
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
.NET Windows Forms in a Nutshell

By Matthew Adams, Ian Griffiths

Publisher: O'Reilly

Pub Date: March 2003

ISBN: 0-596-00338-2

Pages: 896

.NET Windows Forms in a Nutshell offers an accelerated introduction to this next-generation of rich user interface
development. The book provides an all-inclusive guide for experienced programmers along with a compact but
remarkably complete reference to the .NET Framework Class Library (FCL) Windows Forms namespaces and types.
Included on CD is an add-in that will integrate the book's reference directly into the help files of Visual Studio .NET.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
.NET Windows Forms in a Nutshell

By Matthew Adams, Ian Griffiths

Publisher: O'Reilly

Pub Date: March 2003

ISBN: 0-596-00338-2

Pages: 896

 Copyright

 Preface

 Who This Book Is For

 How This Book Is Structured

 Assumptions This Book Makes

 What's on the CD

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Part I: Introduction to Windows Forms

 Chapter 1. .NET and Windows Forms Overview

 Section 1.1. Windows Development and .NET

 Section 1.2. The Common Language Runtime

 Section 1.3. .NET Programming Languages

 Section 1.4. Components

 Section 1.5. The .NET Type System

 Section 1.6. The .NET Framework Class Library

 Chapter 2. Controls

 Section 2.1. Windows Forms and the Control Class

 Section 2.2. Using Standard Control Features

 Section 2.3. Built-in Controls

 Section 2.4. Summary

 Chapter 3. Forms, Containers, and Applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.1. Application Structure

 Section 3.2. The Form Class

 Section 3.3. Containment

 Section 3.4. Layout

 Section 3.5. Localization

 Section 3.6. Extender Providers

 Section 3.7. Summary

 Chapter 4. Menus and Toolbars

 Section 4.1. Menus

 Section 4.2. Toolbars

 Section 4.3. Unified Event Handling

 Section 4.4. Office-Style Menus and Toolbars

 Section 4.5. Summary

 Chapter 5. Building Controls

 Section 5.1. Composite Controls

 Section 5.2. Custom Controls

 Section 5.3. Designing for Developers

 Section 5.4. Summary

 Chapter 6. Inheritance and Reuse

 Section 6.1. When to Inherit

 Section 6.2. Inheriting from Forms and User Controls

 Section 6.3. Inheriting from Other Controls

 Section 6.4. Pitfalls of Inheritance

 Section 6.5. Summary

 Chapter 7. Redrawing and GDI+

 Section 7.1. Drawing and Controls

 Section 7.2. GDI+

 Section 7.3. Summary

 Chapter 8. Property Grids

 Section 8.1. Displaying Simple Objects

 Section 8.2. Type Conversion

 Section 8.3. Custom Type Editors

 Section 8.4. Summary

 Chapter 9. Controls and the IDE

 Section 9.1. Design Time Versus Runtime

 Section 9.2. Custom Component Designers

 Section 9.3. Extender Providers

 Section 9.4. Summary

 Chapter 10. Data Binding

 Section 10.1. Data Sources and Bindings

 Section 10.2. Simple and Complex Binding

 Section 10.3. DataTable, DataSet, and Friends

 Section 10.4. The DataGrid Control

 Section 10.5. The DataView Class

 Section 10.6. Summary

 Part II: API Quick Reference

 Chapter 11. How to Use This Quick Reference

 Section 11.1. Finding a Quick-Reference Entry

 Section 11.2. Reading a Quick-Reference Entry

 Chapter 12. Converting from C# to VB Syntax

 Section 12.1. General Considerations

 Section 12.2. Classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 12.3. Structures

 Section 12.4. Interfaces

 Section 12.5. Class, Structure, and Interface Members

 Section 12.6. Delegates

 Section 12.7. Enumerations

 Chapter 13. The System.ComponentModel Namespace

 AmbientValueAttribute

 ArrayConverter

 AttributeCollection

 BaseNumberConverter

 BindableAttribute

 BindableSupport

 BooleanConverter

 BrowsableAttribute

 ByteConverter

 CancelEventArgs

 CancelEventHandler

 CategoryAttribute

 CharConverter

 CollectionChangeAction

 CollectionChangeEventArgs

 CollectionChangeEventHandler

 CollectionConverter

 Component

 ComponentCollection

 ComponentConverter

 ComponentEditor

 Container

 CultureInfoConverter

 DateTimeConverter

 DecimalConverter

 DefaultEventAttribute

 DefaultPropertyAttribute

 DefaultValueAttribute

 DescriptionAttribute

 DesignerAttribute

 DesignerCategoryAttribute

 DesignerSerializationVisibility

 DesignerSerializationVisibilityAttribute

 DesignOnlyAttribute

 DesignTimeVisibleAttribute

 DoubleConverter

 EditorAttribute

 EditorBrowsableAttribute

 EditorBrowsableState

 EnumConverter

 EventDescriptor

 EventDescriptorCollection

 EventHandlerList

 ExpandableObjectConverter

 ExtenderProvidedPropertyAttribute

 GuidConverter

 IBindingList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IBindingList

 IComNativeDescriptorHandler

 IComponent

 IContainer

 ICustomTypeDescriptor

 IDataErrorInfo

 IEditableObject

 IExtenderProvider

 IListSource

 ImmutableObjectAttribute

 InheritanceAttribute

 InheritanceLevel

 InstallerTypeAttribute

 Int16Converter

 Int32Converter

 Int64Converter

 InvalidEnumArgumentException

 ISite

 ISupportInitialize

 ISynchronizeInvoke

 ITypeDescriptorContext

 ITypedList

 License

 LicenseContext

 LicenseException

 LicenseManager

 LicenseProvider

 LicenseProviderAttribute

 LicenseUsageMode

 LicFileLicenseProvider

 ListBindableAttribute

 ListChangedEventArgs

 ListChangedEventHandler

 ListChangedType

 ListSortDirection

 LocalizableAttribute

 MarshalByValueComponent

 MemberDescriptor

 MergablePropertyAttribute

 NotifyParentPropertyAttribute

 ParenthesizePropertyNameAttribute

 PropertyChangedEventArgs

 PropertyChangedEventHandler

 PropertyDescriptor

 PropertyDescriptorCollection

 PropertyTabAttribute

 PropertyTabScope

 ProvidePropertyAttribute

 ReadOnlyAttribute

 RecommendedAsConfigurableAttribute

 ReferenceConverter

 RefreshEventArgs

 RefreshEventHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RefreshProperties

 RefreshPropertiesAttribute

 RunInstallerAttribute

 SByteConverter

 SingleConverter

 StringConverter

 SyntaxCheck

 TimeSpanConverter

 ToolboxItemAttribute

 ToolboxItemFilterAttribute

 ToolboxItemFilterType

 TypeConverter

 TypeConverter.StandardValuesCollection

 TypeConverterAttribute

 TypeDescriptor

 TypeListConverter

 UInt16Converter

 UInt32Converter

 UInt64Converter

 WarningException

 Win32Exception

 Chapter 14. The System.Drawing Namespace

 Bitmap

 Brush

 Brushes

 CharacterRange

 Color

 ColorConverter

 ColorTranslator

 ContentAlignment

 Font

 FontConverter

 FontConverter.FontNameConverter

 FontConverter.FontUnitConverter

 FontFamily

 FontStyle

 Graphics

 Graphics.DrawImageAbort

 Graphics.EnumerateMetafileProc

 GraphicsUnit

 Icon

 IconConverter

 Image

 Image.GetThumbnailImageAbort

 ImageAnimator

 ImageConverter

 ImageFormatConverter

 KnownColor

 Pen

 Pens

 Point

 PointConverter

 PointF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PointF

 Rectangle

 RectangleConverter

 RectangleF

 Region

 RotateFlipType

 Size

 SizeConverter

 SizeF

 SolidBrush

 StringAlignment

 StringDigitSubstitute

 StringFormat

 StringFormatFlags

 StringTrimming

 StringUnit

 SystemBrushes

 SystemColors

 SystemIcons

 SystemPens

 TextureBrush

 ToolboxBitmapAttribute

 Chapter 15. The System.Drawing.Drawing2D Namespace

 AdjustableArrowCap

 Blend

 ColorBlend

 CombineMode

 CompositingMode

 CompositingQuality

 CoordinateSpace

 CustomLineCap

 DashCap

 DashStyle

 FillMode

 FlushIntention

 GraphicsContainer

 GraphicsPath

 GraphicsPathIterator

 GraphicsState

 HatchBrush

 HatchStyle

 InterpolationMode

 LinearGradientBrush

 LinearGradientMode

 LineCap

 LineJoin

 Matrix

 MatrixOrder

 PathData

 PathGradientBrush

 PathPointType

 PenAlignment

 PenType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PixelOffsetMode

 QualityMode

 RegionData

 SmoothingMode

 WarpMode

 WrapMode

 Chapter 16. The System.Drawing.Imaging Namespace

 BitmapData

 ColorAdjustType

 ColorChannelFlag

 ColorMap

 ColorMapType

 ColorMatrix

 ColorMatrixFlag

 ColorMode

 ColorPalette

 EmfPlusRecordType

 EmfType

 Encoder

 EncoderParameter

 EncoderParameters

 EncoderParameterValueType

 EncoderValue

 FrameDimension

 ImageAttributes

 ImageCodecFlags

 ImageCodecInfo

 ImageFlags

 ImageFormat

 ImageLockMode

 Metafile

 MetafileFrameUnit

 MetafileHeader

 MetafileType

 MetaHeader

 PaletteFlags

 PixelFormat

 PlayRecordCallback

 PropertyItem

 WmfPlaceableFileHeader

 Chapter 17. The System.Drawing.Printing Namespace

 Duplex

 InvalidPrinterException

 Margins

 MarginsConverter

 PageSettings

 PaperKind

 PaperSize

 PaperSource

 PaperSourceKind

 PreviewPageInfo

 PreviewPrintController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PrintController

 PrintDocument

 PrinterResolution

 PrinterResolutionKind

 PrinterSettings

 PrinterSettings.PaperSizeCollection

 PrinterSettings.PaperSourceCollection

 PrinterSettings.PrinterResolutionCollection

 PrinterSettings.StringCollection

 PrinterUnit

 PrinterUnitConvert

 PrintEventArgs

 PrintEventHandler

 PrintingPermission

 PrintingPermissionAttribute

 PrintingPermissionLevel

 PrintPageEventArgs

 PrintPageEventHandler

 PrintRange

 QueryPageSettingsEventArgs

 QueryPageSettingsEventHandler

 StandardPrintController

 Chapter 18. The System.Drawing.Text Namespace

 FontCollection

 GenericFontFamilies

 HotkeyPrefix

 InstalledFontCollection

 PrivateFontCollection

 TextRenderingHint

 Chapter 19. The System.Windows.Forms Namespace

 AccessibleEvents

 AccessibleNavigation

 AccessibleObject

 AccessibleRole

 AccessibleSelection

 AccessibleStates

 AmbientProperties

 AnchorStyles

 Appearance

 Application

 ApplicationContext

 ArrangeDirection

 ArrangeStartingPosition

 AxHost

 AxHost.ActiveXInvokeKind

 AxHost.AxComponentEditor

 AxHost.ClsidAttribute

 AxHost.ConnectionPointCookie

 AxHost.InvalidActiveXStateException

 AxHost.State

 AxHost.StateConverter

 AxHost.TypeLibraryTimeStampAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BaseCollection

 Binding

 BindingContext

 BindingManagerBase

 BindingMemberInfo

 BindingsCollection

 BootMode

 Border3DSide

 Border3DStyle

 BorderStyle

 BoundsSpecified

 Button

 ButtonBase

 ButtonBase.ButtonBaseAccessibleObject

 ButtonBorderStyle

 ButtonState

 CaptionButton

 CharacterCasing

 CheckBox

 CheckBox.CheckBoxAccessibleObject

 CheckedListBox

 CheckedListBox.CheckedIndexCollection

 CheckedListBox.CheckedItemCollection

 CheckedListBox.ObjectCollection

 CheckState

 Clipboard

 ColorDepth

 ColorDialog

 ColumnClickEventArgs

 ColumnClickEventHandler

 ColumnHeader

 ColumnHeaderStyle

 ComboBox

 ComboBox.ChildAccessibleObject

 ComboBox.ObjectCollection

 ComboBoxStyle

 CommonDialog

 ContainerControl

 ContentsResizedEventArgs

 ContentsResizedEventHandler

 ContextMenu

 Control

 Control.ControlAccessibleObject

 Control.ControlCollection

 ControlBindingsCollection

 ControlEventArgs

 ControlEventHandler

 ControlPaint

 ControlStyles

 ConvertEventArgs

 ConvertEventHandler

 CreateParams

 CurrencyManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CurrencyManager

 Cursor

 CursorConverter

 Cursors

 DataFormats

 DataFormats.Format

 DataGrid

 DataGrid.HitTestInfo

 DataGrid.HitTestType

 DataGridBoolColumn

 DataGridCell

 DataGridColumnStyle

 DataGridLineStyle

 DataGridParentRowsLabelStyle

 DataGridPreferredColumnWidthTypeConverter

 DataGridTableStyle

 DataGridTextBox

 DataGridTextBoxColumn

 DataObject

 DateBoldEventArgs

 DateBoldEventHandler

 DateRangeEventArgs

 DateRangeEventHandler

 DateTimePicker

 DateTimePicker.DateTimePickerAccessibleObject

 DateTimePickerFormat

 Day

 DialogResult

 DockStyle

 DomainUpDown

 DomainUpDown.DomainItemAccessibleObject

 DomainUpDown.DomainUpDownAccessibleObject

 DomainUpDown.DomainUpDownItemCollection

 DragAction

 DragDropEffects

 DragEventArgs

 DragEventHandler

 DrawItemEventArgs

 DrawItemEventHandler

 DrawItemState

 DrawMode

 ErrorBlinkStyle

 ErrorIconAlignment

 ErrorProvider

 FeatureSupport

 FileDialog

 FlatStyle

 FontDialog

 Form

 Form.ControlCollection

 FormBorderStyle

 FormStartPosition

 FormWindowState

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FrameStyle

 GiveFeedbackEventArgs

 GiveFeedbackEventHandler

 GridColumnStylesCollection

 GridItem

 GridItemCollection

 GridItemType

 GridTablesFactory

 GridTableStylesCollection

 GroupBox

 Help

 HelpEventArgs

 HelpEventHandler

 HelpNavigator

 HelpProvider

 HorizontalAlignment

 HScrollBar

 IButtonControl

 ICommandExecutor

 IComponentEditorPageSite

 IContainerControl

 IDataGridColumnStyleEditingNotificationService

 IDataGridEditingService

 IDataObject

 IFeatureSupport

 IFileReaderService

 ImageIndexConverter

 ImageList

 ImageList.ImageCollection

 ImageListStreamer

 ImeMode

 IMessageFilter

 InputLanguage

 InputLanguageChangedEventArgs

 InputLanguageChangedEventHandler

 InputLanguageChangingEventArgs

 InputLanguageChangingEventHandler

 InputLanguageCollection

 InvalidateEventArgs

 InvalidateEventHandler

 ItemActivation

 ItemBoundsPortion

 ItemChangedEventArgs

 ItemChangedEventHandler

 ItemCheckEventArgs

 ItemCheckEventHandler

 ItemDragEventArgs

 ItemDragEventHandler

 IWin32Window

 IWindowTarget

 KeyEventArgs

 KeyEventHandler

 KeyPressEventArgs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 KeyPressEventArgs

 KeyPressEventHandler

 Keys

 KeysConverter

 Label

 LabelEditEventArgs

 LabelEditEventHandler

 LayoutEventArgs

 LayoutEventHandler

 LeftRightAlignment

 LinkArea

 LinkArea.LinkAreaConverter

 LinkBehavior

 LinkClickedEventArgs

 LinkClickedEventHandler

 LinkLabel

 LinkLabel.Link

 LinkLabel.LinkCollection

 LinkLabelLinkClickedEventArgs

 LinkLabelLinkClickedEventHandler

 LinkState

 ListBindingConverter

 ListBox

 ListBox.ObjectCollection

 ListBox.SelectedIndexCollection

 ListBox.SelectedObjectCollection

 ListControl

 ListView

 ListView.CheckedIndexCollection

 ListView.CheckedListViewItemCollection

 ListView.ColumnHeaderCollection

 ListView.ListViewItemCollection

 ListView.SelectedIndexCollection

 ListView.SelectedListViewItemCollection

 ListViewAlignment

 ListViewItem

 ListViewItem.ListViewSubItem

 ListViewItem.ListViewSubItemCollection

 ListViewItemConverter

 MainMenu

 MdiClient

 MdiClient.ControlCollection

 MdiLayout

 MeasureItemEventArgs

 MeasureItemEventHandler

 Menu

 Menu.MenuItemCollection

 MenuGlyph

 MenuItem

 MenuMerge

 Message

 MessageBox

 MessageBoxButtons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MessageBoxDefaultButton

 MessageBoxIcon

 MessageBoxOptions

 MethodInvoker

 MonthCalendar

 MonthCalendar.HitArea

 MonthCalendar.HitTestInfo

 MouseButtons

 MouseEventArgs

 MouseEventHandler

 NativeWindow

 NavigateEventArgs

 NavigateEventHandler

 NodeLabelEditEventArgs

 NodeLabelEditEventHandler

 NotifyIcon

 NumericUpDown

 OpacityConverter

 OpenFileDialog

 Orientation

 OSFeature

 OwnerDrawPropertyBag

 PageSetupDialog

 PaintEventArgs

 PaintEventHandler

 Panel

 PictureBox

 PictureBoxSizeMode

 PrintControllerWithStatusDialog

 PrintDialog

 PrintPreviewControl

 PrintPreviewDialog

 ProgressBar

 PropertyGrid

 PropertyGrid.PropertyTabCollection

 PropertyManager

 PropertySort

 PropertyTabChangedEventArgs

 PropertyTabChangedEventHandler

 PropertyValueChangedEventArgs

 PropertyValueChangedEventHandler

 QueryAccessibilityHelpEventArgs

 QueryAccessibilityHelpEventHandler

 QueryContinueDragEventArgs

 QueryContinueDragEventHandler

 RadioButton

 RadioButton.RadioButtonAccessibleObject

 RichTextBox

 RichTextBoxFinds

 RichTextBoxScrollBars

 RichTextBoxSelectionAttribute

 RichTextBoxSelectionTypes

 RichTextBoxStreamType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RichTextBoxStreamType

 RichTextBoxWordPunctuations

 RightToLeft

 SaveFileDialog

 Screen

 ScrollableControl

 ScrollableControl.DockPaddingEdges

 ScrollableControl.DockPaddingEdgesConverter

 ScrollBar

 ScrollBars

 ScrollButton

 ScrollEventArgs

 ScrollEventHandler

 ScrollEventType

 SecurityIDType

 SelectedGridItemChangedEventArgs

 SelectedGridItemChangedEventHandler

 SelectionMode

 SelectionRange

 SelectionRangeConverter

 SendKeys

 Shortcut

 SizeGripStyle

 SortOrder

 Splitter

 SplitterEventArgs

 SplitterEventHandler

 StatusBar

 StatusBar.StatusBarPanelCollection

 StatusBarDrawItemEventArgs

 StatusBarDrawItemEventHandler

 StatusBarPanel

 StatusBarPanelAutoSize

 StatusBarPanelBorderStyle

 StatusBarPanelClickEventArgs

 StatusBarPanelClickEventHandler

 StatusBarPanelStyle

 StructFormat

 SystemInformation

 TabAlignment

 TabAppearance

 TabControl

 TabControl.ControlCollection

 TabControl.TabPageCollection

 TabDrawMode

 TabPage

 TabPage.TabPageControlCollection

 TabSizeMode

 TextBox

 TextBoxBase

 ThreadExceptionDialog

 TickStyle

 Timer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ToolBar

 ToolBar.ToolBarButtonCollection

 ToolBarAppearance

 ToolBarButton

 ToolBarButtonClickEventArgs

 ToolBarButtonClickEventHandler

 ToolBarButtonStyle

 ToolBarTextAlign

 ToolTip

 TrackBar

 TreeNode

 TreeNodeCollection

 TreeNodeConverter

 TreeView

 TreeViewAction

 TreeViewCancelEventArgs

 TreeViewCancelEventHandler

 TreeViewEventArgs

 TreeViewEventHandler

 TreeViewImageIndexConverter

 UICues

 UICuesEventArgs

 UICuesEventHandler

 UpDownBase

 UpDownEventArgs

 UpDownEventHandler

 UserControl

 View

 VScrollBar

 Chapter 20. The System.Windows.Forms.Design Namespace

 AnchorEditor

 AxImporter

 AxImporter.IReferenceResolver

 AxImporter.Options

 AxParameterData

 AxWrapperGen

 ComponentDocumentDesigner

 ComponentEditorForm

 ComponentEditorPage

 ComponentTray

 ControlDesigner

 ControlDesigner.ControlDesignerAccessibleObject

 DockEditor

 DocumentDesigner

 EventHandlerService

 EventsTab

 FileNameEditor

 FolderNameEditor

 IMenuEditorService

 IUIService

 IWindowsFormsEditorService

 MenuCommands

 ParentControlDesigner

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ParentControlDesigner

 PropertyTab

 ScrollableControlDesigner

 SelectionRules

 WindowsFormsComponentEditor

 Part III: Appendixes

 Appendix A. Namespaces and Assemblies

 Appendix B. Type, Method, Property, Event, and Field Index

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2003 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of the darter and the topic of
.NET Windows Forms is a trademark of O'Reilly Media, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
This book is a desktop reference and tutorial for Windows Forms, the new API for writing GUI applications for Windows.
Windows Forms is a part of the .NET Framework, the first version of which shipped in February 2002.

.NET Windows Forms in a Nutshell is divided into two parts. The first half is a tutorial, which introduces the most
important concepts and classes in Windows Forms and describes how to use these to build interactive applications. It
also describes GDI+, the drawing API that most Windows Forms applications will use.

The second half is a quick reference to the Windows Forms and GDI+ namespaces. It provides namespace maps, type
descriptions, member signatures, and useful cross-references and annotations.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who This Book Is For
This book is intended for C# and Visual Basic .NET developers who are writing Windows Forms applications. If you are
moving from previous Windows GUI technologies such as Visual Basic 6.0 or MFC, or from those of other platforms such
as Swing, or even if you are new to writing Windows applications, the tutorial section provides a complete introduction
to the most important aspects of the Windows Forms API.

Part I of this book, which offers a Windows Forms tutorial, presents code examples in both C# and VB.NET. Part II,
which documents the namespaces used in Windows Forms development, uses C# syntax. However, for VB
programmers, a chapter is devoted to converting C# syntax to that of Visual Basic.

Regardless of your level of experience with Windows Forms, the reference section provides a great deal of useful
information and insights into the namespaces that make up the Windows Forms and GDI+ APIs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How This Book Is Structured
Part I of this book is a tutorial describing the fundamental concepts and classes in the Windows Forms API. It consists of
the following 10 chapters:

Chapter 1, .NET and Windows Forms Overview

This chapter provides an overview of the .NET Framework (focusing on the parts that are relevant to Windows
Forms developers) and the Windows Forms API.

Chapter 2, Controls

The Control class is at the heart of every Windows Forms application. Its role and usage are examined in detail
in this chapter.

Chapter 3, Forms, Containers, and Applications

Forms are top-level windows, and almost all Windows Forms applications use Forms (hence the name). We
examine Forms in their role as containers for controls. The chapter also discusses how form-based applications
are constructed.

Chapter 4, Menus and Toolbars

Most nontrivial applications use menus and toolbars to present their functionality in a structured way. This
chapter shows the relationship between menus, forms, and controls. It also describes the techniques for
dynamically modifying menus in MDI applications.

Chapter 5, Building Controls

This chapter shows the techniques for building your own reusable user interface components. It describes both
user controls (collections of other controls grouped into a reusable element) and custom controls, which give
developers complete control over all aspects of the control's appearance and behavior.

Chapter 6, Inheritance and Reuse

The .NET type system's support for inheritance is fundamental to the way in which controls work. Chapter 6
describes the role of inheritance in Windows Forms applications. It also highlights the many pitfalls of misuse of
inheritance.

Chapter 7, Redrawing and GDI+

Although GDI+ is not strictly a part of Windows Forms, this powerful drawing API gives you the ability to control
the appearance of your programs. Chapter 7 describes how to use GDI+ in your Windows Forms applications.

Chapter 8, Property Grids

The Property Grid control is important for two reasons. First, it is a very useful control for presenting and
editing information. Second, it is a central part of Visual Studio .NET, and understanding its use is crucial to
integrating your controls with the development environment. This chapter offers thorough coverage of the
Property Grid control.

Chapter 9, Controls and the IDE

This chapter describes how to build controls that integrate into the Visual Studio .NET Forms Designer. It shows
how to build custom control designers and extender property providers.

Chapter 10, Data Binding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Forms has a data-binding architecture that allows any data source to be bound to any property of a
control. Chapter 10 describes how to configure these bindings and how to use the specialized data source class,
the DataSet.

Throughout Part I, code examples are given in both C# and Visual Basic .NET.

Part II of this book is the quick reference. It covers the basic Windows Forms namespace, System.Windows.Forms, and the
GDI+ namespaces, System.Drawing, System.Drawing.Drawing2D, System.Drawing.Imaging, and System.Drawing.Printing. It also
describes the design-time namespaces, System.ComponentModel and System.Windows.Forms.Design. Throughout Part II, C#
syntax is used to document types and their members. In addition to the core namespace documentation, Chapter 11
discusses how to use the quick reference, while Chapter 12 shows VB.NET programmers how to convert the reference
section's C# syntax to VB.NET syntax.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Assumptions This Book Makes
To program with the Windows Forms API, you must have installed one of the many editions of Visual Studio .NET on
your system (Standard, Professional, Enterprise, or Architect). Although you can write Windows Forms applications
using the .NET Framework SDK alone, the Forms Designer is only available with Visual Studio .NET, and it is very hard
work to write forms-based applications without the Forms Designer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What's on the CD
The CD that accompanies this book contains a copy of .NET Windows Forms in a Nutshell for Microsoft Visual Studio
.NET (view CD content online at http://examples.oreilly.com/netwinformian). This software plugs directly into Microsoft
Visual Studio .NET and makes the contents of Part II, available to you as a fully integrated member of Visual Studio
.NET Dynamic Help.

By making .NET Windows Forms in a Nutshell a part of your Visual Studio .NET development environment, you gain the
following benefits:

Continuous access to the contents of the .NET Windows Forms Quick Reference as you work in the online Visual
Studio .NET development environment

Ability to browse the contents of the book in the Visual Studio .NET Help Contents window

Constantly updated Dynamic Help links to relevant Quick Reference entries as you write C# or VB.NET code
(these links appear in a separate Dynamic Help window link group named O'Reilly Help)

Links to both Quick Reference topics and Microsoft documentation topics when you use either the Help Search
facility or interactive Index

Access to the O'Reilly web site, http://www.oreilly.com, for additional books and articles on Visual Basic .NET,
C#, and the .NET Framework

Cross-links from Quick Reference topics to related topics in the MSDN documentation

For more information on .NET Windows Forms in a Nutshell for Microsoft Visual Studio .NET, please read the release
notes on the CD (see http://examples.oreilly.com/netwinformian).

To use .NET Windows Forms in a Nutshell for Microsoft Visual Studio .NET, you must be running a version of Visual
Basic .NET or Visual Studio .NET on your computer or laptop. To install .NET Windows Forms in a Nutshell for Microsoft
Visual Studio .NET:

1. Shut down all anti-virus software and be sure that Visual Studio .NET is not currently running.

2. Place the CD in the CD player (see http://examples.oreilly.com/netwinformian).

3. If you are running Visual Studio .NET 2003, double-click on the installation file named
WinFormsinaNutshell2003.msi. If you are still running Visual Studio .NET 2002, double click on the file named
WinFormsinaNutshell2002.msi.

4. Follow the instructions contained in the install program windows. Be sure to read and to accept the terms of the
software license before proceeding.

To uninstall .NET Windows Forms in a Nutshell for Microsoft Visual Studio .NET, repeat the above procedure, but click
on the Remove button when the program prompts you to select an install option.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
Throughout this book, we've used the following typographic conventions:

Constant width

Constant width in body text indicates a language construct, such as a C# or VB.NET statement (like for or Do
While), an enumeration, a .NET type or type member, a user-defined type or type member, an operator, a
declaration, a directive, or an expression (like dblElapTime = Timer - dblStartTime). Code fragments and code
examples appear exclusively in constant-width text. In syntax statements and prototypes, text set in constant
width indicates such language elements as the function or procedure name and any invariable elements
required by the syntax.

Constant width italic

Constant width italic in body text indicates parameter names. In syntax statements or prototypes, constant
width italic indicates replaceable parameters.

Italic

System elements, such as paths and filenames, are italicized. In addition, URLs and email address are italicized.
Finally, italics are used the first time a term is used.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How to Contact Us
Making the .NET Windows Forms in a Nutshell Quick Reference available as a Visual Studio .NET plug-in is is a new
venture for O'Reilly & Associates and Microsoft. We want very much to hear your comments and ideas. Please address
comments and questions concerning this book and CD to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page
at:

http://www.oreilly.com/catalog/netwinformian

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the following O'Reilly
web sites:

http://www.oreilly.com
http://dotnet.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
The authors would like to thank all those who have helped them to create this book. Many thanks to Ron Petrusha, John
Osborn, Claire Cloutier, Daniel Creeron, and Brian Jepson at O'Reilly. We also thank all those who generously gave up
their free time to review the manuscript, especially Glyn Griffiths, Reuben Harris, David Minter, Chris Sells, Bob
Beauchemin, Craig Andera, Mark Boulter, Daniel Strawson, Tim Richard, and Daniel Creeron. We would also like to
thank Abigail Sawyer and Una McCormack, who not only helped review the manuscript, but also put up with us during
the writing process.

The .NET Windows Forms in a Nutshell for Visual Studio .NET CD (see http://examples.oreilly.com/netwinformian)is the
work of many individuals. Mike Sierra of O'Reilly converted the System.Windows.Forms namespace references to Microsoft
Help 2.0 format and added the XML tags needed to integrate their content with the Visual Studio .NET Dynamic Help
system. He was assisted by Lenny Muellner and Erik Ray. Greg Dickerson and the O'Reilly Tech Support group tested
each prerelease build of the software. Kipper York and Shane McRoberts of the Microsoft Help team provided invaluable
technical assistance at critical moments, and Eric Promislow of Active State built the install package that makes our
Help files an integral part of the Visual Studio .NET developer environment. Frank Gocinski of the Visual Studio .NET
third-party integration program was instrumental in making us full VSIP partners. A special tip of the hat as well to Rob
Howard who understood our original vision and helped us make the right connections to get this project off the ground.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: Introduction to Windows Forms
Part I consists of a very fast-paced tutorial on developing Windows applications using the .NET Windows
Forms package. It consists of the following chapters:

Chapter 1, .NET and Windows Forms Overview
Chapter 2, Controls
Chapter 3, Forms, Containers, and Applications
Chapter 4, Menus and Toolbars
Chapter 5, Building Controls
Chapter 6, Inheritance and Reuse
Chapter 7, Redrawing and GDI+
Chapter 8, Property Grids
Chapter 9, Controls and the IDE
Chapter 10, Data Binding

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. .NET and Windows Forms Overview
In early 2002, Microsoft shipped .NET, a suite of new technologies for Windows first announced in the summer of 2000.
The attendant media frenzy concentrated on its support for web services, but .NET has far greater scope than that—it
could change the way all Windows programs are written. .NET offers greatly improved productivity to developers by
replacing swathes of the Win32 API with new, much higher level object-oriented APIs, allowing you to focus on the task
at hand without being distracted by myriad petty details.

This book is about the technology behind Windows applications that run on this new .NET platform. In particular, it
focuses on rich client applications—i.e., traditional interactive programs with a graphical user interface (GUI) that run
locally on your computer. Although web applications have become very popular in recent years, experience with these
thin clients has taught us that there is still very much a place for the more traditional style of Windows application. If
you've ever had to switch from Outlook to a web mail service when working away from the office, you know just how
much web applications leave to be desired.

The new programming interface for writing Windows applications with GUIs is called Windows Forms. This replaces all
the old programming models, and not just the C++ favorites, such as MFC or raw Win32, but also the Forms package
used in Visual Basic 6.0 and earlier. Windows Forms combines the best features from all these models, and it is the long
term future of Windows development.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 Windows Development and .NET
It is important to understand why Microsoft decided to make such sweeping changes to Windows software
development. Deprecating all the APIs used by the vast majority of programs seems like a wildly irresponsible move
calculated to alienate anyone who ever wrote a Windows application. And yet, the majority of developers who look at
.NET in any detail soon become big fans, especially those from a C++ background.

.NET raises the level of abstraction that developers work with—almost every service provided by the platform is now
exposed through a higher-level programming interface than before. In Win32, the API was procedural in that all
services were accessed through C function calls, using opaque handles to represent entities that outlived single function
calls (e.g., windows or files). Developers had to expend a lot of effort dealing with low-level details such as memory
management, which as the lucrative market in memory leak detection tools illustrates, was a source of much grief. By
contrast, .NET provides all its services through a class library, and many low-level programming details are now dealt
with by the platform (for example, the .NET runtime manages memory with a garbage collection scheme).

Veteran MFC or WTL developers might well point out that they have always used object-oriented abstractions for
constructs such as windows and files. And Visual Basic developers can equally remind us that they have never had to
deal with low-level minutiae. However, all these programming systems suffer from being wrappers on top of the "real"
API, Win32. This is problematic because none of them provides a watertight abstraction—the underlying API is forever
making its presence felt. This is particularly intrusive with the C++ class libraries: it's just not possible to write a
nontrivial C++ Windows application without having to deal with some Win32 construct sooner or later.

Visual Basic does slightly better—it has enabled many people to become productive developers without ever
understanding how Windows really works at the lowest levels. But Visual Basic runs into trouble as soon as you need to
do something that it wasn't designed to support. It relies on ActiveX controls or COM components to exploit certain
platform services, which is fine when such a component exists, but it means that support for the latest features of the
OS can be somewhat late in arriving. While C++ developers can use new features as soon as they appear, Visual Basic
developers must wait for a C++ developer to write them an ActiveX control. Visual Basic also suffers from a slightly
more insidious problem. The high-level model it presents is a simplification of the Win32 model, and as such it differs in
certain respects. If you write nothing but data entry forms this will almost certainly never cause you any problems, but
if you need to exercise fine control over an application's behavior, Visual Basic's supposedly helpful model can
sometimes be extremely frustrating.

So why is .NET any better? The crucial difference is that with .NET, all languages use the same API: Windows Forms. Of
course, to provide its services, the current .NET Framework still relies on Win32 (or, in the case of the .NET Compact
Framework, either Pocket PC or Windows CE.NET), but developers are strongly discouraged from bypassing the class
libraries to call the underlying platform. Windows Forms has been designed to be a comprehensive abstraction rather
than a thin wrapper, and it is entirely possible to write nontrivial GUI applications without ever needing to resort to
calling into Win32 directly. This is very unlike MFC, which was effectively impossible to use without being exposed to
Win32. Furthermore, because all languages use the same API, any new features added to the .NET Framework are
instantly available to everyone—Visual Basic developers are no longer beholden to third parties to write them wrappers
for new functionality.

There are two elements of .NET that allow this to work where the previous technologies, such as MFC and Visual Basic
6.0, have had only partial success. One is the new runtime—all languages share a single runtime, the Common
Language Runtime (CLR), which means that all languages have the same type system and runtime semantics. This
crucial development enables the platform's services to be exposed through a single API that is accessible to all
languages. And this API itself is the second element—the platform's services are exposed through an object-oriented
programming interface called the .NET Framework Class Library. We will spend the rest of this chapter looking at these
two new features.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 The Common Language Runtime
The Common Language Runtime (CLR) is the environment in which all programs run in .NET, so it affects everything we
do as developers. It is therefore important to understand what it does and what that means to our programs, so we will
now look at the most important features of the CLR.

All high-level programming languages have a runtime. This is because an OS process provides a fairly low-level set of
features, typically just memory, pointers, threads, machine code, and system calls. The job of any language's runtime
is to bridge the gap between these OS facilities and the constructs defined by the programming language. In C++, the
runtime provides such features as exception handling, runtime type information, and the standard C++ library. The
Visual Basic runtime includes intrinsic handling for COM and automatic memory management. Traditionally, each
language has provided its own runtime, such as MSVCRT.DLL for C++, MSVBVM60.DLL for Visual Basic, and the Java
Virtual Machine (MSJAVA.DLL, if you're using Microsoft's VM) for Java.

In .NET, there is just one runtime, which is used by all languages, the CLR. The fact that all languages use this one
runtime is important for a number of reasons. It means components can easily be written in and used from any
language because all languages represent types and objects in the same way. (Anyone familiar with COM in C++ will be
amazed at how simple it is to write and use .NET components.) Moreover, it means that all languages can use the same
API to access the platform's services.

1.2.1 Managed Code

C++ developers are used to writing low-level code. All the abstractions with which Win32 assembly language
developers work (virtual memory, threads of execution, numbers, and pointers) are also exposed directly in C++. (Yes,
there are still a few diehards who insist on writing Win32 applications in assembly language.) The C++ compiler
supplies a useful veneer on top of these, providing facilities such as object-oriented programming and optional type
safety, but the fact remains that all the platform's lowest level details are visible. For many developers, this is the
appeal of C++—it hides nothing, imbuing the developer with a feeling of ultimate power.

But this power has its price. First, there is the amount of effort required to wield this power. Java and Visual Basic
developers often marvel at how much time C++ developers seem to spend writing code to deal with things that simply
aren't an issue in higher-level languages. Second, the power of C++ is often its Achilles' heel—C++ offers opportunities
to crash and burn that are simply not available elsewhere. Very often, these costs are not outweighed by the benefits
because, in practice, the full power of C++ is rarely required.

Software development has been using more and more abstraction throughout its history. A few years ago, it would
have been considered essential for performance-critical parts of an application to be written in assembly language, but
this practice has all but disappeared, because computers are now fast enough that it is rarely worth the extra
development costs. Likewise, less than a decade ago, PC applications ran without the crash protection offered by
modern operating systems and had absolute power over the whole machine. These days, we all benefit from the
improved robustness achieved by abandoning that level of control and running most applications in secure sandboxed
processes. If an application crashes, it no longer takes all the other applications on the machine with it—only the
operating system and its device drivers need to live in the dangerous world of the kernel, where one false move can
bring the entire machine to its knees. Most people welcome the resultant improvement in productivity and consider it to
be worth the slight loss of control.

.NET takes a step forward that is very similar to the transition from assembly language to high-level languages, or the
move from DOS-style operating systems to more reliable and secure modern operating systems. Once again it involves
a slight loss of control in exchange for higher productivity, so we will inevitably hear the same kind of lamentation as we
did when these older technologies were marginalized. But most developers don't find the loss of control to be a big deal
in practice.

The name given to this advance is managed code or managed execution. Managed code is code that does not use the
abstractions of assembly language—it deals with higher-level constructs. The most important difference is that the
environment in which managed code runs has an intrinsic type system. With unmanaged code, Win32 simply gives us
raw virtual memory and lets our programs use the processor to do whatever we like with that memory. Nothing stops
code from storing a floating-point number in some memory location and then trying to read it as though it were a
pointer—the code would be allowed to proceed, despite the fact that the binary value of the floating-point number will
make no sense as a pointer and the code will almost certainly either crash or malfunction. But in .NET, this is not
allowed to happen, because all information is strongly typed in the CLR. It knows whether a particular piece of memory
represents, say, an integer or a floating-point number or an object reference, and actively prevents us from
misinterpreting that data. The .NET managed runtime prevents such code from running in the first place—all code must
pass type-safety verification before it is allowed to execute.

The runtime also has an intrinsic understanding of concepts such as objects, strings, heaps, and components. This
means that compiled programs look very different under .NET—as we will now see, the very nature of the binaries
generated by compilers has changed.

1.2.2 Compilation in .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To examine the new features of the runtime and to get a feel for how they change the world our programs live in,
here's a simple program that runs under .NET. We will of course start with the canonical first program in C#:

class Hello
{
 static void Main()
 {
 System.Console.WriteLine("Hello, World");
 }
}

.NET and the Command Line
For a simple example such as this, it is easiest to compile the program from the command line. Visual
Studio .NET provides a command prompt (under Visual Studio Tools from the Start Menu) with the path
and environment set up suitably. The C# compiler is called CSC, and is pretty similar to the C++ compiler
to use from the command line. If you put the source code in this example in a file called Hello.cs, just type
csc Hello.cs at the command line. ILDASM can also be launched from this prompt.

Alternatively, a Visual Studio .NET C# console project would work just as well, but Visual Studio provides
no way of launching ILDASM, so you will still need the command prompt.

If you compile this and examine the output of the compiler with a disassembler (such as the ILDASM tool that ships
with the .NET Framework SDK) you will find that it is very different from the output of the old C++ compiler, as Figure
1-1 shows. The most immediately obvious difference is that the compiled code contains type information—the first thing
ILDASM presents is a tree view of the types defined inside the component. We will look into the nature of this type
information shortly, but first we will look at some compiled code.

Figure 1-1. A simple program in ILDASM

If you expand the tree in ILDASM and double-click on any method, it will show the disassembled code of that method in
a new window. Here is the compiled code for the Main method defined above:

ldstr "Hello, world!"
call void [mscorlib]System.Console::WriteLine(string)
ret

This shows the second most striking difference between the output from a traditional compiler and the code that a .NET
compiler generates. This is not assembly language for an Intel processor—instead of strings, type names, and method
signatures, the operands in disassembled Pentium code would just be so many hexadecimal digits. In fact, no processor
is capable of running this code directly. Code in .NET binaries is stored in a so-called Intermediate Language (IL or CIL,
as it is sometimes abbreviated), which the runtime will translate into the processor's native machine code to execute it.
All languages compile into IL, so the equivalent Visual Basic program would look very similar in ILDASM.

All managed code is compiled into IL. It is similar in nature to Java's bytecode in that it is a processor-independent
machine language that supports type-safe object-oriented programming. As a quick glance at this example has already
shown, it is very different from Pentium code. Looking at the first line, it is clear that strings are supported as an
intrinsic data type. The second line contains evidence that type information permeates .NET code even at the lowest
level—in unmanaged (i.e., pre-.NET) code, a call instruction would simply contain the address of the function it was
calling; here, it contains the name of the method (WriteLine), and also the name of the class the method belongs to
(System.Console), and the component in which that class is defined (mscorlib; more on components shortly).
Furthermore, the signature of the method is present—this call instruction is clearly expecting to call a method that takes
a single parameter of type string and has a void return type.

Type information is embedded this deeply throughout all managed code. This is what enables the CLR to verify that
code does not break any of the type safety rules—all managed code is required to be explicit about the types it is using
at all times.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at all times.

Of course the problem with this code is that there is no CPU in the world that can execute it. So one of the services the
runtime must provide is a way of bridging the gap between this strongly typed code and the world of raw, untyped
memory in which the processor lives. It does this by compiling the IL into native code on demand. This is done one
method at a time—code will only be compiled when it is needed (i.e., the first time a method is called). This compilation
process is therefore known as just-in-time compilation (JIT).

The type safety verification tests are applied before JIT happens, which means the JIT compiler doesn't need to
generate code that wastes a lot of time enforcing the CLR type system's rules; it checks the code just once, up front.
And the JIT compiler has a lot in common with the code generator used by the standard unmanaged C++ compiler, so
the performance of code in the CLR turns out to be almost as good as that of code compiled in the traditional way. The
main cost is that methods are much slower the very first time you run them, because they need to be compiled before
they can run; also, the JIT-compiled code is discarded when the program exits, so this compilation cost is paid every
time the program runs. Fortunately, this happens quickly (typically within a few milliseconds), so it's not slow enough to
cause a perceptible slow down. And remember that this price is only paid the first time the method is called—for every
subsequent call, the compiled code is used. So for long-running applications, the proportion of time spent in the JIT
compiler is negligibly small.

For some applications, the slower startup that can be caused by JIT compilation may be a problem. For such programs,
.NET provides a facility that allows components to be precompiled at installation time, so no JIT compilation needs to
occur at runtime. This facility is called NGEN (short for native code generation), and certain critical system libraries
(including Windows Forms) use it. However, this causes programs to take up considerably more disk space, and under
some circumstances it can increase memory usage, so you should not use this feature unless you have identified
startup time as a problem and your tests show that NGEN actually improves matters. Note that NGEN is not a viable
way of making reverse engineering harder—an NGENed binary still contains all the IL and type information from the
original. It is not possible to remove this.

In fact, there are performance benefits to JIT compilation. Only the code that needs to run is compiled, which can
reduce a process's working set. Furthermore, applications always get the benefit of the latest compiler technology,
whereas a traditional application is stuck with whatever the state of the art was when it was compiled.

Furthermore, as 64-bit systems become more widespread, managed code will be ready for them, as the CLR will just
generate native 64-bit code from the IL instead of 32-bit code. This should make the transition from 32-bit to 64-bit
systems considerably less painful than the decade-long transition from 16-bit to 32-bit systems. This also makes it
possible for components to work both on normal PCs and on mobile systems that support the Compact .NET
Framework, even though these typically use an entirely different processor architecture.

But the single most important aspect of IL is that it is permeated with type information, and the type system is arguably
the most significant feature of the .NET runtime.

1.2.3 The Role of the Type System

With the classic C++ compilation model, the type system was for the most part something that only existed during
compilation. The compiler typically did its best to remove as much evidence of the types used in the source code as
possible. There would inevitably be some residue; for example if Runtime Type Information (RTTI) was enabled, objects
would be annotated with type information, but it was somewhat minimal. For example, given a reference to an object,
you couldn't find out at runtime what fields and methods it contained, or what their types and signatures were. The vast
majority of the type information present in the source would be gone by runtime.

As we have already seen, this is not the case with .NET. The ILDASM tool presents us with a tree view showing every
single type defined in the component, and provides full information on the contents of these types. This even includes
members marked as private. And as we have seen, compiled code also contains full information about the types it is
trying to use.

Reverse Engineering
The ubiquity of type information worries some people, because it can make it easier to reverse engineer
software. However, third-party tools exist that will obfuscate the names. Although these tools still have to
leave the fundamental structure of the type information in place, they will make reverse engineering hard
enough to put most people off. The only way to deter the truly determined is to make sure they never get
hold of your code in any form, compiled or not—it is not in fact particularly hard to reverse engineer a
traditionally compiled component, and the presence of type information makes much less of a difference
than, say, the symbol names, so obfuscation of symbols will make it almost as hard to decompile a .NET
component as it is to reverse engineer classically compiled code.

The situation is exactly the same for Java, and there was a similar amount of hysteria about reverse
engineering in Java's early days. A market for obfuscation tools emerged, but most people seem to have
decided that it isn't actually a big deal, because little code contains truly sensitive information. And as the
DeCSS debacle shows, any code that does contain interesting and sensitive information will be reverse
engineered regardless of how hard you try to make it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This ubiquitous nature of type information is fundamental to many of the services .NET provides. Because absolutely
everything is fully annotated with type information (and this information is accessible at runtime through the reflection
API), it is possible for the runtime to automate many facilities in a way that was not previously possible. For example,
the runtime can automatically serialize objects by examining the type information to find out what fields are present
and what their types are. The remoting services examine method definitions at runtime to determine how to make
them work over the network. Service descriptions for web services are generated by the system automatically by
analyzing the classes that provide those services.

To make use of this type system, we will of course need a programming language. A wide range of common languages
is available for .NET, but we will now look at two .NET-specific languages, C# and Visual Basic .NET.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 .NET Programming Languages
.NET has been designed to support multiple languages. Microsoft anticipates that most Visual Basic developers will want
to carry on using the syntax they are familiar with, and will therefore stick with Visual Basic .NET. But developers with a
C++ background are encouraged to change to a new language called C#. The problem with C++ is it is designed to
support a very low-level style of programming—it fully supports all the classic C idioms, and C has often been described
as a machine-independent assembly language. The low-level nature of C++ does not sit well with the new high-level
nature of the CLR and the class libraries. (Visual Basic does not have this problem because it has always been a
relatively high-level language.)

Although C++ is supported in .NET, it is not being pushed as the language of choice for erstwhile C++ developers.
Instead, Microsoft has created a new language called C#. Designed by Anders Hejlsberg (creator of Delphi), C# is a
language with syntax based on C++, but that works natively with exactly the same set of abstractions as the CLR
provides. Just as C++ was the natural choice for developers who wanted to write code that was at home in the Win32
world, C# is a great choice for .NET programming, because it was designed to be a perfect match for the CLR. Its
syntactic origins mean that anyone familiar with C or C++ (or Java) can learn C# very quickly.

For the most part, C# is like C++ without the low-level grunge. In fact, it is possible to use C-style features like
pointers even in C#, although you need to turn off the relevant safety catches on the compiler before it will let you do
this. However, this is mostly to make sure that C++ developers don't feel emasculated by moving to C#. While it is
comforting for C++ veterans to know that pointers are still there if required, in practice, it is extremely rare to need to
use these features in C#.

All example code in this book is presented in both C# and Visual Basic .NET, because the majority of Windows
applications will be written in one or the other of these languages in the future.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 Components
Whatever language we build our software in, we end up creating executable files that are loaded and run by the
operating system. In days gone by, software was monolithic in nature—all the code and data required for an application
was compiled and linked into a single executable lump of code. While there may be a certain elegant simplicity to this
approach, it did little to encourage code reuse.[1] It also tended to encourage a programming style sometimes referred
to as the "big ball of mud," where any individual part of the code is messily intermingled with lots of other parts, and
there is no overall structure to the code. This was not especially conducive to code quality or developer productivity,
and in extreme cases, a software project could become so entangled and intractable that fixing one bug could easily
introduce several more bugs due to the unforeseen side effects of the change. The object-oriented (OO) features of
C++ were not a sure-fire solution to this problem, because unless developers were scrupulous about encapsulating
their code and keeping classes independent of each other, all the same problems could emerge in an OO program.

[1] Actually, there was one style of reuse popular in such code, often known as Clipboard Inheritance. This refers to
the widespread practice of copying useful working code onto the clipboard, pasting it into some other part of the
project, and then modifying it to suit its new environment.

Component-based software development was one of the most significant advances in software engineering to be
adopted over the last decade. Componentized applications are not monolithic—they are broken down into discrete
chunks (or components) with clear roles and well-defined boundaries. A key feature is that software components are
binaries (i.e., compiled executables rather than collections of source code). This has the effect of preventing unrelated
parts of the system from gradually merging just because of expediency—it means there are always clear divisions
between parts of the system. This is particularly true if the individual components are developed by different groups: if
there are any structural problems with the code, these must be dealt with by fixing the problems rather than resorting
to hacks to work around them.

Of course, it is possible to write bad code in any programming system, and .NET doesn't change that. As always, there
is no silver bullet. But with component-based systems like .NET, developers have to go out of their way to make one
component depend on internal features of another component, so at least it encourages better practice, even if it can't
enforce it.

For a component system to be workable, it must define two things: what constitutes a component and how components
communicate with one another. Prior to .NET, the Component Object Model (COM) provided both definitions.
Components were DLLs (or occasionally EXEs) with certain standard entry points, and that normally had type
information attached. They communicated with each other by adhering to COM's programming model. .NET replaces
these definitions with assemblies and the CLR, respectively.

An assembly is usually a DLL or EXE file, and it contains type definitions, along with any code and data for those types.
In .NET, type definitions (and therefore all associated code) always live inside an assembly. Assemblies define the
physical representation of a component in .NET. As with COM, they still rely on the same PE file format used by all
executables in Windows, but they extend it to provide much more type information than was previously available.
COM's type information provided no way of determining which other types a particular component depended upon,
making it hard to be certain which components needed to be deployed to form a complete working system. In .NET,
this is no longer a problem, because all assemblies list not only the types that they define but also all of the externally
defined types that they use and the components in which those types are defined.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 The .NET Type System
So what does a type look like in .NET? In many respects, types are very similar to C++ classes: just like a C++ class, a
.NET type is a collection of members, which may be fields (i.e., they hold data of some type), methods (i.e., they
contain code), or nested type definitions, and all members have some level of protection (e.g., public, private,
protected). However there are a number of differences between the C++ and the .NET type systems. The following
sections describe the main features of types in .NET.

1.5.1 Members of Types

Any type will need to define some members to be of any use. Members are either associated with data or behavior. In
C++ this means fields and methods, respectively. In addition to these, which the CLR supports, the CLR adds some new
member types. All these member types are described here.

1.5.1.1 Methods

Methods are where we define code. In most .NET languages, all code must be defined in a method of some type.
(Because properties also can contain code, they would appear to be an exception, but they are actually implemented by
.NET language compilers as method calls.) As with C++, the method must have a signature (consisting of its name and
the types of parameters it takes), and that signature must be different from any other methods defined in the same
class. Overloading is allowed, i.e., the names of two methods can be the same if their signatures are different. Methods
must also have a return type (even if the method returns void or Nothing); overloading based on return type alone is not
allowed. (C++ doesn't allow this either.) Note that methods that return void or Nothing in VB are declared using the Sub
statement rather than the Function statement.

Methods can either be instance methods or static methods. (Instance methods are the default, but you can use the
static keyword in C# or the Shared keyword in Visual Basic to specify a static method.) Instance methods are invoked
with respect to a particular object or value, and they have access to that object through the this keyword in C# and the
Me operator in VB. They can also refer to members simply by their names—if they are instance members, the this or Me
reference will be used implicitly. Static methods do not need an object in order to be invoked, but they will only have
access to other static members of the class. Visual Basic is not trying to maintain any look-and-feel compatibility with
C++, so it uses the rather more sensible Shared keyword for members that are shared across all instances of a class.

Here is an example C# method declaration in a class:

public class MyFirstClass
{
 public int MyMethod (string s)
 {
 return int.Parse(s);
 }
}

The equivalent VB code is:

Public Class MyFirstClass
 Public Function MyMethod(s As String) As Integer
 Return Integer.Parse(s)
 End Function
End Class

The method takes a string as a single parameter and returns an integer. The code for the method attempts to convert
the string to an integer by using the C# int type's or VB Integer type's static Parse method. (Both int and Integer are
identical to the .NET Framework's System.Int32 type.) MyMethod is an instance method—users of MyFirstClass will need an
instance of MyFirstClass to call this method.

The public keyword in both languages indicates that any code is allowed to call this method. We will talk more about
such protection keywords towards the end of this section.

1.5.1.2 Fields

Fields hold data. As with methods, fields can be either instance or static. If a field is declared as static, it is singular—all
instances of the class or value will share the same piece of data, and that data will be accessible to instance and static
methods alike. But instance fields (the default) are stored as part of each instance of the type, so every instance has its
own set.

A field must have a name and a type. Here is an example instance field, along with a method that uses the field:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A field must have a name and a type. Here is an example instance field, along with a method that uses the field:

public class MySecondClass
{
 private int x;

 public int IncrementTotal(int val)
 {
 x = x + val;
 return x;
 }
}

The equivalent VB code is:

Public Class MySecondClass
 Private x As Integer

 Public Function IncrementTotal(val As Integer) As Integer
 x = x + val
 return x
 End Function
End Class

This class defines a private instance field called x, which can store an integer. The method IncrementTotal adjusts this
field and returns its value. The code does not use the this or Me reference; it just refers to x by name. The compiler will
detect that the code refers to the instance field x and presume that the author meant this.x or Me.x.

1.5.1.3 Properties

It is considered good practice never to expose a data field as a public member of an object, because that would cause
client code to become too tightly coupled with that type's implementation. Exposing properties through get and set
methods is a popular technique for allowing components' implementations the flexibility to evolve while still providing
public members that feel like fields.

Just as COM did, .NET specifies a standard way of exposing properties through methods. And as with COM, some
languages (including Visual Basic .NET and C#) provide special syntax to support this, allowing field-like syntax to be
used when reading or writing properties, even though they are implemented in terms of methods. So in C#, we can
provide properties like this:

public class ClassWithProperties
{
 public int MyProp
 {
 get
 {
 return 42;
 }
 set
 {
 Console.WriteLine("MyProp set to {0}. That's nice",
 value);
 }
 }
}

And in VB, we can do it like this:

Public Class ClassWithProperties
 Public Property MyProp() As Integer
 Get
 Return 42
 End Get
 Set
 Console.WriteLine("MyProp set to {0}. That's nice", _
 Value)
 End Set
 End Property
End Class

This defines an int or Integer property called MyProp. Note that value is a keyword in C# and VB, and it is used in property
set functions. It is the value that the caller is trying to give the property. (In this case, we are just writing that value to
the console.)

The use of {0} in the string passed to Console.WriteLine indicates that the parameter
following the string should be inserted into the output at this point. It has a similar role to
placeholders such as %d in the format string for printf in C.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

placeholders such as %d in the format string for printf in C.

The syntax for using properties in C# is exactly the same as for accessing fields:

MyClass obj = new ClassWithProperties();
int val = obj.MyProp;
obj.MyProp += 99;

The same is true of VB:

Dim obj As New ClassWithProperties()
Dim val As Integer = obj.MyProp
objMyProp += 99

In this particular example, there is no field. (Feel free to implement your own properties using private fields internally.)
This will just run the get and set methods defined for the property. In this case, reading the property will always get the
value 42, and writing it will just cause a message to be printed. Most properties behave more usefully, of course, but
the point is the client code is not dependent on how the property works—it could rely on a normal field, derive the value
from those in other fields, or retrieve the value from a database. The client just accesses the property, and the object
can handle that however it sees fit.

1.5.1.4 Event handling

Components often need to notify client code when something interesting has happened. This is particularly common in
user interface code—applications need to know when buttons are clicked, when windows are resized, when text is typed
in, and so on. .NET defines a standard way in which objects can deliver event notifications to their clients. Visual Basic
and C# both have special syntax for declaring and consuming such events. These two syntaxes are quite different—C#
presents the CLR's event handling mechanisms directly, while VB uses a style that is much more like the event handling
in previous versions of VB. However, both languages are based on the same fundamental mechanisms, so they have
much in common.

A class that wishes to be able to raise events (most Windows Forms controls do this) must declare the fact by adding a
special member for each type of event it can raise. In C#, we use the following syntax:

public class EventSource
{
 public event MouseEventHandler MouseDown;
 . . .
}

In Visual Basic, the equivalent event declaration looks like this:

Public Class EventSource
 Public Event MouseDown As MouseEventHandler
 . . .
End Class

Both examples declare an event whose name is MouseDown and whose type is MouseEventHandler. (The MouseEventHandler
type is defined in the System.Windows.Forms namespace, and we will see its definition later.) As it happens, all Windows
Forms controls support this event—it is raised whenever a mouse button is pressed while the cursor is over the control.

When an event occurs, the event source notifies the client by calling the relevant handler function. The way we
determine which particular function it calls is different in VB and C#. In VB, the class that wishes to receive the event
simply uses the WithEvents keyword to indicate that it is interested in events from the event source object. It then
identifies a particular method as being the handler for a given event using the Handles keyword. The signature of the
handler method must match the type of the event. In this case, the event is of type MouseEventHandler. (We will look at
this type's definition shortly.) So our code looks like this:

Public Class EventReceiver
 Private WithEvents src As EventSource
 . . .
 Private Sub src_OnMouseDown(_
 sender As Object, e As MouseEventArgs) _
 Handles src.MouseDown
 Console.WriteLine("src object raised MouseDown event")
End Class

This style is similar to how previous versions of Visual Basic handled events. However, it hides the details of how events
really work. C# does not provide such a level of abstraction—it exposes the CLR's underlying mechanisms directly.
Consequently, we need to do slightly more work in C# to handle events. Moreover, we must understand the mechanism
on which events are based.

The CLR provides a special kind of object that is used to connect an event source to its corresponding event handler
method. These special objects are called delegates. Delegates are .NET's nearest equivalent to function pointers—they

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method. These special objects are called delegates. Delegates are .NET's nearest equivalent to function pointers—they
hold typed references to functions. As with a C++ function pointer, a delegate's type (MouseEventHandler, in this case)
determines the signature that the client's handler function must have. MouseEventHandler is defined (in
System.Windows.Forms) thus:

public delegate void MouseEventHandler(
 object sender, MouseEventArgs e);

The equivalent Visual Basic definition is:

Public Delegate Sub MouseEventHandler(_
 sender As Object, e As MouseEventArgs

So if we wish to receive MouseDown event notifications from some control, we must provide a function with a matching
signature:

private void OnMouseDown (object sender, MouseEventArgs e)
{
 ... handle the MouseDown event ...
}

Of course, we must also tell the control that we are interested in the MouseDown event and would like notifications to be
delivered to our OnMouseDown method. In Visual Basic, we did this by using the Handles keyword, but in C#, we must
create a MouseEventHandler delegate initialized with a reference to our method, and then attach it to the relevant event
on the control, using the following rather strange syntax:

src.MouseDown += new MouseEventHandler(OnMouseDown);

This is roughly equivalent to passing the address of a callback function as a function pointer in C++; the delegate acts
as a typed reference to a function that can be passed as a parameter or stored in a field so that the function can be
called back later. But we can't use function pointers as we would in C++, and not just for the ideological reason that it
doesn't enter into the spirit of the brave new pointerless world of the CLR. There is a rather more prosaic reason not to
use raw function pointers: JIT compilation means that functions don't necessarily remain in the same place for the life
of a program. In fact, when the code above is run, there is every chance that the OnMouseDown method has not been
JIT compiled at all yet, so it might not even have an address. So instead, we rely on delegates to provide us with
behavior equivalent to function pointers, while shielding us from the complexities of using pointers in the world of
movable code.

Delegates can hold an object reference as well as a function reference. (In C++ terms, this would mean that a delegate
is really two pointers—a function pointer and a pointer to an object.) In the example above, OnMouseDown is not a static
function, so it can only be invoked in conjunction with an object reference. (The value for the implicit this reference has
to come from somewhere.) If a function requires an object reference, a suitable one must be supplied when a delegate
to that function is created. This can be done explicitly, for example:

myDelegate = new MyDelegateType(myObj.MyMethod);

creates a new delegate whose type is MyDelegateType and attaches it to the MyMethod method on the object to which
myObj refers. (Delegates store their own copy of the reference, so if the myObj variable is later modified to refer to a
different object, the delegate will still refer to the original one.) Or the object reference can be inferred—if the delegate
is created in the scope of a non-static method, the this reference will be used if no explicit reference is supplied. The
MouseEventHandler example above illustrates this, and is typical of code inside a form's initialization function: because an
object reference has not been supplied explicitly, the C# compiler automatically supplies a reference to whichever form
is being initialized. That code is shorthand for the following:

src.MouseDown += new MouseEventHandler(this.OnMouseDown);

This use of the += syntax, peculiar to C#, is simply shorthand for a method call. For each event that a class defines, the
C# compiler will actually define two methods, one for adding a handler and one for removing it. C# hides this detail
with the += syntax (and the corresponding -= syntax used for disconnecting an event handler), and it also shields us
from the details of declaring events if we wish to raise them ourselves. If we add an event declaration such as the one
shown above to our own class, the C# compiler will automatically generate the functions to add and remove event
handlers for us; the code it generates is able to cope with multiple event handlers being attached simultaneously, as all
events should.

Note that the -= syntax used for detaching an event handler is smart enough to work out which method a delegate
refers to. It doesn't require the same delegate object that was used in the += to be passed back in. So looking at the
code above, you might have thought that we would need to store the delegate being created with the new operator to
pass it back when we wish to detach. In fact, it works just fine if we create a new delegate at detachment time:

src.MouseDown -= new MouseEventHandler(this.OnMouseDown);

In Visual Basic, all these details of creating delegates and attaching them are hidden—using the WithEvents and Handles
keywords causes all this code to be generated automatically. However, VB also supports the explicit style that C#
requires. The syntax is different, but the meaning is the same. We can create a delegate object using VB's AddressOf
keyword. And VB's equivalents to the += and -= event operators are the AddHandler and RemoveHandler keywords. So we
can add a handler explicitly, just as we are required to in C#, with the following VB code:

AddHandler src.MouseDown, AddressOf Me.OnMouseDown

And the corresponding code to remove a handler is:

RemoveHandler src.MouseDown, AddressOf Me.OnMouseDown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RemoveHandler src.MouseDown, AddressOf Me.OnMouseDown

Most of the time, you would not need to use this explicit style in Visual Basic. However, it can be useful for attaching
handlers dynamically at runtime. In addition, if you want a single event handler to handle an event from every object in
a collection, you will need to use this explicit style.

All the event handler delegates defined in the .NET Framework follow a common pattern. They define function
signatures that take two parameters. The first parameter is always of type object, and is a reference to the object that
raised the event. (So when a control raises the MouseDown event, it passes a reference to itself to the event handler.
This can be useful it you want to have events from multiple controls on a form all handled by a single function—this
parameter lets it know which control a particular event came from.) The second parameter contains information about
the event. The various delegates defined in .NET all specify different types for this second parameter. For example, the
drag-and-drop events use a delegate type called DragEventHandler, which defines the second parameter to be a
DragEventArgs, while MouseEventHandler (see above) defines it to be a MouseEventArgs. Some events provide no special
information—for example, the Click event raised by a button simply indicates that a particular button has been clicked,
so there is no use for a final parameter. .NET defines a generic delegate for such methods:

public delegate void EventHandler(object sender, EventArgs e);

The second parameter is usually a special value, EventArgs.Empty. This may seem pointless—if the same value is passed
every time, why not just leave off the second parameter? It is left there just in case peculiar circumstances arise in
which it would be useful to be able to pass some information. For example, if you were to define a custom derivative of
the standard Button class, you might wish to pass some information in your Click event. If you define a class that derives
from EventArgs, you can pass it as the second parameter. If EventHandler didn't provide this second argument, you would
not be able to do this.

Note that you are not required to use this style of event handling for your own components. You can define classes
whose events use a delegate of your own devising, which may have any signature you like. Of course, if you stick to the
framework's style, your code will look more consistent, so it is recommended that you do this. But there is nothing
magic about delegates whose first parameter is an object and whose second parameter is some type deriving from
EventArgs.

1.5.1.5 Protection levels

Encapsulation (making the implementation details of a class inaccessible to keep a clear division between a class's
public interface and its internal workings) is crucial in all object-oriented systems. Without proper encapsulation, client
code can become dependent on arbitrary implementation details of an object, meaning that changes to the object that
don't change its external programming interface (e.g., bug fixes) still can end up breaking client code. This could
happen in C++ because compiled code was implicitly dependent on features of a class that were not strictly part of its
public interface, e.g., the number of bytes required to store an instance of the class, and the offsets of public fields.
These values can change when private implementation details are modified. This feature of C++ reflects its origins in
the world of monolithic software, where all client code can be rebuilt whenever a class's implementation changes
(assuming your build process detects such changes properly). In a dynamically linked world, this is simply not good
enough.

Encapsulation is fundamentally important in component-oriented software because individual components tend to
evolve independently both of each other, and of the code that uses them. To maintain the freedom to evolve,
components must be able to draw a clear line between their internal workings and their public programming interface.

To enable this, .NET supports the protection levels familiar to C++ developers. Members of a type can be defined as
public, indicating that they are available to all; private, indicating that they are for the type's internal use only; and
protected, indicating that they can be accessed by the type and by any types that derive from it. (We will talk about
inheritance in the next section.) However, because .NET has a formal definition for a component, it is able to provide
protection facilities at a wider scope than this. Unlike standard C++, .NET supports component-level encapsulation as
well as class-level encapsulation.

It is common to want to write a class designed to be used inside a component, but that is not intended to be used by
external clients of the component. One solution available in C++ (and supported in .NET) is to define a private nested
class—a class defined inside another class that is only accessible to code within that class. The problem is this does not
allow a class to be accessible to other classes within the component; in C++, it is an all or nothing choice—a class is
either entirely private or is available to all classes. However, .NET offers another level of protection: internal (in C#) or
Friend (in VB).

Types and their members can be marked as internal (in C#) or Friend (in VB), indicating that they are available only to
code that is in the same assembly. So it is possible to define types or members that exist entirely for the benefit of the
component in which they are defined, and that will not be accessible to clients of the component.

The assembly-level protection provided by internal or Friend is superficially similar to
package-level protection in Java. However, although it serves the same purpose, it works
rather differently. In Java, package-level protection is based on the naming of classes. In
.NET, internal protection is based entirely on component membership—even if two classes
belong to different namespaces, they can still access each other's internal members if they
belong to the same assembly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5.2 Inheritance and Interfaces

The .NET type system supports inheritance, although unlike standard C++, it does not support multiple inheritance.
However, one of the most common uses of multiple inheritance in C++ was to support an interface-based programming
style. Fortunately, .NET supports interfaces directly, so the absence of multiple inheritance is not a problem.

This section describes the inheritance and interface-based features of the CLR.

1.5.2.1 Inheritance

The CLR supports single implementation inheritance—a type can have a single base type. In fact, use of inheritance is
effectively mandatory in .NET—a user-defined type has to inherit from something. This is because .NET provides a
unified type system in which every type is compatible with a single base type called System.Object. (System.Object is the
only type not to have a base type—every other type in .NET, including intrinsic types, inherits either directly or
indirectly from System.Object.)

Intrinsic Types
Intrinsic types are those built in to the programming system, such as integers and floating-point numbers.
Most languages have keywords for the intrinsic types they support (e.g., int and double in C++, Integer and
Double in Visual Basic.) Before .NET, all languages defined their own set of intrinsic types, although they
were usually much the same as each other, because they are mostly types supported directly by the
processor architecture. But now the CLR defines the set of intrinsic types, and these are the types
supported directly in CIL, the Intermediate Language.

The intrinsic types are all the numeric types, System.Boolean, System.String, and object reference.
System.String is a special case—it is an intrinsic type that is not a value type. You might think that object
references would be an exception too, but they are not. Objects are reference types, but an object
reference is in fact a value type. This is similar to pointers in C++. A pointer is just a value, even though
its purpose is to refer to something; the current implementation of the CLR represents an object reference
as a pointer, and these pointers are passed by value.

By default, any user-defined type can act as a base class (unless it is a value type—see later), but this can be inhibited
if necessary. A type may prevent further derivation by marking itself as sealed (in C#) or NonInheritable (in VB).
Conversely, a type may mark itself with the abstract keyword (in C#) or the MustInherit keyword (in VB), indicating that it
cannot itself be instantiated, and can only be used as a base class from which other classes are derived.

Unlike standard C++, inheritance in .NET can not only cross component boundaries, it can also span language
boundaries—a C# class can derive from a Visual Basic class, for example.

1.5.2.2 Interface-based programming

As seasoned COM developers will be aware, it is possible to use an interface-based style of programming in C++ by
defining pure abstract base classes. But in .NET, interfaces are directly supported by the runtime. Interfaces are not
fully fledged types; they are wholly abstract. This means that although .NET only supports single inheritance, it is
possible for a type to implement multiple interfaces, because interfaces are not really types. (So unlike C++,
implementing an interface on a .NET type doesn't involve inheritance at all.)

.NET languages typically have special syntax for dealing with interfaces, but in all other respects, .NET interface-based
programming is very similar to using an interface idiom in C++. Example 1-1 defines an interface with two methods,
followed by a class that implements the interface.

Example 1-1. Implementing an interface in C#

public interface IMyItf
{
 void MyMethod1(string s);
 int MyMethod2(string s, int x);
}
public class MyImplementation : IMyItf
{
 // Must implement the methods defined in IMyItf,
 // or the compiler will complain that we're not
 // honoring our claim to implement the interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // honoring our claim to implement the interface
 // and refuse to compile the code
 public void MyMethod1(string s)
 {
 System.Console.WriteLine(s);
 }
 public int MyMethod2(string s, int x)
 {
 return int.Parse(s) + x;
 }
}

Example 1-2 shows the equivalent interface definition and implementation in Visual Basic.

Example 1-2. Implementing an interface in VB

Public interface IMyItf
 Sub MyMethod1(s As String)
 Function MyMethod2(s As String, x As Integer) As Integer
End Interface

Public Class MyImplementation
 Implements IMyItf

 Public Sub MyMethod1(s As String) Implements IMyItf.MyMethod1
 System.Console.WriteLine(s)
 End Sub
 Public Function MyMethod2(s As String, x As Integer) As Integer _
 Implements IMyItf.MyMethod2
 return Integer.Parse(s) + x
 End Function
End Class

1.5.3 The Different Types of Type

Types in .NET fall into two categories: value types and reference types. Instances of these are referred to as values and
objects, respectively. The principal difference between value types and reference types is that variables of value types
contain the bytes of data that make up the instance, while variables of reference type just contain the address of the
instance. With reference types, the instance itself lives on the garbage-collected heap.

We will now look at the differences in behavior between reference types and value types.

1.5.3.1 Reference types

Reference types are defined in C# with the class keyword and in VB with the Class keyword. Each instance of any
reference type has a distinct identity and lives on the heap. If you declare a variable of a reference type, it will refer to
an object of that type on the heap. (Or the variable may be null in C# or Nothing in VB, a special value meaning that the
variable isn't referring to any object right now.)

The CLR uses garbage collection to determine when a particular object no longer has any variables referring to it. There
is no equivalent of the C++ delete operator in .NET-based languages. You can simply lose track of objects you no longer
care about, and the runtime will eventually notice that such objects have fallen out of use and reclaim the memory they
occupied.

Objects are always annotated with type information. If you have a variable of type System.Object (or object, as it is
usually abbreviated in C# and VB), it could refer to any kind of object at all, but you can always find out by calling the
object's GetType method. This relies on there being some information at the start of the object describing its type. In
fact, lots of different services supplied by the runtime, including all the polymorphic features such as virtual functions
and interfaces, rely on this type information.

1.5.3.2 Value types

In C++, intrinsic types (e.g., int, float, etc.) are fundamentally different from and unrelated to class types, whereas in
.NET, everything belongs to a single type hierarchy: everything, including the intrinsic types, derives from System.Object.
However, .NET does make a distinction between value-like types and object-like types—there is a special type called
System.ValueType, and all types deriving from it have value-like behavior. The built-in types (System.Int32, System.Single,
etc.) all derive from System.ValueType.

Value types don't have any meaningful identity—because they are usually passed by value, they frequently get copied.
This means that they don't have to live in a distinct space on the heap. Value types usually live either on the stack or as
fields inside some other type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fields inside some other type.

This distinction between values and objects is necessary for performance reasons—if every single integer in a program
had to be allocated its own space on the heap, this would be disastrous for the program's memory and CPU
consumption. This becomes particularly important if large arrays are used. An array of reference types is roughly
equivalent to an array of pointers in C++, and requires a heap block to be allocated for each element in the array if it is
to be of any use. But for value types, a single heap block is allocated for the entire array, and the values are stored
contiguously inside this block, just like in a C++ array.

The tradeoff is that value types are slightly less flexible, the principal limitation being that they cannot be derived from.
This makes it possible for the runtime to know exactly how much memory will be required for a value type. If
inheritance were allowed, how could the runtime be sure that 32 bits would be enough to hold an Int32? A derived type
might require more room. Also, because the inheritance-based polymorphic features available to reference types will
never be used, value types don't need to carry the associated overhead of type information and virtual method tables.
This means that a value type is only as large as it needs to be to hold its fields and no larger.

Despite the requirement for a value type to have a fixed size, it can still contain fields of
reference type. This is fine because although those fields may refer to objects of
indeterminate size, the value type will only contain the references, not the objects. A
reference is always the same size (32 bits, in the current implementation), regardless of
how large the object it refers to may be.

For example, it is allowed for a value type to contain a string—a string could be any
length, but this doesn't matter, because the value will just contain a reference to that
string.

The set of value types is not restricted to the built-in types. It is possible to create user-defined value types. The C#
language uses the struct keyword to define custom value types, while VB.NET uses the Structure...End Structure construct.
This means that it is not just the intrinsic types that can benefit from the performance advantages that value types can
offer in certain circumstances—user-defined types for things such as complex numbers and 3D coordinates can use
exactly the same memory allocation strategies that are used for intrinsic types.

1.5.3.3 Values and boxing

Value types are not always more efficient than reference types. Although they don't carry the normal overheads of
reference types (heap blocks, type information, virtual method tables, etc.), there can be situations where they are
nevertheless less efficient. One reason is they are passed by value—a value type will always be copied when passed as
a method parameter. If it is large, this can get expensive. The other reason is that the runtime needs to perform a trick
to cast a value type down to a base type. Remember that all types in .NET are compatible with System.Object, including
all the value types. This sounds as though it should be impossible, because System.Object supports reference-like
behavior—for example it defines the GetType method mentioned earlier.

The CLR performs a trick to make this work. When you cast, say, an integer to a System.Object, the runtime creates an
object-like wrapper on the heap, and copies the value of the integer inside this wrapper. This operation is called boxing.
(There is a corresponding unboxing operation when casting back to the original type to extract the wrapped value.)
Boxing is also used to enable a value type to support interfaces. Interfaces are polymorphic by nature—the exact
method that is called when you invoke a method on an interface is not determined by the type of variable you call it
through, it is determined by the type of object that variable refers to—so they rely on the object type header being
present. This means that if your value type implements any interfaces, it will be boxed every time you cast it to a
reference of some interface type.

Boxing a value type has its costs—an object must be allocated on the heap. (The cost is similar to that of instantiating a
reference type in the first place. The problem is that you pay this price every time boxing occurs, rather than just once
when you create the object.) Any type that is often cast to System.Object is likely to be better off as a reference type to
avoid the boxing overhead. For example, all the standard collection classes in the .NET Framework store references of
type System.Object, so if you plan to store your objects in one of these containers, you should make them reference
types, not value types (i.e., classes, not structs).

This caveat does not apply if you are simply using normal arrays. Although, say, a System.Collections.ArrayList of ints will
box every item it contains, a simple int array (int[] or Integer()) will not use boxing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.6 The .NET Framework Class Library
All platform services are exposed through the .NET Framework Class Library. So whether you want to make a window
appear, read a file, open a network connection, parse an XML document, or use any of the other myriad features of the
platform, you will do so by using one or more classes in the class library.

The class library is divided up into namespaces . For each area of the API, there is an appropriate namespace, e.g., XML
services are provided by the System.Xml namespace, GUI services are provided by the System.Windows.Forms namespace,
and graphical services are provided by the System.Drawing namespace. Namespaces are hierarchical, and large
namespaces are frequently subdivided into several smaller namespaces, e.g., the design-time parts of the Windows
Forms API appear in the System.Windows.Forms.Design namespace.

Because the Class Library replaces large amounts of the Win32 API, and also adds new functionality not previously
available, it is large and contains many namespaces. This book concentrates on the Windows Forms namespace, and
the related System.Drawing namespace, although we will discuss other relevant classes as necessary.

1.6.1 Windows Forms and GDI+

Windows Forms is the name given to the parts of the .NET Framework Class Libraries used for building rich client
applications, i.e., traditional GUI applications such as those built using the MFC before .NET. Central to Windows Forms
is the Control class, the foundation of all UI applications and the subject of the next chapter. In fact, almost everything
that happens in a .NET UI application revolves around controls, so most of the rest of the book is about controls.

GDI and GDI+
There are actually two versions of GDI+, one for unmanaged (non-.NET) code and one for managed code.
The unmanaged GDI+ came first—it shipped with Windows XP, and a redistributable for other versions of
Windows was released at the same time. Managed GDI+ shipped a few months later with the release of
.NET, and is described in the documentation as "a set of wrappers." This turns out to be a somewhat
misleading description, because it is not in fact a wrapper for unmanaged GDI+. The two APIs are nearly
identical, both are object oriented and provide a set of objects for two-dimensional drawing and image
manipulation. The object models look exactly the same, except one is a classic C++ object model, while
the other is a .NET object model. However, neither is a wrapper for the other—both turn out to be
wrappers for the same undocumented API. They may look the same, but they are in fact two parallel
implementations of the same thing, one in managed code, the other in unmanaged code.

GDI+ is the successor to Win32's GDI—it is the API used for drawing. If a Windows Forms application wants to
customize its own appearance, it must use GDI+, so this API (which lives in the System.Drawing namespace) is a
fundamental part of most .NET GUI development. It provides a wide range of drawing facilities, including support for
text, bitmaps, metafiles, line drawing, Bezier curves, and filled paths. It also provides advanced high-quality rendering
features, such as antialiasing support for all graphical output (as opposed to just on text), and interpolation for bitmap
resizing (both bilinear and bicubic).

The rest of this book is devoted to describing how to use the classes in these Windows Forms and GDI+ namespaces.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Controls
The System.Windows.Forms namespace defines a class called Control. This class is at the heart of all Windows Forms
applications. Any visual element of an application—whether it is a window, a button, a toolbar, or a custom user-defined
control—is represented by an object of some class deriving from Control.

This chapter describes the role played by the Control class within the Windows Forms framework, and examines the
basic behavior that all controls inherit from Control. It also introduces the classes that represent the traditional Windows
controls.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Windows Forms and the Control Class
Each different type of user interface element is represented by a specialized class deriving from Control. For example,
top-level windows are represented by the Form class; each of the standard Windows control types has a corresponding
class (such as Button and TreeView); you can also define custom controls by creating your own classes. All these inherit
(either directly or indirectly) from the Control class.

Because all visual elements derive from Control, they share a single implementation of the features common to all
controls. This ensures a certain minimum level of functionality and guarantees consistent behavior across all control
types. The Control class defines standard properties, events, and methods for all the common features of user interface
components. These include size and position, input handling, and appearance.

The Control class also defines the nature of the relationships controls on a form have with one another. As with classic
Windows programming, a parent-child relationship is supported—a control may contain several child controls, and most
controls (except top-level windows) have a parent control. The containment relationship is detailed in the next chapter,
but it affects all controls for certain operations, such as moving and resizing windows. It also has some slightly more
subtle implications for features such as focus management and control validation.

The Windows Forms framework defines a class hierarchy for the various kinds of controls. The Control class sits at the
root of this hierarchy, but there are specializations for various types of controls, as Figure 2-1 shows. All the built-in
controls (buttons, labels, tree views, etc.) inherit directly from the Control class. As you will see in Chapter 5, you can
write your own controls that do the same.

Figure 2-1. The Control class hierarchy

In practice, most user-defined controls only inherit indirectly from the Control class. The single most common type of
custom user interface element you will define will be top-level windows deriving from the Form class. The Form class is
discussed in detail in the next chapter, as are its base classes, ScrollableControl and ContainerControl. The closely related
UserControl class will be discussed in Chapter 5. For now, the main thing to be aware of is that a typical simple Windows
Forms application will define a class derived from Form for each type of window it displays, and this class will be
implemented using several of the built-in control types. We will now see how to use the facilities provided by Control that
are common to all control types.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Using Standard Control Features
The Control class provides uniform management of all the standard facets of a control, including visual features such as
color, caption, and typeface, dynamic features such as event handling and accessibility, and other standard behaviors
such as layout management. There are two ways of using most of these features: at design time in the Windows Forms
designer and at runtime from code.

The Windows Forms designer allows most of the features of a control to be configured visually at design time using the
Properties tab. (Also, certain common operations can be performed directly with the mouse; for example, the position
of a control can be adjusted by dragging it.) However, this visual editing simply causes the designer to generate code.
It just writes a class that creates control objects and manipulates their properties. Unlike earlier Windows development
environments, .NET doesn't have dialog template resources—everything is done in code. (The strings used in a form
can be stored as resources, though, to support localization.) For example, dropping a button onto a form in the
designer causes the following code to be added to the form's class definition for projects written in C#:

private System.Windows.Forms.Button button1;
...
private void InitializeComponent()
{
 ...
 this.button1 = new System.Windows.Forms.Button();
 ...
 this.button1.Location = new System.Drawing.Point(8, 8);
 this.button1.Name = "button1";
 this.button1.TabIndex = 0;
 this.button1.Text = "button1";
 ...
}

The corresponding code for projects written in VB is:

Private WithEvents Button1 As System.Windows.Forms.Button

Private Sub InitializeComponent()

 Me.Button1 = New System.Windows.Forms.Button()
 Me.SuspendLayout()
 '
 'Button1
 '
 Me.Button1.Location = New System.Drawing.Point(8, 8)
 Me.Button1.Name = "Button1"
 Me.Button1.TabIndex = 0
 Me.Button1.Text = "Button1"
 ...
End Sub

So using the designer is functionally equivalent to writing the code by hand, although it is rather more convenient. The
mechanisms through which we use controls are the methods, properties, and events that they expose (just as with any
other component in .NET). The Windows Forms designer is effectively just a code generation mechanism. Because the
programming model provided by the Control class is fundamentally important whether you use the forms designer or
not, the following sections concentrate on this model.

The following sections deal with the various aspects of a control that can be managed through the standard properties
on the Control class. We will start by looking at how to set a control's size and position. Next, we will see how to control
its appearance. Finally, we will see how to make our controls respond to input from the user.

2.2.1 Location, Location, Location

Visual components must occupy some space on the screen if they are to be visible. The Control class allows us to have
complete control over the location and size of our UI elements, but it is also possible to get the Windows Forms
framework to do some of the work for us. So first we will look at how to set the size and position of a visual component
manually, and then we will see how to exploit automatic layout.

2.2.1.1 Position and size

Position and size are fundamental features of all controls. We turn out to be spoiled for choice here, because Control
provides several different representations of this information. For example, there is a Location property that allows the
position of the top-left corner of the control to be set in screen coordinates as a Point (a value type containing a two-
dimensional coordinate). The designer uses Location to position controls, as shown above. But we can also set the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dimensional coordinate). The designer uses Location to position controls, as shown above. But we can also set the
dimensions individually—the following code is equivalent to what the Forms designer produced in the previous example:

this.button1.Left = 8;
this.button1.Top = 8;

Control also provides Right and Bottom properties, although these are read-only because it is ambiguous whether
changing these should leave the Left and Top properties as they are, thus changing the size, or whether they should
move the control. Note that these properties define the control's position relative to its container. For example, when a
form is moved, all the controls inside that form move with it, but the value of their Location (and associated properties)
does not change.

The size can also be set in various ways. The control will choose a default size for itself in its constructor, and it is best
to use the constructor if possible, because resizing the control after creation is slightly slower. This is why the designer
doesn't generate any code to set the button's size. But if we wish to set the size ourselves (maybe the default size is
inappropriate), we can either set the Width and Height properties individually, or we can set the Size property:

this.button1.Size = new Size(100, 50);

The Size type is a value type similar to the Point type, but it is always used to denote something's size. We can also use
the following code, which is functionally equivalent to the previous example:

this.button1.Width = 100;
this.button1.Height = 50;

If we want to set both the position and the size, we can do so in one go with the SetBounds method:

this.button1.SetBounds(8, 8, 100, 50);

(The four parameters are equivalent to the Left, Top, Width, and Height properties.) It doesn't matter which of the
various techniques you use to change a control's size and position—they are all equivalent, so you can use whichever is
most convenient. (As it happens, they all end up calling the same internal method in the current implementation of the
.NET Framework.) Alternatively, you may decide to let the automatic layout facilities of Windows Forms set some of
these properties.

