as the type of all living domestic pets. In this
question, assume the existence of the types Integer, Real, Boolean and
Person .

®

(ii)

Assuming that every pet has one and only one (human) owner but
a person may own more than one pet, write down the signature of
each of the following operations:

(@) OwnerOf(—) this gives the owner of a pet
(b) Owns(L) this gives the pets owned by a person.

If a : Pet, what is the relationship between a and
Owns(OwnerOf(a))?
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(iii) The operation hasPet : Person —> ‘Boolean returns true if
the person owns at least one pet and false otherwise. Give a
formal specification of hasPet in terms of preconditions and/or
postconditions.

(iv)  An operation f has signature a : Pet, b : Pet — Boolean. It has
no precondition but has the following postcondition:

postcondition
f(a,b) <> 3Ap : Person p = OwnerOf(a) A p = OwnerOf (D).

Describe in simple terms the meaning of this operation f.



Chapter 4

Relations

4.1 Relations and Their Representations

The mathematical notion of a relation, like that of a set, is a very general one.
It is one of the key concepts of mathematics and examples of relations occur
throughout the subject. Three special types of relation are particularly important:
functions, equivalence relations and order relations. Functions are the subject
of the next chapter; equivalence and order relations are considered later in this
chapter. We begin, though, with a look at the general concept of a relation and
various ways of visualizing relations.

In §1.8 we considered two-place predicates such as ‘is heavier than’. A two-
place predicate requires two variables to convert it into a propositional function.
For example, if H is the predicate ‘is heavier than’, then H (x, y) denotes the
propositional function ‘x is heavier than y’. We can think of a two-variable
propositional function as defining some kind of relationship between its two
variables. Given objects a and b, the proposition H (a, b) is true if and only if
the objects are related in the appropriate way.

The first thing to note is that, in a two-variable propositional function F(x, y),
the order of the variables may be significant. For specific objects a and b, F(a, b)
and F (b, a) may have different truth values. This is the case for the propositional
functions ‘x is heavier than y’, ‘x is the mother of y’ or ‘x is greater than y’, for
instance. Therefore, the set of objects for which F(a, b) is a true proposition will
be a set of ordered pairs. It is also important to realize that the two variables x and
y may represent different kinds of object. For example, consider the propositional
function C(x, y): x is the capital city of y. Here x is the name of a city but y is
the name of a country, so the set of ordered pairs (a, b) for which C(a, b) is a true

148
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proposition is a subset of the Cartesian product A x B, where A = {cities} and
B = {countries}.

The following mathematical definition of a ‘relation’ is surprisingly simple and
very general. Some authors refer to this as a binary relation because it relates two
objects. (There is a generalization of this which relates n objects—see exercise
4.1.11.)

Definition 4.1

Let A and B be sets. A relation from A to B (or between A and B) is a
subset of the Cartesian product A x B.

The first thing to notice is that a relation as we have defined it is a set; namely a
set of ordered pairs. If R is a relation from A to B, we say thata € A is related
to b € B if (a,b) € R. Thus the relation R itself is simply the set of all related
pairs of elements. For the most part we shall adopt the commonly used notation
and write a R b to denote ‘a is related to b°, and a I}é b to denote (a, b) ¢ Ror ‘a
is not related to b°. If A = B it is also common to refer to R as a relation on A.

Examples 4.1

1. Let A = ({cities of the world}, B = {countries of the world} and
R = {(a, b) : a is the capital city of b}. Thus a R b denotes ‘a is the
capital city of b’.

Examples are: (Paris) R (France), (Moscow) R (Russia), (Tirana) R
(Albania), etc.

Also we have: (London) |;'4 (Zimbabwe), (Naples) |;'4 (Italy),
(New York) |;'4 (United States), etc.

2. Let A=B=1{1,2,3,4,5,6} and R = {(a, b) : a divides b}. Since A is
a small finite set we can list the elements of the relation:

R={{1,D,(,2),1,3),,4),d,5),(,6), (2,2),(2,4), (2,6),
(3,3),.(3,6), (4,4), (5,5), (6,6)}.

We represent R diagrammatically in figure 4.1 by plotting its elements on
the coordinate grid diagram of the Cartesian product A x B = A2,
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3. Let A = B = Z™, the set of positive integers, and let a R b denote ‘a has

the same parity as b’; that is, either a and b are both even or they are both
odd. More precisely

R = {(a, b) : a — b is an integer multiple of 2}.

Then 1RI1,1R3,1R5,...
2R2,2R4,2Re,...
3R1,3R3,3R5,...
4R2,4R4,4R6,...ectc.

A picture for this relation is figure 4.2, where again we have plotted the
elements of R on the diagram for A x B.

There are various ways of representing relations visually, particularly relations
between finite sets. In figures 4.1 and 4.2, the elements of R are marked on the
coordinate grid diagram of the Cartesian product A x B. Diagrams such as these
show clearly R as a subset of A x B, but are not so good at showing additional
properties of the relation.

An alternative for finite sets is to represent A and B as two side-by-side Venn
diagrams with the elements arranged vertically. An arrow is drawn froma € A
to b € B whenever a R b. We refer to this as the arrow diagram of the relation.
For example, the arrow diagram for the relation defined in example 4.1.2 above is
given in figure 4.3.

Unfortunately figure 4.3 does not show very clearly at a glance which elements
are related to which. For sets larger than {1, 2, 3,4, 5, 6} diagrams of this type
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would become too cluttered to be of much use. However, for relations on a set
(i.e. where A = B), there is a slight modification we can make which clarifies the
diagram. Instead of listing the elements of A twice, once in each Venn diagram,
we can represent each element of A once by a point in the plane. A directed arrow
is still drawn from a to b if and only if a Rb. The resulting diagram (see figure 4.4)
is an example of a directed grapht or digraph and is called the directed graph
of the relation. We shall study graphs and directed graphs in greater detail in
chapters 10 and 11.

If two elements a and b are such that a R b and b R a, we will usually connect

+ More precisely, figure 4.4 is the diagram of a directed graph—see chapter 10.
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Figure 4.4

their points in the directed graph by a single bi-directional arrow, rather than two
directed arrows. (See the diagram in exercise 4.1.5.)

A third way to represent a relation is by a ‘binary matrix’. Let A =
{ai,a2,...,a,} and B = {by, by, ..., by} be finite sets and let R be a relation
from A to B. The binary matrix of R is a rectangular array of zeros and ones
with n rows and m columns. The rows correspond to the elements of A (in the
order listed above) and the columns correspond to the elements of B (again, in the
order listed above). At the intersection of the ith row and jth column we place a
one if a; R b; or a zero if ¢; Iﬂ b;. For example, the binary matrix representing
the relation R on A = {1, 2, 3,4, 5, 6} given by a R b if and only if a divides b
(example 4.1.2) is the following:

bi=1 by=2 b3=3 bys=4 bs=5 bg=6
a; =1 1 1 1 1 1 1
a, =2 0 1 0 1 0 1
a3 =3 0 0 1 0 0 1
as =4 0 0 0 1 0 0
as =15 0 0 0 0 1 0
ag =06 0 0 0 0 0 1

We have taken the elements of A = B in increasing order so that row i represents
the number i and column j represents the number j. The zero at the intersection
of the fifth row and second column means that as I}ébz—that is, 5 does not divide 2.
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Similarly the one at the intersection of the second row and fourth column means
that ap R bys—that is, 2 divides 4.

Normally we will not write ay, . . ., ag to label the rows and b1, . . ., bg to label the
columns as we have here, provided it is clearly understood which rows correspond
to which elements of A and which columns correspond to which elements of
B. Several of the properties of the relation R which we consider later can be
deduced from properties of its binary matrix. Matrix algebra itself is the subject
of chapter 6.

Note that the binary matrix of a relation on a finite set A is square—that is, it
has an equal number of rows and columns. The number of rows or columns is of
course |A|, the cardinality of A.

Relations and Types

We now consider briefly how typed sets introduced in section 3.8 fit in with the
theory of relations. If A and B are typed sets and R is a relation from A to B, then
R should also have a specified type. Before we can determine the type of R, we
must first define the type of the Cartesian product A x B (because R is a subset
of A x B).

Given elements a of type § and b of type 7, we define the ordered pair (a, b) to
have type § x 7. Symbolically,

a:S,b:7T— (a,b):S xT.

For example, if n : Integer and x : Real then (n,x) : Integer X Real. Now if
A : Set[S]and B : Set[7] then their Cartesian product A X B is a set containing
ordered pairs (a, b) of type § x 7. Therefore A x B has type Set[S x 7Z]. In
symbols,

A Set[S], B :Set[T] — A x B : Set[S x T].

Now suppose that R is a relation from A to B. Then R € A x B so R has the
same type as A x B, namely Set[S x T]. To summarize:

if R is a relation from A : Set[S]to B : Set[T] then R : Set[S x T].

In examples 4.1:

the relation in example 1 has type Set[City x Country];
the relation in example 2 has type Set[ Integer x Integer];
the relation in example 3 has type Set[ Integer x Integer].
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Exercises 4.1
1. For each of the following relations R on a set A, draw:

(a) its coordinate grid diagram,
(b) its directed graph, and
(c)  its binary matrix.

i A=1{1,2,3,4,56,7,8}
aRbifandonlyifa < b.
i) A={1,2,3,4,56,7,8};
aRbifand only ifa = b.
(i) A=1{1,2,3,4,5,6,7,8};
aRbifandonlyifa < b.
iv) A={1,2,3,4,5,6,7,8};
aRbifandonlyifa/b € Z.
v) A=l{a,b,c,d,e};
R=1{(a,b), (@, ), (a,e), (b,c),(c,a),(c,d), d,e),
(e, ), (e, d)}.
(vi) A=f{a,b,c.d,e [}
x Ry if and only if x and y are both vowels or x and y are both
consonants.

(vii) A=1{1,2,3,4,5,6,7,8};
a Rbif and only if a = 2b.

(vii) A = {1,2.3.4.5.6.7,8):
a Rbif an only if a = 2"b for some n = Z ™.

(ix) A= 2{1,2,3}, the power set of {1, 2, 3};
aRbifand only ifa C b.

x) A= 2{1,2,3}, the power set of {1, 2, 3};
aRbifandonlyifa C b.

2. The binary matrices Mg and Mg for two relations R and S respectively
on the set A = {1, 2, 3, 4, 5} are given below.
00 00O I 1 1 1 1
10 1 0 1 00 0 0 O
Mg = 1 1 0 1 0 and Mg = 1 1 1 0 0
1 1 1 0 1 10 0 1 1
1 00 10 00 00O
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(i)  List the elements of R and S.
(i)  Draw the directed graphs of R and S.

A relation R on the set A = {a, b, ¢, d, e} has the directed graph shown
in the diagram below.

T . - /I"-'

(i)  List the elements of R.
(i)  Write down the binary matrix of R.

A relation R between the sets A = {1,2,3} and B = F(A) =
{@, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} has the following binary
matrix. (The row and columns of the matrix correspond to the elements
of A and B as they are listed respectively.)

01001011
001011 01
00010111

List the elements of R and define a R b in words or symbols.

Each of the four football teams A, B, C, D in a mini-league plays
every other team both at home and away. A relation R on the set
S = {A, B, C, D} is defined by:

X RY ifandonly if X beat Y when X played at home.
The following diagram is the directed graph of R.

AN—a—»—F
-~

i [
List the elements of R, and write down its binary matrix.

For each of the following relations R on the (ordered) set A =
{a, b, c,d, e}, whose binary matrix is given, list the elements of R and
draw its directed graph:
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@

(ii)

(iii)

01 1 11
00 1 1 1
00 0 1 1
00 0 0 1
000 0O
1 00 0O
1 1.0 00
1 1100
1 1110
1 11 11
1 01 01
01 010
1 01 0 1
01 010
1 01 01

What is the connection between the relations in parts (i) and (ii)?

Let A = {rivers in the world}, B = {towns or cities in the world} and
define a relation R from A to B by

@

(ii)

(iii)

(iv)

a Rb if and only if a flows through b.

Describe in words each of the following sets:

(a) {b € B :(Thames) R b}
(b) {a € A:aR(London)}.

Describe in words each of the following propositions:

(a) —(3x € A, x R (Toronto))
(b)  Va € A (a R (Washington, DC) — a = Potomac).

Define each of the following sets symbolically.

(a)  The set of rivers which flow through Paris.
(b)  The set of rivers which flow through some town or city.

Write symbolically each of the following statements:

(a)  Allrivers flow through some town or city.
(b)  All towns or cities have a river flowing through them.
(c)  The River Nile flows through more than one town or city.