2.2.1.2 Automatic layout

A control's size and position does not necessarily need to be set manually. It is possible for these properties to be
controlled (or influenced) by automatic layout, using the Dock and Anchor properties.

The Dock property allows a control's position and size to be managed by its containing window. This property is set to
one of the six values in the DockStyle enumeration. The default value is None, which disables docking, but if any of the
Top, Bottom, Left, or Right values is used, the control will attach itself to the relevant edge of the window, much like a
docking toolbar. Setting it to Fill causes the control to fill the containing window completely. The effect of each option is
illustrated in Figure 2-2. With docking enabled, the control's Location property does not need to be set, because it will
always be at the edge of the window, wherever that may be.

Figure 2-2. DockStyles in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the Left and Right docking styles, the Height property is managed automatically (it will be the same as the containing
window). Likewise for the Top and Bottom docking styles, the Width property is determined by the containing window. If
Fill is specified, the Width and the Height properties are both set by the containing window, so none of the position or size
properties need to be set. (This is the only layout mode for which all aspects of the control's size and position are
managed automatically.)

Docking is not the only way of automatically arranging the contents of a window. A control may instead use its Anchor
property to cause its size, position, or both to be updated when its containing window is resized. (Note that the Anchor
property is used only if the Dock property is set to None.) This property is set with any combination of the flags in the
AnchorStyles enumeration, which are Top, Bottom, Left, and Right. When the containing window is resized, the edges of the
control specified in the Anchor property are kept a constant distance from the same edge of the window. The default is
Top, Left, which means controls stay put as the window is resized, but changing its value to Top, Right causes the control
to move with the righthand side of the window during resizing. If Top, Left, Right were specified, both the left and right
edges of the control would follow the window edges, causing the control to be resized with the window. AnchorStyles also
defines a None value to indicate none of the above. In this case, the control remains the same size, but as its container
is resized, the control moves half of the distance that it is resized by. This allows controls to remain centered as the
container resizes.

Anchoring makes it very easy to produce dialogs that can be usefully resized. (This was very tedious with classic
Windows programming—its dialog handling was not designed to perform dynamic layout.) Dialogs that have some
central feature containing potentially large amounts of information (like the file list in the standard Open and Save File
dialogs) can make this item resize as the window is resized, while any controls around the edge of the feature simply
move with the window edges to accommodate it. This style of resizing can improve the usability of certain kinds of
dialog considerably. It is easy to achieve with the Anchor property.

Note that anchoring doesn't manage our position and size for us completely. We must still specify the initial position and
size of each control; it will simply move and resize them for us thereafter.

2.2.2 Appearance

Having gotten our control where we want it, next we want to make sure it looks how it should. We can determine the
color of our UI elements. We can set the text and fonts they use. Some controls can have an image associated with
them, and all controls can modify the appearance of the mouse pointer while it is over them.

2.2.2.1 Color

Color is managed by the ForeColor and BackColor properties. These are both of type Color, a value type defined in the
System.Drawing namespace that allows the color to be specified in various ways. You can use known system colors, e.g.,
System.Drawing.SystemColors.ActiveCaption; if the user has customized her system colors, these color values will reflect
those customizations. Alternatively you can specify standard web colors such as Color.LemonChiffon or Color.GoldenRod. Or
you can just define custom colors from their RGB values, e.g., Color.FromArgb(255, 192, 192). (The "A" stands for Alpha—a
color's alpha value specifies transparency, but most controls don't honor transparent colors properly, so here we just
use the default, i.e., a non-transparent color.)

2.2.2.2 Text

The Control class defines two properties relating to text: Text and Font. The Text property is a string containing basic text
associated with a control. Most controls have a sensible use for this property (e.g., the contents of an edit box, the text
in a label, or the caption on a button), but because not all controls display text, the property is simply ignored where it
is not appropriate.

The text's font is controlled by the Font property, which is a System.Drawing.Font object. The Font class has properties that
allow all the normal font characteristics to be set, e.g., the typeface name (Name), emphasis (Bold, Italic, and Underline),
and size (Size or SizeInPoints; both of these properties represent the size, but they do so in different units. Size is in
design units, the units in which control positions and dimensions are specified. SizeInPoints is in points, a unit of
measurement commonly used for defining font sizes.)

Setting the window's Font property is the easiest way to use the same font for all the
controls in a given window—all the controls will automatically pick this font up unless their
Font is explicitly set to something different.

Note that all the properties of a font object are read-only. This means that you cannot change a control's font to be bold
in the obvious way. For example, the statement:

ctl.Font.Bold = true;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ctl.Font.Bold = true;

will not compile. If you want to change the font, you must create a new font object, even if you want it to be almost
identical to the existing font. (While inconvenient, this does reflect the underlying reality that changing to a different
font is a fairly expensive operation, even if the new font is similar to the original.) If you are only changing one or more
of the emphasis properties, there is a Font constructor that takes a prototype font and a FontStyle value. The FontStyle
enumeration lets you specify any combination of Bold, Italic, Strikeout, and Underline, or just Regular if you want none of
these. If you want to change anything else, you must use the more long-winded approach of reading all the existing
font's properties, and then using these (modified appropriately) to create a new font.

2.2.2.3 Images

The BackgroundImage property allows an object of type Image (a bitmap or a metafile) to be set as the background of a
control. If the image is too small to fill the control, it will be tiled to fill the space available. The Control class does not
provide a property for a foreground image. However, there are several controls that support foreground images (Button,
CheckBox, RadioButton, Label, and PictureBox), and these all allow the foreground image to be set with a property called
Image, also of type Image.

Several bitmap formats are supported. As well as standard Windows BMP and ICO files, the GIF, TIFF, JPEG, and PNG
formats are also supported. Even animated bitmaps (for the formats that support animation) can be used.

2.2.2.4 Mouse cursors

If the Cursor property is set, it causes the mouse cursor's appearance to change while it is over the control. The
property is of type System.Windows.Forms.Cursor, and the easiest way to obtain an instance of this class is to choose one
of the standard cursor types defined by the Cursors class. The Cursors class exposes all the standard cursor types, e.g.,
Cursors.WaitCursor or Cursors.AppStarting.

You can also define a custom cursor. The Cursor class provides various constructors, one of which just takes the name of
a CUR file. However, you will usually want to compile a cursor resource into the executable and use that rather than
shipping separate cursor files with your program. The following C# code will obtain a cursor from a resource compiled
into the executable:

myCtl.Cursor = new Cursor(typeof(MyForm), "MyCursor.cur");

or in VB:

myCtl.Cursor = New Cursor(GetType(MyForm), "MyCursor.cur")

The first parameter must be a Type object for a type defined in the assembly that contains the cursor resource. In this
case, we are using a type called MyForm, but it doesn't matter which class is used so long as it is in the same assembly
as the resource. (It is just used by Cursor to determine which file the resource is stored in.) The second parameter must
match the name of the cursor file that is being compiled into the component. If you are using Visual Studio .NET, a
cursor file can be built into the assembly as a resource by adding it as an item to the project, and then setting that
item's Build Type to Embedded Resource on the Properties tab. If you are not using Visual Studio. NET, you can simply
tell the C# or VB compiler to embed the file as a resource by adding a /res:MyCursor.cur command-line switch.

2.2.3 Handling Input

We have seen how to arrange our components on the screen as we see fit, and to make their appearance meet our
needs. But this would be a pointless exercise if our programs were unable to respond to the user, so next we will
examine the three sources of user input: mouse input, keyboard input, and interaction through accessibility aids. We
will also look at Windows Forms' validation features, which provide a way of checking that the input supplied by the
user actually makes sense to the application.

2.2.3.1 Mouse Input

Mouse input is dealt with at two different levels: we can either be notified of the low-level events such as movement
and button state changes, or we can be notified of higher-level concepts such as a click. (There is also special support
for drag and drop, but we will deal with this later.)

Two of the high-level mouse events are Click and DoubleClick. These are simple events that pass no special information,
so they use the standard EventHandler delegate type in C#. As with all events raised by the Control class, the first
parameter is the control object that raised the event, and for these particular events, the second parameter is always
EventArgs.Empty (i.e., it is in effect unused). Handling these events is therefore straightforward. Example 2-1 shows the
kind of C# code that the Visual Studio .NET Forms designer would generate to handle a Click event, while Example 2-2
shows the VB code generated by the Visual Studio .NET Forms designer.

Example 2-1. Handling the Click event in C#

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-1. Handling the Click event in C#

private System.Windows.Forms.Button myButton;
...
private void InitializeComponent()
{
 ... myButton created and initialized in usual fashion ...

 // Attach Click handler
 myButton.Click += new EventHandler(myButton_Click);

 ... further initialization as usual ...
}

private void myButton_Click(object sender, System.EventArgs e)
{
 System.Windows.Forms.MessageBox.Show(
 "Please do not click this button again");
}

Example 2-2. Handling the Click event in VB

Friend WithEvents myButton As System.Windows.Forms.Button

Private Sub InitializeComponent()
 Me.myButton = New System.Windows.Forms.Button()
' ...further initialization as usual ...

End Sub

Private Sub myButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles myButton.Click
 MsgBox("Please do not click this button again.")
End Sub

The DoubleClick event works in exactly the same way. Note that there is no significance to the name of the handler
function in either C# or VB. There is a convention (used by the Forms Designer in Visual Studio .NET) that these names
are of the form controlName_EventName, but this is not a requirement—the function name can be anything, it merely has
to have the correct signature. The control simply calls whichever function we choose to initialize the delegate with in
C#, or whatever method with the correct signature that has been designated as an event handler using the Handles
keyword.

The other high-level mouse events are MouseEnter, MouseLeave, and MouseHover. The first two are raised when the mouse
pointer enters or leaves the area of the screen occupied by the control, and the last is raised if the pointer remains
stationary over the control for more than about half a second. Note that between every MouseEnter/MouseLeave pair, you
will never get more than one MouseHover event. Even if the mouse enters the control, hovers for a bit, moves a bit, and
hovers again for a bit, the control remembers that it has already given you the hover event and won't give you a
second one. As with the Click event, these all use the standard simple EventHandler, and supply no information other than
the reference to the control raising the event (the sender parameter).

Sometimes you will need to monitor mouse activity in more detail than this, so the Control class also provides a set of
more low-level events. The MouseMove event is raised whenever the cursor is over the control and is moving. Button
presses are handled by the MouseDown and MouseUp events, mouse movement is reported through the MouseMove event,
and wheel rotation is indicated with the MouseWheel event. These events all share a special event handler type called
MouseEventHandler, which is similar to the standard EventHandler, except the final parameter is a MouseEventArgs.

The MouseEventArgs class provides properties that describe what the user just did with the mouse. These properties are
predictable, if a little inconsistent. For example, there is a Button property that indicates which button's state just
changed for the MouseDown and MouseUp events, but for the MouseMove event, it indicates what combination of buttons is
currently pressed, while for the MouseWheel event it is always MouseButtons.None, regardless of what buttons may be
pressed at the time. There is a Clicks property, which is either 1 or 2 to indicate a single- or double-click in the
MouseDown event, and is otherwise always 0. The X and Y properties are always used to indicate the current position of
the mouse, relative to the top-left corner of the control.

There is also a property that is used only during the MouseWheel event. The Delta property indicates in which direction
and how far the wheel was moved. At the time this book went to press, its value was always either 120 or -120, but it
is possible that future wheel devices will provide more detailed input, so the values could be smaller. You should bear
this in mind if you handle these events, or else your application will not behave correctly with such an input device. One
strategy is to scale the effect of your response—so if you are scrolling a window, smaller Delta values should scroll the
window less far. An alternative approach is to keep a cumulative total and only respond to these events once the total is
larger than 120. Note that most of the built-in controls deal with this event for you, including any forms with the
AutoScroll property enabled, so you only need to handle it if you need to do something unusual with the mouse wheel.

Microsoft is not entirely consistent here. Almost all the documentation recommends these
techniques, apart from one of the help pages, which suggests that you just look at Delta's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

techniques, apart from one of the help pages, which suggests that you just look at Delta's
sign and ignore its magnitude. However, that is at odds with the Windows documentation,
so your application's behavior would be out of step with non-.NET applications. It also
contradicts the other .NET documentation, so this suggested simple handling is
presumably an error and should be ignored.

Note that the MouseWheel event is delivered to whichever control has the focus, even if the mouse is not over the
control, whereas the other events are only delivered either when the pointer is over the control or was dragged out of
the control. If a button is pressed while the cursor is over the control, the cursor is automatically captured until the
button is released. This means that MouseMove events will be delivered while the button is held down even if the cursor
leaves the control. It also guarantees that for every MouseDown event, a matching MouseUp event will be received, even
if the mouse is moved away from the control before the button is released. (If you were used to working in the Win32
world, where this had to be done by hand, you are entitled to give a small cheer at this stage.)

The .NET platform also makes certain guarantees about the order in which mouse events occur. Figure 2-3 shows the
states that a control can be in with respect to mouse input, and which events it can raise in any given state.

Figure 2-3. Mouse events state diagram

2.2.3.2 Drag and drop

The Control class supports participating in Windows drag-and-drop operations, both as a source and as a target.

To act as a drop target, a control's AllowDrop property must be set to true. By default, this property is false, so if the user
attempts to drag an item onto the control, the "no entry" cursor will be displayed, and no drag-and-drop events will be
raised. But if this flag is set, the control will raise certain events whenever an item is dragged over it. The handlers for
these events can then decide whether the mouse cursor should indicate that the control is a valid drop target.

When the mouse first moves over the control during a drag operation (e.g., if a file is dragged from a Windows Explorer
window), the control will raise the DragEnter event. This event, whose type is DragEventHandler, supplies a DragEventArgs
object, which can be used to examine the item being dragged, and to determine whether the control would accept it if it
were dropped. This is achieved by setting the Effect property on the DragEventArgs, which determines the kinds of drop
the control is prepared to accept, (e.g., Copy, Link, or Move). By default, the Effect property is set to DragDropEffects.None,
so unless your DragEnter handler changes it, the control will not behave as a potential drop target even if AllowDrop is
true. The following C# code sets up a control to accept a copy of any kind of object:

 // In form initialization...
 targetCtl.AllowDrop = true;
 targetCtl.DragEnter +=
 new DragEventHandler(targetCtl_DragEnter);
 targetCtl.DragDrop +=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 targetCtl.DragDrop +=
 new DragEventHandler(targetCtl_DragDrop);
 ...

private void targetCtl_DragEnter(object sender, DragEventArgs e)
{
 // Accept anything, so long as it is being copied
 e.Effect = DragDropEffects.Copy;
}

private void targetCtl_DragDrop(object sender, DragEventArgs e)
{
 MessageBox.Show("You dropped something");
}

The corresponding VB code is:

 ' In form initialization...
 targetCtl.AllowDrop = True
 ...

Private Sub targetCtl_DragEnter(sender As Object, e As DragEventArgs) _
 Handles targetCtl.DragEnter

 ' Accept anything, so long as it is being copied
 e.Effect = DragDropEffects.Copy
End Sub

Private Sub targetCtl_DragDrop(sender As Object, e As DragEventArgs) _
 Handles targetCtl.DragDrop

 MsgBox("You dropped something")
End Sub

The DragEnter event handler has indicated that it is happy to be the target for a copy operation. This means that if the
user drops an object on the control, the control will raise its DragDrop event. This event will only ever be raised if the
control has explicitly changed the DragEventArgs.Effect property to something other than None during either the DragEnter
or the DragMove event. And these events will only be raised if the AllowDrop property is true.

Most applications are slightly pickier about what they accept than this code, because they want to know if they can
actually do anything with the object before deciding to receive it. You can find out about the nature of the object being
dragged from the DragEventArgs.Data property. This property is an IDataObject interface that allows us to find out which
formats the object can present itself in. Most drag-and-drop objects are able to present themselves in several different
ways—for example, selected text dragged from an Internet Explorer window can be accessed through IDataObject as
(among other things) plain text, RTF, and HTML. The following variation on the previous C# code makes the control
receptive only to drop objects in one of these three formats. If a suitable object is dropped, it will be displayed in
whichever of these three formats the object supports:

private void targetCtl_DragEnter(object sender, DragEventArgs e)
{
 // Only accept the object if we can access it
 // in a format we understand
 if (e.Data.GetDataPresent(DataFormats.Text) ||
 e.Data.GetDataPresent(DataFormats.Rtf) ||
 e.Data.GetDataPresent(DataFormats.Html))
 {
 e.Effect = DragDropEffects.Copy;
 }
}

private void targetCtl_DragDrop(object sender, DragEventArgs e)
{
 if (e.Data.GetDataPresent(DataFormats.Text))
 {
 string text = (string) e.Data.GetData(DataFormats.Text);
 MessageBox.Show(text, "As Text");
 }
 if (e.Data.GetDataPresent(DataFormats.Rtf))
 {
 string text = (string) e.Data.GetData(DataFormats.Rtf);
 MessageBox.Show(text, "As RTF");
 }
 if (e.Data.GetDataPresent(DataFormats.Html))
 {
 string text = (string) e.Data.GetData(DataFormats.Html);
 MessageBox.Show(text, "As HTML");
 }
}

The corresponding VB code is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The corresponding VB code is:

Private Sub targetCtl_DragEnter(sender As Object, e As DragEventArgs) _
 Handles targetCtl.DragEnter

 ' Only accept the object if we can access it
 ' in a format we understand
 If e.Data.GetDataPresent(DataFormats.Text) Or _
 e.Data.GetDataPresent(DataFormats.Rtf) Or _
 e.Data.GetDataPresent(DataFormats.Html) Then
 e.Effect = DragDropEffects.Copy
 End If
End Sub

Private Sub targetCtl_DragDrop(sender As Object, e As DragEventArgs) _
 Handles targetCtl.DragDrop
 If e.Data.GetDataPresent(DataFormats.Text) Then
 Dim text As String = CStr(e.Data.GetData(DataFormats.Text))
 MessageBox.Show(text, "As Text")
 End If
 If e.Data.GetDataPresent(DataFormats.Rtf) Then
 Dim text As String = CStr(e.Data.GetData(DataFormats.Rtf))
 MessageBox.Show(text, "As RTF")
 End If
 If e.Data.GetDataPresent(DataFormats.Html) Then
 Dim text As String = CStr(e.Data.GetData(DataFormats.Html))
 MessageBox.Show(text, "As HTML")
 End If
End Sub

If you add these event handlers to a control in a project of your own, you will find that if you attempt to drag a file onto
the control from Windows Explorer, the control will refuse to accept it. This is because Windows Explorer does not
present its files in any of the three formats this code happens to accept. But if you drag in selected text from IE or
Word, it will appear in all three formats, while text dragged from Visual Studio .NET will appear as just plain text and
RTF.

This code illustrates the use of standard formats defined in the DataFormats type. This type contains static fields for each
of the predefined formats recognized by the framework. These fields are strings containing the names of the formats;
e.g., DataFormats.Html is simply the string constant "HTML Format". But you can pass other strings to
IDataObject.GetDataPresent; a nonstandard string will be interpreted as the name of a custom format. This nonstandard
string might be a custom format defined by some other application you wish to interact with. Or it could be your own
custom format that you have designed to associate the information you choose with your data. Custom formats local to
your application can be useful if you are acting as both a source and a target, because they let you associate any data
you want with a drag-and-drop operation. (See below for using the DoDragDrop method to initiate a drag-and-drop
operation).

Sometimes you may want to change whether your target accepts a particular object continuously as the mouse moves,
rather than just when it first moves over your control. For example, you might want only certain areas of the control to
be a target. (This is particularly common for user-drawn controls.) If this is the case, the DragOver event is useful,
because it is raised repeatedly while the cursor is dragging an object over your control. You can modify the Effect
property each time this event is raised to indicate whether your object will accept a drop right now. The DragEventArgs
object provides X and Y properties to indicate the position of the mouse, and a KeyState property indicating the current
state of modifier keys (Shift, Ctrl, and Alt), which may be useful in determining whether the control should accept an
object at any particular instant.

Sometimes it is useful to know when a control has stopped being considered a potential drop target—maybe the user
cancelled the drag by hitting Escape, or has simply moved the mouse cursor away from the control. This is useful if
your control changes its appearance while it is a potential drop target (e.g., Windows Explorer highlights EXE files when
you drag other files over them). You'd want such a control to set its appearance back to normal when it ceases to be a
target. The Control class provides a DragLeave event that is raised when this happens. This event uses the standard
simple EventHandler delegate type, rather than the DragEventHandler used by all the other drag-and-drop events. This is
because the event is raised to inform you that you are no longer involved in this drag-and-drop operation, so providing
you with a DragEventArgs object would be pointless.

The Control class also provides the DoDragDrop method, which allows a control to act as the source of a drag-and-drop
operation. The simplest way to use this method is to pass the information to be dragged either as a String, a Bitmap, or a
Metafile (these are all classes provided by the .NET Framework), along with a set of DragDropEffect flags indicating what
kinds of drag operations are permitted. (The flags passed here will be reflected in the DragEventArgs.Effects property seen
by drop targets.) The following C# code (the VB code would be almost identical, except for slight syntactic differences)
will allow a string to be dragged into any application that allows text to be dropped into it (e.g., Microsoft Word):

// MouseDown event handler for some control
private control_MouseDown(object sender, MouseEventArgs e)
{
 control.DoDragDrop("Hello, world!", DragDropEffects.Copy);
}

When you use String, Bitmap, or Metafile objects like this in a drag-and-drop operation, the framework automatically
presents them using the appropriate data formats (such as DataFormats.Text and DataFormats.UnicodeText for String, or
DataFormats.MetafilePict and DataFormats.EnhancedMetafile for Metafile). This is convenient, but not very flexible. A more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataFormats.MetafilePict and DataFormats.EnhancedMetafile for Metafile). This is convenient, but not very flexible. A more
powerful approach is to use the DataObject class, which lets you start drag-and-drop operations with objects that can
present themselves in as many different data formats as you like, including custom formats. It is used as follows:

DataObject obj = new DataObject();
MyType t = new MyType("Hello!");
obj.SetData("My custom format", t);
obj.SetData("Hello!");
obj.SetData(bmpMyBitmap);
myControl.DoDragDrop(obj, DragDropEffects.Copy);

The corresponding VB code is:

Dim obj As New DataObject()
Dim t As New MyType("Hello!")
obj.SetData("My custom format", t)
obj.SetData("Hello!")
obj.SetData(bmpMyBitmap)
myControl.DoDragDrop(obj, DragDropEffects.Copy)

Any number of data formats, standard or custom, can be attached to a single DataObject. Here, we are passing some
data in a custom format—an instance of some class MyType—as well as providing some standard formats by passing a
String and a Bitmap.

The control on which DoDragDrop was called can raise events to notify us of the progress of the drag operation. The
GiveFeedback event is raised repeatedly during the operation, and it uses the GiveFeedbackEventHandler delegate type. The
GiveFeedbackEventHandler delegate passes a GiveFeedbackEventArgs object, which allows the Effect property to be changed
(e.g., this might change between DragDropEvent.Copy and DragDropEvent.Move according to which modifier keys are
pressed). It also allows the mouse cursors to be changed. By default, the standard system drag-and-drop cursors are
used, but setting the GiveFeedbackEventArgs.UseDefaultCursors property to false disables this, allowing the source control to
set the cursor itself. It can do this by modifying the Cursor.Current static property.

The source control also repeatedly raises the QueryContinueDrag event to allow the operation to be cancelled if
necessary. The QueryContinueDrag event uses the QueryContinueDragEventHandler delegate, which supplies a
QueryContinueDragEventArgs object. QueryContinueDragEventArgs allows the drag to be cancelled or completed by setting its
Action property to either DragAction.Cancel, or DragAction.Drop. For convenience, it also provides the current state of the
modifier keys through its KeyState property, and an EscapePressed flag indicating whether the user has attempted to
cancel the drag by pressing escape.

2.2.3.3 Keyboard input

Of course, not all input comes from the mouse. As you would expect, Windows Forms also provides extensive support
for handling keyboard input.

There are three events associated with keyboard input. Two of these, KeyDown and KeyUp, provide information for each
individual key that is pressed. The third, KeyPress, deals with character-level input from the keyboard. For example, if
the user holds down the Shift key and presses the A key, there will be a KeyDown and a KeyUp event for each key. But
because this combination of keys corresponds to only a single character, a capital A, there will be just one KeyPress
event. If the user presses and releases only the Shift key, there will be no KeyPress event at all, just a KeyDown and a
KeyUp.

Keyboard autorepeat is reflected through these messages. Each time a character is repeated, an extra KeyDown and
(unless the current keys held down don't generate characters, e.g., just the Shift key is pressed) an extra KeyPress are
raised. However, a KeyUp event is raised only when the key really is released.

The KeyUp and KeyDown events both use the KeyEventHandler delegate. As always, the first parameter of the event
handler function is the control raising the event, but the second parameter is a KeyEventArgs object. The KeyEventArgs
class describes the key being pressed, using an entry from the Keys enumeration, which defines a value for every key
on the keyboard. KeyEventArgs presents this information in a variety of ways: the KeyCode property is the Keys value for
the key being pressed, and the KeyData property is the same value but with any modifier keys added. (So for Shift-A,
for example, KeyCode would be Keys.A, but KeyData would be Keys.A|Keys.Shift or Keys.A Or Keys.Shift). The modifier keys
themselves are presented individually through the Alt, Control, and Shift properties, or combined through the Modifiers
property. For example, consider the following C# code:

// for debug output
using System.Diagnostics;
...
private void InitializeComponent()
{
 ...
 myControl.KeyDown += new KeyEventHandler
 (myControl_OnKeyDown);
...
}
...
private void myControl_OnKeyDown(object sender, KeyEventArgs e)
{
 string dbg = string.Format("KeyCode: {0}, KeyData {1}",
 e.KeyCode, e.KeyData);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.KeyCode, e.KeyData);
 Debug.WriteLine(dbg);
}

or the following VB code:

' for debug output
Imports System.Diagnostics
...
Private Sub myControl_OnKeyDown(sender As Object, e As KeyEventArgs) _
 Handles myControl.KeyDown

 Dim dbg As String = String.Format("KeyCode: {0}, KeyData {1}", _
 e.KeyCode, e.KeyData)
 Debug.WriteLine(dbg)
End Sub

As an aside, this code illustrates a couple of interesting features of the .NET Framework Class Library. The Debug class,
which is defined in the System.Diagnostics namespace, lets us send output to the debugger. In Visual Studio .NET,
anything we print with Debug.WriteLine will appear in the Output window. (And in non-debug builds, the compiler is smart
enough to omit these calls.) To build the debug output string we are using the System.String (in C# this corresponds to
the string and in VB to the String data types) class's Format method to build a string in a style similar to the C printf
function. The numbers in braces refer to parameters following the string. Because all data in the CLR has type
information associated with it, the Format method can discover that it has been passed parameters whose types are
both of type Keys. So rather than displaying numbers, the debug output will actually show the enumeration members by
name. For example, for a Shift-A key press, we would see the following debug output:

KeyCode: ShiftKey. KeyData: ShiftKey, Shift
KeyCode: A. KeyData: A, Shift

The first line is for the Shift key. Notice that the KeyCode property just contains the key that was pressed. The KeyData
property is a little surprising. As mentioned above, it contains both the key code and any modifier keys. The surprising
thing is that there are two values in the Keys enumeration to represent the Shift key—one as a modifier (Keys.Shift) and
one as a key press (Keys.ShiftKey). The second line is for the second event, raised when the A key is pressed. Again, the
KeyCode property describes the single key for which this event was raised, but the KeyData member shows it in
conjunction with the modifiers.

The KeyPress event's type is KeyPressHandler, which supplies a KeyPressEventArgs object. This supplies a KeyChar property
(of type char), which is the character value of the key press.

Both KeyPressArgs and KeyPressEventArgs have a bool or Boolean member called Handled. Setting this to true when handling
the KeyPress event prevents the default handling of the key press; e.g., this blocks input to a text box. It appears to
have no effect for the KeyDown or KeyUp events.

It is possible to read the state of the Shift, Ctrl, and Alt keys without handling these messages. This is particularly
useful for handling certain mouse events, because their behavior is often changed by the use of these modifier keys.
For example, when selecting items from a list, any previous selection is usually cleared each time the user clicks, unless
he is holding down the Shift key. The Control class provides a static property called ModifierKeys that allows the current
state of these keys to be read at any time. (It returns a value of type Keys, but this only contains some combination of
Keys.Shift, Keys.Control, and Keys.Alt.) This means it is not necessary to handle keyboard events just to read the state of
the modifier keys.

2.2.3.4 Accessibility

Windows has a technology called Active Accessibility that supports accessibility aids (programs designed to enable
people with disabilities to use computers more effectively). It provides programs such as screen readers and speech
interpreters with a programming interface that lets them find and interact with user interface elements. All the standard
Windows controls provide accessibility information automatically, as do their .NET counterparts, so if a user interface
consists entirely of standard controls, these will already expose information to accessibility aids, such as their screen
location and any text they contain, as well as provide programmatic ways to perform the operations they support (e.g.,
clicking on a button).

For some applications, this built-in accessibility is not sufficient—accessibility aids cannot automatically pick up certain
visual cues such as the juxtaposition of controls or the contents of bitmaps. Such user interfaces may need to be
annotated with extra textual hints if they are to be usable through accessibility aids, so the Control class has features
that enable the standard basic support to be extended. This is important for nonstandard user interface elements such
as custom controls. It may also be necessary to extend the basic support to make complex forms usable, even if all the
individual controls on those forms are standard.

The name and role can be specified by setting the control's AccessibleName and AccessibleRole properties. AccessibleName is
just a string, whereas the AccessibleRole property uses an enumeration type, also called AccessibleRole, that defines values
for all the standard roles listed by the Active Accessibility API. Sometimes the name and role are not sufficient to
describe the purpose of a control (e.g., there is a further visual cue, such as a bitmap that would normally be used to
infer the button's purpose, or its position relative to other controls). Consider a simple application whose user interface
is show in Figure 2-4. This program is an example of a Chi Squared test being used in some hypothetical study to
determine whether there is any correlation between where programmers place the { character in their source code and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

determine whether there is any correlation between where programmers place the { character in their source code and
whether they use spaces or tabs for indentation. (The Chi Squared test is a very common kind of statistical tool—it
determines the likelihood that two properties are connected. A discussion of the details is beyond the scope of this
book, but suffice it to say that you simply plug in figures for how your sample population breaks down, and it returns
the probability that such figures could have emerged by chance without there being some underlying connection.)

Figure 2-4. Application with potential accessibility problems

Anyone who is familiar with simple Chi Squared tests will instantly recognize the layout and know what information is
expected. And it will not take long for someone unfamiliar with them to realize that the first text box should contain the
number of people surveyed who put their { on the same line as their function declarations and also use tabs to indent
code, while the next box should contain the number of people who put the { on the same line as the declaration, but
who use spaces to indent their code, and so on.

The problem with this example is it relies on the user being able to see the layout in order to work out what each
textbox is for. This is unfortunate because it is difficult for accessibility aids to deduce the role of a text box from its
position, so it might be hard for a visually impaired user to use this program. Fortunately, we can control the
information available to an accessibility aid, so we can adapt this program to be useful without relying on the
information implicit in the visual layout of the form.

To understand how we can make such programs accessible, it is important to understand exactly what information is
available to accessibility aids. Controls present certain properties to accessibility clients. (Accessibility clients are any
programs that read accessibility information. This includes all accessibility aids, the accessibility explorer supplied in the
Accessibility SDK, and may even include automated test software.) The most important of these are the name, role,
and optional values, because they supply the same information that visual cues provide. For example, the two buttons
on the form in Figure 2-4 would have the names Close and Calculate, respectively, and both would have the role
AccessibleRole.PushButton. (Buttons don't have values.)

For a text box control, the role is AccessibleRole.Text and the value is simply the text in the field, but it is less obvious
where its name comes from. By default, a text box takes its name from the nearest label control in the tab order. For
many applications, this is perfect: a text box usually has a label indicating its purpose, and it is usually just before it in
the tab order to make sure that any accelerator key assigned to the label ends up moving the focus to the text box. But
for this application, this default behavior is not good enough. Multiple text boxes end up picking up the same name (for
instance, there are two named "{ on next line"), and in any case, these names are not particularly informative. So this
application should name these controls explicitly. This can be done by setting the AccessibleName property; doing so in
the designer adds the following code in C#:

this.textBoxAY.AccessibleName = "Same line and Spaces";

or this code in VB:

Me.textBoxAY.AccessibleName = "Same line and Spaces"

Accessibility clients will now be given this text as the name of the control. This should be done for all controls where the
default name is not appropriate. In this example, that would mean all the text boxes, and also the label controls
showing the output (the ones in bold in Figure 2-4).

In addition to having a name, all controls have a role, which can be set by the AccessibleRole property. Its value is one of
those listed in the AccessibleRole enumeration type, which defines values for all the standard roles listed by the Active
Accessibility API. For the standard controls, the default value of the role is usually appropriate, but sometimes it might
need to be modified—for example, a button might bring up a menu when clicked, so its role should be
AccessibleRole.ButtonMenu, not the default AccessibleRole.PushButton.

Sometimes the name and role are not sufficient to describe the purpose of a control. In this case, the control can also
supply a textual description, which is set by the AccessibleDescription property. You would normally try to keep the
control's name short because it would typically be read out by default by a screen reader. So the description is the
appropriate place for a more verbose description.

Controls also indicate their default action, i.e., what would happen if the control were to be clicked right now. For
example, the standard checkbox control sets this property according to its current state: if it is unchecked, a click on
the control checks the box, so its default action is Check, whereas if it is currently checked, its default action is Uncheck.
Buttons set this value to Press, and some controls (e.g., text boxes) have no default action. You can supply your own
string by setting the AccessibleDefaultActionDescription property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string by setting the AccessibleDefaultActionDescription property.

To control any of the other accessibility features (e.g., the value property or the screen area the control claims to
occupy) there is a more powerful but slightly more cumbersome mechanism. Each control has an AccessibleObject
property, providing access to an object of type AccessibleObject. This object is the liaison between the control and the
Active Accessibility API—it is through this object that all accessibility properties are presented. You will not normally use
AccessibleObject on a standard control, but for custom controls it may be necessary, particularly if it can supply
meaningful values for the Value property. (Value is a text string representing the control's value; for a text box this
property is the text in the control, for example.)

It is even possible to supply your own AccessibleObject. The object is created on demand, using the control's
CreateAccessibilityInstance method; custom controls can override this and supply their own objects, which must derive
from AccessibleObject. For example, if you wish to perform your own hit testing for accessibility, you must supply your
own AccessibleObject. It is also necessary to do this if you wish to supply your own setting for the State property. (State
contains some combination of the flags in the AccessibleStates enumeration, which defines values such as Checked and
Pressed. It is a read-only property, so you must provide your own AccessibleObject implementation to modify it.)

The Control class also supports a property called IsAccessible. According to the documentation, if this is false, the control
will not be visible to accessibility clients. However, this property is ignored. It is a relic from an older version of the
Windows Forms framework that, for some reason, was not removed before the first public release. All controls are
visible to accessibility clients, regardless of their IsAccessible setting.

As well as allowing accessibility clients to navigate through the controls in a window, the Active Accessibility API also
provides a notification framework, so that accessibility clients can know when certain events happen, such as when the
focus changes, or when the appearance of a control changes. Again, most of the work here is done automatically—all
the built-in control types raise the appropriate events on your behalf. However, you can raise these events manually, by
calling the protected AccessibleNotifyClients method on the Control class. This requires you to derive from Control, but
because you would normally only need to raise accessibility events manually from a custom control, this is not normally
a problem. Alternatively, you can retrieve the control's AccessibleObject and cast it to Control.ControlAccessibleObject—the
accessibility object is of this type unless you supply your own. This provides a NotifyClients method that does the same
thing as AccessibleNotifyClients.

2.2.3.5 Validation

We have now seen the various ways of getting input from the user. But the Windows Forms framework can go further
than this—it can help us verify that the input we are given is correct, and if it is not, to alert the user.

It is common for an application to want to apply constraints to fields on a form. This might be as simple as requiring
that a particular field is not blank, or it might be a little more sophisticated, such as checking that a field's contents
match some pattern, or do not exceed certain limits. Windows Forms has support for such validation, and it also
supplies a mechanism for providing visual notification of errors.

These two mechanisms can be used independently of each other. This is useful because the validation architecture can
be a little too simple for some applications. In particular, once an error has been detected, it can impose unreasonable
restrictions on what the user can do until the problem is fixed. (It effectively enforces modal behavior for offending data
—you must fix the input before you are allowed to do anything else.) The error-reporting mechanism is rather more
flexible than this.

There are two events directly connected with validation. The Validating event is raised when a control is asked to validate
its contents, and the Validated event is raised after its contents have been successfully validated. If the contents are not
acceptable, the handler for the Validating event can indicate this, causing the validation process to fail. The handler is of
type CancelEventHandler, and this passes a CancelEventArgs object. Setting the Cancel flag to true on this object causes the
validation process to fail, and the Validated event will not be raised. Note that the control may have its own internal rules
for validation, which apply in addition to any rules you write in your Validating event handler. So even if you don't cause
the Validation event to fail, the Validated event might not be raised.

So what causes a control to be validated in the first place? Validation is always managed by the ContainerControl in which
the control lives, which is typically (but not always) the Form. We can ask a container to validate the control with the
input focus by calling its Validate method. However, this is usually done automatically as a result of a focus change event
—whenever a new control is given the focus, its parent container checks to see if its CausesValidation property is true
(which is the default). If this property is true, the container automatically checks to see if there is some other control on
the form that requires validation and, if so, validates it. (This only ever validates a single control; nothing will ever
cause all the fields to be validated at once.).

In fact, the CausesValidation property performs two functions. Not only is it used when a control acquires the focus to
decide whether validation needs to occur, it is also used to determine whether the control that just lost the focus should
be validated. The Validating and Validated events are raised only on controls whose CausesValidation property is true, and
when the focus moves to a control that also has its CausesValidation property set to true. This raises an interesting
scenario: what happens if the focus is on a control that requires validation (CausesValidation is true, and it has a handler
attached to the Validating event) and the focus is then moved to a control for which CausesValidation is false? The newly
selected control will not cause validation to occur, so is the original control simply forgotten about? Fortunately not,
because in this case, the ContainerControl remembers that there is a control that has not yet been validated, and will deal
with it next time validation occurs (i.e., when something calls Validate on the container, or when the focus moves to a
control whose CausesValidation property is true).

This dual-purpose nature of CausesValidation means that the ContainerControl will only ever validate a single child control
during a validation operation. There will never be a list of controls pending validation. To be validated, a control's
CausesValidation flag must be true, which also ensures that any pending validation is performed before it acquires the
focus, so there can never be more than one control waiting for validation at any time. If the Validate method is called

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

focus, so there can never be more than one control waiting for validation at any time. If the Validate method is called
when there is no control pending validation, the active control will be validated instead, unless its CausesValidation flag is
false, in which case nothing will happen.

If nested containers are in use (e.g., you are using a user control—see Chapter 5 for details), validation is slightly more
complex. Once the control has been validated, its containing parent is also validated, and if there is further nesting,
validation continues up the chain, stopping when the container that initiated validation is reached. (A container that
starts a validation operation will never validate itself, it will only validate one of its child controls.)

So, what happens if our control is not valid, and we fail the Validating event by setting the Cancel property to true in the
CancelEventArgs object? When the relevant control is validated (e.g., the Validate method is called explicitly, or the focus
is moved away from the control), validation will now fail. This will cause the focus to remain with the control, indicating
to the user that something is wrong. The user will not be able to move away from the control without modifying it so
that it validates correctly. If the user is unable to work out what is wrong with the control's contents, she will never be
able to move the focus away from the control! (There is an emergency escape route—the user can still access any
controls whose CausesValidation property is set to false.)

This simple approach to validation may be sufficient—if the nature of the error in the user input is sufficiently obvious,
simply keeping the focus on the offending item will be enough to prompt the user into fixing it. However, this will not
always be the case, so the framework provides a class to be used in this situation. The ErrorProvider class provides
feedback to the user that something is wrong with her input. Here is a slightly more useful version of the validation
code written in C#:

private ErrorProvider errorProvider =
 new ErrorProvider();
...
private void textbox_Validating(object sender, CancelEventArgs e)
{
 string errText = "";
 if (textbox.Text.Length == 0)
 {
 e.Cancel = true;
 errText = "This field must not be empty";
 }
 errorProvider.SetError(textbox, errText);
}

Here is the corresponding Visual Basic code:

Private errProvider As New ErrorProvider()

Private Sub textbox_Validating(sender As Object, e As CancelEventargs) _
 Handles textbox.Validating
 Dim errText As String = ""
 If textbox.Text.Length = 0 Then
 e.Cancel = True
 errText = "This field must not be empty"
 End If
 errProvider.SetError(textbox, errText)
End Sub

If the user tries to leave this field with its contents empty, it will fail validation, and the focus will remain with the field.
But in addition, the field will now have an indicator next to it. (By default, this is an exclamation mark inside a small red
circle, but you can supply your own icon if you wish.) If the user moves the mouse over this or clicks it, the error text
will appear in a tool tip.

Once some error text has been set on an error provider, it stays there until it is explicitly removed, so once your control
has been validated successfully, you must clear any errors you set by passing an empty string to ErrorProvider.SetError. In
this example, we deal with this by always calling SetError in the Validating event handler, passing an empty string if
validation succeeds. Another approach is to handle the Validated event and clear the error text there.

Remember that validation will only be applied to controls that have had the focus at some point. If you initialize your
form with invalid data (e.g., you leave fields blank, and those fields must be filled in), automatic validation will not
detect this unless the user happens to move the focus into the invalid fields. If you need to make sure that the user fills
in several initially blank fields, you will need to add code to check this yourself. And more generally, any form-wide
constraints must be checked manually; for example, if there are integrity constraints that require two or more fields to
be consistent with each other, the automatic validation architecture cannot help here. The ErrorProvider class can still be
used to provide feedback though. It is able to provide error indicators on several controls simultaneously, which is
useful in these situations.

It is important to make sure your form cannot enter a state in which it can never be validated. For example, opening a
modal dialog that requires a field to correspond to information in a database is dangerous if the relevant table might
ever be empty. The user might not be able to close the dialog to populate the table.[1] Even if the table is not empty,
the user might want to use some other part of your UI to find out what he should type, but won't be able to. Once a
control has the focus, if it fails the Validating event, any attempt to click anywhere else will fail by default, because the
focus will not leave the invalid field. As mentioned above, you can work around this by setting the CausesValidation
property to false on any buttons that you want to be accessible while a field is failing validation. (Note that by default
this property is true.) For example, if your control has a Cancel button, it should almost certainly have this flag set to
false; otherwise, the user will not be able to dismiss a form she cannot fill in. Also, if the user might need to use certain
parts of the UI to get the information she needs to fill in the form correctly, it is vital that the CausesValidation properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parts of the UI to get the information she needs to fill in the form correctly, it is vital that the CausesValidation properties
are set to false, because otherwise they will be inaccessible when the user needs them most.

[1] If the form is modal, the user will be able to click on the close icon, but by default he will not be able to click on
the Cancel button. Note that if the form is not modal, even the close icon doesn't work if the control with the focus
fails validation! This is less serious, because with a non-modal form, you are more likely to be able to move away
from the window to resolve the problem if necessary.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Built-in Controls
Windows provides several kinds of widely used controls, such as buttons and text boxes, which act as the fundamental
building blocks in most user interfaces. All these standard control types have .NET equivalents. This section shows
which controls are available and what their Win32 equivalents are. It also describes some of the issues common to all
the standard controls. More detailed technical descriptions of each control can be found in the reference section.

2.3.1 Available Controls

Table 2-1 shows the list of available controls and the nearest equivalent window class in Win32. (Some Win32 classes,
such as Button, have several different modes, each of which is represented by a different class in Windows Forms. In
this case, a Win32 window style is also specified to indicate which particular flavor of this class the relevant .NET type
represents.)

Table 2-1. .NET controls and their equivalent Win32 control classes

Control class Equivalent Win32
window class (and style) Purpose

Buttons

Button Button
(BS_PUSHBUTTON) Normal button for actions (e.g., OK or Cancel)

CheckBox Button (BS_CHECKBOX) Yes/no selection button

RadioButton Button
(BS_RADIOBUTTON) Single selection from a range of choices

Labels and
pictures

GroupBox Button (BS_GROUPBOX) Visual grouping for sets of related controls

Label Static (SS_LEFT,
SS_CENTER, SS_RIGHT)

Text label, usually providing a name or description for some other
control (e.g., a text box)

PictureBox Static (SS_BITMAP, SS_ICON or
SS_ENHMETAFILE)

A picture: supports various bitmap formats (BMP, ICO, JPEG, TIFF, and
PNG) and Windows metafiles

LinkLabel SysLink Hyperlink, e.g., a URL; this effectively combines label-like and button-
like behavior

Text editing

TextBox Edit An editable text field (plain text only)

RichTextBox RichEdit20W/ RichEdit20A An editable text fields supporting text with formatting (based on RTF—
the Rich Text Format)

NumericUpDown msctls_updown32 A text box containing a number, and an associated pair of up/down
buttons (often known as a spin control)

DomainUpDown Similar to a NumericUpDown, only the text box can contain any string;
the up and down buttons move through a list of strings

Time and date

DateTimePicker SysDateTimePick32 UI for specifying a date or time

MonthCalendar SysMonthCal32 UI showing a single calendar month

Lists and data

ListBox ListBox A vertical list of selectable text items (items may also have images)

ComboBox ComboBox An editable text field with an associated drop-down list of selectable
items

ListView SysListView32 A list of selectable items similar to the contents of a Windows Explorer
window; supports Large Icon, Small Icon, List and Details views

TreeView SysTreeView A hierarchical display, similar to that used in the Folders pane of
Windows Explorer

PropertyGrid A UI for editing properties on some object; very similar to the
Properties panels in Visual Studio .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PropertyGrid Properties panels in Visual Studio .NET

DataGrid A grid control showing the contents of a DataSet

Position and
progress bars

HScrollBar ScrollBar A horizontal Windows scrollbar

VScrollBar ScrollBar A vertical Windows scrollbar

TrackBar msctls_trackbar32 A UI for selecting from a linear range of values (useful for continuous
ranges such as percentages)

ProgressBar msctls_progress32 A bar indicating what proportion of a long-running task has completed

Layout

TabControl SysTabControl32
Allows multiple similarly sized dialogs to share a single window, with
card index style tabs selecting between them—similar to those used on
Properties pages in Windows Explorer

Splitter
A bar dividing two parts of a window either vertically or horizontally,
allowing the proportion of space given to the two parts to be modified
—similar to the divider between the Folders pane and the main pane of
a Windows Explorer window

StatusBar msctls_statusbar32
A bar along the bottom of the window providing textual information
appropriate to the application, and a window resizing grip (most
Windows applications have these)

ToolBar ToolbarWindow32 A bar containing shortcut buttons to frequently used UI operations
(most Windows applications have these)

Note that some controls don't have an equivalent Win32 window class—the Windows Forms class library adds some new
features. There are also some Win32 controls that appear to be absent, but in most cases, this is because their roles
can be filled by one of the other controls. For example, Windows Forms does not provide a direct replacement for the
Animation control, but this is because the PictureBox control supports animated bitmaps. There is also no ToolTip control,
but ToolTips are dealt with through a different mechanism, called an extender property.

The Win32 DragList, Header, and Pager control types don't have any equivalent in Windows Forms.

2.3.2 Using the Built-in Controls

Not all the features supported by the Control class make sense for certain controls. For example, the GroupBox control
does not respond to mouse events—its only purpose is to provide a visual grouping for controls. Fortunately, if you use
Visual Studio .NET it will only present the features supported by the controls you use. (Chapter 5 explains how to
determine which features are enabled for any custom controls you write, and Chapter 8 shows how to control the way
in which Visual Studio. NET presents these features.)

Some controls (group boxes, labels, and all three button types) support a property called FlatStyle. This property
modifies the way controls are drawn. By default, it is set to Flat.Standard, which means the control is drawn by the
Windows Forms class library and not by the underlying OS. While this means that extra nonstandard functionality is
available (e.g., the ability to set background colors or images), it has the disadvantage that your application will not be
able to take advantage of themed controls. So in Windows XP, buttons will come out looking like normal Windows 2000
buttons regardless of what theme the user may be running with. If you would like to have themed controls (and don't
mind losing support for background color and bitmaps), you must set the FlatStyle property to FlatStyle.System.[2]
Although this means that Windows Forms will now let the operating system draw the controls, this in itself is not
enough to get themed controls—as with any theme-aware application, you must also supply a manifest file. (Application
manifests in .NET are used in exactly the same way as they are for non-.NET programs. They also have nothing to do
with .NET assembly manifests. Consult the Win32 SDK documentation for details on how to create and use such
manifests.)

[2] To complicate matters further, some controls, e.g., TextBox, use system drawing in any case. These controls
don't support background bitmaps and colors, so they never need to draw themselves.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Summary
The Control class is central to any Windows Forms application. Every visible element of the user interface is a control of
some kind. This means there is a rich standard set of features that all controls support. All the standard Windows
controls have counterparts in Windows Forms.

In the next chapter we will look in more detail at how controls work together on a form to provide a cohesive user
interface.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Forms, Containers, and Applications
Any interactive application must have at least one window through which to present its user interface. In the Windows
Forms framework, all such top-level application windows are represented by objects whose types derive from the Form
class. As with any user interface element, the Form class inherits from the Control class, but it adds windowing features,
such as management of the window border and interaction with the Windows taskbar. All Windows Forms applications
have at least one class derived from Form.

In this chapter we will examine the structure of a typical Windows Forms application and the way its constituent forms
are created. We will look at the programming model for forms, and the way that the Visual Studio .NET Forms Designer
uses this model. We will look in detail at the relationship between a form and the controls it contains, and also at the
relationships that can exist between forms. The mechanisms underpinning the automatic layout features described in
the previous chapter will be examined, and we will see how to use these to add our own custom layout facilities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Application Structure
All Windows Forms applications have something in common, regardless of whether they are created with Visual Studio
.NET or written from scratch:

They all have at least one form, the main application window.

They all need to display that form at start up.

They must shut down correctly at the appropriate time.

This section describes the basic structure that all applications have and the way that their lifetime is managed by the
.NET Framework.

3.1.1 Startup and Shutdown

All programs have to start executing somewhere, and .NET applications have a special method that is called when the
application is run. This method is responsible for creating whatever windows the application requires and performing
any other necessary initialization.

In C# and Visual Basic, this entry point is always a static method called Main. It doesn't matter which class this is
defined in, although Visual Studio always makes it a member of the main form that it puts in any new project. It
generates code like the C# code shown in Example 3-1.

Example 3-1. A typical application entry point

[STAThread]
static void Main()
{
 Application.Run(new Form1());
}

Although Visual Studio makes Main visible if you're developing with C#, it hides it if you're developing with Visual Basic.
In Visual Basic projects, the code for Main is not displayed in the form's code window, nor is it listed in Class View or in
the Object Browser. However, examining a compiled Windows Forms application using ILDASM, the .NET disassembler,
indicates that a hidden public method named Main is present in the application's main form, as Figure 3-1 shows. Its
source code corresponds to that shown in Example 3-2.

Figure 3-1. The hidden VB entry point revealed in ILDASM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-2. An application entry point in VB

<STAThread> Public Shared Sub Main()
 Application.Run(new Form1())
End Sub

If your application needs to read the command-line parameters, you can modify Main (or, if you're coding in Visual
Basic, you can add it yourself, rather than have the compiler add it) so that it takes a parameter of type string[] or
String(). You will then be passed an array of strings, one for each argument. You can also change the return type to int if
you wish to return an exit code. Examples Example 3-3 and Example 3-4 illustrate these techniques. The STAThread
custom attribute is a backward-compatibility feature that will be discussed shortly.

Example 3-3. C# application entry point with parameters

[STAThread]
static int Main(string[] args)
{
 Application.Run(new Form1());
}

Example 3-4. VB application entry point with parameters

<STAThread> _
Public Shared Function Main(args As String()) As Integer
 Application.Run(New Form1())
End Sub

It is also possible to retrieve the command-line arguments using the Environment class's
GetCommandLineArgs method. You might find this approach easier because you can call this
method anywhere in your program, not just in Main. It also means you don't need to
modify the Main method's signature, and in VB, it means you don't need to define a Main
method at all.

The Main function turns out to be trivial in the majority of applications because most interesting initialization takes place
inside individual forms. All that happens in Main is an instance of the program's main user interface (Form1) is created,
and control is then passed to the framework's Application class, which manages the application's execution for the
remainder of its lifetime. The program runs until the Application class decides it is time to exit. By default, this is when
the main form is closed.

3.1.2 The Application Class

To do its job, the Windows Forms framework needs to have a high degree of control over our application. In particular,
it must respond correctly to the kind of input that all Windows applications are required to handle, such as mouse clicks
and redraw requests. This means the framework needs to be in charge of our application's main thread most of the
time; otherwise, it cannot deal with these events.[1]

[1] This is similar to the way that classic Win32 applications must service the message queue.

Although our application's execution is stage-managed by the framework, we can still influence its behavior by using
the Application class. For example, we can tell the framework to shut down our program by calling the Application.Exit
method. In fact, interacting with the Application class is the first thing most programs do. They typically start like
Example 3-1, calling Application.Run to surrender control to Windows Forms. This causes the framework to display the
Form object that it is given, after which it sits and waits for events. From then on, our code will only be run as a result
of some activity, such as a mouse click, causing the framework to call one of our event handlers.

This event-driven style of execution is an important feature of Windows Forms. The framework is able to deal with
events only because we leave it in charge. Of course, while one of our event handlers is running (e.g., the code in a
Click handler is executing), we are temporarily back in charge, which means the framework will be unable to process
any other events until our event handler returns. Most of the time, this is a good thing, because life would become
unbearably complex if we could be asked to start handling a new event before we had finished dealing with the previous
one; reentrant code is notoriously hard to get right, so it is a good thing that it is not usually required.

The only problem is that if our event handlers take a long time to execute, the user interface will become unresponsive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The only problem is that if our event handlers take a long time to execute, the user interface will become unresponsive.
Until our code returns control to the framework, the user will not be able to click on or type into our program, or to
move the windows around. (Strictly speaking the input won't be lost—such events are stored in a queue, just as they
are with normal Windows programs. But there will be no response to this input until the handler returns.) We can't even
give the user a way to abort the operation if it takes too long because the inability to process user input makes it
difficult to support any kind of Cancel button.

While the obvious solution is to avoid writing event handlers that take too long to execute, this is not always possible.
Fortunately, long-running event handlers can choose to give the framework a chance to deal with any events that may
be queued up and awaiting processing. The Application class provides a method called DoEvents. This handles any
pending input and then returns. Of course, any code that calls this method needs to be careful, because it is inviting
reentrant behavior, so whenever you call this method, you must consider the implications of another of your event
handlers being run before DoEvents returns. But it does mean that slow code has a way of making sure the application
does not appear to lock up completely.

The DoEvents method is not the only way of reentering the framework's event handling code. Whenever you display a
modal dialog (e.g., by using the MessageBox class, or by displaying a form with the ShowDialog method, as described
later), Windows Forms is once again in charge of your thread and will process events for you for as long as the window
is displayed.

Because the Application class effectively owns our thread, we must get its help when we wish to shut down our program.
By default, it monitors the form that we passed to its Run method (usually the program's main form), and it exits when
that form closes. However, we can also force a shutdown by calling its Exit method; this closes all windows and then
exits. (In other words, when Exit is called, the Run method returns. This will usually cause the program to exit, because
the only thing the Main function usually does is call the Run method, as shown in Example 3-1. When the Main method
finishes, the program exits.)

The Application class also provides a few miscellaneous utility features. For example, you can modify the way exceptions
are handled. If any of your event handlers should throw an exception, the default behavior is for the application to
terminate. But the Application class has a static (or shared) event called ThreadException that is raised whenever such an
exception occurs; handling this event prevents the unhandled exception dialog from appearing, and the application will
not exit unless you explicitly terminate it in your handler. The Application class also exposes an Idle event that is fired
whenever some input has just been handled and the application is about to become idle. You could use this to perform
background processing tasks.

3.1.3 Forms and Threads

With all this talk of the Application object owning our thread, and of keeping the user interface responsive in the face of
long-running operations, you may well be wondering about the use of threads in Windows Forms applications. Although
it is possible to write multithreaded Windows Forms applications, there are some serious restrictions. A full discussion of
multithreaded programming is well beyond the scope of this book, but it is important to know what the restrictions are.

There is one fundamental rule for threads in Windows Forms applications: you can only use a control's methods or
properties from the thread on which it was created. In other words, you must never call any methods on a control from
a worker thread,[2] nor can you read or write its properties. The only exceptions to this rule are calls to the Invoke,
BeginInvoke, and EndInvoke methods and to the InvokeRequired property, which can all be used from any thread.

[2] A worker thread is any thread other than the UI thread.

This may seem a surprisingly draconian restriction, but it is not as bad as it sounds. It is possible to use the Control
class's Invoke method to run code on the right thread for the control—you just pass a delegate to the Invoke method,
and it calls that delegate for you on the correct thread. The call will not occur until the next time the Windows Forms
framework processes messages on the control's thread. (This is to avoid reentrancy.) Invoke waits for the method to
complete, so if an event is being handled by the user interface thread currently, Invoke will wait for that handler to
finish. Beware of the potential for deadlock here; BeginInvoke is sometimes a better choice because it doesn't wait for
the invoked method to finish running—it just adds the request to run the method to the framework's internal event
queue and then returns immediately. (It is possible that your user interface thread was waiting for your worker thread
to do something, so if you also make your worker thread wait for the user interface thread to do something, both
threads will deadlock, causing your application to freeze.)

The InvokeRequired property is a bool or Boolean that tells you whether you are on the right thread for the control
(InvokeRequired returns False) or not (InvokeRequired returns True). This can be used in conjunction with the BeginInvoke
method to force a particular method to run on the correct thread, as shown in the following C# code fragment:

private void MustRunOnUIThread()
{
 if (InvokeRequired)
 {
 BeginInvoke(new MethodInvoker(MustRunOnUIThread));
 return;
 }
 ... invoke not required, must be on right thread already
}

This method checks to see if it is on the right thread, and if not, it uses BeginInvoke to direct the call to the control's own
thread.[3] MethodInvoker is a delegate type defined by Windows Forms that represents methods with no parameters and
no return value (or, in Visual Basic, a Sub with no parameters). In fact, you can use any delegate type you like, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

no return value (or, in Visual Basic, a Sub with no parameters). In fact, you can use any delegate type you like, and
there is an overloaded version of Control.BeginInvoke that takes a parameter list (as an object array) as its second
parameter, allowing you to use a delegate that requires parameters to be passed.

[3] This particular example shows a member function of some class that derives from Control—this is why it is able
to use the InvokeRequired and BeginInvoke members directly. This is not a requirement—the methods are public,
so you can call them on any control.

You may also be wondering why Visual Studio .NET places an STAThread attribute on your application's Main function, as
shown in Example 3-1. This is required for ActiveX controls to work. If you want to use ActiveX controls, the COM
runtime must be initialized in a particular way on the user interface thread. In .NET, COM is always initialized by the
CLR, so we use this attribute to tell the CLR how we would like it to configure COM on this thread. A full discussion of
COM interop and COM's threading model is beyond the scope of this book, although if you are familiar with COM, you
might find it helpful to know that this attribute ensures that the main thread will belong to an STA.

So the Application class is responsible for managing our application's lifetime, main thread, and event processing. But all
the interesting activity surrounds the forms that make up our applications, so let's now look in more detail at the Form
class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 The Form Class
All windows in a Windows Forms application are represented by objects of some type deriving from the Form class. Of
course, Form derives from Control, as do all classes that represent visual elements, so we have already seen much of
what it can do in the previous chapter. But we will now look at the features that the Form class adds.

You will rarely use the Form class directly—any forms you define in your application will be represented by a class that
inherits from Form. Adding a new form in Visual Studio .NET simply adds an appropriate class definition to your project.
We will examine how it structures these classes when generating new forms, and we will look at how it cleans up any
resource used by the form when it is destroyed. Then, we will consider the different types of forms. Finally, we will look
at extender properties. These provide a powerful way of extending the behavior of all controls on a form to augment
the basic Control functionality.

3.2.1 The Forms Designer

Most forms are designed using the Forms Designer in Visual Studio .NET. This is not an essential requirement—the
designer just generates code that you could write manually instead. It is simply much easier to arrange the contents of
a form visually than it is to write code to do this.

When you add a new form to a project, a new class definition is created. The Designer always uses the same structure
for the source code of these classes. They begin with private fields in C# and Friend fields in VB to hold the contents of
the form. (The Designer inserts new fields here as you add controls to the form.) Next is the constructor, followed by
the Dispose and InitializeComponent methods; these are all described below. If this is the main form in your application,
the program's entry point (the Main method described above) will follow in C# programs; in VB programs, it will be
added by the compiler at compile time, but will not be displayed with the form's source code. Finally, any event
handlers for controls on your form will be added at the end of the class.

The Designer does not make it obvious where you are expected to add any code of your own, such as fields or methods
other than event handlers. This is because it doesn't matter—Visual Studio .NET is pretty robust about working around
you. It is even happy for you to move most of the code that it generates if you don't like the way it arranges things,
with the exception of the code inside the InitializeComponent method, which you should avoid modifying by hand. (The
editor hides this code by default to discourage you from changing it.)

3.2.1.1 Initialization

Any freshly created form will contain a constructor and an InitializeComponent method. The job of these methods is to
make sure a form is correctly initialized before it is displayed.

The generated constructor is very simple—it just calls the InitializeComponent method. The intent here is that the Forms
Designer places all its initialization code in InitializeComponent, and you will write any initialization that you require in the
constructor. The designer effectively owns InitializeComponent, and it is recommended that you avoid modifying its
contents, because this is liable to confuse the Designer. So when you look at the source code for a form class, Visual
Studio .NET conceals the InitializeComponent method by default—it is lurking behind a line that appears as "Windows
Form Designer generated code."[4] You can see this code by clicking on the + symbol at the left of this line in the
editor.

[4] It is hidden with a pair of #region and #endregion directives. These are ignored by the compiler, but used by
the editor in Visual Studio .NET to hide parts of the file automatically behind single summary lines. You can also
use these directives yourself if you want to make blocks of code collapsible.

You must not make any modifications to the overall structure of the InitializeComponent
method. It is usually acceptable to make small changes to existing lines, or to remove
them entirely, but more substantial changes will almost certainly confuse Visual Studio
.NET, and you could find that you can no longer edit your form visually in the designer.
Most changes can be made using the Forms designer or by modifying values in its
Properties window, which causes Visual Studio to update the InitializeComponent method
automatically.

Although the theory is that you will never need to modify anything inside this generated code, you may occasionally
have to make edits. If you do make such changes by hand, you must be very careful not to change the overall structure
of the method, as this could confuse the Designer, so it is useful to know roughly how the method is arranged. It begins
by creating the objects that make up the UI: each control on the form will have a corresponding line calling the new
operator, and store the result in the relevant field. In C#, for example, such code appears as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operator, and store the result in the relevant field. In C#, for example, such code appears as follows:

this.button1 = new System.Windows.Forms.Button();
this.label1 = new System.Windows.Forms.Label();
this.textBox1 = new System.Windows.Forms.TextBox();

and in VB, it appears as follows:

Me.Button1 = New System.Windows.Forms.Button()
Me.Label1 = New System.Windows.Forms.Label()
Me.TextBox1 = New System.Windows.Forms.TextBox()

Next, there will be a call to the SuspendLayout method, which is inherited from the Control class. Layout is discussed in
detail later on, but the purpose of this call is to prevent the form from attempting to rearrange itself every time a
control is set up. Then each control is configured in turn—any necessary properties are set (position, name, and tab
order, at a minimum), and event handlers (in C# only) are added. In C#, this looks like the following:

this.textBox1.Location = new System.Drawing.Point(112, 136);
this.textBox1.Name = "textBox1";
this.textBox1.TabIndex = 2;
this.textBox1.Text = "textBox1";
this.textBox1.TextChanged += new
 System.EventHandler(this.textBox1_TextChanged);

The corresponding VB code appears as follows:

Me.TextBox1.Location = New System.Drawing.Point(112, 136)
Me.TextBox1.Name = "TextBox1"
Me.TextBox1.TabIndex = 2
Me.TextBox1.Text = "TextBox1"

After this, the form's size is set and then all the controls are added to its Controls collection. (Simply creating controls
and storing them in private fields is not enough to make them appear on screen—they must be explicitly added to the
form on which they are to appear; this process will be discussed in detail later.) Finally, the ResumeLayout method, which
is inherited from the Control class, is called. This is the counterpart of the earlier call to SuspendLayout, and it indicates to
the form that the various additions and modifications are complete, and that it won't be wasting CPU cycles when it
manages its layout. This call will also cause an initial layout to be performed, causing any docked controls to be
positioned appropriately.

3.2.1.2 Disposal

The other method created on all new forms is the Dispose method. This runs when the form is destroyed and frees any
resources that were allocated for the form. In fact, all controls have two Dispose methods: one public, supplied by the
framework, and one protected, which you usually write yourself. To understand why, we must first look at the way
resources are normally released in .NET.

The CLR has a garbage collector, which means that when objects fall out of use, the memory used by those objects will
eventually be freed automatically. Classes can have special functions called finalizers, which are run just before the
garbage collector frees an object. Classes in the .NET Framework that represent expensive resources such as window
handles usually have finalizers that release these resources. So in the long run, there will be no resource leaks—
everything will eventually be freed either by the garbage collector or by the finalizers that the garbage collector calls.
Unfortunately, the garbage collector only really cares about memory usage, and only bothers to free objects when it is
low on memory. This means that a very long time (minutes or even hours) can pass between an object falling out of
use and the garbage collector noticing and running its finalizer. This is unacceptable for many types of resources,
especially the kinds used by GUI applications. (Although current versions of Windows are much more forgiving than the
versions of old, hogging graphical resources has never been a good idea and is best avoided even today.)

So the .NET Framework defines a standard idiom for making sure such resources are freed more quickly, and the C#
language has special support for this idiom. Objects that own expensive resources should implement the IDisposable
interface, which defines a single method, Dispose. If code is using such an object, as soon as it has finished with the
object it should call its Dispose method, allowing it to free the resources it is using. (Such objects usually also have
finalizers, so if the client code forgets to call Dispose, the resources will be freed eventually, if somewhat late. But this is
not an excuse for not calling the method.)

The Control class (and therefore any class deriving from it) implements IDisposable, as do most of the classes in GDI+, so
almost everything you use in Windows Forms programming relies on this idiom. Fortunately, the C# language has
special support for it. The using keyword can automatically free disposable resources for us at the end of a scope:

using(Brush b = new SolidBrush(this.ForeColor))
{
 ... do some painting with the brush ...
}

When the code exits the block that follows the using statement, the Brush object's Dispose method will be called. (The
Brush class is part of GDI+, and it implements IDisposable; this example is typical of redraw code in a custom control.)
The most important feature of this construct is that it will call Dispose regardless of how we leave the block. Even if the
code returns from the middle of the block or throws an exception, Dispose will still be called, because the compiler puts
this code in a finally block for us.[5]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this code in a finally block for us.[5]

[5] A finally block is a block of code that the CLR guarantees to run, regardless of how the flow of execution leaves
the preceding block. It allows a single piece of cleanup code to be used in the face of normal exit, premature
returns, and exceptions.

Unfortunately, Visual Basic does not have any equivalent to using blocks in C#. You must
remember to call Dispose yourself.

Forms typically have a lot of resources associated with them, so it is not surprising that they are always required to
support this idiom. In fact, all user elements are—the Control class enforces this because it implements IDisposable. The
good news is that most of the work is done for us by the Control class, as is so often the case. It provides an
implementation that calls Dispose on all the controls contained by the form and frees all resources that the Windows
Forms framework obtained on your behalf for the form. But it also provides us with the opportunity to free any
resources that we may have acquired that it might not know about. (For example, if you obtain a connection to a
database for use on your form, it is your responsibility to close it when the form is disposed.)

The picture is complicated slightly by the fact that there are two times at which resource disposal might occur. Not only
must all resources be freed when Dispose is called, they must also be freed if the client has failed to call Dispose by the
time the finalizer runs. The model used by the Control class[6] enables you to use the same code for both situations: any
code to free resources allocated by your form lives in an overload of the Dispose method, distinguished by its signature:
void Dispose(bool) (in C#) or Sub Dispose(Boolean) (in VB). This method will be called in both scenarios—either when the
user calls IDispose.Dispose or when the finalizer runs.

[6] Strictly speaking it inherits this model from its base class, the Component class in the System.ComponentModel
namespace.

It is important to distinguish between timely disposal and finalization when cleaning up resources. In a finalizer, it is
never possible to be sure whether any references you hold to other objects are still valid: if the runtime has determined
that your object is to be garbage collected, it is highly likely that it will also have decided that the objects you are using
must be collected too. Because the CLR makes no guarantees of the order in which finalizers are run, it is entirely
possible that any objects to which you hold references have already had their finalizers run. In this case, calling Dispose
on them could be dangerous—most objects will not expect to have their methods called once they have been finalized.
So most of the time, your Dispose method will only want to do anything when the object was explicitly disposed of by
the user. The only resources you would free during finalization would be those external to the CLR, such as any
temporary files created by your object or any handles obtained through interop.

The Dispose method that you are intended to override is protected, so it cannot be called by external code. It will be
called by the Control class if the user calls the public Dispose method (IDispose.Dispose). In this case, the parameter
passed to the protected Dispose method will be true. It will also be called when the finalizer runs, in which case the
parameter will be false. (Note that this method will only be called once—if IDispose.Dispose is called, the Control class
disables the object's finalizer.) So the parameter indicates whether resources are being freed promptly or in a finalizer,
allowing you to choose the appropriate behavior. Consider the code generated by the Designer, as shown in Examples
Example 3-5 and Example 3-6.

Example 3-5. The default protected Dispose method in C#

protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
}

Example 3-6. The default protected Dispose method in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-6. The default protected Dispose method in VB

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
End Sub

This checks to see if the public Dispose method was called, and if it was, it disposes of the components object, if present.
(The components object is a collection of any non-Control components in use on the form, e.g., data sources.) But if
finalization is in progress (i.e., the disposing parameter is false), it doesn't bother, for the reasons detailed above. If you
add any code to this Dispose method, it too will normally live inside the if(disposing) { ... } block.

Components added to a form using the Forms Designer in Visual Studio .NET will not
necessarily be added to the form's components collection. Only those components with a
constructor that takes a single parameter of type IContainer will be added. (All the
components in the framework that require disposal have such a constructor.) If you are
writing your own component that has code in its Dispose method, you must supply an
appropriate constructor. This constructor must call Add on the supplied container to add
itself to the components collection.

There are two very important rules you must stick to if you need to modify this resource disposal code in your form.
First, you must always call the base class's Dispose method in your Dispose method, because otherwise the Control class
will not release its resources correctly. Second, you should never define your own finalizer in a form—doing so could
interact badly with the Control class's own finalizer; the correct place to put code to release resources in a form (or any
other UI element) is in the overridden protected Dispose method. This is precisely what the code generated by the forms
designer does, as shown in Examples Example 3-5 and Example 3-6.

You may be wondering what the components member is for, and why it needs to be disposed of. It is a collection of
components, and its job is to dispose of those components—if you add a component such as a Timer to a form, the
Forms Designer will automatically generate code to add that component to the components collection. In fact, it does this
by passing components as a construction parameter to the component, e.g.:

this.timer1 = new System.Windows.Forms.Timer(this.components);

The component will then add itself to the components collection. As you can see from Examples Example 3-5 and
Example 3-6, the default Dispose method supplied by the Designer will call Dispose on the components collection. This in
turn will cause that collection to call Dispose on each component it contains. So if you are using a component that
implements IDispose, the easiest way to make sure it is freed correctly is simply to add it to the components collection.
The Forms Designer does this automatically for any components that require disposal. (It determines which require
disposal by examining their constructors—if a component supplies a constructor that takes an IContainer as a parameter,
it will use that constructor, passing components as the container.) You can also add any objects of your own to the
collection:

components.Add(myDisposableObject);

or:

components.Add(myDisposableObject)

3.2.2 Showing Modal and Non-Modal Forms

All forms created by Visual Studio .NET will conform to the structure just described. But as with dialogs in classic
Windows applications, there are two ways in which they can be shown: forms can exhibit either modal or non-modal
behavior.

A modal form is one that demands the user's immediate attention, and blocks input to any other windows the
application may have open. (The application enters a mode where it will only allow the user to access that form, hence
the name.) Forms should be displayed modally only if the application cannot proceed until the form is satisfied. Typical
examples would be error messages that must not go unnoticed or dialogs that collect data from the user that must be
supplied before an operation can be completed (e.g., the File Open dialog—an application needs to know which file it is
supposed to load before it can open it).

You select between modal and non-modal behavior when you display the form. The Form class provides two methods for
displaying a form: ShowDialog, which displays the form modally, and Show, which displays it non-modally.

The Show method returns immediately, leaving the form on screen. (The event handling mechanism discussed earlier
can deliver events to any number of windows.) A non-modal form has a life of its own once it has been displayed; it
may even outlive the form that created it.

By contrast, the ShowDialog method does not return until the dialog has been dismissed by the user. Of course, this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By contrast, the ShowDialog method does not return until the dialog has been dismissed by the user. Of course, this
means that the thread will not return to the Application class's main event-handling loop until the dialog goes away, but
this is not a problem because the framework will process events inside the ShowDialog method. However, events are
handled differently when a modal dialog is open—any attempts to click on a form other than the one being displayed
modally are rejected. Other forms will still be redrawn correctly, but will simply beep if the user tries to provide them
with any input. This forces the user to deal with the modal dialog before progressing.

There is a more minor (and somewhat curious) difference between modal and non-modal use of forms: resizable forms
have a subtly different appearance. When displayed modally, a form will always have a resize grip at the bottom
righthand corner. Non-modal forms only have a resize grip if they have a status bar.

Be careful with your use of modal dialogs, because they can prove somewhat annoying for the user: dialogs that render
the rest of the application inaccessible for no good reason are just frustrating. For example, older versions of Internet
Explorer would prevent you from scrolling the main window if you had a search dialog open. If you wanted to look at
the text just below the match, you had to cancel the search to do so. Fortunately this obstructive and needless use of a
modal dialog has been fixed—Internet Explorer's search dialog is now non-modal. To avoid making this kind of design
error in your own applications, you should follow this guideline: do not make your dialogs modal unless they really have
to be.

3.2.2.1 Closing forms

Having displayed a form, either modally or non-modally, we will want to close it at some point. There are several ways
in which a form can be closed. From a programmer's point of view, the most direct approach is to call its Close method,
as follows:

this.Close(); // C#

Me.Close() ' VB

A form may also be closed automatically by the Windows Forms framework in response to user input; for example, if
the user clicks on a form's close icon, the window will close. However, if you want to prevent this (as you might if, for
example, the window represents an unsaved file), you can do so by handling the Form class's Closing event. The
framework raises this event just before closing the window, regardless of whether the window is being closed
automatically or by an explicit call to the Close method. The event's type is CancelEventHandler; its Boolean Cancel
property enables us to prevent the window from closing if necessary. Examples Example 3-7 and Example 3-8 illustrate
the use of this property when handling the Closing event.

Example 3-7. Handling the Closing event in C#

private void MyForm_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 if (!IsWorkSaved())
 {
 DialogResult rc = MessageBox.Show(
 "Save work before exiting?",
 "Exit application",
 MessageBoxButtons.YesNoCancel);

 if (rc == DialogResult.Cancel)
 {
 e.Cancel = true;
 }
 else if (rc == DialogResult.Yes)
 {
 SaveWork();
 }
 }
}

Example 3-8. Handling the Closing event in VB

Private Sub MyForm_Closing(sender As Object, _
 e As System.ComponentModel.CancelEventArgs)
 If Not IsWorkSaved() Then
 Dim rc As DialogResult = MessageBox.Show(_
 "Save work before exiting?", _
 "Exit application", _
 MessageBoxButtons.YesNoCancel)

 If rc = DialogResult.Cancel Then
 e.Cancel = True
 Else If rc = DialogResult.Yes Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else If rc = DialogResult.Yes Then
 SaveWork()
 End If
 End If
End Sub

The form in Examples Example 3-7 and Example 3-8 checks to see if there is unsaved work. (IsWorkSaved is just a
fictional method for illustrating this example—it is not part of the framework.) If there is, it displays a message box
giving the user a chance to save this work, abandon it, or cancel, which keeps the window open. In the latter case, this
code informs the framework that the window should not be closed after all by setting the Cancel property of the
CancelEventArgs argument to true.

If you write an MDI application (i.e., an application that can display multiple documents as children of a single main
frame), the framework treats an attempt to close the main window specially. Not only does the main window get a
Closing and Closed event, so does each child window. The child windows are asked first, so if each child represents a
different document, each child can prompt the user if there is unsaved work. But none of the children are closed until all
of the windows (the children and the main window) have fired the Closing event. This means the close can be vetoed by
any of the windows. The close will only happen if all the child windows and the main window are happy.

If nothing cancels the Closing event, the window will be closed, and the Closed event will be raised. If the form is shown
non-modally, the framework then calls the form's Dispose method to make sure that all the form's resources are freed.
This means once a non-modal form has been closed, you cannot reuse the object to display the form a second time. If
you call Show on a form that has already been closed, an exception will be thrown. For modal dialogs, however, it is
common to want to use the form object after the window has closed. For example, if the dialog was displayed to
retrieve information from the user, you will want to get that information out of the object once the window closes.
Modal dialogs are therefore not disposed of when they are closed, and you must call Dispose yourself, as shown in
Examples Example 3-9 and Example 3-10. You should make sure that you use any properties or methods that you need
before calling Dispose (i.e., inside the using block).

Example 3-9. Disposing of a modal dialog in C#

using (LoginForm lf = new LoginForm())
{
 lf.ShowDialog();
 userID = lf.UserID;
 password = lf.Password;
}

Example 3-10. Disposing of a modal dialog in VB

Try
 Dim lf As New LoginForm()
 lf.ShowDialog()
 userID = lf.UserID
 password = lf.Password
Finally
 If.Dispose()
End Try

Although the framework will automatically try to close a window when its close icon is pressed, it is common to want to
close a form as the result of a button click. It turns out that if the button does nothing more than close the form, you do
not need to write a click handler to make this happen. The Windows Forms framework will automatically close the form
when any button with a DialogResult is clicked. So we will now look at dialog results.

3.2.2.2 Automatic button click handling

A dialog might be closed for several different reasons. Instead of clicking the OK button, the user might attempt to
cancel the dialog by clicking on its close icon or Cancel button, or by pressing the Escape key. Most applications will
distinguish between such cancellation and normal completion, and some may make a finer distinction still, such as a
message box with Yes, No, and Cancel buttons. Windows Forms provides support for automatically managing the
various ways of closing a window without having to write click handlers. It also makes it easy for users of a form to find
out which way a form was closed. Both of these facilities revolve around dialog results.

The Form class's ShowDialog method returns a value indicating how the dialog was dismissed. The returned value
corresponds to the DialogResult property of the button with which the user closed the window. The following code shows
an excerpt from the initialization of a form containing two buttons, buttonOK and buttonCancel (the Forms Designer will
generate such code if you set a button's DialogResult property in the Properties window):

buttonOK.DialogResult = DialogResult.OK;
buttonCancel.DialogResult = DialogResult.Cancel;

Any code that shows this dialog will be able to determine which button was clicked from ShowDialog's return code. The
returned value can also be retrieved later from the DialogResult property of the Form object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returned value can also be retrieved later from the DialogResult property of the Form object.

The type of the ShowDialog method's return value and of the DialogResult property of both the Form object and of
individual Button controls is also DialogResult, which is an enumeration type containing values for the most widely used
dialog buttons: OK, Cancel, Yes, No, Abort, Retry, and Ignore.

To handle button clicks without an event handler, you must set a button's DialogResult property to any value other than
the default (DialogResult.None). Then clicking that button will cause the framework to close the form and return that
value. If you want, you can still supply a Click event handler for the button, which will be run before the window is
closed. But the window will be closed whether you supply one or not (unless there is a Closing handler for the form that
cancels the close, as described earlier).

It is also possible to return a dialog result without using a Button control. If you wish to close the form in response to
some event that did not originate from a button, you can also set the Form class's DialogResult property before calling
Close.

But what about when the form is cancelled by pressing the Escape key? We normally want the form to behave in the
same way regardless of how it is dismissed. Specifically, we would like to run the same event handler and return the
same DialogResult in all three cases. This turns out to be simple because the Windows Forms framework can fake a click
on the Cancel button when the Escape key is pressed. All we need to do is tell the form which is our Cancel button
(which could be any button—it doesn't have to be labeled Cancel)—with the Form class's CancelButton property:

this.CancelButton = buttonCancel; // C#

Me.CancelButton = buttonCancel ' VB

If buttonCancel has a handler registered for its Click event, that handler will be called either when the button is clicked, or
when the Escape key is pressed. In both cases, the same two things to happen: first, the Click handler (if there is one)
is called, then the window is closed. The Click handler for the button indicated by the CancelButton property does not
need to take any special steps to close the window.

The CancelButton property is ignored if the user simply closes the window. In this case, the
button's click handler will not be called, and its specified DialogResult will not be returned
from ShowDialog. So you will need to override the OnClosed method in your form to handle
all the possible ways of closing the dialog.

As with all buttons, if you specify a DialogResult other than None for the Cancel button, that value will be used as the
dialog result. However, the button referred to by the CancelButton property is unusual in that if this property is set to
None, it behaves as though it were set to Cancel: the form will be closed, and the dialog result will be Cancel. (Also, when
you choose a CancelButton in the Forms Designer, it sets the button's DialogResult property to Cancel automatically. This
seems to be overkill, because it would return Cancel in any case.)

As well as supporting a CancelButton, a form can also have an AcceptButton. If set, this will have a Click event faked every
time the user presses the Enter key while on the form. However, this turns out to be less useful than the CancelButton
because this behavior is disabled if the control that currently has the focus does something with the Enter key. For
example, although Button controls behave as though clicked when Enter is pressed, if some button other than the
AcceptButton has the focus, that button will get a Click event, not the AcceptButton. If a multiline TextBox control has the
focus, it will process the Enter key instead. So if your form consists of nothing but buttons and multiline text boxes,
there is no point in setting the AcceptButton property.

Note that unlike the CancelButton, if you do assign an AcceptButton, the form will only be closed automatically when this
button is clicked if you explicitly set the accept button's DialogResult property to something other than None.

We have now seen how to create, display, and dismiss forms. But of course, a form's main role is to act as a container
of other controls—empty windows are rarely useful. So we will now look in more detail at the nature of control
containment in the Windows Forms framework.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 Containment
All useful forms contain some controls. There is more to this containment relationship than meets the eye, and if you
are familiar with the old Win32 parent/child relationship, you will find that things do not work in quite the same way.
We will look at the control nesting facilities supplied by both the Control class and the ContainerControl class, paying
particular attention to the implications of containment for focus and validation events.

3.3.1 Parents and Owners

Controls rarely exist in complete isolation—top-level windows usually contain some controls, and all non-top-level
controls are associated with a window. In fact, Windows Forms defines two kinds of relationships between controls.
There is the parent/child relationship, which manages containment of controls within a single window. There is also a
looser association that can exist between top-level windows, which is represented by the owner/owned relationship.

3.3.1.1 Parent and child

A child window is one that is completely contained by its parent. For example, any controls that you place on a form are
children of that form. A child's position is specified relative to its parent, and the child is clipped to the parent's bounds
—i.e., only those parts of the child completely inside the parent are visible. Forms can be children too: document
windows in an MDI application are children of the main MDI frame.

A control's parent is accessible through its Parent property (of type Control). If you examine this property on a control on
a form, you will typically find that it refers to that form. However, many controls can behave as both a parent and a
child—if you place a button inside a group box on a form, the button's parent will be the group box, and the group box's
parent will be the form.

We can also find out if a control has any children—they are available through its Controls property, of type
Control.ControlCollection. Examples Example 3-11 and Example 3-12 show this property being used to attach a Click event
handler to all controls on a form. (Note that this only attaches itself to direct children of the form. It will not handle
clicks from controls nested inside other controls, e.g., a button inside a panel. This could be fixed by writing a recursive
version of the method.)

Example 3-11. Iterating through child controls with C#

private void AddClickHandlers()
{
 foreach(Control c in Controls)
 {
 c.Click += new EventHandler(AnyClick);
 }
}
private void AnyClick(object sender, System.EventArgs e)
{
 Control clicked = (Control) sender;
 Debug.WriteLine(string.Format("{0} clicked", clicked.Name));
}

Example 3-12. Iterating through child controls with VB

Private Sub AddClickHandlers()
 Dim c As Control
 For Each c in Controls
 AddHandler c.Click, AddressOf AnyClick
 Next
End Sub

Private Sub AnyClick(sender As Object, e As EventArgs)
 Dim clicked As Control = DirectCast(sender, Control)
 Console.WriteLine(String.Format("{0} clicked", clicked.Name))
End Sub

The parent/child relationship can be established through either the Parent property or the Controls property. A child
control's Parent property can be set to refer to a parent. Alternatively, you can use the Controls property on the parent—
this is a collection that has Add and AddRange methods to add children. The Forms Designer uses the latter. If you
examine the InitializeComponent method generated by the Designer for a form with some controls on it, you will see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

examine the InitializeComponent method generated by the Designer for a form with some controls on it, you will see
something like this towards the end of the function in a C# project:

this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.checkBox1,
 this.btnCancel,
 this.btnOK});

In a VB project, the code appears as follows:

Me.Controls.AddRange(New System.Windows.Forms.Control() _
 {Me.checkBox1, Me.btnCancel, Me.btnOK})

(checkBox1, btnCancel and btnOK are controls that would have been initialized earlier in the method.) This code would
have worked equally well if the Designer had set the Parent property to this in C# or to Me in VB on each of these
controls, but using Controls.AddRange is slightly more efficient, because it allows all the controls to be attached to the
form in one operation.

When nesting is in use, you will see a similar call to the AddRange method. For example, if you create a panel with some
controls in it, those controls will be added with a call to Controls.AddRange on the panel. This panel itself would then be
added to the form's Controls collection.

A control might not have a parent—its Parent property could be null (in C#) or Nothing (in VB). Such controls are called
top-level windows. Top-level windows are contained directly by the desktop, and usually have an entry in the taskbar.
For normal Windows Forms applications, a top-level window is a form of some kind.[7]

[7] Strictly speaking, the framework allows for top-level controls that are not forms, so you should not presume
that a top-level control can necessarily be cast to Form. You can determine whether a control is top-level from its
TopLevel property.