Let A be any (finite) set.

@

The identity relation |4 on A is the relation of equality defined
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by: alab if and only if a = b.
Describe (a) the directed graph and (b) the binary matrix of I 4.

(i)  The universal relation U4 on A is the relation defined by: a U4 b
foralla, b € A.

Describe (a) the directed graph and (b) the binary matrix of Uy4.
@) How many relations are there from {a, b, c} to {1, 2, 3,4}? (Do
not try to list them all!)
(ii))  More generally, if |[A| = n and |B| = m, how many relations are

there from A to B?

Given a relation R from set A to set B, its inverse relation R ! is the
relation from B to A defined by

xR™!'y ifandonlyif yRx.
(a) Let A =1{1,2,3,4}and let R be the relation on A defined by
R=1{(1,2),(1,4),(2,2),(2,3),(3,4),(4,3), 4,4}

(i)  List the elements of R,
(i)  Draw the directed graphs of both R and R™".
(iii)  Write down the binary matrices of both R and R

(b)  Let Rbe arelation on a set A.

@) Describe the connection between the directed graphs of R
and its inverse R™!.

(i)  Describe the connection between the binary matrices of R
and its inverse R™!.

An n-ary relation between sets A1, A, ..., A, is defined to be a subset
of the Cartesian product A; x Ap X+ - xAp,. fA=A1=A=--- = A,
we refer to an n-ary relation on A. Let A = {1,2,...,6} and define a

3-ary relation R on A by (x, y, z) € Rif and only if x < y and y divides
zZ.

List the elements of R.

Determine the type of each of the relations defined in questions 1, 4, 5
and 8 above.

@) Let A : Set[S], B : Set[7] and let R be a relation from A to B.
What is the type of the inverse relation R~!2
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(ii)  Define the type of the relation R defined in question 7 above.
Describe the inverse relation R™! in words and define its type.

4.2 Properties of Relations

Up to now we have not justified our assertion, made at the beginning of this
chapter, that relations are important in mathematics. Indeed, if all we were able
to do with relations between sets were to draw diagrams to represent them, the
concept of a relation would not be very significant. Its importance is mainly due
to special kinds of relation which satisfy additional properties. The two of these
which we shall study in this chapter—equivalence relations and order relations—
are both relations on a set, so we look now at some of the properties which a
relation on a set may have.

Definitions 4.2
Let R be a relation on set A. We say that R is:

@) reflexive if and only if a R a for every a € A;

(i1) symmetric if and only if a R b implies b R a for every a, b, € A;

(iii)  anti-symmetric if and only if a R » and b R a implies a = b for
everya,b € A;

(iv)  transitive if and only if a R b and b R ¢ implies a R ¢ for every
a,b,c, e A.

Note that to prove that a relation R on a set A satisfies one of these four properties,
we need to show that the appropriate property is satisfied by an arbitrary element
or elements of A. For example, to prove that R is symmetric, we need to show
that a R b — b R a for arbitrary elements a, b € A. However, to show that R
does not satisfy one of the properties, we need to find a particular element or
elements of A that show this. These particular elements are a counter-example to
the property (see §2.3). For example, to show that R is not symmetric, we need
to find particular elements a, b € A such thata R b but b I}é a.
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Examples 4.2

1.

Let R be the relation on the set of real numbers defined by
xRy ifandonlyifx < y.
Then:

i) R is reflexive because x < x for every x € R;

(i) R is not symmetric because, for example, 1 < 2 but 2 ;( 1, so
x Ry does not imply y R x;

(iii)) R is anti-symmetric: if x < y and y < x then it follows that

X =y;
(iv) R is transitive because if x < y and y < z then it follows that
x < z.
2. Let A ={a,b,c,d}and R = {(a,a), (a,)), (a,¢), (b, a), (b, b), (], ¢),
(b,d), (d, d)}.
The relation R satisfies none of the properties of definition 4.2:
R is not reflexive since ¢ I;"ic; therefore it is not true that x Rx for every
X €A;
R is not symmetric since, for example, a R ¢ but ¢ I}é a;
R is not anti-symmetric since « R b and b R a but a # b;
R is not transitive sincea Rb and b Rd but a Rd.

3. Let A = Z* x Z™ and R be the relation on A defined by (a, b) R (c, d)
if and only if a + d = b + ¢. Show that R is reflexive, symmetric and
transitive, but not anti-symmetric.

Solution

For all positive integers a and b,a + b = b + a, so (a, b) R (a, b) for every
(a, b) € A, Therefore R is reflexive.

R is symmetric since if (a, b) R (¢, d) then a + d = b + ¢ which implies that
c+b=d+a,so(c,d)R(a,b).

To show that R is transitive, suppose (a, b) R (¢, d) and (c,d) R (e, f). This
means that

a+d=b+c and c+ f=d+e.
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Adding these equations gives
a+d+c+f=b+c+d+e
SO
a+ f=b+e
which means that (a, b) R (e, f).

Therefore (a, b) R (¢, d) and (¢, d) R (e, f) implies that (a, b) R (e, f), so R is
transitive.

Finally, to show that R is not anti-symmetric we need to find a counter-example;
that is, we need to find elements (a, b) and (c, d) of A such that (a, b) R (c, d)
and (¢, d) R (a, b) but (a, b) # (¢, d). Clearly the elements (1, 2) and (2, 3) will
do.

We now consider how we can recognize whether a relation satisfies any of these
properties given its directed graph or its binary matrix. Firstly, if R is a reflexive
relation on a finite set A then a R a for every a € A. This means that, in the
directed graph of R, there is a directed arrow from every point to itself. The
directed graph of the relation in example 4.1.2 (figure 4.4) has this property. In
the binary matrix of a reflexive relation R, there is a one in every position along
the diagonal which runs from the top left to the bottom right of the matrix. (This
diagonal is called the ‘leading diagonal’ of the matrix.)

If R is symmetric then every arrow connecting different points in its directed
graph is bidirectional. This is because an arrow from a to b means that a R b; but
if R is symmetric this implies that b R a as well, so the arrow must also go from
b to a. The binary matrix of a symmetric relation is symmetric about its leading
diagonal; whatever appears at the intersection of the ith row and jth column also
appears at the intersection of the jth row and ith column.

For an anti-symmetric relation, the directed graph is such that there are no
bidirectional arrows connecting different points. This is because for distinct
elements a and b of A we cannot have both a Rb and b Ra. The property satisfied
by the binary matrix of an anti-symmetric relation is slightly less obvious. A
relation being anti-symmetric means that, for distinct elements a and b, if a R b
then b I}é a and if b R a then a I}é b. Thus in the binary matrix, if there is a one
at the intersection of the ith row and jth column (where i # j) then there must
be a zero at the intersection of the jth row and ith column. However, since it is
possible to have a Iﬂ b and b Iﬂ a, there could be zeros in both of these positions.

The properties satisfied by the directed graph and binary matrix of a transitive
relation are less obvious still. For the graph, however, we can describe the
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property reasonably easily. If three points are such that there are arrows from
the first to the second and from the second to the third, then there must also be an
arrow from the first to the third.

Examples 4.3

1. Consider the directed graph given in figure 4.5 of a relation R on the set
A={a,b,c,d,e}.

-
= i

Figure 4.5

From this diagram we can see that:

@) R is not reflexive, since there is no arrow from c to itself, for
example.

(i) R is symmetric, but not anti-symmetric, since every arrow
connecting distinct points is bidirectional.

(iii) R is not transitive since, for instance, there are arrows from a to d,
and from d to b, but not from a to b.

2. A relation R on a four-element set A has the following binary matrix:
1 010
1 100
0 0 1 1
01 0 1

Which of the properties of definitions 4.2 does R satisfy?
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Firstly, it is clear that R is reflexive since there are only ones along the leading
diagonal.

R is not symmetric because the matrix is not symmetric about the leading
diagonal. For instance, there is a one in row 1, column 3, but a zero in row 3,
column 1.

We have to look a bit harder to see that R is anti-symmetric; except for the leading
diagonal wherever a one appears in row i, column j, a zero appears in row j,
column i. Note that sometimes a zero appears in both these places; for example,
in row 1, column 4 and row 4, column 1.

With some trial and error, we can also spot that R is not transitive. If we label
the elements of the set ay, az, az and ay, in that order, then a; R a3z and a3 R a4
but a; I}é as. We leave it as an exercise to discover whether there are any other
counter-examples to transitivity.

Exercises 4.2

1. For each of the binary relations on a set defined in exercises 4.1,
determine whether the relation is:

@) reflexive;

(il)  symmetric;

(iii))  anti-symmetric;
(iv) transitive.

2. Let A be any set of living human beings. For each of the following
relations on A, defined by a two-place predicate, determine which, if any,
of the four properties of definitions 4.2 is/are satisfied:

@) ‘is the mother of’.

(ii)  ‘is the brother of’.

(iii) ~ ‘is the sibling of”.

(iv)  ‘is at least as tall as’.

(v)  ‘istaller than’.

(vi)  ‘is the same age (in years) as’.
(vii) ‘is the same gender as’.

(viii) ‘is an ancestor of”.
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(ix)  ‘is married to’. (Is this affected by whether the people come from
a monogamous or polygamous society?)
(x)  ‘is an acquaintance of”.

Let A = {a,b,c,d,e}. For each of the following relations R on
A, determine which of the four properties (reflexive, symmetric, anti-
symmetric, transitive) are satisfied by the relation. Justify your answers.

(i) R={(a,a),(a,b),(a,c), b, a),b,b), (b, c),(ca),c,b),
(c, 0)}.

i) R={(@@,a), b,b),(c,c),d,d), e, e),(a,b)),b,c)}

(i) R={(@a,a),(a,d),b,b),(c,c),d,d)),d,e), (e a),e,e)}

iv) R={(a,b), (b, 0),(c,d),d,e), (e, a)}.

(v) R={(a,b),(b,a),(b,d),(d,a),(c,e), (e c), (e el

For each of the following relations, determine which of the four properties
are satisfied by the relation. Justify your answers.

6)) A=1{1,2,3,4,5,6,7,8} anifandonlyifn=2km
for some k € 7Z.

() A=1{1,2,3,4,56,7,8 nRmifandonlyifn < m.
(i) A=1{1,2,3,4,5,6,7,8) nRmifandonlyifn # m.
(v) A=P2{1,2,3) BRCifandonlyif B C C.
V) A=2(1,2,3)) BRC if and only if | B| = |C|.

Let A be any non-empty set and R = & be the empty relation on A.
Which, if any, of the four properties defined in definitions 4.2 is/are
satisfied by R?

If A itself is empty, which, if any, of the properties are satisfied?

Is it possible for a relation to be both symmetric and anti-symmetric? If
so0, how is it possible?

Let R = {(a,a), (a,b), (a,c), (b,b), (b,c)} be a relation on the set
{a,b,c,d}. What is the minimum number of elements which need to
be added to R in order that it becomes:

@) reflexive;

(il)  symmetric;

(iii)  anti-symmetric;
(iv) transitive?

Let A = {a, b, ¢, d}. For each of the following, define a relation R on A
which satisfies the given properties. Try to keep the examples simple.
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@) R is reflexive and transitive but not symmetric.
(i) R is both symmetric and anti-symmetric.
(iii)) R is symmetric but not reflexive and not transitive.

Determine which, if any, of the four properties in definitions 4.2 is
satisfied by each of the following relations on the set Z™ of positive
integers.

(i) nRmifand only if n — m is a multiple of 3.
(i) n Rm ifand only if n = 3*m for some k € Z ™.
(iii) n Rm if and only if n # m.

(iv) n Rm if and only if n/m is an integer.

Let A be the set of all lines in the plane R?. Which of our four properties
is satisfied by the following relations?

@) [y Ry if and only if [ is parallel to /5.

(i) I} Rl if and only if /1 is perpendicular to /5.

(iii)) (For those readers who have studied elementary coordinate
geometry.) I1 R [, if and only if the product of the gradients of
l1 and [, is equal to one.

@) Given an example of a relation which is symmetric and transitive
but not reflexive.

(ii))  The following argument is sometimes given to show that a relation
which is symmetric and transitive must also be reflexive.

Suppose R is a symmetric and transitive relation on a set A. Let
a be any element of A. By the symmetric property, a R b implies
bRa. Since aRb and bRa we can deduce a Ra from the transitive
property. Because a was an arbitrary element, we have proved that
a Ra for every a € A; therefore R is reflexive.