3.3.1.2 Ownership

Ownership defines a rather less direct association between windows than parenting. It allows a group of windows, such
as an application window and its associated tool windows, to behave as a single entity for certain operations such as
minimizing and activation.

Ownership is used to group related forms. It is often used for toolbox windows—when an application is minimized, any
associated tool windows it displays should also be minimized. Likewise, when the application is activated (i.e., brought
to the front by a mouse click or Alt-Tab), the tool windows should also be activated. You can automate this behavior by
setting up an ownership association between the tool windows and the main windows. Unlike parenting, ownership only
exists between top-level windows, because an owned form is never contained by its owner. (For example, undocked
toolbars can usually be moved completely outside the main window, which would not be possible if they were children
of that window.)

Although an owned form may live outside or overlap its owner, it will always appear directly in front of it in the Z-
order.[8] Bringing the owner to the foreground will cause all the forms it owns to appear in front of it. (This is not the
same thing as a top-most form, which is described below.) Bringing an owned form to the front will have the same
effect as bringing its owner to the front. Minimizing an owner causes all its owned windows to be minimized too,
although an owned window can be minimized without minimizing the owner.

[8] Windows defines a Z-order for all windows on the screen. It determines which windows are on top of which
other windows; i.e., if two windows were to overlap, the one that is highest in the Z-order will obscure the one
underneath. Z is used because it effectively determines the position of the window in third dimension: X and Y are
screen position, so Z must define the stacking order.

Owned windows typically don't need their own representation on the Windows taskbar because they are subordinate to
their owners. Because activating an owned window implicitly activates the owner and vice versa, it would merely clutter
up the taskbar to have entries for both. So owned forms normally have their ShowInTaskBar properties set to false.

The following code fragments (in VB and C#) show a new form being created, owned, and displayed:

// defining an owner form in C#
MyForm ownedForm = new MyForm();
ownedForm.ShowInTaskbar = false;
AddOwnedForm(ownedForm);
ownedForm.Show();

' defining an owner form in VB
Dim ownedForm As New [MyForm]
ownedForm.ShowInTaskbar = False
AddOwnedForm(ownedForm)
ownedForm.Show()

(This fragment would be inside some method on the owner form, such as its constructor.) AddOwnedForm is a method of
the Form class that adds a form to the list of owned forms. (Using ownedForm.Owner = this; or ownedForm.Owner = Me
would have exactly the same effect; as with parenting, the ownership association can be set up from either side.) Note
the use of the ShowInTaskBar property to prevent this window from getting its own entry in the taskbar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All owned forms are closed when their owning form is closed. Because they are considered wholly subordinate to the
owner, they don't receive the Closed or Closing events when the main form closes (although they do if they are closed in
isolation.) So if you need to handle these events, you must do so in the owning form.

3.3.1.3 Top-most forms

It is important not to confuse owned forms with top-most forms. (These in turn should not be confused with top-level
forms, as defined earlier.) Superficially, they may seem similar: a top-most form is one that always appears on top of
any non-top-most forms. Viewed in isolation, owned forms may look like they are doing the same thing—an owned form
always appears on top of its owner. However, top-most forms are really quite different—they will appear on top of all
other windows, even those from other applications.

If you need a form to sit above all other windows, set its TopMost property to true. Certain kinds of popup might need to
set this property to true—your application might need to display some visual alert that should be visible regardless of
what windows are currently open, much like Windows Messenger does. But exercise good taste—making all windows
top-most is pointless because ultimately only one window can really be at the very top (the top-most window with the
highest Z-order), and it can be very annoying for the user to be unable to hide a top-most window. If you decide to
make a window top-most, unless it is a short-lived pop-up window, you should provide a way of disabling this behavior,
as the Windows Task Manager does with its Always on Top menu option.

Owned forms and top-most forms are useful when we need to control the ordering of forms either with respect to all
other windows on the desktop or just between specific groups of forms. But arguably the most important relationship is
the one between parent and child controls—this association is fundamental to the way controls are contained within a
window. Although the parent/child relationship is managed by the Control class, there can be complications with focus
management for nested controls. This issue is dealt with by the ContainerControl class, which we will look at now.

3.3.2 Control and ContainerControl

As we have seen, the ability to act as a container of controls (i.e., to be a parent) is a feature supplied by the Control
class. Its Controls property manages the collection of children. Only certain control types elect to present this container-
like behavior in the Designer (e.g., the Form, Panel, and GroupBox controls), but more bizarre nesting can be arranged if
you write the code by hand—it is possible to nest a button inside another button, for example. This is not useful, but it
is possible as a side effect of the fact that containment is a feature provided by the base Control class.

But if you examine the Form class closely, you will see that it inherits from a class called ContainerControl. You might be
wondering why we need a special container control class when all controls can support containment. The answer is that
ContainerControl has a slightly misleading name. ContainerControl only really adds one feature to the basic Control.[9] The
main purpose of a ContainerControl is to provide focus management.

[9] Strictly speaking, it adds two, but one is a feature it acquires by deriving from ScrollableControl: the ability to
add scrollbars to a control automatically.

Sometimes you will build groups of controls that act together as a single entity. The most obvious example is a form,
which is both a group of controls and also a distinct entity in the UI. But as we will see in Chapter 5, it is possible to
build non-top-level controls composed from multiple other controls (so-called user controls).

Such groups typically need to remember which of their constituent controls last had the focus. For example, if a form
has lost the focus, it is important that when the form is reactivated, the focus returns to the same control as before.
Imagine how annoying it would be if an application forgot which field you were in every time you tabbed away from it.
And we also expect individual controls on a form to remember where they were—when the focus moves to a list control,
we expect it to remember which list item was selected previously, and we expect tree controls to remember which tree
item last had the focus.

Users expect UI elements to remember such state in between losing the focus and reacquiring it. (Most users probably
wouldn't be conscious of the fact that they expect this, but they would soon complain if you were to provide them with
an application that forgot where it was every time it lost the focus.) So the Windows Forms framework helpfully
provides us with this functionality in the ContainerControl class.

Most of the time, you don't really need to think about ContainerControl. It should be used whenever you build a single UI
element that consists of several controls, but because the Form class and the UserControl class (see Chapter 5) both
inherit from ContainerControl, you are forced into doing the right thing.

Note that the Panel and GroupBox classes do not derive from ContainerControl, even though they usually contain other
controls. This is because they do not aim to modify focus management in any way—they are essentially cosmetic. Focus
for controls nested inside these controls is managed in exactly the same as it would have been if they were parented
directly by the form, because a ContainerControl assumes ownership not just for its children, but for all its descendants.
(Of course, if it has any ContainerControl descendants, it will let those manage their own children; each ContainerControl
acts as a boundary for focus management.)

3.3.2.1 Focus and validation

As discussed in the previous chapter, focus management is closely related to validation. A control whose CausesValidation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As discussed in the previous chapter, focus management is closely related to validation. A control whose CausesValidation
property is true will only normally be validated when two conditions are met: first, it must have had the focus; and
second, some other control whose CausesValidation property is also true must subsequently receive the focus. (Any
number of controls whose CausesValidation property is false may receive the focus in between these two events.)

Because ContainerControl groups a set of controls together and manages the focus within that group, it has an impact on
how validation is performed. When the focus moves between controls within a ContainerControl, the validation logic works
exactly as described above. But when the focus moves out of a ContainerControl that is nested within another
ContainerControl (e.g., a UserControl on a Form), things are a little more complex.

Figure 3-2 shows a form (which is a ContainerControl) and a UserControl. We will discuss the UserControl class in Chapter 5,
but for now, the important things to know are that it derives from ContainerControl and that it is treated as a single entity
by the containing form (the form will not be able to see the individual text boxes and labels inside the control). All the
text boxes have Validating event handlers, and all the controls have their CausesValidation properties set to true. Currently,
the focus is in the Foo text box.

Figure 3-2. Validation and ContainerControl nesting

When the focus moves to Bar, the rules of validation say that Foo must be validated. This is not a problem—both
controls are inside the same ContainerControl (MyUserControl). It is responsible for their focus management, so it will
ensure that Foo is validated. But what would happen if instead the focus moved to Quux? Quux is not inside the user
control—its focus is managed by another ContainerControl, the form.

The form knows nothing of the Foo and Bar fields—these are just encapsulated implementation details of the user
control. But it will correctly determine that MyUserControl should be validated because both MyUserControl and Quux have
their CausesValidation property set to true. Fortunately, when any ContainerControl (such as a UserControl) is validated, it
remembers which of its member controls last had the focus, and validates that. So in this case, when the focus moves
from Foo to Bar, the form validates MyUserControl, which in turn validates Foo.

3.3.3 Ambient Properties

Regardless of whether your controls are all children of the form, nested inside group boxes and panels, or nested within
a ContainerControl for focus management, you will want your application to look consistent. When you modify certain
properties of a form's appearance, all the controls on the form should pick up the same properties. For example, if you
change the background color of your form, you will probably want any controls on the form to use the same background
color. It would be tedious if you had to set such properties manually on every single control on the form. Fortunately
you don't have to—by default, the main visual properties will propagate automatically.

The properties that behave like this are known as ambient properties. The ambient properties on the Control class are
Cursor, Font, ForeColor, and BackColor. It is useful to understand exactly how ambient properties work—the Forms
Designer in Visual Studio .NET doesn't show you everything that is going on, and the results can therefore sometimes
be a little surprising.

Using the Designer, you could be forgiven for assuming that if you don't set a visual property of a control, it will just
have a default value. For example, the background color of a button will seem to be SystemColors.Control. However, a
control distinguishes between a property that has had its value set and a property that hasn't. So when you don't set
the BackColor of a control, it's not that the BackColor has a default value; it actually has no value at all.

This is obfuscated somewhat by the fact that when you retrieve a control's BackColor, you will always get a nonempty
value back. What is not obvious is that this value didn't necessarily come from the control in question. If you ask a
control for its background color when the background color has not been set on that control, it starts looking elsewhere
to find out what its color should be.

If a control doesn't know what value a particular property should have, the first place it looks is its parent. So if you put
a button on a form, then read that button's BackColor without having set it, you are implicitly reading the form's
BackColor.

But what if there is no parent to ask? A Form might have no parent, so what does it do when asked for its BackColor if
none has been specified? At this point it attempts to see if it is being hosted in an environment that supplies it with an
AmbientProperties object. To find this out, it uses the Control class's Site property, and if this is non-null, it will call its
GetService method to determine whether the environment can supply an AmbientProperties object. Usually there will be no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetService method to determine whether the environment can supply an AmbientProperties object. Usually there will be no
site, in which case, it finally falls back to returning its default value. (This will be the case if the form is just being run as
a standalone application; you usually only get a site when being hosted in something like Internet Explorer.)

So what impact do these ambient properties have on your application's behavior? Their effect is that unless you
explicitly specify visual properties for your controls, they will automatically pick up appropriate values from their
surroundings. If a control is being hosted in some environment that supplies values for these ambient properties, such
as Internet Explorer, it will use those. Otherwise, the system-wide defaults will be used.

Some controls deliberately ignore certain ambient properties, either because they have no use for them or because
they positively want to use something else. For example, the TextBox class overrides the BackColor property so that its
background is always the SystemColors.Window color (typically white) by default, regardless of what the ambient
background color is.

Remember that whenever you read an ambient property on a control, you will get back something, but unless that
property was set explicitly on that control, the value you get back will have been retrieved from elsewhere. Visual
Studio .NET makes it clear when you have modified a property on a control by showing the value of that property in
bold type. This is useful, but it does not tell you how the property obtains its value when it has not been set explicitly—
the Properties window always shows the effective value, without telling you where that value came from. In some
cases, you may need to examine the source code to see exactly what it has done: if the property has not been set
explicitly in the InitializeComponent method, the value shown will be the ambient one.

3.3.4 MDI Applications

Many Windows applications use the Multiple Document Interface (MDI). This defines a user interface structure for
programs that can display multiple files. The application has a main window, and each document being edited is
displayed inside a child window. Windows Forms provides special support for this.

We could just create our document windows as children of the main application window. However, this still leaves us
with a certain amount of work to do to manage menus correctly—MDI applications usually present their menus in the
main application window, but modify which items are present according to whether a document window is active.
Windows Forms is able to manage MDI menus correctly for us, including automatically merging a child window's menu
into the main application window. The details of menu merging are discussed in Chapter 4, but to make this happen
automatically, we must tell Windows Forms that we are building an MDI-style application. First of all, we must set the
parent window's IsMdiContainer property to true. Second, when we display a child window, we must let Windows Forms
know that is should behave as an MDI child, as in the following C# code fragment:

ChildForm cf = new ChildForm();
cf.MdiParent = this;
cf.Show();

or in its equivalent VB code fragment:

Dim cf As New ChildForm()
cf.MdiParent = Me
cf.Show()

By establishing the parent/child relationship with the MdiParent property instead of the normal Parent property, we enable
automatic menu merging.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 Layout
As we saw in the previous chapter, the framework can modify a control's position and size automatically. We looked at
the docking and anchoring facilities, but Windows Forms provides support for other styles of layout. The simplest of
these is a fixed layout in a scrollable window. Splitter support is also built in. In this section, we will look at all these
styles of layout, and then examine the mechanism in the framework that underpins them all. It is possible to extend the
layout facilities to provide your own automatic layout strategies. We will look at the standard events that support this,
and then see a simple example custom layout engine.

3.4.1 Scrolling

Windows Forms provides a facility for enabling the contents of a control to exceed the control's size on screen, and for
scrollbars to be added automatically to enable the user to access all of it. This functionality is provided by the
ScrollableControl class. This is the base class of ContainerControl and of Panel, which means that this behavior is available to
all forms, panels, and user controls.

To enable automatic scrolling management, simply set the AutoScroll property to true. If the window is smaller than its
contents, scrollbars will be added automatically. Of course, the class will need some way of knowing how large the
window's contents are. By default, it will deduce this from its child controls—it will assume that the window's size should
be exactly large enough to hold all the controls.

Because automatic scrolling will make the scrollable area exactly large enough to hold the controls and no larger, the
controls will be right up against the edge of the window when it is scrolled as far down or across as it can go. However,
you can add some padding by setting the AutoScrollMargin property. This property's type is Size, which enables you to
specify the vertical padding and the horizontal padding separately. So specifying a margin of new Size(10, 20) would
leave 10 units of blank space to the right of the right-most control and 20 units of blank space beneath the lowest
control.

Alternatively, you can set the scroll size explicitly with the AutoScrollMinSize property, which is also of type Size. The
space occupied by the controls will still be calculated as described above, but if the AutoScrollMinSize property is larger,
its value will be used instead. (In fact, each dimension is used individually—the effective window size will be wide
enough for the controls and any padding specified with AutoScrollMargin, and at least as wide as AutoScrollMinSize.Width,
and it will be tall enough for the controls and any padding, and at least as tall as AutoScrollMinSize.Height.)

You should not use both docking (discussed in the following section) and scrolling in a single control. If you wish to have
controls docked to the edge of a scrolling window, you should add a child Panel control and make that do the scrolling,
setting the panel's Dock property to Fill so that it will use all the remaining space not used by other controls docked to
the edges of the form. This is because the automatic scrolling logic does not interact well with the automatic layout logic
used when docking. Figure 3-3 shows such a form—it has a TextBox docked to the left and a Panel docked to fill the
remaining area. The Form itself is not scrollable. The scrollbar is present because Panel's AutoScroll property has been set
to true.

Figure 3-3. Combining scrolling and docking

In fact, there is a little more to docking than was discussed in Chapter 2, so it is time to revisit the topic.

3.4.2 Docking

We saw in Chapter 2 how to get a control to attach itself to the edge of a form by using the Dock property. What we
didn't look at was what happens when more than one control in a given window uses docking. Not only can you have
multiple controls docked in a single window, you can even have more than one docked to the same edge, but it is
important to understand exactly what the Windows Forms layout logic does under these circumstances.

When two controls are docked on the same edge of a window, the behavior is straightforward. The control that is
docked first will be up against the edge of the window, and the next one will be up against the first control, and so on.
Every time a control is docked, it effectively defines that edge of the window for docking as far as other controls are
concerned. (And any control that specifies Dock.Fill gets all the space left over.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

concerned. (And any control that specifies Dock.Fill gets all the space left over.)

This rule applies to multiple controls docked to different edges too—the first one to be docked always gets the entire
edge, and each subsequent control gets whatever is left over. Figure 3-4 shows the effect of this for a pair of controls,
one of which is docked to the top of the form, the other to the side.

Figure 3-4. The impact of docking order

But what determines the order in which docking occurs? If I have three controls all docked to the left edge of a window,
the order in which they will appear is determined by the fact that the children of a control are held in an ordered
collection. (The Controls property remembers the order in which you added the controls.) The later a control was added
to the collection, the earlier it will be considered for docking.

You can modify this order with the Forms Designer. If you bring a control to the front, it is moved to the top of the list
of controls passed to AddRange, because when controls overlap, the ones at the front of this list appear on top. For
docking, this will cause it to be docked last, so it will appear innermost. So if you have multiple controls docked to the
same edge of a form, sending one of those controls to the back in the editor will move it to the edge of the form, and
bringing it to the front will move it inwards.

3.4.3 Splitters

The purpose of a splitter is to divide a window into two resizable portions. For example, the bar that divides the folders
pane from the contents pane in a Windows Explorer window is a splitter. The user can drag the splitter around to
change the way the space is shared between the two panes. The Windows Forms framework supplies a Splitter control
that provides this functionality.

The Splitter control never actually moves anything—it relies on the framework's docking mechanism to do the work for
it. The usual way of using a splitter is to have one between two other controls. The first control and the splitter are
docked to the same edge of the window, usually the left or the top. The splitter should be docked towards the inside of
the window (i.e., it should be ahead of the other control in the list passed to AddRange, which means putting it to the
back in the Designer). The remaining control is then set to Dock.Fill so that it uses the remaining space. Figure 3-5
shows a typical layout for a vertical splitter.

Figure 3-5. Use of docking for splitters

When the user drags a splitter, the splitter control only resizes the outermost control. This causes the window to
perform a layout operation, recalculating the position of all docked controls. As a side effect of resizing the outermost
control, when the splitter's position is calculated, it will automatically be moved to the edge of that panel. The splitter
doesn't have to move itself—resizing the control it is docked up against is enough, because Windows Forms' automatic
layout moves the splitter automatically. This in turn changes the amount of space available for the other control, and
because that is set to Dock.Fill, the other control will fill the space available, shrinking or expanding as required.

For the splitter to work, all three controls must be docked and in the correct order. It is fairly common practice for one
or both of the controls to be Panel objects—this allows you to place multiple controls inside the areas that the splitter
resizes. This is useful if you want to use multiple controls in conjunction with a splitter, because a splitter can only
cause the two controls on either side of it to be resized.

3.4.4 Layout Events

The splitter relies on the automatic layout features of the Control class. Moreover, it relies on the control class
automatically recalculating the layout as a result of one of its child controls being resized. This works because the
Windows Forms framework is designed to support automatic re-layout in response to certain events. It also allows us to
influence the way in which layout is performed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

influence the way in which layout is performed.

Any time a control is added to or removed from another control, or something is moved or resized, it is presumed that
this will have an impact on how the form's contents should be arranged. So whenever this happens, the framework calls
the parent control's PerformLayout method. This will perform the automatic docking and anchor layout, but before doing
that it raises the Layout event. This gives our code a chance to execute custom layout logic.

So during normal operation, layout will be performed every time a window changes size, or any of its contents are
moved or resized. Most of the time, this is fine, but what about when we are creating the window? Everything we do
during initialization would cause it to perform another layout. This would be a waste of time, because only the very last
layout it does would stick. So during initialization, we call the form's SuspendLayout method at the start, and then the
form's ResumeLayout method when we have finished arranging the contents of the form. (Visual Studio .NET puts these
calls in for us.) This means we just get the one layout performed at the end of the initialization process, which is what
we require.

Sometimes you might want to take action to modify a form's layout only when particular things have happened. For
example, your layout code might need to do something only when a form is resized and ignore all other events. In such
cases, the Move and Resize events provide us with rather more specific notifications of what has changed than the
firehose Layout event.

3.4.5 Custom Layout

So why would we ever care about the Layout event? Unfortunately the Dock and Anchor properties don't cover every
possible automatic layout eventuality. For example, a common requirement is to have several controls fill the width of a
form (or maybe a panel in a form), sharing the space evenly between all the controls. (So if there are three controls
across, each will take exactly a third of the space available.)

This cannot be done with the standard docking and anchoring layout, so some custom logic must be used. The Layout
event simply notifies us when it is time to apply that logic.

Example 3-13 shows a simple custom layout handler that can be attached to a control's Layout event like so:

myPanel.Layout += new LayoutEventHandler(HorizontalLayout);

Example 3-14 shows the corresponding custom layout handler in VB. (The Panel control must also be declared
programmatically using the WithEvents keyword.)

Example 3-13. Example custom layout in C#

private void HorizontalLayout(object sender,
 System.Windows.Forms.LayoutEventArgs e)
{
 Control parent = (Control) sender;
 for (int i = 0; i < parent.Controls.Count; ++i)
 {
 Control child = parent.Controls[i];
 int pos = i * parent.Width;
 pos /= parent.Controls.Count;
 child.Left = pos;
 child.Width = parent.Width/parent.Controls.Count;
 }
}

Example 3-14. Example custom layout in VB

Private Sub HorizontalLayout(sender As Object, _
 e As LayoutEventArgs) _
 Handles myPanel.Layout
 Dim parent As Control = DirectCast(sender, Control)
 Dim child As Control
 Dim I, pos As Integer
 For i = 0 to parent.Controls.Count - 1
 child = parent.Controls(i)
 pos = i * parent.Width
 pos /= parent.Controls.Count
 child.Left = pos
 child.Width = parent.Width/parent.Controls.Count
 Next
End Sub

It will automatically adjust the width and horizontal position of each child control, so that they fill their parent control
and are each of the same width. Note that you must attach this to the Layout event of the parent control whose children
you wish to arrange, not the children themselves.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.5 Localization
The software market is a global one, and many programs will ship in regions where the users' first language will be
different from the application developers' native tongue. While many software products get away with making the
highly parochial assumption that everybody speaks English, .NET lets us do better than that. It provides support for
building applications that support multiple languages.

The .NET Framework supplies facilities for localization of resources such as strings and bitmaps, and the Forms Designer
can create forms that make use of this. To understand how to create localizable user interfaces, it is first necessary to
understand the underlying localization mechanism that it is based on, so we will first look at global resource
management, and then we will see how it is applied in a Windows Forms application.

3.5.1 Resource Managers

The programming model for localizable applications is based on a simple premise: whenever you require information
that might be affected by the current language, you must not hardcode this information into your application. All such
information should be retrieved through a culture-sensitive mechanism. (In .NET, the word culture is used to describe a
locality; it implies all the relevant information, such as location, language, date formats, sorting conventions, etc.) The
mechanism we use for this is the ResourceManager class, which is defined in the System.Resources namespace.

The ResourceManager class allows named pieces of data to be retrieved. (We'll see where this data is stored in just a
moment.) For example, rather than hardcoding an error message directly into the source, we can do the following in
C#:

ResourceManager resources = new ResourceManager(typeof(MyForm));
string errorWindowTitle = resources.GetString("errorTitle");
string errorText = resources.GetString("errorFileNotFound");
MessageBox.Show(errorText, errorWindowTitle);

The equivalent code in VB is:

Dim resources As New ResourceManager(GetType([MyForm]))
Dim errorWindowTitle As String = resources.GetString("errorTitle")
Dim errorText As String = resources.GetString("errorFileNotFound")
MessageBox.Show(errorText, errorWindowTitle)

This creates a ResourceManager object and asks it for two named resources: errorTitle and errorFileNotFound. It uses the
strings returned by the ResourceManager as the error text and window title of a message box.

So where will the ResourceManager find this information? It will look for a resource file—a file that contains nothing but
named bits of data, and it will expect to find it embedded as a named resource in an assembly. (Any .NET assembly can
have arbitrary named files embedded in them. Any kind of file can be attached in this way—e.g., text files, bitmaps,
binary files. But the ResourceManager will be looking for an embedded file in its special resource format.) It needs to
know two things to locate the embedded resource file: the name of the resource file and the assembly in which it is
embedded.

The name of the resource file is typically based on a class name. So in the previous code fragments, the
ResourceManager will be looking for a file named after the MyForm class. It will always use the full name of the class,
including its namespace, so if MyForm is defined in the MyLocalizableApp namespace, the ResourceManager will look for an
embedded resource called MyLocalizableApp.MyForm.resources. (We will see shortly how to get Visual Studio .NET to add an
appropriately named resource file to your project.)

But the ResourceManager also needs to know which assembly the resource file will be contained in. The assembly it will
load is determined by the culture in which the code is running (i.e., what country and with which language).

A culture is identified by a two-part name. The first part indicates the spoken language, and the second part indicates
the geographical location. For example, en-US represents the English-speaking U.S. locality, while fr-BE indicates the
French-speaking Belgian culture. We need both the spoken language and the region to define a culture, because either
on its own is not enough to determine how all information should be presented. For example, many localities have
English as a first language, but can differ in other details. For example, although the en-US and en-GB cultures (American
and British, respectively) both use the same language, dates are displayed differently—in the United Kingdom, the usual
format is day/month/year, while in the U.S., the month is usually specified first. In this particular case, the country
name alone would be sufficient, but that is often ambiguous, because many countries have more than one official
language (e.g., Canada and Belgium).

The culture that is in force is determined by the Regional and Language Options Control Panel applet in Windows. The
ResourceManager will use the two-part culture string to locate the assembly. It will always look for an assembly called
AppName.resources.dll, where AppName is your application executable's name. The current culture merely determines
the directories it will look in. If the culture is, say, fr-BE, it will first look for a subdirectory called fr-BE. (It will look for
this directory beneath whatever directory your program happens to be running in.) If it doesn't find it there, it will then
fall back to looking for generic French-language resources in an fr directory. Finally, if it finds neither of these, it will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fall back to looking for generic French-language resources in an fr directory. Finally, if it finds neither of these, it will
look in the application executable itself. This means that if there are no resources for the appropriate culture, it will
revert to using whatever resources are built into the program itself. (These are referred to as the culture-neutral
resources, but they are usually written for whatever culture the application developer calls home.)

Figure 3-6 shows the directory structure of a typical localized application. The executable file itself would live in the
Localizable directory shown here. (There is no significance to that name—you can call the root directory anything.) This
particular application has several culture-specific subdirectories, each of which contains an assembly called
AppName.resources.dll (where AppName is whatever the main executable file is called). Both French and Dutch are
supported. The resource DLLs in the fr and nl directories would contain resources appropriate to the French or Dutch
languages respectively, which are independent of any particular French- or Dutch-speaking region. There are also
location-specific resources supplied. For example, if there are any phrases that require slightly different idiomatic
translations for French as spoken in France and French as spoken in Wallonia, these will be in the resource files in the
fr-FR and fr-BE subdirectories, respectively. Note that this application should be able to function correctly in locales
such as fr-CA and nl-NL—even though there are no subdirectories specific to these cultures, they will fall back to the fr
and nl directories.

Figure 3-6. A localized directory structure

These resource assemblies in the culture-specific subdirectories are often referred to as satellite assemblies . This is
intended to conjure up a picture of the main application assembly being surrounded by a collection of small but
associated assemblies. (Satellite assemblies are typically smaller than the main application because they just contain
resources; the main application assembly tends to be at least as large as the satellites because it usually contains both
code and default resources.)

3.5.2 Resources and Visual Studio .NET

Visual Studio .NET can automatically build satellite resource assemblies for your application, and the Forms Designer
can generate code that uses a ResourceManager for all localizable aspects of a form.

This raises an interesting question: what should be localizable? Text strings obviously need to be localizable, because
they will normally need to be translated, but there are less obvious candidates too. Some languages are more verbose
than others, and once the text of a label or button has been translated, the control may not be large enough to display
it. This means that for localization of strings to be of any use, a control's size must also be localizable. And if controls
need to be resized for localization purposes, this will almost certainly mean that other controls on the same form will
need to be moved. So on a localizable form, the Forms Designer also retrieves the size and position of controls from the
ResourceManager, rather than hardcoding them in. In fact, it retrieves almost all the properties that affect a control's
appearance from the ResourceManager, just in case they need to be modified for a particular culture.

To get the Forms Designer to generate this localizable code, simply set the form's Localizable property (in the Misc
category) to true. This will cause it to regenerate the entire InitializeComponent method so that all relevant properties are
read from a ResourceManager. It also adds a new file to the project named after your form: if your form's class is MyForm,
it will add a MyForm.resx file. By default, this file will be hidden, but if you go to the Solution Explorer window and
enable the Show All Files button on its toolbar, your MyForm.cs or MyForm.vb file will grow a + symbol. If you click this,
you will see the MyForm.resx file. This file contains all the culture-neutral values for your form's properties. It is hidden
by default because you do not normally need to edit it directly; we will examine its contents shortly. (You may
remember that the ResourceManager class will actually be looking for a .resource file, not a .resx file. Visual Studio .NET
stores all resources in .resx files, but it compiles these into .resource files when it builds your component.)

Having made your form localizable, any properties that you edit will simply be changed in the resource file. So how do
we exploit this to make a localized version of the form for some other culture? Alongside the Localizable property, you
will see a Language property. This is usually (Default), to indicate that you are editing the default resource file. But you
can change this to another culture. If you set it to German, you will see that another resource file is added to your
application—MyForm.de.resx. Visual Studio .NET will compile this file into a satellite assembly in the de
subdirectory.[10] If you do any further editing to the form, new property values will be stored in this file, meaning that
those values will be used when running in a German culture. You can also specify a more specific culture—if you select
German (Austria), Visual Studio will add a MyForm.de-AT.resx file. This will be built into a satellite assembly in the de-
AT subdirectory, allowing you to supply properties that will be used specifically in the German-speaking Austrian
culture.

[10] Each .resx file in a project will end up as a single embedded resource in some assembly. All the resource files
for a given culture will be in the same assembly, so you will end up with one satellite assembly for each culture you
support. The name of the embedded resource will be determined by the name of the .resx file. Visual Studio .NET
always prepends the project's default namespace to the resource name, so MyForm.de.resx will end up being the
MyNamespace.MyForm.resources resource in the satellite assembly in the de directory. Any .resx file whose name
does not contain a culture code will end up in the main assembly, so MyForm.resx will become the
MyNamespace.MyForm.resources resource in the main executable assembly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyNamespace.MyForm.resources resource in the main executable assembly.

So your form will now have multiple faces. Whenever you change the Language property, you will be shown how the
form will look when displayed in the selected culture. Any edits you make will only apply to the selected culture. Visual
Studio .NET takes care of the build process, creating whatever satellite assemblies are required in the appropriate
directories. If you want to see the effects of this without modifying your computer's regional settings, you can modify
the culture for your application with the following change to your Main method in C#:

[STAThread]
static void Main()
{
 System.Threading.Thread.CurrentThread.CurrentUICulture =
 new System.Globalization.CultureInfo("fr-FR");
 Application.Run(new PropForm());
}

The corresponding VB code is:

<STAThread> Public Shared Sub Main()
 System.Threading.Thread.CurrentThread.CurrentUICulture = _
 New System.Globalization.CultureInfo("fr-FR")
 Application.Run(New PropForm())
End Sub

This sets the main thread's culture to fr-FR. This will cause the ResourceManager class to try to locate satellite assemblies
containing French resources.

3.5.2.1 Resource Files

Visual Studio .NET will create and maintain the necessary resource files as you edit your forms for the cultures you
choose to support. However, it is often useful to edit these files directly—for example, if you wish to support localization
for any error messages you display in a message box, you will need to add your own entries to these files.

You can edit the .resx files that Visual Studio .NET creates—it provides a special user interface just for this purpose. If
you double click on a .resx file for a form (having first made sure that the Solution Explorer is in Show All Files mode),
you will see a grid representing the contents of the file, as shown in Figure 3-7.

Figure 3-7. Editing a .resx file

The Forms Designer uses a naming convention for resource entries. Properties of a control are always named as
control.PropertyName, where control is the name of the control on the form and PropertyName is the property whose value
is being stored. The value column indicates the value that the property is being set to; an empty value indicates that
the property is not to be set. The property's type is also stored in this file—the ResourceManager needs to know the data
type (e.g., a string, a Color, a Size, etc.) of each property to return the correct kind of object at runtime.[11] The default
type is string, so for string lookups you don't need to supply anything other than the name and value. To add your own
resource entries (e.g., error text), just type new entries at the bottom of the list. You may use whatever name you like,
so long as it is unique within the resource file.

[11] Values are stored and retrieved using .NET's serialization facility. A type needs to support serialization to be
used in a resource file.

You can also add new .resx files to a project. This allows you to add a resource file that is not attached to any particular
form. (This is useful for custom control libraries, which will not necessarily contain any forms at all.) Visual Studio .NET
uses the same naming convention here as it does for the .resx files it creates: if there is a culture name in the filename,
it determines which satellite assembly the resource will be held in. And as before, the name of the embedded resource
is determined by putting the project default namespace in front of the filename. So MyStuff.fr-BE.resx would create an
embedded resource called MyAppNamespace.MyStuff.resources in the satellite assembly in the fr-BE subdirectory.

The easiest way to use such a custom resource file is to name it after some class in your code, and pass the type of
that class to the ResourceManager when you construct it like so:

ResourceManager rm = new ResourceManager(typeof(MyClass));

or:

Dim rm As New ResourceManager(GetType([MyClass]))

This would create a ResourceManager that would look for a MyAppNamespace.MyClass.resources embedded resource,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This would create a ResourceManager that would look for a MyAppNamespace.MyClass.resources embedded resource,
using the current culture to determine where to find the assembly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.6 Extender Providers
Although the Control class provides a very rich set of features, inevitably it cannot be all things to all people. UI
innovations continue to emerge, so even if the Control class were to represent the state of the art today, in time, it
would inevitably end up looking short on features.

However, Windows Forms provides a very useful way of extending the abilities of the basic Control class. It is possible to
place a component on a form that adds a feature to every single control on that form. Such a component is referred to
as an extender provider. We will see how to write extender providers in Chapter 9, but no discussion of forms would be
complete without looking at how to use them.

The Forms Designer supports extender providers. An extender provider can add new properties to all controls on a
form. An example of this in the Windows Forms framework is the ToolTip class. As mentioned in Chapter 2, the Control
class does not provide ToolTip support. But this doesn't matter—the framework has a ToolTip class that is able to
augment any control with ToolTip support. If you drop the ToolTip component onto a form, it will appear in the
component tray at the bottom of the designer. (All non-UI components appear here; the only kind of component that
has any business appearing on the form at design time is a control, so everything else appears in the component tray.
And the ToolTip isn't strictly a UI component; it is a component that modifies the behavior of other controls.) Once you
have done this, if you look at the Properties tab for any of the controls on your form, you will see that each has
acquired a ToolTip property in the Misc category. If you set some text for this property for a particular control, that text
will appear as a ToolTip whenever the mouse hovers over that control at runtime.

Of course, the classes representing each control haven't really grown a new property—.NET doesn't allow class
definitions to change at runtime. The extra property is an illusion presented by the Designer. If you set the ToolTip
property on one of your controls in the designer, you will see that what really happens is that code like this is added to
the C# InitializeComponent method:

this.toolTip1.SetToolTip(this.button1, "This is a button!");

or code like this is added to the VB InitializeComponent method:

Me.toolTip1.SetToolTip(Me.button1, "This is a button!")

Because we cannot really add a new property to somebody else's class, it is the responsibility of the extender provider
to remember which controls have had their extender properties set to what. So the ToolTip class maintains a list of
which controls have ToolTips and what the text is. It must also provide a method for setting the property. The name of
that method is just the property name with Set in front of it. It takes a reference to the control whose property is being
set and the property's value. (We will see in Chapter 9 how an extender provider tells the designer what extender
properties it adds to the controls on a form.)

Whenever you use an extender provider, it will look like the previous code fragments. You will call a SetXxx method on
the provider itself, passing in a reference to the control you would like to set the property on, and the value for the
property. It is up to the provider to decide what to do with that value—for example, the ToolTip class attaches its own
event handlers to the control and uses these to make the ToolTip appear when the mouse hovers over it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.7 Summary
All Windows Forms applications have at least one window in them, and each window is represented by an object whose
class derives from the Form class. These classes are typically generated by the Visual Studio .NET forms designer, which
uses a standard structure for handling initialization and shutdown. An application could have just one form or it might
have several, but in any case, its lifetime is managed by the Application class. The controls in a form can have their
layout managed automatically, and while there are several built-in styles of automatic layout, the underlying
mechanisms are also exposed, allowing custom automatic layout systems to be written. Another useful feature of forms
is the ability to use an extender provider—these are components which add pseudo properties (so-called extender
properties) to some or all the controls on a form, allowing the basic functionality of the Control class to be augmented.

Of course, a great many Windows applications adorn their forms with menus, so in the next chapter we'll look at how to
add menus to your applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Menus and Toolbars
Menus are often the only practical way to present a rich array of functionality without cluttering up the user interface.
Whether appearing at the top of the window, or as a context menu accessed through the righthand mouse button,
menus allow an application to show concisely which operations are available. An application's usability can be further
enhanced by making the most important operations available through toolbar buttons as well as menus.

The Windows Forms framework provides support for both menus and toolbars. Despite the fact that these two
technologies serve similar roles—toolbar buttons often correspond directly to menu items—they are presented through
two largely unrelated parts of the class library. However, as we will see later, it is possible to unify the way you handle
events from them in your application.

In this chapter, we will first examine the support for menus. Then we will see how to create toolbars. Finally, we will
see how events from both can be dealt with by a single set of event handlers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Menus
The Windows Forms framework provides support for adding menus to your applications. It uses a single programming
model both for normal window menus and for context menus. The model allows menus to be modified dynamically, or
even combined, providing flexibility at runtime, and supports the ability to reuse and extend menu definitions.

We will start by examining the object model used for constructing menus. Then we will see how to attach them to a
form. Next, we will look at how to add context menus. Finally, we will see how to reuse and extend your menu
definitions by merging items from one menu into another, both in the context of MDI applications, and also when
reusing forms through inheritance.

4.1.1 The Object Model

For your application to use menus, you must provide Windows Forms with a description of their structure and contents.
You do this by building hierarchies of objects that represent menus and the items they contain. Although you will
typically get Visual Studio .NET to do this for you, a sound understanding of the object model it uses is important to use
menus effectively in your applications.

This object model revolves around the Menu class, which is arguably misnamed, because it represents a more abstract
concept than its title suggests. It can correspond to any element of a menu structure, and it is the base class of all the
other types in the menu object model. So while a Menu object might represent a menu, it could just represent a single
item of a menu. (Perhaps MenuElement would have been a more descriptive name.) Representing menus and menu
items with the same base type seems a little strange at first, but it makes sense when you consider that menus can be
hierarchical. A menu item might well be a nested menu, in which case, it makes sense for that menu item to be
represented by an object whose class derives from Menu.

The main job of the Menu class is to represent the structure of a menu. You can find out whether a particular Menu
object is a leaf item or an item with children by examining its IsParent property. If IsParent is true, its child items will be
in a collection on the object's MenuItems property.

You will never use the Menu class directly. Its constructor is protected, which means that to obtain a reference to a
Menu, you must instead create one of its derivatives: MainMenu, ContextMenu, or MenuItem.

The MainMenu class represents a form's main menu, and ContextMenu represents a pop-up context menu. Every menu
structure has one or the other of these at its root, and you'll see more about how to use them later on. But everything
else in the menu is represented by MenuItem objects. Every line that the user sees in a menu (and every top-level menu
in a form's main menu) is represented by a MenuItem. A leaf item (i.e., a menu item that does not lead to a submenu) is
indicated by the fact that it has no children. If the item leads to a submenu, the same object represents both the item
and the submenu.

Figure 4-1 shows an example application with a main menu. As you can see, a single MenuItem object represents both
the Edit caption and the menu associated with it. Each entry in the menu (Undo, Redo, etc.) has its own MenuItem
object. The object that corresponds to the Find and Replace item also represents the submenu (although the entries in
that submenu all have their own MenuItem objects).

Figure 4-1. Menus and their objects

We'll now look at how to go about building such hierarchies of objects to add menus to an application.

4.1.1.1 Building menus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.1.1 Building menus

The easiest way to create a menu is to use the Visual Studio .NET Forms Designer. It provides two menu-related
controls in the tool box: MainMenu and ContextMenu. Each of these provides a visual interface for editing the contents of a
menu. Somewhat confusingly, Visual Studio uses the same interface for both. This is a little strange, because it means
that the editor makes context menus look like the form's main menu. But this is just a design-time anomaly—context
menus are displayed correctly at runtime.

As we have seen in previous chapters, anything done in the Forms Designer simply ends up generating code. Menus are
no exception, and regardless of which kind of menu you create, the Forms Designer generates the same kind of code. It
will create a top-level menu (either a MainMenu or a ContextMenu), and then one MenuItem for each element of each
menu. The C# code appears as follows:

this.mainMenu = new System.Windows.Forms.MainMenu();
this.menuFile = new System.Windows.Forms.MenuItem();
this.menuFileNew = new System.Windows.Forms.MenuItem();
this.menuFileOpen = new System.Windows.Forms.MenuItem();
this.menuFileClose = new System.Windows.Forms.MenuItem();
this.menuFileExit = new System.Windows.Forms.MenuItem();

The corresponding VB code is:

Me.mainMenu = New System.Windows.Forms.MainMenu()
Me.menuFile = New System.Windows.Forms.MenuItem()
Me.menuFileNew = New System.Windows.Forms.MenuItem()
Me.menuFileOpen = New System.Windows.Forms.MenuItem()
Me.menuFileClose = New System.Windows.Forms.MenuItem()
Me.menuFileExit = New System.Windows.Forms.MenuItem()

By default, the Designer will choose unhelpful names for the menu items, such as
menuItem1, menuItem2, etc. If you want your code to be readable, it is a good idea to
change each menu item's Name property to something more meaningful in the Designer,
as has been done in this example. (The Name property is in the Design category of the
Properties window.)

Of course, creating a few menu items is not enough to describe the menu fully—with the code as it stands, Windows
Forms will have no idea that menuFile is an item of mainMenu, or that menuFileNew, menuFileOpen, and menuFileClose are
members of menuFile. So the designer also generates code to establish the menu hierarchy.[1] In C#, the code looks
like this:

[1] The other top level menus referenced here (menuEdit, menuView, and menuHelp) would be built in the same
way as the File menu. The relevant code has been omitted for conciseness.

//
// mainMenu
//
this.mainMenu.MenuItems.AddRange(
 new System.Windows.Forms.MenuItem[] {
 this.menuFile,
 this.menuEdit,
 this.menuView,
 this.menuHelp});
//
// menuFile
//
this.menuFile.Index = 0;
this.menuFile.MenuItems.AddRange(
 new System.Windows.Forms.MenuItem[] {
 this.menuFileNew,
 this.menuFileOpen,
 this.menuFileClose,
 this.menuFileExit});

In VB:

'mainMenu
'
Me.mainMenu.MenuItems.AddRange(_
 New System.Windows.Forms.MenuItem() _
 {Me.menuFile, _
 Me.menuEdit, _
 Me.menuView,
 Me.menuHelp})

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.menuHelp})
'
'menuFile
'
Me.menuFile.Index = 0
Me.menuFile.MenuItems.AddRange(_
 New System.Windows.Forms.MenuItem() _
 {Me.menuFileNew, _
 Me.menuFileOpen, _
 Me.menuFileClose, _
 Me.menuFileExit})

Note that the designer uses the same code for adding items to the main menu as for adding items to the File submenu.
This illustrates why all the various menu classes derive from the Menu base class—Menu supplies the functionality
common to all menu elements, such as the ability to contain menu items.

A menu's items are stored in the MenuItems property, whose type is the special-purpose collection class
Menu.MenuItemCollection. The code uses this collection's AddRange method to add a list of MenuItem objects. Of course,
because each MenuItem inherits from Menu, it has a MenuItems property too, and can have further subitems added—this
is how nested menu structures are built.

The order in which you add menu items to a parent menu has no bearing on the order in which they appear on screen.
Their order is controlled by the Index property. This property is an int or Integer, and it is used to number child items
sequentially starting from 0. (The Designer does this automatically, and adjusts the Index properties when you reorder
items visually.)

The framework will also need to know what text should be displayed for each menu item, and whether it has any
keyboard shortcut associated with it. So for each item, the Designer generates code like this in C#:

this.menuFileNew.Index = 0;
this.menuFileNew.Shortcut = System.Windows.Forms.Shortcut.CtrlN;
this.menuFileNew.Text = "&New...";

And code like this in VB:

Me.menuFileNew.Index = 0
Me.menuFileNew.Shortcut = System.Windows.Forms.Shortcut.CtrlN
Me.menuFileNew.Text = "&New..."

As we have already seen, the Index property determines the order in which menu items appear. The Text property
determines what text should be displayed. (If you set this to a hyphen, the menu item will appear as a separator—a
dividing line between menu items.) The ampersand denotes something called an accelerator; both this and the Shortcut
property allow experienced users to use menus much more quickly than would otherwise be possible.

4.1.1.2 Accelerators and shortcut keys

Most Windows applications can be controlled from the keyboard as well as with the mouse. In fact, this is a requirement
for earning the Designed for Windows logo. Accelerator keys and shortcut keys are two long-established mechanisms
for making menus easier to use from the keyboard.

Menus can be navigated with the arrow keys, but with large menu structures, this rapidly becomes tiresome, so
accelerator keys are also supported. These are keys that can be pressed to select a particular menu item without
having to use the mouse or arrow keys. Each item in a menu can have a letter associated with it, and if the user
presses that key while the menu is visible, the effect is the same as clicking on the item.

The previous code fragments illustrate how to choose an accelerator key: in the Text property, we simply place an
ampersand in front of the relevant letter. So in this example, if the user presses the N key while the File menu is open,
the New menu item will be selected. The user can find out what accelerator keys are available by pressing the Alt key
while the menu is open: the accelerators will be underlined, as shown in Figure 4-2. (Older versions of Windows show
the accelerators at all times, even when Alt has not been pressed.)

Figure 4-2. Menu with accelerators and shortcuts

Menu accelerators can make it easy for experienced users to use menus quickly without taking their hands off the
keyboard. However, for very frequently used operations, keyboard shortcuts provide a more direct form of access.

Unlike menu accelerators, which can only be used while the relevant menu is visible, a shortcut key can be used at any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike menu accelerators, which can only be used while the relevant menu is visible, a shortcut key can be used at any
time. In this example, the New menu item's shortcut key is Ctrl-N. The user can press Ctrl-N without a menu visible,
and it will be as if he had selected the New item from the File menu.

Shortcuts are assigned with the Shortcut property on the MenuItem class, and its value must be one of the key
combinations enumerated in the Shortcut enumeration. This is a subset of all possible key presses; it includes the
function keys, with various combinations of modifier keys (e.g., F12 or CtrlShiftF3), and the alphanumeric keys with Ctrl
or Ctrl and Shift, (e.g., CtrlA, CtrlShiftQ, Ctrl3). By default, the shortcut will be displayed in the menu, as shown in Figure
4-2, although this can be disabled by setting the ShowShortcut property to false.

Shortcut keys only work because the Form class knows about menus—when handling key presses, a form will offer keys
to the both the main menu and the context menu for that form. This means that shortcuts only work properly for
menus that have been attached to a form (as described later on). You would usually not use them on context menus
that have been attached to specific controls.

So we know how to create hierarchical menu structures, and how to assign text, accelerators, and shortcut keys to
menu items. But for all this to be of any use, we need to know when the user clicks on one of our menu items. So we
will now look at the events raised by menus.

4.1.2 Event Handling

The entire point of adding menus to an application is so that users can ask the application to do something, such as
save a file or perform a search. So as developers, we want our code to be notified whenever the user chooses an item
from a menu. Menus therefore provide events to inform us of user input.

The most important menu event is Click. This is very similar to the Control class's Click event[2]—a MenuItem raises this
event when the user clicks on the menu item or performs an equivalent key press (using either an accelerator or a
shortcut key). It even has the same signature as Control.Click: EventHandler. If you double-click on a menu item in the
Designer, Visual Studio .NET will add a new method and attach it to the menu item's Click event, as shown in C# in
Example 4-1 and in VB in Example 4-2.

[2] It is not the same event, despite looking identical. This is because the Menu class is something of an anomaly—
despite being a visual class, it does not in fact inherit from Control. It derives directly from
System.ComponentModel.Component (as does Control). This seems to be because menus don't behave quite like
other controls.

Example 4-1. Menu Click handler in C#

private void InitializeComponent()
{
 . . .
 this.menuFileNew.Click +=
 new System.EventHandler(this.menuFileNew_Click);
 . . .
}

private void menuFileNew_Click(object sender, System.EventArgs e)
{
 . . . handle click here
}

Example 4-2. Menu click handler in VB

Friend WithEvents menuFileNew As System.Windows.Forms.MenuItem

Private Sub menuFileNew_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles menuFileNew.Click
 . . . handle click here
End Sub

The handler method's first parameter is, as always, the source of the event (the MenuItem object, in this case). The
second parameter is the usual placeholder and will normally be EventArgs.Empty.

The MenuItem class also provides a Popup event, which is fired whenever a menu is about to be displayed. This provides
a useful opportunity to make sure that the state of all the items is up to date (e.g., you can place ticks by certain menu
items, as described in the next section). The event occurs on the MenuItem that represents the menu that is about to
appear. Its parent is not notified, and neither are the individual items that make up the menu. For example, when the
File menu in the preceding examples is about to be displayed, the Popup event would occur on the menuFile object, not
on the main menu, and not on any of the File menu's items.

You can also be notified when an item has been highlighted (i.e., when the mouse moves over it). That item's Select
event is raised when this happens. This event also occurs when the item is selected with the arrow keys. The name
Select is slightly misleading. Selecting a menu item sounds like a fairly positive operation by the user, but it typically
indicates that the mouse has simply moved over the item. The Click event is the one raised when a user actively

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indicates that the mouse has simply moved over the item. The Click event is the one raised when a user actively
chooses an item.

If you are familiar with the old C++ MFC Library, you might be expecting to see events for handling menu item state. In
that library, every time a menu item was displayed, an event was raised asking whether the item should be enabled
and whether it should have a tick by it. In .NET, things are a little different—Windows Forms exposes these features as
properties on the MenuItem object.

4.1.3 Menu Item State

You will often want a menu item's appearance to change according to the application's state. For example, a menu item
that turns something on or off (such as a status bar) can have a tick beside it to indicate that the feature is currently
on. Some menu items may sometimes be unavailable and should be grayed out or even hidden. We will now see how to
modify the appearance and behavior of menus at runtime to achieve this.

Each MenuItem has an Enabled property. By default, it is set to true, but when it is false, the item will be grayed out and
will not be clickable. More drastically, you can set the Visible property to false, which will prevent the item from
appearing at all. The MenuItem class also provides a Checked property. When this is set, a tick will be displayed next to
the menu item.

If you preferred the old MFC approach, in which you decided which items should be ticked
or disabled at the last minute, you can still do this. Simply supply a Popup handler for the
menu and set the flags for each menu item in it. This approach can be useful, because it
guarantees that menu items are always up to date, but an event-driven approach is no
longer mandatory, so you can use whichever is simpler for your particular application.
Remember that the Popup event is raised for the menu, not for each of its items, so your
code will not look quite the same as it did with MFC—you will have a single handler setting
the state of all necessary items, rather than one handler per item.

So, we now know how to create menus, how to handle the events they generate, and how to modify the appearance of
individual items. All that remains is to make sure these menus appear when and where we want them, which is the
subject of the next section.

4.1.4 Attaching Menus

There are two ways in which a menu can appear. It can either be permanently visible at the top of a form, or it can be a
so-called Context Menu that pops up when the user clicks the right (or alternate) mouse button. In either case, we
simply associate a hierarchy of menu items with a form or a control.

The menu that appears at the top of a window is determined by the Form class's Menu property. You can set this
property to a MainMenu object representing the root of a hierarchy of MenuItem objects. The Forms Designer does this
automatically when you add a main menu to a form.

Setting a context menu is very similar, except context menus may be assigned to any control, not just a form. This
means that you can provide different context menus for each control in a window. This is done by setting the
ContextMenu property of the control or form.

Remember that the Form class derives from Control, so it is possible to set a context menu for the whole form. Be aware
though that when you add a context menu to a form with the designer, Visual Studio .NET does not presume that the
menu should be attached to the form—for all it knows, you might be planning to associate it with a control, so it leaves
it unattached. You must explicitly attach the menu either to the form or to a control by setting the relevant object's
ContextMenu property.

Be aware that keyboard shortcuts for a context menu will only work if the control that owns the menu is able to process
keys. For a context menu attached to a form, this means that the shortcuts will work so long as the form is active, but
for menus attached to a particular control on a form, the shortcuts will only work when that control has the focus. So it
is not always useful to put shortcut keys on a context menu attached to a control, because the whole point of shortcut
keys is that they can be used from any context. (The exception would be if your control can receive the focus and
presents a nontrivial interactive user interface. For example, a text box provides clipboard shortcuts such as Ctrl-C for
copy. In this case, it makes sense for the shortcuts only to be available when the control has the focus.)

Sometimes it is useful to know if a menu is currently being displayed to avoid distracting or interrupting the user—it can
be annoying if an application pops up a notification dialog while you are using a menu, because this causes the menu to
be closed. If you want to disable or defer certain operations while a menu is open, you simply need to observe the Form
class's MenuStart and MenuComplete events. These are fired just before a menu receives the focus and just after it
disappears. These events are fired for the form's context menu as well as for its main menu. Unfortunately, the form
does not raise these events for a control-specific context menu, and although you could handle such a menu's Popup
event, there is unfortunately no corresponding event to tell you when it goes away.

4.1.5 Menu Merging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many applications present several forms that all have similar but slightly different menus. This is particularly common
when forms inheritance is in use (see Chapter 6). MDI applications often have a related requirement: a form may make
subtle changes to its menu structure depending on which child window (if any) is active.

Unfortunately, we cannot exploit inheritance here as we would for building a group of similar forms: whereas the
structure and behavior of a form is represented by a class definition, the structure and behavior of a menu is defined by
an object graph constructed at runtime. All menus are made from a collection of objects that are always of the same
types (several MenuItem objects and either one MainMenu or one ContextMenu), so inheritance cannot help us here.

The good news is that the Menu class provides a solution. It provides a method called MergeMenu that allows us to take
an existing menu structure and extend or modify it to create a new menu. The resulting menu will be the combination
of the two menus, as illustrated in Figure 4-3.

Figure 4-3. Merged menus

Figure 4-3 illustrates the simplest way of using menu merging—two menus are combined, and the result is a menu
containing all the items from each. The MergeMenu method does a deep copy, so any submenus will also be duplicated.
This merging is easy to do—the following C# code (the VB code is almost identical) shows how to create a new context
menu by merging the items from two other menus:

ContextMenu mergedMenu = new ContextMenu();
mergedMenu.MergeMenu(menuFirst);
mergedMenu.MergeMenu(menuSecond);

But even this simple example raises an interesting question: how does the framework decide the order in which to place
the items in the created menu? While it has not reordered the items from each individual menu in Figure 4-3, it has
decided to insert the items from the second menu halfway through those of the first menu. The framework determines
how to interleave the menus' contents by looking at the MergeOrder property on each MenuItem. This property is an int or
Integer, and the framework guarantees that when combining menus, it will merge items in ascending MergeOrder order.
So the reason the framework decides to insert the second menu's contents halfway down becomes clear when we see
the MergeOrder property settings on the original menus:[3]

[3] The code is shown in C#. Once again, the VB code is similar, except that the C# this keyword is replaced with
Me, and VB does not use the semicolon to terminate a code statement.

this.menuHello.MergeOrder = 5;
this.menuWorld.MergeOrder = 5;
this.menuSeparator1.MergeOrder = 10;
this.menuFoo.MergeOrder = 100;
this.menuBar.MergeOrder = 100;

this.menuMore.MergeOrder = 20;
this.menuStuff.MergeOrder = 20;

The More and Stuff items in the second menu have a merge order of 20, which means that they appear between the
separator and the Foo entry, which have orders of 10 and 100, respectively. You can choose whatever values you like
for a merge order, but using 0 for the items you want to appear first, 100 for those you want to appear last, and more
or less evenly spaced values for those in between is a popular choice. (The default MergeOrder is 0.)

4.1.5.1 Advanced merging

The merging technique shown above is sufficient for many purposes, but you might need to do something a little more
complex. For example, sometimes it is not enough simply to add new items to a menu—you may wish to remove items.
Also, if you want to insert new items into a submenu instead of the top level menu, the naïve approach is insufficient:
by default you will end up with two identically named submenus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by default you will end up with two identically named submenus.

To support these more subtle merging techniques, the MenuItem class provides a MergeType property, which controls the
way an item is treated when it is merged. By default, its value is MenuMerge.Add, meaning that all items in the menu
being merged will be added as new items.

You can set MergeType to MenuMerge.Remove, which causes the corresponding entry not to appear. You would use this
value if the menu you are modifying contains an entry you would like to remove.

You must set the MergeType property on both source menus for this technique to work. If
the new menu being merged into the original menu attempts to remove an item, that
attempt will be ignored unless the original menu's corresponding item (the item with the
same MergeOrder) is also marked as MenuMerge.Remove.

So the MergeType property really has two meanings—on the original item it indicates the
allowable operations, and on the new item it indicates the operation being requested.
Unfortunately, not only is this overloading slightly confusing, it is somewhat restrictive—
there is no way to create a menu item that allows both the MergeItem and the Remove
operations. Conflicts are also dealt with a little inconsistently—if the original is Add and the
new is Remove, the new item is ignored; if the original is Remove and the new is MergeItem,
the item is replaced!

Setting MergeType to MenuMerge.Replace is similar to remove, except it replaces the original item with the one in the
menu being merged. Finally, MergeType can be set to MenuMerge.MergeItems. This value is used when you wish to modify
the contents of a submenu. Although you could modify a submenu by replacing it entirely, MergeItems is useful when
you want to make only minor modifications. You use this by supplying a MergeItems item corresponding to the submenu
item in the original menu, and then put child items underneath it, using Add, Remove, Replace, or MergeItems as
appropriate. For example, if you wanted to add an item to a main menu's File menu, you would not replace the entire
main menu, or even the entire File menu. The following code (in C#) would suffice:

MenuItem mergingFileMenu = new MenuItem();
mergingFileMenu.MergeType = MenuMerge.MergeItems;
mergingFileMenu.Text = "&File";

MenuItem menuExtraFileItem = new MenuItem();
menuExtraFileItem.Text = "Ext&ra";
menuExtraFileItem.MergeOrder = 10;
MenuItem menuExtraFileSeparator = new MenuItem();
menuExtraFileSeparator.Text = "-";
menuExtraFileSeparator.MergeOrder = 10;

mergingFileMenu.MenuItems.AddRange(new MenuItem[] {
 menuExtraFileItem,
 menuExtraFileSeparator});

MainMenu mergingMainMenu = new MainMenu(new MenuItem[] {
 mergingFileMenu });
mainMenu.MergeMenu(mergingMainMenu);

This adds an item labeled Extra to the File menu, followed by a separator. So even though we are merging two main
menus together, we are able to modify one of its submenus without having to replace that submenu wholesale. And
although this may look like a lot of code to add a single item, it is rather less than would be required to reconstruct the
whole menu. Furthermore, building a modified File menu from scratch presents code maintenance issues—if you want
to change the basic File menu, you would also need to change all the places where you build a modified version. But if
you use menu merging, any changes to the basic menu will automatically propagate to the modified versions.

Remember that this will only work if the original main menu's File menu item also has its MergeType set to
MenuMerge.MergeItems; if it were set to the default of MenuMerge.Add, you would end up with two File submenus in the
main menu.

4.1.5.2 Merging and MDI applications

If you build an MDI application, the framework can automatically take advantage of menu merging. The menus in such
applications typically consist of two types of items: those that are associated with a document window and those that
are a part of the main application frame. The set of available menu items is determined by whether a document window
is active (and if there is more than one kind of document window, it will depend on which one is active).

The application-level menu items are those that should always be present and that make sense even if there are no
open documents, such as items for file opening, document creation, or application configuration. Document-level menu
items are those that only make sense in the context of a document, such as items for file closing or saving, editing
operations, or view settings. MDI applications usually present just a single menu bar as part of the main application
frame, but its contents change between being just the application-level items or the complete set, according to whether
a document is active.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a document is active.

This seems like an ideal opportunity to use menu merging—the application-level items could be placed into one
MainMenu, the document level items into a second MainMenu, and these could be merged to create a third. All that would
need to be done would be to swap in the appropriate merged or unmerged version according to whether a child window
is active. Indeed, this is exactly how MDI applications usually work in .NET, but it turns out that Windows Forms can do
the menu merging automatically.

If you use the framework's built-in support for MDI applications (i.e., you establish the parent/child relationship with the
Form class's MdiParent or MdiChildren properties), it will assume that the parent form's MainMenu contains the application-
level menu items, and that any child form's MainMenu contains document-level items. Whenever an MDI child form is
activated, the framework will automatically merge its menu into the parent form's menu. If all MDI child windows are
closed, it reverts to the original parent form's menu.

So using menu merging in MDI applications requires almost no effort. The only thing you need to be careful about is
setting the correct MergeType—very often a child window will want to add entries (such as for adding a save and a close
entry to the File menu) into an existing menu in the parent. Both the parent and the child form's main menus will need
to contain File submenus, which must both have the same MergeOrder, and they must both have a MergeType of
MenuMerge.MergeItems.

4.1.5.3 Merging and forms inheritance

It is possible to define a form that derives from another form. We will be looking at the use of inheritance in detail in
Chapter 6, but we will quickly examine the inheritance-related aspects of menu merging here.

When building an inherited form, the derived class will automatically acquire the base class's menu. However, if you try
to edit the menu in the derived class, the Forms Designer will prevent you, complaining that the menu is defined on the
base class. To modify a menu on the derived form, you must use menu merging.

To modify the menu in the derived class, you must add a new MainMenu component to the form. Place whatever
modifications you require in this menu. To merge this menu in with the main menu requires a little code. Add the
following C# code to your constructor:

MainMenu mainMenu = new MainMenu();
mainMenu.MergeMenu(this.Menu);
mainMenu.MergeMenu(mainMenuDerived);
this.Menu = mainMenu;

The equivalent VB code is:

Dim mainMenu As New MainMenu()
mainMenu.MergeMenu(Me.Menu)
mainMenu.MergeMenu(mainMenuDerived)
Me.Menu = mainMenu

This builds a new MainMenu object, which takes the original menu and merges in mainMenuDerived (or whatever you
choose to call the MainMenu that you added to your derived form). It then sets this merged menu as the new main menu
of the form.

4.1.6 Owner-Drawn Menus

The standard appearance provided by the Windows Forms framework for menu items is pretty basic—you get simple
text, and you can optionally annotate menu items with a tick (just set the Checked property). If you want to draw your
own annotations, or otherwise provide richer visual information, the framework lets you draw your own menu items.
The use of GDI+ to perform custom drawing is discussed in detail in Chapter 7, but here we will look at the menu-
specific aspects of owner drawing.

You can decide to do your own drawing on a per-item basis by setting the MenuItem object's OwnerDraw property to true.
Unfortunately, it is an all or nothing decision: if you ask the framework to let you draw a particular item, you are
required to manage the whole drawing process. First, you must tell the framework the size of your menu item by
handling the MeasureItem event; otherwise, the item will default to having a height of 0 pixels. And you must also handle
the DrawItem event, in which you are responsible for drawing everything, including the text of the menu. (Turning on
OwnerDraw will prevent Windows from drawing anything other than the menu background.)

Because owner drawing is a per-item decision, it is possible to have a single menu with a
mixture of owner-drawn and system-drawn items.

You will receive the DrawItem event every time the item needs redrawing. This happens when the menu appears,
directly after the MeasureItem event, but it also happens again every time the mouse moves on or off the menu item, so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directly after the MeasureItem event, but it also happens again every time the mouse moves on or off the menu item, so
that you can highlight your item like Windows does for normal items. Your event handler will be passed a
DrawItemEventArgs object, whose State member indicates how the item should be drawn. This field is of type
DrawItemState, which is a bit field, so it may indicate multiple styles simultaneously. The flags that may be set are
Selected (indicating that the mouse is currently over the item), NoAccelerator (indicating that accelerator keys should not
be displayed; this will normally be set unless the user is operating the menu through the keyboard), and Checked
(indicating that a tick should be drawn by the item).

Examples Example 4-3 and Example 4-4 show a pair of event handlers for a very simple owner-drawn menu. The item
is always the same size because the MeasureItem handler always returns the same width and height. The DrawItem
handler simply draws an ellipse as the menu item, but it illustrates an important technique: it checks the item's state to
see if it is selected, and if so, it draws the menu background in the normal selected menu item color, and draws the
ellipse in the same color as selected text in a menu would be drawn. Note the use of the DrawBackground method of the
DrawItemEventArgs object to fill in the menu background—it draws the background in the appropriate color (i.e.,
SystemColors.Menu, unless the item is selected, in which case it uses SystemColors.Highlight). We call this whether the item
is in the selected state or not. You might think that this is unnecessary because, as mentioned above, the framework
draws the background for us. Unfortunately it only does that when the menu is first opened, so if we change the
background when our item is selected, we are required to put it back again when it is deselected.

Example 4-3. Simple owner-drawn menu item in C#

private void menuItem_MeasureItem(object sender,
 System.Windows.Forms.MeasureItemEventArgs e)
{
 e.ItemHeight = 17;
 e.ItemWidth = 100;
}

private void menuItem_DrawItem(object sender,
 System.Windows.Forms.DrawItemEventArgs e)
{
 Graphics g = e.Graphics;
 bool selected = (e.State & DrawItemState.Selected) != 0;
 Brush b = selected ?
 SystemBrushes.HighlightText : Brushes.Blue;
 e.DrawBackground();
 g.FillEllipse(b, e.Bounds);
}

Example 4-4. Simple owner-drawn menu item in VB

Private Sub menuItem_MeasureItem(sender As Object, _
 e As System.Windows.Forms.MeasureItemEventArgs) _
 Handles menuItem.MeasureItem
 e.ItemHeight = 17
 e.ItemWidth = 100
End Sub

Private Sub menuItem_DrawItem(sender As Object, _
 e As System.Windows.Forms.DrawItemEventArgs) _
 Handles menuItem.DrawItem
 Dim g As Graphics = e.Graphics
 Dim selected As Boolean = (e.State & DrawItemState.Selected) <> 0
 Dim b As Brush
 If selected Then
 b = SystemBrushes.HighlightText
 Else
 b = Brushes.Blue
 End If
 e.DrawBackground()
 g.FillEllipse(b, e.Bounds)
End Sub

Now that we have seen how to create menus, let us see how we can provide expert users with more direct access to
the most frequently used operations with toolbars.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Toolbars
Toolbars usually provide access to features that are also accessible through menus, but there's a tradeoff. Because a
toolbar is always visible, it can be clicked without having to navigate through a menu structure, but toolbars have a
slightly higher learning curve, because items are normally represented by buttons with a small bitmap; it is much
harder to represent an operation unambiguously with a tiny picture than it is to describe it with some text in a menu.

In Windows Forms, toolbars are represented by the ToolBar class, and individual buttons on it are represented by the
ToolBarButton class. Note that these classes provide a fairly basic style of toolbar—Windows Forms provides no support
for undocking toolbars or even rearranging them.

4.2.1 The ToolBar Class

ToolBar is a fairly simple class. It inherits from Control and must be docked; most applications dock the toolbar to the top
of the window. ToolBar is a simple class to use—it adds only a few properties to its base class.

The class provides an Appearance property, which must be one of the members of the ToolBarAppearance enumeration:
either Normal (the default) or Flat. When set to Normal, each toolbar button has a button-like raised edge. However, most
applications favor the Flat style these days, where the toolbar appears completely flat, and the buttons have no outline
except when the mouse is over them.

The ToolBar also controls where any text associated with a button appears through its TextAlign property. (A toolbar
button may optionally have a text label, like the Back button on Internet Explorer.) This property's type is the
ToolBarTextAlign enumeration, and it can be either Right or Underneath. The default is Underneath.

The most important property of a toolbar is Buttons, whose type is ToolBarButtonCollection. This contains all the
ToolBarButton objects on the toolbar. This is used in a similar way to the other collections we have seen, such as the
MenuItems collection. As usual, items are added with the AddRange method, as shown in the following C# code:

this.toolBar1.Buttons.AddRange(
 new System.Windows.Forms.ToolBarButton[] {
 this.toolBarFileNew,
 this.toolBarFileOpen,
 this.toolBarFileSave});

Most of the interesting features of the buttons are managed through the ToolBarButton class itself, but there is one
exception. Most buttons have images on them, and these images must be contained in an ImageList object. This is
stored in the ToolBar object's ImageList property. An image list is a collection of images all of equal size, gathered into a
single resource for efficiency, and a toolbar has just one ImageList containing all the images required for the whole
toolbar; individual buttons just specify indexes into this list. (Image lists are also used by the TreeView and ListView
controls.)

Visual Studio .NET provides an editor for building image lists. It merges multiple bitmap files into a single long thin
bitmap resource, which is the most efficient way of initializing an image list. The editor allows individual images to be
removed or added, and for the list to be reordered. (Unfortunately, it won't find all the places in your code where you
referred to an image by its index, so exercise caution when reordering the images.)

Note that the buttons on a toolbar are not proper controls—the only control is the toolbar itself. Because of this, the
ToolTip control will not be able to annotate individual toolbar buttons with the ToolTip extender property. Instead, the
ToolBar class provides its own support for ToolTips—just set its ShowToolTips property to true. In the following section, we
will see how to assign a ToolTip to each button, along with other button-specific properties.

4.2.2 The ToolBarButton Class

For each button contained in a ToolBar control, there is a corresponding object of class ToolBarButton. This turns out not
to be a proper control—the class inherits from System.ComponentModel.Component, not Control. This is because in Windows,
toolbars have always acted as single controls that provide the illusion of multiple buttons through careful redrawing and
event handling to avoid creating too many controls.[4]

[4] This is because versions of Windows with strong 16-bit lineage such as Windows 98 and Windows ME have
severe limitations on the number of controls that can be displayed at once. Until this code base finally dies out
(which will probably not happen until a few years after the average desktop machine ships with a 64-bit processor
as standard), these problems will still make their presence felt, through resource-conscious design decisions such
as these.

Toolbar buttons can have one of three appearances, determined by the Style property, which has the enumeration type
ToolBarButtonStyle. This can be PushButton, which is a normal button. Or it can be ToggleButton, which looks the same as a
normal button, except its state alternates between pushed and unpushed each time it is clicked. Or it can be a
DropDownButton, in which case it should have a ContextMenu associated with its DropDownMenu property—with this style,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DropDownButton, in which case it should have a ContextMenu associated with its DropDownMenu property—with this style,
the item will have a small downward-pointing arrow next to it, which will cause the context menu to be displayed. For
all three styles, the exact appearance is determined by the parent ToolBar object's Appearance property.

The Style property can also be set to Separator, in which case the item doesn't behave like a button at all—it simply
separates groups of other buttons.

You can specify which image the button contains with the ImageIndex property—this is an index into the containing
ToolBar control's image list. You can also display some text by setting the Text property. Remember that the location of
the text (either beside or underneath the image) is controlled by the containing ToolBar, through its TextAlign property.
(All buttons on a toolbar have the same text alignment.)

You can also provide ToolTip text for each button, through its ToolTipText property. This is essential if you want users to
be able to learn what your buttons do without resorting to trial and error, unless your drawing skills are so good that
you can convey any concept in a 15 x 15 pixel bitmap.

So we can now create toolbars and fill them with buttons. But as with menus, for this to be of any use, we must provide
event handlers for when the buttons are clicked. The next section describes how to do this.

4.2.3 Event Handling

Handling events from toolbars is slightly inconvenient, because individual ToolBarButton objects do not raise events.
Whenever the user clicks a button on a toolbar, the object that raises the event is the toolbar itself, through its
ButtonClick event.

The ButtonClick event handler type is ToolBarButtonClickEventHandler. As usual, the first parameter is the sender of the
event (the toolbar). The second is of type ToolBarButtonClickEventArgs, which contains a single property, Button. This is a
reference to the ToolBarButton that was clicked. (There is also a ButtonDropDown event of the same type, which is raised
for buttons whose style is DropDownButton.)

There is no direct way to associate a single handler method with a particular button. However, you can call the
Buttons.IndexOf method on the toolbar to find the index of the button that was pressed—the buttons are numbered from
left to right, starting at index 0. So you could handle these clicks with a switch statement, as shown in the C# code in
Example 4-5, or with a Select Case statement, as shown in the VB code in Example 4-6.

Example 4-5. Simple toolbar button click handling in C#

private void InitializeComponent()
{
 . . .
 this.toolBar.ButtonClick +=
 new System.Windows.Forms.ToolBarButtonClickEventHandler(
 this.toolBar_ButtonClick);
 . . .
}

private void toolBar_ButtonClick(object sender,
 System.Windows.Forms.ToolBarButtonClickEventArgs e)
{
 switch(toolBar.Buttons.IndexOf(e.Button))
 {
 case 0:
 MessageBox.Show("New");
 break;

 case 1:
 MessageBox.Show("Open");
 break;
 }
}

Example 4-6. Simple toolbar button click handling in VB

Private Sub toolBar_ButtonClick(sender As Object, _
 e As System.Windows.Forms.ToolBarButtonClickEventArgs)
 Select Case toolBar.Buttons.IndexOf(e.Button)
 Case 0
 MsgBox("New")
 Case 1:
 MsgBox("Open")
 End Select
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

However, because most toolbar buttons are directly equivalent to a menu item, you might find the unified technique
described in the next section more convenient.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Unified Event Handling
The majority of toolbar buttons act as shortcuts to menu items, so it makes sense to handle equivalent clicks with a
single event handler. Unfortunately, Windows Forms does not provide a direct way of doing this. However, it is fairly
easy to arrange such a scheme. We can write an event handler for the toolbar that locates the appropriate menu item
and then calls its event handler.

All we need is some way of associating toolbar buttons with menu items. For this, we can use a class provided by the
.NET Framework class libraries called System.Collections.Hashtable—it is designed to store associations between objects.
We can use this to remember which toolbar buttons are equivalent to which menu items. Although the Designer cannot
store these associations in a hash table for you automatically, it only requires a small amount of code in your form's
constructor. The following is the necessary C# code:

// Hashtable to associate buttons with menu items
private Hashtable toolbarButtonToMenu;
public MyForm()
{
 InitializeComponent();

 // Create hash table
 toolbarButtonToMenu = new Hashtable();

 // Associate ToolBarButtons with MenuItems
 toolbarButtonToMenu(toolBarFileNew) = menuFileNew;
 toolbarButtonToMenu(toolBarFileOpen) = menuFileOpen;
 toolbarButtonToMenu(toolBarEditCopy) = menuEditCopy;
 toolbarButtonToMenu(toolBarEditCut) = menuEditCut;
 toolbarButtonToMenu(toolBarEditPaste) = menuEditPaste;
 toolbarButtonToMenu(toolBarEditDelete) = menuEditDelete;
}

The following is its VB equivalent:

' Hashtable to associate buttons with menu items
Private toolbarButtonToMenu As HashTable

Public Sub New()

 InitializeComponent()

 ' Create hash table
 toolbarButtonToMenu = New Hashtable()

 ' Associate ToolBarButtons with MenuItems
 toolbarButtonToMenu(toolBarFileNew) = menuFileNew
 toolbarButtonToMenu(toolBarFileOpen) = menuFileOpen
 toolbarButtonToMenu(toolBarEditCopy) = menuEditCopy
 toolbarButtonToMenu(toolBarEditCut) = menuEditCut
 toolbarButtonToMenu(toolBarEditPaste) = menuEditPaste
 toolbarButtonToMenu(toolBarEditDelete) = menuEditDelete
End Sub

This creates a hash table called toolbarButtonToMenu, which associates toolbar buttons (toolBarFileNew, toolBarFileOpen,
etc.) with their respective menu items (menuFileNew, menuFileOpen, etc.). With this association in place, the following C#
code can be placed in the toolbar's ButtonClick handler to direct all clicks on toolbar buttons to the appropriate menu
item:

private void toolBar_ButtonClick(object sender,
 System.Windows.Forms.ToolBarButtonClickEventArgs e)
{
 MenuItem mi = toolbarButtonToMenu[e.Button] as MenuItem;
 if (mi != null)
 mi.PerformClick();
}

The corresponding VB code is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The corresponding VB code is:

Private Sub toolBar_ButtonClick(sender As Object, _
 e As System.Windows.Forms.ToolBarButtonClickEventArgs) _
 Handles toolBar.ButtonClick

 Dim mi As MenuItem = toolbarButtonToMenu(e.Button)
 If Not mi Is Nothing Then
 mi.PerformClick()
 End If
End Sub

This simply looks in toolbarButtonToMenu to see if the button that was clicked has an associated menu item. If it does, it
uses the MenuItem class's PerformClick method, which generates a Click event on that item. This will then be handled by
that menu item's click handler.

So with this code in place, clicking on a toolbar button will cause the associated menu item's Click event to be raised,
allowing you to handle these two events with a single event handler.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.4 Office-Style Menus and Toolbars
The Microsoft Office suite provides menus and toolbars that are a little different from the standard ones. Menu items
have icons next to them, usually matching the icons used in the toolbar. The latest versions have the new "flat" look.
(Menus don't have the raised border, nor do toolbar buttons, even when highlighted.) The menus themselves are on
toolbars that can be dragged around, and items can even be dragged between the menu bar and other toolbars.

A commonly asked question is: can I get Office-style menus and toolbars with Windows Forms? Unfortunately, at the
time this book went to press, the answer was no. Currently, the only two options are to recreate the behavior of Office
menus and toolbars yourself, or to buy a third-party component to supply this behavior. Writing this behavior from
scratch is nontrivial—you can get part of the way there by using owner-drawn menus, but you would still need to write
a completely new toolbar.

For some reason, the development tools have always provided menu and toolbar support that is at least one generation
behind the menu system used by the development environment itself. This is still true with Visual Studio .NET 2003—
the IDE has Office-style toolbars, and yet provides no easy way of adding these to your own applications. With luck, this
will be addressed in a future version of the tools.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.5 Summary
Almost all Windows applications provide menus, Because they are the easiest way to provide a wide array of
functionality without cluttering up the user interface. In Windows Forms, menus are represented as hierarchies of
objects, with each menu item represented by an instance of the MenuItem class. A simple event model is used to notify
the program when the user makes a menu selection. Keyboard accelerators and shortcuts are handled automatically,
and integrate into the same event model. Menu structures can be reused and extended through menu merging, and the
basic appearance of a menu can be replaced by supplying owner-drawn menu items. Toolbars can provide easy access
to frequently used menu items, allowing expert users to work with an application more efficiently. Although toolbar and
menu events are handled separately, it is relatively easy to channel events from both into a single set of click handlers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Building Controls
Windows Forms provides a rich array of built-in controls. It allows you to customize their behavior and, to some extent,
their appearance. But powerful as these controls are, it is very useful to be able to augment this toolkit of standard user
interface elements with controls of your own devising.

There are several ways in which you can define your own controls. The easiest is to create a composite control—a user
interface element built out of a collection of other controls. This has the virtue of being simple, but sometimes you will
require greater flexibility. You can write a custom control, where you dictate all aspects of its behavior. You can also
create classes that inherit from other controls.

All user interface elements derive from the Control class, and any that you write are no exception. This means that even
when writing a custom control, you can rely on the base class to supply all the required basic functionality; you only
need to write code for the behavior unique to your control.

In this chapter, we will look at how to compose a group of controls into a single reusable user interface element with
the UserControl class. We will then see how to write your own custom control from scratch. Finally we will look at some
of the software design issues that user-defined controls must deal with.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Composite Controls
The built-in controls are undeniably very useful—almost every Windows application uses them. Not only does this avoid
reinventing the wheel, it also enhances usability: consistency is a desirable property in interactive applications. By using
the standard controls, you guarantee consistency, both within your program and also with other Windows applications.
Arguably one of Windows' greatest strengths is that most applications have a great deal in common—experienced users
are familiar with all the standard control types, such as buttons and comboboxes. Using controls that users know and
understand reduces the amount of learning required to use your application.

So it makes sense to use the standard Windows controls wherever possible. But your application may also be able to
reap the usability benefits of consistent design on a larger scale—it may be possible to reuse whole chunks of the user
interface, not just individual controls. For example, consider an email application. Many email clients allow items to be
viewed through a preview pane in the main window as well as in a standalone window. These two views are likely to
have a great deal in common—the main area showing the contents of the email will need to do the same thing in both
cases. The area showing parts of the email header (fields such as From, To, and Subject) will be either the same or
similar. And in a high-quality application, these parts of the UI are likely to be fairly sophisticated. You might want the
From and To fields to provide pop-up menus allowing the user to send mail to individual recipients, or add them to an
address list.

It would be irritating if the header fields behaved inconsistently, because they are supposed to represent the same
things in both locations. If these fields presented a pop-up menu when examining an email in its own window, but failed
to do so in the preview pane, it would likely frustrate the user. Not only is it annoying for the user, it is clearly
counterproductive for the developer: if a section of the UI that has the same function must appear in two different
places, you won't want to write the same code twice—not only do you risk inconsistent behavior, you are wasting your
time.

What we want is some way of taking such sections of the user interface and turning them into reusable components.
This is exactly what composite controls are all about. In Windows Forms, we build composite controls with the
UserControl class.

5.1.1 The UserControl Class

The UserControl class is the base class for all composite controls, which are reusable portions of user interface. Any class
based on UserControl consists of one or more child controls and some code that manages their behavior. Once you have
created such a composite user interface element, any Windows Forms application can use it just like any other control.

The UserControl class is surprisingly similar to the Form class. Both derive from ContainerControl, enabling them to manage
the focus as it moves around the child controls. Both can be scrollable, because ContainerControl derives from
ScrollableControl. Both let you assemble child controls into a useful chunk of user interface. Both are even edited in the
same way in Visual Studio .NET—the Forms Designer can design a UserControl as well as a Form.

The main difference between a Form and a UserControl is that the UserControl is designed to be dropped into a container—
either a Form or another UserControl.[1] Consequently, a UserControl has no border or titlebar, and cannot be a top-level
window.

[1] In fact, there is nothing preventing a form from being a child of another window—this is how MDI applications
work. It is just that there is no support for this in the designer.

Figure 5-1 shows an example of a composite control displayed in the Visual Studio .NET Designer. As with a form, the
selection outline and grid points are visible, you can drag and drop controls into here from the Toolbox, and you can use
any control, including ones you have designed yourself. Any control that works in a form also works in a composite
control. (Recursion is not allowed though—it would make no sense for a control to contain a copy of itself.)

Figure 5-1. A UserControl in the Designer

The control in Figure 5-1 consists of several label controls, some of which are empty because their values are
determined at runtime, and displays information from an email header. (The empty controls have been indicated with a
dotted outline above so that you can see them.) Although it just looks like a few labels on a form, such a control could
easily be fairly complex. For example, it would probably have custom layout logic to deal with different lengths of email
address. And emails often go to many recipients, so this layout might be nontrivial, maybe even needing scrollbars on
the recipient list. The email addresses would most likely have context menus associated with them for the reasons
discussed earlier. The control might optionally support displaying other header items. For a professional quality
application, this kind of feature list can run on and on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application, this kind of feature list can run on and on.

In other words, a simple-looking part of the user interface can turn out to have a surprising amount of code associated
with it. So if that user interface fragment is likely to be used in multiple contexts (e.g., in the standalone and preview
views shown in Figures Figure 5-2 and Figure 5-3[2]), you will want to be able to reuse the code rather than copying it
into two different places. By encapsulating this piece of the user interface as a UserControl, you make such reuse simple.
You also guarantee consistency by making sure that just one component is used in both contexts.

[2] If you are wondering why some of the labels appear to be in a different font from that in Figure 5-1, this
particular control uses an emboldened version of the font for these labels (as specified by the Font property). This
font selection is done at runtime, which is why it doesn't show in the Designer.

Figure 5-2. A composite control in a preview panel

Figure 5-3. A composite control in a standalone window

From the point of view of a form that uses a composite control (such as those in Figure Figure 5-2 and Figure 5-3), the
control is no different from any other. It derives (indirectly) from Control, and so it supports all the normal properties
and behavior. For example, in these two cases, docking has been used to position the controls. Developers using your
component would not necessarily be aware that it was based on UserControl—as far as they are concerned, it's just
another control.

In fact, Visual Studio .NET can even put your class into the Toolbox automatically. If your solution contains a
UserControl, it will appear in the Toolbox when you edit any other form or user control in the designer. (If you are using
Visual Studio .NET 2002, the control will appear at the bottom of the Windows Forms tab in the Toolbox. If you are
using Visual Studio .NET 2003, it will appear in the My User Controls tab.) Note that you must do two things for this to
work: first, your project must have been built (without errors) for it to appear; second, you may need to close the
Designer window and reopen it after building before the control will appear in the Toolbox. (This only works when using
a control defined in the same solution. If you want to use a control defined elsewhere, you will need to add the
component to the Toolbox manually.)

Because the UserControl class is so similar to the Form class, it should come as no surprise that creating a composite
control is essentially the same as designing a form—you arrange the constituent controls and handle events in the same
way for both. The Visual Studio .NET Designer generates almost exactly the same code for forms and composite
controls. Apart from the absence of a window border or support for a main menu, the only difference between writing a
form and a composite control is that with a control, you are not only designing a user interface, you are also providing a
programming interface—your control will be used by other developers, and you must bear their requirements in mind as
well as the needs of the end user. The issues here are the same for all user-defined controls, so we will discuss them
towards the end of the chapter.

5.1.2 Reusing Without Inheritance

The purpose of composite controls is to enable reuse—a section of user interface can be encapsulated in a control and
reused in any number of different contexts. Code that reuses a composite control is not required to inherit from it. This
shouldn't be surprising, but it is worth stressing because many people often equate reuse in an object-oriented system
with inheritance. The most important form of reuse is containment; for example, a form can contain one or more
instances of a composite control. Inheritance is a much more specialized technique.

When designing a new composite control, few developers would make the mistake of attempting to derive from another
user control when it would be inappropriate.[3] But there is a fairly common scenario where it is much easier to fall into
the trap of misuse of inheritance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the trap of misuse of inheritance.

[3] Inheritance is not always the wrong thing to do—see the next chapter. It is just a less widely applicable
mechanism than is commonly supposed.

You may want to create a reusable control that is very similar to one of the built-in controls, but that adds to its
behavior in some way. Inheritance seems like an attractive option here—after all, the whole point of inheritance may
appear to be that you can take a class and extend it in some way. But while inheritance can be the right way to go in
these circumstances (and the next chapter explains how to do this), it is more often the wrong approach. To understand
why, we must bear in mind that inheritance always implies an "is a" relationship. If you make your control derive from
some other control, you are making a strong statement: you are saying that your control is compatible in every respect
with the control from which it derives.

Consider a control whose purpose is to present an XML document through a tree-like view. We already have a built-in
control for showing tree-like structures: the TreeView. Basing our control on this will be the right thing to do, because
there is no sense in writing our own tree control from scratch. However, it would be a mistake to inherit from TreeView—
our control merely uses a TreeView to provide the display we require, it is not accurate to say that our control "is a"
TreeView.

Suppose we did simply inherit from TreeView. Our control's programming interface would be an extension of TreeView.
Every method and property provided by TreeView would also be available on our class—that's what inheritance does. So
in the case of our control, what would it mean if a form that uses our hypothetical XmlTreeView were to call
Nodes.Add("Another node")? This is allowable on a normal TreeView—it will add a new root node to the tree. And if it is
allowable on a TreeView, then by definition it is also allowable on anything that derives from TreeView. But our
XmlTreeView is supposed to provide a view of an XML document, and they're not allowed to have more than one root
element.

In theory, we could work around this particular semantic mismatch; we could, for instance, override the Nodes property
and throw an exception for this specific case, or maybe we could make the root of the document implicit, in which case
adding a new node would not be invalid (assuming we aren't trying to enforce conformance with a schema or DTD). But
the fact is we probably didn't want to go this route at all. Building a visual tree that represents the structure of an
existing document is one thing. Trying to apply any changes made to that tree back to the document is something else
entirely. It may not even be possible—we might not be able to save the XML document after having modified it,
because not all document sources are writable. In any case, by inheriting from TreeView, we have committed ourselves
to providing its public programming interface while preserving whatever our control's semantics are. In doing so, we
have almost certainly bought into much more complexity than we really wanted.

So what is the alternative? Reuse through containment is a much better approach here. You can use the TreeView as
part of your control's implementation details, but you won't be committing yourself to exposing its API. You can present
whatever methods and properties you like, providing just the functionality you require, rather than all the functionality
implied by inheriting from some control. The part that often trips people up is that although the TreeView is then a
private implementation detail that is invisible to code that uses your control, it remains visible to the end user. As far as
the control's visible behavior at runtime goes, it will look exactly like a normal TreeView.

Fortunately, it turns out to be remarkably easy to reuse controls in this way. If you want to create a control that looks
and feels to the end user just like one of the built-in controls, but that you wish to wrap in some extra code, UserControl
provides an easy way of doing this without using inheritance. Simply create a new composite control in the normal way,
use the designer to add an instance of the control you wish to reuse, and set the added control's Dock property to
Dock.Fill. This will cause the contained control to be the same size as your composite control (i.e., whatever size the
code that uses your control decides to make it). From the end user's point of view, the control will look and behave
exactly like the control on which yours is based. But from a software design point of view, the contained control is an
internal implementation detail. It will be inaccessible to code that uses your component, which means that you will
remain in charge of its behavior.

The UserControl class provides a great way to build reusable pieces of user interface out of other controls. But sometimes
the functionality you require just isn't supplied by any of the built-in types and cannot easily be created by combining
them. For example, if you are writing a vector drawing program, it would be heroically foolhardy to attempt to build an
interactive picture editor from a combination of edit boxes and picture box controls. It would be much better to build a
control from scratch, so that you can make it behave exactly as you require.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Custom Controls
If your application needs a UI component whose behavior is sufficiently different from any of the built-in controls, it
usually makes sense to write a special-purpose control for the job. And although writing a control from scratch is
slightly harder work than just reusing existing controls, it is normally more straightforward than trying to bend an
unsuitable control to meet your needs.

Custom controls derive directly from Control. This means that you're not really starting from scratch at all—your class
will automatically have all the functionality that is common to all controls. But there are two areas in which you are on
your own: your control's appearance and the way it handles input from the user.

With a custom control, you are given a blank slate. It is your responsibility to determine the control's appearance. In
fact, the main reason for creating a custom control is often that none of the built-in ones looks right for the application.
So we will now see how your control can draw itself, and we will then look at how to deal with input from the user.

5.2.1 Redrawing

When your control first becomes visible at runtime, Windows Forms will ask it to draw itself. It does this by calling your
control's OnPaint method. This method is defined by the Control class, but its implementation doesn't draw anything. The
built-in control types supply an implementation of OnPaint for you, but with a custom control, it is your job to override
this and draw the control as you see fit.

Visual Studio .NET provides wizards for adding both user controls and custom controls.
However, the wizard for custom controls is not available directly from the menus. You
must choose the Add New Item... menu item. You can find the custom control wizard in
the UI category of the Add New Item dialog.

If you add a custom control to a project using Visual Studio .NET, you will see that it provides you with a skeleton class
definition consisting of a constructor and an OnPaint method like that shown for C# in Example 5-1[4] and for VB in
Example 5-2. Note that it has added a call to the base class's OnPaint method. You are required to do this whenever you
override any of the Control class's methods that begin with On. These methods all correspond to events (so there is an
OnClick and an OnLayout method, for example). The framework always raises an event by calling the associated OnXxx
method, which gives the control class the chance to process that event before any event handlers are called. If you
failed to call the base class's method after having overridden it, the event would never be raised—it is the Control.OnXxx
methods that are responsible for calling any event handlers that clients of this control may have attached. They also
very often do other work too, so you must always make sure you call them when you override such a method.

[4] First you will have to switch to the code view; when you create a new custom control, Visual Studio .NET
inexplicably shows the design view, even though you cannot do anything useful to custom controls in it.

Example 5-1. A skeleton OnPaint function in C#

protected override void OnPaint(PaintEventArgs pe)
{
 // TODO: Add custom paint code here

 // Calling the base class OnPaint
 base.OnPaint(pe);
}

Example 5-2. A skeleton OnPaint function in VB

Protected Overrides Sub OnPaint(_
 ByVal pe As System.Windows.Forms.PaintEventArgs)
 MyBase.OnPaint(pe)
 'Add your custom paint code here
End Sub

The existence of an OnPaint method implies that all controls raise a Paint event. This is indeed the case, and by handling
that event, you can actually modify the appearance of other controls by drawing over them. (However, some controls
deliberately hide the Paint event in the Forms Designer. This is usually because they are doing something unusual that
will cause handling of the Paint method not to have the anticipated effects. For example, if you set the Button control's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will cause handling of the Paint method not to have the anticipated effects. For example, if you set the Button control's
FlatStyle property to FlatStyle.System, it will let the operating system draw the button. This is not likely to interact well
with any drawing done in the button's Paint event handler.)

But in a custom control, there is no need to add an event handler for the Paint event—we simply take the direct route
and override OnPaint. Notice that this method is passed an object of type PaintEventArgs, as shown in Examples Example
5-1 and Example 5-2. This provides us with two properties: Graphics and ClipRectangle. The ClipRectangle property returns
an object of type Rectangle that tells us exactly which part of the control must be redrawn. We may well not be required
to draw the entire control—possibly a window that is on top of our control has been moved slightly, causing a small,
previously hidden portion to come into view. We would be wasting our time if we attempted to draw parts that didn't
need redrawing. There's no actual harm in drawing too much—Windows Forms clips whatever we draw to the part that
actually needs redrawing—but if your control's appearance is complex, it will speed things up if you use the ClipRectangle
property to work out which parts you don't need to redraw.

Examples Example 5-1 and Example 5-2 both call the OnPaint method in the base class by
calling base.OnPaint and MyBase.OnPaint, respectively. Unfortunately, the skeleton class
produced by Visual Studio .NET for a Visual Basic custom control suggests that any
drawing code should appear after this call to the base class—it places the comment on the
following line. This is unhelpful because such drawing should take place before calling the
base class's OnPaint method. (The C# skeleton has the comment in the correct place.)

A common misconception is that the base class OnPaint method is responsible for drawing
the control background and that it should therefore be called first. This is untrue: the
background is painted in OnPaintBackground, which is called before OnPaint. All that the base
class does in OnPaint is raise the Paint event. It is important to make sure this happens
after your control has finished painting itself, because otherwise, clients of your control
that handle the Paint event will end up painting underneath your control instead of over it.

The most important feature of the PaintEventArgs object is the Graphics property, whose type is a class also called
Graphics. This object is our entry point into GDI+, the part of the .NET Framework class libraries dedicated to drawing. It
is the subject of Chapter 7, so we will not go into much detail here. For the purposes of illustrating how to implement
the OnPaint method, it is sufficient to know that the Graphics object provides various methods for drawing shapes and
text onto the screen.

Example 5-3 shows a simple implementation of OnPaint in C# that draws a basic table. Example 5-4 shows the
equivalent code in VB. (Figure 5-4 shows how this control will look in the Designer when it is used on a form.) The core
of this method is the loop that prints out each table entry to the screen using the Graphics object's DrawString method.
The DrawString method will be discussed in detail in Chapter 7, along with the other GDI+ features.

Example 5-3. Drawing a simple table in C#

protected override void OnPaint(PaintEventArgs pe)
{
 const int tableEntries = 10;
 const int entryHeight = 12;

 using (Brush b = new SolidBrush(ForeColor))
 {
 for (int i = 0; i < tableEntries; ++i)
 {
 string s = string.Format("Table entry {0}", i+1);
 Point position = new Point(0, i * entryHeight);
 pe.Graphics.DrawString(s, Font, b, position);
 }
 }

 // Calling the base class OnPaint
 base.OnPaint(pe);
}

Example 5-4. Drawing a simple table in VB

Protected Overrides Sub OnPaint(_
 ByVal pe As System.Windows.Forms.PaintEventArgs)

 Const tableEntries As Integer = 10
 Const entryHeight As Integer = 12

 Dim b As Brush = New SolidBrush(ForeColor)
 Try
 Dim i As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim i As Integer
 Dim s As String
 Dim position As New PointF()

 For i = 0 To tableEntries - 1
 s = String.Format("Table entry {0}", i + 1)
 position.X = 0
 position.Y = i * entryHeight
 pe.Graphics.DrawString(s, Font, b, position)
 Next
 Finally
 b.Dispose()
 End Try

 ' Calling the base class OnPaint
 MyBase.OnPaint(pe)
End Sub

The code in Examples Example 5-3 and Example 5-4 also highlights a very important feature common to most OnPaint
methods—it honors the settings of certain properties on the control. The Control class provides a Font property, and
because we are displaying text, we pass the Font object returned by that property to the DrawString method. So if the
user modifies our Font object, we will draw with whatever font she has specified; otherwise we will use the ambient
font, as determined for us by the Control class. Likewise, we have used the Color object returned by the ForeColor
property, also supplied by Control (and also an ambient property) to determine the color in which the text should be
drawn. (The use of the Brush class will be discussed in Chapter 7, although you will recognize the using construct from
Chapter 3 in the C# code in Example 5-3—this ensures that the Brush object's resources are released as soon as we
have finished drawing. Because VB does not provide an equivalent to the using construct, we've had to add a call to the
Dispose method ourselves.)

Figure 5-4. A custom control in use

Figure 5-4 raises a interesting point. We are looking at the Forms Designer here, as the grid points and selection outline
make clear. But our control is displayed correctly, which implies that its OnPaint method must have been called—there is
no other way that the table could have appeared. This is an important feature to understand about the Designer—it
creates instances of your controls' classes at design time, and will call certain methods on them, such as OnPaint. This is
why your controls must have been built successfully before they can be used in the Designer—if they haven't been built,
they certainly can't be loaded or have their methods run. Even if they have been built without error, certain methods
(such as OnPaint) must execute correctly for the control to work properly in the Designer. Chapter 9 will talk about the
design-time environment in depth.

If you are trying out code in Visual Studio .NET as you read this book, you may have hit a problem at this point. It is
not entirely obvious how you use a custom control from the Forms Designer. Although the development environment is
smart enough to detect when you have added a UserControl to your project, and adds it to the Toolbox automatically, it
doesn't do this for custom controls. You have to right-click on the Toolbox, select Customize Toolbox . . . , choose the
.NET Framework Components tab, and browse for the DLL containing your control. Once you have added the DLL, the
Toolbox will show any custom controls that it contains.

Drawing your components is essentially straightforward: override OnPaint and use GDI+ to paint your control. Because
GDI+ is dealt with in Chapter 7, we will now move on to dealing with user input.

5.2.2 Handling Input

The custom control in the previous section is inert—it will always look the same and will not respond to any user input.
Some of the built-in controls are like this; for example, PictureBox just displays an image. But most of your controls will
need to deal with mouse or keyboard input, and they may need to modify their appearance in response to this input.

5.2.2.1 Mouse input

Your control could simply attach event handlers to itself at runtime—because it derives from Control, all the standard
events described in Chapter 2 are available. However, there is a much more direct way of receiving events. In the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

events described in Chapter 2 are available. However, there is a much more direct way of receiving events. In the
previous section, instead of attaching an event handler to the Paint event, we simply overrode the OnPaint method. We
can do the same thing for input handling. For example, instead of handling the MouseDown and MouseUp events, we can
simply override their counterparts,[5] as shown in Example 5-5 in C# and Example 5-6 in VB. Overriding these OnXxx
methods is the preferred approach when writing your own controls because it is more efficient than attaching event
handlers, and lets you determine whether your code runs before or after any attached event handlers.

[5] If you are using C# in Visual Studio .NET, here is a useful timesaving tip: you can get the IDE to add
declarations for such overrides automatically. Having added a new custom control, go to your project's Class View
window (hit Ctrl-Shift-C, or simply select it from the View menu), expand the tree item for your control, and drill
down through the Bases and Interfaces item and into the Control item. This will list all the methods on the Control
class. Right-click on the one you require, such as OnMouseDown, and under the Add item, select Override from the
submenu. This will add an empty function definition with the correct signature. Sadly, it doesn't add the call to the
base implementation (e.g., base.OnMouseDown(e)) so don't forget to add that yourself. Note that the Add option
does not appear on the context menu in projects using Visual Basic. If you are using VS.NET 2003, you do not
need to use the Class View—if you simply type the word override inside a C# class definition, an IntelliSense pop-
up will appear showing a list of overridable methods.

Example 5-5. Handling mouse events in a custom control in C#

private bool pressed = false;
protected override void OnMouseDown(MouseEventArgs e)
{
 if (e.Button == MouseButtons.Left)
 {
 pressed = true;
 Invalidate();
 }
 base.OnMouseDown(e);
}

protected override void OnMouseUp(MouseEventArgs e)
{
 if (e.Button == MouseButtons.Left)
 {
 pressed = false;
 Invalidate();
 }
 base.OnMouseUp(e);
}

Example 5-6. Handling mouse events in a custom control in VB

Protected Overrides Sub OnMouseDown(ByVal e As MouseEventArgs)
 If e.Button = MouseButtons.Left Then
 pressed = True
 Invalidate()
 End If
 MyBase.OnMouseDown(e)
End Sub

Protected Overrides Sub OnMouseUp(ByVal e As MouseEventArgs)
 If e.Button = MouseButtons.Left Then
 pressed = False
 Invalidate()
 End If
 MyBase.OnMouseUp(e)
End Sub

Examples Example 5-5 and Example 5-6 illustrate three important techniques. First, notice that the handlers call the
base class's OnMouseUp and OnMouseDown methods—this is mandatory in all such overrides. Second, the control is
maintaining some internal state that is modified by the user's input—the pressed field will be true whenever the mouse's
left button is held down over the control, and false when it is not. (Remember that Windows Forms automatically
captures the mouse when a button is pressed while over a control. So our OnMouseUp method will always be called even
if the mouse moves away from our control after OnMouseDown was called.)

The final point to note is that the methods call Invalidate once they have changed the control's state. This is a method of
the Control class that tells the framework that what is currently on screen is no longer a valid representation of the state
of the object. This will cause the framework to redraw the control. You must do this whenever you change any of the
data that the control uses to determine how to draw itself.

Examples Example 5-7 and Example 5-8 show a simple OnPaint method in C# and VB, respectively, that makes the
control's appearance reflect its internal state. Most of the time, this will just draw the text normally, but when the left
button is held down (i.e., pressed is true), it inverts the color of the control by filling the control's area with a rectangle
using the control's foreground color, and then drawing the text over it in the background color.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using the control's foreground color, and then drawing the text over it in the background color.

Example 5-7. Representing internal state through appearance in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Brush fore = new SolidBrush(ForeColor),
 back = new SolidBrush(BackColor))
 {

 Brush rbrush = pressed ? fore : back;
 Brush tbrush = pressed ? back : fore;

 g.FillRectangle(rbrush, ClientRectangle);
 g.DrawString(Text, Font, tbrush, ClientRectangle);
 }

 // Calling the base class OnPaint
 base.OnPaint(pe);
}

Example 5-8. Representing internal state through appearance in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim fore As Brush = New SolidBrush(ForeColor)
 Dim back As Brush = New SolidBrush(BackColor)

 Try
 Dim rBrush, tBrush As Brush
 If pressed Then
rBrush = fore
tBrush = back
 Else
rBrush = back
tBrush = fore
 End If

 g.FillRectangle(rBrush, ClientRectangle)
 Dim crectf As New RectangleF(ClientRectangle.X, _
 ClientRectangle.Y, _
 ClientRectangle.Width, _
 ClientRectangle.Height)
 g.DrawString(Text, Font, tBrush, crectf)
 Finally
 fore.Dispose()
 back.Dispose()
 End Try

 ' Calling the base class OnPaint
 MyBase.OnPaint(pe)
End Sub

The OnPaint method will be called by the framework whenever a redraw is required, because the mouse event handlers
(shown in Examples Example 5-5 and Example 5-6) call Invalidate whenever they change the control's state. It is your
responsibility to do this because the framework has no idea whether a change in your object's state will require the
control to be redrawn. It only calls OnPaint when you tell it that what is currently on screen is no longer valid.

This is a very simple example, but more complex custom controls work in much the same way. For example, you might
write a custom control that displays an editable picture. Its OnPaint method would have a lot more work to do—it would
need to iterate through all the items in the drawing and call the appropriate methods on the Graphics object to display
them (probably using the ClipRectangle property in the PaintEventArgs object to determine which parts of the drawing
don't need to be drawn). But the principle is still the same: OnPaint draws a representation of the control's internal state
onto the screen, and whenever that state changes, it is your program's responsibility to notify the framework.

Sometimes you will change the state in such a way that only a small part of the control's display needs redrawing. For
example, if your control shows a table, and you change a single cell in that table, you wouldn't want to redraw the
entire table. Because of this, the Invalidate method is overloaded, allowing you to be more selective. The version we
used in Example 5-5 takes no parameters and invalidates the entire control, but you can pass parameters indicating
which part has changed. For example, you can supply a Rectangle, indicating which area you would like to redraw. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which part has changed. For example, you can supply a Rectangle, indicating which area you would like to redraw. This
can enable your control to update itself much more quickly, which can be particularly important if you are updating the
display because of a drag operation—if the user is moving an item around with the mouse, you will want your control to
repaint itself as responsively as possible; otherwise, the application will feel sluggish, and it will feel to the user as
though the mouse has become bogged down in treacle.

5.2.2.2 Keyboard input

Of course, the mouse is not the only input device. Most controls that support mouse input will also want to allow
themselves to be controlled with the keyboard, for ease of use and accessibility. By and large, this is fairly
straightforward—you just override the appropriate methods, such as OnKeyPress. (This corresponds to the KeyPress event
described in Chapter 2.)

For controls that allow text to be typed in, there is an obvious interpretation for key presses—each letter that the user
types will cause a character to appear on the screen. But for controls that don't need to support text entry, it may still
be worth supporting keyboard input for accessibility. For example, most of the standard controls will behave as though
you clicked on them if you press the spacebar while they have the focus. If you wish to do this, the way to fake a click
event is to call the OnClick method yourself. Overriding this method in your control ensures that your control does the
same thing as it would have done if it really had been clicked, and when the base class's OnClick method runs, it will
raise the control's Click event.

The Control class can handle certain standard types of input for you. For example, your control can automatically detect
double-clicks and raise the DoubleClick event. However, you might not always want this behavior. Fortunately, it can be
disabled—it is one of a number of standard control features that can be turned on and off using the SetStyle method.

5.2.3 Control Styles

The Control class provides a great deal of functionality. However, you won't necessarily want all the features switched on
for all the controls that you define, so Windows Forms makes certain features optional. You select the features you
require by setting control styles.

The Control class provides a method called SetStyle that lets you turn styles on and off. You specify the styles that you
wish to change with the ControlStyles enumeration. This is a flags-style enumeration, so you can pass any combination to
SetStyle, along with a bool or Boolean indicating whether you are enabling or disabling the specified styles. This allows
you to modify certain styles while leaving others unchanged. This is particularly useful when deriving from another
control type—it means you do not need to determine the full set of styles it uses to change a single style. Examples
Example 5-9 and Example 5-10 show how to modify a control's styles.

Example 5-9. Modifying a control's styles in C#

public MyControl()
{
 SetStyle(ControlStyles.ResizeRedraw |
 ControlStyles.StandardClick,
 true);
 SetStyle(ControlStyles.StandardDoubleClick,
 false);
}

Example 5-10. Modifying a control's styles in VB

Public Sub New()
 SetStyle(ControlStyles.ResizeRedraw Or _
 ControlStyles.StandardClick,
 True)
 SetStyle(ControlStyles.StandardDoubleClick,
 False)
End Sub

Examples Example 5-9 and Example 5-10 show the constructor of a control in C# and VB, respectively, that modifies
the following features:

It enables the ResizeRedraw style. This causes Windows Forms to redraw the entire control every time it is
resized, which is appropriate if the control adjusts its appearance according to its size.

It enables the StandardClick behavior, indicating that it wants Windows Forms to call the OnClick method as
normal.

It disables the StandardDoubleClick behavior, indicating that Windows Forms should never call OnDoubleClick.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It disables the StandardDoubleClick behavior, indicating that Windows Forms should never call OnDoubleClick.

If this control is derived directly from Control, enabling StandardClick would be superfluous
because it is on by default. However, it is necessary if you are deriving from some other
control class and you are not sure how it sets its styles. In any case, it is good practice to
turn on the styles you know that you need even if you think they are on by default. It
makes it clear to anyone reading your code that you are relying on that feature.

You can also determine whether the control can receive the focus by using the Selectable style. And you can prevent
your control from being resized by setting the FixedHeight and FixedWidth styles. There are also several styles that are
used to manage the way the control is redrawn; these are described in Chapter 7.

The SetStyle method is protected. You cannot modify another control's styles—you are only allowed to set the styles on
a control you have written yourself. This is because it is difficult for a developer to be sure of whether someone else's
control is relying on a particular combination of styles.

5.2.4 Scrollable Custom Controls

One of the main reasons for writing a custom control is to provide a visual representation of your application's data. In
some applications, the amount of data to be displayed will not necessarily always fit in the space available, in which
case it probably makes sense for your control to be scrollable.

Both the Form and the UserControl classes can automatically provide scrollbars, but the basic Control class cannot.
Fortunately, there is a simple solution to this: instead of inheriting directly from Control, you can inherit from
ScrollableControl and set the AutoScrollMinSize property to the total scrollable size you require. You will not inherit any
unwanted extra functionality—ScrollableControl itself inherits directly from Control. You will still be writing a custom control
responsible for its own appearance and behavior; it will simply have the option to be scrollable.

If you do this, it is your responsibility to take into account the current scroll position when redrawing. If you draw a
string at position (0, 0) it will always be drawn at the top-left corner of the control, regardless of what the current scroll
position is. Worse, when the user moves the scrollbar, the contents of your window are simply moved rather than
redrawn with a call to OnPaint. Only the newly exposed part at the edge of the control will be redrawn. If you haven't
taken the scroll offset into account, this leads to an inconsistent mess in the control.

Fortunately, it is easy to adjust the drawing position according to the current scroll position. We don't have to offset all
the coordinates ourselves because the Graphics class has a method for doing just this, as illustrated in the following code
fragment:

// C# code
protected override void OnPaint(PaintEventArgs pe)
{
 pe.Graphics.TranslateTransform(
 AutoScrollPosition.X, AutoScrollPosition.Y);
 . . .

' VB code
Protected Overrides Sub OnPaint(pe As PaintEventArgs)
 pe.Graphics.TranslateTransform(_
 AutoScrollPosition.X, AutoScrollPosition.Y)
 . . .

Having done this, the Graphics object will automatically offset all the coordinates you supply. (AutoScrollPosition is a
member of ScrollableControl, and its value describes the current scroll position.) Of course, if your mouse input handlers
need to know the exact location that was clicked (e.g., your control displays a table and you need to calculate which
row and column was clicked), you will have to apply the reverse transformation. The mouse events ignore the scroll
position and supply you with coordinates relative to the top-left corner of the control. It is very easy to perform the
reverse translation in C#:

protected override void OnMouseDown(MouseEventArgs e)
{
 Point mousePos = new Point(e.X, e.Y) -
 new Size(AutoScrollPosition);
 . . .
}

In VB, the code is a little more cumbersome:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB, the code is a little more cumbersome:

Protected Overrides Sub OnMouseDown(_
 ByVal e As System.Windows.Forms.MouseEventArgs)

 Dim mousePos As New Point(e.X, e.Y)
 mousePos = Point.op_Subtraction(mousePos, _
 New Size(AutoScrollPosition))

End Sub

The Point and Size types are used to represent positions and two-dimensional sizes. (These types are discussed in more
detail in Chapter 7.) They use operator overloading to allow a Point to be adjusted by a Size, which is why we are able to
use the - sign in the C# code. Overloaded operators are translated by the .NET Common Language Runtime into calls to
an op_operation method, which is why we are able to call the Point class's shared op_Subtraction method from VB.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 Designing for Developers
Regardless of whether we choose the composite approach—constructing a new UI element by assembling together
several other controls—or we decide to write a complete control from scratch, there are some design issues that we
must consider when designing a new type of control. The problem that faces all controls is that they must be a servant
to two masters: the software developer who will reuse the control and the end user who will interact with the control.

Non-visual classes don't suffer from this problem. They have a single interface—their public programming interface.
Their internal workings are their own business. Likewise, visual components not designed for reuse, such as most
forms, only present one public face—their user interface. The majority of forms have no public programming interface
at all, and those that do usually have a very simple one (such as properties for setting or retrieving fields on a form
designed to present or collect data).

But a reusable visual component must consider both types of user—it has both a user interface and a programming
interface. It is important not to confuse the two when designing your control; we have already seen how tempting it can
be to misuse inheritance when we want to implement one control using the user interface of another. As a rule of
thumb, the way the user interface does its job is an implementation detail, and should therefore not be visible to client
code.

Because your class derives (either directly or indirectly) from the Control class, a large amount of its programming
interface is already taken care of. It will already have all the standard properties such as Location and Dock, and ambient
properties such as Font and BackColor will propagate automatically. Most controls add very little to this standard feature
set—the unique programmable aspects of a control are usually small in number.

Most of your efforts will go into making the user interface work well. The best design heuristic for the programming
interface is this: keep it simple. Before making anything a public feature of your control's API, stop and think whether it
wouldn't be better off being private.

Programmers who use your control will almost certainly do so by dropping it onto a form in the Forms Designer. A well-
designed control should take certain steps to ensure that it works well in this environment. Fortunately, it is relatively
easy to help Visual Studio .NET present your component more effectively.

5.3.1 Designer Integration

Visual Studio .NET can provide visual editing facilities for your controls, but to do this, it expects them to be designed in
a particular way. The most important requirement is that your classes must expose all editable features as properties
(not fields or methods). Doing this will make your properties visible in the designer, but you will normally want to apply
certain attributes to those properties to make sure that they are represented correctly at design time.

Examples Example 5-11 and Example 5-12 show an excerpt in C# and VB, respectively, from a control that provides a
public property called BorderColor. Visual Studio .NET will detect this property (it uses the reflection facility provided by
the CLR to determine what properties are available) and expose it in the property page for the control.

Example 5-11. Exposing an editable property in C#

private Color bcol;
public Color BorderColor
{
 get
 {
 return bcol;
 }
 set
 {
 if (!bcol.Equals(value))
 {
 bcol = value;
 Invalidate();
 }
 }
}

Example 5-12. Exposing an editable property in VB

Private bcol As Color

Public Property BorderColor() As Color
 Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get
 Return bcol
 End Get
 Set(ByVal Value As Color)
 If Not bcol.Equals(Value) Then
 bcol = Value
 Invalidate()
 End If
 End Set
End Property

Figure 5-5 shows how Visual Studio .NET's property window will display this property. Notice that it has recognized the
property's type—Color—and provided its standard color editing user interface for the property. Visual Studio .NET has
built-in editors for all the types used by the built-in controls, such as Color, Font, ContentAlignment, and Image, and
supports any properties that use the intrinsic types. It will also display a drop-down box of valid values if you use an
enumeration type. (It is also possible to allow editing of properties that use custom types, but this requires a lot more
work, and is described in Chapter 8 and Chapter 9.)

Figure 5-5. A property shown in Visual Studio .NET

There is just one problem with this—the property appears in the Misc category, when it really belongs in the
Appearance section. Fortunately, it is possible to tell the Forms Designer which category our control belongs to. We do
this by annotating the property with an attribute. In fact, this is just one example of the many attributes defined by
Windows Forms to manage the design-time behavior of a component.

The development environment will present all your component's public properties in the property window when using
the component in the Forms Designer. It is reasonably intelligent about working out when to use special-purpose
editors for certain property types such as colors and fonts. But there are limits to what it can deduce, and it will not
always guess correctly, so it relies on the use of attributes to control its behavior.

We might want to provide a property that is only meant to be used at runtime—it makes no sense to allow design-time
editing of certain properties. For example, the ListView control has a ListViewItemSorter property, which allows the order in
which items appear to be controlled, but because code needs to be written to set this property usefully, it is
inappropriate to provide visual editing. So you won't see this item in a list view's property page in the Designer. We can
do the same thing with our own controls' properties—we can make them invisible to the designer by using the Browsable
attribute. The property shown in Example 5-13 will not appear at design time. (But it will still be accessible to code.)

Example 5-13. Making a property invisible at design time

// C# code
[Browsable(false)]
public bool Connected
{
 get
 {
 . . .
' VB code
<Browsable(False)> Public Property Connected() As Boolean
 Get
 . . .

We can also control in which categories those properties that are visible will appear. By default, they will appear as
Misc, but the Category attribute lets us select something more appropriate. If we modify the property shown in Example
5-11 by adding a Category attribute, as shown in Example 5-14, the property will now appear in the appropriate
category in the Designer.

Example 5-14. Setting the category for a property

// C# code
[Category("Appearance")]
public Color BorderColor
{
 . . . as before

' VB code
<Category("Appearance")> Public Property BorderColor() As Color
 . . . as before

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 . . . as before

Although you can use any category name you like, it is best to use one of the standard categories recognized by the
designer such as Appearance or Behavior (see the reference section for a complete list). This is partly because it means
your control's properties will appear in categories with which the user is already familiar. But it also makes
internationalizing your class easier. If you use a standard category, the string will automatically be localized (i.e., the
category name will be translated into the local language.) But if you use a category of your own devising, the only way
to arrange for it to be translated for different locales is to use your own attribute derived from CategoryAttribute.

You can also annotate your property with a Description attribute. This controls the text that will be displayed in the area
at the bottom of the Properties window—most properties provide a short (one sentence) description of the property's
purpose. Because the Description attribute is always used to define a new property (i.e., you don't need to supply a
description for properties defined by the Control class), there are no standard description strings. This means that
localization of the description cannot be automated. The only way to supply localizable descriptions is to derive your
own attribute class from DescriptionAttribute. (Chapter 8 describes how to create a localizable Description attribute.)

ToolboxBitmap is another interesting attribute. It lets you determine how your control will appear in the Toolbox. Visual
Studio .NET supplies its own default bitmap for your controls, but if you provide your own, it will use that instead. Use it
by applying the ToolboxBitmap attribute to your control class. To use this attribute, you must build a bitmap into your
component as an embedded resource. You can add a bitmap to the project as a New Item (see Visual Studio .NET's
Project menu), and you should set its Build Action in the properties window to Embedded Resource. You should give the
file the same root filename as your control but with a .bmp extension. Having done this, you can then simply add an
attribute to your control class as follows:

// C# code
[ToolboxBitmap(typeof(MyControl))]
public class MyControl : Control
{
. . .

' VB code
<ToolboxBitmap(GetType(CustomControl4))> __
Public Class CustomControl4
 Inherits System.Windows.Forms.Control
 . . .

When you add your component to Visual Studio .NET's Toolbox, it will detect this attribute and use the name of the
specified class to determine the name of the bitmap resource. In this case, it will look for Namespace.MyControl.bmp,
where Namespace is the namespace in which MyControl is defined. Visual Studio .NET adds the project's default
namespace to the filename automatically at build time, so the bitmap in your project would be called just
MyControl.bmp.

Many controls will not need to use anything more than the Category, Description, and ToolboxBitmap attributes to integrate
satisfactorily into the Forms Designer. However, if you want to provide properties with nonstandard types, making sure
that Visual Studio .NET is able to set your properties correctly is nontrivial. We will look at the techniques involved for
supporting custom types and providing your own user interfaces for editing properties in Chapter 8 and Chapter 9.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 Summary
By writing your own controls, you can encapsulate pieces of user interface in reusable classes. The level of
sophistication of these controls can be anywhere from a single label with some added feature to a feature-rich, fully
custom control presenting a detailed interactive view of a complex piece of data (e.g., a drawing editor). The UserControl
class lets you create a component by assembling several other controls into one larger control, arranging them with the
same editor that you use when designing a form. For more exotic requirements, you can write a full custom control that
inherits directly from Control (or ScrollableControl) and manages all aspects of your control's appearance and behavior.
Regardless of how you build your control, you must bear in mind the needs of two kinds of user—the end user and the
software developer. Confusing the requirements of these two groups of people can lead to poor software design
choices.

Most of the time, if you choose to base your control on another control, you should prefer reuse by containment over
reuse by inheritance. However, there are situations in which inheritance is the right style of reuse, so we will look at
this in the next chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Inheritance and Reuse
Inheritance is at the heart of the Windows Forms architecture—all visual classes inherit from the Control class. Not only
does this ensure that there is a single programming interface for common user interface functionality, it also guarantees
consistent behavior because all controls inherit the same implementation. Control authors need only write code for the
features unique to their components, and developers that use these controls will not be troubled by subtle differences in
behavior. This is a welcome improvement over ActiveX controls, the previous visual component technology in Windows,
where each control had to provide a complete implementation of the standard functionality, with not entirely consistent
results.

Inheritance can offer further benefits when we write our own UI components. Not only can we take advantage of the
Control class's features, we can also derive from other controls such as Button or TextBox. We can extend the behavior of
almost any control, not just those built into the framework—third-party controls can also be used as base classes. The
Forms Designer provides support for two special cases of inheritance: forms that inherit from other forms, and controls
that derive from other composite controls. It allows us to edit such inherited components visually.

As mentioned in the previous chapter, inheritance must be used with care—deriving from a class makes a strong
statement about your own class: you are declaring that your class is everything that the base class is; inheritance
defines an "is a" relationship. This makes sense when deriving from Control — if you are building a visual component,
then by definition, it is a control. But for less generic base classes such as TextBox, it is important to be clear whether
your control really is a TextBox, or whether it simply uses one in its implementation.

We will therefore start by looking at the situations in which inheritance is an appropriate technique. Then, we will see
how to inherit from classes based on Form and UserControl, both of which have special support from the IDE. Next we will
look at inheriting directly from other controls. Finally, some of the pitfalls of inheritance will be examined.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 When to Inherit
As mentioned in the previous chapter, inheritance is not always the most appropriate form of reuse. There are two
ways to create a control class that, from the end user's point of view, looks and behaves just like an existing control.
You could either inherit from the control, or simply create a UserControl that contains it. Both approaches are equally
easy. The decision must be based on which is better software design for your control.

There are two important points to understand to make this choice. The first is that the decision to inherit is something
that affects your control's programming interface, not its user interface. (Recall that in the last chapter we saw that all
controls have two sets of users: programmers and end users.) The second point is that inheritance defines an "is a"
relationship—if your control inherits from, say, ListView, any instance of your control is by definition also an instance of
the ListView class.

Sometimes this will be what you require. For example, you might decide to write a text box that automatically filters its
input to certain characters, For instance, you could create a TelephoneTextBox that only allows digits, hyphens, spaces,
and the + symbol. In this case, it would be reasonable to use inheritance, because your control is just like a TextBox
from the developer's point of view; it just has some special modified behavior from the end user's perspective. There is
no problem with letting the developer do anything to a TelephoneTextBox that they might also do to a normal TextBox, in
which case we may safely declare that our TelephoneTextBox is a TextBox, as in Example 6-1 (which contains the C#
version) and Example 6-2 (which contains the VB version).

Example 6-1. A derived control in C#

public class TelephoneTextBox : System.Windows.Forms.TextBox
{
 private string accept = "0123456789 +-";
 protected override void OnKeyPress(
 System.Windows.Forms.KeyPressEventArgs e)
 {
 if (accept.IndexOf(e.KeyChar) < 0)
 {
 // Not a valid character, prevent
 // default handling.
 e.Handled = true;
 }
 base.OnKeyPress(e);
 }
}

Example 6-2. A derived control in VB

Public Class TelephoneTextBox
 Inherits System.Windows.Forms.TextBox

 Private accept As String = "0123456789 +-"

 Protected Overrides Sub OnKeyPress(_
 ByVal e As System.Windows.Forms.KeyPressEventArgs)

 If accept.IndexOf(e.KeyChar) < 0 Then
 ' Not a valid character, prevent
 ' default handling.
 e.Handled = True
 End If

 MyBase.OnKeyPress(e)
 End Sub

End Class

The general rule is that if you want the public API of the control you are reusing to be accessible to developers using
your control, inheritance is likely to be the right solution. Programmers will view your control as being an extended
version of the base control. But if you want the control you are reusing to be visible only to the user, and not to the
developer, reuse through containment is the best answer.

A very common case in which inheritance is not appropriate is if the purpose of your class is to provide a visual
representation of something, such as a list of items in an email folder. Such a control might well be based on a ListView,
but it would not want to expose the ListView API. That would permit all sorts of operations that would most likely not
make sense, such as the ability to add new column headings or change the view type; those are normal operations for
a ListView, but they do not have any obvious meaning for a view of a mail folder's contents—what exactly would it mean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a ListView, but they do not have any obvious meaning for a view of a mail folder's contents—what exactly would it mean
to add a new column, for example?

Sometimes, there will be gray areas. To see why, let us look again at the TelephoneTextBox. It is not necessarily true to
say that it can be used in exactly the same way as a TextBox: its Text property presents a problem. The control is only
supposed to be able to hold a telephone number, and it enforces this by filtering the user's input. But what if some code
that uses this control attempts to set the Text property to a value such as "Hello," which is not a valid phone number?
The code in Example 6-1 or Example 6-2 does not deal with this, so the control's text will be set just like it would be
with a normal text box. This breaks the intent of our control—it is only supposed to hold phone numbers. We could fix
this by overriding the Text property and throwing an exception if it is set to an invalid value, but that would then break
the "is a" relationship—there would then be things that you could do with a TextBox that you couldn't do with a
TelephoneTextBox.

Purists would argue that you should always stick to the Lyskov Substitution Principle: you should only use inheritance if
your class can do absolutely everything that the base class can. However, this can often be unduly restrictive. There are
plenty of examples in the Windows Forms libraries where derived classes remove functionality that is present in the
base classes. For example, the Control class supplies Click and DoubleClick events, but derived controls can disable these if
they want to (e.g., the TreeView doesn't raise Click events). So in practice, it is often not a problem to bend the rules
slightly.[1] But if you find yourself creating a control that is programmatically incompatible with its base type in many
ways, inheritance is almost certainly the wrong choice.

[1] With sufficiently careful documentation, it is even possible to do this and conform to the Lyskov Substitution
Principle—your base class must simply document all the variations in behavior that derived classes are allowed to
introduce.

Visual Studio .NET has special support for inherited forms. Forms are controls like any other visual element (i.e., they
inherit indirectly from Control), and the rules mentioned so far apply just as well to forms as to any other class.
However, the way that forms are normally used means that inheritance is more likely to be the right choice for forms
than it is for most other control types.

6.1.1 When to Inherit from a Form

Forms inheritance is very useful if your application needs to present several similar dialogs. You can define a base form
that contains the features common to all your windows, and then create specialized classes for each variation.

If you derive from a form, your derived class will represent a window that has all the same controls on it as the base
class, and you may optionally add more controls of your own. You will only be able to modify the controls on the base
class if they have the appropriate protection level. (The relevant levels are protected or public, or for forms in the same
assembly as yours, internal in C# or Friend in VB.) The Forms Designer in Visual Studio .NET supports visual editing of
inherited forms. It displays controls from both the base class and the derived class, but only allows you to edit the
properties of controls to which your class has access—i.e., to those specific to your derived form, and those on the base
form with an appropriate protection level.

Forms are more often a suitable candidate for inheritance than other controls, because forms often add little or nothing
by way of programming interface to the Form class. They usually stand alone as top-level windows, rather than being
contained within another control, and this self-contained nature means that they have no need for much of an API. The
only interface they have that matters is the user interface. Because most of the problems associated with derivation
revolve around the implications of inheriting the programming interface, this means that forms are usually a safe bet
for inheritance.

There is another reason you might use inheritance with forms more often than with controls. Chapter 5 discussed a
reuse technique that provides an alternative to inheritance—wrapping the control to be reused in a UserControl. This
technique is not available to forms—you cannot contain a whole form inside a UserControl. If you want to base one form
on another, inheritance is your only choice (not counting everybody's favorite code reuse mechanism: the clipboard).

Note that Visual Studio .NET also has special support for inheriting from controls based on UserControl. The main reason
for this is that Form and UserControl are very similar—they are both composite user interface elements (i.e., they consist
of a collection of child controls). The development environment uses the same editor for forms and user controls, so it
is not surprising that it supports visual inheritance for both. However, controls based on UserControl are used very
differently from forms—controls are designed to be contained by other UI components, but forms normally stand alone.
This means that for a UserControl, the programming interface is usually much more significant than it is for a Form. So
although visual editing of inherited components is supported for both forms and composite controls, it is usually more
useful for forms.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Inheriting from Forms and User Controls
Visual Studio .NET allows you to add an inherited form or control as a new item to a project. When you add such an
item, it will display the Inheritance Picker dialog, which lists appropriate classes from the solutions in your project (this
includes all the forms you have defined, or all the user controls, if you are creating an inherited control). Inheriting from
a form or a user control requires the relevant projects in your solution to have been built. If classes you expect to see
are missing from the list, check that your solution builds without errors. The Inheritance Picker also provides a Browse
button, so that you can derive from classes defined in components outside your solution.

Once you have selected your base class, the usual Forms Designer will be shown, just as it would be for a normal form
or composite control. But rather than displaying a blank canvas, the editor will show the contents of the base class—
your new user interface element will initially look exactly like its base class. Not surprising, as inherited classes always
have all their base class's members.

Of course, inheritance allows us to extend the functionality of the base class, not just to replicate it, so the editor lets us
add new controls to the derived class. The editor annotates base class controls with a small icon, as shown on the text
box and button in Figure 6-1, to enable you to tell the difference between controls from the base class and controls
added in the derived class.

Figure 6-1. Showing controls from the base form

The code generated for derived forms and controls is straightforward. As Examples Example 6-3 and Example 6-4
show, it is almost identical to the code generated for a normal form. So there is the usual constructor, which calls the
InitializeComponent method where the form's controls are created and initialized. There is also the normal Dispose
function, where resources are cleaned up. As usual, you can add your own initialization code at the end of the
constructor and your own cleanup code in the Dispose method. The only obvious difference between this and a normal
form is that the class no longer derives directly from Form; it inherits from your chosen base class (as the bold line
shows).

Example 6-3. A derived form's basic structure in C#

public class DerivedForm : BaseForm
{
 private System.ComponentModel.IContainer components = null;

 public DerivedForm()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void InitializeComponent()
 {
 . . .
 Usual designer-generated code
 . . .
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-4. A derived form's basic structure in VB

Public Class DerivedForm
 Inherits BaseForm

 Public Sub New()
 MyBase.New()

 InitializeComponent()
 End Sub

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 Private components As System.ComponentModel.IContainer

 Private Sub InitializeComponent()
 . . .
 Usual designer-generated code
 . . .
 End Sub

End Class

This similarity of structure means that both the base and the derived classes will have InitializeComponent and Dispose
methods. If the class is going to initialize new instances correctly, both InitializeComponent methods need to run.
Likewise, both Dispose methods need to execute when the form is destroyed. This will indeed happen, although it works
differently for initialization and disposal—there is a subtle distinction between the ways the InitializeComponent and
Dispose methods interact with their counterparts in the base class.

Because InitializeComponent is always declared as private, the base and derived implementations are considered by the
CLR to be two completely different methods—the IntializeComponent method in the derived class does not override the
one in the base class, because you cannot override a private method. Both of these will run because of the way the CLR
constructs objects: first the base class's constructor will run, calling the base class's InitializeComponent method, and then
the derived class's constructor will run, calling the derived class's InitializeComponent method. In the VB version shown in
Example 6-4, the base class's constructor is called explicitly in any case by the MyBase.New statement.

Conversely, the Dispose method is always marked as protected override in C# and as Protected Overloads Overrides in VB.
This means that the method replaces the base class's implementation. However, there is a call to base.Dispose or
MyBase.Dispose at the end of this method (just as there would be in the implementation of Dispose in the base class). This
is the standard pattern—derived classes always override Dispose and then call the base class's Dispose at the end,
ensuring that all the classes in the hierarchy get a chance to clean up properly. This means that, unlike the
InitializeComponent methods, the first Dispose method to run will be that of the most derived class, and the calls then
work their way up the inheritance hierarchy[2] (until they get to System.ComponentModel.Component, the base class of
Control, which is the place in the hierarchy where the Dispose method is introduced). This model supports any depth of
inheritance—it is entirely possible to derive from an inherited form or control. Each class can add its own collection of
controls to the set supplied by the base class.

[2] Although the mechanisms involved are very different, this echoes C++, where construction starts with the base
class, but destruction starts with the most derived class.

If you build an inherited UI component in C#, you will notice that by default the Designer restricts what you can do to a
base class's controls. We will now examine how the interaction between a derived class and its base's controls works,
and how to grant a derived class access to the controls in a base class.

6.2.1 Interacting with Controls in the Base Class

In the last chapter, we saw how the controls you write have two faces: the API seen by the developer and the user
interface seen by the end user. Inheritance complicates the picture a little—there are two different ways a developer
can use your control: one is simply to instantiate it and use it, but the other is to derive from it. Developers who write
derived classes will get to see the programming interface. But most forms are written without much of an API, which
can cause problems for a deriving class. As we will see, a base form often needs to be written with deriving classes in
mind for inheritance to be successful.

Unlike C#, VB.NET makes the protection level Friend by default. (This is equivalent to internal in C#.) This means that
controls will be accessible to any code in the same component. So if you derive from a VB.NET form or user control, the
behavior you see will depend on whether your derived class is in the same project as the base class. If it is in the same
project, all the controls will be accessible, but if it is not, the behavior will be the same as you would see in C#—the
controls in the base class will be inaccessible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

controls in the base class will be inaccessible.

The most obvious difference between a control's API and its UI is that features visible to the end user are usually
inaccessible to the developer. On screen, it might be clear that a composite control consists of some labels, text boxes,
and buttons, but the child controls that represent these are usually private implementation details of the form's class.
So although any deriving class that you write will have all the same child controls, they will not be directly accessible to
your code because they will be private members of your base class.

Figure 6-2 shows a base form and a class derived from that form in the editor. In both cases, the OK button has been
selected, but notice how the selection outline is different. With the base class, which is where the OK button is defined,
we see the normal outline with resize handles. But on the derived class, we get a solid outline with no handles. This is
how the form editor shows us that a control cannot be modified. Any attempt to move, resize, or otherwise change the
control will be unsuccessful. Indeed, the control will be completely invisible to any code in the derived form even though
it will be present on screen, so for controls with readable properties, such as a text box, the deriving class will not even
be able to read those properties.

Figure 6-2. A base form and a derived form

This is the default behavior for C# base classes—if you do not take steps in your base class to make your controls
accessible to derived classes, they will be present but untouchable, like the OK button above. However, it is easy
enough to change this—control accessibility is based entirely around the member protection provided by the CLR. The
OK button is inaccessible to the derived class because its associated member will have been defined as private in the
base class, as shown in Example 6-5. (Note, if the base class was written in VB.NET, it would be marked Friend, as
shown in Example 6-6. This would mean that if the derived form were in the same project as the base class, the button
would be inaccessible.)

Example 6-5. A control accessible only to the base class

// C#
private System.Windows.Forms.Button buttonOK;

Example 6-6. A control accessible only to other classes in the same project

// VB
Friend WithEvents Button1 As System.Windows.Forms.Button

If you change this to protected, the control will become visible to all derived classes. The Designer provides a way of
doing this: in the properties page for a control there is a property called Modifiers under the Design section. By default,
this is private (in C# projects) or Friend (in VB projects), but you can choose any protection level offered by the CLR. If
you make this accessible to derived classes (i.e., protected), they will be able to retrieve and modify your control's
properties. The Forms Editor indicates this by showing a normal outline with resize handles when you select the control,
as shown in Figure 6-3.

Figure 6-3. A base's control accessible in a derived form

Once a control from the base class is no longer private, your derived class can modify any of its properties except its
name. This means that you can, for example, move it, resize it, change its caption, enable or disable it, or make it
invisible.

Deciding which controls should be accessible to derived classes is an important consideration when designing a base
class. If a control from a base class cannot be moved, this could seriously hamper the ability to build useful derived
forms. Controls marked as private cannot be moved or resized to adapt their layout to the needs of the derived. Later on
in this chapter, we will look at how best to approach this and other inheritance issues when considering how to design
for inheritance.

For the truly determined, gaining access to private controls is not an insurmountable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the truly determined, gaining access to private controls is not an insurmountable
problem. Although the member field in the base class is private, that merely prevents you
from using the control through that particular field. If you can obtain a reference to it by
other means, you can still modify all its properties. It is always possible to do this because
all the controls on a form can be accessed through its Controls property. This collection is
enumerable, so you can just search for the control with a foreach loop. This is not
recommended though. It might help you as a last resort, but it's a bit of a hack—the base
class will not expect you to surreptitiously modify its private controls like this. Furthermore,
there is no support for it in the Designer—you must write code to do this.

6.2.2 Event Handling

If the base class provides a non-private control, not only can you modify its properties, you can also add event
handlers. So in the example above, we could add our own Click handler for the OK button. However, there is a subtle
difference between the way events work and the way most properties work, which means this will not always have the
effect you anticipate.

The crucial thing to remember when handling events in a derived class is that event sources can support multiple
handlers. This makes events different from properties such as Location—if the derived class sets that property, it will
replace any value that the base class gave it. With an event, if the derived class adds an event handler, that handler
will be called in addition to any that were specified by the base class. So in the example above, if the base class has
already attached a Click handler to the OK button, and we then add another of our own, it will run after the base class's
handler.

So when it comes to handling events from child controls, we cannot replace the base class's behavior, we can only add
to it. Again, this illustrates that unless the base class is designed with inheritance in mind, we could run into trouble.

Beyond certain pitfalls with poorly designed base classes, inheriting from forms or composite controls is mostly
straightforward, thanks to the support provided by the Forms Designer. However, it is possible to derive from other
types of controls, albeit with less help from the development environment, as we will now see.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Inheriting from Other Controls
Because inheritance is central to the way controls work in the Windows Forms framework, we are not limited to deriving
from forms or composite controls. In principle, we can use any control as a base class (unless it has marked itself as
sealed in C# or NonInheritable in VB, but very few controls do this). We must live without the convenience of visual
editing when deriving from other control types, but of course that is also the case when we write custom controls.

The usual reason for inheriting from some non-composite control (e.g., one of the built-in controls) is to provide a
version of that control with some useful extra feature. For example, we will see later how to add an autocompletion
facility to the TextBox control. As always, it is crucially important only to use inheritance where it makes sense—
developers must be able to use our derived control just as they would use the base control.

Visual Studio .NET does not provide a direct way of creating a new derived control with a non-composite base class.
However, it is reasonably easy to get started: simply add a new Custom Control to the project, delete the OnPaint
method it supplies, and change the base class from Control to whichever control class you want to derive from.
Alternatively, just create a new normal class definition from scratch that inherits from the base class of your choice.
(These two techniques are exactly equivalent. Although it is more straightforward just to create a normal class, using
the Custom Control template with C# provides you with a useful set of using declarations at the top of the file.)

Thanks to the wonders of inheritance, your derived control will now be capable of doing everything that the base control
can do. All that remains is to add whatever extra functionality you require. There are two ways in which controls are
typically extended. The first involves modifying its programming interface by adding or overriding methods or
properties. The second involves modifying the behavior of the control itself. A deriving control can use either or both of
these modes of extension. We will now look at each in turn.

6.3.1 Extending the Programming Interface

Sometimes we will want to use a built-in control, but to make some change to its programming interface. We can do
this without changing its visual behavior—as far as the user is concerned, the control will appear to be just another
ListView or Label. We are modifying the control purely to make things more convenient for the developer. This might be
as simple as adding some helper methods to populate a ListView with a collection of some application-specific data type.
Such methods are straightforward: the code usually looks exactly the same as it would in a non-inheritance situation; it
just happens to have been bolted onto an existing class using inheritance. The more challenging and interesting
changes are those that extend the behavior of existing methods.

Modifying the behavior of existing methods can be particularly useful in a multithreaded program. Remember the
golden rule for threads in Windows Forms introduced in Chapter 3: you should only use a control from the thread on
which it was created; the only exception is you can use the Invoke, BeginInvoke, and EndInvoke methods, and the
InvokeRequired property. While this is a simple rule, it is often tedious to comply with—marshaling all calls through Invoke
or BeginInvoke adds unwanted complexity, and introduces scope for programming errors.

So if you have a worker thread that needs to update the user interface on a regular basis (e.g., updating a text field to
keep the user informed of the thread's progress), it might be worth creating a control that has slightly more relaxed
threading constraints. So we will now look at how to build a control derived from Label that allows its Text property to be
accessed safely from any thread.

Remember that the correct way to use a control from a worker thread is to direct all calls through either Invoke or
BeginInvoke. These will arrange for the call to occur on the correct thread. They both need to know which method you
would like to invoke, so they take a delegate as a parameter. None of the delegates defined by the framework quite
meet our needs, so our multithreaded[3] label class starts with a couple of private delegate type definitions. In C#, the
code is as follows:

[3] Strictly speaking, it's not fully thread-safe—we are only enabling the Text property for multithreaded use to
keep things simple.

public class LabelMT : System.Windows.Forms.Label
{
 private delegate string GetTextDelegate();
 private delegate void SetTextDelegate(string s);

The equivalent VB code is:

Public Class LabelMT
 Inherits System.Windows.Forms.Label

 Private Delegate Function GetTextDelegate() As String
 Private Delegate Sub SetTextDelegate(ByVal s As String)

The first delegate will be used when setting the text, and the second will be used when retrieving it. Next, we override
the Text property itself to make it safe for use in a multithreaded environment. The C# code that does this is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Text property itself to make it safe for use in a multithreaded environment. The C# code that does this is:

public override string Text
{
 get
 {
 if (DesignMode || !InvokeRequired)
 {
 return base.Text;
 }
 else
 {
 return (string) Invoke(new GetTextDelegate(DoGetText));
 }
 }
 set
 {
 if (DesignMode || !InvokeRequired)
 {
 base.Text = value;
 }
 else
 {
 object[] args = { value };
 BeginInvoke(new SetTextDelegate(DoSetText),
 args);
 }
 }
}

The VB code to override the Text property is:

Public Overrides Property Text() As String
 Get
 If DesignMode OrElse Not InvokeRequired Then
 Return MyBase.Text
 Else
 Return DirectCast(Invoke(New GetTextDelegate(_
 AddressOf DoGetText)), String)
 End If
 End Get
 Set(ByVal Value As String)
 If DesignMode OrElse Not InvokeRequired Then
 MyBase.Text = Value
 Else
 Dim args() As Object = {Value}
 BeginInvoke(New SetTextDelegate(AddressOf DoSetText), _
 args)
 End If
 End Set
End Property

Note that both of these start by checking to see if they actually need to marshal the call to another thread. If the
property is being used from the correct thread, we just defer directly to the base class's implementation, avoiding the
overhead of a call through Invoke. (And in the case of the property set method, we use BeginInvoke—this doesn't wait for
the UI thread to complete the call, and just returns immediately. If you don't need to wait for a return value, it is
usually better to use BeginInvoke instead of Invoke—it returns more quickly, and it can reduce the chance of accidentally
freezing your application by causing a deadlock.)

The InvokeRequired property tells us whether we are already on the UI thread. You may be wondering why this code also
tests the DesignMode flag. The reason is that when our control is in design mode (i.e., it is being displayed in the Forms
Editor in Visual Studio .NET), certain things don't work in quite the same way as they do at runtime. Controls are
initialized differently in design mode, so some features are unavailable. One of these is the Invoke mechanism—any
attempt to use it will cause an error. Unfortunately, InvokeRequired is always true in design mode, despite the fact that it
is not actually possible to use Invoke. So if we are in design mode, we just ignore the InvokeRequired property and always
call the base class's implementation. (It is safe to assume that the Forms Designer will never access our controls on the
wrong thread, so it will always be safe to ignore InvokeRequired here.)

If we are not in design mode (i.e., the control is running normally, not inside the Designer) but InvokeRequired indicates
that we are on the wrong thread, we use the Invoke method to marshal the call to the correct thread. We pass it a
delegate wrapped around either the DoGetText or the DoSetText method, which will then be called by the framework on
the UI thread. These methods simply call the base class implementation. Their C# code is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the UI thread. These methods simply call the base class implementation. Their C# code is:

private string DoGetText()
{
 Debug.Assert(!InvokeRequired);
 return base.Text;
}

private void DoSetText(string s)
{
 Debug.Assert(!InvokeRequired);
 base.Text = s;
}

Their equivalent VB code is:

Private Function DoGetText() As String
 Debug.Assert(Not InvokeRequired)
 Return MyBase.Text
End Function

Private Sub DoSetText(ByVal s As String)
 Debug.Assert(Not InvokeRequired)
 MyBase.Text = s
End Sub

These methods are only ever called via the Invoke or BeginInvoke method, which means that they will always run on the
UI thread.[4] This means that they can simply access the property directly using the base class's implementation.

[4] In this example, this assumption has been encoded in a Debug.Assert call—these assertions will fail on debug
builds if any developer later modifies this control and tries to call these methods on the wrong thread. As with most
assertion mechanisms, these aren't compiled into release builds.

If you are used to writing multithreaded code, you might be surprised at the absence of
locks or critical sections. Most thread-safe code protects itself by synchronizing access to
shared data using locking primitives supplied by the system (such as critical sections in
Win32). The CLR provides these kinds of facilities, and both VB and C# have intrinsic
support for them with their lock and SyncLock keywords, but they turn out to be
unnecessary here. Concurrency is never an issue because we make sure that all work is
done on the UI thread, and a thread can only do one piece of work at a time.

Threading issues aside, this is an example of a common pattern: overriding a feature of the base class but calling back
to the base class's original implementation to do the bulk of the work. The code in the derived class simply adds some
value on top of the original code (correct operation in a multithreaded environment in this case). But we will now look
at the other way of extending a control—modifying the behavior seen by the user.

6.3.2 Extending Behavior

The second way of extending a control is to modify the behavior that the end user sees. This typically means changing
the way the control reacts to user input, or altering its appearance. It always involves overriding the internal event
handling methods (i.e., the OnXxx methods, such as OnPaint or OnMouseDown) to change the way the control behaves.

Examples Example 6-7 and Example 6-8 show a class, AutoTextBox, that derives from the built-in TextBox control. It
augments the basic TextBox by adding a simple autocomplete functionality. This is a common feature of many text fields
in Windows applications—the control has some list of potential values for the field, and if the text that the user has
typed in so far matches any of those values, it prompts the user with them. This is a very useful enhancement. It can
save a lot of typing and is becoming increasingly widely adopted. In Windows XP, most text fields that accept filenames
will autocomplete, using the filesystem as the source of potential values. Internet Explorer uses a list of recently visited
pages when you type into the address bar. So it could be good to provide this functionality in our own applications.

The example shown here is pretty simple—it has a very low-tech API for setting the list of known strings,[5] and it will
only provide one suggestion at a time, as shown in Figure 6-4. (Internet Explorer will show you all possible matches in
a drop-down list.) It is left as an exercise to the reader to add advanced features such as supporting data binding for
the known string list, and an Internet Explorer-style drop-down suggestions list. But even this minimal implementation
is surprisingly useful.

[5] So this control actually illustrates both types of extension—it augments the original control's user interface as
well as its API. The API extensions are trivial, though.

Figure 6-4. Automatic completion in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-4. Automatic completion in action

To use this control, a developer would simply add it to a form as she would a normal TextBox. It will behave in exactly
the same way thanks to inheritance. The only difference is that at some point during initialization (probably in the
form's constructor) there would be a series of calls to the AutoTextBox object's AddAutoCompleteString method to provide
the control with its suggestion list.

At runtime, the main autocompletion work is done in the overridden OnTextChanged method. This method will be called
by the base TextBox class every time the control's text changes. (It corresponds to the TextChanged event.) We simply
examine the text that has been typed in so far (by looking at the Text property) and see if it matches the start of any of
our suggestion strings. If it does, we put the full suggested text into the control. We also select the part of the text that
we added (i.e., everything after what the user had already typed). This means that if our suggestion is wrong and the
user continues typing, the text we added will be wiped out—text boxes automatically delete the selection if you type
over it. (This is the standard behavior for automatic text completion.)

Example 6-7. An autocompleting TextBox in C#

using System.Collections.Specialized;
using System.Windows.Forms;

public class AutoTextBox : System.Windows.Forms.TextBox
{
 private StringCollection suggestions = new StringCollection();
 public void AddAutoCompleteString(string s)
 {
 suggestions.Add(s);
 }

 private bool ignoreNextChange = false;
 protected override void OnTextChanged(EventArgs e)
 {
 if (!ignoreNextChange)
 {
 foreach (string str in suggestions)
 {
 if (str.StartsWith(Text))
 {
 if (str.Length == Text.Length)
 return;
 int origLength = Text.Length;
 Text = str;
 Select(origLength, str.Length - origLength);
 }
 }
 base.OnTextChanged(e);
 }

 protected override void OnKeyDown(KeyEventArgs e)
 {
 switch (e.KeyCode)
 {
 case Keys.Back:
 case Keys.Delete:
 ignoreNextChange = true;
 break;
 default:
 ignoreNextChange = false;
 break;
 }
 base.OnKeyDown(e);
 }
}

Example 6-8. An autocompleting TextBox in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-8. An autocompleting TextBox in VB

Imports System.Collections.Specialized
Imports System.Windows.Forms

Public Class AutoTextBox
 Inherits System.Windows.Forms.TextBox

 Private ignoreNextChange As Boolean = False
 Private suggestions As New StringCollection()

 Public Sub AddAutoCompleteString(ByVal s As String)
 suggestions.Add(s)
 End Sub

 Protected Overrides Sub OnTextChanged(ByVal e As EventArgs)
 If Not ignoreNextChange Then
 Dim str As String
 Dim origLength As Integer
 For Each str In suggestions
 If str.StartsWith(Text) Then
 If str.Length = Text.Length Then Return
 origLength = Text.Length
 Text = str
 [Select](origLength, str.Length - origLength)
 End If
 Next
 End If
 MyBase.OnTextChanged(e)
 End Sub

 Protected Overrides Sub OnKeyDown(ByVal e As KeyEventArgs)
 Select Case e.KeyCode
 Case Keys.Back
 ignoreNextChange = True
 Case Keys.Delete
 ignoreNextChange = True
 Case Else
 ignoreNextChange = False
 End Select
 MyBase.OnKeyDown(e)
 End Sub

End Class

There is one minor complication that requires a little more code than just the text change handler. Notice that
AutoTextBox also overrides the OnKeyDown method. This is because we need to handle deletion differently. With nothing
more than an OnTextChanged method, when the user hits the Backspace key, the control will delete the selection if one
is active. For this control, the selection will most likely be the tail end of the last suggestion. This deletion will cause the
OnTextChanged method to be called, which will promptly put the same suggestion straight back again!

This will make it seem as though the Backspace key isn't working. So we need to detect when the user has just deleted
something and not attempt to autocomplete. So we override the OnKeyDown method, and if either Backspace or Delete
is pressed, we set the ignoreNextChange flag to indicate to the OnTextChanged method that it shouldn't try to suggest
anything this time round. The default or else case is important—if the key is not performing a deletion, we do want to
provide a suggestion if there is a matching one.

Although this code is fairly simple (it overrides just two methods, using only a handful of lines of code), it illustrates an
important point: the derived class's implementation is dependent upon the base class's behavior. This is partly evident
in the complication surrounding deletion—the derived class has to understand the input model of the base class and
work around it. It's less obvious is whether the code in Examples Example 6-7 and Example 6-8 is necessarily the right
way to achieve this—why present the suggestions in OnTextChanged and not OnKeyDown, OnKeyPress, ProcessKeyMessage,
or any of the other methods that sound like they might be relevant? To find the answer involves examining the
documentation for every likely looking method, and then using trial and error on the ones that look as though they
might work.[6]

[6] To save you the effort in this particular case, ProcessKeyMessage is far too low-level, OnKeyDown and
OnKeyPress look as though they should work but turn out not to due to a subtlety in the order in which events
percolate through the system, so OnTextChanged wins the day.

Even if we identify the right method or methods to override, we can never be completely sure that we have anticipated
all the issues, such as special handling for deletion. As it happens, we haven't in this case—the TextBox control has a
context menu with a Delete entry. This doesn't work properly with the code as it stands (because of the same deletion
issue that required OnKeyPress to be overridden), and as there is no direct way to detect that this Delete menu item was
selected, this is not a simple issue to solve.[7]

[7] If you would like to fix this problem as an exercise, a better approach is to make OnTextChanged remember

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[7] If you would like to fix this problem as an exercise, a better approach is to make OnTextChanged remember
what text had been typed in (excluding any suggestion) last time round. If it sees the same text twice running, it
should not attempt to supply a suggestion the second time. You will then need to deal with the fact that setting the
Text property causes a second reentrant call to OnTextChanged. With this solution you will no longer need to
override OnKeyDown.

Even more insidiously, we cannot be completely sure that this will continue to work in the future. The standard controls
in Windows have evolved over the years, and will almost certainly continue to do so. We cannot reasonably expect to
anticipate every new feature that might emerge for every control.

So even for a fairly undemanding extension to a simple control, there are numerous hazards to negotiate, many of
which are not obvious. So we will now consider the general nature of the problems you will encounter when deriving
from controls, so that you can have a fighting chance of avoiding problems.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Pitfalls of Inheritance
Inheritance is a troublesome facility; although it is undoubtedly powerful, it can cause a great many problems. To steer
clear of these, it is important to understand what it is about inheritance that makes it so easy to go wrong. We have
already discussed simple misuse, caused by the failure to understand that inheritance defines an "is a" relationship—if
your derived class cannot be substituted for its base class, you will run into difficulties. But even when this design rule
has not been broken, inheritance is still potentially dangerous. The fundamental problem with inheritance is that it
tends to require the derived class to have an exceptionally close relationship with the base class.

In the autocompletion example above, we needed to know more than is healthy about the way that the TextBox class
works. First of all, we needed a pretty detailed understanding simply to determine which methods to override. To
implement these overrides correctly, we also needed considerable lateral knowledge of the inner workings of the
control, to anticipate issues such as the deletion problem. Inheritance requires knowledge of how the base class works
both in breadth and in depth.

This tight coupling between the derived and base classes introduces another problem. If the base class evolves over
time, it could easily break classes that derive from it. In the AutoTextBox class, we elected to autocomplete the control's
text in our override of OnTextChanged and not in OnKeyPress, because we observed that the former appears to work
where the latter appears not to work in this particular case. But this is not a clearly documented feature of the TextBox
class; what if the next version behaves slightly differently?

There is a reasonable argument that says authors of base classes simply shouldn't make changes like this—after all, if
they made such changes to the public API, it would break all client code, not just deriving classes.[8] But there are two
reasons why derived classes are more vulnerable to changes in the base class than normal clients. First, derived classes
get to see a larger API—they can access all the protected members, where normal clients only see the public ones.
Second, and more importantly, derived classes usually modify the behavior of the base class in some way;
modifications are likely to be much more sensitive to implementation details than straightforward usage will be.

[8] In this particular case, the OnTextChanged and OnKeyPress methods are directly associated with the public
TextChanged and KeyPress events. Changes to the nature of these protected methods would imply a corresponding
change in public behavior, which is one reason we can be reasonably confident that this particular feature of
TextBox won't change in future versions of the framework.

This problem is often described as the "fragile base class" issue: you can't touch the base class without breaking
something. The main technology offered by .NET to mitigate this is its support for side-by-side deployment—multiple
versions of a component can be installed on one machine, so that each application can use the exact version of the
component it was built against. But even that can go wrong: the base class author might sneakily issue an update
without changing the component's version number, or he might ship a publisher policy with an update, declaring the
new version to be fully backwards compatible with the old one—either of these could potentially upset derived classes.
And even if this doesn't happen, you might run into trouble when you next rebuild your application—if you have
updated the components on your system, you will probably be building against the newer versions.

Given the tight coupling between the base and the derived class, it should come as no surprise to discover that
inheritance is often at its most successful when both the base and derived class are written by the same author or
team. When derived classes start to do things that the base class author didn't originally anticipate, there are far fewer
problems if the same developer wrote both. That developer can then modify the base class to meet the derived class's
needs.

The classes you should be most suspicious of are those that have never been used as a base class before. It is
extremely difficult to anticipate what requirements derived classes will place on your code. When the base and derived
classes are under common ownership, most base classes evolve considerably the first few times they are derived from.
One reason the Control class makes such successful use of inheritance is that the Windows Forms team wrote such a
large number of classes that derive from it before it was released. You can be sure that Control changed considerably as
these derived classes were developed. This work hardening of its design means that it is now pretty mature, and tends
to work well as a base class most of the time.

There is a classic observation that despite the best design intentions in the world, no code is reusable until it has been
used in at least two different scenarios, preferably many more. This is especially true for as tricky a relationship as
inheritance. Despite this, there are some steps you can take to reduce the likelihood of running into certain kinds of
problems.

6.4.1 Design Heuristics for Inheritance

The most important fact to bear in mind when considering the use of inheritance is that it never works by accident.
There is a widely held but ultimately misguided belief that the support for inheritance built into the CLR means that we
will be able to inherit from any control and expect everything to work perfectly. The reality is that inheritance only
works when the designer of the base class considered possible inheritance scenarios. It only works really well when the
base class has been revised to incorporate the lessons learned from attempts to use inheritance. Deriving from a
control that was designed without inheritance in mind will at best lead to a severe case of fragile base class syndrome,
but will more likely lead to slightly flaky control syndrome.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

but will more likely lead to slightly flaky control syndrome.

So how should you go about designing your classes if you want them to be suitable as base classes? The obvious
answer is to try creating a few derived classes to see how it goes. But even without doing this there are several issues
you should consider when designing your class.

6.4.1.1 Protection levels

The most obvious inheritance-related aspect of your class is the protection level of its members—which should be public,
which should be protected, and which should be private? First, remember that protected members are a part of your
class's programming interface even though they are only accessible to derived classes. This means that you should not
make all your class's internal workings protected just in case some derived class needs access to them—defining a
protected member should be something you think through just as carefully as you would when defining a public member.

It is instructive to look at how the Windows Forms libraries use access specifiers. The framework uses protected for two
distinct reasons. One is for methods designed to be overridden. This includes all the OnXxx methods—these are protected
to allow you to modify the control's behavior when certain things happen; they are deliberately not public, because only
the control itself should be able to decide when to raise an event. The other is for members that are not meant to be
overridden, and that only need to be accessible if you are changing the operation of the control. For example, the
SetStyle method is protected (but not virtual). Changing any of the control's style flags typically involves providing some
corresponding code to deal with the change, so it makes sense only to let derived classes change them.

If a member doesn't fall into one (or both) of these two categories, it should be either private or public. If protected does
seem like the right option, you should always ask yourself if you are exposing an implementation detail you might want
to change. In an ideal world, the internal workings of a class would be completely invisible to the outside world, and
both the public and protected members would present a perfectly encapsulated view. In practice, expediency tends to
demand that the protected parts of the interface provide a certain amount of insight into the class's construction. It is
hard to come up with any hard and fast rules as to how much information is too much, but you should at least consider
how difficult it would be to change the implementation given the existence of each protected member. If it looks as
though you might be painting yourself into a corner, you should reconsider your design.

VB.NET defaults to Friend protection level for controls on forms and user controls. (Friend is
the equivalent of internal in C#.) This is superficially convenient—it means that you don't
need to change the protection level of a control on a form to use it in a derived form, yet it
makes the controls inaccessible to external components. However, it is better to make
controls private unless you have a good reason not to—you don't wat to restrict your code's
scope for change any more than you have to. And if you need to make controls available
to a derived class, protected is usually a better choice than Friend.

6.4.1.2 Virtual methods

In .NET, methods and properties can only be overridden if the base class chooses to allow it by marking them as virtual
(in C#) or Overridable (in VB). There is a school of thought that says everything should be virtual, the argument being
that this is the most flexible approach possible. But the argument is misguided.

All non-private methods represent a kind of contract between the object and its clients. Some methods are designed
just to be called (all public non-virtual methods). Here the contract is apparently straightforward—if the client calls the
method, the object will do whatever the method is documented to do. When examined in detail, the contract can turn
out to be quite subtle—the precise semantics of the method and the full consequences of calling it can be surprisingly
extensive once any side effects have been taken into account. This often goes well beyond the documented behavior—it
is very common for client code to be dependent on undocumented subtleties in the behavior of a class's programming
interface. (For example, the AutoTextBox shown earlier relies on events being processed in a particular order.)

Conversely, some methods are designed just to be overridden. There is no way of enforcing this—such methods are
usually defined as protected virtual, but nothing stops a deriving class from calling them as well as deriving them. Most of
the OnXxx methods (e.g., OnHandleCreated) fall into this category. Here, the contract is typically fairly straightforward—
the framework guarantees to call such method under certain circumstances to allow you to modify the control's
behavior, often in a fairly narrowly scoped way.

So what about public virtual methods? These are tricky because they are subject to both sets of issues described above.
Moreover, if the derived class overrides a public virtual method, it becomes responsible for preserving the semantics of
the original method. It is tempting to think that if you are using your derived class in a controlled environment, it won't
matter if you change the way the method behaves. However for controls, you often have much less leeway than you
expect, for two reasons. First, at design time, the Forms Designer makes certain assumptions about how the control will
behave. (For example, our partially thread-safe TextBox had to take special action because the Designer presumes that
the Text property can be used in an environment where the Invoke method is unusable. This constraint is not
immediately obvious from the documentation.) Second, the framework may also make use of certain methods or
properties when you are not anticipating it, and it may expect behavior you have not supplied. For example, it is not
uncommon for controls that manage their own size or layout to interact badly with the ScrollableControl, because it
makes certain assumptions about how controls determine their own size.

This is not to say that you should never make public members virtual. But if you do, be prepared to document the full set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is not to say that you should never make public members virtual. But if you do, be prepared to document the full set
of requirements that the derived class will be taking on if it overrides the method. It is usually safest to mandate that
the derived class calls back into your class's implementation. (The majority of the virtual methods defined by the
framework require this.)

6.4.1.3 Event handling

In Windows Forms, every public event will have an associated protected virtual OnXxx method. Overriding such methods
is the preferred way for derived classes to handle these events. If you are designing a class with inheritance in mind,
you should define similar methods for any public events you add to your class.

So if you add a new event called, say, Highlighted to your class, you should also add an OnHighlighted method. Its
signature should be the same as the event delegate signature but without the first object sender or sender As Object
parameter—derived classes can just use the this or Me keyword if they need a reference to the object from which the
event originates. The OnHighlighted method would be responsible for raising the event through the delegate. You should
also make clear in your documentation that deriving classes must call the base class implementation of the OnXxx
method for the event to be raised. You should also document whether it is OK for deriving classes to "swallow" the
event (i.e., prevent it from being raised) by not calling the base implementation.

Be aware that derived classes may decide to call the OnXxx method directly to raise the event artificially. If for some
reason it is difficult for you to accommodate this, document the fact.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.5 Summary
Inheritance is crucially important to the .NET Framework in general and to Windows Forms in particular. All visual
classes must inherit from the Control class either directly or indirectly. Inheritance is a powerful technique that lets us
incorporate the full implementation of a base class into our own controls, but it is a double-edged sword.

It is helpful that all controls and all containers are based on a single implementation provided by the Control class. This
greatly increases the chances of successful interoperation between controls. But inheritance is a complex relationship,
and it is very difficult to define a good base class. Most base classes only become truly reusable as a result of multiple
design iterations based on experience gained by attempts to derive from them. If the base and derived classes are
under common ownership, this is less of a problem. The base class can be modified on demand as shortcomings in its
design are identified, and the author of the derived class is less likely to make false assumptions about how the base
class works when deriving from it. But it is wise to be wary of inheriting from a class you do not control unless that
class has been work-hardened through refactoring driven by experience.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Redrawing and GDI+
Windows Forms applications are nothing if not visual—the display of information is central to most programs with a user
interface. And although the framework ships with a useful range of built-in controls, some applications have
presentation requirements that cannot be met by the standard controls or even by third-party components. Fortunately,
controls can customize their appearance using GDI+, .NET's powerful and feature-rich drawing library.

All custom controls must manage their own appearance, because the Control class does no drawing at all. So we will
start off by looking at the model Windows Forms uses for letting controls draw themselves. Then we will look at the
GDI+ library itself, examining the classes it defines and the drawing facilities it supplies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 Drawing and Controls
Every control owns an area of the screen, and it is responsible for drawing its visual representation onto that part of the
display. So far we have not had to deal with this—we have relied on the fact that the built-in controls all draw
themselves. But to customize the appearance of our applications, we must first understand the mechanism by which
user interface elements are displayed.

The approach used by Windows Forms (and indeed by Windows itself) is that every time any part of a control becomes
visible, it is asked to redraw itself. This usually happens for one of two reasons: either the control is being displayed for
the first time (e.g., it is on a window that has just appeared), or it was behind some other window that has just been
moved out of its way.

In either case, the framework will call the control's OnPaint method. All custom controls will need to override this to
draw themselves. This is why Visual Studio .NET automatically supplies an override of the OnPaint method when you add
a new custom control to your project. Its signature looks like this:

// C#
protected override void OnPaint(PaintEventArgs pe)

' VB
Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

Your OnPaint method must always call the base class's OnPaint method as the last thing it does, so Visual Studio .NET
adds this call for you. But you must supply the code to draw your control, using the facilities supplied in the
PaintEventArgs parameter. The PaintEventArgs object contains two properties. The first, ClipRectangle, tells you which part of
your control needs redrawing. If your control is partially obscured by a window, when that window closes or moves,
only the parts of your control that were hidden need to be redrawn; the ClipRectangle property provides a Rectangle that
indicates which part that is. The other property is Graphics, which returns an object that allows us to draw things—this is
our entry point into GDI+. The use of Graphics objects is the subject of the majority of this chapter.

7.1.1 Forcing a Redraw

It is possible to get the framework to call OnPaint even when a control is already visible. This is useful because you
might want to change your control's appearance due to some change in status. (For example, if your control displays
any text, it will need to make sure that it is redrawn whenever the Text or Font properties are changed.) The Control
class provides a method to do this: Invalidate. The Invalidate method is overloaded—if you pass no parameters, the entire
control will be redrawn, but you can also specify smaller areas to be updated.

Invalidate does not call OnPaint directly—it simply tells the framework that all or part of the control is invalid (i.e., it
should be redrawn at some point). If the area in question happens not to be visible, it won't be redrawn until it
becomes visible, so you might not see a call to OnPaint for every call to Invalidate. The framework may also aggregate
multiple calls to Invalidate into a single OnPaint. If you call Invalidate inside some event handler, the framework will
typically not bother to call OnPaint until you have returned from that handler, so if you call it more than once, these calls
will be summarized into a single call to OnPaint after your handler returns. (If you need the framework to update the
control before you return, calling the Control class's Update method will cause any invalidated areas to be painted
immediately. You can also call the Refresh method, which has the same effect as calling Invalidate followed by Update.
However, it does not let you specify the area to be invalidated, so if you need to be selective, use Invalidate instead.)

7.1.2 Painting Other Controls

Methods whose names begin with On are usually associated with an event, and OnPaint is no exception—the Control class
provides a corresponding Paint event. Its delegate type is PaintEventHandler, and as you would expect, handlers of this
type are provided with the same PaintEventArgs object as the OnPaint method. Client code that handles a control's Paint
event gets to draw whatever it likes into the control on top of what the control itself paints.

You might have only limited success using the Paint event with certain built-in controls,
because some rely on the underlying Windows operating system to do some of their
drawing instead of the OnPaint method.

7.1.3 Flicker-Free Drawing

Whenever a control is redrawn, either as a result of normal window activity, or an explicit call to Invalidate, the OnPaint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Whenever a control is redrawn, either as a result of normal window activity, or an explicit call to Invalidate, the OnPaint
method is effectively starting from a blank canvas. This is because the control always clears its background before
calling OnPaint. (If it didn't, then unless OnPaint happened to paint the entire control area itself, whatever was on the
screen before the control appeared would still be visible, leading to a mangled display.)

The control background is painted in the Control class's OnPaintBackground method, which is
called directly before OnPaint. If you want something other than the default control colored
background, you can override OnPaintBackground. Note that OnPaintBackground is unusual in
that there is no corresponding public PaintBackground event.

Although it is useful that the control's background is automatically cleared, it does cause one problem. The OnPaint
method takes a certain amount of time to run. This means that there is a short period when the control will be blank,
rather than showing its contents. The OnPaint method usually runs quickly enough for this to be unobtrusive most of the
time. However, if you redraw a control frequently (e.g., you update it regularly to indicate the status of your program),
this two-stage redrawing will cause the control to flicker occasionally. This can range from barely noticeable to highly
intrusive—it depends on various factors such as the frequency of updates, the complexity of the OnPaint method, and
the speed of the computer.

Ideally, we would like to prevent this flickering. But there is only one way to achieve this: the redrawing process must
paint the control in one fell swoop. The flickering is caused by the fact that the drawing process does not happen
instantaneously—it is the result of catching a glimpse of the control in a partially drawn state. So we must draw the
control atomically to avoid flicker.[1]

[1] Game authors and television engineers will point out that there is another way—synchronizing your redraw code
with the refresh of the monitor. Unfortunately, Windows has only ever exposed such support through DirectX,
which is not yet directly supported by .NET. Even then, it is difficult to guarantee the absence of flicker, because
this is a real-time technique, and Windows is not a real-time operating system. So in practice, we must aim for an
atomic redraw.

There is a well-known technique for achieving a single-step redraw, known as double buffering. It involves drawing
everything into an off-screen bitmap and only transferring the results onto the screen once drawing is complete. When
you invalidate a control that uses such a technique, the screen never contains any intermediate contents—the very first
change to hit the screen will be the fully drawn end result as it is copied from the off-screen buffer. At no time does the
screen contain the initial background color, nor does it ever contain half-drawn results. It either contains the previous
version or the new version, thus avoiding flicker.[2]

[2] Pedants will observe that you might catch the occasional glimpse in which half of the control shows the old
image and half contains the new image. This won't cause flicker, but if you are animating the control, it can cause
a different artifact known as tearing. To fix this, you will need to use some rather more exotic techniques involving
DirectX. GDI+ is not designed to display broadcast-quality moving pictures.

With classic Win32 programming, the only way to use this technique was to write code to do it yourself. Fortunately,
Windows Forms can do all the work for you. All you need to do is tell it that you would like double buffering switched on
for your control, and the framework will take care of it. You don't need to make any changes to the way your OnPaint
method works; just add the following code to your constructor:

// C#
SetStyle(ControlStyles.DoubleBuffer |
 ControlStyles.AllPaintingInWmPaint |
 ControlStyles.UserPaint,
 true);

' VB
SetStyle(ControlStyles.DoubleBuffer Or
 ControlStyles.AllPaintingInWmPaint Or
 ControlStyles.UserPaint,
 true);

The first style, DoubleBuffer, is self-explanatory. The other two must be set for double buffering to work. If you're
curious as to what they actually do, AllPaintingInWmPaint makes sure that when the control erases the background before
calling OnPaint, it does that erasing in the off-screen buffer, not on the screen. UserPaint indicates that this control
manages its own painting, which discourages the operating system from trying to help with the drawing; this is
important because the whole point is to try to do the drawing in a single step.

Because double buffering is so simple to use in .NET, you might be wondering why it isn't always on. The main reason is
that it's not free—memory must be allocated for the off-screen buffer. The cost of this depends on the size of the
control. For something the size of a button, the control occupies about 1500 pixels. Most modern PCs have a 32-bit
color display, which means that 1500 pixels occupy about 6 KB of memory. On a current PC, 6 KB is as close to nothing
as makes no difference, so the double buffering cost here is very low. But some controls are larger—a control
representing a document may even be the size of the screen if the user maximizes the application's windows. For a
1600 x 1200 32-bit color display, the screen occupies over 7 MB of memory. Memory may be cheap, but even with
current technology, 7 MB is large enough to make you think twice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

current technology, 7 MB is large enough to make you think twice.

The memory is only allocated temporarily. This means that a large control does not require
memory for the whole time that it is visible, only while it is being redrawn. So the working
set implications are not as bad as they could be, but double buffering does make the
garbage collector work a lot harder.

So double buffering should only be used on controls for which the difference it makes is worth the memory it requires.
This is not always an easy judgment to make. For controls that are never updated, it is probably not worth using double
buffering—its purpose is to avoid flicker, which is something that only afflicts controls that change their appearance
from time to time. If your control never calls Invalidate, it probably doesn't need double buffering.[3] For large controls,
the frequency of update is probably the single most significant factor. Drawing programs almost certainly want double
buffering turned on because they can update the display tens of times a second when items are being dragged around
with the mouse. But for a large control that only updates its display a few times a day, it would be hard to justify the
overhead.

[3] The exception here is if you have set the ResizeRedraw control style—this will cause the control to be redrawn
every time the control is resized.