The example in (i) shows that this argument must be false. What
is wrong with it?

Let A be any set of propositions not all of which have the same truth
values. Define a relation R on A by:

pRg ifandonlyif p — q is true.
Which of the four properties is satisfied by this relation?

For each of the four properties, reflexive, symmetric, anti-symmetric
and transitive, if a relation R on a set A satisfies the property does its
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inverse relation R™! necessarily satisfy the property as well? (The inverse
relation is defined in exercise 4.1.10.)

Show also that R is symmetric if and only if R = R,

4.3 Intersections and Unions of Relations

Since a relation R between A and B is simply a set—a subset of the Cartesian
product A x B—we can define intersections and unions of relations.

Let R and S be two relations from a set A to a set B. Both their intersection RNS
and their union RU S are subsets of A x B also. That is, both the intersection and
the union of two relations from A to B are also relations from A to B.

UHIONW ©F RELATIONS

The situation is not quite so clear when R and S are relations between different
pairs of sets. Suppose R is a relation from A to B, and S is a relation from C to
D. Since R and S are both sets of ordered pairs, so, too, are their intersection and
union. Thus RN S and R U S are both relations. However, it is not immediately
apparent exactly which sets are related by R N'S and which sets are related by
R U S. We leave consideration of this situation to exercise 4.3.3.

A natural question to ask is: if R and S are both relations from A to B, which
(if any) of their properties are inherited by RN S and R U S? Since the four
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properties of relations defined in the previous section are for relations on a set, we
shall further restrict our attention to the case where R and S are both relations on
the same set A.

Consider first the reflexive property. If R and S are both reflexive then (a, a) € R
and (a, a) € S forevery a € A. Thus (a, a) belongsto RN S and to RU S for
every a € A, so the intersection and union of R and S are both also reflexive.

Secondly, suppose that R and S are both symmetric. Then so, too, are RN S
and R U S. We show this for the intersection only—the argument for the union
is similar (see exercise 4.3.4(i)). Let a, b € A be such that a(R N S)b or, in set
notation, (a, b) € RNS. Thena Rb and a Sb. Since R and S are both symmetric
this implies b R a and b S a, which means that (b, a) € RN S. Thus a(RN S)b
implies b(R N S)a, so RN S is symmetric.

The situation for anti-symmetry is more complicated. If R and S are both anti-
symmetric, then an argument along the lines of that above for symmetry shows
that the intersection R N S is also anti-symmetric. However, the union need not
be anti-symmetric. In order to demonstrate this we need to produce a counter-
example; that is, an example of anti-symmetric relations R and S whose union
R U S is not anti-symmetric. A simple example is the following. Let A = {a, b},
R = {(a,b)} and S = {(b, a)}. The relations R and S are both anti-symmetric
since we never have x related to y, and y related to x for different elements x and
y. However, the union RU S = {(a, b), (b, @)} is not anti-symmetric because a
is related to b, b is related to a, but a and b are not equal.

The situation for transitivity is similar to anti-symmetry: namely, if R and S are
both transitive then R N S is also transitive, but R U S need not be. The proof
that R N S is transitive is similar to the proof for symmetry and we again leave
it as an exercise (4.3.4(ii)). The simplest possible counter-example which shows
that R U S need not be transitive requires a three-element set A. (Why is this the
simplest case?) Let A = {a, b,c}, R = {(a,b)} and S = {(b, ¢)}. Then R and
S are both transitive in a rather trivial way: we never have different elements x,
y and z such that x is related to y and y is related to z, so the relations cannot
fail to be transitive. (The transitive property is a conditional: if x Ry and y R z
then x R z. Recall that a conditional proposition p — ¢ is true whenever p is
false. Thus if x R y and y R z is false for all x, y, z € A then R has the transitive
property.) However, RU S = {(a, b), (b, ¢)} is not transitive since a is related to
b and b is related to ¢, but a is not related to c.

We summarize these considerations in the following theorem.
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(@)
(ii)
(iif)

(iv)

Let R and S be two relations on the same set as A.

Theorem 4.1

If R and S are both reflexive then so, too, are RN'S and RU S.
If R and S are both symmetric then so, too, are RN Sand RU S.
If R and S are both anti-symmetric then so, too,is RNS but RUS
need not be anti-symmetric.

If R and S are both transitive, then so, too, is RN'S but RU S need
not be transitive.

Exercises 4.3

1.

Two relations R and S on the set A = {a, b, ¢, d} are defined by:
R=1{(a,b),(a,c),(a,d), (b,b), (b,c), (c,a), (c,d)}
S ={(a,b), (a,c), (b)), (cd),d,a)}.

i) FindRNSandRUS.

(i)  Draw the directed graphs of R, S, RN Sand RU S.
(iii)  Write down the binary matrices of R, S, RN Sand RU S.

Let R and S be relations on a set A.

(i)  Explain how the directed graphs of RN'S and RU S are related to
the directed graphs of R and S.

(i)  Explain how the binary matrices of RN'S and RU S are related to
the binary matrices of R and S.

Let Ry be a relation from A to B; and let Ry be a relation from A to
B;. Show that Ry N Ry and R; U Ry are both relations from A; U A to
B U B».

Let R and S be relations on the same set A. Prove that:

(i) if Rand S are both symmetric then so is RU S;
(i)  if Rand S are both transitive then so is RN S.

Questions 5-11 refer to the composite of two relations which is defined
as follows. Let R be a relation from A to B, and S be a relation from B to
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C. The composite of R and S is the relation S o R from A to C defined
by a(S o R)c if and only if there exists an element b € B such thata R b
and b S c. This is illustrated in the following diagram.

F 5
A » [t .
- T -

.r'f \ I ™, i g ‘\.\I
Pooeh sRe D llll ES. i |
I'.. \ J{i * .II M I|I - I: s - .'I
3 -, \ ! A" ;
S L e e P !

S I

a I'Sth_:l "

5. Let A = {1, 2, 3, 4} and define two relations R and S on A by:

R=1{(1,3),12,2),@3,1),@3,4), 4,2)}
S={1,2),(2,3),(3,4), 4, 1)}.
(i)  List the elements of the relations So Rand Ro S.

(i)  List the elements of the relations R~!, S™', (S o R)~! and
(RoS)~ 1.

(iii) List the elements of the relations R~ 0 S~ and S™! o R,
(iv)  What do you notice about the relations in parts (ii) and (iii)? Can

you prove the general result that this suggests?