It may also be possible to get a flicker-free display without needing to turn on double buffering. This happens in the
fairly unusual case when your OnPaint method only needs to draw one thing that covers the entire control. In this case,
you already have an atomic redraw, so there is no need for double buffering. This usually only happens when your
control just shows a bitmap or draws a filled rectangle the size of the control. (As we will see later, you can get some
interesting visual effects by drawing a single rectangle with some exotic GDI+ options turned on, so this is not as
pointless as it sounds.) If your control fits into this category, you can tell Windows Forms by putting the following code
into your constructor:

SetStyle(ControlStyles.Opaque, true);

This tells the framework that your control completely covers its whole area when it redraws itself. This causes the
framework not to bother filling the control with the default background before calling your OnPaint method, thus
eliminating flicker without the overhead of double buffering. But your control must fill its entire area if you set this flag.
If it doesn't, the control will look rather strange, with garbage appearing in the parts that you leave blank.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 GDI+
GDI+ is the name of the drawing API in .NET. It is exposed through classes defined in the System.Drawing namespace
and its descendants, System.Drawing.Drawing2D, System.Drawing.Imaging, and System.Drawing.Text. It provides a simple but
powerful set of tools for drawing text, bitmaps, and vector graphics.

GDI+ Naming
None of the GDI+ classes have the name "GDI+" in them anywhere. The API is named after its
predecessor, GDI (the Graphics Device Interface), which was the Win32 drawing API. GDI+ is not in fact a
part of .NET—all the same facilities are available to Win32 programs on Windows XP (or older versions of
Windows if GDI+ has been installed; GDI+ is put in automatically on these platforms when the .NET
Framework is installed). The System.Drawing namespaces are the managed interface to GDI+.

There is a small group of classes that are crucial for drawing anything—some represent fundamental concepts such as
colors, coordinates, and drawing styles, others represent entities that can be drawn into, such as bitmaps or windows.
We will start by seeing what each of these classes is for, and how they relate to each other. Then, we will look at the
various drawing facilities supplied by GDI+ and how to use them. Finally, we will look at some of the advanced support
for changing the coordinate system used for drawing.

7.2.1 Essential GDI+ Classes

There are certain classes defined in the System.Drawing namespace that are used in almost all drawing code. This is
because they represent concepts fundamental to all drawing operations such as coordinates or colors. We will examine
this toolkit of drawing objects, looking at the purpose of each class and how it fits into the GDI+ framework.

Before we start though, there is an issue that concerns almost all the GDI+ classes. Because these classes are a
wrapper on top of the underlying GDI+ facilities, they all represent unmanaged resources. When you create a GDI+
object, it consumes some OS resources, so it is vitally important that you free the object when you are done, because
otherwise you could exhaust the system's resources, preventing your application (and maybe others) from running.
Most classes in System.Drawing therefore implement IDisposable, the interface implemented by all classes that need to be
freed in a timely fashion.

Drawing code therefore usually makes extensive use of the C# using keyword to free resources automatically. So most
GDI+ code will look like this:

using (Brush foreBrush = new SolidBrush (ForeColor))
{
 g.FillRectangle (foreBrush, 0, 0, 100, 100);
}

VB lacks the convenience of the C# using construct, which the C# compiler translates into a call to the Dispose method
within a finally block. As a result, you'll have to call Dispose yourself. The previous C# code fragment would be
implemented as follows in VB:

Dim foreBrush As Brush = New SolidBrush(ForeColor)
Try
 g.FillRectangle(foreBrush, 0, 0, 100, 100)
Finally
 foreBrush.Dispose()
End Try

This creates a new Brush object (described below), uses it to draw a rectangle, and then frees it. You should use this
approach whenever you create a GDI+ object. Of course, this only applies to classes. Value types are not allocated on
the heap, so their lifetime is defined by their containing scope. Values therefore do not use this pattern. (The value
types will be pointed out as we come to them, although if in doubt, try adding a using statement—the compiler will
complain if you use one on the wrong kind of type. Likewise, in VB, if you try to call the Dispose method on an object
that does not require disposal, it will not compile.)

You should only use this pattern if you created the object—for certain types of object (especially the Graphics class) the
system will supply the object rather than requiring you to create it. In an OnPaint handler, for example, a Graphics object
is supplied as a property of the PaintEventArgs parameter. In these cases, it is not your responsibility to dispose of the
object—the framework will free it for you. But if you cause an object to be created, it becomes your job to call Dispose
on it.

Occasionally, it is not possible to determine when an object has fallen out of use: if a control's Font property is changed,
should that control dispose of the Font object that it was previously using? It should not, because it has no way of
knowing whether any other controls are still using the same Font object. Discovering when there are no more controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

knowing whether any other controls are still using the same Font object. Discovering when there are no more controls
using the Font object is a hard problem, and in this case we usually have to rely on the garbage collector. This strategy,
which is effectively an admission of defeat, is not as bad as it would be for a resource such as a database connection,
because most GDI+ objects are not all that expensive. If a few are leaked on a very occasional basis, it is not the end
of the world if they don't release their resources until the garbage collector finally notices them. But you should not take
this as a license not to bother disposing of your objects: if you fail to call Dispose on any of the objects you create in
your OnPaint method, you can run into problems. OnPaint can be called frequently enough that you could exhaust your
GDI+ resources before the garbage collector runs.

You should get into the habit of writing a using statement in C# or of calling IDisposable.Dispose from your code in VB
whenever you use a GDI+ object. All the examples in this chapter will do this, and you should make sure that this
practice becomes second nature. So let us now examine the objects we will be using to draw our controls.

7.2.1.1 Graphics

The Graphics class is the single most important type in GDI+. Without a Graphics object, we cannot draw anything
because it is this class that provides the methods that perform drawing operations. A Graphics object represents
something that can be drawn onto, usually either a window or a bitmap.

We do not normally need to create a Graphics object ourselves. This is because the most common place for drawing code
is the OnPaint method, in which one is supplied for us as the Graphics property of the PaintEventArgs parameter, as shown
in Example 7-1 for C# and Example 7-2 for VB. This Graphics object lets us draw things onto the control's window.

Example 7-1. Using a Graphics object in OnPaint with C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;
 using (Brush b = new SolidBrush(ForeColor))
 {
 g.DrawString(text, Font, b, 0, 0);
 g.FillRectangle(b, 20, 20, 30, 30);
 }
 base.OnPaint(pe);
}

Example 7-2. Using a Graphics object in OnPaint with VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics
 Dim b As Brush = New SolidBrush(ForeColor)
 Try
 g.DrawString(Text, Font, b, 0, 0)
 g.FillRectangle(b, 20, 20, 30, 30)
 Finally
 brush.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

Examples Example 7-1 and Example 7-2 illustrate a common technique used for conciseness: because the Graphics
property of the PaintEventArgs object needs to be used for every single drawing operation, a reference is typically held in
a local variable with a short name (usually g). This avoids the rather verbose alternative of writing pe.Graphics in front of
every single drawing method.

Example 7-1 also illustrates a couple of other important techniques. It has created a Brush object to control the
appearance of the items that it draws (see below), but it has done so inside a using statement to make sure that the
object is freed when it is no longer being used. It has also called the base class's OnPaint method—as mentioned above,
you are required to do this whenever you override OnPaint.

The majority of methods supplied by the Graphics class begin with either Draw... or Fill.... The Draw... methods are
typically used for drawing shape outlines; for example, DrawRectangle, DrawEllipse, and DrawPolygon will draw the outline
of a rectangle, an ellipse, and a polygon, respectively. The corresponding Fill... methods draw the same shape, but they
fill in the shape's interior rather than just drawing an outline. (There are exceptions to this. For example, DrawString
draws a normal text string—it doesn't draw character outlines. DrawImage draws an image such as a bitmap; there isn't
even a sensible interpretation of drawing an outline for a bitmap. But for shapes that support both filled and outline
versions, there will be both Draw... and Fill... methods.)

To draw shapes, the Graphics object needs to know things like what color should be used, and what style should be used
for an outline. These requirements are fulfilled by the Brush and Pen classes, described later. But GDI+ also needs to
know where it should draw things, and how large they should be, so there are some types relating to size and position.

7.2.1.2 Point, Size, and Rectangle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2.1.2 Point, Size, and Rectangle

Coordinates are fundamentally important to any drawing system, so GDI+ defines a few types to deal with location and
size. The Point type represents a single two-dimensional point. The Size type represents something's dimensions (i.e.,
width and height). Rectangle is a combination of the two—it has both a location and a size. These are all value types, so
you don't need to bother with using statements in C# or with calls to IDisposable.Dispose in VB.

GDI+ uses a two-dimensional Cartesian coordinate system. By default, increasing values of the x coordinate will move
to the right, and increasing values of the y coordinate will move down. This is consistent with the Win32 GDI, although
not with traditional graph orientation in mathematics, where increasing values of y move up, not down. The default
units for the coordinate system are screen pixels for most Graphics objects. These are only the defaults—it is possible to
change the orientation and units of the coordinate system, as we will see later.

The Point type has two properties, X and Y. Similarly, Size has Width and Height properties. These are all of type int or
Integer. Both Point and Size define an IsEmpty property, which returns true if both dimensions' values are zero. Both
define explicit conversion operators to convert from one to the other, so you can convert a Point to a Size and vice versa
in C#, as shown in Example 7-3. These conversions map X onto Width and Y onto Height.

Example 7-3. Converting between Point and Size in C#

Point p = new Point (10, 10);
Size s = (Size) p; // same as s = new Size (p.X, p.Y);
s.Width += 5;
Point p2 = (Point) s; // same as p2 =
 // new Point(s.Width, s.Height);

Because VB doesn't directly support conversion operators, you have to take advantage of the fact that the conversion
operators are translated into op_Explicit method calls, as shown in Example 7-4. (Alternatively, you could simply
construct new Point or Size values directly.)

Example 7-4. Converting between Point and Size in VB

Dim p As New Point(10, 10)
Dim s As Size = p.op_Explicit(p)
s.Width += 5
Dim p2 As Point = s.op_Explicit(s)

The Point and Size types also overload the addition and subtraction operators. For Size this is straightforward—adding
one Size to another creates a new Size whose Width and Height are the sum of the Width and Height properties of the
originals. For the Point type, it is a little more complex—the only thing you can add to or subtract from a Point is a Size.
(This is because conceptually a Point doesn't have a magnitude, so it's not clear what addition or subtraction of two Point
values would mean.) Addition and subtraction move the position of the Point by the amount specified in the Size.
Example 7-5 creates a Point and then moves it 5 pixels down and 2 pixels along by adding a Size, leaving the Point p at
(12, 15).

Example 7-5. Moving a Point by adding a Size in C#

Point p = new Point (10, 10);
Size s = new Size (2, 5);
p = p + s;

Again, because VB doesn't support operator overloading, you can call the op_Addition method, the method that the
overloaded addition operator is actually translated into at runtime. The VB that is equivalent to the C# code in Example
7-5 is shown in Example 7-6.

Example 7-6. Moving a Point by adding a Size in VB

Dim p As New Point(10, 10)
Dim s As New Size (2, 5)
p = Point.op_Addition(p, s)

The Rectangle class has both position and size. It can be constructed either from a Point and a Size, or with four integers,
as shown in Example 7-7. Note that, except for slight syntactical differences, the C# and VB code are nearly identical.

Example 7-7. Creating a Rectangle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-7. Creating a Rectangle

// C# code
Point p = new Point (10, 10);
Size s = new Size (20, 20);
Rectangle r = new Rectangle(p, s);
Rectangle r2 = new Rectangle(10, 10, 20, 20);

' VB code
Dim p As New Point(10, 10)
Dim s As New Size(20, 20)
Dim r As New Rectangle(p, s)
Dim r2 As New Rectangle(10, 10, 20, 20)

Rectangle provides a Location property of type Point, and a Size property of type Size. Rectangle also makes the same
location and size information accessible through the X, Y, Width, and Height properties; this is just for convenience—
these represent the same information as the Location and Size properties. This may seem pointless, but there is a subtle
issue that means the following code will not compile:

myRectangle.Size.Width = 10; // Won't compile

The compiler will complain that the Width property of a Size object can only be set if that Size is a variable, not a
property. This is because the Size type is a value type, and Rectangle.Size is a property, not a field; this has the effect
that the Size property can only be used to change the rectangle's size in its entirety, i.e., setting both the width and
height in one operation. So the Width and Size properties supplied by the Rectangle are convenient because they make it
possible to adjust the two dimensions independently, as shown in Example 7-8. The X and Y properties do the same job
for the location, because Point is also a value type.

Example 7-8. The correct way to adjust a rectangle's width

myRectangle.Width = 10;

Rectangle also provides Top, Bottom, Left, and Right properties. These are read-only, because it is not obvious whether
changing one of them should move or resize the rectangle. The rectangle's Location refers to its top left corner. So the
Left property is synonymous with X, and Top with Y. These names presume a coordinate system where increasing values
of x and y move to the right and down, respectively.

Rectangle does not overload the addition and subtraction operators, because it is ambiguous: should they move or resize
the rectangle? Moving it is simple enough—just adding a Size to its Location property works:

myRectangle.Location += new Size (10, 20);

Here again, because VB does not support operator overloading (in this case, as we have seen earlier, the overloading of
the Point type returned by the Location property), we have to call the Point type's op_Addition property, as follows:

myRectangle.Location = Point.op_Addition(myRectangle.Location, _
 New Size(10, 20))

To change the size, you can add a Size to the Size property in much the same way. Alternatively, you can call the Inflate
method. This also adjusts the size, but in a slightly different way—inflating a rectangle by, say, (10, 10) actually moves
all four edges of the rectangle out by 10. This makes each edge 20 units longer, and also adjusts the position so that
the rectangle's center remains in the same place.

All these are value types, not reference types. This is partly because coordinates are used and modified extensively
when using GDI+, so the overhead of putting them on the heap would be high. Also, coordinates are value-like entities
—it doesn't really make any sense for a coordinate object to have its own identity. That would lead to the potential for
bugs in which a programmer could set the Size of two rectangles to be the same, and then fail to realize that (because
they are reference types) modifying the Size of one would also implicitly modify the other. This doesn't happen with
value types, although they are not without their own complications, such as the issue with independent adjustment of
width and height of a Rectangle, discussed above.

The three types discussed here all represent coordinates using int or Integer. GDI+ also supports the use of float or Single
for all coordinates. This can allow applications much greater flexibility for their internal coordinate systems, and also
makes it easier to apply certain kinds of transformations correctly. And because modern processors can manage
floating-point arithmetic extremely quickly, there are no performance reasons not to use floating-point values. So each
type discussed so far has a floating-point counterpart—the PointF, SizeF, and RectangleF types are similar to Point, Size,
and Rectangle, respectively, except they use float or Single instead of int or Integer.

You may be wondering what a coordinate represented by a Point means in terms of position on the screen. By default,
the units used by the coordinate system correspond to pixels—the Point whose value is (10, 20) represents a position 10
pixels to the right and 20 pixels down from the origin. The origin is usually the top lefthand corner of whatever is being
drawn into (e.g., the window or a bitmap). But as you will see towards the end of this chapter, GDI+ lets you use
different coordinate systems if you want to—it can automatically apply a transform to all coordinates to map them onto
pixel positions.

Of course, position and size aren't everything. In order to draw something, GDI+ will need to know what color it should
use, so we will now look at how colors are represented in this programming model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2.1.3 Color

All drawing needs to be done in some color or other.[4] In GDI+ the Color type represents a color. It is used anywhere
that a color needs to be specified. Color is a value type.

[4] For the purposes of this discussion, black and white are considered to be colors too.

Color can represent any color that can be expressed as a combination of red, green, and blue components, using 8-bit
values for each. (This is the usual way of specifying colors in computing, because of how color displays work.) It can
also support transparency with an alpha channel, another 8-bit value that indicates whether the color should be
displayed as opaque, and if not, how transparent it should be—this is used when drawing one color on top of another.
(The transparent drop shadows that Windows XP draws around menus use alpha blending, for example.)

Example 7-9 shows how to build a color value from its red, green, and blue components. This particular color will be
orange (which is approximately two parts red to one part green when using additive primary colors).

Example 7-9. Building a color from RGB components

// C#
Color orange = Color.FromArgb(255, 128, 0);

' VB
Dim orange As Color = Color.FromArgb(255, 128, 0)

The Argb part of the method stands for "alpha, red, green, and blue." This is a little confusing because there are several
overloads, not all of which take all the components. Example 7-9 just passes RGB but not A, for example. It is
equivalent to this code:

// C#
Color orange = Color.FromArgb(255, 255, 128, 0);

' VB
Dim orange As Color = Color.FromArgb(255, 255, 128, 0)

This specifies an alpha value of 255, i.e., a completely non-transparent color. The three-component version shown in
Example 7-9 always builds a non-transparent color. (It would have been less confusing if the RGB-only method was just
called FromRgb, rather than being an overload of FromArgb.)

As well as building colors from their component parts, you can also use named colors. The Color type has static
properties for each standard named web colors, so you can just specify colors such as Color.Teal or Color.AliceBlue.
Alternatively you can use the SystemColors class, which provides static properties for each user-configurable system
color, such as those used for window titles, menu items, etc. So to draw something in the color currently defined for
control backgrounds, simply use SystemColors.Control.

If you are overriding the OnPaint method in a control, you should use the built-in ForeColor and BackColor properties
where appropriate, rather than hard-wiring colors in. And if you need more colors in your control than a foreground and
background color, consider adding extra properties to allow the user to edit these.

It is useful to be aware of the ControlPaint utility class. One of the facilities it provides is the ability to create a modified
version of a color for drawing things such as shadows and highlights. For example, if you want to draw a bezel or
similar 3D effect, you should always choose colors that are based on the background color; for example, use
ControlPaint.Dark to get the "in shadow" version of a color, and ControlPaint.Light to get the pale version. Examples
Example 7-10 and Example 7-11 draw a 3D dividing line at the top of the control, using whatever the control's
background color is. (And because BackColor is an ambient property, by default, this will be whatever the background
color of the containing form is.)

Example 7-10. Sensitivity to background color in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Pen light = new Pen(ControlPaint.Light(BackColor)),
 dark = new Pen(ControlPaint.Dark(BackColor)))
 {
 g.DrawLine(dark, 0, 0, Width, 0);
 g.DrawLine(light, 0, 1, Width, 1);
 }
 base.OnPaint(pe)
}

Example 7-11. Sensitivity to background color in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-11. Sensitivity to background color in VB

 Protected Overrides Sub OnPaint(pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics
 Dim light As New Pen(ControlPaint.Light(BackColor))
 Dim dark As New Pen(ControlPaint.Dark(BackColor))

 Try
 g.DrawLine(dark, 0, 0, Width, 0)
 g.DrawLine(light, 0, 1, Width, 1)
 Finally
 light.Dispose()
 dark.Dispose()
 End Try
 MyBase.OnPaint(pe)
 End Sub

Note that Color is a value type, not a class, for much the same reasons as the Point, Size, and Rectangle types—because
colors are used extensively, and they make more sense as values than as objects. So Color values do not need to be
freed with a using statement in C# or a call to Dispose in VB. (The using block in Example 7-10 frees the Pen objects, not
the Color values.)

The Color type cannot be used in isolation when drawing. There is more to the way that GDI+ draws things than mere
color, so GDI+ requires that all filled shapes be drawn with a Brush object, and outlines be drawn with a Pen object. So
we will now look at these.

7.2.1.4 Brushes

GDI+ uses the Brush class to determine how it should paint areas of the screen. So you must pass a Brush of some kind
to all the FillXxx methods of the Graphics class, and also to the DrawString method.

Brush is an abstract class. This is because there are several different ways GDI+ can fill in an area: it can use a single
color, a pattern, a bitmap, or even a range of colors using so-called gradient fills. For each of these fill styles, there is a
corresponding concrete class deriving from Brush.

The simplest type of brush is SolidBrush. When painting an area with this kind of brush, GDI+ will paint with a single
color. This is the most common type of brush, particularly for text, where more complex textured or patterned brushes
would be likely to make the text illegible. Examples Example 7-12 and Example 7-13 use two solid brushes. The first is
based on the control's ForeColor property and is used to draw some text. The second is a pale shade of green used to
draw a rectangle.

Example 7-12. Using SolidBrush in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 Color transparentGreen = Color.FromArgb(128, Color.PaleGreen);
 using (Brush fb = new SolidBrush(ForeColor),
 gb = new SolidBrush(transparentGreen))
 {
 g.DrawString("Hello!", Font, fb, 0, 5);
 g.FillRectangle(gb, 10, 0, 15, 25);
 }
 base.OnPaint(pe);
}

Example 7-13. Using SolidBrush in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim transparentGreen As Color = Color.FromArgb(128, _
 Color.PaleGreen)
 Dim fb As Brush = New SolidBrush(ForeColor)
 Dim gb As Brush = New SolidBrush(transparentGreen)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim gb As Brush = New SolidBrush(transparentGreen)

 Try
 g.DrawString("Hello!", Font, fb, 0, 5)
 g.FillRectangle(gb, 10, 0, 15, 25)
 Finally
 fb.Dispose()
 fb.Dispose()
 End Try

 MyBase.OnPaint(pe)

End Sub

The output of this code, shown in Figure 7-1, illustrates that the SolidBrush class has a slightly misleading name. The
transparentGreen color is see-through—even though the rectangle is drawn on top of the text, the "Hello!" string remains
visible through the rectangle. If you try this code, you will see that the text is also tinted green underneath the
rectangle. This is because the color has a partially transparent alpha value—it was built using the version of
Color.FromArgb that takes an alpha value and a color as parameters and returns a transparent version of the color. So it
turns out that the SolidBrush can be used to draw transparent colors. This is because the "Solid" name simply indicates
that the same color (transparent or not) is used across the entire area of the fill.

Figure 7-1. A transparent SolidBrush

It is not always necessary to construct your own SolidBrush. If you require a brush that represents a system color (such
as the control background or menu text color) GDI+ can provide ready-built brushes. There are two classes that supply
Brush objects as static properties: Brushes and SystemBrushes. These provide solid brushes whose colors are those
provided by the static members in Color and SystemColors. Because these are globally available brushes, it is not your
responsibility to free them after using them—you are only required to call Dispose on objects that you created or caused
to be created. In fact, you are not allowed to dispose of such brushes—doing so will cause an exception to be thrown.
(Disposing of a brush obtained from the Brushes class does not currently throw an exception immediately. You will get
an exception the next time you try to use a brush of the same color from the Brushes class.) As Example 7-14 shows,
we can just use such a brush directly, and we don't need the using syntax in C#, nor do we need to call Dispose directly
in VB. (In this case, we are painting the control with the background color of a ToolTip. ClientRectangle is a property of
the Control class that returns a Rectangle indicating the area of the control that can be drawn on; for most controls, this
is the control's size, but for a form, it is just the client area, without the borders or titlebar.)

Example 7-14. Using SystemBrushes

// C# code
protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;
 g.FillRectangle(SystemBrushes.Info, ClientRectangle);
 base.OnPaint(pe);
}

' VB code
Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics
 g.FillRectangle(SystemBrushes.Info, ClientRectangle)
 MyBase.OnPaint(pe)
End Sub

Annoyingly, there are certain omissions from SystemBrushes. It only supplies the colors considered to be background
colors. This mostly makes sense when you realize that there is a corresponding SystemPens class for the foreground
colors, but it is unhelpful, because you sometimes need a brush for a foreground color, such as when displaying text.
(So the absence of SystemBrushes.MenuText is particularly unhelpful for owner-drawn menus.) Fortunately, you can still
get the system to supply you with an appropriate brush by calling the static SystemBrushes.FromSystemColor method. As
with brushes returned by the static properties, you should not dispose of these brushes—they are cached by GDI+.

If you don't want to paint the entire fill area uniformly with one color, you might find the HatchBrush class to be more
appropriate. (This class is defined in the System.Drawing.Drawing2D namespace, so you may need to add an extra using (in
C#) or Imports (in VB) declaration at the top of your source file to use this brush.) This allows a repeating pattern to be
drawn with two colors. The pattern must be one of those listed in the HatchStyle enumeration, which contains a list of
patterns that will be familiar to long-term Windows developers, such as Trellis or Plaid. Although this requirement is fairly
limiting—you can't define your own hatch styles—it can be useful for certain effects if a system style happens to suit
your needs. Examples Example 7-15 and Example 7-16 show a HatchBrush being used to draw a half-transparent blue
hatch pattern over a control. The result will look like Figure 7-2—Internet Explorer uses a similar effect to highlight
bitmaps when you select parts of a web page by dragging the mouse.

Example 7-15. Using a HatchBrush in C#

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-15. Using a HatchBrush in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Brush tb = new SolidBrush (ForeColor),
 rb = new HatchBrush (HatchStyle.Percent50,
 SystemColors.Highlight,
 Color.Transparent))
 {
 g.DrawString ("Hello", Font, tb, 0, 0);
 g.FillRectangle(rb, ClientRectangle);
 }
 base.OnPaint(pe);
}

Example 7-16. Using a HatchBrush in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics
 Dim tb As Brush = New SolidBrush(ForeColor)
 Dim rb As Brush = New HatchBrush(HatchStyle.Percent50, _
 SystemColors.Highlight, _
 Color.Transparent)
 Try
 g.DrawString("Hello", Font, tb, 0, 0)
 g.FillRectangle(rb, ClientRectangle)
 Finally
 tb.Dispose()
 rb.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

Figure 7-2. A HatchBrush in action

The HatchBrush draws in two colors, one for the foreground parts of the hatch pattern, and one for the background
parts. This example has used Color.Transparent (a completely transparent color) for the background, which is why the
text is visible through the hatched rectangle, even though the rectangle was drawn over it.

The HatchBrush class is very convenient to use because it comes with a set of built-in patterns. But this is also its weak
point—it is not customizable. Fortunately, there is another type of brush that lets you use any fill pattern you like:
TextureBrush. You construct a TextureBrush by supplying an Image object. The Image class represents pictures, typically
bitmaps, and we will look at it shortly, but for now, we will just expose a property whose type is Image, which will
enable users to supply a bitmap using the Forms Designer.

Examples Example 7-17 and Example 7-18 show how to create a TextureBrush based on an Image, and also how to pass
the responsibility for creating the Image on to the user by making her supply one in the Forms Designer. The results can
be seen in Figure 7-3—the text has been painted with a bitmap filling. TextureBrush also supports transparency, including
bitmaps whose transparency is determined per-pixel.

Example 7-17. Creating and using a TextureBrush in C#

private Image fill;

[Category("Appearance")]
public Image FillImage
{
 get
 {
 return fill;
 }
 set
 {
 if (value != fill)
 {
 fill = value;
 Invalidate();
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 if (fill != null)
 {
 using (Brush b = new TextureBrush(fill))
 {
 g.DrawString ("Hello", Font, b, 0, 0);
 }
 }
 base.OnPaint(pe);
}

Example 7-18. Creating and using a TextureBrush in VB

Private fill As Image

<Category("Appearance")> Public Property FillImage() As Image
 Get
 Return fill
 End Get
 Set(ByVal Value As Image)
 If Not fill Is Value Then
 fill = Value
 Invalidate()
 End If
 End Set
End Property

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics

 If Not fill Is Nothing Then
 Dim b As Brush = New TextureBrush(fill)
 Try
 g.DrawString("Hello", Font, b, 0, 0)
 Finally
 b.Dispose()
 End Try
 End If
 MyBase.OnPaint(pe)
End Sub

Figure 7-3. A TextureBrush in action

There is also a style of brush to support gradient fills. A gradient fill changes color from one place to another. These are
used extensively in Windows XP to provide a less flat appearance to the UI. Examples Example 7-19 and Example 7-20
show how to paint the control's background with a gradient fill ranging from the foreground color at the top to the
background color at the bottom. (Recall that Windows Forms will call OnPaintBackground to clear your control's
background before calling OnPaint.) The results can be seen in Figure 7-4. (In a real application, you would normally
want to pick a pair of colors that were more similar to get a less dramatic spread of colors for the background. Most of
Windows XP's gradient background fills use only a very subtle change in color.)

Example 7-19. Using a LinearGradientBrush in C#

protected override void OnPaintBackground(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Brush bg = new LinearGradientBrush(ClientRectangle,
 ForeColor, BackColor,
 LinearGradientMode.Vertical))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LinearGradientMode.Vertical))
 {
 g.FillRectangle(bg, ClientRectangle);
 }
 // No need to call base for OnPaintBackground
}

Example 7-20. Using a LinearGradientBrush in VB

Protected Overrides Sub OnPaintBackground(ByVal pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics

 Dim bg As Brush = New LinearGradientBrush(ClientRectangle, _
 ForeColor, BackColor, _
 LinearGradientMode.Vertical)
 Try
 g.FillRectangle(bg, ClientRectangle)
 Finally
 bg.Dispose()
 End Try
 ' No need to call base for OnPaintBackground
End Sub

In Examples Example 7-19 and Example 7-20, we have used a LinearGradientBrush. Its constructor is overloaded,
allowing the fill to be set up in various ways. The constructors all take a start color and an end color; what differs is the
way the start and end coordinates of the fill can be set. In this case, we have passed a rectangle to specify the bounds
of the fill and used the LinearGradientMode enumeration to indicate how the gradient should fill the rectangle. The options
are self-explanatory—Horizontal, Vertical, ForwardDiagonal, and BackwardDiagonal. If you want more control over the angle
of the fill, there is another constructor that takes a float or Single in place of a LinearGradientMode, specifying the fill angle
in degrees. There is also a constructor that takes a pair of points, indicating the start and end points of the fill. It is
even possible to specify multi-stage fills that use several different colors, using the InterpolationColors property—see the
ColorBlend class in the reference section for details.

Figure 7-4. A linear gradient fill

GDI+ supports two different kinds of gradient fill brushes. As well as the simple linear gradient, there is the
PathGradientBrush class. While the LinearGradientBrush can only draw gradients going in a single direction, the
PathGradientBrush can handle any shape. Examples Example 7-21 and Example 7-22 show how to create and use a
PathGradientBrush to draw an ellipse-shaped gradient fill. (The GraphicsPath class in the System.Drawing.Drawing2D
namespace will be described later on in this chapter. For now it is enough to know that it can describe arbitrary shapes;
in this case, we are using it to describe an ellipse.)

Example 7-21. Using a PathGradientBrush in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;
 using (GraphicsPath gp = new GraphicsPath())
 {
 gp.AddEllipse(ClientRectangle);
 using (PathGradientBrush b = new PathGradientBrush(gp))
 {
 b.CenterColor = Color.Cyan;
 Color[] outerColor = {Color.Navy};
 b.SurroundColors = outerColor;
 g.FillEllipse(b, ClientRectangle);
 }
 }
 base.OnPaint(pe)
}

Example 7-22. Using a PathGradientBrush in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim g As Graphics = pe.Graphics
 Dim gp As New GraphicsPath()

 Try
 gp.AddEllipse(ClientRectangle)
 Dim b As PathGradientBrush = New PathGradientBrush(gp)
 Try
b.CenterColor = Color.Cyan
Dim outerColor() As Color = {Color.Navy}
b.SurroundColors = outerColor
g.FillEllipse(b, ClientRectangle)
 Finally
b.Dispose()
 End Try
 Finally
 gp.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

The result of this is shown in Figure 7-5. As you can see, the shading changes from the center in accordance with the
shape of the path. In this case, we have drawn the object to be the same shape as the fill path, but this is not
mandatory—we could equally have drawn some text with such a fill.

Figure 7-5. A path gradient fill

So we have seen how to control the way in which GDI+ fills in an area when painting to the screen. We can use a
simple single color, a predefined hatch pattern, a bitmap, or a gradient fill. But many of the drawing operations
provided by the Graphics class do not fill areas of the screen—they draw outlines instead. The options available for an
outline's appearance are quite different from those for a filled area, so GDI+ defines a separate type to deal with this:
Pen.

7.2.1.5 Pens

Just as the Brush class defines the way in which GDI+ will fill in areas of the screen, the Pen class determines how it
draws outlines. However, Pen is not abstract; on the contrary, it is sealed or NonInheritable, which means that unlike the
Brush family of classes, there is only one type of Pen. However, a Pen can use a Brush to control how it paints, so it
supports all the same drawing techniques.

The Pen class provides features unique to outline drawing. For example, it allows a line thickness to be specified.
Examples Example 7-23 and Example 7-24 draw 10 lines of varying thickness. Note that in this case, each Pen object is
created based on a Color. We could also have supplied a SolidBrush of the appropriate color, but in this case it is easier to
use the Pen constructor that takes a Color and a thickness (as a float or Single). Examples Example 7-23 and Example 7-
24 also show the use of the StartCap and EndCap properties to set the style of the starts and ends of the lines.

Example 7-23. Selecting the line thickness in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 for (int i = 0; i < 10; ++i)
 {
 using (Pen p = new Pen(ForeColor, i))
 {
 p.StartCap = LineCap.Square;
 p.EndCap = LineCap.ArrowAnchor;
 g.DrawLine(p, i*15 + 10, 10, i*15 + 50, 50);
 }
 }

 base.OnPaint(pe);
}

Example 7-24. Selecting the line thickness in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-24. Selecting the line thickness in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim i As Integer

 For i = 0 to 9
 Dim p As New Pen(ForeColor, i)
 Try
 p.StartCap = LineCap.Square
 p.EndCap = LineCap.ArrowAnchor
 g.DrawLine(p, i*15 + 10, 10, i*15 + 50, 50)
 Finally
 p.Dispose()
 End Try
 Next
 MyBase.OnPaint(pe)
End Sub

The results are shown in Figure 7-6. Note that the first two lines appear to be the same width. This is because their
widths are 0.0 and 1.0 respectively, and a line will always be drawn at least 1 pixel thick. (The default coordinate
system when painting to the screen uses pixels as units, so the line whose width is 1.0 is also one pixel thick.)

Figure 7-6. Line thickness and caps

Drawing a thick line has the side effect that its bounding box on screen might be larger than the bounding box
containing its endpoints. Figure 7-7 shows the same lines with their centers overlaid. This illustrates that both the width
and the cap style can influence whether painting happens outside the bounds of the endpoints. This is a particularly
important issue if your implementation of OnPaint uses the ClipRectangle property on the PaintEventArgs object to
determine what does and doesn't need to be drawn. If your drawing test works on line coordinates alone you might
decide not to draw a line that is in fact partially visible. You must always add sufficient leeway to take the width into
account.

Figure 7-7. Line centers

By default, a Pen object will draw a solid line with no breaks. However, if you set the DashStyle property, you can draw
dashed lines. This property's type is the DashStyle enumeration, which provides eponymous Dash, DashDot, DashDotDot,
and Dot patterns. If these do not suit your needs, you can use the Custom style to define your own dash pattern. In this
case, you must set the DashPattern property of the Pen to an array specifying the pattern. Each float or Single in this array
alternately defines the length of a dash or a gap between two dashes.

Examples Example 7-25 and Example 7-26 draw a line with a custom dash pattern with alternating medium and long
dashes, interspersed with short breaks, as defined by the pattern array.

Example 7-25. Creating a custom dash pattern in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Pen p = new Pen(Color.Black))
 {
 p.DashStyle = DashStyle.Custom;
 float[] pattern = { 10, 2, 20, 2 };
 p.DashPattern = pattern;
 g.DrawLine(p, 2, 2, 100, 2);
 }

 base.OnPaint(pe);
}

Example 7-26. Creating a custom dash pattern in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-26. Creating a custom dash pattern in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics

 Dim p AS New Pen(Color.Black)
 Try
 p.DashStyle = DashStyle.Custom
 Dim pattern() As Single = { 10, 2, 20, 2 }
 p.DashPattern = pattern
 g.DrawLine(p, 22, 22, 100, 22)
 Finally
 p.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

Figure 7-8 shows the result.

Figure 7-8. A custom dash pattern

When drawing a shape with corners (such as a rectangle), there are several different ways the corners can be
displayed. You can set the Pen class's LineJoin property to be rounded off (LineJoin.Round), beveled (LineJoin.Bevel), or
mitered (LineJoin.Miter), as shown in Figure 7-9.

Figure 7-9. Round, beveled, and mitered corners

A Pen can be constructed using either a Color or a Brush. But as with brushes, if you just need a simple pen to draw in
either a well-known color or a system color, you can use the static properties in the Pens and SystemPens classes,
respectively. Just as SystemBrushes only supplies brushes for the background-like colors, SystemPens only provides
foreground-like colors, but again you can obtain a Pen for any of the missing system colors with the static
FromSystemColor method. As with brushes, you must not call Dispose on pens obtained from the Pens or SystemPens
classes, because they are cached, and are therefore considered to be owned by GDI+, not by you. Attempting to
dispose of them will cause an exception to be thrown.

We have now seen the basic toolkit of objects used for drawing. Graphics represents a surface that we can draw onto,
typically a window or a bitmap. Coordinates and sizes are represented by Point, Size, and Rectangle, and their floating-
point equivalents, PointF, SizeF, and RectangleF. We tell the Graphics object how we would like it to paint areas and
outlines using the Brush and Pen classes, and we use Color to specify the colors with which we would like to draw. So let
us now look at how to use these to perform some specific drawing operations.

7.2.2 Shapes

The purpose of GDI+ is to allow us to draw images. GDI+ therefore provides us with a set of building blocks—primitive
shapes from which we can construct drawings. We have already seen simple examples of this when looking at the
brushes and pens, but we will now take a more detailed look at the available facilities.

We draw shapes by calling methods on a Graphics object, which represents the surface we are drawing on, be it a
window or a bitmap or something else. These methods fall into two categories: those that paint filled areas, and those
that draw outlines. With certain exceptions, the former all begin with Fill... and the latter begin with Draw.... In most
cases, the same kinds of shapes can be drawn either filled or in outline; i.e., for any given shape, there is normally a
Fill... and a Draw... method.

7.2.2.1 Rectangles and ellipses

The simplest shapes to draw are rectangles and ellipses. Although these obviously look very different, they turn out to
be similar in use—when drawing an ellipse, you specify its size and position in exactly the same way as for a rectangle.

The Graphics class provides four methods for drawing these shapes. DrawRectangle and DrawEllipse draw the shapes in
outline using a Pen, and FillRectangle and FillEllipse fill the shapes using a Brush. These methods are all overloaded,
allowing you to specify the size and position in a variety of different ways. You can supply four numbers (either as
int/Integer in VB—or float/Single in VB): the x and y coordinates and the width and height. The coordinates specify the
top-left corner for rectangles, or the top-left corner of the bounding box for ellipses. Alternatively, you can pass a
Rectangle value. Finally, you can also supply a RectangleF to all the methods apart from DrawRectangle.[5]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rectangle value. Finally, you can also supply a RectangleF to all the methods apart from DrawRectangle.[5]

[5] This appears to be an accidental omission. Future versions of the framework may rectify this.

Sometimes you will want to draw several rectangles. For example, a control that draws a bar graph is likely to need to
draw many. Instead of calling DrawRectangle or FillRectangle for each, it might be faster to pass an array of Rectangle or
RectangleF values to the DrawRectangles and FillRectangles methods. (Despite the fact that you cannot pass a RectangleF to
DrawRectangle, you can pass an array of them to DrawRectangles.)

These methods do not provide a direct way of rotating the shapes—their axes are always aligned with the horizontal
and vertical drawing axis. However, it is still possible to draw a rotated ellipse or rectangle if necessary by using a
transform—see Section 7.2.5 later on for details.

7.2.2.2 Lines and polygons

If you need to draw shapes that are more complex than rectangles and ellipses, you might be able to construct the
picture you require out of straight lines. The Graphics class provides methods for drawing individual lines and groups of
lines.

To draw a single line, use the DrawLine method, passing an appropriate Pen. You can specify the end points either by
passing a pair of Point (or PointF) values, or you can pass the two coordinates as four numbers of type int (Integer in VB)
or float (Single in VB), as shown previously in Example 7-23.

If you want to draw a series of connected lines, you can either call DrawLines or DrawPolygon. The difference between
these is that the latter automatically draws a closed shape (i.e., it will draw an extra line connecting the final point back
to the first one). Because a polygon is a closed shape, you can also draw a filled one with the FillPolygon method. Each of
these methods takes an array of Point or PointF values.

When drawing a polygon, it is possible to specify points in such a way that some of its edges intersect each other. This
presents FillPolygon with a problem—what should it do for areas that are enclosed by multiple edges? Figure 7-10
illustrates such a shape—the edge cuts in on itself, creating two squares in the middle of the shape. GDI+ can use two
different rules to determine whether such regions should be filled. You can choose which rule is used by passing a value
from the FillMode enumeration to FillPolygon.

The default is FillMode.Alternate, which means that each time a boundary is crossed, GDI+ will alternate between filling
and not filling. For the first shape shown in Figure 7-10, this means that neither interior square is filled.

Figure 7-10. The Alternate and Winding fill modes

The other mode, FillMode.Winding, is a little more complex—it takes the direction that edges are pointing into account,[6]

which means that interior regions may or may not be filled. This mode is rarely used—certain graphics systems have
supported it historically, but unless you need compatibility with these, you will probably not use it.

[6] More precisely, when working across the shape, it maintains a count that is incremented every time an upward-
facing edge is crossed and decremented every time a downward facing edge is encountered. It will fill the shape in
any regions for which this count is nonzero. For this reason, this mode is also sometimes known as the nonzero
winding rule.

Shapes made out of straight lines are all very well, but sometimes you will want to draw curved lines instead. GDI+ has
full support for these too.

7.2.2.3 Curves

There are several different ways of drawing curved shapes. GDI+ lets you draw elliptical arcs, Bézier curves, and
cardinal splines.

There are two ways of drawing sections of an ellipse: arcs and pies. An arc is a subsection of the perimeter of an
ellipse, and as such can only be drawn in outline. So there is a DrawArc method, but no corresponding Fill... method. A
pie is similar to an arc, but it defines a closed area by adding two lines joining the ends of the arc to the center of the
ellipse—it is called a "pie" because you would use these to draw a segment of a pie chart. Because a pie is a closed
area, there are both DrawPie and FillPie methods. Example output of each method is shown in Figure 7-11.[7]

[7] There is no direct support for drawing a chord, but this is easy enough to recreate using paths, which are
described in the next section.

Figure 7-11. Output from DrawArc, DrawPie and FillPie

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-11. Output from DrawArc, DrawPie and FillPie

Because all three methods describe a segment of an ellipse, they all take similar sets of parameters. There are methods
that take six numbers (either as int/Integer or float/Single), four of which describe the ellipse's x and y position and its
width and height, and the other two of which describe the starting angle of the segment (in degrees, clockwise from the
x axis) and the sweep angle. Alternatively, there are methods that use a Rectangle to describe the ellipse, with two
float/Single parameters to describe the start and sweep angles. Finally, there are versions that take a RectangleF and two
float/Single angles, although in another curious omission, FillPie only has three of these overloads and does not accept a
RectangleF.[8]

[8] There is another more subtle anomaly: in the all-numbers versions, where the rectangle is specified in integer
units, the angles are too, but in the methods that take a Rectangle, which uses integer units, the angles are
specified as float/Single.

Elliptical segments are useful for certain applications, but you will often need a more flexible way of drawing curves.
One of the other curve types offered by GDI+ is the cardinal spline, drawn by the DrawCurve method. A cardinal spline is
a curve that passes through a set of points without any kinks—the line changes angle progressively to pass smoothly
through each point. Figure 7-12 shows an example spline, with each of the five points that it passes through
highlighted. (The points have been added for illustrative purposes. The DrawCurve method does not highlight the points
like this.) There is also a DrawClosedCurve method, which draws a loop by joining the last point back to the starting point.
Because this defines a closed shape, there is also a corresponding FillClosedCurve method.

Figure 7-12. A cardinal spline

Each of these methods can take an array of either Point or PointF values. They also take an optional float/Single
representing the "tension" in the curve—this controls how close the curvature comes to the points. As the tension
approaches zero, the curvature becomes tighter and happens closer to the points, with the lines becoming entirely
straight at zero tension. As the tension increases, the lines become flatter around the control points, with the curvature
being pushed out to the middle of the segments. The default tension is 0.5.

Tension in Cardinal Splines
This tension parameter exists because cardinal splines are meant to model the behavior of the wooden
splines that were used for drafting in the days before CAD. Curves were drawn using flexible pieces of
wood called splines; the bendiness of the wood influenced the shape of the curve, so several different
thicknesses of spline were usually available to provide different effects. The tension parameter is designed
to model this level of flexibility.

Another popular type of spline is a Bézier curve. With Bézier curves, each line segment is controlled by four points. As
well as the start and end points, there are two other control points that determine the tangent and the rate of curvature
at each end of the segment. This allows much more precise control of the shape than is possible with a cardinal spline's
tension parameter, as the curvature can be adjusted on a per-segment basis.

Bézier curves are widely used in font design and for many graphic design applications because they offer such a high
level of control. They do, however, require a little more effort to use than cardinal splines, on account of needing two
control points to be defined for each segment, not just its endpoints. Because the control points define the tangent of
the curve, you are also responsible for making sure that adjacent segments are cotangential if you want to avoid
discontinuities in the curve, as Figure 7-13 shows. (The control points and the tangents that they form have been
shown on this diagram. As you can see, the tangents on the point shared by the two segments at the top do not line
up, so the curve has a kink.)

Figure 7-13. Bézier curves with discontinuity

Bézier curves are always drawn as open curves, so there are no Fill... methods for them on the Graphics class. (They can
still be used to paint filled areas by building them into a path as described in the next section.) The DrawBezier method
can be passed the four control points as Point or PointF values, or eight float values (but not int values for some reason).
There is also DrawBeziers, which draws a connected series of curves. It takes an array of Point or PointF values.
DrawBeziers presumes that each segment's endpoint will be the following segment's starting point, so although four

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DrawBeziers presumes that each segment's endpoint will be the following segment's starting point, so although four
points are required for the first segment, each subsequent segment only requires three more points. This is illustrated
in Examples Example 7-27 and Example 7-28, which draw the curve shown previously in Figure 7-13.

Example 7-27. Using DrawBeziers in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 Point[] curvePoints =
 {
 // First segment
 new Point(10, 10), new Point (40, 40),
 new Point(50, 10), new Point (80, 10),

 // Second segment
 new Point(110, 40), new Point(150, 10),
 new Point(150, 40),

 // Third segment
 new Point(150, 70), new Point(70, 20),
 new Point(30, 60)
 };
 g.DrawBeziers(Pens.Black, curvePoints);

 base.OnPaint(pe);
}

Example 7-28. Using DrawBeziers in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim curvePoints() As Point = _
 { New Point(10, 10), New Point (40, 40), _
New Point(50, 10), New Point (80, 10), _
New Point(110, 40), New Point(150, 10), _
New Point(150, 40), _
New Point(150, 70), New Point(70, 20), _
New Point(30, 60) }
 g.DrawBeziers(Pens.Black, curvePoints)

 MyBase.OnPaint(pe)
End Sub

The DrawBeziers method requires the points to be specified in a certain order. It starts with the first point on the line, but
the next two points are control points. So in Examples Example 7-27 and Example 7-28, the curve starts at (10, 10),
with the tangent heading towards the first control point (40, 40). The next coordinate is also a control point—the tangent
for the other end of the first segment heads towards (50, 10). The next coordinate specifies the next point on the line,
i.e., the end of the first segment. It also doubles as the starting point of the next segment. For each following segment,
the three points are the two control points (specifying the tangent at the start and end of the segment, respectively)
and the end point of the segment. In each case, the end point of a segment doubles as the start point of the following
segment, except for the very last segment.

So we have a powerful selection of different curve types at our disposal. But there are certain restrictions—what if we
want to fill an area defined with Bézier curves rather than merely drawing an outline? Or what if we would like to draw
or fill a shape that uses more than one of these curve styles, or even a mixture of curves and straight lines? We can do
all these things by using graphics paths, which are described next.

7.2.2.4 Paths

GDI+ provides the System.Drawing.Drawing2D.GraphicsPath class, which allows any combination of the shapes defined so
far to be combined into a single object. You can then get the Graphics object to draw this composite shape either filled or
in outline, just as it would draw any of the built-in shapes. This allows you to paint areas using shapes that don't have
their own Fill... method. You can also add text to a path, and paths may even be combined.

Using a GraphicsPath is a two-step process. First you must create the shape, then draw the shape that you have created.
Creating a shape with the GraphicsPath class is very similar to drawing with the Graphics class—it provides a method for
each of the primitive shapes described so far. But rather than calling, say, FillRectangle or DrawEllipse, you call methods
beginning with Add.... Because a path defines a shape rather than a drawing operation, it does not distinguish between
fills and outlines; you get to make that decision when you actually draw the path—the Graphics class has both DrawPath
and FillPath methods. For example, there are AddRectangle, AddEllipse, AddBezier methods, and each is used in exactly the
same way as the corresponding method on Graphics. None of these methods takes a Pen or a Brush, again because you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same way as the corresponding method on Graphics. None of these methods takes a Pen or a Brush, again because you
get to specify that when you draw the shape, not when you create it.

Examples Example 7-29 and Example 7-30 show how to create and draw a closed path using both Bézier curves and
straight line segments. It starts by adding three Bézier curves (using the same point data as in Examples Example 7-27
and Example 7-28) and then a straight line. Finally, it calls the CloseFigure method, which converts the path from open
to closed, allowing us to use it for fills as well as outlines.

Example 7-29. Building a closed path in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 Point[] curvePoints =
 {
 new Point(10, 10), new Point (40, 40),
 new Point(50, 10), new Point (80, 10),
 new Point(110, 40), new Point(150, 10),
 new Point(150, 40), new Point(150, 70),
 new Point(70, 20), new Point(30, 60)
 };

 using (GraphicsPath gp = new GraphicsPath())
 using (Brush b = new HatchBrush(HatchStyle.Trellis,
 Color.Aqua, Color.Navy))
 using (Pen p = new Pen(Color.Black, 5))
 {
 gp.AddBeziers(curvePoints);
 gp.AddLine(30, 60, 10, 60);
 gp.CloseFigure();
 g.FillPath(b, gp);
 g.DrawPath(p, gp);
 }

 base.OnPaint(pe);
}

Example 7-30. Building a closed path in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g AS Graphics = pe.Graphics
 Dim gp As New GraphicsPath()
 Dim b As Brush = New HatchBrush(HatchStyle.Trellis, _
 Color.Aqua, Color.Navy)
 Dim p As New Pen(Color.Black, 5)
 Dim curvePoints As Point() = _
 { New Point(10, 10), New Point (40, 40), _
New Point(50, 10), New Point (80, 10), _
New Point(110, 40), New Point(150, 10), _
New Point(150, 40), New Point(150, 70), _
New Point(70, 20), New Point(30, 60) }

 Try
 gp.AddBeziers(curvePoints)
 gp.AddLine(30, 60, 10, 60)
 gp.CloseFigure()
 g.FillPath(b, gp)
 g.DrawPath(p, gp)
 Finally
 gp.Dispose()
 b.Dispose()
 p.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

As you can see from Figure 7-14, GraphicsPath has enabled us to use Bézier curves to paint both an outline and a fill
despite the fact that the Graphics class has no FillBeziers method. Also note that although we only added one straight line
to the path, this shape actually has two straight lines in it at the bottom left corner. The horizontal one is the line we
added by calling AddLine. The vertical one was created as a result of calling ClosePath—GDI+ detected that our shape's
first and last points were in different positions, so it added an extra line segment to close the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-14. A GraphicsPath in use

A path may contain multiple closed areas—once you have called CloseFigure, you can carry on adding more elements to
the shape. Each closed area in a path is referred to as a figure. The ability to contain multiple figures is particularly
useful when their areas overlap—this allows shapes with holes to be created. For example, if you wanted to create a
path in the shape of the capital letter R, you can use one figure to define the letter's outline, and a second to define the
shape of the hole in the loop of the R, as shown in Figure 7-15.

Figure 7-15. Creating holes with a multi-figure shape

These two figures can be combined into a single GraphicsPath. The exact behavior of a path when two figures overlap is
determined by its FillMode property. This works in the same way as for DrawPolygon—the default is FillMode.Alternate,
which for this example will have the expected behavior: the body of the R will be filled, but the hole in the loop will not
be painted at all.

Paths with holes allow you to draw things in a way that would otherwise not be possible. If you could not create such
paths, the only way to draw shapes like the letter R would be to fill the outline, and then to paint the hole in a different
color. The problem with that is it obscures whatever was behind the letter in the first place. But as Figure 7-16 shows,
when you paint a path with holes in it, the background shows through those holes.

Figure 7-16. A path with holes

The code that draws Figure 7-16 is shown in Examples Example 7-31 and Example 7-32. It illustrates another
interesting point. Whenever you add a primitive shape that is intrinsically closed to a path, there is no need to call
CloseFigure. This particular example builds an ellipse and then knocks a rectangular hole in it. Because ellipses and
rectangles are always closed, we did not need to call CloseFigure at any point. CloseFigure is provided to enable you to
construct closed shapes using primitives that are normally open, such as lines and curves.

Example 7-31. Drawing a shape with a hole in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (GraphicsPath gp = new GraphicsPath())
 using (Brush background = new HatchBrush(HatchStyle.Trellis,
 Color.AntiqueWhite, Color.DarkBlue))
 using (Brush foreground = new HatchBrush(HatchStyle.Weave,
 Color.Black, Color.Green))
 {
 g.FillRectangle(background, ClientRectangle);

 gp.AddEllipse(new Rectangle(10, 10, 60, 60));
 gp.AddRectangle(new Rectangle(30, 30, 20, 20));
 g.FillPath(foreground, gp);
 }

 base.OnPaint(pe);
}

Example 7-32. Drawing a shape with a hole in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-32. Drawing a shape with a hole in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim gp As New GraphicsPath()
 Dim background As Brush = New HatchBrush(HatchStyle.Trellis, _
 Color.AntiqueWhite, Color.DarkBlue)
 Dim foreground As Brush = New HatchBrush(HatchStyle.Weave, _
 Color.Black, Color.Green)

 Try
 g.FillRectangle(background, ClientRectangle)

 gp.AddEllipse(new Rectangle(10, 10, 60, 60))
 gp.AddRectangle(new Rectangle(30, 30, 20, 20))
 g.FillPath(foreground, gp)
 Finally
 gp.Dispose()
 background.Dispose()
 foreground.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

GraphicsPath also provides a solution to a problem mentioned earlier: when drawing an outline with a pen thickness
greater than 1 pixel, the bounding box of the drawn line is usually slightly larger than the bounding box of all its points.
(And in the case of splines, the bounding box can be considerably larger even with single-pixel-thick lines.) GraphicsPath
has a Widen method that takes a Pen and converts the path to the shape its outline would have if it were drawn using
that Pen. For example, calling Widen on a straight line with a thick pen converts it to a rectangle; calling Widen on an
ellipse with a thick pen converts it into a pair of concentric ellipses. In general, calling Widen and then drawing the result
with FillPath gives exactly the same results as drawing with DrawPath.

The Widen method is useful because it enables you to find out exactly what shape will be drawn on screen when you
draw an outline. Calling GetBounds on a widened GraphicsPath will give you the true bounding box, taking things like line
width and end cap styles into account. (Note that it is not necessary to use this for hit testing—GraphicsPath supplies two
hit test functions, IsVisible and IsOutlineVisible. These will tell you whether a particular point lies under the shape when
drawn filled and when drawn as an outline with a particular pen.)

Another interesting feature of GraphicsPath is that you can use it to clip other drawing operations. If you create a path
and then pass it to the Graphics class's SetClip method, the path will be used as a stencil through which all further
drawing is done. Examples Example 7-33 and Example 7-34 show how to do this in C# and VB, respectively—the code
creates a GraphicsPath containing the text "Stencil" and then draws a series of concentric circles through it.

Example 7-33. Using a GraphicsPath as a stencil in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (GraphicsPath gp = new GraphicsPath())
 using (Pen p = new Pen(ForeColor, 3))
 {
 gp.AddString("Stencil",
 FontFamily.GenericSerif, (int) FontStyle.Bold, 48,
 new Point(10, 10), new StringFormat());
 g.SetClip(gp);

 Rectangle rect = new Rectangle(93, 35, 10, 10);
 for (int i = 0; i < 30; ++i)
 {
 g.DrawEllipse(p, rect);
 rect.Inflate(4, 4);
 }
 }

 base.OnPaint(pe);
}

Example 7-34. Using a GraphicsPath as a stencil in VB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-34. Using a GraphicsPath as a stencil in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim gp As New GraphicsPath()
 Dim p As New Pen(ForeColor, 3)

 Try
 Dim i As Integer

 gp.AddString("Stencil", _
 FontFamily.GenericSerif, FontStyle.Bold, 48, _
 New Point(10, 10), New StringFormat())
 g.SetClip(gp)

 Dim rect As New Rectangle(93, 35, 10, 10)
 For i = 0 to 29
 g.DrawEllipse(p, rect)
 rect.Inflate(4, 4)
 Next
 Finally
 gp.Dispose()
 p.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

The results are shown in Figure 7-17. It is possible to combine stencils—the SetClip method is overloaded. You can pass
a member of the CombineMode enumeration as an optional second parameter. This supports various set operations,
which will be described in the next section. The default is CombineMode.Replace, which just replaces the previous clip
region with the new one.

Figure 7-17. Drawing through a GraphicsPath

The Graphics object allows the clip region to be specified in other ways—as well as passing a GraphicsPath, you can also
provide a Rectangle or a Region. It turns out that the Graphics class uses Region as its fundamental clipping primitive, and
it just converts other shapes into regions, so we will now look at the Region class.

7.2.2.5 Regions

A Region is similar to a GraphicsPath in that it can be used to define arbitrary shapes. But they are designed to be used in
different contexts—paths are used for defining shapes that will normally be drawn, whereas regions tend to be used for
pixel-related operations such as clipping or hit testing. For example, there is no way to draw a region. Likewise, a path
must be converted to a region before it can be used for clipping (although passing a path to a Graphic object's SetClip
method does this automatically).

A Region can be created from a Rectangle, a RectangleF, or a GraphicsPath. Regions can also be combined, and one of the
differences between regions and paths is the way in which combination works. You can add as many graphics paths as
you like together, but the result is always the sum of its parts, and the only control you have over the way that
overlapping paths combine is with the FillMode you specify when drawing the path. Regions offer a little more flexibility—
they can be combined using various set operations.

The simplest way of combining two regions is to use the Region class's Union method. This results in a region that
contains all the areas from both regions. Alternatively you can use Intersect, which creates a region containing only
those areas that were covered by both regions. Slightly more subtle is the Exclude method, which creates a region that
contains only those parts of the original region that were not also in the second region. (In other words, it calculates
the intersection, and then subtracts that from the original. This lets you use one region to take bites out of another.)
Complement does much the same thing only in reverse—it calculates the intersection and subtracts that from the second
region instead of the original region. Finally, there is the Xor method, which performs an exclusive or operation; it
creates a region containing all areas that were either in the first or the second region, but not in both. (Xor is effectively
equivalent to FillMode.Alternate. There is no equivalent to FillMode.Winding because the winding rule depends on path
direction, but regions are only concerned with area.)

The CombineMode enumeration has entries representing each combination type. This can be passed to the Graphics
class's SetClip method (described earlier) to describe exactly how the new clip region should be combined with the old
one. The enumeration also defines a Replace value, allowing the new clip region to replace the old one instead of being
combined with it.

Regions also allow for flexible hit testing. Although GraphicsPath supplies simple hit testing with its IsVisible and
IsOutlineVisible methods, these are of limited use. If you wish to test whether the mouse pointer is over a particular

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsOutlineVisible methods, these are of limited use. If you wish to test whether the mouse pointer is over a particular
object, it is usually necessary to give the user a few pixels of leeway. (Many users have their mouse configured to move
so quickly that they cannot actually hit certain pixels at all.) The hit testing supported by GraphicsPath is unfortunately all
single pixel. However, the Region class has an overloaded IsVisible method that allows a Rectangle to be passed, and it will
test whether any part of the Rectangle intersects with any part of the region. This makes it straightforward to perform hit
testing with support for an arbitrary degree of sloppiness—the larger the rectangle, the greater the margin you allow for
user inaccuracy.

Regions can also be used to set the shape of a control. The Control class has a property called Region, which can be used
to define a nonrectangular shape for a control. This works both for forms and normal controls. Examples Example 7-35
and Example 7-36 show how to create an elliptical window. (For this to be useful, more work would be required in
practice—the titlebar is mostly obscured, as are the corners of the window, so such a form would need to provide
alternate mechanisms for moving and resizing the window.)

Example 7-35. Creating an elliptical window in C#

public MyForm()
{
 InitializeComponent();

 using (GraphicsPath gp = new GraphicsPath())
 {
 gp.AddEllipse(ClientRectangle);
 Region = new Region(gp);
 }
}

Example 7-36. Creating an elliptical window in VB

Public Sub New()

 InitializeComponent()

 Dim gp As New GraphicsPath()

 Try
 gp.AddEllipse(ClientRectangle)
 Region = new Region(gp)
 Finally
 gp.Dispose()
 End Try
End Sub

So we have seen that GDI+ has extensive and flexible support for shapes. This ranges from simple constructs such as
rectangles and ellipses, through lines and curves, to composite shapes represented either as paths or regions. But we
have not yet looked at text. Although text could be considered as just another kind of shape, it has many unique
features that require special consideration. So we will now look at the support for text in GDI+.

7.2.3 Text

Almost all applications need to display text. In many cases, this can be dealt with by using built-in controls. Even when
parts of the display are custom-drawn, you can often get away with using the Label class to display text. But for some
controls, you will need display text from within the OnPaint method.

To represent text strings, GDI+ simply uses the .NET runtime's intrinsic System.String type (or string, as it is usually
abbreviated in C#, and String, as it is usually abbreviated in VB). The only types that GDI+ defines are for modifying the
text's appearance. These types fall roughly into two categories: those used to choose the typeface in which the text will
be drawn, and those used to control the formatting of the text. We will start by looking at the classes used to select a
typeface and associated attributes.

7.2.3.1 Fonts

The Font class determines the style in which text will be drawn. It specifies the typeface (e.g., Times Roman, Univers, or
Palatino), but it also controls details such as whether bold or italic are in use, and the size of the text.

If you are writing a control, the easiest way to obtain a Font object is to use the Control class's Font property. This will
pick up the ambient font (which is usually the default font—8.25pt Microsoft Sans Serif) unless the property has been
set explicitly by the user. The advantages of this are that your text will be in harmony with all other text on the form by
default, and you don't need to create the Font object yourself. Drawing text can be as simple as this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default, and you don't need to create the Font object yourself. Drawing text can be as simple as this:

// C# code
protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Brush b = new SolidBrush(ForeColor))
 {
 g.DrawString("Hello", Font, b, 0, 0);
 }
 base.OnPaint(pe);
}

' VB code
Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim b As Brush = New SolidBrush(ForeColor)
 Try
 g.DrawString("Hello", Font, b, 0, 0)
 Finally
 b.Dispose()
 End Try
 MyBase.OnPaint(pe)
End Sub

Here, we have simply provided a text string to be displayed, and we are painting it using the font and color specified by
the control's Font and ForeColor properties. The last two parameters to DrawString specify the position at which to draw
the text, so this text will appear at the top-left corner of the control.

You will not always be able to rely on the Control class's Font property to supply you with a Font object. Your control
might need to use more than one font, in which case you will need to build your own Font objects. The first thing to be
aware of is that Font objects are immutable—having created a font, you cannot modify properties such as size or
boldness. If you want an emboldened version of a font, you must create a new one. Fortunately, the Font class provides
constructors that make it easy to build a font that is a slight variation on an existing one.

To build a font by modifying the use of styles such as italic or bold, you can use the Font constructor, which takes a Font
and a FontStyle. FontStyle is an enumeration containing Bold, Italic, Strikeout, and Underline members to determine the style
in which the text will be drawn. You can use these in any combination; for example:

FontStyle.Bold|FontStyle.Italic

or:

FontStyle.Bold Or FontStyle.Italic

or you can specify FontStyle.Regular to indicate that you require a plain version of the font. Be aware that not all
typefaces support all styles—for example, some typefaces are only available in bold, and attempting to create a regular
version will cause an error — later on we will see how to anticipate and avoid such problems by using the FontFamily
class.

There is also a constructor that takes an existing Font and a new size. The size is an em size, which is to say it specifies
the width of the letter M in the typeface. (This is the standard way of defining typeface sizes.) This will be in units of
points (i.e., 1/72 of an inch; for historical reasons typeface sizes are almost always measured in points), although there
is another constructor that also takes a value from the GraphicsUnit enumeration, allowing you to specify other units
such as pixels or millimeters.

But if you want to create a new font from scratch, rather than basing it on an existing font, you need to tell GDI+ which
font family you would like it to use. You can do this either by specifying a family name as a string (e.g., "Arial") or a
FontFamily object. Using a string, such as new Font("Arial", 12) is the most straightforward, but there are certain
advantages to using the FontFamily class.

Certain typeface names are a fairly safe bet—Arial, for instance, is ubiquitous because it ships with Windows. But in
general there is always the risk that the typeface name you specify will not always be available. To avoid the errors that
this will cause, it is usually better to use a FontFamily object. FontFamily lets you enumerate all the available typefaces,
which is helpful if you want to let the user pick a font from a list. Examples Example 7-37 and Example 7-38 show how
to display a list of font family names in a listbox. The code first obtains an array of FontFamily objects by calling
FontFamily.GetFamilies; this must be provided with a Graphics object because the selection of fonts available may
sometimes be dictated by where the drawing is taking place. So in this case, we are using the Control class's
CreateGraphics method to obtain a Graphics object for our control. We then pass the FontFamily array to the listbox
(listFonts) as a data source, and tell it to display the font names as list entries.

Example 7-37. Showing font families in a listbox using C#

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-37. Showing font families in a listbox using C#

using (Graphics g = CreateGraphics())
{
 FontFamily[] families = FontFamily.GetFamilies(g);
 listFonts.DataSource = families;
 listFonts.DisplayMember = "Name";
}

Example 7-38. Showing font families in a listbox using VB

Dim g As Graphics = CreateGraphics()
Dim families() As FontFamily = FontFamily.GetFamilies(g)
listFonts.DataSource = families
listFonts.DisplayMember = "Name"
g.Dispose()

This technique guarantees that you are only using font families that you know are present. It also enables you to find
out whether a particular style of font is available. As mentioned above, not all fonts support all styles—it is quite
common for a typeface to be bold only. The FontFamily class lets you find out whether a particular style is available by
passing the FontStyle you would like to its IsAvailable method. This returns a bool/Boolean to indicate whether the style is
supported.

Having established that the typeface you require is available in the appropriate style, you can use the Font class
constructor that takes a FontFamily, a size (float/Single) and a FontStyle. This will create a brand new Font object built to
your specifications.

Sometimes you will simply require a font that looks approximately right—it might be sufficient to use any old sans-serif
font without caring whether it's Arial or Linotype Helvetica. The FontFamily class therefore provides some static
properties that return non-specific FontFamily objects with certain broad visual characteristics. It provides a
GenericSansSerif property that will return a family such as Microsoft Sans Serif or Arial. There is a GenericSerif property,
which will return something like Times New Roman. Finally there is GenericMonospace, which will return a monospaced
font such as Courier New.

Having chosen a typeface, we need to be able to control how it is displayed, so we will now consider how to manage
features such as alignment and cropping.

7.2.3.2 Formatting

The Graphics class provides several overloads of the DrawString method. The simplest just takes a string, a Font, a Brush,
and a position, and will draw the text from left to right starting exactly at the position specified. For many applications
this is sufficient, but sometimes a little more control is required to get the text to appear in exactly the right position.

The most obvious example of where the simple approach falls down is if you need to right-align your text—e.g., you
need some text to appear up against the far right edge of your control. It is difficult to do this by specifying the position
of the top-left corner of the string—you would need to find out how long the string will be and adjust the start position
accordingly. And although you can do this, there is a much simpler way.

One of the overloads of the DrawString method lets you specify the position by supplying a rectangle rather than a point.
You can then pass a parameter of type StringFormat, which controls, among other things, how the string is positioned
within this rectangle. The StringFormat class has properties that control horizontal and vertical positioning: Alignment and
LineAlignment. These both use the StringAlignment enumeration type, and can be one of Center, Far, or Near. Near means
left or top for horizontal or vertical positioning, respectively, while Far means right or bottom.[9] So it is now simple to
position text without measuring it. Examples Example 7-39 and Example 7-40 draw text that is vertically centered and
aligned to the righthand side of the control.

[9] These can be inverted—the StringFormat class can be configured for right-to-left text for languages where this
appropriate. In this case, Near would be the right and Far would be the left.

Example 7-39. Aligning text using C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 using (Brush b = new SolidBrush(ForeColor))
 using (StringFormat sf = new StringFormat())
 {
 sf.Alignment = StringAlignment.Far;
 sf.LineAlignment = StringAlignment.Center;

 g.DrawString("Hello", Font, b, ClientRectangle, sf);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 g.DrawString("Hello", Font, b, ClientRectangle, sf);
 }
 base.OnPaint(pe);
}

Example 7-40. Aligning text using VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics
 Dim b As Brush = New SolidBrush(ForeColor)
 Dim sf As New StringFormat()

 Try
 sf.Alignment = StringAlignment.Far
 sf.LineAlignment = StringAlignment.Center

 g.DrawString("Hello", Font, b, _
 RectangleF.op_Implicit(ClientRectangle), sf)
 Finally
 b.Dispose()
 sf.Dispose()
 End Try
 MyBase.OnPaint(pe)

End Sub

Note that we have used the Control class's ClientRectangle property, which defines the bounds of the control. This means
that the text will automatically be aligned to the control's righthand edge. When using DrawString in this way, it will also
break text over multiple lines if necessary. (It will do this when the rectangle is too narrow to hold the whole string, but
tall enough to hold multiple lines. If the string is too long to fit even when split, it is simply truncated.)

Many controls choose to expose an alignment property of type ContentAlignment (e.g., the Button class's TextAlign
property). This allows the horizontal and vertical alignment to be set through a single property. Because there are three
possible positions for each dimension (Near, Center, and Far), the ContentAlignment enumeration has nine values.
Unfortunately, the framework does not currently supply a way of creating a StringFormat object whose Alignment and
LineAlignment properties match the positions specified in a ContentAlignment value. The only solution, presented in
Examples Example 7-41 and Example 7-42, is somewhat ugly.

Example 7-41. Converting from ContentAlignment to StringFormat in C#

private StringFormat FormatFromContentAlignment(ContentAlignment align)
{
 StringFormat sf = new StringFormat();
 switch (align)
 {
 case ContentAlignment.BottomCenter:
 case ContentAlignment.MiddleCenter:
 case ContentAlignment.TopCenter:
 sf.Alignment = StringAlignment.Center;
 break;
 case ContentAlignment.BottomRight:
 case ContentAlignment.MiddleRight:
 case ContentAlignment.TopRight:
 sf.Alignment = StringAlignment.Far;
 break;
 default:
 sf.Alignment = StringAlignment.Near;
 break;
 }
 switch (align)
 {
 case ContentAlignment.BottomCenter:
 case ContentAlignment.BottomLeft:
 case ContentAlignment.BottomRight:
 sf.LineAlignment = StringAlignment.Far;
 break;
 case ContentAlignment.TopCenter:
 case ContentAlignment.TopLeft:
 case ContentAlignment.TopRight:
 sf.LineAlignment = StringAlignment.Near;
 break;
 default:
 sf.LineAlignment = StringAlignment.Center;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sf.LineAlignment = StringAlignment.Center;
 break;
 }
 return sf;
}

Example 7-42. Converting from ContentAlignment to StringFormat in VB

Option Strict On

Imports System
Imports System.ComponentModel
Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Windows.Forms

Public Class FormatLib

Private Function FormatFromContentAlignment(align As ContentAlignment) As StringFormat

 Dim sf As New StringFormat()

 Select Case align
 Case ContentAlignment.BottomCenter, _
 ContentAlignment.MiddleCenter, _
 ContentAlignment.TopCenter
 sf.Alignment = StringAlignment.Center
 Case ContentAlignment.BottomRight, _
 ContentAlignment.MiddleRight, _
 ContentAlignment.TopRight
 sf.Alignment = StringAlignment.Far
 Case Else
 sf.Alignment = StringAlignment.Near
 End Select
 Select Case align
 Case ContentAlignment.BottomCenter, _
 ContentAlignment.BottomLeft, _
 ContentAlignment.BottomRight
 sf.LineAlignment = StringAlignment.Far
 Case ContentAlignment.TopCenter, _
 ContentAlignment.TopLeft, _
 ContentAlignment.TopRight
 sf.LineAlignment = StringAlignment.Near
 Case Else
 sf.LineAlignment = StringAlignment.Center
 End Select

 Return sf

End Function

End Class

The StringFormat class also allows us to control other aspects of the text's appearance. For example, we can draw the
text vertically by setting the StringFormatFlags.DirectionVertical flag on its FormatFlags property. The FormatFlags property can
be set at construction time by passing in a StringFormatFlags value. See the reference section for other FormatFlags
options.

There is a much more flexible way of rotating than using FormatFlags. See Section 7.2.5
later in this chapter.

The StringFormat class also supports drawing hot key underlines on your controls, such as those that appear on buttons
and menu items if the Alt key is held down. This is particularly useful if you are drawing your own menu items. Simply
set the StringFormat class's HotkeyPrefix member to HotkeyPrefix.Show, and GDI+ will add an underline on strings
containing ampersands. For example, the string E&xit would be drawn with the x underlined. (The ampersand itself is
just a marker and will not be displayed.) GDI+ will also strip the ampersands out without displaying the underlines if
you specify HotkeyPrefix.Hide. You would use this in an owner-drawn menu when you are asked to draw a menu without
accelerators (i.e., when the DrawItemEventArgs object's State member has the NoAccelerator flag set). The default is
HotkeyPrefix.None, which means that ampersands don't get any special treatment—they are just displayed as normal
characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters.

Sometimes it will be necessary to measure a string before drawing it. This is particularly important if you are drawing
anything that manages its layout dynamically. For example, owner-drawn menus need to calculate the size of their text
to handle the MeasureItem event correctly. The Graphics class therefore provides the MeasureString method.

MeasureString is overloaded. At its simplest, it just takes a string and a Font, and returns the size of that string (i.e., how
much space the string would take up if drawn with that font using DrawString). However, the DrawString methods that
take a rectangle can change the size of the drawn string, due to issues such as cropping. So you can pass a SizeF value
to MeasureString to indicate the size of the rectangle you will be using. Because a StringFormat object can also influence
the size of the output, there are overloads that accept a StringFormat as well. All these methods return a SizeF indicating
how much space the string will take up when displayed.

Examples Example 7-43 and Example 7-44 illustrate the use of MeasureString in the context of an owner-drawn menu.
When drawing your own menu items, Windows Forms will raise the MeasureItem event to find out how wide your owner-
drawn items are. It needs to know this to determine how large the menu should be. Menu width is normally determined
by the text in the menu, so we use MeasureString to find this out. Note that we don't use the height as calculated by
MeasureString; we use the nominal height given by the Font object's Height property. This is to make sure that all menu
items come out the same height. (We also add in the size of the menu check—system-drawn menus always leave space
for this on the left. It also doesn't look right unless you make the menu item 3 pixels higher and 8 pixels wider than
necessary to hold the string—the system appears to add this much padding when drawing its own menus.)

Example 7-43. Using MeasureString for an owner-drawn menu item in C#

private void Menu_MeasureItem(object sender,
 MeasureItemEventArgs e)
{
 MenuItem item = (MenuItem) sender;

 Font menuFont = SystemInformation.MenuFont;
 e.ItemHeight = menuFont.Height + 3;

 StringFormat sf = new StringFormat(
 StringFormatFlags.DisplayFormatControl);
 sf.HotkeyPrefix = System.Drawing.Text.HotkeyPrefix.Hide;

 int textWidth = (int) e.Graphics.MeasureString(item.Text,
 menuFont, new PointF(0,0), sf).Width;

 Size checkSize = SystemInformation.MenuCheckSize;
 e.ItemWidth = textWidth + checkSize.Width + 8;
}

Example 7-44. Using MeasureString for an owner-drawn menu item in VB

Private Sub Menu_MeasureItem(sender As Object, _
 e As MeasureItemEventArgs) Handles menuFile.MeasureItem

 Dim item As MenuItem = DirectCast(sender, MenuItem)

 Dim menuFont As Font = SystemInformation.MenuFont
 e.ItemHeight = menuFont.Height + 3

 Dim sf As New StringFormat(_
 StringFormatFlags.DisplayFormatControl)
 sf.HotkeyPrefix = System.Drawing.Text.HotkeyPrefix.Hide

 Dim textWidth As Integer = CInt(e.Graphics.MeasureString(_
 item.Text, menuFont, new PointF(0,0), sf).Width)

 Dim checkSize As Size = SystemInformation.MenuCheckSize
 e.ItemWidth = textWidth + checkSize.Width + 8
End Sub

So we have now seen how to draw images using either text or shapes. But sometimes we will not wish to construct
pictures using these primitives—we might already have an image stored on disk that we wish to display as is. So we will
now look at the GDI+ facilities for dealing with images.

7.2.4 Images

Pictures do not necessarily have to be drawn on the fly—it is possible to store a prebuilt image in a number of formats.
GDI+ defines the Image class as an abstract representation of any such image.

GDI+ supports two different types of image, bitmaps and metafiles, and there is a class deriving from Image for each:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GDI+ supports two different types of image, bitmaps and metafiles, and there is a class deriving from Image for each:
Bitmap and Metafile. Bitmaps store information as raw pixel data—a bitmap image's size is always a fixed number of
pixels, and displaying them at any other size requires a certain amount of image processing and can have mixed
results. Conversely, metafiles store information as a series of primitive drawing operations. This means that they can be
resized and rotated more easily than bitmaps, although they are usually slower to draw than bitmaps drawn at their
natural size and orientation.

Regardless of their type, images are displayed by using the Graphics class's DrawImage method. There are several
overloads of this method, but they all take an Image. Some just take the position at which to draw the image, while
others take a position and a size, allowing the image to be scaled. Some also take a rectangle indicating which part of
the image should be displayed, so that you can draw a subsection of the image.

Images can be created as well as displayed—it is possible to use GDI+ to build a new bitmap or metafile. This is made
possible by the Graphics class's static FromImage method, which creates a Graphics object that lets you draw into an
image.

7.2.4.1 Bitmaps

The Bitmap class represents an image stored as pixel data. You can create Bitmap objects from files. Several formats are
supported, including BMP, JPEG, PNG, TIFF, and GIF. You can also create new images from scratch.

Be aware that there are licensing issues with GIF. It uses a data compression system that
is subject to a patent owned by Unisys. If your application supports GIF files, you may
need to obtain a license. Contact Unisys for further information.

The Bitmap class is often used to draw bitmaps that are stored in files. To create a new Bitmap object based on a file,
simply pass the filename as a string to the constructor. (Or you can pass a Stream if that is more convenient; this can be
useful if your bitmap file is stored as an embedded resource.) Examples Example 7-45 and Example 7-46 create and
display a Bitmap object based on one of the standard Windows background bitmaps. (You would not use a hardcoded
path like this in practice of course—this is just to keep the sample code simple.)

Example 7-45. Creating and drawing a Bitmap object in C#

private Image myImage;

public MyControl()
{
 myImage = new Bitmap("c:\\windows\\Prairie Wind.bmp");
}

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;
 g.DrawImage(myImage, 0, 0);
 base.OnPaint(pe);
}

Example 7-46. Creating and drawing a Bitmap object in VB

Private myImage As Image

Public Sub New()
 myImage = New Bitmap("c:\\windows\\Prairie Wind.bmp")
End Sub

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics
 g.DrawImage(myImage, 0, 0)
 MyBase.OnPaint(pe)
End Sub

This code displays the whole image at full size. But we can easily change this by passing an extra two parameters to
specify the size:

g.DrawImage(myImage, 0, 0, 50, 50);

This will reduce the image to a 50 x 50 pixel square. Scaling images is intrinsically tricky, and there is always a tradeoff
between time taken to draw the image and the resulting image quality. The Graphics object lets you specify whether you
want to favor quality or speed through its InterpolationMode property. This can be set to values from the InterpolationMode
enumeration, which from fastest to slowest are NearestNeighbor, Bilinear (the default value), HighQualityBilinear, Bicubic, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enumeration, which from fastest to slowest are NearestNeighbor, Bilinear (the default value), HighQualityBilinear, Bicubic, and
HighQualityBicubic. While the ones at the front of that list are faster, they will produce lower-quality results. It is beyond
the scope of this book to describe the image processing algorithms implied by each of these settings, which makes it
hard to offer more specific advice than that you should pick the fastest value that produces results that are good
enough for your application. However, NearestNeighbor is unlikely to provide satisfactory results unless you are either
scaling pictures by integer factors, or scaling things up to be so large that individual pixels will be clearly visible.

Another way of using the Bitmap class is to build a new bitmap. There are two reasons you might want to do this. One is
that your application requires a particularly complex piece of drawing to be done, and you want to draw it just once into
a bitmap to make subsequent redraws work more quickly. The other reason is that you want to save a picture to disk as
a bitmap.

To create a brand new Bitmap from scratch, you can simply specify the width and height you require as construction
parameters. However, it is usually a good idea to pass in a reference to a Graphics object as well. This guarantees that
the new bitmap has characteristics that are compatible with the Graphics object (such as color depth and resolution).
Examples Example 7-47 and Example 7-48 create a new bitmap with the text "Hello" drawn into it.

If you want to create a bitmap that has attributes that are different from any available
Graphics object (e.g., you want to create an image with a low color depth to conserve
space), there is a constructor that takes a PixelFormat value, allowing you to specify the
exact color format you require. You would normally only do this if you planned to save the
bitmap to a file.

Example 7-47. Creating a Bitmap from scratch using C#

using (Graphics gOrig = CreateGraphics())
{
 myBitmap = new Bitmap(50, 50, gOrig);
 using (Graphics g = Graphics.FromImage(myBitmap))
 {
 g.FillRectangle(Brushes.White, 0, 0,
 myBitmap.Width, myBitmap.Height);
 g.DrawString("Hello",
 new Font (FontFamily.GenericSerif, 14),
 Brushes.Blue, 0, 0);
 }
}

Example 7-48. Creating a Bitmap from scratch using VB

Dim gOrig As Graphics = CreateGraphics()
Try
 myBitmap = new Bitmap(50, 50, gOrig)
 Dim g As Graphics = Graphics.FromImage(myBitmap)
 Try
 g.FillRectangle(Brushes.White, 0, 0, _
 myBitmap.Width, myBitmap.Height)
 g.DrawString("Hello", _
 new Font (FontFamily.GenericSerif, 14), _
 Brushes.Blue, 0, 0)
 Finally
 g.Dispose()
 End Try
Finally
 gOrig.Dispose()
End Try

Note how this code fills the entire bitmap with a white background before starting. This is important because by default
bitmaps start out completely transparent. This can have some surprising effects if you paint text onto them with
ClearType or font smoothing enabled.

Examples Example 7-47 and Example 7-48 are unusual in that they have a couple of using statements disposing of
Graphics objects in the C# code and of calls to Graphics objects' Dispose methods in the VB code. Normally we do not
need to call Dispose on a Graphics object. But remember, the rule is that you are responsible for disposing of any object
that you create. Generally speaking, we don't create Graphics objects—we just use the ones supplied by the system. But
here we are creating two, one to obtain a set of properties with which to initialize the Bitmap object, and another to let
us draw on the bitmap. Because we created them, we must also call Dispose on them, which will be done automatically
at the end of the using blocks in C#. (The CreateGraphics method being called on the first line is a method supplied by the
Control class—as we saw in Examples Example 7-37 and Example 7-38, it lets you obtain a Graphics object for the control
in contexts where you wouldn't otherwise have one, such as in its constructor.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in contexts where you wouldn't otherwise have one, such as in its constructor.)

The bitmap created in Examples Example 7-47 and Example 7-48 could then be drawn using the same OnPaint method
as in Examples Example 7-45 and Example 7-46. Alternatively it can be saved to disk. The Image class provides a Save
method, allowing a filename and file format to be specified. Example 7-49 saves the bitmap in PNG format.

Example 7-49. Saving a Bitmap

myBitmap.Save("c:\\MyPic.png", ImageFormat.Png);

The Graphics class provides overloads of the DrawImage method that allow you to draw rotated and sheared bitmaps.
These all work the same way—you can tell the method where to draw the bitmap by specifying three points. These are
used as positions for three of the four corners of the bitmap, and the position of the fourth is inferred by forming a
parallelogram. However, it is easier to achieve rotation by drawing with a transformation, which will be described later
in this chapter.

The Bitmap class is great when you want to display a picture stored as a bitmap file, or when you wish to cache a fixed-
size image for fast redraw. But if you require a little more flexibility when redrawing, a metafile might be a more
appropriate choice, so we will now look at the support in GDI+ for these.

7.2.4.2 Metafiles

As with bitmaps, metafiles can be used in two ways. A metafile can be loaded from disk and displayed. Alternatively, a
new metafile can be created, either for later display or to be saved to disk.

Creating a Metafile object based on a file works in exactly the same way as for bitmaps—you simply pass the filename as
a constructor parameter (or a Stream if that is more convenient). Building a new Metafile from scratch turns out to be
slightly more involved, because the Metafile object insists on having an HDC[10] (that is, a handle to a Win32 device
context) to determine the characteristics of the metafile. (These characteristics include factors such as the resolution;
although metafiles do not store raw pixel data, they are aware of the resolution of the device for which they were
originally created.) This is easy enough to deal with because we can obtain an HDC from the Graphics class, but it means
that the creation process is a little more long-winded than for a bitmap, as Examples Example 7-50 and Example 7-51
show.

[10] This is a curious anachronism. An HDC is Win32's nearest equivalent to a Graphics object. It is somewhat
strange that the Metafile class insists on having one of these to create a new Metafile from scratch instead of just
using a Graphics object.

Example 7-50. Creating a metafile from scratch in C#

using (Graphics og = CreateGraphics())
{
 IntPtr hdc = og.GetHdc();
 try
 {
 myImage = new Metafile(hdc, EmfType.EmfPlusOnly);
 using (Graphics g = Graphics.FromImage(myImage))
 {
 g.DrawString("Hello",
 new Font (FontFamily.GenericSerif, 14),
 Brushes.Blue, 0, 0);
 }
 }
 finally
 {
 og.ReleaseHdc(hdc);
 }
}

Example 7-51. Creating a metafile from scratch in VB

Dim og As Graphics = CreateGraphics()
Try
 Dim hdc As IntPtr = og.GetHdc()
 Try
 myImage = New Metafile(hdc, EmfType.EmfPlusOnly)
 Dim g As Graphics = Graphics.FromImage(myImage)
 Try
 g.DrawString("Hello", _
 New Font (FontFamily.GenericSerif, 14), _
 Brushes.Blue, 0, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Brushes.Blue, 0, 0)
 Finally
 g.Dispose()
 End Try
 Finally
 og.ReleaseHdc(hdc)
 End Try
Finally
 og.Dispose()
End Try

Both examples use a try...finally block to make absolutely sure that the HDC is released. Because an HDC is an
unmanaged type (i.e., a classic Win32 type, not a .NET type), we are responsible for making sure it is freed under all
circumstances. If we forget, the garbage collector will not help us—an HDC is just an IntPtr, which is a value type large
enough to hold either a pointer or an int/Integer; on 32-bit systems, this is a 32-bit value. Value types are not garbage
collected, so if we forget to clean up this resource, it will be leaked. (This is much worse than forgetting to clean up
GDI+ resources—with those, the garbage collector will eventually come to our aid.) The use of a try...finally block means
that the call to ReleaseHdc will always occur even if an exception is thrown in the try block.