6. A relation R on the set A = {a,b,c,d,e, f, g, h} has the following
directed graph.

@) List the elements of R.
(ii)  List the elements of R o R.
(iii) Draw the directed graph of the relation R o R.
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11.

Equivalence Relations and Partitions

Let R and S be the relations on a set A of people defined by:

x Ry if and only if x is the mother of y;
x Sy ifand only if x is the father of y.

Describe the relations (i) S o R, and (ii)) R o S.
Let R be the relation on Z ™ defined by
2

nRm if and only if m = n°.

Describe the relation R = Ro R on Z+.

169

Let R be a relation from A to B and let |4 and |5 be the identity relations
on A and B respectively. (See exercise 4.1.8.) Show that: i) Rols = R,

and (i) Ip o R=R.

Let R be arelation from A to B, S arelation from B to C, and T a relation

from C to D. Show that (ToS)o R =T o (SoR).

Let R be a relation from A to B and let S be a relation from B to C.

Describe the relationship between the types of R, S and S o R.

4.4 Equivalence Relations and Partitions

One of the most important types of relation is an equivalence relation on a set. In
this section we define the notion of an equivalence relation and explore the close
connection between equivalence relations and partitions of a set.

Consider the relation R on the set of living people defined by: x Ry if and only if
x resides in the same country as y. Assuming each person is resident in only one
country, the relation satisfies three obvious properties:

x resides in the same country as x; that is, R is reflexive;

if x resides in the same country as y, then y resides in the same country as
x; that is, R is symmetric;
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if x resides in the same country as y, and y resides in the same country as z,
then x resides in the same country as z; that is, R is transitive.

Any given element x is related to everyone who lives in the same country as x
and to no one else. Therefore the relation subdivides the set of living people
into subsets according to their countries of residence. This is an example of an
equivalence relation, which we now define formally.

A relation R on a set A is an equivalence relation if R is reflexive,
symmetric and transitive.

Definition 4.3

Examples 4.4

Let A = R, the set of real numbers, and define a relation R on A by

xRy ifandonlyif x> = y2.

Then:
R is reflexive since x2 = x2 for every real number x;
R is symmetric since x? = y? implies y* = x2;

R is transitive since x2 = y2 and y? = z2 implies x2 = 72
y y p

z-.
Therefore R is an equivalence relation.

Let A = R? — {(0, 0)}, the set of points in the plane except the origint,
and define a relation R on A by

(a,b) R (c,d) if and only if (a, b) and (c, d) both lie on the

same straight line through the origin.

Clearly R is both reflexive and symmetric. Also it is not difficult to see
that R is transitive: if (a, b) and (c, d) both lie on the same straight line
through the origin, and similarly (c, d) and (e, f) both lie on the same
straight line through the origin, then so, too, do (a, b) and (e, f).

+ For obvious reasons the set A is often referred to as the punctured plane.
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Therefore R is an equivalence relation.
3. Let A = 7Z, the set of integers, and define a relation R on A by
nRm if and only if n = 2¥m for some integer k.

Show that R is an equivalence relation.

Solution

Firstly, R is reflexive since n = 2% for every integer n.

Secondly, if n = 2Km then m = 2 %1 so n R m implies m R n; therefore R is
symmetric.

Thirdly, suppose n Rm and m R p; then there exist integers k and [ such that n =
2%m and m = 2!p. Combining these two equations gives n = 2K2/p = 2k p
where k + [ is an integer. Thus n Rm and m R p implies n R p so R is transitive.

4. Consider the relation R defined on Z* by
n Rm if and only if n divides m.

R is not an equivalence relation. To show this we only need to show
that one of the three properties is not satisfied by R. Clearly R is not
symmetric since, for example, 2 divides 4 but 4 does not divide 2.

(Note, however, that R is both reflexive and transitive. In fact R is also
anti-symmetric because if n divides m and m divides n then n = m.
Of course, these facts are not important in showing that R is not an
equivalence relation.)

As we mentioned in chapter 3, there is a close connection between partitions of
a set and equivalence relations on the set. Recall that a partition of a set A is
a family of non-empty subsets which are pairwise disjoint and whose union is
all of A (see definition 3.4). Suppose R is an equivalence relation on A. We
can form subsets by grouping together in the same subset all elements which are
related. We shall see that the properties of the equivalence relation guarantee that
the subsets formed in this way form a partition of A. These subsets are called the
‘equivalence classes’ of the relation which we now define formally.
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Definition 4.4

Let R be an equivalence relation on a set A, and let x € A. The equivalence
class of x, denoted [x], is the set of all elements of A to which x is related:

[x]={ye A: xRy}

Note that, since R is symmetric, the equivalence class of x is also equal to
{y € A: y Rux}. In other words, the equivalence class of x can equally well be
defined either as the set of elements that are related to x or as the set of elements
to which x is related. Sometimes, if we need to emphasize the relation R, we refer

to the R-equivalence class of x which we denote by [x]g.

Examples 4.5

1.

Let R be the equivalence relation on Z T defined in example 4.1.3 by nRm

if and only if n — m is divisible by 2. Then:

11=1{1,3,5,7,9,...)

2]=1{2,4,6,8,10,...}

31=11,3,5,7,9,...)
]

[
[
[
[4] ={2.4,6,8, 10, ...} etc.

In this example there are clearly only two different equivalence classes—
the sets of even and odd positive integers respectively. Note that these

two equivalence classes form a partition of Z™,

Let R be the equivalence relation defined on the set of integers Z by n Rm

if and only if n? = m?.

For each integer n, only n Rn and n R (—n) so the equivalence class of n

contains two integers, namely » and its negative:

There is one exception: since 0 equals its negative, the equivalence class

of 0 contains only itself, [0] = {0}.

Let R be the relation on the punctured plane R? — {(0,0)} defined in
example 4.4.2 by (a, b) R (¢, d) if and only if (a, b) and (c, d) lie on the

same straight line through the origin.
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Let (x, y) be any point in R? — {(0, 0)}. The equivalence class of (x, y)
is the set of all points (except the origin which is not an element of the
punctured plane itself) which lie on the line through (0, 0) and (x, y).
In this case we can visualize the equivalence classes geometrically.
There are infinitely many different classes in this example; one for each
(punctured) line through the origin.

4. Let A be any non-empty set of people and define a relation R on A by
x Ry if and only if x is the same height as y (measured, let us say, to the
nearest centimetre). Then R is an equivalence relation on A.

For any person in the set, his or her equivalence class is the set of all
people (in the set A) who are the same height.

It might seem from the definition that there are as many equivalence classes as
there are elements of the set A. However, the above examples show that there are
many fewer distinct (i.e. unequal) equivalence classes in general. This is because
if two elements are related then their equivalence classes are equal. To see this,
suppose that R is an equivalence relation on A and x Ry for two elements x and y
of A. We wish to show that [x] = [y]. Let z € [x]; then x Rz by definition. Since
xRy and R is symmetric we know that y Rx also. Thus y Rx and x Rz; it follows
that y R z, by the transitivity of R, so z € [y]. This shows that [x] € [y]. The
proof that [y] C [x] is similar, so we can conclude that [x] = [y]. The converse
is also true; namely, if [x] = [y] then x is related to y. This is very easy to prove:
y € [y] since R is reflexive, so y € [x] which means x R y by definition. We have
proved the following result.

Theorem 4.2

Let R be an equivalence relation on A and x, y € A. Then [x] = [y] if and
onlyifx R y.

The observation made in theorem 4.2 paves the way for us to prove the result
mentioned above: the family of equivalence classes of an equivalence relation on
a set form a partition of the set.
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Theorem 4.3

Let R be an equivalence relation on a non-empty set A. The family of
distinct R-equivalence classes is a partition of A.

Proof

A partition must be a family of non-empty sets—see definition 3.4. This is clearly
satisfied here. Since R is reflexive, x € [x] for every x € A. Therefore, every
equivalence class is non-empty. This also shows that the first property of a
partition is satisfied. Since x € [x] for every x € A, it also follows that every
element of A belongs to some equivalence class, namely its own. Therefore the
union of all the equivalence classes contains all the elements of A.

The second property of a partition, that the members of the family of subsets
should be pairwise disjoint, sometimes causes confusion because equivalence
classes need not be disjoint according to theorem 4.2. The point here is that it
is the family of distinct equivalence classes which we are consideringf. So we
must show that any two distinct classes are disjoint. In fact it is easier to prove
the contrapositive: if two classes have elements in common (are not disjoint) then
they are equal (are not distinct).

So suppose [x] N [y] # &. Then we may choose an element z in the intersection.
Thus x R z since z € [x] and y R z since z € [y]. The symmetric and transitive

properties of R imply that x R y, so we conclude [x] = [y] by theorem 4.2.

We have now checked both properties of a partition, so the proof is complete. W

Examples 4.6

1. Recall from example 3.19.3(iii) that the ‘floor’ or ‘integer part’ of a real
number is the largest integer that is less than or equal to the given real
number. For example,

[24]=2 |-38]=-4 |V10] =3etc.

+ From a theoretical point of view we do not need to emphasize that we are considering the family of
distinct classes as this is taken care of automatically. Since the family of equivalence classes is a set
of classes, our usual convention for sets, that we disregard any repeated elements, applies.
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Let R be the relation on the set R of real numbers defined by x R y if and
only if |x] = |y]. Itis straightforward to check that R is an equivalence
relation. Consider % € R: since L%J = 0, the equivalence class of % is

[fl={xeR:|x]=0={xeR:0<x <1}
This set, called a half-open interval, is denoted [0, 1). Similarly,
RA4l={xeR:|[x]=24]=2}={xeR:2<x <3} =1[2,3).

In fact every equivalence class is a half-open interval of the form [n, n+41)
for some integer n, so the partition of R by equivalence classes is

{[n,n+1):n e Z}.

A relation R is defined on the set R of real numbers by
xRyifandonlyif (x =0=y) Vv (xy > 0).

We leave it as an exercise to check that R is an equivalence relation. (This
is not difficult although, since there are two cases in the definition of xRy,
the proof of each property requires consideration of cases.) What are the
equivalence classes? Since the equivalence classes form a partition of R,
we can adopt the following simple strategy for finding all the equivalence
classes:

(I)  choose any a € R and find its equivalence class [a];

(Il) choose b ¢ [a] and find [b];

(IIT)  choose ¢ ¢ [a] U [b] and find [c];

(IV) continue in this way, at each stage choosing x € R that does
not belong to any existing equivalence class, until it is no longer
possible to choose such an x.

So we first selecta = 1, say. Since 1 #O0wehave IRy & 1 xy >0 <
y >0, so

[1]={yeR:y>0}=R", the set of positive real numbers.

Next we must choose b ¢ R™;soletb = 0. Now 0 Ry < y = 0 so the
equivalence class is a singleton set

[0] = {0}.

Now we must select ¢ ¢ Rt U {0}; so let ¢ = —1. Again —1 # 0 so
—1Ry4s —-1xy>0% —y >0<% y < 0. Therefore

[-1]={yeR:y <0} =R", the set of negative real numbers.
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Since every real number belongs to one of these equivalence classes
[1] = R*, [0] = {0} or [-1] = R, we have found all the (distinct)
classes. Hence the partition of R into equivalence classes is

{R*, {0}, R™}.

3. Define a relation R on & ({1, 2, 3}), the power set of {1,2,3},by AR B
if and only if |[A| = |B|. For example, {1, 2} R {2, 3}, {1, 2} I}é {3}, etc.
It is easy to verify that R is an equivalence relation on & ({1, 2, 3})—
see exercise 4.2.4(v). For A C {1, 2,3}, the equivalence class of A
contains all those subsets of {1, 2, 3} with the same cardinality. Hence
the equivalence classes are:

(@] = {2}
{13 = {{1}, {2}, (3}
({1, 2}] = {{L. 2}, {1, 3}, {2, 3}}
{1,2,3}] = {{1,2,3}}.

More generally, let # be any family of finite sets and define a relation R
on % by AR B if and only if |A| = |B|. Then again R is an equivalence
relation on .%. Given A € .7, its equivalence class [A] is the set of those
sets in .# with the same cardinality as A. Therefore the equivalence
relation partitions % into subfamilies of sets with the same cardinality.