The metafile created in Examples Example 7-50 and Example 7-51 can be drawn using the same OnPaint method shown
in Examples Example 7-45 and Example 7-46—DrawImage works in exactly the same way for metafiles as for bitmaps.
Note that when creating a metafile, we did not need to fill the background color to white before starting. This is because
metafiles work differently—bitmaps work as a drawing surface that must be wiped clean before starting; metafiles
simply list drawing operations to be applied, so the results are independent of background color. This means that it is
much easier to create a transparent metafile than a transparent bitmap if you wish to use antialiasing.

7.2.4.3 Color transformations

When displaying either metafiles or bitmaps, it is possible to perform a limited amount of color processing on the
images as they are drawn. Several of the overloads of the DrawImage method take an ImageAttributes parameter, which
allows color transformations to be specified.

The ImageAttributes class is particularly useful for applying simple effects such as building a grayscale version of a color
image or making a solid image partially transparent. The mechanism by which it achieves this is a color matrix. This is a
matrix that can be applied to every color in the source image to transform it to a new image.

A description of the details of matrix multiplication is beyond the scope of this book, but if you are familiar with this
branch of mathematics, here is how color matrixes are used. A color matrix is a 5 x 5 matrix. Each pixel in the source
image (or each color, if the source image is a metafile) is represented as a 1 x 5 vector. The first four numbers
represent red, green, blue, and alpha values with the float/Single type, where the values range from 0.0 to 1.0. The fifth
value is a dummy column that is always 1.0—this is provided to allow the color matrix to perform translations as well as
scaling operations. Each color is then multiplied by the color matrix, with the resulting 5 x 1 matrix used as the new
color (with the fifth column ignored).

So what does this mean in practice? You can use a color matrix to perform global changes to color and transparency on
an image. Examples Example 7-52 and Example 7-53 draw any image with a 40% alpha channel (i.e., see-through),
regardless of whether that image has intrinsic transparency. It uses a DrawImage overload that takes an ImageAttributes
object. (As it happens this particular overload can also scale the image; unfortunately, there aren't any overloads that
use ImageAttributes that don't also do other operations like scaling or rotation, so there is a certain amount of unwanted
complexity just to draw the image at its original size.)

Example 7-52. Drawing an image with transparency in C#

protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;

 g.DrawString("Behind image", Font, Brushes.LightGreen, 0, 0);
 using (ImageAttributes ia = new ImageAttributes())
 {
 ColorMatrix cm = BuildTransparencyMatrix(0.4f);
 ia.SetColorMatrix(cm);
 int w = myImage.Width;
 int h = myImage.Height;
 Rectangle dest = new Rectangle(0, 0, w, h);
 g.DrawImage(myImage, dest, 0, 0, w, h, GraphicsUnit.Pixel, ia);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 g.DrawImage(myImage, dest, 0, 0, w, h, GraphicsUnit.Pixel, ia);
 }
 base.OnPaint(pe);
}

private ColorMatrix BuildTransparencyMatrix(float alpha)
{
 ColorMatrix cm = new ColorMatrix();
 cm.Matrix33 = 0;
 cm.Matrix43 = alpha;
 return cm;
}

Example 7-53. Drawing an image with transparency in VB

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)

 Dim g As Graphics = pe.Graphics

 g.DrawString("Behind image", Font, Brushes.LightGreen, _
 0, 0)
 Dim ia As New ImageAttributes()
 Try
 Dim cm As ColorMatrix = BuildTransparencyMatrix(0.4f)
 ia.SetColorMatrix(cm)
 Dim w As Integer = myImage.Width
 Dim h As Integer = myImage.Height
 Dim dest As New Rectangle(0, 0, w, h)
 g.DrawImage(myImage, dest, 0, 0, w, h, _
 GraphicsUnit.Pixel, ia)
 Finally
 ia.Dispose()
 End Try

 MyBase.OnPaint(pe)
End Sub

Private Function BuildTransparencyMatrix(alpha As Single) _
 As ColorMatrix
 Dim cm As New ColorMatrix()
 cm.Matrix33 = 0
 cm.Matrix43 = alpha
 Return cm
End Function

The results of this code can be seen in Figure 7-18. Observe that in Example 7-52 and Example 7-53, the bitmap is
drawn after the text—i.e., it is drawn right over it. The text is only visible because the image was drawn transparently.

Figure 7-18. A bitmap drawn transparently with a ColorMatrix

The BuildTransparencyMatrix method in Examples Example 7-52 and Example 7-53 is just one example. It is easy enough
to create other simple transforms. For instance, Examples Example 7-54 and Example 7-55 build a color matrix that will
convert color images into grayscale (black and white) images.

Example 7-54. A color matrix to build grayscale images using C#

private ColorMatrix BuildGrayscaleMatrix()
{
 float[][] matrixValues =
 {
 new float[] { 0.3f, 0.3f, 0.3f, 0, 0 },
 new float[] { 0.5f, 0.5f, 0.5f, 0, 0 },
 new float[] { 0.2f, 0.2f, 0.2f, 0, 0 },
 new float[] { 0, 0, 0, 1, 0 },
 new float[] { 0, 0, 0, 0, 1 }
 };
 return new ColorMatrix(matrixValues);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-55. A color matrix to build grayscale images using VB

Private Function BuildGrayscaleMatrix() As ColorMatrix
 Dim matrixValues()() As Single = _
 { New Single() { 0.3f, 0.3f, 0.3f, 0, 0 }, _
 New Single() { 0.5f, 0.5f, 0.5f, 0, 0 }, _
 New Single() { 0.2f, 0.2f, 0.2f, 0, 0 }, _
 New Single() { 0, 0, 0, 1, 0 }, _
 New Single() { 0, 0, 0, 0, 1 } _
 }
 MsgBox(matrixValues(3)(2))
 Return New ColorMatrix(matrixValues)
End Function

If you want grayed out versions of images for your user interface, the ControlPaint class
provides a DrawImageDisabled method that will do this for you. It performs a slightly
different color transformation from the one shown in Examples Example 7-54 and Example
7-55—it reduces the contrast so you will never see anything as dark as black, or as pale as
white. (You could easily do this with a ColorMatrix by reducing the scale factors and adding
in offsets on the fourth row of the matrix. But because the ControlPaint class can do this for
you, there is usually no need.)

So we have seen how to draw images with or without various color transformations, text, and a wide variety of shapes.
Finally, we will look at the facilities supplied by GDI+ for applying geometrical transformations to our output.

7.2.5 Coordinate Systems and Transformations

Whenever we draw something with GDI+, we specify its position and any relevant size information. For these numbers
to mean anything, there must be some coordinate system in place. By default, coordinates are in terms of screen
pixels, but we can actually modify the coordinate system to transform our output, allowing translations, rotations, and
shearing to be applied automatically to everything we draw.

There are many reasons why this could be useful. For example, there are certain drawing primitives for which the
relevant methods on the Graphics class do not provide a means of rotating or shearing the output. The only way to draw
rotated or sheared versions of such objects is to draw with an appropriate transformation in place. Also, if you are
writing a control that provides a view of a large area, transforms can make it simple to implement facilities such as
scrolling and zooming. Likewise, if you have a piece of code that paints a particular drawing, a transformation is likely
to be the easiest way to allow rotated views of that picture.

Example 7-56 shows a very common way of modifying the world transform (the transform applied by a Graphics object
to every drawing operation). This is the OnPaint method inside a ScrollableControl. Any control deriving from
ScrollableControl should make sure that it offsets everything it draws by the current scroll position. (The ScrollableControl
class provides a property called AutoScrollPosition, which is a Point indicating the scroll position.) This example simply
adjusts the world transform by adding in a translation based on the current scroll position. The rest of the drawing code
could be written without needing to build in any awareness of the scroll position, because GDI+ is automatically
offsetting everything we draw.

Example 7-56. Translating the transform for scrolling

// C#
protected override void OnPaint(PaintEventArgs pe)
{
 Graphics g = pe.Graphics;
 g.TranslateTransform(AutoScrollPosition.X,
 AutoScrollPosition.Y);
 . . .
}

' VB
Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 Dim g As Graphics = pe.Graphics
 g.TranslateTransform(AutoScrollPosition.X, _
 AutoScrollPosition.Y)
 . . .
End Sub

Example 7-57 shows how to rotate the transform to draw some text rotated by 45 degrees. This illustrates an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-57 shows how to rotate the transform to draw some text rotated by 45 degrees. This illustrates an
important point. Sometimes you will want to apply a temporary transformation just to alter how one item is drawn; in
this example, only the text string is to be drawn rotated. In such cases, you will want to take the transform back off
again before continuing to draw. The Graphics class supplies a ResetTransform method, which removes any transform
currently in place. This method will often be appropriate, but it does not work if the transform is also being used for
other purposes such as scrolling because of the way that transforms are combined.

The nature of transformation matrixes is that you can apply as many different transformations as you like—a single
matrix can be used to represent the combined effect of any number of individual matrixes. So it is definitely allowable
to translate the transform for scrolling purposes and to then rotate it. The problem is that calling ResetTransform
removes all current transforms, which would include the translation applied for scrolling purposes. Example 7-57 is
sensitive to this: it retrieves the current transform, applies a rotation for its own drawing, and then puts the original
transform back when it has finished. (The Transform property always returns a copy of the current Transform, so the
Matrix it returns will not be modified when we call RotateTransform.) This means that any code that follows will not be
affected by the rotation, but will still benefit from the translation that was applied for scrolling.

Example 7-57. Rotating the transform

// C#
Matrix origTx = g.Transform;
g.RotateTransform(45);
g.DrawString("Rotated", Font, Brushes.LightGreen, 20, 20);
g.Transform = origTx;

' VB
Dim origTx As Matrix = g.Transform
g.RotateTransform(45)
g.DrawString("Rotated", Font, Brushes.LightGreen, 20, 20)
g.Transform = origTx

The Graphics transform can be used to apply any affine transformation[11]—it just uses a 3 x 3 matrix, where the third
row is used to apply translations. (Just as a dummy fifth column was added to colors for color matrixes, a dummy third
column is added to each two-dimensional coordinate for transformation, to allow translations.) As well as being able to
translate and rotate the transform, there is a ScaleTransform method, which can be useful for implementing a zoom
feature.

[11] An affine transformation is any transformation that can be applied with a 2 x 2 matrix, optionally combined
with a translation. This allows rotation, scaling, shearing, and translation.

There is no method for explicitly shearing the transformation. To do this, you will need to use the Matrix class directly.
Matrix represents a 3 x 3 matrix used for two-dimensional transforms, and enables you to set each individual element if
you need that level of control. (The Graphics.Transform property is of type Matrix.) You can also apply a Matrix object to a
GraphicsPath using the Warp method to transform all the elements of a path without needing to go through a Graphics
object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Summary
GDI+ provides a very powerful set of drawing tools. Access to drawing surfaces, whether they are windows, bitmaps, or
metafiles, is provided through the Graphics class. This supplies methods for drawing primitive shapes whose visual
attributes are specified with Brush and Pen objects. We can augment the set of primitives by building our own composite
shapes using the GraphicsPath class. There is special support for text, both for specifying the appearance with the Font
class, and for controlling formatting with the StringFormat class. There is also support for creating and displaying
predrawn images using either the Bitmap or Metafile classes. Such images can be loaded from disk or created on the fly.
Finally, we saw how the Graphics object can automatically apply a transformation to every drawing operation, making it
easy to implement features such as scrolling and zooming, and allowing us to draw sheared and rotated elements even
with primitives that provide no direct support for this.

All these facilities enable us to exert a very fine level of control over our components' behavior. In the next two
chapters we will see how to further enhance our controls by building in awareness of the development environment,
and adding so-called design-time features.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Property Grids
Many applications need to present sets of information that can be edited. The data could be patient details in a
healthcare system, shape attributes in a drawing program, control properties in a form designer, or any number of
other kinds of information. Windows Forms provides a control that makes presenting and editing such data easy, while
allowing great flexibility in the way in which information is presented—the PropertyGrid control.

Visual Studio .NET itself uses the PropertyGrid control to present properties for all controls and other components in the
Forms Designer. This means that even if you don't plan to use a PropertyGrid directly in your own applications, it is
helpful to have a good understanding of how it works so you may control the way your components' properties are
presented. Visual Studio .NET lets you customize the appearance of the property pages for your components using the
techniques described here.

In this chapter, we will start by looking at how to display the properties of a simple object in a PropertyGrid. Then, we will
see how to enable editing of custom types by using type converters. Finally, we will see how to add our own custom
property editing user interfaces for when a text-based representation is insufficient.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Displaying Simple Objects
The PropertyGrid makes it remarkably easy to provide an interface for editing the properties of an object. It uses the
CLR's reflection facility to discover what properties are available and presents them automatically. This means that it
can be used on simple classes such as those shown in Examples Example 8-1 and Example 8-2.

Example 8-1. A simple class using C#

public class CustomerDetails
{
 private string firstName, lastName, address;
 private DateTime dob;

 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }

 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }
 }

 public DateTime DateOfBirth
 {
 get { return dob; }
 set { dob = value; }
 }

 public string Address
 {
 get { return address; }
 set { address = value; }
 }
}

Example 8-2. A simple class using VB

Public Class CustomerDetails

 Private sFirstName, sLastName, sAddress As String
 Private dob As Date

 Public Property FirstName As String
 Get
 Return sFirstName
 End Get
 Set
 sFirstName = Value
 End Set
 End Property

 Public Property LastName As String
 Get
 Return sLastName
 End Get
 Set
 sLastName = value
 End Set
 End Property

 Public Property DateOfBirth As Date
 Get
 Return dob
 End Get
 Set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set
 dob = Value
 End Set
 End Property

 Public Property Address As String
 Get
 Return sAddress
 End Get
 Set
 sAddress = Value
 End Set
 End Property

End Class

Displaying an instance of this class in a PropertyGrid is trivial. Simply drag a PropertyGrid control onto a form, and then in
that form's constructor, create an instance of the object you wish to display, and pass it to the grid by setting its
SelectedObject property, as shown in Example 8-3.

The PropertyGrid control may not appear on your toolbox. To add this control to the toolbox,
right-click on the toolbox and select Customize Toolbox.... Select the .NET Framework
Components tab and make sure that the checkbox for the Property Grid control is checked.

Example 8-3. Displaying an object in a PropertyGrid

// C# code
CustomerDetails cd = new CustomerDetails();
cd.FirstName = "John";
cd.LastName = "D'Oh";
cd.Address = "742, Evergreen Terrace, Springfield";
cd.DateOfBirth = new DateTime(1956, 5, 12);

propertyGrid.SelectedObject = cd;

' VB code
Dim cd As New CustomerDetails()
cd.FirstName = "John"
cd.LastName = "D'Oh"
cd.Address = "742, Evergreen Terrace, Springfield"
cd.DateOfBirth = #5/12/1956#

PropertyGrid1.SelectedObject = cd

The property grid will then examine the object and discover that it has four public properties, which it will present for
editing as shown in Figure 8-1.

Figure 8-1. A simple object in a PropertyGrid

The grid is shown here with its default settings—the toolbar is present along the top, the properties are sorted by
category, and the description pane is visible. For the object being displayed, none of this is particularly useful, because
the properties are not categorized (which is why everything appears under Misc), and they do not have descriptions.
These unused features are easy enough to switch off—setting the ToolbarVisible and HelpVisible properties to false will
remove the toolbar and description pane, while setting the PropertySort property to PropertySort.Alphabetical will prevent
the grid from trying to display category names. However, descriptions and categorizations can be very useful, so it
would be better to modify our CustomerDetails class to make use of them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

would be better to modify our CustomerDetails class to make use of them.

The way we supply the PropertyGrid with category and description information is to annotate our properties with custom
attributes. In fact, we use the same Category and Description attributes that we would when annotating a control's
properties for Visual Studio .NET's benefit, as described in Chapter 5. This should come as no surprise, because the
Forms Designer uses a PropertyGrid to display a control's properties. So if we add relevant attributes, as shown in
Example 8-4, the PropertyGrid will use them to display the appropriate categories and descriptions for our object.

Example 8-4. Annotating a property

// C# code
[Category("Name")]
[Description("The customer's first name")]
public string FirstName
{
 . . . As before

' VB code
<Category("Name"), _
 Description("The customer's first name")> _
Public Property FirstName As String
 . . . As before

These attributes are all defined in the System.ComponentModel namespace, so make sure you have a using (in C#) or
Imports (in VB) statement at the top of your file to bring that namespace into scope. Figure 8-2 shows how the
PropertyGrid uses these attributes when presenting our object's properties.

Figure 8-2. Properties shown with categories and descriptions

As with components displayed in Visual Studio .NET, any properties marked with the [Browsable(false)] attribute will not
be displayed by default. But this is not the only way of filtering which properties the grid will display—the PropertyGrid
control provides a property called BrowsableAttributes. This can be set to an AttributeCollection containing a list of attributes
that must be present on a property for it to be displayed. The code shown in Example 8-5 will cause only those
properties belonging to the Name category to be shown. (Note that the grid will only show those properties that have
all the attributes specified. So if you were to build a list with two different category attributes in it, you would end up
with nothing in the grid.) You don't have to use category attributes in this list—any kind of attribute can be specified, so
if you want to filter properties on some other criteria, you could define your own custom attribute class.

Example 8-5. Filtering on category

// C# code
propertyGrid.BrowsableAttributes = new AttributeCollection(
 new Attribute[] { new CategoryAttribute("Name") });

' VB code
PropertyGrid1.BrowsableAttributes = New AttributeCollection(_
 New Attribute() {New CategoryAttribute("Name")})

The ability to supply category names and descriptions is a powerful usability enhancement. However, the problem with
the examples we have seen so far is that they hardcode strings into the source code. This is bad practice because it
makes it difficult to display localized versions of the strings when your software runs in other locales. You can avoid this
by making localizable versions of these attributes.

8.1.1 Localizable Descriptions and Categories

The strings used for the Category and Description attributes are intended to be read by end users. Unfortunately, they

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The strings used for the Category and Description attributes are intended to be read by end users. Unfortunately, they
require you to hardcode such strings into your source code, which makes it very awkward to create localized versions of
your application. As we saw in Chapter 3, you should retrieve all culture-specific properties from a ResourceManager to
allow the appropriate values to be determined at runtime. This allows resources for new cultures to be added as
satellite assemblies without requiring any changes to your code.

Unfortunately, and somewhat surprisingly, the Category and Description attributes provide no direct support for
localization. We must derive our own culture-aware versions of these classes if we are to support multiple cultures. The
classes that define these attributes are designed to be inherited from for localization purposes, although curiously, they
prescribe different techniques. With the Category attribute, there is a GetLocalizedString method that we overload in order
to supply a localized version. Examples Example 8-6 and Example 8-7 show how to do this.

Example 8-6. A localizable category attribute using C#

[AttributeUsage(AttributeTargets.All)]
public class LocalizableCategoryAttribute : CategoryAttribute
{
 private Type t;

 public LocalizableCategoryAttribute(string n, Type resBase)
 : base (n)
 {
 t = resBase;
 }

 protected override string GetLocalizedString(string value)
 {
 ResourceManager rm = new ResourceManager(t);
 string tx = rm.GetString(value);
 if (tx != null)
 return tx;

 return base.GetLocalizedString(value);
 }
}

Example 8-7. A localizable category attribute using VB

<AttributeUsage(AttributeTargets.All)> _
Public Class LocalizableCategoryAttribute
 Inherits CategoryAttribute

 Private t As Type

 Public Sub New(n As String, resBase As Type)
 MyBase.New(n)
 t = resBase
 End Sub

 Protected Overrides Function GetLocalizedString(value As String) As String

 Dim rm As New ResourceManager(t)
 Dim tx As String = rm.GetString(value)
 If tx <> Nothing Then Return tx

 Return MyBase.GetLocalizedString(value)
 End Function
End Class

Note that when deriving from an existing attribute, you must redeclare the valid target types, hence, the AttributeUsage
attribute. (The Category attribute declares itself to be valid for all target types, so we follow suit.) The overridden
GetLocalizedString method just uses a ResourceManager to look up the localized version of the string. If this fails, it defers
to the base class (which will just return the original string).

To create a ResourceManager, we need to supply enough information for the framework to locate the appropriate
resource file. The standard way of doing this is to use a Type object—resources are typically associated with a type. In
Visual Studio .NET the way you manage this is to name the resource file after the class it is to be associated with. So to
use localizable resources on our CustomerDetails class, we would add a new Assembly Resource File called
CustomerDetails.resx. Having done this, we can then use the localizable form of this attribute on our class's properties:

// C# code
[LocalizableCategory("Name", typeof (CustomerDetails))]
public string FirstName
{
 get { return firstName; }
 set { firstName = value; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 set { firstName = value; }
}

' VB code
<LocalizableCategory("Name", GetType(CustomerDetails))> _
Public Property FirstName As String
 Get
 Return sFirstName
 End Get
 Set
 sFirstName = Value
 End Set
End Property

So when the PropertyGrid control attempts to use our modified CustomerDetails object, it will look for the Category attribute
as usual, but it will actually get our LocalizableCategory instead. When the grid asks the attribute for the category name,
our GetLocalizedString method will be called. This will ask the ResourceManager to find a definition for the string that is
appropriate to the current locale. If the ResourceManager cannot find one, our attribute will just return the unlocalized
string. To see this in action, let us add a culture-specific resource file to our project, as shown in Figure 8-3.

Figure 8-3. A culture-specific resource file

Figure 8-3 shows a .resx file as presented by Visual Studio .NET. This particular file is called CustomerDetails.fr-FR.resx.
The fr-FR part indicates that this file contains French resources. This will cause Visual Studio .NET to compile it into a
so-called satellite assembly (a culture-specific resource-only assembly) and place it in the fr-FR subdirectory.

The first fr in the resource filename indicates the language: French. The second FR
indicates the region: France. Region and language are specified independently, because
either on its own is not enough—French is spoken in many countries, many of which also
speak other languages. For example, Canada (fr-CA) or Belgium (fr-BE).

If we run our application in a French locale, when the property grid asks our LocalizableCategory for the category name,
our GetLocalizedString method will pass the hardcoded name (e.g., Demographics) to the GetString method of the
ResourceManager. The resource manager will look for a satellite assembly in the fr-FR subdirectory because the current
culture is French. It will find the satellite assembly containing the resource file shown in Figure 8-3, and will look up the
entry whose name is Demographics, and return its value, Démographiques. Consequently, when the property grid
appears, the category names appear in French, not in English, as shown in Figure 8-4.

Figure 8-4. Translated category names

We are not done yet—the description and property names are still in English. The description can be fixed in much the
same way that categories were—we define our own custom attribute that derives from the Description attribute. As
before, the Description attribute was designed to be derived from, so this is relatively straightforward, although for some
reason the prescribed way of supporting localization is somewhat different—we are expected to translate the string just
once, and store it in a protected property called DescriptionValue. Examples Example 8-8 and Example 8-9 show an
implementation of this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-8. A localizable description attribute using C#

[AttributeUsage(AttributeTargets.All)]
public class LocalizableDescriptionAttribute : DescriptionAttribute
{
 private Type t;
 public LocalizableDescriptionAttribute(string name, Type resBase)
 : base(name)
 {
 t = resBase;
 }

 private bool localized = false;
 public override string Description
 {
 get
 {
 if (!localized)
 {
 localized = true;
 ResourceManager rm = new ResourceManager(t);
 string tx = rm.GetString(DescriptionValue);
 if (tx != null)
 DescriptionValue = tx;
 }
 return base.Description;
 }
 }
}

Example 8-9. A localizable description attribute using VB

<AttributeUsage(AttributeTargets.All)> _
Public Class LocalizableDescriptionAttribute
 Inherits DescriptionAttribute

 Private t As Type
 Private localized As Boolean = False

 Public Sub New(ByVal name As String, _
 ByVal resBase As Type)
 MyBase.New(name)
 t = resBase
 End Sub

 Public Overrides ReadOnly Property Description() As String
 Get
 If Not localized Then
 localized = True
 Dim rm As New ResourceManager(t)
 Dim tx As String = rm.GetString(DescriptionValue)
 If Not tx Is Nothing Then DescriptionValue = tx
 End If
 Return MyBase.Description
 End Get
 End Property
End Class

This conforms to the idiom required by the Description attribute, and it works in a slightly curious fashion. In our override
of the Description property's get method, we are required to read the DescriptionValue property, translate it, and then
write back the translated value. We must then defer to the base class's get implementation, which just returns the
value of DescriptionValue. This is a somewhat roundabout way of doing things, but it is what the documentation for
DescriptionAttribute instructs us to do.

Apart from the slightly peculiar way in which the overridden Description property works, this class uses the same
technique as we used for our localizable category—it relies on a ResourceManager to find the appropriate string for the
current culture. However, you will probably want to use this attribute slightly differently, as Example 8-10 shows.

Example 8-10. Using a localizable description attribute

// C#
[LocalizableDescription("LastName.Description",
 typeof(CustomerDetails))]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 typeof(CustomerDetails))]
public string LastName
{
 . . . as before

' VB
<LocalizableDescription("LastName.Description", _
 GetType(CustomerDetails))> _
Public Property LastName() As String
 . . . as before

Example 8-10 shows the LocalizableDescription attribute in use. Notice that the string being supplied to the attribute
(LastName.Description) is not the full description. This is because, for non-English cultures, this string will be used to look
up the translated string. Using a full English sentence as a key to look up information is error prone (not to mention
inefficient). There is nothing stopping you from using the full sentence in the attribute, it is just that you are more likely
to run into problems. (However, it does have the advantage that you don't need to supply an entry for the string in the
default resources.) If you use the technique shown in Example 8-10 you will obviously need to supply entries for these
strings in your neutral resources (i.e., the resources compiled into the main executable, not a satellite assembly) so
that the correct strings appear for your default culture.

As Figure 8-5 shows, both the category names and the descriptions are now localized. However, we are still not quite
done. The property names are still displayed in English. To change this, we will need to use something called a
TypeConverter, which enables us to modify the way in which a PropertyGrid presents properties. In fact, we can do far
more with a TypeConverter than just changing the displayed name of the property.

Figure 8-5. Translated categories and descriptions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Type Conversion
The PropertyGrid is able to edit many different kinds of data, and can provide special-purpose user interfaces for certain
types. For example, the CustomerDetails class shown earlier has a DateTime or Date field, and the PropertyGrid can display a
date picker control when you edit this control. It supports all the built-in types, and all the types used on common
properties on controls. It is also possible to extend its capabilities so that it can edit new types.

The PropertyGrid turns out not to have a long list of types that it knows how to display and edit. The control itself knows
nothing about, say, the DateTime or Color types, and yet it is still able to present them for editing. This is because it has
a very flexible open architecture that allows any type to make itself editable.

A type can provide various levels of support for the PropertyGrid, even going as far as supplying a special-purpose user
interface for editing that type (like the pickers that appear for Color and ContentAlignment). We will see how to do that
later, but for many types, simple text editing will suffice. So at the bare minimum, our type must support conversion to
and from text—its value will be converted to text when it is first displayed in the grid. If the user changes that text, the
new string must be converted back to an instance of our type for the edit to take effect.

We will now introduce a custom type to the CustomerDetails example and then add support for basic type conversion to
and from a string. Rather than storing the customer name as first and last name strings, we will define a separate
CustomerName type, as shown in Examples Example 8-11 and Example 8-12. The CustomerDetails class defined in
Examples Example 8-1 and Example 8-2 will be modified to expose a single property Name of type CustomerName instead
of the original FirstName and LastName properties. This CustomerName class is shown in Examples Example 8-11 and
Example 8-12.

Example 8-11. Custom type to hold name written in C#

public class CustomerName
{
 private string firstName, lastName;
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }

 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }
 }
}

Example 8-12. Custom type to hold name written in VB

Public Class CustomerName
 Private sFirstName, sLastName As String

 Public Property FirstName() As String
 Get
 Return sFirstName
 End Get
 Set
 sFirstName = Value
 End Set
 End Property

 Public Property LastName() As STring
 Get
 Return sLastName
 End Get
 Set
 sLastName = Value
 End Set
 End Property
End Class

So far we have not provided any support for the benefit of PropertyGrid. Consequently, when we display the modified
CustomerDetails in the grid, its Name field is not especially helpful. Figure 8-6 shows how the property will be displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-6. An unsupported type in a PropertyGrid

The field is displayed, but not with any useful information—just the name of the field's type. The reason that the type
name has appeared is that PropertyGrid just calls the ToString method on types it doesn't know how to deal with, and the
default implementation of ToString is to return the type name. We can override this in the CustomerName class easily
enough to provide some more useful information:

// C# code
public override string ToString()
{
 return string.Format("{0}, {1}", LastName, FirstName);
}

' VB code
Public Overrides Function ToString() As String
 Return String.Format("{0}, {1}", LastName, FirstName)
End Function

This improves matters slightly—as you can see in Figure 8-7, the grid now shows a meaningful representation of the
property's value. But it is grayed out, and the PropertyGrid will not let the user edit the text. This is because although the
PropertyGrid was able to convert our type to a string by calling ToString, it does not know how to convert a string back to
an instance of our type. It cannot allow the value to be edited because it has no way of writing the edited value back
into our object.

Figure 8-7. Using ToString in a PropertyGrid

To allow our CustomerName type to be edited in a PropertyGrid, we will need to provide a conversion facility allowing the
property to be set using a string. We do this by writing a class that derives from TypeConverter. Examples Example 8-13
and Example 8-14 show how to do this for our type. It overrides two methods. First, it overrides CanConvertFrom—this
method can be called to find out whether a particular source type can be converted into our CustomerName type. The
PropertyGrid control will call this method to find out whether it will be able to convert from a string to a CustomerName—
values are typically edited as text on a property grid. So we test the sourceType parameter and return true if it we are
being asked to convert to a string.

Example 8-13. A custom TypeConverter using C#

public class CustomerNameConverter : TypeConverter
{
 public override bool CanConvertFrom(
 ITypeDescriptorContext context, Type sourceType)
 {
 return sourceType == typeof(string);
 }

 public override object ConvertFrom(
 ITypeDescriptorContext context, CultureInfo culture,
 object value)
 {
 if (value == null)
 return null;

 // Make sure this is a string
 string sval = value as string;
 if (sval == null)
 throw new NotSupportedException("Unsupported type");

 // If comma is present, treat this as "Last, First"
 string[] names = sval.Split(',');
 if (names.Length == 2)
 {
 CustomerName name = new CustomerName();
 name.LastName = names[0].Trim();
 name.FirstName = names[1].Trim();
 return name;
 }
 else if (names.Length == 1)
 {
 // No comma, must be "First Last"
 names = sval.Split(' ');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 names = sval.Split(' ');
 if (names.Length == 2)
 {
 CustomerName name = new CustomerName();
 name.FirstName = names[0].Trim();
 name.LastName = names[1].Trim();
 return name;
 }
 }
 // Unable to make sense of the string
 throw new NotSupportedException("Invalid format");

 }
}

Example 8-14. A custom TypeConverter using VB

Public Class CustomerNameConverter
 Inherits TypeConverter

 Public Overloads Overrides Function CanConvertFrom(_
 context As ITypeDescriptorContext, _
 sourceType As Type) _
 As Boolean
 Return sourceType Is GetType(String)
 End Function

 Public Overloads Overrides Function ConvertFrom(_
 context As ITypeDescriptorContext, _
 culture As CultureInfo, _
 value As Object) _
 As Object

 If value Is Nothing Then Return Nothing

 ' Make sure this is a string
 Dim sVal As String
 If TypeName(value) <> "String" Then
 Throw New NotSupportedException("Unsupported type")
 Else
 sVal = DirectCast(value, String)
 End If

 ' If comma is present, treat this as "Last, First"
 Dim names() As String = sval.Split(","c)
 If names.Length = 2 Then
 Dim name As New CustomerName()
 name.LastName = names(0).Trim()
 name.FirstName = names(1).Trim()
 Return name
 Else If names.Length = 1 Then
 ' No comma, must be "First Last"
 names = sval.Split(" "c)
 If names.Length = 2 Then
 Dim name As New CustomerName()
 name.FirstName = names(0).Trim()
 name.LastName = names(1).Trim()
 Return name
 End If
 End If
 ' Unable to make sense of the string
 Throw New NotSupportedException("Invalid format")
 End Function
End Class

The second method that we override is the ConvertFrom method. This is where we do the conversion, parsing the string
to create a CustomerName. (This particular example allows the name to be passed in two formats: "First Last" and "Last,
First." It uses the presence or absence of a comma to work out which format is being used.)

There are two other methods we might consider overriding here: CanConvertTo and ConvertTo. These perform the reverse
transformation; for CustomerNameConverter, this means converting from a CustomerName to a string. In this case, there is
no need to override these—the implementation supplied by the base class, TypeConverter, already handles conversion to
a string by calling ToString. Because we provided a suitable ToString method on CustomerName, we don't need to add
anything here. But if you wanted to support editing of a type whose ToString method returned an inappropriate value,
you could bypass it by overriding ConvertTo in the TypeConverter. (Because the default CanConvertTo method always
returns true for string, you do not need to override it when providing custom string conversion in ConvertTo. You would
only need to override CanConvertTo if you decide to support other conversions.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only need to override CanConvertTo if you decide to support other conversions.)

This TypeConverter now provides the conversion facilities required by the PropertyGrid. The only remaining question is
this: how does the PropertyGrid know that it should use this CustomerNameConverter when editing a CustomerName? It won't
just guess from the class names—it needs a more positive hint than that. The answer is that when the PropertyGrid
encounters a data type that it doesn't intrinsically know how to deal with, it will look to see if that type has the
TypeConverter attribute. So we can use this to annotate our CustomerName class, as shown in Example 8-15.

Example 8-15. Associating a type with its TypeConverter

// C# code
[TypeConverter(typeof(CustomerNameConverter))]
public class CustomerName
{
 . . . as before

' VB code
<TypeConverter(GetType(CustomerNameConverter))> _
Public Class CustomerName
 . . . as before

If the TypeConverter attribute is present, the PropertyGrid will use the converter that it specifies to do all conversion to and
from strings. With this attribute in place, our Name field becomes editable. When we make a change to the Name field,
the PropertyGrid will pass the edited text to the ConvertFrom method of the CustomerNameConverter, which will parse the
string and build a new CustomerName based on its contents. In other words, our property can now be edited like any
other.

The PropertyGrid control will search for the TypeConverter attribute both on the definition of the type being edited, and
also on the property. This can be useful for two reasons. If your class has a property of a type whose definition you
don't control, that type may well not have an associated converter. This is not a problem, because you can write your
own converter and just specify it on the property where you use the type in question, as Example 8-16 shows.
Similarly, you might be using a type you didn't write that does have an associated converter, but for some reason you
need to use a different one (e.g., to deal with localization issues). The PropertyGrid will check for the TypeConverter
attribute on the property first, so you can replace a type's default converter with your own.

Example 8-16. Specifying a converter on a property

// C# code
public class CustomerDetails
{
 private CustomerName name;
 private string address;
 private DateTime dob;

 [TypeConverter(typeof(CustomerNameConverter))]
 public CustomerName Name
 {
 get { return name; }
 set { name = value; }
 }

 . . . as before
}

' VB code
Public Class CustomerDetails

 Private oName As New CustomerName()
 Private sAddress As String
 Private dob As Date

 <TypeConverter(GetType(CustomerNameConverter))> _
 Public Property Name() As CustomerName
 Get
 Return oName
 End Get
 Set(ByVal Value As CustomerName)
 oName = Value
 End Set
 End Property

 as before

Being able to edit a CustomerName is good, but we can do better. Windows Forms often uses similar properties—just as
CustomerName has its FirstName and LastName properties, the Size property of a form also has some subproperties, Width
and Height. And while you can edit a control's size by typing in the width and height as a single string, it also allows the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and Height. And while you can edit a control's size by typing in the width and height as a single string, it also allows the
Size property to be expanded, with the Width and Height properties displayed as children. We can do exactly the same
thing—PropertyGrid lets any property display such nested properties. All we need to do is supply an appropriate
TypeConverter.

8.2.1 Nested Properties

A nested property is any property of an object that itself is a property of some other object. For example, the Name
property on our CustomerDetails type has two nested properties, FirstName and LastName. The property grid is able to
make properties such as Name expandable—a plus sign can be added, and when clicked, it will show the nested
properties in the grid.

This facility is enabled by using an appropriate TypeConverter. The simplest approach is to use the converter supplied by
the system for this purpose—ExpandableObjectConverter:

[TypeConverter(typeof(ExpandableObjectConverter))]
public class CustomerName
{
 . . . as before

This will use reflection to discover what properties are available, and supply these to the PropertyGrid, enabling it to
display them as shown in Figure 8-8.

Figure 8-8. Nested properties in a PropertyGrid

There are two problems with this. First, because we are no longer using the purpose-built CustomerNameConverter (we
replaced that with ExpandableObjectConverter) the PropertyGrid no longer has any way of converting text back to a
CustomerName—the ExpandableObjectConverter has no knowledge of the parsing rules we are using for the conversion. This
means that the text against the Name field in the grid is no longer editable; the Name property can only be changed by
editing its nested properties. Second, the PropertyGrid will not update the text next to the Name field when you edit either
the FirstName or LastName fields because it doesn't know that the fields are related.

The simple way to solve both of these problems is to change the CustomerName class's ToString method to return an
empty string. This makes the fact that the Name field cannot be edited less obtrusive, because there will be nothing
there to edit. And if the field is always empty, it no longer matters that it isn't updated when the nested properties
change.

However, we can do better than this. Properties of type Size and Position allow their values to be edited either as a whole
or through their nested properties. We can provide the same flexibility with our own types. To make sure that the main
property value is refreshed every time one of its nested properties changes, simply mark all nested properties with the
RefreshProperties attribute:

[RefreshProperties(RefreshProperties.Repaint)]
public string FirstName
{
 . . . as before

This will cause the PropertyGrid to check the parent property's value after the nested property changes, and update the
display if necessary. But having done this, we still need to arrange for the parent property (Name in this case) to be
editable directly. What we really want is a type converter that has the nested object facility of the
ExpandableObjectConverter, but that also has the parsing logic of our CustomerNameConverter. This is easy to achieve—
simply modify the CustomerNameConverter so that it inherits from ExpandableObjectConverter, and change the TypeConverter
attribute on the CustomerName class back to refer to CustomerNameConverter, as in Example 8-15.

Although our nested properties now appear to be behaving in the same way as Size and similar standard properties,
there is a more subtle difference: the framework tends to use value types for such properties, but our CustomerName is a
class. Unfortunately, if you try to change CustomerName to be a value type, you will find that this example stops working.
This is because value types require special treatment when used in a PropertyGrid.

8.2.1.1 Value types

Some properties use value types—there are several examples in the Control class alone (Location, Size, and Bounds, for
example; their respective types are Point, Size, and Rectangle, which are all value types). But these are slightly trickier
for the PropertyGrid to use—nested properties don't work without special treatment. This is mainly because to change a
value type property, you must update the whole property. (If you retrieve the Size property, and then change the Width,
you will simply be changing the Width in your local copy of the Size. You must then write this modified Size back to
update the property.)

Suppose that CustomerName were a value type, and that we wished to display its nested properties in a PropertyGrid as
before. If the user modifies the FirstName nested property of the Name, the grid somehow has to apply that change back

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

before. If the user modifies the FirstName nested property of the Name, the grid somehow has to apply that change back
to the property. It cannot modify the FirstName in situ[1]—its only option is to build a CustomerName with the correct
value and assign that to the Name. But how is it supposed to know how to create a CustomerName? Again, the
TypeConverter comes to the rescue—it has two methods we can override to provide the PropertyGrid with the facility that it
requires. Examples Example 8-17 and Example 8-18 illustrate this.

[1] This is for exactly the same reason that you can't do it in code. If you tried to write customer.Name.FirstName =
"Fred"; the compiler would complain that this is not possible because the Name property uses a value type.

Example 8-17. Supporting value types in a TypeConverter using C#

public override bool GetCreateInstanceSupported(
 ITypeDescriptorContext context)
{
 return true;
}

public override object CreateInstance(
 ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues)
{
 CustomerName n = new CustomerName();
 n.FirstName = (string) propertyValues["FirstName"];
 n.LastName = (string) propertyValues["LastName"];
 return n;
}

Example 8-18. Supporting value types in a TypeConverter using VB

Public Overrides Overloads Function GetCreateInstanceSupported(_
 context As ITypeDescriptorContext) _
 As Boolean
 Return True
End Function

Public Overrides Overloads Function CreateInstance(_
 context As ITypeDescriptorContext, _
 propertyValues As System.Collections.IDictionary) _
 As Object
 Dim n As New CustomerName()
 n.FirstName = CStr(propertyValues("FirstName"))
 n.LastName = CStr(propertyValues("LastName"))
 Return n
End Function

Examples Example 8-17 and Example 8-18 illustrate how to provide support for a value type in a TypeConverter. The
PropertyGrid will call the GetCreateInstanceSupported method to find out whether our converter provides a value creation
facility. We simply return true to indicate that we do. We then supply the CreateInstance method, which it will call when it
needs us to create a new value. For example, if the user edits the FirstName nested property, the PropertyGrid will call
CreateInstance. It will pass in an IDictionary[2] containing the modified FirstName value and the original LastName value as
strings. We convert these strings back into a complete CustomerName that the PropertyGrid can then use to set the Name
property on the CustomerDetails object.

[2] This is just a collection of (name, value) pairs.

You do not need to use the RefreshProperties attribute on the properties of value types. This is because the parent
property is always updated in its entirety whenever any of the nested properties change, so the grid always refreshes it.

The ExpandableObjectConverter type provides a convenient way of allowing nested properties to be edited, but there is
nothing magic about it—it just overrides a couple of methods of the TypeConverter class that are there to support nested
properties. It can be useful to do this yourself if you need more control over the way in which properties are presented.
For example, this is the only way to make your property names localizable. So we will now look in a little more detail at
the mechanism on which nested properties are based.

8.2.2 Property Descriptors

The PropertyGrid control always uses the objects that it presents through a level of indirection. Instead of accessing
properties directly (or as directly as is possible using reflection), it always goes through a PropertyDescriptor. You can
control exactly what descriptors the PropertyGrid gets to see, or even create your own descriptors, simply by overriding
the appropriate methods of your class's TypeConverter. This allows you to customize how the PropertyGrid sees your type,
and therefore to control how it appears in the grid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and therefore to control how it appears in the grid.

Whenever it displays any object (whether it is the main object or an object supplying nested properties), the PropertyGrid
first obtains a set of PropertyDescriptor objects to determine what needs to be shown in the grid. It will attempt to get
this list from the object's associated TypeConverter (if it has one). First, it will call the converter's GetPropertiesSupported
method to find out whether this particular TypeConverter is able to supply property descriptors. If the
GetPropertiesSupported method returns true, it will then call GetProperties to retrieve a list of PropertyDescriptor objects. The
grid will display whatever properties are in this list, regardless of what properties the object might really have. (If it is
unable to get these descriptors from a converter, it falls back to calling the TypeDescriptor class's GetProperties method for
the main object in the grid, which builds the list using reflection; for nested objects, it falls back to not displaying any
properties at all.)

This means that by supplying a type converter and overriding these two methods, we have complete control over what
properties the grid will display. We can filter the properties, modify how they will appear, or even fake them up entirely.
If we create a PropertyDescriptor for which there is no real underlying property, the grid will never know, because it never
interacts with properties directly—it always goes through a PropertyDescriptor.

Building fake descriptors is somewhat harder than filtering because this requires you to
write your own class that inherits from PropertyDescriptor. This is not completely trivial,
because PropertyDescriptor has many abstract methods. However, TypeConverter provides a
nested class, SimplePropertyDescriptor, that makes it much easier. It derives from
PropertyDescriptor for you and provides implementations for most of the methods. If you
plan to create your own property descriptors, it is usually easiest to use
SimplePropertyDescriptor as a base class.

Unfortunately, Visual Basic .NET currently has a limitation that prevents it from using this
class. SimplePropertyDescriptor is a defined as a protected nested class. According to the
.NET type system rules, this means that the only way to define a class derived from
SimplePropertyDescriptor is to make that derived class a nested class inside a class that
derives from TypeConverter. This works fine in C#, but Visual Basic unfortunately does not
support this, due to a bug in the compiler. Until this bug is fixed, there is no way of using
the SimplePropertyDescriptor class in Visual Basic .NET. Consequently, the examples in this
section will be in C# only.

The ExpandableObjectConverter just builds a list of property descriptors for whichever object it is being asked to represent.
This is trivial, because the TypeDescriptor class will do this for you. Example 8-19 shows a custom TypeConverter that is
exactly equivalent to the ExpandableObjectConverter.

Example 8-19. Do-it-yourself ExpandableObjectConverter

public class MyExpandableObjectConverter : TypeConverter
{
 public override bool GetPropertiesSupported(
 ITypeDescriptorContext context)
 {
 return true;
 }

 public override PropertyDescriptorCollection GetProperties(
 ITypeDescriptorContext context, object value,
 Attribute[] attributes)
 {
 return TypeDescriptor.GetProperties(value, attributes, true);
 }
}

This is not especially useful as it stands—you might as well use the built-in ExpandableObjectConverter class. However, not
only is it interesting to see how easy it is to provide property descriptors, it can also act as a useful starting point. It is
fairly easy to modify this class to build a TypeConverter that provides filtered views by removing items from the collection
returned by the TypeDescriptor class. For example, we can use this facility to complete what we started earlier: we can
write a TypeConverter that makes property names localizable.

8.2.2.1 Localization with property descriptors

Earlier in this chapter, we saw how to create localizable versions of the Category and Description attributes. This enabled
the category names and property descriptions to be shown in the appropriate language for the current culture. We will
now finish the job by writing a TypeConverter that can localize the property names displayed in the grid.

This seems as though it might be a hard problem—after all, the names of a class's properties are part of the source
code and are not easily modifiable through the normal localization techniques. Fortunately, as we have just seen, the
PropertyGrid does not access properties directly—it always goes through a level of indirection in the form of a
PropertyDescriptor. All we need to do is provide a TypeConverter that supplies PropertyDescriptor objects with the names we

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PropertyDescriptor. All we need to do is provide a TypeConverter that supplies PropertyDescriptor objects with the names we
want.

The PropertyDescriptor class was designed with this kind of thing in mind, because it supports two different names for any
property. The descriptor's Name property is the real name, i.e., the name in the source code. But is also has a
DisplayName property, which is the name that is to be displayed in the user interface whenever this property is shown.
The PropertyGrid always uses the DisplayName, so all we need to do is make sure that it contains the localized version of
the property name.

Although the framework supplies some classes that derive from PropertyDescriptor, none of the concrete ones allows the
DisplayName to be different from the Name. This means we will have to write our own. Fortunately, we are writing one as
part of a TypeConverter—this is good because TypeConverter provides a useful abstract base class for writing your own
PropertyDescriptor, called TypeConverter.SimplePropertyDescriptor. This does most of the work we require, so we only need to
write a small amount of code to build a concrete class derived from PropertyDescriptor that meets our needs.

TypeConverter.SimplePropertyDescriptor is a nested class of TypeConverter, and it is marked as
protected. This means that a class that derives from TypeConverter.SimplePropertyDescriptor
must be a nested classes defined inside a class derived from TypeConverter.

Before we look at the code, we will consider how our localizing TypeConverter will be used in practice. We want it to be
simple, having as little impact as possible on code that uses it. This complicates the implementation a little, but this
converter only has to be written once, whereas the client code will be written everywhere that our converter is used, so
it makes sense to complicate the converter to simplify its use. If we call our custom converter LocalizableTypeConverter,
client code will look like this:

[TypeConverter(typeof(LocalizableTypeConverter))]
public class CustomerDetails
{
 public CustomerName Name { . . . }
 public DateTime DateOfBirth { . . . }
 . . .
}

In other words, the impact is no worse than supporting any other TypeConverter. There is one snag with this—because
our TypeConverter will be localizing strings, it will need to create a ResourceManager. In order to create a resource
manager, we need access to a Type object (or at least an Assembly). Fortunately, our TypeConverter will be able to
discover the type of the class it has been attached to, and it can use that as its resource source. So in this case, it
would use CustomerDetails. While this makes for a minimum of code, it does rather increase the number of .resx files you
will need in your project—it will require a resource file for every class that uses this converter. So we will therefore
define an optional custom attribute that allows a different type to be specified as the basis for resources. Example 8-20
shows a type that uses this attribute to share a resource file with the CustomerDetails class.

Example 8-20. Specifying a type for resource location

[TypeConverter(typeof(LocalizableTypeConverter))]
[LocalizationResourceType(typeof(CustomerDetails))]
public class CustomerName
{
 . . . as before

These attributes are all that we will require the client code to use. Our localizing type converter will use the real names
of the properties to look up the localized names in the resource manager. So simply adding entries in the culture-
specific resource file mapping, say, Name to Nom, will be all that is required to localize the property names.

Let us look at the code for the LocalizableTypeConverter and associated classes. Rather than presenting all the code in one
go, we will look at it one piece at a time. Don't worry—there are no missing pieces. First is the LocalizationResourceType
attribute, which is shown in Example 8-21.

Example 8-21. The LocalizationResourceType attribute

[AttributeUsage(AttributeTargets.All)]
public class LocalizationResourceTypeAttribute : Attribute
{
 private Type t;

 public LocalizationResourceTypeAttribute(Type resBase)
 {
 t = resBase;
 }

 public Type ResBase { get { return t; } }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This is a straightforward custom attribute that holds a Type object for the benefit of the TypeConverter. Example 8-20
shows how this attribute will be used. This is just a perfectly normal and not very exciting custom attribute class, so we
will move on to the converter's class declaration and its one field:

public class LocalizableTypeConverter : TypeConverter
{
 private Type resBase = null;

Our class inherits from TypeConverter, because it is a type converter. The resBase field is used to hold the Type object for
the class that will be used to initialize a ResourceManager. This will determine the name of the resource file that will
contain the localized versions of the names. Next is the first override:

public override bool GetPropertiesSupported(
 ITypeDescriptorContext context)
{
 return true;
}

Here we are simply indicating that our TypeConverter will supply PropertyDescriptor objects. The whole purpose of this class
is to supply the PropertyGrid with appropriately tweaked descriptors, but it will only ask us for descriptors if we return
true from this method, as we did in Example 8-19. Next is the GetProperties method, where we create our descriptors:

public override PropertyDescriptorCollection GetProperties(
 ITypeDescriptorContext context, object value,
 Attribute[] attributes)
{
 EnsureAttrsRead(value);
 PropertyDescriptorCollection pdc;
 pdc = TypeDescriptor.GetProperties(value, attributes, true);
 PropertyDescriptor[] props = new PropertyDescriptor[pdc.Count];
 for (int i = 0; i < pdc.Count; ++i)
 {
 Attribute[] attrs = new Attribute[pdc[i].Attributes.Count];
 pdc[i].Attributes.CopyTo(attrs, 0);
 props[i] = new LocalizablePropertyDescriptor(resBase,
 pdc[i], attrs);
 }
 PropertyDescriptorCollection pdcOut =
 new PropertyDescriptorCollection(props);

 return pdcOut;
}

The EnsureAttrsRead method, shown below, makes sure that we have checked for the presence of the
LocalizationResourceType attribute before proceeding. We use the TypeDescriptor class to provide us with a complete set of
nonlocalized PropertyDescriptor objects. We will rely on these to do most of the work, because we only want to change
one aspect of their behavior; most of this function is concerned with building a copy of the information associated with
these descriptors. So we build a new list of descriptors, using our LocalizablePropertyDescriptor class (shown later). This is
the class that will provide the localized name in its DisplayName property.

Next, the EnsureAttrsRead method checks for the LocalizationResourceType attribute:

private void EnsureAttrsRead(object o)
{
 if (resBase == null)
 {
 object[] attr = o.GetType().GetCustomAttributes(
 typeof(LocalizationResourceTypeAttribute), true);
 if (attr != null && attr.Length != 0)
 {
 resBase = ((LocalizationResourceTypeAttribute)
 attr[0]).ResBase;
 }
 if (resBase == null)
 resBase = o.GetType();
 }
}

This method is passed a single parameter: the object whose property names we are translating. It checks to see if that
object's type definition has the LocalizationResourceType attribute. If it does, we store the Type object that it specifies in
the resBase field. If the attribute is not present, we fall back to using the Type of the object itself.

Next is the descriptor class itself. Rather than deriving directly from PropertyDescriptor, we use the helper base class
provided by TypeConverter:

private class LocalizablePropertyDescriptor :
 TypeConverter.SimplePropertyDescriptor
{
 private Type resBase;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Type resBase;
 private string localizedName = null;
 private PropertyDescriptor realProp;

 public LocalizablePropertyDescriptor(Type resBase,
 PropertyDescriptor prop, Attribute[] attributes)
 : base (prop.ComponentType, prop.Name,
 prop.PropertyType, attributes)
 {
 this.resBase = resBase;
 realProp = prop;
 }

As before, the resBase property holds the Type object that will be used to initialize the ResourceManager. The localizedName
field will hold the localized name once it has been looked up—we cache it here to avoid doing the lookup more than
once. The realProp class holds a reference to the original PropertyDescriptor returned by TypeDescriptor.GetProperties—we
rely on this because our class does nothing more than localizing the display name. It defers to the real descriptor for
everything else.

The TypeConverter.SimplePropertyDescriptor class provides implementations for most of the abstract methods of
PropertyDescriptor, but not GetValue or SetValue. This is because it doesn't presume that your descriptor will necessarily
represent a real property, so it lets you implement them however you like. We just defer to the original
PropertyDescriptor, which will just read and write the property respectively:

public override object GetValue(object component)
{
 return realProp.GetValue(component);
}
public override void SetValue(object component, object value)
{
 realProp.SetValue(component, value);
}

Finally, we come to the part that this has all been building up to—the DisplayName property where we substitute the
localized version of the name:

public override string DisplayName
{
 get
 {
 if (localizedName == null)
 {
 ResourceManager rm = new ResourceManager(resBase);
 string tx = rm.GetString(base.DisplayName);
 if (tx != null)
 localizedName = tx;
 else
 localizedName = base.DisplayName;
 }
 return localizedName;
 }
}

This looks almost identical to the core of the localizable category and description attributes. This is because they do
much the same thing—we obtain a resource manager and use it to look up the localized string. This descriptor makes
sure that it only does this lookup once, by caching the result in the localizedName property.

So with this code in place, and the relevant attributes in use, all that is required are some suitable entries in the
culture-specific resource file as shown in Figure 8-9. Our PropertyGrid is now fully localized, as Figure 8-10 shows. (The
property values still look remarkably un-French, but because values are usually supplied by the user, it is not our job to
localize them.)

Figure 8-9. Localized strings for property names

Figure 8-10. The fully-localized PropertyGrid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-10. The fully-localized PropertyGrid

There is a useful side effect of using these localization classes. Notice how in Figure 8-10 the DateOfBirth property has
been translated with spaces between the words. Without our custom type converter in place, the displayed property
names were just the real names as used in the source code, which precludes the use of spaces and most punctuation.
But now we are free to use any text we like as the display name. You can employ such readability enhancements in
your native language—the ResourceManager is quite happy to look up resources even in the default culture, so long as
you provide an appropriate .resx file. So if you supply a culture-neutral resource file, you can create entries mapping
"DateOfBirth" onto "Date of Birth." So the fact that these classes allow you to decouple the display name from the real
name is useful even when not translating text to another language.

A culture-neutral resource file is one without a culture in the file name, such as
CustomerDetails.resx. Such resources are built into the main assembly, not satellite
assemblies.

There is one limitation with these classes. If you use the LocalizableTypeConverter, you can no longer use other
converters, such as the ExpandableObject or converters of your own devising. For the latter this is fairly easy to fix—
simply modify your own converters to inherit from LocalizableTypeConverter instead of TypeConverter. Of course, you can't
do this with ExpandableObject—only Microsoft gets to decide what that derives from. Fortunately, LocalizableTypeConverter
already does everything that ExpandableObject does, so in practice it doesn't matter.

Our CustomerDetails class has evolved since the version shown in Example 8-1, so Example 8-22 shows the modified
class with all the relevant attributes in place.

Example 8-22. CustomerDetails class with localizable categories and descriptions

[TypeConverter(typeof(LocalizableTypeConverter))]
public class CustomerDetails
{
 private CustomerName name;
 private string address;
 private DateTime dob;

 [LocalizableCategory("Name", typeof (CustomerDetails))]
 [LocalizableDescription("Name.Description",
 typeof(CustomerDetails))]
 public CustomerName Name
 {
 get { return name; }
 set { name = value; }
 }

 [LocalizedCategory("Demographics", typeof (CustomerDetails))]
 [LocalizedDescription("DateOfBirth.Description",
 typeof(CustomerDetails))]
 public DateTime DateOfBirth
 {
 get { return dob; }
 set { dob = value; }
 }

 [LocalizedCategory("Location", typeof (CustomerDetails))]
 [LocalizedDescription("Address.Description",
 typeof(CustomerDetails))]
 public string Address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public string Address
 {
 get { return address; }
 set { address = value; }
 }

}

So, we have seen how to control which properties appear in the grid, what they are called, and how type conversions
occur when moving data to and from the grid. But so far, the user interface for each individual property has consisted
of nothing more exciting than an editable text field. We will now see how to add our own editing user interfaces to items
on a PropertyGrid.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Custom Type Editors
The PropertyGrid allows us to replace the built-in text-based editing. We can assign a custom editor that supplies its own
user interface. The framework calls such editors UI Type Editors. Not only can these provide a special-purpose editing
user interface, they can change how the property's value is displayed even when we are not editing its value.

Supplying a UI Type Editor is simple. We simply write a class that derives from System.Drawing.Design.UITypeEditor and
associate it with the property or type in question using the Editor attribute. We only need to override two methods in our
editor class. The first, GetEditStyle, is called to determine what style of editing UI we support; we can open a standalone
modal dialog, drop down a UI in the PropertyGrid itself, or supply no editing UI. The second method, EditValue, is called
when we are required to show our editing interface.

Let us add a new property to our CustomerDetails class (as shown in Example 8-22) so that we can supply a custom
editing user interface for it. The new property is Happiness, and it indicates the level of customer satisfaction, on a range
of 0 to 100%. It is shown in Examples Example 8-23 and Example 8-24. The editor has been specified with the Editor
attribute. (The second parameter is always required to be UITypeEditor in the current version of the framework.) The
property's type here is int or Integer, but we can provide custom UI editors for any type, whether it is a custom type or a
built-in type.

Example 8-23. Happiness property with editor using C#

private int happy;

[Editor(typeof(HappinessEditor), typeof(UITypeEditor))]
public int Happiness
{
 get { return happy; }
 set { happy = value; }
}

Example 8-24. Happiness property with editor using VB

Private happy As Integer

<Editor(GetType(HappinessEditor), GetType(UITypeEditor))> _
Public Property Happiness As Integer
 Get
 Return happy
 End Get
 Set
 happy = Value
 End Set
End Property

The simplest editing user interface that we can show is a modal dialog. Creating an editor class to provide this is very
straightforward. Examples Example 8-25 and Example 8-26 show a custom type editor that simply presents a message
box as its user interface. It asks the user if they are happy (yes or no), and sets their happiness as either 100% or 0%
accordingly. (If the user hits cancel, the happiness is left unaltered.)

Example 8-25. Modal dialog custom type editor using C#

public class HappinessEditor : UITypeEditor
{
 public override UITypeEditorEditStyle GetEditStyle(
 ITypeDescriptorContext context)
 {
 return UITypeEditorEditStyle.Modal;
 }

 public override object EditValue(ITypeDescriptorContext context,
 IServiceProvider provider, object value)
 {
 DialogResult rc = MessageBox.Show("Are you happy?",
 "Happiness", MessageBoxButtons.YesNoCancel);
 if (rc == DialogResult.Yes)
 return 100;
 if (rc == DialogResult.No)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (rc == DialogResult.No)
 return 0;
 return value;
 }
}

Example 8-26. Modal dialog custom type editor using VB

Public Class HappinessEditor
 Inherits UITypeEditor

 Public Overloads Overrides Function GetEditStyle(_
 context As ITypeDescriptorContext) _
 As UITypeEditorEditStyle
 Return UITypeEditorEditStyle.Modal
 End Function

 Public Overloads Overrides Function EditValue(_
 context As ITypeDescriptorContext, _
 provider As IServiceProvider, _
 value As Object) As Object
 Dim rc As MsgBoxResult = MsgBox("Are you happy?", _
 MsgBoxStyle.YesNoCancel, "Happiness")
 If rc = MsgBoxResult.Yes Then
 Return 100
 ElseIf rc = MsgBoxResult.No Then
 Return 0
 End If
 Return value
 End Function
End Class

The PropertyGrid will indicate the availability of this editor by placing a small button with an ellipsis in the property's
value field when it is given the focus, as shown in Figure 8-11. The PropertyGrid knows to show the button because of
the value returned by our editor class's GetEditStyle method.

Figure 8-11. A modal editing UI offered in a PropertyGrid

Modal dialog editors are easy to write, but they are usually not the most convenient kind of editor to use. Most of the
system-supplied editors use the drop-down style, because it is less disruptive to the use of the program and makes it
feel as if the property is an integrated part of the PropertyGrid.

Showing a drop-down editor is almost as easy as showing a modal dialog. The main difference is that we have to supply
a control rather than a form. A UserControl is likely to be the easiest option, although you can use a custom control. (In
fact, you could even use one of the built-in controls.)

Examples Example 8-27 and Example 8-28 show a type editor that displays a control called HappinessControl. The most
interesting part of this is the way in which it displays the control as a drop-down editor in the PropertyGrid. To do this, we
must ask the grid for a service object. We do this through the IServiceProvider passed as the provider argument—this is a
generic interface that allows hosted components to ask their environment for certain facilities. In this case, we are
asking the grid control for the service that lets us display drop-down editors, which is provided through the
IWindowsFormsEditorService interface.

Example 8-27. A drop-down type editor using C#

public class HappinessEditor : UITypeEditor
{
 public override UITypeEditorEditStyle GetEditStyle(
 ITypeDescriptorContext context)
 {
 return UITypeEditorEditStyle.DropDown;
 }

 public override object EditValue(ITypeDescriptorContext context,
 IServiceProvider provider, object value)
 {
 IWindowsFormsEditorService wfes = provider.GetService(
 typeof(IWindowsFormsEditorService)) as
 IWindowsFormsEditorService;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IWindowsFormsEditorService;
 if (wfes != null)
 {
 HappinessControl hc = new HappinessControl();
 hc.Value = (int) value;
 wfes.DropDownControl(hc);
 value = hc.Value;
 }
 return value;
 }
}

Example 8-28. A drop-down type editor using VB

Public Class HappinessEditor
 Inherits UITypeEditor

 Public Overloads Overrides Function GetEditStyle(_
 context As ITypeDescriptorContext) _
 As UITypeEditorEditStyle
 Return UITypeEditorEditStyle.DropDown
 End Function

 Public Overloads Overrides Function EditValue(_
 context As ITypeDescriptorContext, _
 provider As IServiceProvider, _
 value As Object) As Object

 Dim wfes As IWindowsFormsEditorService = _
 CType(provider.GetService(_
 GetType(IWindowsFormsEditorService)), _
 IWindowsFormsEditorService)
 If Not wfes Is Nothing Then
 Dim hc As New HappinessControl()
 hc.Value = CInt(value)
 wfes.DropDownControl(hc)
 value = hc.Value
 End If
 Return value
 End Function

End Class

When we call the DropDownControl method on the service object, it displays our control in the appropriate position on the
PropertyGrid. It adjusts its size so that it is the same width as the value field, as shown in Figure 8-12. (The
HappinessControl is just a UserControl. The most interesting code is the part that draws the face, which we will see
shortly.)

Figure 8-12. A drop-down editor in action

As you can see, in contrast to the rather dry yes/no interface provided by the MessageBox class or the VB MsgBox
function, here we have gone for a slightly more emotive interface—the customer satisfaction level is indicated by how
happy or sad the face looks. The code from the Happiness control that draws this is shown in Examples Example 8-29
and Example 8-30.

Example 8-29. Putting a happy face on the control using C#

public static void PaintFace(Graphics g, Rectangle r, int happiness)
{
 r.Width -= 1; r.Height -= 1;
 float w = r.Width;
 float h = r.Height;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 float h = r.Height;

 // Draw face
 g.FillEllipse(Brushes.Yellow, r);
 g.DrawEllipse(Pens.Black, r);

 // Draw eyes
 float eyeLevel = h / 4;
 float eyeOffset = w / 4;
 float eyeSize = w / 6;
 g.FillEllipse(Brushes.Black, w/2 - eyeOffset, eyeLevel,
 eyeSize, eyeSize);
 g.FillEllipse(Brushes.Black, w/2 + eyeOffset - eyeSize + 1, eyeLevel,
 eyeSize, eyeSize);

 // Draw smile
 float smileWidth = w/3;
 float smileLevel = (h*7)/10;
 float offs = ((happiness - 50) * h/4)/100;
 PointF[] points =
 {
 new PointF ((w - smileWidth)/2, smileLevel),
 new PointF ((w - smileWidth)/2, smileLevel + offs),
 new PointF ((w + smileWidth)/2+1, smileLevel + offs),
 new PointF ((w + smileWidth)/2+1, smileLevel)
 };
 g.DrawBeziers(Pens.Black, points);
}

Example 8-30. Putting a happy face on the control using VB

Public Shared Sub PaintFace(g As Graphics, r As Rectangle, _
 happiness As Integer)
 r.Width -= 1
 r.Height -= 1
 Dim w As Single = r.Width
 Dim h As Single = r.Height

 ' Draw face
 g.FillEllipse(Brushes.Yellow, r)
 g.DrawEllipse(Pens.Black, r)

 ' Draw eyes
 Dim eyeLevel As Single = h / 4
 Dim eyeOffset As Single = w / 4
 Dim eyeSize As Single = w / 6
 g.FillEllipse(Brushes.Black, w/2 - eyeOffset, eyeLevel, _
 eyeSize, eyeSize)
 g.FillEllipse(Brushes.Black, w/2 + eyeOffset - eyeSize + 1, _
 eyeLevel, eyeSize, eyeSize)

 ' Draw smile
 Dim smileWidth As Single = w/3
 Dim smileLevel As Single = (h*7)/10
 Dim offs As Single = ((happiness - 50) * h/4)/100
 Dim points() As PointF = _
 { new PointF ((w - smileWidth)/2, smileLevel), _
 new PointF ((w - smileWidth)/2, smileLevel + offs), _
 new PointF ((w + smileWidth)/2+1, smileLevel + offs), _
 new PointF ((w + smileWidth)/2+1, smileLevel) }
 g.DrawBeziers(Pens.Black, points)
End Sub

The PropertyGrid control also lets us draw into the value field even when our editor is not running. Because the PaintFace
method shown in Examples Example 8-29 and Example 8-30 has been written to scale its drawing to whatever space is
available, we can call the same code from our HappinessEditor class to draw a small version of the face into the
PropertyGrid, as shown in Examples Example 8-31 and Example 8-32.

Example 8-31. Custom value painting using C#

public override bool GetPaintValueSupported(
 ITypeDescriptorContext context)
{
 return true;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return true;
}

public override void PaintValue(PaintValueEventArgs e)
{
 System.Drawing.Drawing2D.SmoothingMode sm = e.Graphics.SmoothingMode;
 e.Graphics.SmoothingMode =
 System.Drawing.Drawing2D.SmoothingMode.HighQuality;
 HappinessControl.PaintFace(e.Graphics, e.Bounds, (int) e.Value);
 e.Graphics.SmoothingMode = sm;
}

Example 8-32. Custom value painting using VB

Public Overloads Overrides Function GetPaintValueSupported(_
 context As ITypeDescriptorContext) As Boolean
 Return True
End Function

Public Overloads Overrides Sub PaintValue(e As PaintValueEventArgs)

 Dim sm As SmoothingMode = e.Graphics.SmoothingMode
 e.Graphics.SmoothingMode = SmoothingMode.HighQuality
 HappinessControl.PaintFace(e.Graphics, e.Bounds, CInt(e.Value))
 e.Graphics.SmoothingMode = sm

End Sub

To get our drawing into the value field, we are required to override the GetPaintValueSupported method and return true.
Having done this, the PropertyGrid will call our PaintValue method whenever it repaints the value field. We just call the
static PaintFace method supplied by the HappinessControl. Notice how we turn on the high-quality smoothing mode on the
Graphics object first—this enables antialiasing, which is particularly important on small drawings. Without switching this
on, the drawing would look rather ragged. Having changed the smoothing mode, it is important to restore it to its
original value before the method terminates, because we are drawing with the same Graphics object that the PropertyGrid
uses to draw itself. The results of this painting can be seen in Figure 8-13.

Figure 8-13. Drawing in the value field

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Summary
The PropertyGrid provides a simple but effective way of presenting data for editing. It uses reflection to discover which
properties are available for editing. It allows every aspect of the property editing process to be controlled by using a
TypeConverter. We can manage conversions between the text displayed and edited onscreen, and the types stored in the
object. We can control which properties are displayed, and how they are presented. We can even supply our own editor
user interfaces for when simple text editing is insufficient.

The PropertyGrid is also central to the Windows Forms Designer, so an understanding of how it works is crucial to
integrating your controls with the development environment successfully. In the next chapter, we will look in detail at
Visual Studio .NET's other design-time integration features.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Controls and the IDE
In Visual Studio .NET, the Windows Forms Designer is central to building Windows applications. Although it is possible to
build Windows Forms programs with non-visual coding alone, it is much easier to use the Designer, not only because it
makes laying out the contents of forms much simpler, but also because it provides a very rich user interface for
specifying controls' properties. The IDE provides the same quality of user interface for user-designed controls as it does
for the built-in controls. Although this design-time support is mostly automated, a little extra effort can greatly enhance
the way in which your control is presented in the Designer.

In this chapter, we will look at how to extend our controls so that they integrate fully with the Forms Designer, either
by modifying their behavior at design time, or by writing a custom designer class. We will examine the way in which
controls and designers interact with Visual Studio .NET. Finally, we will see how to write an extender provider, a
component that can augment the capabilities of any control on a form.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 Design Time Versus Runtime
There are two contexts in which controls have to operate: design time and runtime. Design time refers to when the
control is being displayed in the Forms Designer. Runtime simply means normal execution of a program that uses the
control.

Controls do not need to provide any explicit support to allow the Forms Designer to host them. As we saw in Chapter 5,
even a very simple custom control derived directly from System.Windows.Forms.Control with nothing more than an override
of the OnPaint method added can be dropped onto a form in the Designer. Visual Studio .NET just creates an instance of
the control to render it in the Designer. It uses the normal control painting mechanisms to do this, so controls do not
need any special code to make this work. Selection outlines and resize handles are added by the Forms Designer after
the control has drawn itself.

The Forms Designer intercepts all mouse and keyboard input. This means that all controls automatically get the
standard editing facilities, such as drag-and-drop resizing and positioning and double-clicking to add a default event
handler. So again, no special code is required to make a control behave properly at design time.

9.1.1 Detecting Design Time

Many controls will not need special code to be useful at design time. However, certain controls may need to change
their behavior in order to work correctly in the Forms Designer. They will therefore need to detect whether they are
operating in a runtime or a design-time environment and behave accordingly.

For example, suppose you wrote a control that connected to a web service and provided live information from that
service. (For example, your control might be a stock price monitor.) You might not want the component to connect to
the real service at design time if that service is slow or only sporadically available during the development phase of your
project. It would be irritating to have to wait for the control to try to connect to the service every time you use it in the
Forms Designer. At design time, you typically won't care about the correctness of the displayed data; you merely want
to make sure the layout of your form is correct. (Data-bound controls usually behave differently at design time and
runtime for this reason.) Fortunately, it is trivial to determine whether your control is being hosted in the designer or is
running for real—simply test the Control class's DesignMode property, as shown in Example 9-1.

The Control class inherits DesignMode from its base class, Component, so all components can
detect when they are being used at design time, not just controls.

Example 9-1. Modifying a control's design-time appearance with DesignMode

// C# code
protected override void OnPaint(PaintEventArgs pe)
{
 pe.Graphics.DrawString(DesignMode ? "Design" : "Runtime",
 Font, Brushes.Black, ClientRectangle);

 base.OnPaint(pe);
}
' VB Code
Protected Overrides Sub OnPaint(pe As PaintEventArgs)
 pe.Graphics.DrawString(IIf(DesignMode, "Design", "Runtime"),
 Font, Brushes.Black, ClientRectangle)

 MyBase.OnPaint(pe)
End Sub

There is one caveat with the DesignMode property: you should not use it in a constructor. The control's DesignMode
property is simply a shortcut for the ISite.DesignMode property of the component's Site property, and Site will always be
null or Nothing during construction. The Site property is used to provide components with a means of communicating with
their containing environment, enabling us to integrate our controls with certain Visual Studio .NET design-time features.
The Forms Designer sets all components' Site properties at design time. (Visual Studio .NET 2003 supplies an object of
type Microsoft.VisualStudio.Designer.Host.DesignSite for the Site. This object's ISite.DesignMode property always returns true.)

The reason DesignMode cannot be used during construction is that the Forms Designer must create an instance of our
control before it can set the Site property. This means that the Site property will not be set until after the constructor
completes. Consequently, the control's DesignMode property will not be able to ask the Site for its ISite.DesignMode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

completes. Consequently, the control's DesignMode property will not be able to ask the Site for its ISite.DesignMode
property, and so it always returns its default value of false during construction.

There is a way to obtain a Site during construction, but it turns out not to solve this
particular problem. The Forms Designer recognizes an alternate constructor that takes an
IContainer as a parameter. If the constructor calls Add(this) or Add(Me) on the supplied
container, the container will set the Site property, making it available for the rest of the
constructor:

public MyControl(IContainer c)
{
 c.Add(this);
 // Site property now valid...
}

Unfortunately, although the Forms Designer will generate code that uses this constructor
at runtime in the InitializeComponent method, at design time it insists on using the
parameterless constructor. So there is no way of accessing the Site during the constructor
at design time, even if you supply this extra constructor.

This alternate constructor is only used to provide the component with a reference to the
containing form's components member. This ensures that the component's Dispose method
will be called automatically by the form's Dispose method, as described in Chapter 3.

Fortunately, Windows Forms provides a two-phase initialization style for controls. If your control implements the
ISupportInitialize interface defined in the System.ComponentModel namespace, it will get an opportunity to run initialization
code after the Site property has been set. In fact, it gets two opportunities—ISupportInitialize defines two methods,
BeginInit and EndInit. Examples Example 9-2 and Example 9-3 illustrate the use of these methods.

Example 9-2. Detecting design-time initialization with ISupportInitialize using C#

public class MyControl :
 System.Windows.Forms.Control,
 System.ComponentModel.ISupportInitialize
{
 public void BeginInit()
 {
 Debug.WriteLine(DesignMode);
 }

 public void EndInit()
 {
 Debug.WriteLine(DesignMode);
 }
 . . .
}

Example 9-3. Detecting design-time initialization with ISupportInitialize using VB

Public Class MyControl
 Inherits System.Windows.Forms.Control
 Implements System.ComponentModel.ISupportInitialize

 Public Sub BeginInit() Implements ISupportInitialize.BeginInit
 Debug.WriteLine(DesignMode)
 End Sub

 Public Sub EndInit() Implements ISupportInitialize.EndInit
 Debug.WriteLine(DesignMode)
 End Sub
 . . .
End Class

The Forms Designer will set the Site property before calling either BeginInit or EndInit, so in Example 9-2, the DesignMode
property will be true in both methods at design time. The difference between these two methods is that BeginInit will be
called before any of the component's properties are set, and EndInit will be called after all properties have been set.

Armed with the knowledge of which kind of environment they are running in, many components can integrate
successfully with the development environment by simply adjusting their behavior and appearance suitably at design
time. They can also modify certain aspects of the way they are presented using the attributes discussed in Chapter 5
and Chapter 8. However, some controls will want to go further than this—they may want to modify the behavior of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and Chapter 8. However, some controls will want to go further than this—they may want to modify the behavior of the
Forms Designer as well as their own behavior. So we will now look at how to write a control that customizes Visual
Studio .NET's behavior.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Custom Component Designers
Visual Studio .NET enables controls to customize the Forms Designer. New commands can be added in the property
grid. Resize and move drag operations can be altered, and mouse handling within the control can be customized.
Design-time adornments may be added (adornments are editing features such as resize handles). Hit testing can be
provided for nonrectangular controls. Controls may elect to act as containers of child controls. Controls may even
modify the way that properties are presented in the property panel. All these facilities revolve around supplying a
custom component designer.

A component designer is a class associated with the control class, whose job is to handle design-time interaction with
the development environment. It must derive from the ControlDesigner class, which is defined in the
System.Windows.Forms.Design namespace. (In fact, any component may have a designer, not just a control. A non-visual
component's designer derives from the ComponentDesigner class, which is defined in the System.ComponentModel.Design
namespace.)

The terminology is unfortunate—there are three designers involved at design time:

The Forms Designer (the visual editing environment provided by Visual Studio
.NET for building Windows Forms applications)

The control's custom designer class

The developer who is designing the form

To avoid ambiguity, in this book, the Forms Designer is always referred to with a capital D.
A designer with a lower case D refers to the custom designer class. We avoid using the
term designer to refer to the developer.

All controls are required to have an associated designer. If you do not specify one, your control will just use the default,
ControlDesigner. But you can choose a custom designer by applying the DesignerAttribute custom attribute to your class as
Example 9-4 shows. (DesignerAttribute is defined in the System.ComponentModel namespace. It is not entirely clear what it
is doing in there when the System.ComponentModel.Design namespace would have been the more obvious choice.)

Example 9-4. Specifying a custom designer for a class

// C# code
[DesignerAttribute(typeof(MyControlDesigner))]
public class MyControl :
 System.Windows.Forms.Control
{
 . . .
}

public class MyControlDesigner :
 System.Windows.Forms.Design.ControlDesigner
{
 . . .
}

' VB code
<Designer(GetType(MyControlDesigner))> _
Public Class MyControl
 Inherits System.Windows.Forms.Control
 . . .
End Class

Public Class MyControlDesigner
 Inherits System.Windows.Forms.Design.ControlDesigner
 . . .
End Class

Design-time behavior is customized by overriding various methods or properties of the ControlDesigner class. We will now
examine each customizable aspect in turn.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.1 Designer Verbs

Visual Studio .NET provides extensive support for modifying control properties of all kinds. It has built-in editors for a
wide range of standard property types, and because it uses the PropertyGrid, it is easy to provide custom editors for new
types—all the techniques discussed in Chapter 8 for customizing the PropertyGrid work just fine for properties of a
control. However, for certain kinds of properties, it can still be cumbersome to use the PropertyGrid to perform frequently
used operations. So the Forms Editor allows a component designer to add verbs—custom operations available through a
single click in the editor.

Consider the built-in TabControl class, which allows several user interface panels to be contained inside a standard
tabbed view, such as that used by Windows Explorer's file properties windows. The first thing that a developer is likely
to want to do with a newly created TabControl is to add some new panels. This can be done by adding new TabPage
objects to the control's TabPages property. TabPages is a collection property, so editing this property displays the
standard collection editor dialog, which can be used to add new TabPage objects.

The TabControl component's requirements are met by the PropertyGrid. However, it is all rather cumbersome—the
developer must first locate the TabPages property in the property grid, then two clicks are required to bring up the
collection editor, which is a modal dialog and hence must be dismissed once the new pages have been added. This is
somewhat inconvenient, given that developers will almost always need to add new pages whenever they use the
TabControl.

To make life easier for developers, the TabControl therefore defines two designer verbs, one for adding new panels and
one for removing existing panels. Figure 9-1 shows how the property grid displays the verbs for a TabControl.

Figure 9-1. A property grid with a verbs panel

The Add Tab and Remove Tab verbs in the central panel in Figure 9-1 are also available through the context menu, as
shown in Figure 9-2.

Figure 9-2. A context menu with verbs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your custom control could benefit from a similar one-click interface for common but cumbersome operations, it is
easy to add designer verbs. Simply override the Verbs property in your custom designer class, as shown in Examples
Example 9-5 and Example 9-6. (Note that this property's type, DesignerVerbCollection, is defined in the
System.ComponentModel.Designer namespace.)

Example 9-5. Adding designer verbs using C#

public class MyControlDesigner : ControlDesigner
{
 public override DesignerVerbCollection Verbs
 {
 get
 {
 DesignerVerb[] verbs = new DesignerVerb[]
 {
 new DesignerVerb("Add Panel",
 new EventHandler(OnAddPanelVerb)),
 new DesignerVerb("Remove Panel",
 new EventHandler(OnRemovePanelVerb))
 };
 return new DesignerVerbCollection(verbs);

 }
 }

 private void OnAddPanelVerb(object sender, EventArgs e)
 {
 MyControl ctl = (MyControl) this.Control;
 . . .
 }

 private void OnRemovePanelVerb(object sender, EventArgs e)
 {
 MyControl ctl = (MyControl) this.Control;
 . . .
 }
}

Example 9-6. Adding designer verbs using VB

Public Class MyControlDesigner
 Inherits System.Windows.Forms.Design.ControlDesigner

 Public Overrides ReadOnly Property Verbs() As DesignerVerbCollection
 Get
 Dim vrbs(1) As DesignerVerb
 vrbs(0) = New DesignerVerb("Add Panel", _
 AddressOf OnAddPanelVerb)
 vrbs(1) = New DesignerVerb("Remove Panel", _
 AddressOf OnRemovePanelVerb)
 Return New DesignerVerbCollection(vrbs)
 End Get
 End Property

 Private Sub OnAddPanelVerb(sender As Object, e As EventArgs)
 Dim ctl As MyControl = DirectCast(Me.Control, MyControl)
 . . .
 End Sub

 Private Sub OnRemovePanelVerb(sender As Object, e As EventArgs)
 Dim ctl As MyControl = DirectCast(Me.Control, MyControl)
 . . .
 End Sub

End Class

The Verbs property must return a collection of DesignerVerb objects, one for each verb that is to appear on the property
page. (The easiest way to create a DesignerVerbCollection is to use the constructor that takes a DesignerVerb[] array, as
shown here.) Each DesignerVerb object contains two pieces of information: the name of the verb (as it will appear on the
property panel and in the context menu) and the method of the component designer that should be called if the verb is
invoked. The method to be invoked must be referred to with an EventHandler delegate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invoked. The method to be invoked must be referred to with an EventHandler delegate.

When the Forms Designer calls the method for your verb (i.e., when the user clicks on the
verb), the object passed as the sender parameter is not the control, as you might have
expected. It is a reference to the DesignerVerb object in the collection that you returned in
the Verbs property. This is not usually particularly useful.To access the control that your
custom designer is editing, simply use the Control property defined by the ControlDesigner
class (i.e., your designer's base class), as illustrated in Examples Example 9-5 and
Example 9-6.

9.2.1.1 DesignerVerb properties

The DesignerVerb object has properties that allow you to modify the appearance of your verbs. For example, if you set
the Enabled property to false, the verb will be grayed out. Setting the Checked property to true will cause a tick to appear
beside the verb on the context menu. (It has no effect on its appearance in the property grid.)

You can set these properties when you create the verbs in your Verbs property. You can also modify the properties later
on, and the Forms Designer will track these changes. For example, if you change the Enabled property of a verb while
your control is selected, the verb's appearance will change appropriately in the property panel. However, every time
your control is deselected and reselected, the Designer will read your Verbs property again—it does not cache verbs
between selections. This means that any changes you make to your verbs' properties will be lost when the selection
changes unless you make your Verbs property return the same objects every time.

Although it is possible to write a Verbs property that returns the same set of verbs every time, you should not rely on
this technique. The Forms Designer reserves the right to destroy your component designer object at any time and
create a new one as needed. For example, if the user closes the Designer window for the form that contains your
control and then reopens it, a new instance of your designer class will be created. You should therefore make sure that
your Verbs property always creates DesignerVerb objects that are appropriately initialized to be consistent with the
control's state. And in general, your designer should be written to assume that it might be destroyed and recreated at
any time, and should therefore not rely on being able to store state between operations.

9.2.2 Selection and Resizing

When writing a custom component designer for a control, your class will normally derive from the ControlDesigner class.
This class provides the standard support for selecting, moving, and resizing controls with the mouse. You can influence
the way in which these operations work by overriding certain properties and methods.

9.2.2.1 Hit testing

By default, a control can be selected by clicking anywhere inside its bounding rectangle. Because most controls are
rectangular, this is reasonable behavior, but for controls with a more unusual shape, it can be confusing. So the
Designer lets you modify this behavior by overriding the GetHitTest method in your control designer class.

The Designer will call the GetHitTest method repeatedly whenever the mouse pointer is over your control. It uses the
return value to decide what kind of mouse cursor to display—if the method returns true, the Designer will display the
four-way cursor to indicate that the control can be selected and moved. If the method returns false, the default mouse
cursor will be displayed to indicate that the pointer is not considered to be over any control right now. GetHitTest will
also be called when the mouse is clicked on your control to determine whether to select the control or not. Examples
Example 9-7 and Example 9-8 show a simple custom control that draws an ellipse in its client area, and a corresponding
designer with a GetHitTest method that only returns true when the mouse pointer is over the ellipse.

Example 9-7. A control designer with hit testing using C#

[Designer(typeof(EllipseDesigner))]
public class EllipseControl : System.Windows.Forms.Control
{
 public EllipseControl()
 {
 SetStyle(ControlStyles.ResizeRedraw, true);
 }

 protected override void OnPaint(PaintEventArgs pe)
 {
 using (Brush b = new SolidBrush(ForeColor))
 {
 pe.Graphics.FillEllipse(b, ClientRectangle);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 base.OnPaint(pe);
 }
}

public class EllipseDesigner : ControlDesigner
{
 protected override bool GetHitTest(System.Drawing.Point point)
 {
 // Avoid divide-by-zero problems with zero-sized controls

 if (this.Control.Width == 0 || this.Control.Height == 0)
 return true;

 // Map point from screen to client coordinates.