We have noted the connection between equivalence relations and partitions in
one ‘direction’ only—from equivalence relations to partitions. That is, given an
equivalence relation on a set we have defined a partition by equivalence classes.
However, we can proceed in the other direction as well. If we are given a partition
of a set we can use it to define an equivalence relation in such a way that the
equivalence classes are the original subsets which make up the partition. This is
easily done. Given a partition {S; : i € I} of a set A, we define a relation R on A
by

x Ry ifandonly if x and y belong to the same subset S; of the

partition.

The properties of the partition mean that the relation is well defined: given two
elements x and y of the set, each belongs to precisely one of the sets S; so we can
determine with certainty whether x R y or x |;'4 y. It should be clear that R is an
equivalence relation. Every element of A belongs to the same subset as itself so
R is reflexive. The statements that guarantee that R is symmetric and transitive
are equally as trite!
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The equivalence classes of this relation coincide with the original subsets of the
partition. An equivalence class [x] contains all those elements which belong to
the same subset in the partition as x, which means that [x] must be equal to the

subset containing x. Thus every equivalence class is one of the ‘original’ subsets
S;.

We can summarize the preceding remarks in the following theorem.

Theorem 4.4

Let {S; : i € I} be apartition of aset A. Then x Ry ifand only if x, y € S;
for some i € I defines an equivalence relation R on A whose equivalence
classes are precisely the sets S; in the partition.

Theorems 4.3 and 4.4 mean that we can pass freely back and forth between
equivalence relations and partitions. In a sense they are two aspects of the same
phenomenon.

Modulo Arithmetic

Let n be a fixed positive integer. A relation, called congruence modulo n, is
defined on the set Z of integers by

a=,b ifandonlyifa — b = kn for some k € Z.

Alternative notations for a =, b are a = b (mod n) or simply a = b if the value
of n has already been established. If a =, b we say that a is congruent to b
modulo n. Thus a is congruent to » modulo n if n divides their difference or,
equivalently, if @ and b have the same remainder after division by .

We leave it as a straightforward exercise to show that congruence modulo 7 is an
equivalence relation—see exercise 4.4.10.

Example 4.7

Before considering the general case we look first at a specific example, that of
congruence modulo 5. Since we are fixing n = 5 in this example, we write a = b
as an abbreviation for a =5 b.
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In this case a = b if and only if @ — b = 5k for some integer k; that is, if and only
if there exists an integer k such that a = 5k + b. Therefore

[pl=1{gq €Z:q =5k + p, forsome k € Z}.
All of the equivalence classes are infinite; some of them are listed below:

[0]={...,—10,-5,0,5,10,15,.. )
[M={..,-9,—4,1,6,11,16,...)
2]={..,—8,-3,2,7,12,17,..}
B]=1{..,—7,-2,3,8,13,18,...
4] =1{..,—6,—1,4,9, 14,19,.. ).

Clearly these five are all the distinct equivalence classes, since every integer is
contained in one of these. For instance

Il
—
I
oo
2
Il
—
I
(O8]
=
Il
—
\]
&
Il

7] =[12] = - - -

since

Returning to the general case, it can be shown that the relation of congruence
modulo n partitions Z into the n distinct equivalence classes

(01, (11, 121, ..., [n — 1]7.

LetZ/n = {[0], [1], [2], ..., [n — 1]} denote the set of equivalence classes. (Z/n
is read as ‘Z modulo n’ or simply ‘Z mod n’.) We can define the arithmetic
operations of addition and multiplication on the set Z /n by

[a] +n [b] = [a + D]

and
[a] x,, [b] = [a.D].

This is not quite as straightforward as it might seem; hidden in these definitions
is a potential problem. The crucial point is that a given equivalence class has
many different ‘names’. For example, in the case of congruence modulo 5,
we saw that [—8], [—3], [2], [7], [12], etc are different notations for the same
equivalence class. The potential problem with the definitions above of addition
and multiplication on Z /n is that using different labels for the equivalence classes
may produce different results.

+ To emphasize the role of n, these classes are sometimes denoted [0],, [1],, [2]x, - - -, [n—1],.
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Before we consider the general case, let us look again at the example of n = 5.
In this case [—8] = [2] and [4] = [19] so we would hope that [—8] +5 [4]
and [2] +5 [19] would define the same equivalence class, and [—8] x5 [4] and
[2] x5 [19] would similarly define the same class. Now from the definition of
additionon Z /n, [—8] +5[4] = [—4] and [2] +5[19] = [21]. However, all is well
since —4 =5 21 so [—4] = [21]; the more convenient name for this particular
class is [1]. Similarly [—8] x5 [4] = [—32] and [2] x5 [19] = [38], but again
these two classes are equal since —32 =5 38.

Returning once more to the general case, to show that there really is no problem
with our definitions of addition and multiplication on Z /n, we need to prove:

if [a] = [a'] and [b] = [b'] then [a + b] = [a’ + b] and [ab] = [a'D'].
The actual proof is not difficult and is left as an exercise—see exercise 4.4.11.

We now have a well defined ‘arithmetic modulo n’. The arithmetic of these sets
Z /n is important to mathematicians as they are all examples of a mathematical
structure called a ring. In computer science the systems of arithmetic modulo 2,
modulo 8 and modulo 16 have some importance.

Some of these ‘finite arithmetics’ as we may call them have some slightly unusual
properties. For instance, the product of two non-zero elements (i.e. classes other
than [0]) may sometimes be zero, [0]. In Z /6, for example, [3]s x¢ [4]6 = [Ole.
We leave it as an investigation to determine for what values of » this can occur.
(See exercise 4.4.12.)

We conclude this section with the tables for addition and multiplication in the set
Z/5.

Addition Multiplication
+s | (0] [11 [2] [3] [4] xs | [0] (11 [2] [3] [4]
(01 | (0] [11 [2] [3] [4] (0] | [0] [O0] [O] (O] [O]
(11| [11 (21 31 [4] [O] (11| [0] [11 [21 [3] [4]
(2] | [2] [3] [4] [O] [1] (2] | (0] [2] [4] (1] (3]
(31| [3] [4]1 [0 (11 [2] (31| (0] [3] [11 [4] [2]
[4] | [4] [O0] [11 [2] [3] [4]1 | [0] [4] [31 [2] [1]
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Exercises 4.4

1.

A relation R on the set of integers Z is defined by n R m if and only
if |n| = |m|. Show that R is an equivalence relation and determine the
corresponding equivalence classes.

@) A relation R on the set of real numbers R is defined by x R y if
and only if [2x| = |2y].

(a)  Verify that R is an equivalence relati