 PointF p = this.Control.PointToClient(point);

 // Test for containment by ellipse.

 double w = this.Control.Width;
 double h = this.Control.Height;

 double ratio = w / h;

 double sx = p.X - w/2;
 double sy = (p.Y - h/2)*ratio;

 return (sx*sx + sy*sy) >= w*w/4.0;
 }
}

Example 9-8. A control designer with hit testing using VB

Imports System
Imports System.ComponentModel
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Windows.Forms.Design

<Designer(GetType(EllipseDesigner))> _
Public Class EllipseControl
 Inherits System.Windows.Forms.Control

 Public Sub New()
 SetStyle(ControlStyles.ResizeRedraw, True)
 End Sub

 Protected Overrides Sub OnPaint(pe As PaintEventArgs)
 Dim b As Brush = New SolidBrush(ForeColor)
 Try
 pe.Graphics.FillEllipse(b, ClientRectangle)
 Finally
 Dim disp As IDisposable
 If TypeOf b Is IDisposable Then
 disp = b
 disp.Dispose()
 End If
 End Try
 MyBase.OnPaint(pe)
 End Sub
End Class

Public class EllipseDesigner : Inherits ControlDesigner

 Protected Overrides Function GetHitTest(_
 point As System.Drawing.Point) As Boolean

 ' Avoid divide-by-zero problems with 0-sized controls
 If Me.Control.Width = 0 Or Me.Control.Height = 0 Then
 Return True
 End If

 ' Map point from screen to client coordinates.
 Dim p As PointF = _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim p As PointF = _
 Point.op_Implicit(Me.Control.PointToClient(point))

 ' Test for containment by ellipse.
 Dim w As Double = Me.Control.Width
 Dim h As Double = Me.Control.Height

 Dim ratio As Double = w / h

 Dim sx As Double = p.X - w/2
 Dim sy As Double = (p.Y - h/2)*ratio

 Return (sx*sx + sy*sy) >= w*w/4.0
 End Function
End Class

Examples Example 9-7 and Example 9-8 illustrate a curious feature of GetHitTest. The Point that is passed as a
parameter is relative to the top-left corner of the screen. (This is at odds with what the documentation claims at the
time this book went to press—it says that the Point will be relative to the top-left corner of the control.) This means that
the first thing we must do is convert the Point from screen coordinates to control coordinates. Fortunately, the Control
class has a built-in method for doing this: PointToClient. The remainder of the method simply calculates whether the
point is contained within the ellipse.

If your control sets its shape by modifying its Region property, you do not need to supply
your own GetHitTest implementation. The default ControlDesigner class automatically
manages hit testing for such shaped controls.

9.2.2.2 Resizing and moving

The ControlDesigner class provides automatic support for resizing and moving controls. You can control this facility by
overriding the SelectionRules property in your own designer class. You must return some combination of the values
defined in the SelectionRules enumeration, which is defined in the System.Windows.Forms.Design namespace.

There is no way to take complete control of the resizing and moving process unless you are prepared to disable the
built-in support completely and draw your own adornments. (Returning SelectionRules.None from the SelectionRules
property will turn off the standard support, and the next section describes how to add your own adornments. But even
then, you will be restricted to drawing adornments that lie within the control's client rectangle.) However, you will
normally be able to achieve what you require just by choosing a more restrictive set of selection rules than the default
of SelectionRules.AllSizeable | SelectionRules.Moveable (SelectionRules.AllSizeable Or SelectionRules.Moveable in VB), which allows
the control to be moved and to be resized in all directions.

If you want the designer to draw a border on your control, then no matter what other values you choose from the
SelectionRules enumeration, you must include SelectionRules.Visible. If you just specify this in conjunction with
SelectionRules.Moveable, your control will have a fixed size, but will be able to be moved around the form. You can also
selectively enable sizing of individual edges using the TopSizeable, BottomSizeable, LeftSizeable, and RightSizeable
enumeration members. Example 9-9 shows an example SelectionRules property implementation that does not allow the
control to be moved, and only allows its left edge to be resized.

Example 9-9. Modifying support for moving and resizing

// C# code
public override SelectionRules SelectionRules
{
 get
 {
 return SelectionRules.Visible |
 SelectionRules.LeftSizeable;
 }
}

' VB code
Public Overrides ReadOnly Property SelectionRules() _
 As SelectionRules
 Get
 Return SelectionRules.Visible Or _
 SelectionRules.LeftSizable
 End Get
End Property

Figure 9-3 shows the result of Example 9-9. This is how the Forms Designer displays such a control when it is selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-3 shows the result of Example 9-9. This is how the Forms Designer displays such a control when it is selected.
The visual cue is not especially obvious. In case you missed it, the Designer indicates the resizable edge by coloring its
center handle white, while coloring the handles that cannot be dragged pale gray. (It is slightly more obvious when
using the control in the Designer, because the mouse cursor only changes into a resize cursor when it is over that
handle.)

Figure 9-3. A control with one resizable edge

9.2.3 Adornments

An adornment is a user interface feature that is only painted on a control at design time. (Selection outlines and resize
handles are examples of built-in adornments.) Adornments are not drawn by the control—they are supplied by the
control designer class, enabling you to add extra design-time handles appropriate to your class.

To show how to display adornments, we need a control that can make use of extra resize handles beyond the standard
ones. We will use a control that displays a box with rounded edges. Examples Example 9-10 and Example 9-11 show
the complete source for such a control, and it is shown in action in Figure 9-4.

Figure 9-4. A rounded box control

There is nothing unusual about this control—it uses standard techniques already discussed in previous chapters. It
provides a single property called CornerSize (along with the usual associated change notification event and overridable
OnCornerSizeChanged method). This property determines how large the curved corners are. This property can be edited
using the property grid in the normal way, but we will provide a custom designer that draws a drag handle adornment
to allow the corner size to be modified by dragging with the mouse.

Example 9-10. A rounded box control using C#

[Designer(typeof(RoundedBoxDesigner))]
public class RoundedBoxControl : System.Windows.Forms.Control
{
 public RoundedBoxControl()
 {
 SetStyle(ControlStyles.ResizeRedraw, true);
 }

 [Category("Appearance")]
 [DefaultValue(10)]
 public int CornerSize
 {
 get
 {
 return cornerSizeVal;
 }
 set
 {
 if (cornerSizeVal != value)
 {
 cornerSizeVal = value;
 OnCornerSizeChanged(EventArgs.Empty);
 Refresh();
 }
 }
 }
 private int cornerSizeVal = 10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private int cornerSizeVal = 10;

 [Category("Property Changed")]
 public event EventHandler CornerSizeChanged;

 protected virtual void OnCornerSizeChanged(EventArgs e)
 {
 if (CornerSizeChanged != null)
 CornerSizeChanged(this, e);
 }

 protected override void OnPaint(PaintEventArgs pe)
 {
 // Truncate rounded corner sizes so that the
 // corners aren't larger than the box.
 int cwidth = cornerSizeVal*2 > Width ? Width : cornerSizeVal*2;
 int cheight = cornerSizeVal*2 > Height ? Height : cornerSizeVal*2;
 Rectangle corner = new Rectangle(0, 0, cwidth, cheight);

 using (GraphicsPath gp = new GraphicsPath())
 {
 // GraphicsPath.AddArc complains about
 // zero-sized arcs, so just use a
 // standard Rectangle in that case.
 if (cwidth == 0 || cheight == 0)
 {
 Rectangle cr = ClientRectangle;
 if (cr.Width != 0) cr.Width -= 1;
 if (cr.Height != 0) cr.Height -= 1;
 gp.AddRectangle(cr);
 }
 else
 {
 gp.AddArc(corner, 180, 90);
 corner.X = Width - 1 - cwidth;
 gp.AddArc(corner, 270, 90);
 corner.Y = Height - 1 - cheight;
 gp.AddArc(corner, 0, 90);
 corner.X = 0;
 gp.AddArc(corner, 90, 90);
 gp.CloseFigure();
 }

 using (Pen p = new Pen(ForeColor, 1))
 {
 pe.Graphics.DrawPath(p, gp);
 }
 }

 // Calling the base class OnPaint
 base.OnPaint(pe);
 }
}

Example 9-11. A rounded box control using VB

<Designer(GetType(RoundedBoxDesigner))> _
Public Class RoundedBoxControl
 Inherits System.Windows.Forms.Control

 Private cornerSizeVal As Integer = 10

 Public Sub New()
 SetStyle(ControlStyles.ResizeRedraw, True)
 End Sub

 <Category("Appearance"), _
 DefaultValue(10)> _
 Public Property CornerSize() As Integer
 Get
 Return cornerSizeVal
 End Get
 Set
 If cornerSizeVal <> Value Then
 cornerSizeVal = Value
 OnCornerSizeChanged(EventArgs.Empty)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OnCornerSizeChanged(EventArgs.Empty)
 Refresh()
 End If
 End Set
 End Property

 <Category("Property Changed")> _
 Public Event CornerSizeChanged(sender As Object, _
 e As EventArgs)

 Protected Overridable Sub OnCornerSizeChanged(_
 e As EventArgs)
 RaiseEvent CornerSizeChanged(Me, e)
 End Sub

 Protected Overrides Sub OnPaint(pe As PaintEventArgs)
 ' Truncate rounded corner sizes so that the
 ' corners aren't larger than the box.
 Dim cwidth As Integer
 If cornerSizeVal*2 > Width Then
 cwidth = Width
 Else
 cwidth = cornerSizeVal*2
 End If
 Dim cheight As Integer
 If cornerSizeVal*2 > Height Then
 cheight = Height
 Else
 cheight = cornerSizeVal*2
 End If
 Dim corner As New Rectangle(0, 0, cwidth, cheight)

 Dim gp As New GraphicsPath()
 Try
 ' GraphicsPath.AddArc complains about
 ' zero-sized arcs, so just use a
 ' standard Rectangle in that case.
 If cwidth = 0 Or cheight = 0 Then
 Dim cr As Rectangle = ClientRectangle
 If cr.Width <> 0 Then cr.Width -= 1
 If cr.Height <> 0 Then cr.Height -= 1
 gp.AddRectangle(cr)
 Else
 gp.AddArc(corner, 180, 90)
 corner.X = Width - 1 - cwidth
 gp.AddArc(corner, 270, 90)
 corner.Y = Height - 1 - cheight
 gp.AddArc(corner, 0, 90)
 corner.X = 0
 gp.AddArc(corner, 90, 90)
 gp.CloseFigure()
 End If

 Dim p As New Pen(ForeColor, 1)
 Try
 pe.Graphics.DrawPath(p, gp)
 Finally
 Dim disp As IDisposable
 If TypeOf p Is IDisposable Then
 disp = p
 disp.Dispose()
 End If
 End Try
 Finally
 Dim disp As IDisposable
 If TypeOf disp Is IDisposable Then
 disp = gp
 disp.Dispose()
 End If
 End Try

 ' Calling the base class OnPaint
 MyBase.OnPaint(pe)
 End Sub
End Class

To draw a drag handle, we simply provide an appropriate designer that overrides the OnPaintAdornments method. This
designer class is shown in Examples Example 9-12 and Example 9-13. (Note that the class definition in Examples
Example 9-10 and Example 9-11 is marked with the Designer custom attribute. This is how Visual Studio .NET knows to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-10 and Example 9-11 is marked with the Designer custom attribute. This is how Visual Studio .NET knows to
use our RoundedBoxDesigner class.)

Example 9-12. Drawing grab handle adornments using C#

public class RoundedBoxDesigner : ControlDesigner
{
 private const int grabSize = 7;

 protected override void OnPaintAdornments(PaintEventArgs pe)
 {
 Rectangle grabRect = GetGrabRectangle();
 ControlPaint.DrawGrabHandle(pe.Graphics, grabRect,
 true, true);
 }

 private Rectangle GetGrabRectangle()
 {
 RoundedBoxControl ctl = (RoundedBoxControl) Control;
 return new Rectangle(ctl.CornerSize - grabSize/2, 0,
 grabSize, grabSize);
 }

 . . .
}

Example 9-13. Drawing grab handle adornments using VB

Public Class RoundedBoxDesigner : Inherits ControlDesigner

 Private Const grabSize As Integer = 7

 Protected Overrides Sub OnPaintAdornments(_
 pe As PaintEventArgs)
 Dim grabRect As Rectangle = GetGrabRectangle()
 ControlPaint.DrawGrabHandle(pe.Graphics, grabRect, _
 True, True)
 End Sub

 Private Function GetGrabRectangle() As Rectangle
 Dim ctl As RoundedBoxControl = DirectCast(Control, RoundedBoxControl)
 Return New Rectangle(CInt(ctl.CornerSize - grabSize/2), _
 0, grabSize, grabSize)
 End Function

 . . .
End Class

With this designer in place, the control will now have an extra grab handle at design time, as shown in Figure 9-5.

Figure 9-5. The RoundedBoxControl at design time

The designer class in Examples Example 9-12 and Example 9-13 is not complete. As it stands, it only draws the grab
handle. It does nothing to manage clicks or drags on the handle. To make the handle useful, we must override more
methods. First we will want to provide feedback with the mouse cursor—we should display the left-right resize cursor
when the mouse is over our drag handle to indicate how it can be moved. This is done by overriding the designer class's
OnSetCursor method, as shown in Examples Example 9-14 and Example 9-15.

Example 9-14. Modifying the mouse cursor at design time using C#

protected override void OnSetCursor()
{
 Point cp = Control.PointToClient(Cursor.Position);
 if (GrabHitTest(cp))
 {
 Cursor.Current = Cursors.SizeWE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Cursor.Current = Cursors.SizeWE;
 }
 else
 base.OnSetCursor();
}

private bool GrabHitTest(Point p)
{
 Rectangle grabRect = GetGrabRectangle();
 return grabRect.Contains(p);
}

Example 9-15. Modifying the mouse cursor at design time using VB

Protected Overrides Sub OnSetCursor()
 Dim cp As Point = Control.PointToClient(Cursor.Position)
 If GrabHitTest(cp) Then
 Cursor.Current = Cursors.SizeWE
 Else
 MyBase.OnSetCursor()
 End If
End Sub

Private Function GrabHitTest(p As Point) As Boolean
 Dim grabRect As Rectangle = GetGrabRectangle()
 Return grabRect.Contains(p)
End Function

Note that OnSetCursor does not pass the mouse cursor's position. We must therefore retrieve it from the Cursor class
directly. The Cursor class's Position property returns the mouse position in screen coordinates, so we need to translate
these into control coordinates using the PointToClient method. Then we test to see if the mouse is over the handle. (The
hit test logic has been factored out into a separate method, GrabHitTest, because we will also need to perform hit testing
in another method shortly. This in turn uses the GetGrabRectangle method we defined earlier, which is also used to
determine where the grab handle is drawn.)

Our control will now provide feedback at design time when the user moves the mouse over our drag handle. But we still
need to handle the drag operation itself. To do this, we must override three methods: OnMouseDragBegin,
OnMouseDragMove, and OnMouseDragEnd. The code is fairly straightforward, with only two minor complications. First, we
need to be able to reset the property to its original value if the drag is cancelled. Second, it is good practice to make
sure that if the user doesn't click dead in the center of the drag handle, we don't end up making the handle leap to the
clicked location. (Naïve handling of the OnMouseDragMove event would cause this to happen—we are using the offset field
to avoid this.) Examples Example 9-16 and Example 9-17 show the drag handling code.

Example 9-16. Handling adornment mouse events using C#

private int oldCornerSize; // Used for handling cancellation
private int offset;
private bool dragging;

protected override void OnMouseDragBegin(int x, int y)
{
 Point dp = Control.PointToClient(new Point(x, y));
 if (GrabHitTest(dp))
 {
 RoundedBoxControl ctl = (RoundedBoxControl) Control;
 oldCornerSize = ctl.CornerSize;
 offset = oldCornerSize - dp.X;
 dragging = true;
 }
 else
 base.OnMouseDragBegin(x, y);
}

protected override void OnMouseDragMove(int x, int y)
{
 if (dragging)
 {
 Point dp = Control.PointToClient(new Point(x, y));

 int newCornerSize = dp.X - offset;
 if (newCornerSize < 0) newCornerSize = 0;

 RoundedBoxControl ctl = (RoundedBoxControl) Control;
 ctl.CornerSize = newCornerSize;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ctl.CornerSize = newCornerSize;
 }
 else
 base.OnMouseDragMove(x, y);

}

protected override void OnMouseDragEnd(bool cancel)
{
 if (dragging)
 {
 RoundedBoxControl ctl = (RoundedBoxControl) Control;
 if (cancel)
 {
 ctl.CornerSize = oldCornerSize;
 }
 else
 {
 // Update property in property grid
 PropertyDescriptor pd =
 TypeDescriptor.GetProperties(typeof(RoundedBoxControl))
 ["CornerSize"];
 pd.SetValue(ctl, ctl.CornerSize);
 }

 }

 dragging = false;

 // Always call base class.
 base.OnMouseDragEnd(cancel);
}

Example 9-17. Handling adornment mouse events using VB

Private oldCornerSize As Integer ' Used for handling cancellation
Private offset As Integer
Private dragging As Boolean

Protected Overrides Sub OnMouseDragBegin(x As Integer, y As Integer)
 Dim dp As Point = Control.PointToClient(New Point(x, y))
 If GrabHitTest(dp) Then
 Dim ctl As RoundedBoxControl = DirectCast(Control, RoundedBoxControl)
 oldCornerSize = ctl.CornerSize
 offset = oldCornerSize - dp.X
 dragging = True
 Else
 MyBase.OnMouseDragBegin(x, y)
 End If
End Sub

Protected Overrides Sub OnMouseDragMove(x As Integer, y As Integer)
 If dragging Then
 Dim dp As Point = Control.PointToClient(New Point(x, y))

 Dim newCornerSize As Integer = dp.X - offset
 If newCornerSize < 0 Then newCornerSize = 0

 Dim ctl As RoundedBoxControl = DirectCast(Control, RoundedBoxControl)
 ctl.CornerSize = newCornerSize
 Else
 MyBase.OnMouseDragMove(x, y)
 End If
End Sub

Protected Overrides Sub OnMouseDragEnd(cancel As Boolean)
 If dragging Then
 Dim ctl As RoundedBoxControl = DirectCast(Control, _
 RoundedBoxControl)
 If cancel Then
 ctl.CornerSize = oldCornerSize
 Else
 ' Update property in property grid
 Dim pd As PropertyDescriptor = _
 TypeDescriptor.GetProperties(_
 GetType(RoundedBoxControl))("CornerSize")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GetType(RoundedBoxControl))("CornerSize")
 pd.SetValue(ctl, ctl.CornerSize)
 End If
 End If

 dragging = False

 ' Always call base class.
 MyBase.OnMouseDragEnd(cancel)
End Sub

Note that all three methods defer to the base class implementation when they are not handling the drag operation (i.e.,
when the user clicks somewhere other than on the drag handle). This is necessary to make sure that the control can
still be moved in the Designer using normal drag and drop. Also note that the OnMouseDragEnd method always calls the
base class method, regardless of whether the handle was being dragged or not. This is necessary because otherwise
the drag operation will not be completed correctly, and the Forms Designer will start to malfunction.

The OnMouseDragEnd method has some slightly strange-looking code that runs when the drag is not cancelled. It obtains
a PropertyDescriptor object for the RoundedBoxControl class's CornerSize property, and then uses this to set that property to
the value it is already set to. On the face of it, this may seem pointless. However, despite the fact that the CornerSize
property raises property change notifications, the property grid appears not to detect the change. Pushing the update
through the PropertyDescriptor causes the property grid to refresh its display of the CornerSize property correctly.

9.2.4 Containment

As we saw in Chapter 3, all controls are able to contain child controls. But it doesn't always make sense for a control to
act as a parent. For example, although you can write code that puts child controls inside a Button, the results are not
helpful. Fortunately, the Forms Designer prevents you from placing child controls inside controls that are not designed
to act as parents. It only allows children to be added to controls for which it is appropriate, such as Panel or GroupBox.

By default, any controls we write will not be treated as containers by the Forms Designer. If you try to drop a control
inside one of your custom controls, the new control's parent will be the form, not your control. However, it is easy to
make your control behave like a Panel: simply give it a designer that derives from the ParentControlDesigner class.
ParentControlDesigner derives from ControlDesigner and provides all the same functionality, and it also signals to the Forms
Designer that the control can act as a container.

If you do not require any special design-time behavior other than the ability to act as a parent, it is sufficient to choose
the ParentControlDesigner class itself as your designer. As Example 9-18 illustrates, there is no need to derive your own
designer class.

Example 9-18. A simple parent control

// C# code
[Designer(typeof(ParentControlDesigner))]
public class MyParentControl : Control
{
 . . .
}

' VB code
<Designer(GetType(ParentControlDesigner))> _
Public Class MyParentControl : Inherits Control
 . . .
End Class

If you need to supply a designer class for other design-time features, such as painting adornments, you can simply
change its base class to be ParentControlDesigner. Example 9-19 shows a modified version of the designer class for our
RoundedBoxControl, previously shown in Examples Example 9-12 and Example 9-13. We have changed it to inherit from
ParentControlDesigner, which will cause the Forms Designer to allow child controls to be added to it.

Example 9-19. A parent control designer

// C# code
public class RoundedBoxDesigner : ParentControlDesigner
{
 As before
 . . .
}

' VB code
Public Class RoundedBoxDesigner
 Inherits ParentControlDesigner
 . . . As before
End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

You can be selective about which controls you contain. Your designer class can override the CanParent method. The
Forms Designer will call this when the user drags a control over your control. If this method returns false, the Designer
will display the no entry mouse cursor to indicate that the control being dragged cannot be dropped into your control.

CanParent is an overloaded method. You must override the overload that takes a Control as a parameter. This will be
called when a control that is already on the form is being dragged around. (It is not clear when the other overload,
which takes a ControlDesigner, is called. You might expect it to be called when a new instance is dragged from the
Toolbox. But this is not the case; there appears to be no way of controlling which types of new instances can be added
to your control.)

9.2.5 Metadata Filtering

In the previous chapter, we saw how the PropertyGrid control provides a virtual view of an object's properties: although
it relies on reflection to determine what properties are present, it has extensibility hooks that allow us to modify what
the user sees. We exploited this by writing a type converter to support localization of property names. Because Visual
Studio .NET uses the PropertyGrid to edit control properties, we have the same flexibility for the way our controls are
presented at design time. On top of this, the Forms Designer provides us with some extra support for common ways of
modifying and filtering properties without having to go to the trouble of writing a type converter.

If your control already has a designer class associated with it, you can use this to perform many of the tricks that would
otherwise require a type converter. In particular, you can hide certain properties, rename them, intercept reads and
writes, and even add new properties.

Because there is some overlap in what can be achieved by writing a custom type converter
and by writing a custom designer, you will sometimes have requirements that could be
met by writing either. It doesn't matter which you choose. The main restriction to be
aware of is that designer classes can only be used in Visual Studio .NET, and only at design
time. So if you need metadata filtering at runtime (usually because you are using the
PropertyGrid control) a type converter will be the right solution.

At the center of this mechanism are six methods. Three of these are intended to let you add new properties, events and
attributes, and they are, respectively, PreFilterProperties , PreFilterEvents, and PreFilterAttributes. Each is passed a dictionary
into which it can add descriptors. (The descriptors you add should be of type PropertyDescriptor, EventDescriptor, and
AttributeDescriptor, respectively. These are all defined in the System.ComponentModel namespace.) This dictionary will
already contain entries for all the component's real properties, events, or attributes. (Or if the component has an
associated type converter, the dictionary will contain whatever that returned.) But the designer class has the option to
add to these.

The remaining three methods are PostFilterProperties , PostFilterEvents, and PostFilterAttributes. These are passed the same
dictionary as before, but this time the method is allowed to remove or modify entries. (In practice, there is currently
not much difference between the Pre... and Post... methods—the Post... methods are called directly after the Pre...
methods, and you can do whatever you like to the dictionary in either. But you should stick to the rule of only adding
entries in the Pre... methods, and performing any modifications or removals in the Post... methods, just in case a future
version of the Forms Designer decides to enforce this.)

Examples Example 9-20 and Example 9-21 show an implementation of PreFilterProperties that adds an extra property,
Fooness, to the control at design time. Although the underlying control will not have such a property, it will still appear in
the property panel for the control because the designer class has added it to the dictionary of property descriptors. Note
that the designer class itself has provided the implementation of the Fooness property to which the descriptor refers.
(The designer class might then use this property to modify its design-time behavior.)

Example 9-20. Adding a design-time property using C#

protected override void PreFilterProperties(IDictionary properties)
{
 base.PreFilterProperties(properties);

 properties["Fooness"] = TypeDescriptor.CreateProperty(
 typeof(MyDesigner),
 "Fooness",
 typeof(bool),
 CategoryAttribute.Design,
 DesignOnlyAttribute.Yes);
}

public bool Fooness
{
 get { return fooVal; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 get { return fooVal; }
 set { fooVal = value; }
}
private bool fooVal;

Example 9-21. Adding a design-time property using VB

Protected Overrides Sub PreFilterProperties(properties As IDictionary)
 MyBase.PreFilterProperties(properties)

 properties("Fooness") = TypeDescriptor.CreateProperty(_
 GetType(MyDesigner), _
 "Fooness", _
 GetType(Boolean), _
 CategoryAttribute.Design, _
 DesignOnlyAttribute.Yes)
End Sub

Public Property Fooness As Boolean
 Get
 Return fooVal
 End Get
 Set
 fooVal = Value
 End Set
End Property

The PropertyDescriptor is created using the CreateProperty factory method supplied by the TypeDescriptor class. As well as
specifying the type that really implements the property (the designer class, in this case) along with the name and type
of the property, we can also optionally specify a list of custom attributes. (CreateProperty takes a variable length
argument list, so you can supply as many attributes as you like.) In this case, we have specified a CategoryAttribute (this
will determine which category the property appears under in the PropertyGrid) and the DesignOnlyAttribute, which informs
the development environment that this is a design-time property, which it should not attempt to set at runtime. All
properties added this way should specify DesignOnlyAttribute.Yes, because otherwise, the Forms Designer will generate
code that attempts to set these properties at runtime. Such code will not compile, because these design-time properties
are not available at runtime.

This technique of adding extra properties at design time is used by Visual Studio .NET
itself. It adds a Locked property to every control, which can be used to prevent accidental
editing. The Control class does not define a Locked property—this is a design-time property
automatically added by the ControlDesigner class's PreFilterProperties method.

9.2.5.1 Shadow properties

A common design-time requirement is to prevent certain properties from being set at design time. The most obvious
example is the Visible property. If the user sets a control's Visible property to false, we don't really want to make the
control invisible in the Designer, because this would make it hard to edit. We want the control to remain visible in the
Designer, but for the Visible property to be honored at runtime. One solution would be for controls to ignore their Visible
property at design time. However, the ControlDesigner class provides a more elegant solution than this, known as shadow
properties, that doesn't require special design-time behavior from the control class.

The technique for making sure that the underlying property is only set to the specified value at runtime is to replace its
PropertyDescriptor in the PostFilterProperties method with one that refers to a property supplied by the designer class. (So it
is very similar to the technique of adding a design-time property shown in Examples Example 9-20 and Example 9-21.)
This allows the designer class to remember the user's intended setting for the property without having to set that
property on the control itself. The property will be set to the intended value at runtime, but not at design time.

To save you from having to declare fields for each of the properties you wish to shadow in your designer class, the base
ControlDesigner class provides a protected property called ShadowProperties. This is a collection class that holds
name/value pairs. As a convenience, if you try to retrieve a value for a name that is not in the collection, it will retrieve
the property of the same name from the control itself, which means you don't need to initialize any of your shadow
properties either. This makes the code for adding a shadow property relatively simple, as Examples Example 9-22 and
Example 9-23 show.

Example 9-22. Shadowing the Anchor property using C#

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-22. Shadowing the Anchor property using C#

protected override void PostFilterProperties(
 System.Collections.IDictionary properties)
{
 base.PostFilterProperties(properties);
 properties["Anchor"] = TypeDescriptor.CreateProperty(
 typeof(RoundedBoxDesigner),
 (PropertyDescriptor) properties["Anchor"]);
}

public AnchorStyles Anchor
{
 get { return (AnchorStyles) ShadowProperties["Anchor"]; }
 set { ShadowProperties["Anchor"] = value; }
}

Example 9-23. Shadowing the Anchor property using VB

Protected Overrides Sub PostFilterProperties(_
 properties As System.Collections.IDictionary)

 MyBase.PostFilterProperties(properties)
 properties("Anchor") = TypeDescriptor.CreateProperty(_
 GetType(RoundedBoxDesigner), _
 CType(properties("Anchor"), PropertyDescriptor))
End Sub

Public Property Anchor() As AnchorStyles
 Get
 Return CType(ShadowProperties("Anchor"), AnchorStyles)
 End Get
 Set
 ShadowProperties("Anchor") = Value
 End Set
End Property

This will have the effect of disabling anchoring behavior at design time, but leaving it enabled at runtime. Note that we
are using a different version of the CreateProperty factory function. This one takes an existing PropertyDescriptor (the one
already in the properties dictionary) and builds a new one based on that. This preserves all the attributes of the original,
and merely has the effect of redirecting to our designer class's property.

The ControlDesigner automatically shadows certain standard properties for you. Visible and
Enabled are shadowed because it would difficult to edit invisible or disabled controls.
Controls are therefore always visible and enabled at design time, but will honor their
settings at runtime. ContextMenu and AllowDrop are also shadowed because the Forms
Designer provides its own context menus and uses drag and drop for editing the contents
of the form.

9.2.6 Designer Host Interfaces

The custom designer classes we have seen so far have been essentially passive. They rely on the Forms Designer to
create designer instances when needed, and to call their methods only when particular services are required. But
sometimes your designer class will need to be a bit more proactive, explicitly requesting certain services from the
Forms Designer. There is a generic mechanism to enable any container to provide arbitrary services on demand to the
contained component.

A component can request a service from its container by calling the GetService method. (This method is available in both
the Component class and the ComponentDesigner class, so both controls and their designer classes can request services.)
GetService takes a single parameter, a Type object. This should be the type of an interface, indicating which service is
required. If the container does not provide the requested service (or if there is no container, which is typically the case
at runtime) GetService will return null or Nothing. But if the service is available, it will return an object that implements
the requested service.

One of the standard services provided by Visual Studio .NET is ISelectionService. This allows designer classes and controls
to find out which items have been selected by the user. Examples Example 9-24 and Example 9-25 illustrate how to use
this service to modify the design-time appearance of a control according to whether it is selected or not. The example
shows modifications to the RoundedBoxDesigner class we first saw in the C# code in Examples Example 9-12, Example 9-
14, and Example 9-16, and in the VB code in Examples Example 9-13, Example 9-15, and Example 9-17. Here we
override the Initialize method (which will be called when the designer class is instantiated), and ask the container for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

override the Initialize method (which will be called when the designer class is instantiated), and ask the container for the
ISelectionService interface. If this service is present (it always will be in Visual Studio .NET), our designer class attaches a
handler to the SelectionChanged event. Our designer can now track the selection status of the control, causing the control
to be redrawn each time it is selected or deselected. The OnPaintAdornments method has been modified so that it only
paints the grab handle when the control is selected. (This is more consistent with the behavior of the standard resize
handles and selection outline, which are only drawn when the control is selected.)

Example 9-24. Drawing adornments only when selected using C#

private ISelectionService iss;

public override void Initialize(IComponent component)
{
 // Call base class so that it can initialize itself

 base.Initialize(component);

 iss = GetService(typeof(ISelectionService)) as ISelectionService;
 if (iss != null)
 {
 iss.SelectionChanged += new EventHandler(OnSelectionChanged);
 }
 else
 {
 // ISelectionService is always available in VS.NET, but
 // if we're being hosted somewhere odd that doesn't have
 // it, just display adornments at all times.
 }
}

protected override void Dispose(bool disposing)
{
 if (disposing && iss != null)
 {
 iss.SelectionChanged -= new EventHandler(OnSelectionChanged);
 }

 base.Dispose(disposing);
}

private bool selected = false;

private void OnSelectionChanged(object sender, EventArgs e)
{
 bool previouslySelected = selected;
 selected = iss.GetComponentSelected(this.Control);
 if (selected != previouslySelected)
 this.Control.Invalidate();
}

protected override void OnPaintAdornments(PaintEventArgs pe)
{
 if (selected)
 {
 Rectangle grabRect = GetGrabRectangle();
 ControlPaint.DrawGrabHandle(pe.Graphics, grabRect, true, true);
 }
}

Example 9-25. Drawing adornments only when selected using VB

Private iss As ISelectionService
Private selected As Boolean = False

Public Overrides Sub Initialize(component As IComponent)

 ' Call base class so that it can initialize itself
 MyBase.Initialize(component)

 iss = CType(GetService(GetType(ISelectionService)), _
 ISelectionService)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ISelectionService)
 If Not iss Is Nothing Then
 AddHandler iss.SelectionChanged, _
 AddressOf OnSelectionChanged
 Else
 ' ISelectionService is always available in VS.NET, but
 ' if we're being hosted somewhere odd that doesn't have
 ' it, just display adornments at all times.
 End If
End Sub

Protected Overrides Overloads Sub Dispose(disposing As Boolean)
 If disposing And Not iss Is Nothing Then
 RemoveHandler iss.SelectionChanged, _
 AddressOf OnSelectionChanged
 End If

 MyBase.Dispose(disposing)
End Sub

Private Sub OnSelectionChanged(sender As Object, e As EventArgs)
 Dim previouslySelected As Boolean = selected
 selected = iss.GetComponentSelected(Me.Control)
 If selected <> previouslySelected Then
 Me.Control.Invalidate()
 End If
End Sub

Protected Overrides Sub OnPaintAdornments(pe As PaintEventArgs)
 If selected Then
 Dim grabRect As Rectangle = GetGrabRectangle()
 ControlPaint.DrawGrabHandle(pe.Graphics, grabRect, _
 True, True)
 End If
End Sub

ISelectionService is just one of the many different services available to components and designer classes running in the
Forms Designer. Table 9-1 lists the available services and provides a brief description of each service's purpose. These
interfaces, which are all defined in the System.ComponentModel.Design namespace, are described in more detail in the
reference section.

Table 9-1. Designer services
Service type Purpose

IComponentChangeService Provides notifications when components are added to and removed from the form, and
when existing components are modified.

IDesignerEventService Provides access to all the designers active on the form, and provides notifications when
designers come and go.

IDesignerHost

Provides notification as modifications to a form progress through their various phases. (It
supports a lightweight transaction model for these modifications.)

Also provides access to the root component—i.e., the Form or the UserControl that contains
the control.

IDesignerOptionService Provides access to the designer options chosen by the user. (Currently only used for grid
settings such as snap-to-grid.)

IDictionaryService A generic name/value store, allowing the designer class to store arbitrary data.

IEventBindingService Used to make events appear in the property grid.

IExtenderListService Allows a list of extender providers present on the form to be retrieved.

IExtenderProviderService Allows extender providers to be added to or removed from the form.

IHelpService Allows extra hints to be passed to the IDE to improve the suggestions offered by the
context-sensitive help system.

IInheritanceService Allows components that inherit from particular base classes to be located.

IMenuCommandService Allows extra menu commands to be added to the development environment.

IReferenceService Provides a way of locating references to a particular component within a project.

IResourceService Allows access to culture-specific resources at design time.

IRootDesigner Retrieves the root designer in environments that support nested designers.

ISelectionService Provides notifications when the selection changes, and allows the list of selected controls to
be retrieved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ITypeDescriptorFilterService Allows metadata filtering.

ITypeResolutionService Allows specified assemblies or types to be found and loaded.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Extender Providers
As we saw in the previous section, it is possible to extend the set of properties that a control presents at design time by
writing a custom designer class and implementing one or more of the metadata filtering methods. But what if you want
to extend the property set of more than one control? You could write a designer class that is used as the base class for
several controls' designers, but what if you would like to be able to extend the property sets of controls you did not
write?

The Forms Designer supports a special kind of component called an extender provider, which is able to extend the
property set of any control. For example, the built-in ToolTip component is an extender provider—if you add a ToolTip
component to a form, every control on the form gets an extra ToolTip property. (Such properties are known as extender
properties.) We already saw how to use extender providers in Chapter 3, but we will now see how to implement such a
component.

Extender providers are not controls, because they do not participate directly in the user interface. In the Forms
Designer, they appear in the component tray rather than on the form itself, as shown in Figure 9-6. So instead of
inheriting from the Control class, an extender provider must derive directly from the Component class, which is defined in
the System.ComponentModel namespace.

Figure 9-6. An extender provider in the component tray

As the ToolTip component illustrates, extender providers can augment a control's runtime behavior. Recall from Chapter
3 how an extender property is set at runtime: the Forms Designer generates code that calls a method on the extender
provider itself. In this call, it passes in a reference to the object on which the property is notionally being set. Example
9-26 shows the ToolTip extender property being set on a control called button1.

Example 9-26. Setting an extender property

// C# code
this.toolTip1.SetToolTip(this.button1, "This is a button!");

' VB code
Me.toolTip1.SetToolTip(Me.button1, "This is a button!")

In general, anything that augments the behavior of a control is often best implemented as an extender provider, if
possible. This gives users of the component much greater flexibility than the alternative and more obvious design
choice, inheritance. For example, suppose you want a reusable facility that automatically validates the contents of a
text box against a regular expression. You might create a RegExTextBox control that derives from the built-in TextBox
control. But what if the user of your control also wants the autocomplete functionality we implemented in the
AutoTextBox in Chapter 6? The .NET runtime only supports single inheritance, which means this will be an either/or
decision. But if we implement regular expression validation as an extender property, we are free to add it to any
derivative of TextBox. (Arguably, autocompletion would also have been better implemented through an extender
provider.)

To create an extender provider, we simply write a component that implements the IExtenderProvider interface. This only
requires us to implement a single method, CanExtend. The Forms Designer will call this at design time, passing in each
component on the form in turn to find out whether our provider wants to extend that component's property set. Our
validating extender will just check that the component derives from Control—otherwise, it might end up trying to add
validation support to non-visual components. The only other requirement for our provider class is that it must indicate
with ProvidePropertyAttribute what properties it will add and provide accessor functions for those properties. Examples
Example 9-27 and Example 9-28 show our regular expression validation provider.

Example 9-27. An extender provider written in C#

using System;
using System.Collections;
using System.Windows.Forms;
using System.ComponentModel;
using System.Text.RegularExpressions;

[ProvideProperty("RegexValidate", typeof(Control))]
public class RegexValidator : Component, IExtenderProvider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class RegexValidator : Component, IExtenderProvider
{
 private Hashtable ht = new Hashtable();

 public bool CanExtend(object extendee)
 {
 return extendee is Control;
 }

 public void SetRegexValidate(Control ctl, string expr)
 {
 if (!DesignMode)
 {
 Validator v = new Validator(expr, ctl);
 ctl.Validating += new CancelEventHandler(v.OnValidating);
 }
 ht[ctl] = expr;
 }

 public string GetRegexValidate(Control ctl)
 {
 return (string) ht[ctl];
 }

 private class Validator
 {
 public Validator(string expr, Control ctl)
 {
 reExpr = expr;
 target = ctl;
 }

 private string reExpr;
 private Control target;
 private Regex re;

 public void OnValidating(object sender, CancelEventArgs e)
 {
 if (re == null)
 {
 re = new Regex (reExpr);
 }
 if (!re.IsMatch(target.Text))
 {
 e.Cancel = true;
 }
 }
 }

}

Example 9-28. An extender provider written in VB

Option Strict On

Imports System
Imports System.Collections
Imports System.Windows.Forms
Imports System.ComponentModel
Imports System.Text.RegularExpressions

<ProvideProperty("RegexValidate", GetType(Control))> _
Public Class RegexValidator
 Inherits Component
 Implements IExtenderProvider

 Private ht As New Hashtable()

 Public Function CanExtend(extendee As Object) As Boolean _
 Implements IExtenderProvider.CanExtend
 Return TypeOf extendee Is Control
 End Function

 Public Sub SetRegexValidate(ctl As Control, expr As String)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Sub SetRegexValidate(ctl As Control, expr As String)
 If Not DesignMode Then
 Dim v As New Validator(expr, ctl)
 AddHandler ctl.Validating, AddressOf v.OnValidating
 End If
 ht(ctl) = expr
 End Sub

 Public Function GetRegexValidate(ctl As Control) As String
 Return CStr(ht(ctl))
 End Function

 Private Class Validator

 Private reExpr As String
 Private target As Control
 Private re As RegEx

 Public Sub New(expr As String, ctl As Control)
 reExpr = expr
 target = ctl
 End Sub

 Public Sub OnValidating(sender As Object, e As CancelEventArgs)
 If re Is Nothing Then
 re = New Regex(reExpr)
 End If
 If Not re.IsMatch(target.Text) Then
 e.Cancel = true
 End If
 End Sub
 End Class
End Class

The accessors must be functions named GetXxx and SetXxx where Xxx is the name of the extender property. You must
provide both a get and a set accessor, or Visual Studio .NET will refuse to use your extender provider. This means we
are responsible for remembering what the values have been set to for each control. For this, we just use a Hashtable
(from the System.Collections namespace).

When the SetRegexValidate method is called, we check to see if we are in design mode or runtime mode. If this is
runtime, we build an instance of the private Validator class. This is a nested class that does the work of validating the
control, using the Regex class from the System.Text.RegularExpressions namespace. We just attach the Validator class's
OnValidating method to the target control's Validating event. When the focus leaves the relevant control, its Validating
event will fire as usual, and our extender provider will use the regular expression to validate the control.

Figure 9-7 shows how this extender property looks in Visual Studio .NET's property panel. (The regular expression here
is a somewhat naïve test for a valid-looking email address.) Example 9-29 shows the code that is generated for this
property.

Figure 9-7. An extender property in use

Example 9-29. Code generated for an extender property

// C#
this.regexValidator1.SetRegexValidate(this.textBox1, ".*@.*");

' VB
Me.regexValidator1.SetRegexValidate(Me.textBox1, ".*@.*")

For this extender provider to be of much use, you would want to add support for error reporting. This would be easy
enough to do—you would simply add a second extender property to hold the error text. You could either display a
message box to show the message, or you might use the ErrorProvider class to show the error. (To do this, you would
provide a normal property on the extender provider component itself to tell it which ErrorProvider to use.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 Summary
Visual Studio .NET provides visual editing for all controls and property editing for any kind of component without
requiring any special effort from the developers of those components. It also provides those developers with many
ways of enhancing the design-time behavior of their components. This usually involves writing a special designer class
that is associated with the component and manages most design-time aspects of that component's behavior. A designer
class can add extra commands to the Forms Designer user interface, it can modify the drag-and-drop editing behavior,
it can add its own adornments for visual editing, and it can extend and modify the set of properties seen at design time.
It is also possible to write an extender provider, a component that extends the properties available on other
components.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Data Binding
Windows Forms lets us create rich user interfaces for viewing and editing information. But these applications are often
just frontends to a larger system—the information they present typically resides elsewhere. You would not want to
entrust your mission-critical data to the Text property of a TextBox control, and so a great many Windows Forms
applications don't own the information they present—the master copy of the data will typically be inside a database.
Even applications that do not warrant the use of a full-blown database will usually still maintain a distinction between
their internal representation of the data and the presentation of that data.

To help us build applications that have cleanly separated data and presentation layers, the .NET Framework provides a
facility called data binding. This is a remarkably flexible architecture for managing the connection between information
sources and user interface elements. It provides full support for .NET's data-access architecture, ADO.NET, but it is also
extensible—it is simple to write your own data sources, and any control, including any user controls or custom controls
that you write, can participate in the presentation of data.

In this chapter, we will start by examining simple data binding, which allows any source of information to be connected
to any property of a control. We will then look at complex binding, which is the specialized support for more complex
data sources offered by certain controls. We will then look at some of the classes in ADO.NET that are designed to be
used for data binding. Finally, we will look at the DataGrid control, which makes it easy to present large amounts of
structured data to the user.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Data Sources and Bindings
A data source is any object that provides information. The object could be of any type—it could be an ADO.NET DataSet,
but it could also be a class that you have defined or a standard .NET array. All data sources provide one or more pieces
of information. We can arrange for these pieces of information to be displayed by binding them to controls.

Consider the simple class shown in C# in Example 10-1 and in VB in Example 10-2. It has just two properties, and as
you can see, there is nothing unusual about the code. But despite its simplicity, it is able to act as a data source thanks
to the very flexible nature of the Windows Forms binding architecture.

Example 10-1. A simple class with two properties, written in C#

public class MySource
{
 public string Name
 {
 get { return nameVal; }
 set { nameVal = value; }
 }
 private string nameVal;

 public int Age
 {
 get { return ageVal; }
 set { ageVal = value; }
 }
 private int ageVal;
}

Example 10-2. A simple class with two properties, written in VB

Public Class MySource

 Private nameVal As String
 Private ageVal As Integer

 Public Property Name() As String
 Get
 Return nameVal
 End Get
 Set
 nameVal = Value
 End Set
 End Property

 Public Property Age() As Integer
 Get
 Return ageVal
 End Get
 Set
 ageVal = Value
 End Set
 End Property
End Class

Example 10-3 shows some C# code from a simple form containing two TextBox controls. (The standard
InitializeComponent and Dispose methods have been omitted because they contain nothing unusual in this example.)
Notice that the form also has a private field containing an instance of the MySource class we defined in Example 10-1.
This object will act as a data source. The form's constructor binds the Text properties of the two TextBox controls to the
Name and Age properties of the data source by adding appropriate entries to ControlBindingsCollection exposed by the
control's DataBinding property.

Example 10-3. Binding controls to a simple data source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-3. Binding controls to a simple data source

public class MyForm : System.Windows.Forms.Form
{
 private System.Windows.Forms.TextBox txtName;
 private System.Windows.Forms.TextBox txtAge;

 private MySource myDataSource = new MySource();

 public MyForm()
 {
 InitializeComponent();

 myDataSource.Name = "Foo";
 myDataSource.Age = 42;
 txtName.DataBindings.Add("Text", myDataSource, "Name");
 txtAge.DataBindings.Add("Text", myDataSource, "Age");
 }

 . . .
}

The ControlBindingsCollection class's Add method is overloaded. Here we are using the form that takes the name of the
control property to be bound, the data source, and the name of the property on the data source. The Add method
creates an instance of the Binding class (passing the three parameters directly in to its constructor) and places it in the
collection. The other overload of the Add method takes a Binding object as a parameter. So the call to Add in Example
10-3 is equivalent to calling:

txtAge.DataBindings.Add(new Binding(("Text", myDataSource, "Age"))

The result of this is that whenever the user edits the text in one of the TextBox controls, the relevant property of the
object will be updated to reflect the change. This connection between a control property and a data source property is
called a binding.

Any property of any control can be bound to any property of any data source, although the Text property is the most
common binding target because it will display the relevant data on screen. But because any property is a valid target,
including any properties you define for your own controls, a single control could have many bindings associated with it.
(In theory, it could have one for each property, although for certain properties such as BorderStyle or TabIndex, binding
would only make sense if you were using it to store form layout information in a database to support user-
customization.) However, any single control property cannot be bound to more than one data source.

Although a given control property can be bound to at most one data source property, the converse is not true: a single
data source property can be bound to any number of control properties. For example, we could modify the example
above to have two text boxes, each of which has its Text property bound to the Name property of the same MySource
object. If the user edits one of these text boxes, the change will automatically be propagated to the other—Windows
Forms tracks all the active data bindings for a given object, so it makes sure that when one control's property values
change, any other control properties bound to the same source property are updated to reflect the change.

This raises an interesting question: what if you want to change the data source's value yourself? If you write some code
that modifies the value of a property of a data source, it is useful to be able to make sure that any bound control
properties will reflect the update. If you are using the ADO.NET DataSet as your data source, it will automatically notify
Windows Forms of these updates. But a simple class such as that in Examples Example 10-1 and Example 10-2 will not
do this.

It is possible to modify our class so that it raises special events known as property change notifications. This will ensure
that whenever we change a property from our code, that change will be reflected in any bound controls. The data-
binding architecture defines a standard idiom for doing this: whenever it binds to a property, it looks for an associated
event whose name will be the property's name with Changed appended. So if binding to the Name property, it will look
for a NameChanged event. If such an event exists, it will register an event handler, and every time the event is raised, it
will refresh any controls that are bound to this property. Examples Example 10-4 and Example 10-5 show an
appropriately modified version of the MySource class from Examples Example 10-1 and Example 10-2.

Example 10-4. A data source with property change notifications in C#

public class MySource
{
 public event EventHandler NameChanged;

 protected virtual void OnNameChanged()
 {
 if (NameChanged != null)
 NameChanged(this, EventArgs.Empty);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public string Name
 {
 get { return nameVal; }
 set
 {
 if (nameVal != value)
 {
 nameVal = value;
 OnNameChanged();
 }
 }
 }

 private string nameVal;

 public event EventHandler AgeChanged;

 protected virtual void OnAgeChanged()
 {
 if (AgeChanged != null)
 AgeChanged(this, EventArgs.Empty);
 }

 public int Age
 {
 get { return ageVal; }
 set
 {
 if (ageVal != value)
 {
 ageVal = value;
 OnAgeChanged();
 }
 }
 }

 private int ageVal;

}

Example 10-5. A data source with property change notifications in VB

Imports System

Public Class MySource

 Private ageVal As Integer
 Private nameVal As String

 Public Event NameChanged(sender As Object, e As EventArgs)
 Public Event AgeChanged(sender As Object, e As EventArgs)

 Public Property Name() As String
 Get
 Return nameVal
 End Get
 Set
 If nameVal <> Value Then
 nameVal = Value
 OnNameChanged()
 End If
 End Set
 End Property

 Public Property Age() As Integer
 Get
 Return ageVal
 End Get
 Set
 If ageVal <> Value Then
 ageVal = Value
 OnAgeChanged()
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 End Set
 End Property

 Protected Sub OnNameChanged()
 RaiseEvent NameChanged(Me, EventArgs.Empty)
 End Sub

 Protected Sub OnAgeChanged()
 RaiseEvent AgeChanged(Me, EventArgs.Empty)
 End Sub

End Class

Property change notification events always use the standard EventHandler delegate type; that is, the event handler takes
two parameters. The first is an Object instance representing the event's sender. The second is an EventArgs instance
containing information about the event. Here we have also used the standard event handling idiom, where for each
public event there is an associated protected method that raises the event. So the NameChanged event is always raised
by calling the OnNameChanged method and AgeChanged is raised by calling OnAgeChanged. These methods are not
mandatory—the data binding architecture doesn't care how we raise the events—but this style, which we also use for
events raised by controls, provides derived classes with a hook into the event handling.

With the code for raising property change notifications in place, our data source in Example 10-4 will always be
displayed correctly, even when it is modified directly by code such as that in Example 10-6.

Example 10-6. Modifying a data source

private void GetOlder()
{
 myDataSource.Age += 1;
}

But what if we are unable to change the data source's implementation? We might want to bind to a class that we did
not write, and that does not provide property change notifications. One of the aims of the data-binding architecture is to
be able to use any object as a data source, so it is possible to force the display to be updated even if the object in
question does not raise property change notifications. To achieve this, a little more work is required, but first we must
understand how Windows Forms tracks bound data sources.

10.1.1 Binding Managers

For every distinct data source in use on a form, Windows Forms creates a binding manager.[1] This is an object that
acts as a kind of clearing house for all changes to the data source. It knows about all the data bindings for the source,
which is what enables changes made by one control to be propagated to any other controls bound to the same source.
If we want updates to be pushed out this way when the data source does not provide property change notifications, we
too must use the binding manager.

[1] Strictly speaking, it does this per binding context, not per form. But by default, each form just has one binding
context. We will discuss multiple binding contexts shortly.

It is easy to get hold of the binding manager for a particular data source. The Form class has a property called
BindingContext, which is a collection containing all the binding managers for the whole form. (So far we have only got
one data source, but it is possible to have several distinct data sources on a single form, each of which would have its
own binding manager.) It is an indexed collection, so to acquire the binding manager for the source, we just pass in the
source itself as an index, as shown in Example 10-7.

Example 10-7. Acquiring a binding manager

// C#
BindingManagerBase bindMgr = BindingContext[myDataSource];

' VB
Dim bindMgr As BindingManagerBase = BindingContext(myDataSource)

BindingManagerBase is the base class from which all binding managers derive. The exact type of manager returned will
depend on the nature of the data being bound to. (In this case, it will be a PropertyManager, which is the manager for
binding directly to properties of a single object.) Having got a reference to the binding manager for our data source, we
need to make it refresh all the control properties that are bound to it. Unfortunately, there is no method designed to do
this, but there is one that has this side effect: CancelCurrentEdit. As with Example 10-6, the method in Example 10-8
modifies a property on the data source.

Example 10-8. Using CancelCurrentEdit to make property changes visible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-8. Using CancelCurrentEdit to make property changes visible

private void GetOlder()
{
 myDataSource.Age += 1;
 BindingContext[myDataSource].CancelCurrentEdit();
}

Because Example 10-8 assumes that the data source does not provide property change notifications, it explicitly forces
that change to be propagated to all bound controls. The use of CancelCurrentEdit might be regarded as a hack—this
method is intended for when the user has started to modify some data in a text field, but then has a change of heart.
Calling CancelCurrentEdit pushes the value stored in the source out to any bound control properties, overwriting any edits
that the user might have made. We are not quite using this method as intended—we have modified the data source
directly and want that change to be pushed out. But it has the effect that we require.

If at all possible you should use data sources that provide change notifications. This will mean that you don't have to
remember to force an update every time you change a property.

10.1.2 List Sources

So far we have just used a single object as a data source. However, many data sources return lists of information,
database tables being a particularly important example. The data-binding architecture therefore has support for binding
to lists of data as well as to individual items.

As with single data sources, Windows Forms is extremely flexible about what kinds of list-like sources it will bind to—it
can bind to lists of data contained in any object that implements the IList interface. Because all arrays implement this
interface, we can bind to an array of the simple class defined earlier, as shown in the C# code in Example 10-9 and in
the VB code in Example 10-10.

Example 10-9. Binding to an array of simple objects using C#

public class MyForm : System.Windows.Forms.Form
{
 private System.Windows.Forms.TextBox txtName;
 private System.Windows.Forms.TextBox txtAge;

 private MySource[] myDataListSource;

 public MyForm()
 {
 InitializeComponent();

 myDataListSource = new MySource[10];
 for (int i = 0; i < myDataListSource.Length; ++i)
 {
 myDataListSource[i] = new MySource();
 myDataListSource[i].Name = "Foo" + i;
 myDataListSource[i].Age = 20 + i;
 }

 txtName.DataBindings.Add("Text", myDataListSource, "Name");
 txtAge.DataBindings.Add("Text", myDataListSource, "Age");
 }

 . . .
}

Example 10-10. Binding to an array of simple objects using VB

Public Class MyForm : Inherits Form

 Private WithEvents txtName As TextBox
 Private WithEvents txtAge As TextBox

 Dim myDataListSource(10) As MySource

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim myDataListSource(10) As MySource

 Public Sub New()
 MyBase.New()

 InitializeComponent()

 ReDim myDataListSource(10)
 Dim i As Integer

 For i = 0 to myDataListSource.Length - 1
 myDataListSource(i) = new MySource()
 myDataListSource(i).Name = "Foo" + CStr(i)
 myDataListSource(i).Age = 20 + i
 Next

 txtName.DataBindings.Add("Text", myDataListSource, "Name")
 txtAge.DataBindings.Add("Text", myDataListSource, "Age")
 End Sub

 . . .
End Class

The code in Examples Example 10-9 and Example 10-10 is almost identical to that in Example 10-3, the only difference
being that we have replaced a single MySource object with an array of MySource objects. As it stands, it is not very
interesting, because it will only allow the first object in the array to be edited. However, the binding manager for our
data source provides us with ways of iterating through the list. We might expose this by adding Previous and Next
buttons to the form.

Examples Example 10-11 and Example 10-12 show Click event handlers for Previous and Next buttons, which allow the
user to move back and forth through the list. They work by acquiring the binding manager for the data source and
adjusting its Position property. The Position property determines which list item's properties are currently displayed in the
bound controls. (The binding manager ignores this property when binding to a single object as in Example 10-3.)

Example 10-11. Scrolling through items in a bound list using C#

private void btnPrevious_Click(object sender, EventArgs e)
{
 BindingManagerBase bm = BindingContext[myDataListSource];
 if (bm.Position == 0)
 return;

 bm.Position -= 1;

}

private void btnNext_Click(object sender, EventArgs e)
{
 BindingManagerBase bm = BindingContext[myDataListSource];
 if (bm.Position == bm.Count - 1)
 return;

 bm.Position += 1;
}

Example 10-12. Scrolling through items in a bound list using VB

Public Sub btnPrevious_Click(sender As Object, e As EventArgs) _
Handles btnPrevious.Click
 Dim bm As BindingManagerBase = BindingContext(myDataListSource)

 If bm.Position = 0 Then Return

 bm.Position -= 1
End Sub

Public Sub btnNext_Click(sender As Object, e As EventArgs) _
Handles btnNext.Click
 Dim bm As BindingManagerBase = BindingContext(myDataListSource)

 If bm.Position = bm.Count - 1 Then Return

 bm.Position += 1
End Sub

Because the Position is a property of the binding manager, and each data source has exactly one binding manager, all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because the Position is a property of the binding manager, and each data source has exactly one binding manager, all
controls bound to a particular data source will reflect the property values for the same list entry at any given time. So
adjusting the position on our example will cause the two bound TextBox controls to be updated. If you examine the
binding manager returned for lists of data, you will see that it is of type CurrencyManager. This is because it is responsible
for keeping track of the current position. (It doesn't have anything to do with money.)

Remember that in Example 10-6, we wrote a method that modified one of the data source's properties. This example
now needs to be modified to work in the context of a list. It must determine which particular item in the list it should
modify. This is easy to do because the BindingManagerBase class provides a Current property that returns the current item
from the list. We can also use the Position property as an index into the array. We will use the latter here because
otherwise we would need to cast the object returned by Current back to MySource.

As with a single data source, if a list entry's class provides property change notification events, the modification that
Example 10-13 makes to the Age property will automatically be propagated to any bound controls. But if you are
working with a data source that does not supply such events, once again you will need to provide manual notification of
the updates. Although the CancelCurrentEdit technique shown in Example 10-8 will work, a slightly more elegant solution
is available when binding to a list; it is shown in Example 10-14.

Example 10-13. Modifying the current item in a list

private void GetOlder()
{
 int pos = BindingContext[myDataListSource].Position;
 MySource src = myDataListSource[pos];
 src.Age += 1;
}

Example 10-14. Modifying a list item that does not provide property change
notifications

private void GetOlder()
{
 CurrencyManager cm = (CurrencyManager)
 BindingContext[myDataListSource];
 MySource src = myDataListSource[cm.Position];
 src.Age += 1;
 cm.Refresh();
}

In Example 10-14, we are exploiting the fact that the binding manager will always be an instance of the CurrencyManager
class when dealing with a list-like source. And unlike PropertyManager, CurrencyManager provides a Refresh method to push
modifications out to any bound controls.

The Refresh method can also be useful even if your data source class provides property change notifications. If you want
to add or remove items from the list, the fact that the objects in the list raise notifications when individual properties
are changed will not be sufficient to notify the binding architecture that the list now has new entries. This is particularly
important if you are using controls that can display information from all the entries in the list at once and not just the
current one. (We will see how to do this shortly.) Certain data sources (notably the DataSet) can raise automatic
notifications when the contents of the list change as well as when individual entries' values change, but simple arrays
will not do this, nor will the ArrayList class. So when adding, removing, or replacing objects from such data sources, you
should always call the Refresh method to inform the CurrencyManager that the list's contents have changed.

It is not clear why the Refresh method is defined by CurrencyManager instead of its base class, BindingManagerBase—it
would be useful in all binding scenarios, not just list-based binding. (This is precisely the method we wanted earlier
when we had to resort to the less satisfactory CancelCurrentEdit.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Simple and Complex Binding
The examples we have seen so far all use the technique known as simple binding. Simple binding has two defining
characteristics:

Bindings deal with single pieces of information, both in the sense that single source properties are bound to
single control properties, and also in the sense that only a single item from a list can be shown at any one time.

Simple binding requires no special support from the control—the data-binding architecture is able to bind to any
control property, including any new properties you introduce in your custom controls.

Complex binding overcomes the restrictions of simple binding—it can allow a single control to display multiple entries
from a list, and multiple properties from any single item. However, it requires special support from the control—most of
the built-in controls do not support complex binding, and if you want your own controls to support it, you will need to
do most of the work yourself. But don't be put off by the name—complex binding is only complex for the developer who
creates the control; it can actually make things much simpler for developers who use the control.

The built-in controls that support complex binding are ListBox, ComboBox, and DataGrid. The first two work the same and
we will start by looking at those. The DataGrid control's data-binding support is rather more extensive, and we will
examine it later.

10.2.1 List Control Binding

The ListBox and ComboBox controls have a great deal in common. They share the same base class, ListControl, and this
common base supplies their complex data-binding support. Both of these controls are able to bind to a list data source
(such as an array) and display the entire contents of the list rather than just a single item.

Figure 10-1 shows a simple Windows Forms program.

Figure 10-1. Binding a ListBox to an array

The program in Figure 10-1 has three controls all bound to the same data source, which is an array of the MySource
class defined earlier in C# in Example 10-4 and in VB in Example 10-5. The two TextBox controls on the right have been
bound to this data source using simple binding, using exactly the same code as Example 10-9. This program has simply
added one more control to Example 10-9, a ListBox. It is bound to the data source with the C# code shown in Example
10-15; the VB code is identical, except that it lacks the closing semicolon.

Example 10-15. Binding a ListBox to an array with complex binding

listBox.DataSource = myDataListSource;
listBox.DisplayMember = "Name";

Notice that we are no longer using the DataBindings property to bind the control to the data source, because DataBindings
only supports simple binding. Instead, we are using the DataSource property, which is only present on controls that
support complex binding. By setting this property to refer to the array, we are telling the ListBox that we would like it to
display the whole array and not just the current entry of the array.

The ListBox control needs to know how it should display the items. By default, it will simply call the ToString method on
every item in the list to which it is bound. This would not be helpful in this example because our MySource class does not
override ToString, the default behavior of which is to return the name of the class. A ListBox in which every entry was the
class name would not be very useful, so here we have instructed the ListBox to extract each item's Name property and
display that. We achieved this by setting the ListBox control's DisplayMember property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

display that. We achieved this by setting the ListBox control's DisplayMember property.

Notice that in Figure 10-1 the text fields are displaying the properties for the selected item in the listbox. This happens
automatically because all three controls are bound to the same data source. Remember that the data-binding
framework creates one binding manager for each data source in use on a form, and any control that is bound to that
source is associated with that binding manager, whether it is using simple or complex binding. In this case, the data
source is an array, so the binding manager will be a CurrencyManager. This CurrencyManager is responsible for keeping
track of which list item is the current one. Whenever the listbox's current selection is changed, it notifies the
CurrencyManager for the data source, thus causing any other controls that are bound to the same data source to reflect
the newly selected list item. This notification works in both directions, so if something else were to change the current
item, the CurrencyManager would notify all bound controls, causing the listbox to change the selected item. (For example,
if you were to bind two listboxes to the same source, both would always show the same selected item, as long as both
controls share the same BindingContext.)

There is a slight problem with the previous example. If you edit the text in the name field, the change is not reflected in
the listbox. While the change is made to the underlying data, it is simply not noticed by the listbox, despite the fact that
our MySource class now raises property change notifications. The problem arises because all controls that support
complex data binding expect data sources that change their contents to implement a special interface derived from IList
called IBindingList. The array class does not implement this interface, and it is not trivial to implement. However, there
are some specialized data source classes that we will now look at that support IBindingList. Using these instead of a
simple array can solve this problem.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 DataTable, DataSet, and Friends
Although the data-binding architecture is flexible enough to bind to any property of any object, the .NET Framework
provides a group of classes (part of ADO.NET) that have much more extensive data-binding support. At the center of
this family are the DataSet and DataTable classes in the System.Data namespace. These form the basis for the
disconnected use of data from a database, and they are designed to allow flexible presentation of data while making
efficient use of server resources.

All presentation of data from a database in Windows Forms is based around a disconnected model—clients connect to a
database and retrieve all the data they require in a single step. They do not hold onto any server-side resources (such
as cursors) after this data has been retrieved, and can therefore release their connection to the database. (In practice,
the connection will normally be returned to a pool rather than being freed completely.) This is a departure from
previous data-binding models, where disconnected operation was strictly optional. This new model reduces the
workload on the server, because at any given instant it has to deal with fewer clients, thus improving the scalability of
the system.

The DataTable class allows a snapshot of part (or all) of a database table to be held on the client. The DataSet class can
hold any number of DataTable objects, and can also contain information about relations between these tables. (Relations
are represented as DataRelation objects.)

This rich client-side data representation allows us to present an extensive amount of data while only requiring a single
round trip to the database. For example, we can build a user interface that shows lists of data and can then present
detailed information for each item as it is selected without needing to make a further trip to the database.

Obviously, you will need to exercise a little restraint here—although it is theoretically possible to build a complete
snapshot of the entire database on the client, this will usually not be a sensible approach. But the ability to have client-
side relational snapshots of small subsections of the database is very useful.

Although the DataSet and DataTable classes are typically used to store data that has been retrieved from a database,
they can be used to store any kind of data. For example, you can also use XML as a data source with the DataSet class's
ReadXml method, or you can build up tables from scratch in code.

We will now see how to use these classes and how to bind controls to them. We will start with a single table. Then we
will add this to a DataSet along with some related tables to illustrate the use of relations in data binding.

10.3.1 Using the DataTable Class

The DataTable class represents tabular data such as would be returned from a SQL SELECT statement. A DataTable
contains information about the names and types of each column in the table and a collection of rows. We usually fill
DataTable objects with data from a database or an XML document, but it is also possible to build one from scratch in
code, as shown in Examples Example 10-16 and Example 10-17.

Example 10-16. Building a DataTable from scratch using C#

DataTable customers = new DataTable("Customers");

customers.Columns.Add("CustomerID", typeof(int));
customers.Columns.Add("FirstName", typeof(string));
customers.Columns.Add("LastName", typeof(string));

customers.PrimaryKey = new DataColumn[]
 { customers.Columns["CustomerID"] };

customers.Rows.Add(new object[] { 1, "Homer", "Simpson" });
customers.Rows.Add(new object[] { 2, "Arthur", "Pewty" });

Example 10-17. Building a DataTable from scratch using VB

Dim customers As New DataTable("Customers")

customers.Columns.Add("CustomerID", GetType(Integer))
customers.Columns.Add("FirstName", GetType(String))
customers.Columns.Add("LastName", GetType(String))

customers.PrimaryKey = new DataColumn() _
 { customers.Columns("CustomerID") }

customers.Rows.Add(new object() { 1, "Homer", "Simpson" })
customers.Rows.Add(new object() { 2, "Arthur", "Pewty" })

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

customers.Rows.Add(new object() { 2, "Arthur", "Pewty" })

This code creates a new table called Customers. Passing the name to the constructor is optional, but will be useful later
on when we will be using multiple related tables. Next, we tell the DataTable what columns it will have, supplying a name
and a Type object representing the data type for each column. We also tell the DataTable which of these columns acts as
a primary key. (The DataTable supports compound keys, so its PrimaryKey property expects to be passed an array. Here
we are just using our CustomerID column as the key, so we pass an array containing just one element.) The DataTable
enforces the uniqueness of the primary key—if you attempt to add a row with a duplicate key to a DataTable, it will
throw an exception.

Having supplied this metadata, we are now free to add the real data to the table by calling the Add method on the
table's Rows property, as shown at the end of Examples Example 10-16 and Example 10-17. Note that because the
table knows what columns it expects to see, it will check any new rows that are added. If the row data does not match
the expected column types, the Add method will throw a System.ArgumentException exception.

We can now read the data back out from the table. The Rows property provides two ways of extracting rows. One is an
indexer property, allowing individual rows to be accessed by number. (This is just an offset into the list of rows; it bears
no relation to the primary key.) It also supports enumeration, allowing the C# foreach construct or the VB For Each...Next
construct to be used. Examples Example 10-18 and Example 10-19 illustrate both techniques. In either case, each row
is represented by a DataRow object. The DataRow object also supplies indexer properties allowing columns in the row to
be accessed either by index or by name.

Example 10-18. Retrieving data from a DataTable using C#

DataRow firstRow = customers.Rows[0];
Console.WriteLine("First CustomerID is {0}",
 firstRow["CustomerID"]);

foreach (DataRow row in customers.Rows)
{
 Console.WriteLine("Customer {0} is called {1} {2}",
 row["CustomerID"], row["FirstName"], row["LastName"]);
}

Example 10-19. Retrieving data from a DataTable using VB

Dim row As DataRow
Dim firstRow As DataRow = customers.Rows(0)
Console.WriteLine("First CustomerID is {0}", _
 firstRow("CustomerID"))

For Each row in customers.Rows
 Console.WriteLine("Customer {0} is called {1} {2}", _
 row("CustomerID"), row("FirstName"), row("LastName"))
Next

More usefully, we can bind control properties to this table. This works in exactly the same way as it did for binding to a
simple class, both for simple and complex binding. Example 10-20 shows the C# code that uses simple binding to bind
the three column values to a Label control and two TextBox controls, using exactly the same technique shown in Example
10-3 for binding to a class property. (The VB code is identical, without the semicolons that terminate each statement.)
Example 10-20 also uses complex binding to bind the entire table to a ListBox control, and again the technique is
identical to that shown in Example 10-15—we specify the data source and also the member that we would like to use
for the list item text.

Example 10-20. Binding to a DataTable

labelCustomerID.DataBindings.Add("Text", customers, "CustomerID");
textBoxFirstName.DataBindings.Add("Text", customers, "FirstName");
textBoxLastName.DataBindings.Add("Text", customers, "LastName");

listBoxCustomers.DataSource = customers;
listBoxCustomers.DisplayMember = "LastName";

Figure 10-2 shows the form containing these controls in action. As before, the simple-bound controls (the Label and
TextBox controls) always show the values for whichever item is currently selected in the ListBox control. This is because
when a DataTable is used as a data source, the Windows Forms data-binding architecture creates a CurrencyManager as
the associated binding manager, just as it did for the array source. As before, this keeps track of the currently selected
item, and makes sure that all controls bound to that data source show values from that same current item.

Figure 10-2. A form with controls bound to a DataTable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. A form with controls bound to a DataTable

Because the DataTable class is designed to be used for data binding, it automatically generates update notifications. So
you do not need to take any steps to ensure that changes made to a table's contents will be reflected in any controls
that are bound to that table. It even supplies an implementation of IBindingList. As mentioned earlier, this means that if
rows are added to or removed from the list, or if an item in the table other than the currently selected one is modified,
these changes will be reflected by any complex-bound controls.

10.3.2 Using the DataSet Class

Databases rarely consist of a single table. Applications that use a relational database will usually deal with multiple
related tables. So when it comes to presenting data from the database in a client application, it follows that we will
often want to present data from more than one table. The relations between tables are also likely to be important to the
client application. The DataSet class can contain multiple DataTable objects, and can also contain DataRelation objects that
describe the relations that exist between the tables.

In the previous section, our examples had just a single table, Customers. Let us now add a second table called Orders.
This will hold a simple list of orders made by customers, as shown in Examples Example 10-21 and Example 10-22.

Example 10-21. Creating a second DataTable using C#

orders = new DataTable("Orders");
orders.Columns.Add("OrderID", typeof(int));
orders.Columns.Add("CustomerID", typeof(int));
orders.Columns.Add("Product", typeof(string));
orders.Columns.Add("Quantity", typeof(int));
orders.PrimaryKey = new DataColumn[] { orders.Columns["OrderID"] };

orders.Rows.Add(new Object[] { 1, 1, "Donuts", 500 });
orders.Rows.Add(new Object[] { 2, 1, "Cans of beer", 200 });
orders.Rows.Add(new Object[] { 3, 2, "Pencils", 20 });

Example 10-22. Creating a second DataTable using VB

Dim orders As New DataTable("Orders")
orders.Columns.Add("OrderID", GetType(Integer))
orders.Columns.Add("CustomerID", GetType(Integer))
orders.Columns.Add("Product", GetType(String))
orders.Columns.Add("Quantity", GetType(Integer))
orders.PrimaryKey = New DataColumn() { orders.Columns("OrderID") }

orders.Rows.Add(new Object() { 1, 1, "Donuts", 500 })
orders.Rows.Add(new Object() { 2, 1, "Cans of beer", 200 })
orders.Rows.Add(new Object() { 3, 2, "Pencils", 20 })

This table has its own primary key, OrderID. The Product and Quantity columns represent the item being ordered and the
quantity required, respectively. But notice that there is also a CustomerID column. This will be used as a foreign key that
relates rows in this table to rows in the Customers table. We establish this association by placing both tables into a
DataSet object and creating a relation between them, as shown in Examples Example 10-23 and Example 10-24.

Example 10-23. Adding related tables to a DataSet using C#

DataSet ds = new DataSet();
ds.Tables.Add(customers);
ds.Tables.Add(orders);

ds.Relations.Add("OrdersRelation",
 customers.Columns["CustomerID"],
 orders.Columns["CustomerID"]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 orders.Columns["CustomerID"]);

Example 10-24. Adding related tables to a DataSet using VB

Dim ds As New DataSet()
ds.Tables.Add(customers)
ds.Tables.Add(orders)

ds.Relations.Add("OrdersRelation", _
 customers.Columns("CustomerID"), _
 orders.Columns("CustomerID"))

This adds a named relation called OrdersRelation that defines the relationship between these two tables. Relations are
directional, and by default, they will be traversed from the parent to the child. The first column passed to the Add
method is considered to be the parent and the second column the child. So in this case, it will be possible to use the
relation to find the orders that correspond to a customer row by calling the DataRow class's GetChildRows method. It is
also possible to traverse the relation in the opposite direction using the GetParentRows method of the child row. In this
particular case, it is not possible to set up the relation in the opposite direction, because the parent column is required
to be unique. (In other words, the DataSet supports one-to-many relations, but not many-to-one relations.)

The name of a relation is not significant. It simply needs to be unique within the scope of
the DataSet to which it applies. Although it is common for the relation to have the same
name as the child table, as Example 10-23 shows, this is not a requirement.

Adding a relation to a DataSet sets up a constraint—with this relation in place, any row added to the Orders table will be
checked, and if its CustomerID value does not have a corresponding entry in the Customers table with the same
CustomerID, a System.Data.InvalidConstraintException will be thrown. (Be aware that the DataSet has no way of checking that
the relations you create correspond to the relations in the database's underlying schema. It is up to you to make sure
that you create the correct relations.)

While enforcing foreign key constraints is useful, there is a more interesting side effect of defining relations when data
binding is being used. If a relation exists between two tables, it is possible to use this in conjunction with complex
binding to show only those items from a child list that are related to the currently selected items in the parent list. So
as Figure 10-3 shows, we could add a second list control to show all the orders for the currently selected customer.

Figure 10-3. Master/details binding

The Orders DataTable itself has three rows (see Examples Example 10-21 and Example 10-22), but only two are shown
here. This is because the orders ListBox only shows items that correspond to the currently selected customer (i.e.,
orders whose CustomerID is equal to 1). The code to achieve this is very simple and is shown in C# in Example 10-25.
(Once again, the VB code is identical except for the absence of the closing semicolons.)

Example 10-25. Complex binding through a relation

listBoxOrders.DataSource = customers;
listBoxOrders.DisplayMember = "OrdersRelation.Product";

Notice that although the DataSource property has been set to the Customers table, the ListBox is showing items from the
Orders table. This is because the DisplayMember property has been set to OrdersRelation.Product. Setting DisplayMember to a
string with a period in it indicates that relations are in use. Here we are indicating that we wish to bind through the
OrdersRelation relation that we set up in Examples Example 10-23 and Example 10-24, and that we wish to show the
Product column from the child table (Orders).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Product column from the child table (Orders).

The complete code for creating these tables, establishing the relations, and binding the controls is shown in Examples
Example 10-26 and Example 10-27.

Example 10-26. Display a master/details view using C#

// Create the Customers table

DataTable customers = new DataTable("Customers");

customers.Columns.Add("CustomerID", typeof(int));
customers.Columns.Add("FirstName", typeof(string));
customers.Columns.Add("LastName", typeof(string));
customers.PrimaryKey = new DataColumn[]
 { customers.Columns["CustomerID"] };

customers.Rows.Add(new object[] { 1, "Homer", "Simpson" });
customers.Rows.Add(new object[] { 2, "Arthur", "Pewty" });

// Create the Orders table

DataTable orders = new DataTable("Orders");
orders.Columns.Add("OrderID", typeof(int));
orders.Columns.Add("CustomerID", typeof(int));
orders.Columns.Add("Product", typeof(string));
orders.Columns.Add("Quantity", typeof(int));
orders.PrimaryKey = new DataColumn[]
 { orders.Columns["OrderID"] };

orders.Rows.Add(new Object[] { 1, 1, "Donuts", 500 });
orders.Rows.Add(new Object[] { 2, 1, "Cans of beer", 200 });
orders.Rows.Add(new Object[] { 3, 2, "Pencils", 20 });

// Add both tables to a DataSet and establish
// the relation between their CustomerID columns

DataSet ds = new DataSet();
ds.Tables.Add(customers);
ds.Tables.Add(orders);
ds.Relations.Add("OrdersRelation", customers.Columns["CustomerID"],
 orders.Columns["CustomerID"]);

// Bind the controls

labelCustomerID.DataBindings.Add("Text", customers, "CustomerID");
textBoxFirstName.DataBindings.Add("Text", customers, "FirstName");
textBoxLastName.DataBindings.Add("Text", customers, "LastName");

listBoxCustomers.DataSource = customers;
listBoxCustomers.DisplayMember = "LastName";

listBoxOrders.DataSource = customers;
listBoxOrders.DisplayMember = "OrdersRelation.Product";

Example 10-27. Display a master/details view using VB

' Create the Customers table

Dim customers As New DataTable("Customers")

customers.Columns.Add("CustomerID", GetType(Integer))
customers.Columns.Add("FirstName", GetType(String))
customers.Columns.Add("LastName", GetType(String))

customers.PrimaryKey = new DataColumn() _
{ customers.Columns("CustomerID") }

customers.Rows.Add(new object() { 1, "Homer", "Simpson" })
customers.Rows.Add(new object() { 2, "Arthur", "Pewty" })

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

customers.Rows.Add(new object() { 2, "Arthur", "Pewty" })

' Create the Orders table

Dim orders As New DataTable("Orders")
orders.Columns.Add("OrderID", GetType(Integer))
orders.Columns.Add("CustomerID", GetType(Integer))
orders.Columns.Add("Product", GetType(String))
orders.Columns.Add("Quantity", GetType(Integer))
orders.PrimaryKey = New DataColumn() { orders.Columns("OrderID") }

orders.Rows.Add(new Object() { 1, 1, "Donuts", 500 })
orders.Rows.Add(new Object() { 2, 1, "Cans of beer", 200 })
orders.Rows.Add(new Object() { 3, 2, "Pencils", 20 })

' Add both tables to a DataSet and establish
' the relation between their CustomerID columns
Dim ds As New DataSet()
ds.Tables.Add(customers)
ds.Tables.Add(orders)

ds.Relations.Add("OrdersRelation", _
 customers.Columns("CustomerID"), _
 orders.Columns("CustomerID"))

' Bind the controls

labelCustomerID.DataBindings.Add("Text", customers, "CustomerID")
textBoxFirstName.DataBindings.Add("Text", customers, "FirstName")
textBoxLastName.DataBindings.Add("Text", customers, "LastName")

listBoxCustomers.DataSource = customers
listBoxCustomers.DisplayMember = "LastName"

listBoxOrders.DataSource = customers
listBoxOrders.DisplayMember = "OrdersRelation.Product"

10.3.3 Populating a DataSet from a Database

The previous example builds DataSet and DataTable objects from scratch. However, most applications will fill these
objects with data from a database. There is a class that automates this process, called the DataAdapter class, which is
defined in the System.Data.Common namespace. It connects to a database, retrieves one or more tables of data, adds
them to a DataSet, and then disconnects from the database. (Unfortunately, it cannot automatically retrieve relations
from the database schema, so you must write code to set these up yourself.)

DataAdapter is an abstract base class, so you must use one of the concrete classes derived from it. The class you use will
depend on what kind of database you are using. If you are using SQL Server, you will use the SqlDataAdapter class in the
System.Data.SqlClient namespace. If you are using an OLE DB data source, you will use the OleDbDataAdapter class in the
System.Data.OleDb namespace. But regardless of what database you use, the adapter classes all work in much the same
way. Example 10-28 shows an example written in C#.

Example 10-28. Filling a DataSet with a DataAdapter

string command = "SELECT * FROM Products";
string connect = "data source=.;initial catalog=Northwind;" +
 "integrated security=SSPI";

SqlDataAdapter adapter = new SqlDataAdapter(command, connect);
adapter.TableMappings.Add("Table", "Products");

DataSet ds = new DataSet();
adapter.Fill(ds);

Here we are using the SQL Server data adapter, SqlDataAdapter, but the code would look almost identical for any other
database—we would just use, say, the OleDbDataAdapter class, or some vendor-specific adapter class. To create a data
adapter, we simply need a connection string indicating which database will supply the data and a command to execute
to retrieve the data. Here we are connecting to the Northwind database, a sample database shipped with SQL Server,
and we are retrieving the entire contents of the Products table.

Calling the Fill method causes the data adapter to connect to the database, execute the command, copy the results into
the DataSet supplied, and disconnect. This means that the database connection is in use for the smallest amount of time
possible, which reduces the load on the server. We can then use the results at our leisure. In this case, the DataSet will
only contain a single table because that is all the SQL command returned. (Data adapters can add multiple tables to a
DataSet if executing an appropriate batch statement or stored procedure.) The adapter will use the metadata that comes
back with the results to add all the appropriate columns to the table it creates, but by default it will call that table Table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

back with the results to add all the appropriate columns to the table it creates, but by default it will call that table Table.
So here we have added an entry to the adapter's TableMappings property indicating that instead of calling the table Table,
it should call it Products. Note that if a table of the specified name already exists in the DataSet, the data adapter will
attempt to add rows to it instead of creating a new table.

Remember that a DataSet can contain as many tables as you like. There are two ways of using data adapters to put
multiple tables into a DataSet. One is to use more than one adapter—you can create a single data set and then pass it as
the parameter to the Fill method on any number of different data adapters. As long as their TableMappings are set up so
as not to collide, each will add its own table to the DataSet. However, if all the tables are coming from a single database,
it is more efficient to merge all these into a single batch SQL statement, as shown in C# in Example 10-29.

Example 10-29. Reading multiple tables with a data adapter

string connect = "data source=.;initial catalog=Northwind;" +
 "integrated security=SSPI";
string command = "SELECT * FROM Customers; " +
 "SELECT * FROM Orders; SELECT * FROM [Order Details]";

SqlDataAdapter adapter = new SqlDataAdapter(command, connect);
adapter.TableMappings.Add("Table", "Customers");
adapter.TableMappings.Add("Table1", "Orders");
adapter.TableMappings.Add("Table2", "Order Details");

DataSet ds = new DataSet();
adapter.Fill(ds);

This code is almost identical to Example 10-28. The only differences are that the command is now a batch of three
SELECT statements, and there are now three table mappings. Note that when the SqlDataAdapter returns multiple tables,
by default, it just names them sequentially as Table, Table1, Table2, etc.

The sample Northwind database has a similar structure to our previous example in that we have a table of customers
and a related table of orders. (It is a little more complex because an order can consist of several items, contained in the
Order Details table, and there is also a Products table to represent the kinds of items that can be ordered. But complexity
aside, the same principles apply.) We will therefore want to represent the relations in the DataSet as before. Example
10-30 establishes the relations appropriate to these tables.

Example 10-30. Establishing relations

ds.Relations.Add("CustomerOrdersRelation",
 ds.Tables["Customers"].Columns["CustomerID"],
 ds.Tables["Orders"].Columns["CustomerID"]);
ds.Relations.Add("OrderDetailsRelation",
 ds.Tables["Orders"].Columns["OrderID"],
 ds.Tables["Order Details"].Columns["OrderID"]);

Having done this, we can bind controls to this data in much the same way that we did when building our own DataTable
objects from scratch. This is shown in Example 10-31. There are some minor differences from the original code shown
in Examples Example 10-26 and Example 10-27 because the structure of information in the Northwind database is not
quite the same as that in the earlier example. (Names are not separated into first and last names here. And because in
Northwind, orders can consist of multiple items, we just show the order date in the orders ListBox instead of the product
name.)

Example 10-31. Binding to data from a database

labelCustomerID.DataBindings.Add("Text", ds, "Customers.CustomerID");
textBoxCompanyName.DataBindings.Add("Text", ds, "Customers.CompanyName");
textBoxContactName.DataBindings.Add("Text", ds, "Customers.ContactName");

listBoxCustomers.DataSource = ds;
listBoxCustomers.DisplayMember = "Customers.CompanyName";

listBoxOrders.DataSource = ds;
listBoxOrders.DisplayMember =
 "Customers.CustomerOrdersRelation.OrderDate";

Also note that here we are using the DataSet itself as the data source and naming the table in the data member. Before,
we were using the table itself as the data source. It doesn't matter which you use although you must be consistent,
because otherwise you may cause the data-binding system to create two CurrencyManager objects, which could cause
your controls to get out of sync. In this case, we are using the DataSet because it is more convenient—the data adapter
created the tables for us automatically, so we don't have any references to them handy.

Figure 10-4 shows the modified user interface, displaying the data as retrieved from the database. As before, the
orders ListBox will only show those orders for the item currently selected in the customer ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

orders ListBox will only show those orders for the item currently selected in the customer ListBox.

Figure 10-4. A form showing a master/details view from a database

10.3.4 Multiple Binding Contexts

By default, all controls that are bound to a single source share a binding manager. This is useful because it keeps those
controls synchronized, and is the basis for the master/details views shown above. But what if you don't want this
automatic synchronization? Sometimes it is useful to have two controls showing the same list. If these controls share a
binding manager, they will always show the same item as being selected—changing the current selection in one will
automatically change the current selection in the other. To get around this, you must use multiple binding contexts.

A binding context is essentially a collection of binding managers. All controls are associated with a binding context, and
it is through this context that they find the binding managers for any data sources they are bound to. By default, a
control will simply use its parent's binding context, which means that controls will usually use their containing form's
context. But this is easily changed—you can change a control's binding context by setting its BindingContext property.

Figure 10-5 shows a form with two binding contexts. It is similar to the form shown in Figure 10-4, except that it has an
extra GroupBox control, which contains an extra set of controls bound to the same data source and properties as those
on the top left. Notice that these are clearly using a different currency manager, because the currently selected item on
the right is different from that on the left.

Figure 10-5. A form with two binding contexts

These extra controls are bound to the data source in exactly the same way as before, as shown in C# in Example 10-
32.

Example 10-32. Binding a second set of controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-32. Binding a second set of controls

labelOtherCustomerID.DataBindings.Add
 ("Text", ds, "Customers.CustomerID");
textBoxOtherCompanyName.DataBindings.Add
 ("Text", ds, "Customers.CompanyName");
textBoxOtherContactName.DataBindings.Add
 ("Text", ds, "Customers.ContactName");

listBoxOtherCustomers.DataSource = ds;
listBoxOtherCustomers.DisplayMember = "Customers.CompanyName";

To enable these controls to maintain their own position in the data source, independent of the other set, they will need
their own currency manager. We must make sure that they have their own binding context. We could set the
BindingContext property on each control, but it is simpler to exploit the fact that controls will use their parent's binding
context by default. All these controls are children of the GroupBox, so we only have to set the binding on that, as shown
in Example 10-33.

Example 10-33. Specifying a binding context

groupBoxOther.BindingContext = new BindingContext();

This will cause the GroupBox and any of its children to use this newly created context for data binding. They will
therefore all get their own binding manager (and hence their own notion of the current position) rather than using the
one for the form's binding context.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 The DataGrid Control
So far, we have only looked at complex binding to the ListBox control. However, both this control and its close relative
the ComboBox can only show a single property for each item they display. This can be somewhat limiting—in the
previous example, it would have been useful to be able to display more information about the orders. (The Northwind
database contains information about the due date, the actual fulfillment date, the date on which the order was placed,
and the current status of the order, to name a few properties.) Fortunately, Windows Forms supplies a control that
supports complex binding and that does not suffer from these limitations: the DataGrid control.

Like the ListBox and ComboBox controls, the DataGrid control supports complex binding. But unlike those controls, it is
able to display all the properties of each list item instead of a single property. Example 10-34 shows the C# code used
to bind a DataGrid control to the Orders table via the relation with the Customers table.

Example 10-34. DataGrid binding

dataGridOrders.DataSource = ds;
dataGridOrders.DataMember = "Customers.CustomerOrdersRelation";

This is very similar to Example 10-31. The main difference is that where the ListBox control's DisplayMember property was
set to a string that specified both the table to be bound to and the property to be displayed, the DataGrid control's
DataMember property just describes which table to use—the control will display all the properties. (Remember that if you
set the ListBox control's DisplayMember to be the name of the table, it simply calls the data source's ToString method,
which is not normally useful.) The DataGrid control is shown in Figure 10-6.

Figure 10-6. The DataGrid control in action

We now have considerably more information than we really wanted. By default, the DataGrid will display every available
property. In this case, that includes the CustomerID property, which is extraneous because it will always be the ID of
whichever customer is currently selected. We will see how to filter the columns shortly.

Another interesting feature of the DataGrid in Figure 10-6 is that each entry has a + symbol by it. The DataGrid adds this
whenever it displays a table that is related to another table. In this case, it has detected the relation that we set up
between the Orders table and the Order Details table in Example 10-30. Clicking on the plus symbol expands the row to
show all related tables, as shown on the second row. We have only added one related table to the DataSet here, so the
grid just shows Order Details. It is drawn to look like a hyperlink because clicking on it drills down into the table, as
shown in Figure 10-7.

Figure 10-7. DataGrid showing a related table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-7. DataGrid showing a related table

The DataGrid is now showing us all rows from the Order Details table that have the same OrderID as the row we selected
from the Orders table. Notice that this original row from the Orders table is still visible at the top of the control.

The DataGrid allows relations to be explored to any depth. We no longer strictly need the ListBox control showing the
customer—we could just bind the DataGrid to the Customers table, and it would then allow each customer's orders to be
explored in the grid. In this example, our DataSet does not have any tables related to the Order Details table, so the rows
do not have a + symbol, but if we had included further related tables from the database (such as the Products table), we
would be able to drill down further.

So the DataGrid provides a very easy way of allowing users to browse through all the data in a DataSet. The one problem,
as has already been observed, is that it sometimes shows too much, so we will now see how to filter what it shows.

10.4.1 Filtering the DataGrid Display

By default, the DataGrid control will display every available property from the data source. Because this is not always
appropriate, it also provides a mechanism for controlling which columns are shown and how they are presented.

The DataGrid control has a property called TableStyles. This is a collection of DataGridTableStyle objects that control how the
grid will display a particular table. We can add an entry for each table we plan to display to override the grid's default
behavior of showing everything

The DataGridTableStyle object itself has a GridColumnStyles property, which is a collection of DataGridColumnStyle objects.
The DataGrid will display one column for each DataGridColumnStyle object. So to control which columns appear, we must
simply build a DataGridTableStyle object whose GridColumnStyles property only contains DataGridColumnStyle objects for the
columns we wish to display.

Building all these objects from scratch is hard work. If all you want to do is prevent certain columns from appearing, it
is much easier to let the framework build a complete DataGridTableStyle object for you, and then remove the columns you
don't want, as shown in Examples Example 10-35 and Example 10-36.

Example 10-35. Removing unwanted columns from a DataGrid using C#

CurrencyManager cm = BindingContext[ds, "Orders"] as CurrencyManager;
DataGridTableStyle ordersStyle = new DataGridTableStyle(cm);

ordersStyle.GridColumnStyles.Remove(
 ordersStyle.GridColumnStyles["CustomerID"]);
ordersStyle.GridColumnStyles.Remove(
 ordersStyle.GridColumnStyles["OrderID"]);
ordersStyle.GridColumnStyles.Remove(
 ordersStyle.GridColumnStyles["EmployeeID"]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ordersStyle.GridColumnStyles["EmployeeID"]);

dataGridOrders.TableStyles.Add(ordersStyle);

cm = BindingContext[ds, "Order Details"] as CurrencyManager;
DataGridTableStyle detailsStyle = new DataGridTableStyle(cm);

detailsStyle.GridColumnStyles.Remove(
 detailsStyle.GridColumnStyles["OrderID"]);

dataGridOrders.TableStyles.Add(detailsStyle);

Example 10-36. Removing unwanted columns from a DataGrid using VB

Dim cm As CurrencyManager = DirectCast(BindingContext(ds, "Orders"), _
 CurrencyManager)
Dim ordersStyle As New DataGridTableStyle(cm)

ordersStyle.GridColumnStyles.Remove(_
 ordersStyle.GridColumnStyles("CustomerID"))
ordersStyle.GridColumnStyles.Remove(_
 ordersStyle.GridColumnStyles("OrderID"))
ordersStyle.GridColumnStyles.Remove(_
 ordersStyle.GridColumnStyles("EmployeeID"))

dataGridOrders.TableStyles.Add(ordersStyle)

cm = DirectCast(BindingContext(ds, "Order Details"), _
 CurrencyManager)
Dim detailsStyle As New DataGridTableStyle(cm)

detailsStyle.GridColumnStyles.Remove(_
 detailsStyle.GridColumnStyles("OrderID"))

dataGridOrders.TableStyles.Add(detailsStyle)

The easiest way to get the framework to create a fully populated DataGridTableStyle object is to pass the CurrencyManager
for the table in question as a constructor parameter. We then remove the columns we don't wish to see. (In this case,
we are removing all the key columns because they don't contain information that is meaningful to the end user.) We
then add the object to the DataGrid control's TableStyles property, so that the DataGrid knows which columns to display
when showing the Orders table. Because the DataGrid is able to follow relations, it can also show the Order Details table,
so we repeat the process for that table, removing the OrderID column. The result is shown in Figure 10-8.

In general, it is more efficient to filter out unwanted columns at the SQL level—if you do
not need data, you should not ask the database to send it to you because you will be
wasting time, CPU cycles, and network bandwidth. However, in this particular example, we
do not have this luxury. We need the ID columns because we are using them to enable the
relational master/details view, so filtering in the DataGrid is still the correct technique.

Figure 10-8. A DataGrid with filtered columns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DataGrid control's table and column style support is not limited to filtering columns. It can also be used to control
certain aspects of the way in which data is displayed. For example, the DataGridColumnStyle class has a Width property
allowing the column width to be changed, and its HeaderText property allows different text to be shown in the column
header. See the reference section for further details.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.5 The DataView Class
The master/details views shown earlier illustrate that the data-binding architecture is capable of showing a filtered view
of the contents of a table—if you bind a DataGrid or a ListBox to a child of a relation in a data source, you will just see the
related items in the child table instead of all of them. This relational view is just one of the ways in which we can filter
the underlying data. The data-binding architecture also provides the DataView class, whose purpose is to provide
modified views of tables.

We have already been using the DataView class implicitly. The DataSet class itself does not implement all the binding
interfaces discussed earlier—it defers to the DataView. If you call the GetType method on the List property of a
CurrencyManager for a DataSet, you will see that its type is not DataSet or DataTable; it is DataView.

The DataSet provides a default view for each of its tables, and this is the view to which controls will normally bind. We
can modify the default view's properties, as Example 10-37 shows.

Example 10-37. Changing the sort order of the default view

// C# code
ds.Tables["Orders"].DefaultView.Sort = "ShippedDate";

' VB code
ds.Tables("Orders").DefaultView.Sort = "ShippedDate"

This modifies the default DataView for the Orders table, causing it to display the contents sorted by their ShippedDate
column. The DataView class also provides a RowFilter property, allowing the view to filter out rows according to the
specified criteria, as shown in Example 10-38.

Example 10-38. Filtering a DataView

// C# code
ds.Tables["Customers"].DefaultView.RowFilter = "Country = 'UK'";

' VB code
ds.Tables("Customers").DefaultView.RowFilter = "Country = 'UK'"

Row filter expressions provide a subset of the kind of functionality typically available with SQL WHERE clauses. They use
the ADO.NET data expression language, a powerful language whose full capabilities are beyond the scope of this
discussion. But to give a brief flavor of what is available, comparison operators are supported (for comparisons with
constants, or with other column values), a LIKE operator is provided for wildcard filtering, and you can even navigate
relations. For example, the row filter expression "Parent(MyRelation).Name LIKE 'Q*'" requires that the table being filtered
is the child in a relation called MyRelation. A DataView with this filter will only show those rows for which the related row
in the parent table's Name column begins with Q.

Controls usually use the default view for the data source to which they are bound, but you can specify a different view.
Example 10-39 shows how to do this.

Example 10-39. Binding directly to a DataView

// C# code
DataView dv = new DataView(ds.Tables["Customers"]);
dv.RowFilter = "Count(Child(CustomerOrdersRelation).OrderID) > 20";

listBoxCustomers.DataSource = dv;
listBoxCustomers.DisplayMember = "CompanyName";

' VB code
Dim dv As New DataView(ds.Tables("Customers"))
dv.RowFilter = "Count(Child(CustomerOrdersRelation).OrderID) > 20"

listBoxCustomers.DataSource = dv
listBoxCustomers.DisplayMember = "CompanyName"

This creates a new DataView for the Customers table, and specifies this DataView as the DataSource for the ListBox control. It
also illustrates the use of an aggregate function from the data expression language, Count. This filter will only show
rows from the Customers table with more than 20 related entries in the Orders table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.6 Summary
Windows Forms provides a very flexible architecture for binding data sources to control properties. Any property of any
object can act as a data source, and any control can participate. Lists of objects can also act as data sources, and for
these the system will provide a CurrencyManager object to track the current position in the list. Certain controls support
complex binding, which means that they are able to display entire lists at a time. There are also specialized data
sources—the DataTable and DataSet classes allow multiple tables of data to be held in memory along with information
about relations between those tables. Using these, programs can let the user browse through substantial sets of data,
and selectively display related details with a minimal number of round trips to the database. Controls bound to a DataSet
or DataTable always present data as filtered by a DataView. By default, this will either show the whole table or will just
display rows related to a selected item in a parent table, but it is possible to build custom views with arbitrary filtering
criteria. The DataGrid control provides highly specialized support for data binding, allowing all properties of all items in a
table to be displayed, and it can even traverse relations between multiple tables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: API Quick Reference
Part II devotes separate chapters to documenting each of the following eight namespaces, which are
the most commonly used in Windows Forms programming:

Chapter 11, How to Use This Quick Reference
Chapter 12, Converting from C# to VB Syntax
Chapter 13, System.ComponentModel
Chapter 14, System.Drawing
Chapter 15, System.Drawing.Drawing2d
Chapter 16, System.Drawing.Imaging
Chapter 17, System.Drawing.Printing
Chapter 18, System.Drawing.Text
Chapter 19, System.Windows.Forms
Chapter 20, System.Windows.Forms.Design

The chapters are organized alphabetically by namespace name. Information on all types and their
members is shown using C# syntax.

In addition, the initial chapter of Part II explains how to use the documentation, while the second
chapter shows Visual Basic programmers how to convert the C# syntax used in this book to Visual Basic
syntax.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. How to Use This Quick Reference
The quick-reference section that follows packs a lot of information into a small space. This introduction explains how to
get the most out of that information. It describes how the quick reference is organized and how to read the individual
reference entries.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Finding a Quick-Reference Entry
The quick reference is organized into chapters, one per namespace. Each chapter begins with an overview of the
namespace and includes a hierarchy diagram for the types (classes, interfaces, enumerations, delegates, and structs) in
the namespace. Following the overview are quick-reference entries for all the types in the namespace.

All quick-reference entries are expressed using C# syntax. If you're a VB developer, Chapter 12 explains how to
convert from C# to VB syntax.

Figure 11-1 is a sample diagram showing the notation used in this book. This notation is similar to that used in Java in a
Nutshell, but borrows some features from UML.

Abstract classes (or MustInherit classes in Visual Basic) are shown as slanted rectangles, and sealed classes
(NonInheritable in Visual Basic) as octagonal rectangles. Inheritance is shown as a solid line from the subtype, ending
with a hollow triangle that points to the supertype.

There are two notations that indicate interface implementation. The lollipop notation is used most of the time, because
it is easier to read. In some cases, especially where many types implement a given interface, the shaded box notation
with the dashed line is used.

Important relationships between types (associations) are shown with a dashed line ending with an arrow. The figures
don't show every possible association. Some types have strong containing relationships with one another. For example,
a System.Net.WebException includes a System.Net.WebResponse that represents the HTTP response containing the error
details (HTTP status code and error message). To show a relationship such as this, a filled diamond is attached to the
containing type with a solid line that points to the contained type.

Entries are organized alphabetically by type and namespace, so that related types are grouped near each other. Thus,
to look up a quick reference entry for a particular type, you must also know the name of the namespace that contains
that type. Usually, the namespace is obvious from the context, and you should have no trouble looking up the quick-
reference entry you want. Use the tabs on the outside edge of the book and the dictionary-style headers on the upper
outside corner of each page to help you find the namespace and type you are looking for.

Occasionally, you may need to look up a type whose namespace you do not already know. In this case, refer to
Appendix B. This index allows you to look up a type by its name and find out what namespace it is part of.

Figure 11-1. Class hierarchy notation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Reading a Quick-Reference Entry
Each quick-reference entry contains quite a bit of information. The sections that follow describe the structure of a quick-
reference entry, explaining what information is available, where it is found, and what it means. While reading the
descriptions that follow, you will find it helpful to flip through the reference section itself to find examples of the
features being described.

11.2.1 Type Name, Namespace, Assembly, Type Category, and Flags

Each quick-reference entry begins with a four-part title that specifies the name, namespace (followed by the assembly
in parentheses), and type category of the type, and may also specify various additional flags that describe the type. The
type name appears in bold at the upper left of the title. The namespace and assembly appear, in smaller print, in the
lower left, below the type name.

The lower-right portion of the title indicates the type category of the type (class, delegate, enum, interface, or struct).
The class category may include modifiers such as sealed or abstract.

In the upper-right corner of the title you may find a list of flags that describe the type. The possible flags and their
meanings are as follows:

ECMA

The type is part of the ECMA CLI specification.

serializable

The type, or a supertype, implements System.Runtime.Serialization.ISerializable or has been flagged with the
System.Serializable attribute.

marshal by reference

This class, or a superclass, derives from System.MarshalByRefObject.

context bound

This class, or a superclass, derives from System.ContextBoundObject.

disposable

The type implements the System.IDisposable interface.

flag

The enumeration is marked with the System.FlagsAttribute attribute.

11.2.2 Description

The title of each quick-reference entry is followed by a short description of the most important features of the type. This
description may be anywhere from a couple of sentences to several paragraphs long.

11.2.3 Synopsis

The most important part of every quick-reference entry is the synopsis, which follows the title and description. The
synopsis for a type looks a lot like its source code, except that the member bodies are omitted and some additional
annotations are added. If you know C# syntax, you know how to read the type synopsis. If you know VB syntax, refer
to Chapter 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to Chapter 12.

The first line of the synopsis contains information about the type itself. It begins with a list of type modifiers, such as
abstract and sealed. These modifiers are followed by the class, delegate, enum, interface, or struct keyword and then by the
name of the type. The type name may be followed by a colon (:) and a supertype or interfaces that the type
implements.

The type definition line is followed by a list of the members that the type defines. This list includes only those members
that are explicitly declared in the type, are overridden from a base class, or are implementations of an interface
member. Members that are simply inherited from a base class are not shown; you will need to look up the base class
definition to find those members. Once again, if you understand basic C# syntax, you should have no trouble making
sense of these lines. The listing for each member includes the modifiers, type, and name of the member. For methods,
the synopsis also includes the type and name of each method parameter. The member names are in boldface, so it is
easy to scan the list of members looking for the one you want. The names of method parameters are in italics to
indicate that they are not to be used literally. The member listings are printed on alternating gray and white
backgrounds to keep them visually separate.

11.2.3.1 Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use C# syntax, so their
meaning is immediately clear to any C# programmer. There is some auxiliary information associated with each member
synopsis, however, that requires explanation.

The area to the right of the member synopsis is used to display a variety of flags that provide additional information
about the member. Some of these flags indicate additional specification details that do not appear in the member API
itself.

The following flags may be displayed as comments to the right of a member synopsis:

overrides

Indicates that a method overrides a method in one of its supertypes. The flag is followed by the name of the
supertype that the method overrides.

implements

Indicates that a method implements a method in an interface. The flag is followed by the name of the interface
that is implemented.

=

For enumeration fields and constant fields, this flag is followed by the constant value of the field. Only constants
of primitive and String types and constants with the value null are displayed. Some constant values are
specification details, while others are implementation details. Some constants are platform dependent, such as
System.BitConverter.IsLittleEndian. Platform-dependent values shown in this book conform to the
System.PlatformID.Win32NT platform (32-bit Windows NT, 2000, or XP). The reason that symbolic constants are
defined, however, is so you can write code that does not rely directly upon the constant value. Use this flag to
help you understand the type, but do not rely upon the constant values in your own programs.

11.2.3.2 Functional grouping of members

Within a type synopsis, the members are not listed in strict alphabetical order. Instead, they are broken down into
functional groups and listed alphabetically within each group. Constructors, events, fields, methods, and properties are
all listed separately. Instance methods are kept separate from static (class) methods. Public members are listed
separately from protected members. Grouping members by category breaks a type down into smaller, more
comprehensible segments, making the type easier to understand. This grouping also makes it easier for you to find a
desired member.

Functional groups are separated from each other in a type synopsis with C# comments, such as // Public Constructors, //
Protected Instance Properties, and // Events. The various functional categories are as follows (in the order in which they
appear in a type synopsis):

Constructors

Displays the constructors for the type. Public constructors and protected constructors are displayed separately
in subgroupings. If a type defines no constructor at all, the C# compiler adds a default no-argument constructor
that is displayed here. If a type defines only private constructors, it cannot be instantiated, so no constructor
appears. Constructors are listed first because the first thing you do with most types is instantiate them by
calling a constructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calling a constructor.

Fields

Displays all the fields defined by the type, including constants. Public and protected fields are displayed in
separate subgroups. Fields are listed here, near the top of the synopsis, because constant values are often used
throughout the type as legal values for method parameters and return values.

Properties

Lists all the properties of the type, breaking them down into subgroups for public and protected static properties
and public and protected instance properties. After the property name, its accessors (get and/or set) are
shown.

Static Methods

Lists the static methods (class methods) of the type, broken down into subgroups for public static methods and
protected static methods.

Public Instance Methods

Contains all the public instance methods.

Protected Instance Methods

Contains all the protected instance methods.

11.2.4 Class Hierarchy

For any type that has a nontrivial inheritance hierarchy, the synopsis is followed by a "Hierarchy" section. This section
lists all the supertypes of the type, as well as any interfaces implemented by those supertypes. It will also list any
interfaces implemented by an interface. In the hierarchy listing, arrows indicate supertype to subtype relationships,
while the interfaces implemented by a type follow the type name in parentheses. For example, the following hierarchy
indicates that System.IO.Stream implements IDisposable and extends MarshalByRefObject, which itself extends Object:

System.Object System.MarshalByRefObject System.IO.Stream(System.IDisposable)

If a type has subtypes, the "Hierarchy" section is followed by a "Subtypes" section that lists those subtypes. If an
interface has implementations, the "Hierarchy" section is followed by an "Implementations" section that lists those
implementations. While the "Hierarchy" section shows ancestors of the type, the "Subtypes" or "Implementations"
section shows descendants.

11.2.5 Cross-References

The hierarchy section of a quick-reference entry is followed by a number of optional cross-reference sections that
indicate other, related types and methods that may be of interest. These sections are the following:

Passed To

This section lists all the members (from other types) that are passed an object of this type as an argument,
including properties whose values can be set to this type. This is useful when you have an object of a given type
and want to know where it can be used.

Returned By

This section lists all the members that return an object of this type, including properties whose values can take
on this type. This is useful when you know that you want to work with an existing instance of this type, but
don't know how to obtain one.

Valid On

For attributes, this lists the attribute targets that the attribute can be applied to.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For attributes, this lists the attribute targets that the attribute can be applied to.

Associated Events

For delegates, lists the events it can handle.

11.2.6 A Note About Type Names

Throughout the quick reference, you'll notice that types are sometimes referred to by type name alone and at other
times referred to by type name and namespace. If namespaces were always used, the type synopses would become
long and hard to read. On the other hand, if namespaces were never used, it would sometimes be difficult to know what
type was being referred to. The rules for including or omitting the namespace name are complex. They can be
summarized approximately as follows, however:

If the type name alone is ambiguous, the namespace name is always used.

In the case of a very commonly used type like System.Collection.ICollection, the namespace is omitted.

If the type being referred to is part of the current namespace (and has a quick-reference entry in the current
chapter), the namespace is omitted. The namespace is also omitted if the type being referred to is part of a
namespace that contains the current namespace.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Converting from C# to VB Syntax
Although information on all types and their members is shown using C# syntax, it is easy to mentally convert to Visual
Basic syntax. This chapter will provide the information you need to convert the documentation for each type into the
syntax used by Visual Basic.

This chapter does not aim at providing complete coverage of the syntax for each language
element it discusses. Instead, it focuses on direct translation of the syntax of the types
used in Windows Forms programming from C# to VB.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 General Considerations
The most evident difference between C# and VB syntax is that C# uses the semicolon (;) as a statement terminator,
whereas VB uses a line break. Hence, while a statement in C# can occupy multiple lines as long as it is terminated with
a semicolon, a VB statement must occupy a single line. Multiline statements in VB must appear with the VB line
continuation character (a space followed by an underscore) on all but the last line.

A second, and not quite so evident, difference is that C# is case sensitive, whereas VB is not. (Uniform casing for VB
code is enforced by the Visual Studio environment, but it is by no means required.)

Finally, all types and their members have access modifiers that determine the type or member's accessibility. The
keywords for these access modifiers are nearly identical in VB and C#, as Table 12-1 shows.

Table 12-1. Access modifiers in C# and VB
C# keyword VB keyword

public Public

private Private

protected Protected

internal Friend

protected internal Protected Friend

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Classes
C# uses the class statement along with opening and closing braces to indicate the beginning and end of a class
definition. For example:

public class Form : ContainerControl {
 // member definitions
}

In VB, a class definition is indicated by the Class... End Class construct:

Public Class Form
 ' member definitions
End Class

In addition, C# classes can be marked as abstract or sealed; these correspond to the VB MustInherit and NonInheritable
keywords, as shown in Table 12-2.

Table 12-2. C# and equivalent VB class modifiers
C# keyword VB keyword

abstract MustInherit

sealed NonInheritable

C# uses the colon to indicate either inheritance or interface implementation. Both the base class and the implemented
interfaces are part of the class statement. For example:

public class Control : Component, ISynchronizeInvoke, IWin32Window

In VB, a base class and any implemented interfaces are specified on separate lines immediately following the Class
statement. A class's base class is indicated by preceding its name with the Inherits keyword; any implemented interfaces
are indicated by the Implements keyword. Hence, the previous definition of the Control class in C# would appear as
follows in VB:

Public Class Control
 Inherits Component
 Implements ISynchronizeInvoke, IWin32Window
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Structures
C# uses the struct statement along with opening and closing braces to indicate the beginning and end of a structure
definition. For example:

public struct DataGridCell {
 // member definitions
}

In VB, a structure definition is indicated by the Structure... End Structure construct:

Public Structure DataGridCell
 ' member definitions
End Structure

C# uses the colon with structures to indicate interface implementation. Any implemented interfaces are part of the class
statement. In VB, any implemented interfaces are specified by an Implements statement on the line immediately
following the Structure statement. However, none of the structures documented in the reference section of this book use
interface inheritance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Interfaces
C# uses the interface statement along with opening and closing braces to indicate the beginning and end of an interface
definition. For example:

public interface IUIService {
 // member definitions
}

In VB, an interface definition is indicated by the Interface... End Structure construct:

Public Interface IUIService
 ' member definitions
End Interface

C# uses the colon with interfaces to specify any implemented interfaces. For example:

public interface ISite : IServiceProvider

In VB, any implemented interfaces are specified by an Implements statement on the line immediately following the
Interface statement. Hence, the previous definition of ISite in C# would appear as follows in VB:

Public Interface ISite
 Implements IServiceProvider
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Class, Structure, and Interface Members
Classes, structures, and interfaces can contain one or more fields, methods, properties, and events. This section will
discuss converting the C# syntax for each of these constructs to VB.

Note that .NET supports both static (or shared) members (which apply to the type as a whole, and typically do not
require that an object of that type be instantiated) and instance members (which apply only to an instance of that
type). Shared or static members are indicated by using the static keyword in C#. For example:

public static bool IsMnemonic(char charCode, string text);

The corresponding VB keyword is Shared. Hence, the FromResource method, when converted to VB, has the following
syntax:

Public Shared Function IsMnemonic(charCode As Char, text As String) _
 As Boolean

12.5.1 Fields

A field is simply a constant or a variable that is exposed as a publicly accessible member of a type. In C#, for example,
the Nowhere field of the DataGrid.HitTestInfo class has the syntax:

public static readonly DataGrid.HitTestInfo Nowhere;

Note that C# indicates the data type of a field before the name of the field. (For C# data types and their VB
equivalents, see Table 12-3.) Also note that fields are most often read-only. Constant fields, in fact, are always read-
only. As a result, the use of the C# readonly keyword and the VB ReadOnly keyword with fields is quite common.

The syntax for the Nowhere field in Visual Basic then becomes:

Public Shared ReadOnly Nowhere As DataGrid.HitTestInfo

12.5.2 Methods

In C#, all methods have a return value, which appears before the name of the function; in contrast, VB differentiates
between function and subprocedures. C# functions without an explicit return value return void. For example, one of the
overloads of the Bitmap class's MakeTransparent method has the following syntax in C#:

public void MakeTransparent();

C# methods that return void are expressed as subprocedures in VB. So the corresponding syntax of the MakeTransparent
method is:

Public Sub MakeTransparent()

All C# methods other than those returning void are functions in VB. The function's return value follows appears in an As
clause at the end of the function declaration. C# data types and their VB equivalents are shown in Table 12-3. Methods
that return arrays are indicated by adding braces ([]) to the return data type in C# and parentheses (())to the return
data type in VB.

For example, the Focus method of the Control class has the C# syntax:

public bool Focus();

The VB equivalent is:

Public Function Focus() As Boolean

Table 12-3. C# data types and their VB equivalents
C# data type VB data type

bool Boolean

byte Byte

char Char

decimal Decimal

double Double

float Single

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

float Single

int Integer

long Long

object Object

sbyte System.SByte

short Short

string String

System.Currency Currency

System.DateTime Date

uint System.UInt32

ulong System.UInt64

ushort System.UInt16

<class_name> <class_name>

<delegate_name> <delegate_name>

<interface_name> <interface_name>

<structure_name> <structure_name>

Method parameters in C# take the general form:

<data_type> <parameter_name>

In VB, method parameters take the form:

<parameter_name> As <data_type>

where <data_type> is any of the data types listed in Table 12-3. If a parameter is an array, its data type is followed by
braces in C# (e.g., string[] Name), while the parameter name is followed by parentheses in VB (e.g., Name() As String).

For example, one of the versions of the Color class's FromArgb method has the following syntax in C#:

public static Color FromArgb(int red, int green, int blue);

Its VB equivalent is:

Public Shared Function FromArgb(red As Integer, _
 green As Integer, _
 blue As Integer) As Color

VB allows methods to be called using either named or positional parameters. If named
parameters are used, the parameter name must correspond to that shown in the
documentation. For instance, Color.FromArgb can be called as follows using named
parameters:

NewColor = Color.FromArgb(blue:=125, _
 red:=125,
 green:=125)

C# also uses a number of object-oriented qualifiers with methods. These, and their VB equivalents, are shown in Table
12-4.

Table 12-4. C# keywords used with methods and their VB equivalents
C# keyword VB keyword

abstract MustOverride

override Overrides

sealed NotOverridable

virtual Overridable

In both C# and VB, constructors have a special syntax. In C#, constructors have the same name as the classes whose
objects they instantiate and do not indicate a return value. For example, the constructor for the Button class is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

objects they instantiate and do not indicate a return value. For example, the constructor for the Button class is:

public Button();

In VB, the constructor is represented by a call to a class's New subprocedure. The equivalent call to the Button class
constructor in VB is:

Public Sub New()

12.5.3 Properties

The FileDialog.Title property provides a more or less typical example of a property definition using C# syntax:

public string Title {get; set;}

Like all C# type definitions, the property's data type precedes the property name. The get; and set; property accessors
indicate that this is a read-write property. Read-only properties are indicated with a get; only, while write-only
properties are indicated with a set; only.

The equivalent VB property definition is:

Public Property Title As String

Note that read-write properties are not decorated with additional keywords in VB. Read-only properties, on the other
hand, are indicated with the ReadOnly keyword in front of the Property keyword, while write-only properties have the
WriteOnly keyword before the Property keyword.

The shared ProductName property of the Application class is read-only. Its C# syntax appears as follows:

public static string ProductName {get;}

The corresponding VB syntax is:

Public Shared ReadOnly Property ProductName As String

Note that properties, like methods, can use the object-oriented modifiers listed in Table 12-4.

12.5.4 Events

Events are declared in C# using the event keyword, which is followed by the delegate type returned by the event and
the name of the event. For example, the Parse event of the Binding class has the following syntax:

public event ConvertEventHandler Parse;

The equivalent VB syntax is:

Public Event Parse As ConvertEventHandler

In addition, the C# event and the VB Event keywords can be preceded by the object modifiers listed in Table 12-4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 Delegates
The syntax for a delegate in C# closely follows the syntax for a method. The delegate statement is followed by the
delegate's return type (or void, if there is none) and the delegate name. This in turn is followed by the delegate's
parameter list, in which each parameter takes the form:

<parameter_type> <parameter_name>

For example:

public delegate void DragEventHandler(
 object sender,
 DragEventArgs e);

In a VB Delegate statement, the Delegate keyword is followed by the Sub keyword (if the delegate returns a void in C#) or
the Function keyword (if the delegate returns some other value). For example, in VB, the DragEventHandler delegate has
the following syntax:

Public Delegate Sub DragEventHandler(_
 sender As Object, _
 e As DragEventArgs)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.7 Enumerations
C# uses the enum statement along with opening and closing braces to indicate the beginning and end of an enumeration
definition. For example:

public enum CheckedState {
 // enumeration members
}

In VB, an enumeration is defined by the Enum... End Enum construct. For example, the VB version of the CheckedState
enum declaration is:

Public Enum CheckedState
 ' enumeration members
End Enum

In both C# and VB, the member listing consists of the name of the enumerated member and its value. These are
identical in C# and VB, except that C# adds a comma to separate one member of the enumeration from another,
whereas VB requires that they be on separate lines. For example, the full declaration of the CheckedState enumeration in
C# is:

public enum CheckedState {
 Unchecked = 0,
 Checked = 1,
 Indeterminate = 2
}

The VB equivalent is:

Public Enum CheckedState
 Unchecked = 0
 Checked = 1
 Indeterminate = 2
End Enum
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. The System.ComponentModel
Namespace
The System.ComponentModel namespace provides many of the classes that support the design-time features of the
framework. The key class is Component, which provides a means of encapsulating a class for design-time hosting.
IContainer and ISite provide a means to host Component objects and bind them to the design-time environment. Support
for custom designers is provided by the System.ComponentModel.Design.IDesigner interface,
System.Drawing.Design.UITypeEditor, and custom TypeConverter classes. Figure 13-1 shows many types from this
namespace.

There are also a number of classes related to license management.

The designer environment is largely controlled through metadata provided by custom attributes. Classes and properties
are adorned with these attributes to indicate how they should appear in the designer host, which custom designers to
use, and how they should be serialized. Figure 13-2 shows the attributes in this namespace.

Note that several of the essential classes for the design-time environment can be found in System.ComponentModel.Design,
System.Windows.Forms.Design, and System.Drawing.Design.

In addition to the design-time component support, this namespace has become a dumping ground for classes (such as
IListSource) that support the data-binding framework, but are not specifically UI related (and hence, are not to be found
in the System.Windows.Forms namespace). There are also a couple of refugees from System.Configuration relating to the
System.Configuration.Install.Installer framework.

Figure 13-1 shows the delegates and event arguments from this namespace, and Figure 13-1 shows type converters
and miscellaneous types.

Figure 13-1. Many types from the System.ComponentModel namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-2. Attributes from this namespace

Figure 13-3. Delegates and event arguments from the System.ComponentModel
namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

namespace

Figure 13-4. Type converters and miscellaneous types from this namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AmbientValueAttribute

System.ComponentModel (system.dll) sealed class

If a control defines a property that can take an ambient value from its host, it must be decorated with this attribute.
The designer will use this attribute to determine whether to persist the control's current value, or whether to leave it to
the ambient environment. You can retrieve the Value for the object that represents "use the ambient value."

public sealed class AmbientValueAttribute : Attribute {
// Public Constructors
 public AmbientValueAttribute(bool value);
 public AmbientValueAttribute(byte value);
 public AmbientValueAttribute(char value);
 public AmbientValueAttribute(double value);
 public AmbientValueAttribute(short value);
 public AmbientValueAttribute(int value);
 public AmbientValueAttribute(long value);
 public AmbientValueAttribute(object value);
 public AmbientValueAttribute(float value);
 public AmbientValueAttribute(string value);
 public AmbientValueAttribute(Type type, string value);
// Public Instance Properties
 public object Value{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute AmbientValueAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ArrayConverter

System.ComponentModel (system.dll) class

This TypeConverter class will convert an array to a variety of other representations for persistence and design-time
scenarios. You should not normally call this class directly in your own code.

public class ArrayConverter : CollectionConverter {
// Public Constructors
 public ArrayConverter();
// Public Instance Methods
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides CollectionConverter
 public override PropertyDescriptorCollection GetProperties(
 ITypeDescriptorContext context, object value, Attribute[] attributes); // overrides CollectionConverter
 public override bool GetPropertiesSupported(ITypeDescriptorContext context); // overrides CollectionConverter
}

Hierarchy

System.Object TypeConverter CollectionConverter ArrayConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AttributeCollection

System.ComponentModel (system.dll) class

This class, used by the TypeDescriptor.GetAttributes() method, represents a collection of Attribute objects.

In addition to the basic collection functionality, you can use the Contains() method to determine whether a particular
attribute or array of attributes is represented in the collection. Alternatively, you can use the Matches() method to
determine whether the collection contains attributes with exactly matching attribute data.

public class AttributeCollection : ICollection, IEnumerable {
// Public Constructors
 public AttributeCollection(Attribute[] attributes);
// Public Static Fields
 public static readonly AttributeCollection Empty; // =System.ComponentModel.AttributeCollection
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual Attribute this{get; }
 public virtual Attribute this{get; }
// Public Instance Methods
 public bool Contains(Attribute attribute);
 public bool Contains(Attribute[] attributes);
 public void CopyTo(Array array, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public bool Matches(Attribute attribute);
 public bool Matches(Attribute[] attributes);
// Protected Instance Methods
 protected Attribute GetDefaultAttribute(Type attributeType);
}

Returned By

IComNativeDescriptorHandler.GetAttributes(), ICustomTypeDescriptor.GetAttributes(), MemberDescriptor.{Attributes,
CreateAttributeCollection()}, TypeDescriptor.GetAttributes(), System.Windows.Forms.PropertyGrid.BrowsableAttributes

Passed To

System.Windows.Forms.PropertyGrid.BrowsableAttributes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BaseNumberConverter

System.ComponentModel (system.dll) abstract class

This abstract class provides a base for TypeConverter implementations that translates integer numeric types (such as int).

It also provides an implementation that converts string objects, including those with hexadecimal representations.

public abstract class BaseNumberConverter : TypeConverter {
// Protected Constructors
 protected BaseNumberConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type t); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter BaseNumberConverter

Subclasses

ByteConverter, DecimalConverter, DoubleConverter, Int16Converter, Int32Converter, Int64Converter, SByteConverter, SingleConverter,
UInt16Converter, UInt32Converter, UInt64Converter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BindableAttribute

System.ComponentModel (system.dll) sealed class

This attribute class is applied to properties to indicate to the designer that you would normally expect to use them in a
data-binding scenario.

While you can use the data-binding framework to bind to any property, this attribute allows you to hint to the designer
that this property should be listed in any preferred set of bound properties.

You can use the Bindable property to determine the state of the attribute, but you must compare to the static
BindableSupport.Yes or BindableSupport.No values for equality.

public sealed class BindableAttribute : Attribute {
// Public Constructors
 public BindableAttribute(BindableSupport flags);
 public BindableAttribute(bool bindable);
// Public Static Fields
 public static readonly BindableAttribute Default; // =System.ComponentModel.BindableAttribute
 public static readonly BindableAttribute No; // =System.ComponentModel.BindableAttribute
 public static readonly BindableAttribute Yes; // =System.ComponentModel.BindableAttribute
// Public Instance Properties
 public bool Bindable{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute BindableAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BindableSupport serializable

System.ComponentModel (system.dll) enum

This enumeration specifies the possible settings for BindableAttribute.

public enum BindableSupport {
 No = 0,
 Yes = 1,
 Default = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
BindableSupport

Passed To

BindableAttribute.BindableAttribute(), ListBindableAttribute.ListBindableAttribute()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BooleanConverter

System.ComponentModel (system.dll) class

This TypeConverter translates a Boolean into other representations for serialization and design-time scenarios. You
should not call this directly from your own code.

public class BooleanConverter : TypeConverter {
// Public Constructors
 public BooleanConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override StandardValuesCollection GetStandardValues(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesExclusive(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesSupported(ITypeDescriptorContext context); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter BooleanConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BrowsableAttribute

System.ComponentModel (system.dll) sealed class

This attribute class is applied to properties to indicate whether they should be shown in a designer. Note that
unattributed properties are visible by default.

Use the Browsable property to determine the state of the attribute. Note that the constructor takes a Boolean value, but
you can compare instances against the Yes or No values for equality.

public sealed class BrowsableAttribute : Attribute {
// Public Constructors
 public BrowsableAttribute(bool browsable);
// Public Static Fields
 public static readonly BrowsableAttribute Default; // =System.ComponentModel.BrowsableAttribute
 public static readonly BrowsableAttribute No; // =System.ComponentModel.BrowsableAttribute
 public static readonly BrowsableAttribute Yes; // =System.ComponentModel.BrowsableAttribute
// Public Instance Properties
 public bool Browsable{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute BrowsableAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ByteConverter

System.ComponentModel (system.dll) class

This TypeConverter translates a Byte into other representations for serialization and design-time scenarios. You should not
call this directly from your own code.

public class ByteConverter : BaseNumberConverter {
// Public Constructors
 public ByteConverter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter ByteConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CancelEventArgs

System.ComponentModel (system.dll) class

This class should be used as the base for classes that encapsulate the data for events that can be canceled.

It provides a Cancel property that can be set by the client of the event to indicate that the action that raised the event
should be aborted.

public class CancelEventArgs : EventArgs {
// Public Constructors
 public CancelEventArgs();
 public CancelEventArgs(bool cancel);
// Public Instance Properties
 public bool Cancel{set; get; }
}

Hierarchy

System.Object System.EventArgs CancelEventArgs

Subclasses

System.Drawing.Printing.PrintEventArgs, System.Windows.Forms.{InputLanguageChangingEventArgs, TreeViewCancelEventArgs}

Passed To

CancelEventHandler.{BeginInvoke(), Invoke()}, System.Windows.Forms.Control.OnValidating(),
System.Windows.Forms.FileDialog.OnFileOk(), System.Windows.Forms.Form.OnClosing()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CancelEventHandler serializable

System.ComponentModel (system.dll) delegate

This is a delegate for events that use the CancelEventArgs class.

public delegate void CancelEventHandler(object sender, CancelEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CategoryAttribute

System.ComponentModel (system.dll) class

This attribute class should be applied to properties to indicate to the design-time environment how they should be
visually grouped within a designer.

You can retrieve the Category, which may be one of several standard values (such as Appearance and Behavior) that are
defined through static properties.

Note that if you choose one of these standard values, they will be localized for you automatically. If you choose a
custom value, you are responsible for localization yourself.

public class CategoryAttribute : Attribute {
// Public Constructors
 public CategoryAttribute();
 public CategoryAttribute(string category);
// Public Static Properties
 public static CategoryAttribute Action{get; }
 public static CategoryAttribute Appearance{get; }
 public static CategoryAttribute Behavior{get; }
 public static CategoryAttribute Data{get; }
 public static CategoryAttribute Default{get; }
 public static CategoryAttribute Design{get; }
 public static CategoryAttribute DragDrop{get; }
 public static CategoryAttribute Focus{get; }
 public static CategoryAttribute Format{get; }
 public static CategoryAttribute Key{get; }
 public static CategoryAttribute Layout{get; }
 public static CategoryAttribute Mouse{get; }
 public static CategoryAttribute WindowStyle{get; }
// Public Instance Properties
 public string Category{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
// Protected Instance Methods
 protected virtual string GetLocalizedString(string value);
}

Hierarchy

System.Object System.Attribute CategoryAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CharConverter

System.ComponentModel (system.dll) class

This TypeConverter transforms to and from a char representation for serialization and design-time scenarios. You should
not normally call this class directly from your own code.

public class CharConverter : TypeConverter {
// Public Constructors
 public CharConverter();
// Public Instance Methods
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter CharConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CollectionChangeAction serializable

System.ComponentModel (system.dll) enum

This enumeration defines how a collection has changed for the CollectionChangeEventArgs. This is used in data-binding
applications to notify interested parties that a data source has been modified in some way (e.g., the
System.Data.DataColumnCollection.CollectionChanged event).

public enum CollectionChangeAction {
 Add = 1,
 Remove = 2,
 Refresh = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CollectionChangeAction

Returned By

CollectionChangeEventArgs.Action

Passed To

CollectionChangeEventArgs.CollectionChangeEventArgs()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CollectionChangeEventArgs

System.ComponentModel (system.dll) class

This class encapsulates the data for the various CollectionChanged events raised by the collection classes in the
System.Data namespace, such as the System.Data.DataTableCollection and System.Data.DataColumnCollection.

You can determine how the collection changed using the Action property, and which value actually changed with Element.

Although this class is present to support the data-binding framework, there is no reason you cannot use it in your own
notifying collection classes.

public class CollectionChangeEventArgs : EventArgs {
// Public Constructors
 public CollectionChangeEventArgs(CollectionChangeAction action, object element);
// Public Instance Properties
 public virtual CollectionChangeAction Action{get; }
 public virtual object Element{get; }
}

Hierarchy

System.Object System.EventArgs CollectionChangeEventArgs

Passed To

CollectionChangeEventHandler.{BeginInvoke(), Invoke()}, System.Windows.Forms.BindingContext.OnCollectionChanged(),
System.Windows.Forms.BindingsCollection.OnCollectionChanged(),
System.Windows.Forms.GridColumnStylesCollection.OnCollectionChanged(),
System.Windows.Forms.GridTableStylesCollection.OnCollectionChanged()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CollectionChangeEventHandler serializable

System.ComponentModel (system.dll) delegate

This is the delegate for events that use the CollectionChangeEventArgs class to encapsulate their data.

public delegate void CollectionChangeEventHandler(object sender, CollectionChangeEventArgs e);

Associated Events

System.Windows.Forms.BindingContext.CollectionChanged(), System.Windows.Forms.BindingsCollection.CollectionChanged(),
System.Windows.Forms.ControlBindingsCollection.CollectionChanged(),
System.Windows.Forms.GridColumnStylesCollection.CollectionChanged(),
System.Windows.Forms.GridTableStylesCollection.CollectionChanged()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CollectionConverter

System.ComponentModel (system.dll) class

This TypeConverter translates classes that implement System.Collections.ICollection to and from other types. This is used in
serialization and design-time scenarios, and you would not normally class this class directly from your own code.

public class CollectionConverter : TypeConverter {
// Public Constructors
 public CollectionConverter();
// Public Instance Methods
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
 public override PropertyDescriptorCollection GetProperties(
 ITypeDescriptorContext context, object value, Attribute[] attributes); // overrides TypeConverter
 public override bool GetPropertiesSupported(ITypeDescriptorContext context); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter CollectionConverter

Subclasses

ArrayConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Component marshal by reference, disposable

System.ComponentModel (system.dll) class

This is the base for classes that can be hosted in a container such as those provided by the design-time environment.
Note that it is a marshal-by-reference object. If you need marshal-by-value semantics, use MarshalByValueComponent.

You can obtain the Container that hosts the component and the Site that binds the component to the container. Derived
classes also can use the protected DesignMode property to determine whether the class is hosted in a designer.

Note that the class implements the IDisposable interface. The Container ensures that the object is disposed correctly (if
you have a Container, but you should ensure that your resource release code is added to the Dispose() method.

There are actually two dispose methods, and you would normally override the protected member that takes a Boolean.
This is to support different cleanup behavior when Dispose() is called by the Container, and when it is called by the
Component object's finalizer.

Typically, Component-derived classes are those non-windowed classes that you wish to present in the designer
environment. They can use the GetService() method of the Site to make use of facilities provided by the designer host.

Classes that display a window should derive instead from System.Windows.Forms.Control, which itself derives from
Component.

public class Component : MarshalByRefObject : IComponent, IDisposable {
// Public Constructors
 public Component();
// Public Instance Properties
 public IContainer Container{get; }
 public virtual ISite Site{set; get; }
// implements IComponent
// Protected Instance Properties
 protected bool DesignMode{get; }
 protected EventHandlerList Events{get; }
// Public Instance Methods
 public void Dispose(); // implements IDisposable
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
 protected virtual object GetService(Type service);
// Events
 public event EventHandler Disposed;
// implements IComponent
}

Hierarchy

System.Object System.MarshalByRefObject Component(IComponen, System.IDisposable)

Subclasses

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentCollection

System.ComponentModel (system.dll) class

This class encapsulates the collection of Component objects owned by the Container. Note that while this collection is
read-only, you add components to the Container using the IContainer.Add() method.

public class ComponentCollection : ReadOnlyCollectionBase {
// Public Constructors
 public ComponentCollection(IComponent[] components);
// Public Instance Properties
 public virtual IComponent this{get; }
 public virtual IComponent this{get; }
// Public Instance Methods
 public void CopyTo(IComponent[] array, int index);
}

Hierarchy

System.Object System.Collections.ReadOnlyCollectionBase(System.Collections.ICollectio, System.Collections.IEnumerable)
ComponentCollection

Returned By

Container.Components, IContainer.Components
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentConverter

System.ComponentModel (system.dll) class

This TypeConverter is used to transform to and from Component-derived classes in serialization and design-time scenarios.
You would not normally call this class directly from your own code.

public class ComponentConverter : ReferenceConverter {
// Public Constructors
 public ComponentConverter(Type type);
// Public Instance Methods
 public override PropertyDescriptorCollection GetProperties(
 ITypeDescriptorContext context, object value, Attribute[] attributes); // overrides TypeConverter
 public override bool GetPropertiesSupported(ITypeDescriptorContext context); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter ReferenceConverter ComponentConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentEditor

System.ComponentModel (system.dll) abstract class

This is the abstract base class for a custom editor for a Component. You should override the EditComponent() method to
display a modal user interface, which the designer can use to configure the object.

System.Windows.Forms.Design.WindowsFormsComponentEditor provides a base for a property sheet-like implementation of
this class.

public abstract class ComponentEditor {
// Protected Constructors
 protected ComponentEditor();
// Public Instance Methods
 public abstract bool EditComponent(ITypeDescriptorContext context, object component);
 public bool EditComponent(object component);
}

Subclasses

System.Windows.Forms.Design.WindowsFormsComponentEditor

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Container disposable

System.ComponentModel (system.dll) class

This class provides an implementation of the IContainer interface to encapsulate a queue of Component objects.

You can Add() and Remove() components from the queue, and get a collection of all the Components it contains.

When an instance is disposed, it will call Dispose() on all the Component objects it owns.

public class Container : IContainer, IDisposable {
// Public Constructors
 public Container();
// Public Instance Properties
 public virtual ComponentCollection Components{get; }
// implements IContainer
// Public Instance Methods
 public virtual void Add(IComponent component); // implements IContainer
 public virtual void Add(IComponent component, string name); // implements IContainer
 public void Dispose(); // implements IDisposable
 public virtual void Remove(IComponent component); // implements IContainer
// Protected Instance Methods
 protected virtual ISite CreateSite(IComponent component, string name);
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
 protected virtual object GetService(Type service);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CultureInfoConverter

System.ComponentModel (system.dll) class

This TypeConverter transforms a System.Globalization.CultureInfo object to and from other types in serialization and design-
time scenarios. You would not normally call this class directly from your own code.

public class CultureInfoConverter : TypeConverter {
// Public Constructors
 public CultureInfoConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
 public override StandardValuesCollection GetStandardValues(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesExclusive(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesSupported(ITypeDescriptorContext context); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter CultureInfoConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateTimeConverter

System.ComponentModel (system.dll) class

As a TypeConverter class, this transforms to and from the System.DateTime type in serialization and design-time scenarios.
You would not normally call this class from your own code.

public class DateTimeConverter : TypeConverter {
// Public Constructors
 public DateTimeConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter DateTimeConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DecimalConverter

System.ComponentModel (system.dll) class

This class, derived from TypeConverter, transforms between Decimal and other types, for serialization and design-time
applications. You would not normally call this class from your own code.

public class DecimalConverter : BaseNumberConverter {
// Public Constructors
 public DecimalConverter();
// Public Instance Methods
 public override bool CanConvertTo(ITypeDescriptorContext context,
 Type destinationType); // overrides BaseNumberConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides BaseNumberConverter
}

Hierarchy

System.Object TypeConverter BaseNumberConverter DecimalConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DefaultEventAttribute

System.ComponentModel (system.dll) sealed class

This attribute decorates a class to indicate which of the events should be the default. The VS.NET designers will add
code to handle the default event when the component is double-clicked.

You can retrieve the Name of the default Attribute.

public sealed class DefaultEventAttribute : Attribute {
// Public Constructors
 public DefaultEventAttribute(string name);
// Public Static Fields
 public static readonly DefaultEventAttribute Default; // =System.ComponentModel.DefaultEventAttribute
// Public Instance Properties
 public string Name{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DefaultEventAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DefaultPropertyAttribute

System.ComponentModel (system.dll) sealed class

Decorate a class with this attribute to indicate which of the properties should be treated as the default.

You can retrieve the Name of the default property from the attribute.

public sealed class DefaultPropertyAttribute : Attribute {
// Public Constructors
 public DefaultPropertyAttribute(string name);
// Public Static Fields
 public static readonly DefaultPropertyAttribute Default; // =System.ComponentModel.DefaultPropertyAttribute
// Public Instance Properties
 public string Name{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DefaultPropertyAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DefaultValueAttribute

System.ComponentModel (system.dll) sealed class

This attribute decorates a property to indicate its default value. The VS.NET designer will display a property that is set
to its default value using a plain style, whereas non-default values will be displayed in bold.

You should ensure that the Value of the attribute matches the initial value assigned to the property, as code generators
may choose not to persist default properties.

public sealed class DefaultValueAttribute : Attribute {
// Public Constructors
 public DefaultValueAttribute(bool value);
 public DefaultValueAttribute(byte value);
 public DefaultValueAttribute(char value);
 public DefaultValueAttribute(double value);
 public DefaultValueAttribute(short value);
 public DefaultValueAttribute(int value);
 public DefaultValueAttribute(long value);
 public DefaultValueAttribute(object value);
 public DefaultValueAttribute(float value);
 public DefaultValueAttribute(string value);
 public DefaultValueAttribute(Type type, string value);
// Public Instance Properties
 public object Value{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DefaultValueAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DescriptionAttribute

System.ComponentModel (system.dll) class

You can decorate a property with this attribute to provide some descriptive help text (the Description).

public class DescriptionAttribute : Attribute {
// Public Constructors
 public DescriptionAttribute();
 public DescriptionAttribute(string description);
// Public Static Fields
 public static readonly DescriptionAttribute Default; // =System.ComponentModel.DescriptionAttribute
// Public Instance Properties
 public virtual string Description{get; }
// Protected Instance Properties
 protected string DescriptionValue{set; get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DescriptionAttribute

Subclasses

System.Diagnostics.MonitoringDescriptionAttribute, System.IO.IODescriptionAttribute, System.Timers.TimersDescriptionAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DesignerAttribute

System.ComponentModel (system.dll) sealed class

To provide a custom designer for a Component or System.Windows.Forms.Control, you should decorate the class with this
attribute. (See EditorAttribute for information on custom type editors for a specific property within a component).

You can specify the DesignerTypeName: the name of the type that implements the System.ComponentModel.Design.IDesigner
interface on behalf of our designable class. You can also specify the base type of the designer with
DesignerBaseTypeName. While this would default to System.ComponentModel.Design.IDesigner, you can specify a different
System.ComponentModel.Design.IDesigner-derived interface such as System.ComponentModel.Design.IRootDesigner

public sealed class DesignerAttribute : Attribute {
// Public Constructors
 public DesignerAttribute(string designerTypeName);
 public DesignerAttribute(string designerTypeName, string designerBaseTypeName);
 public DesignerAttribute(string designerTypeName, Type designerBaseType);
 public DesignerAttribute(Type designerType);
 public DesignerAttribute(Type designerType, Type designerBaseType);
// Public Instance Properties
 public string DesignerBaseTypeName{get; }
 public string DesignerTypeName{get; }
 public override object TypeId{get; }
// overrides Attribute
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DesignerAttribute

Valid On

Class, Interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DesignerCategoryAttribute

System.ComponentModel (system.dll) sealed class

You should apply this attribute to a class with a custom designer to indicate the nature of that designer. The design-
time environment is entitled to refuse to use your designer if you do not supply this attribute.

The Category should be chosen from one of the standard options (Component, Form, or Generic) if you wish to integrate
with the VS.NET designers. You could extend this with your own custom categories if you are providing your own
design-time host.

public sealed class DesignerCategoryAttribute : Attribute {
// Public Constructors
 public DesignerCategoryAttribute();
 public DesignerCategoryAttribute(string category);
// Public Static Fields
 public static readonly DesignerCategoryAttribute Component; // =System.ComponentModel.DesignerCategoryAttribute
 public static readonly DesignerCategoryAttribute Default; // =System.ComponentModel.DesignerCategoryAttribute
 public static readonly DesignerCategoryAttribute Form; // =System.ComponentModel.DesignerCategoryAttribute
 public static readonly DesignerCategoryAttribute Generic; // =System.ComponentModel.DesignerCategoryAttribute
// Public Instance Properties
 public string Category{get; }
 public override object TypeId{get; }
// overrides Attribute
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DesignerCategoryAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DesignerSerializationVisibility serializable

System.ComponentModel (system.dll) enum

This enumeration lists the options for DesignerSerializationVisibilityAttribute.

public enum DesignerSerializationVisibility {
 Hidden = 0,
 Visible = 1,
 Content = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DesignerSerializationVisibility

Returned By

DesignerSerializationVisibilityAttribute.Visibility, PropertyDescriptor.SerializationVisibility

Passed To

DesignerSerializationVisibilityAttribute.DesignerSerializationVisibilityAttribute()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DesignerSerializationVisibilityAttribute

System.ComponentModel (system.dll) sealed class

Some properties may be visible in the designer, but should not be serialized. Alternatively, you may need to serialize the
Content of the property rather than its value (as might be the case with a collection class). In these circumstances, you
should adorn the property with this attribute.

The standard visibility options are presented through the static Content, Hidden, and Visible members. The default is Visible.
You can also determine the Visibility encapsulated in the attribute.

public sealed class DesignerSerializationVisibilityAttribute : Attribute {
// Public Constructors
 public DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility visibility);
// Public Static Fields
 public static readonly DesignerSerializationVisibilityAttribute Content; // =System.ComponentModel.DesignerSerializationVisibilityAttribute
 public static readonly DesignerSerializationVisibilityAttribute Default; // =System.ComponentModel.DesignerSerializationVisibilityAttribute
 public static readonly DesignerSerializationVisibilityAttribute Hidden; // =System.ComponentModel.DesignerSerializationVisibilityAttribute
 public static readonly DesignerSerializationVisibilityAttribute Visible; // =System.ComponentModel.DesignerSerializationVisibilityAttribute
// Public Instance Properties
 public DesignerSerializationVisibility Visibility{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DesignerSerializationVisibilityAttribute

Valid On

Method, Property

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DesignOnlyAttribute

System.ComponentModel (system.dll) sealed class

You can mark a property with this attribute to indicate that its value can be modified only at design time. This indicates
that no code will be generated when the user changes the property in the designer.

Compare this with the ReadOnlyAttribute, which will prevent the designer from modifying the value.

public sealed class DesignOnlyAttribute : Attribute {
// Public Constructors
 public DesignOnlyAttribute(bool isDesignOnly);
// Public Static Fields
 public static readonly DesignOnlyAttribute Default; // =System.ComponentModel.DesignOnlyAttribute
 public static readonly DesignOnlyAttribute No; // =System.ComponentModel.DesignOnlyAttribute
 public static readonly DesignOnlyAttribute Yes; // =System.ComponentModel.DesignOnlyAttribute
// Public Instance Properties
 public bool IsDesignOnly{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DesignOnlyAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DesignTimeVisibleAttribute

System.ComponentModel (system.dll) sealed class

This is internal to framework and should not be used in your own applications.

public sealed class DesignTimeVisibleAttribute : Attribute {
// Public Constructors
 public DesignTimeVisibleAttribute();
 public DesignTimeVisibleAttribute(bool visible);
// Public Static Fields
 public static readonly DesignTimeVisibleAttribute Default; // =System.ComponentModel.DesignTimeVisibleAttribute
 public static readonly DesignTimeVisibleAttribute No; // =System.ComponentModel.DesignTimeVisibleAttribute
 public static readonly DesignTimeVisibleAttribute Yes; // =System.ComponentModel.DesignTimeVisibleAttribute
// Public Instance Properties
 public bool Visible{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute DesignTimeVisibleAttribute

Valid On

Class, Interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DoubleConverter

System.ComponentModel (system.dll) class

This TypeConverter is used to transform a double to and from other types in serialization and design-time scenarios. You
would not normally use this class directly in your own code.

public class DoubleConverter : BaseNumberConverter {
// Public Constructors
 public DoubleConverter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter DoubleConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EditorAttribute

System.ComponentModel (system.dll) sealed class

You can decorate a specific property, or an entire, class with this attribute to indicate a custom editor that should be
used to modify the type. Similar to DesignerAttribute, you can specify EditorTypeName, and EditorBaseTypeName. Note that
this must be System.Drawing.Design.UITypeEditor.

See System.Drawing.Design.UITypeEditor for more details.

public sealed class EditorAttribute : Attribute {
// Public Constructors
 public EditorAttribute();
 public EditorAttribute(string typeName, string baseTypeName);
 public EditorAttribute(string typeName, Type baseType);
 public EditorAttribute(Type type, Type baseType);
// Public Instance Properties
 public string EditorBaseTypeName{get; }
 public string EditorTypeName{get; }
 public override object TypeId{get; }
// overrides Attribute
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute EditorAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EditorBrowsableAttribute

System.ComponentModel (system.dll) sealed class

This attribute is used to adorn classes, structs, and members to indicate whether they should appear in an editor. You
can retrieve EditorBrowsableState for the attribute using the State property. It determines which fields appear in the
IntelliSense pop-up menus in the editor.

public sealed class EditorBrowsableAttribute : Attribute {
// Public Constructors
 public EditorBrowsableAttribute();
 public EditorBrowsableAttribute(EditorBrowsableState state);
// Public Instance Properties
 public EditorBrowsableState State{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute EditorBrowsableAttribute

Valid On

Class, Struct, Enum, Constructor, Method, Property, Field, Event, Interface, Delegate

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EditorBrowsableState serializable

System.ComponentModel (system.dll) enum

This enumeration determines whether a class or member should be visible in an editor. It is used by
EditorBrowsableAttribute to determine whether the element should be shown Never, Always, or only shown when Advanced
elements are visible.

public enum EditorBrowsableState {
 Always = 0,
 Never = 1,
 Advanced = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
EditorBrowsableState

Returned By

EditorBrowsableAttribute.State

Passed To

EditorBrowsableAttribute.EditorBrowsableAttribute()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EnumConverter

System.ComponentModel (system.dll) class

This TypeConverter class is used to transform to and from enumerations. It is used in design-time and serialization
scenarios, and should not normally be called from your own code.

public class EnumConverter : TypeConverter {
// Public Constructors
 public EnumConverter(Type type);
// Protected Instance Properties
 protected virtual IComparer Comparer{get; }
 protected Type EnumType{get; }
 protected StandardValuesCollection Values{set; get; }
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
 public override StandardValuesCollection GetStandardValues(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesExclusive(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesSupported(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool IsValid(ITypeDescriptorContext context, object value); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter EnumConverter

Subclasses

System.Drawing.FontUnitConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EventDescriptor

System.ComponentModel (system.dll) abstract class

This class, derived from MemberDescriptor, encapsulates the information about an event. In addition to the base
functionality, you can discover the ComponentType that declares the event, and the EventType that describes the delegate
for the event. You can also determine whether the delegate IsMulticast.

AddEventHandler() and RemoveEventHandler() allow you to control the binding to the encapsulated event.

public abstract class EventDescriptor : MemberDescriptor {
// Protected Constructors
 protected EventDescriptor(MemberDescriptor descr);
 protected EventDescriptor(MemberDescriptor descr, Attribute[] attrs);
 protected EventDescriptor(string name, Attribute[] attrs);
// Public Instance Properties
 public abstract Type ComponentType{get; }
 public abstract Type EventType{get; }
 public abstract bool IsMulticast{get; }
// Public Instance Methods
 public abstract void AddEventHandler(object component, Delegate value);
 public abstract void RemoveEventHandler(object component, Delegate value);
}

Hierarchy

System.Object MemberDescriptor EventDescriptor

Returned By

EventDescriptorCollection.{Find(), this}, IComNativeDescriptorHandler.GetDefaultEvent(), ICustomTypeDescriptor.GetDefaultEvent(),
TypeDescriptor.{CreateEvent(), GetDefaultEvent()}

Passed To

EventDescriptorCollection.{Add(), Contains(), EventDescriptorCollection(), IndexOf(),Insert(), Remove()},
TypeDescriptor.CreateEvent()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EventDescriptorCollection

System.ComponentModel (system.dll) class

This class implements a collection of EventDescriptor objects and is returned by the TypeDescriptor.GetEvents() method.

public class EventDescriptorCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public EventDescriptorCollection(EventDescriptor[] events);
// Public Static Fields
 public static readonly EventDescriptorCollection Empty; // =System.ComponentModel.EventDescriptorCollection
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual EventDescriptor this{get; }
 public virtual EventDescriptor this{get; }
// Public Instance Methods
 public int Add(EventDescriptor value);
 public void Clear(); // implements IList
 public bool Contains(EventDescriptor value);
 public virtual EventDescriptor Find(string name, bool ignoreCase);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(EventDescriptor value);
 public void Insert(int index, EventDescriptor value);
 public void Remove(EventDescriptor value);
 public void RemoveAt(int index); // implements IList
 public virtual EventDescriptorCollection Sort();
 public virtual EventDescriptorCollection Sort(System.Collections.IComparer comparer);
 public virtual EventDescriptorCollection Sort(string[] names);
 public virtual EventDescriptorCollection Sort(string[] names, System.Collections.IComparer comparer);
// Protected Instance Methods
 protected void InternalSort(System.Collections.IComparer sorter);
 protected void InternalSort(string[] names);
}

Returned By

IComNativeDescriptorHandler.GetEvents(), ICustomTypeDescriptor.GetEvents(), TypeDescriptor.GetEvents()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EventHandlerList disposable

System.ComponentModel (system.dll) sealed class

This class encapsulates a set of event handlers. You can use AddHandler() and RemoveHandler() to manipulate the list of
delegates bound to particular objects, and you can retrieve the delegate bound to a particular object by using the Item
property (this is the indexer for the class).

Note that this class does not implement any of the standard collection interfaces.

public sealed class EventHandlerList : IDisposable {
// Public Constructors
 public EventHandlerList();
// Public Instance Properties
 public Delegate this{set; get; }
// Public Instance Methods
 public void AddHandler(object key, Delegate value);
 public void Dispose(); // implements IDisposable
 public void RemoveHandler(object key, Delegate value);
}

Returned By

Component.Events, MarshalByValueComponent.Events
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ExpandableObjectConverter

System.ComponentModel (system.dll) class

This class represent a TypeConverter for expandable objects. While you would not normally call on this class from your
own code, you can select it as your class's TypeConverter to display contained types in the designer.

public class ExpandableObjectConverter : TypeConverter {
// Public Constructors
 public ExpandableObjectConverter();
// Public Instance Methods
 public override PropertyDescriptorCollection GetProperties(ITypeDescriptorContext context,
 object value, Attribute[] attributes); // overrides TypeConverter
 public override bool GetPropertiesSupported(ITypeDescriptorContext context); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter ExpandableObjectConverter

Subclasses

System.Drawing.IconConverter, System.Drawing.Printing.MarginsConverter, System.Windows.Forms.ListViewItemConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ExtenderProvidedPropertyAttribute

System.ComponentModel (system.dll) sealed class

This is an internal class and should not be used in your own code.

public sealed class ExtenderProvidedPropertyAttribute : Attribute {
// Public Constructors
 public ExtenderProvidedPropertyAttribute();
// Public Instance Properties
 public PropertyDescriptor ExtenderProperty{get; }
 public IExtenderProvider Provider{get; }
 public Type ReceiverType{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ExtenderProvidedPropertyAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GuidConverter

System.ComponentModel (system.dll) class

This TypeConverter is used to convert a Guid to and from other types in serialization and design-time scenarios, and
should not normally be used in your own code.

public class GuidConverter : TypeConverter {
// Public Constructors
 public GuidConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter GuidConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IBindingList

System.ComponentModel (system.dll) interface

This interface is implemented by classes such as System.Data.DataView that wish to support list-like data binding. It is
derived from the standard collection interfaces to present basic collection facilities such as Add() and Remove().

In addition to this, it has properties that determine whether the class will AllowEdit or AllowNew items to be added.
AllowRemove determines whether you can remove items from the list, and IsSorted determines whether the list items
have been sorted. Note that this does not imply any kind of auto-sorting behavior—it just determines whether the list
has been sorted. SupportsSorting determines whether the list can be sorted. For sorted lists, you can specify the
SortDirection and the SortProperty (the property of the elements in the list that provides the sort data). To apply the sort,
use the ApplySort() and RemoveSort() methods.

Methods are provided to AddNew() items to the list and Find() a row with a particular PropertyDescriptor.

You can also use AddIndex() and RemoveIndex() to manage indexes to improve the search capabilities of your list. Your
particular class doesn't actually have to do anything in the implementation of these methods if it doesn't support
indexes.

public interface IBindingList : IList, ICollection, IEnumerable {
// Public Instance Properties
 public bool AllowEdit{get; }
 public bool AllowNew{get; }
 public bool AllowRemove{get; }
 public bool IsSorted{get; }
 public ListSortDirection SortDirection{get; }
 public PropertyDescriptor SortProperty{get; }
 public bool SupportsChangeNotification{get; }
 public bool SupportsSearching{get; }
 public bool SupportsSorting{get; }
// Public Instance Methods
 public void AddIndex(PropertyDescriptor property);
 public object AddNew();
 public void ApplySort(PropertyDescriptor property, ListSortDirection direction);
 public int Find(PropertyDescriptor property, object key);
 public void RemoveIndex(PropertyDescriptor property);
 public void RemoveSort();
// Events
 public event ListChangedEventHandler ListChanged;
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IComNativeDescriptorHandler

System.ComponentModel (system.dll) interface

This is a class private to the framework, which should not be used in your own code.

public interface IComNativeDescriptorHandler {
// Public Instance Methods
 public AttributeCollection GetAttributes(
 object component);
 public string GetClassName(object component);
 public TypeConverter GetConverter(object component);
 public EventDescriptor GetDefaultEvent(object component);
 public PropertyDescriptor GetDefaultProperty(object component);
 public object GetEditor(object component, Type baseEditorType);
 public EventDescriptorCollection GetEvents(object component);
 public EventDescriptorCollection GetEvents(object component, Attribute[] attributes);
 public string GetName(object component);
 public PropertyDescriptorCollection GetProperties(object component, Attribute[] attributes);
 public object GetPropertyValue(object component, int dispid, ref bool success);
 public object GetPropertyValue(object component, string propertyName, ref bool success);
}

Returned By

TypeDescriptor.ComNativeDescriptorHandler

Passed To

TypeDescriptor.ComNativeDescriptorHandler

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IComponent disposable

System.ComponentModel (system.dll) interface

This interface, implemented by Component and MarshalByValueComponent provides the basic functionality required by
components in the framework. Specifically, this means providing a way of setting the Site for the component (through
which the component can discover the services provided by its hosting environment), and a Disposed event, to inform
the host when it has been cleaned up.

In your own applications, you would normally derive from one of the classes that implement this interface, such as
Component or System.Windows.Forms.Control.

public interface IComponent : IDisposable {
// Public Instance Properties
 public ISite Site{set; get; }
// Events
 public event EventHandler Disposed;
}

Implemented By

Component, MarshalByValueComponent

Returned By

ComponentCollection.this, ISite.Component, System.Drawing.Design.ToolboxComponentsCreatedEventArgs.Components,
System.Drawing.Design.ToolboxItem.{CreateComponents(), CreateComponentsCore()},
System.Windows.Forms.Design.ComponentEditorPage.{Component, GetSelectedComponent()},
System.Windows.Forms.Design.ParentControlDesigner.CreateToolCore()

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IContainer disposable

System.ComponentModel (system.dll) interface

This interface is implemented by classes (such as Container) that hold and manage a set of Component objects. Contrast
this with ISite, which binds a component to a host and provides the host's services to that component. It provides
members to Add() and Remove() a Component, and also get the set of Components in the container.

public interface IContainer : IDisposable {
// Public Instance Properties
 public ComponentCollection Components{get; }
// Public Instance Methods
 public void Add(IComponent component);
 public void Add(IComponent component, string name);
 public void Remove(IComponent component);
}

Implemented By

Container

Returned By

Component.Container, ISite.Container, ITypeDescriptorContext.Container, MarshalByValueComponent.Container

Passed To

System.Windows.Forms.ImageList.ImageList(), System.Windows.Forms.NotifyIcon.NotifyIcon(), System.Windows.Forms.Timer.Timer(),
System.Windows.Forms.ToolTip.ToolTip()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ICustomTypeDescriptor

System.ComponentModel (system.dll) interface

Classes implement this interface to provide dynamic type information about themselves. Contrast this with the
TypeDescriptor, which provides static type information.

It provides an interface very similar to the TypeDescriptor signature, with members to access attributes, properties,
events, and the GetConverter() method to get a custom TypeConverter for the class.

public interface ICustomTypeDescriptor {
// Public Instance Methods
 public AttributeCollection GetAttributes();
 public string GetClassName();
 public string GetComponentName();
 public TypeConverter GetConverter();
 public EventDescriptor GetDefaultEvent();
 public PropertyDescriptor GetDefaultProperty();
 public object GetEditor(Type editorBaseType);
 public EventDescriptorCollection GetEvents();
 public EventDescriptorCollection GetEvents(Attribute[] attributes);
 public PropertyDescriptorCollection GetProperties();
 public PropertyDescriptorCollection GetProperties(Attribute[] attributes);
 public object GetPropertyOwner(PropertyDescriptor pd);
}

Implemented By

System.Windows.Forms.AxHost

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IDataErrorInfo

System.ComponentModel (system.dll) interface

This interface is implemented by classes that wish to provide additional error information to the user interface in data-
binding scenarios. The Error property gives an error message that indicates what is wrong with the object. The Item
property (which is the indexer in C#) allows the UI to find the specific error message for the property with a given
name.

As an example, it is implemented by System.Data.DataView and the System.Windows.Forms.DataGrid uses it to display error
information.

public interface IDataErrorInfo {
// Public Instance Properties
 public string Error{get; }
 public string this{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IEditableObject

System.ComponentModel (system.dll) interface

This interface should be implemented by classes that provide edit-rollback/commit semantics in data-binding scenarios
(such as System.Data.DataRowView).

BeginEdit() should initiate an editing session, CancelEdit() should perform a rollback, discarding any changes that have
been made, and EndEdit() should commit any such changes.

public interface IEditableObject {
// Public Instance Methods
 public void BeginEdit();
 public void CancelEdit();
 public void EndEdit();
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IExtenderProvider

System.ComponentModel (system.dll) interface

This interface is implemented by classes that wish to offer additional properties for particular objects in the designer.
For example, the System.Windows.Forms.ToolTip component adds a ToolTip property to other System.Windows.Forms.Control
objects owned by its host. This is done by implementing the CanExtend() method to determine whether the class can
extend a particular object (implementations usually filter by the type of the object) and adding a series of property-like
methods called GetMyProperty() and SetMyProperty(), which take an additional parameter for the object they are
extending (e.g., a System.Windows.Forms.Control, in the case of the ToolTip. Finally, you decorate the class with a
ProvidePropertyAttribute for each of these extended properties.

You would typically derive a class that implements this interface from Component, to add it to a designer surface.

public interface IExtenderProvider {
// Public Instance Methods
 public bool CanExtend(object extendee);
}

Implemented By

System.Windows.Forms.{ErrorProvider, HelpProvider, ToolTip}, System.Windows.Forms.Design.{ComponentTray, PropertyTab}

Returned By

ExtenderProvidedPropertyAttribute.Provider

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IListSource

System.ComponentModel (system.dll) interface

This interface is implemented by classes (such as System.Data.DataSet and System.Data.DataTable) that can provide one or
more lists for a data-binding scenario but are not actually bindable lists in and of themselves.

The ContainsListCollection property determines whether the list is actually a collection of lists itself (as in the
System.Data.DataSet-System.Data.DataTable relationship), and the GetList() method returns the System.Collections.IList for the
binding scenario.

public interface IListSource {
// Public Instance Properties
 public bool ContainsListCollection{get; }
// Public Instance Methods
 public IList GetList();
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImmutableObjectAttribute

System.ComponentModel (system.dll) sealed class

This attribute is applied to classes that have no editable properties, and can therefore be displayed as read-only in the
designer.

Commonly, this is applied to expandable objects (see ExpandableObjectConverter) whose properties should be displayed as
read-only in a System.Windows.Forms.PropertyGrid.

public sealed class ImmutableObjectAttribute : Attribute {
// Public Constructors
 public ImmutableObjectAttribute(bool immutable);
// Public Static Fields
 public static readonly ImmutableObjectAttribute Default; // =System.ComponentModel.ImmutableObjectAttribute
 public static readonly ImmutableObjectAttribute No; // =System.ComponentModel.ImmutableObjectAttribute
 public static readonly ImmutableObjectAttribute Yes; // =System.ComponentModel.ImmutableObjectAttribute
// Public Instance Properties
 public bool Immutable{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ImmutableObjectAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InheritanceAttribute

System.ComponentModel (system.dll) sealed class

The System.ComponentModel.Design.IInheritanceService uses this attribute to follow the hierarchy of components in the
designer.

You can use this attribute to specify the InheritanceLevel of the property that it adorns. Note that this inheritance does
not mean class-level inheritance, but rather that one Component exposes another Component through a public property.

public sealed class InheritanceAttribute : Attribute {
// Public Constructors
 public InheritanceAttribute();
 public InheritanceAttribute(InheritanceLevel inheritanceLevel);
// Public Static Fields
 public static readonly InheritanceAttribute Default; // =NotInherited
 public static readonly InheritanceAttribute Inherited; // =Inherited
// =InheritedReadOnly
 public static readonly InheritanceAttribute InheritedReadOnly;
 public static readonly InheritanceAttribute NotInherited; // =NotInherited
// Public Instance Properties
 public InheritanceLevel InheritanceLevel{get; }
// Public Instance Methods
 public override bool Equals(object value); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
 public override string ToString(); // overrides object
}

Hierarchy

System.Object System.Attribute InheritanceAttribute

Valid On

Property, Field, Event

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InheritanceLevel serializable

System.ComponentModel (system.dll) enum

This enumeration determines whether a component is Inherited from another; InheritedReadOnly, which implies that the
component is derived from another but only has read only access to the inherited properties; or NotInherited, which
implies that the component is at the root.

public enum InheritanceLevel {
 Inherited = 1,
 InheritedReadOnly = 2,
 NotInherited = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
InheritanceLevel

Returned By

InheritanceAttribute.InheritanceLevel

Passed To

InheritanceAttribute.InheritanceAttribute()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InstallerTypeAttribute

System.ComponentModel (system.dll) class

This attribute is used to adorn components to indicate the type of the object that should be used to install them (the
InstallerType). See System.Configuration for more information on installers.

public class InstallerTypeAttribute : Attribute {
// Public Constructors
 public InstallerTypeAttribute(string typeName);
 public InstallerTypeAttribute(Type installerType);
// Public Instance Properties
 public virtual Type InstallerType{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute InstallerTypeAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Int16Converter

System.ComponentModel (system.dll) class

This is a TypeConverter for an Int16, for use in serialization and design-time scenarios. You would not normally call it from
your own code.

public class Int16Converter : BaseNumberConverter {
// Public Constructors
 public Int16Converter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter Int16Converter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Int32Converter

System.ComponentModel (system.dll) class

This TypeConverter is used to transform an Int32 to and from other types in design-time and serialization scenarios. You
should not normally use it in your own code.

public class Int32Converter : BaseNumberConverter {
// Public Constructors
 public Int32Converter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter Int32Converter

Subclasses

System.Windows.Forms.ImageIndexConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Int64Converter

System.ComponentModel (system.dll) class

This is a TypeConverter that is used to convert to and from an Int64 in design-time and serialization scenarios. You should
not normally call it from your own code.

public class Int64Converter : BaseNumberConverter {
// Public Constructors
 public Int64Converter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter Int64Converter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InvalidEnumArgumentException

System.ComponentModel (system.dll) class

This exception class is thrown when an invalid enumeration is passed to a method or property.

public class InvalidEnumArgumentException : ArgumentException {
// Public Constructors
 public InvalidEnumArgumentException();
 public InvalidEnumArgumentException(string message);
 public InvalidEnumArgumentException(string argumentName, int invalidValue, Type enumClass);
}

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
System.ArgumentException InvalidEnumArgumentException
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ISite

System.ComponentModel (system.dll) interface

This interface, derived from IServiceProvider is used to connect a Component to its Container.

In addition to providing accessors for the host services, you can find the Name of the component and whether the
component is currently being used in DesignMode.

public interface ISite : IServiceProvider {
// Public Instance Properties
 public IComponent Component{get; }
 public IContainer Container{get; }
 public bool DesignMode{get; }
 public string Name{set; get; }
}

Returned By

Component.Site, Container.CreateSite(), IComponent.Site, MarshalByValueComponent.Site, MemberDescriptor.GetSite()

Passed To

Component.Site, IComponent.Site, MarshalByValueComponent.Site
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ISupportInitialize

System.ComponentModel (system.dll) interface

Classes should implement this interface if they support the batched initialization of their properties. You would also
implement it if you need to know that you are in the designer in your constructor, as DesignMode is not yet valid
(because your Site will not have been set).

BeginInit() is called to start batching updates, and EndInit() ends batching and normally causes any update events to be
raised.

public interface ISupportInitialize {
// Public Instance Methods
 public void BeginInit();
 public void EndInit();
}

Implemented By

System.Diagnostics.{EventLog, PerformanceCounter}, System.IO.FileSystemWatcher, System.Timers.Timer, System.Windows.Forms.
{AxHost, DataGrid, NumericUpDown, StatusBarPanel, TrackBar}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ISynchronizeInvoke

System.ComponentModel (system.dll) interface

This interface is implemented by components (specifically System.Windows.Forms.Control) that support the synchronous
(through Invoke()) or asynchronous (through BeginInvoke() and EndInvoke()) execution of delegates, allowing the
components to marshal the delegates into a particular context.

The implementation in System.Windows.Forms.Control is used to ensure that the execution of the delegate is marshaled
onto the thread on which the System.Windows.Forms.Control was created.

public interface ISynchronizeInvoke {
// Public Instance Properties
 public bool InvokeRequired{get; }
// Public Instance Methods
 public IAsyncResult BeginInvoke(Delegate method, object[] args);
 public object EndInvoke(IAsyncResult result);
 public object Invoke(Delegate method, object[] args);
}

Implemented By

System.Windows.Forms.Control

Returned By

System.Diagnostics.EventLog.SynchronizingObject, System.Diagnostics.Process.SynchronizingObject,
System.IO.FileSystemWatcher.SynchronizingObject, System.Timers.Timer.SynchronizingObject

Passed To

System.Diagnostics.EventLog.SynchronizingObject, System.Diagnostics.Process.SynchronizingObject,
System.IO.FileSystemWatcher.SynchronizingObject, System.Timers.Timer.SynchronizingObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ITypeDescriptorContext

System.ComponentModel (system.dll) interface

This interface is implemented by classes to allow clients to discover information about the context in which the
component is in use.

You can find the Container that owns the component, the Instance of the object that aggregates the component, and the
PropertyDescriptor that describes the component.

This might typically be used by a custom TypeConverter that wishes to make a contextual decision about how to deal with
the conversion process.

public interface ITypeDescriptorContext : IServiceProvider {
// Public Instance Properties
 public IContainer Container{get; }
 public object Instance{get; }
 public PropertyDescriptor PropertyDescriptor{get; }
// Public Instance Methods
 public void OnComponentChanged();
 public bool OnComponentChanging();
}

Returned By

System.Drawing.Design.PaintValueEventArgs.Context

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ITypedList

System.ComponentModel (system.dll) interface

This interface is implemented by classes that expose a typed list for data-binding scenarios. It provides a
GetItemProperties() method to discover the properties of the list elements, rather than the properties of the container
itself.

public interface ITypedList {
// Public Instance Methods
 public PropertyDescriptorCollection GetItemProperties(PropertyDescriptor[] listAccessors);
 public string GetListName(PropertyDescriptor[] listAccessors);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

License disposable

System.ComponentModel (system.dll) abstract class

This is the abstract base class for licenses that can be granted to a component. It provides a LicenseKey property, which
returns a string representing the license for the component. You must also implement the Dispose() member.

A License is returned by the LicenseProvider.GetLicense() method when a valid license is available for a particular object in
the current LicenseContext.

See LicenseManager for more information on licensing.

public abstract class License : IDisposable {
// Protected Constructors
 protected License();
// Public Instance Properties
 public abstract string LicenseKey{get; }
// Public Instance Methods
 public abstract void Dispose(); // implements IDisposable
}

Returned By

LicenseProvider.GetLicense()

Passed To

LicenseManager.IsValid()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicenseContext

System.ComponentModel (system.dll) class

This class provides a means of discovering licensing information about the types in an application domain. The
UsageMode determines whether this is a Designtime or Runtime context (the default is a Runtime context; see
System.ComponentModel.Design.DesigntimeLicenseContext for an example of a design-time context).

You can use GetSavedLicenseKey() and SetSavedLicenseKey() to get or set the license key for a specified type.

The active context can be retrieved using the LicenseManager.CurrentContext property.

By supporting different contexts, the license management environment allows you to support separate licensing models
for design-time, runtime, or even custom-user contexts.

public class LicenseContext : IServiceProvider {
// Public Constructors
 public LicenseContext();
// Public Instance Properties
 public virtual LicenseUsageMode UsageMode{get; }
// Public Instance Methods
 public virtual string GetSavedLicenseKey(Type type, System.Reflection.Assembly resourceAssembly);
 public virtual object GetService(Type type); // implements IServiceProvider
 public virtual void SetSavedLicenseKey(Type type, string key);
}

Returned By

LicenseManager.CurrentContext

Passed To

LicenseManager.{CreateWithContext(), CurrentContext}, LicenseProvider.GetLicense()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicenseException

System.ComponentModel (system.dll) class

This exception is thrown by LicenseManager.Validate() if a component cannot be granted a license.

You can get the type of the component that failed the license validation with the LicensedType property.

public class LicenseException : SystemException {
// Public Constructors
 public LicenseException(Type type);
 public LicenseException(Type type, object instance);
 public LicenseException(Type type, object instance, string message);
 public LicenseException(Type type, object instance, string message, Exception innerException);
// Public Instance Properties
 public Type LicensedType{get; }
}

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
LicenseException
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicenseManager

System.ComponentModel (system.dll) sealed class

This class offers a set of static utility functions to support the licensing of components.

You can retrieve the CurrentContext and the UsageMode (to determine whether this is a runtime or design-time context).
You can lock and unlock the context for a particular object, effectively disabling the ability to get license information for
that object, using the LockContext() and UnlockContext() methods.

To determine whether a particular object is licensed, you can use the IsLicensed() method. IsValid() and Validate()
determine whether a valid license for an object can be granted. These methods use the LicenseProvider for the class to
obtain a validated license.

Typically, a licensable class is adorned with the LicenseProviderAttribute which indicates the type of LicenseProvider to use.
It then makes a call to Validate() in its constructor, to ensure that a suitable license is present for the current context.

public sealed class LicenseManager {
// Public Static Properties
 public static LicenseContext CurrentContext{set; get; }
 public static LicenseUsageMode UsageMode{get; }
// Public Static Methods
 public static object CreateWithContext(Type type, LicenseContext creationContext);
 public static object CreateWithContext(Type type, LicenseContext creationContext, object[] args);
 public static bool IsLicensed(Type type);
 public static bool IsValid(Type type);
 public static bool IsValid(Type type, object instance, out License license);
 public static void LockContext(object contextUser);
 public static void UnlockContext(object contextUser);
 public static License Validate(Type type, object instance);
 public static void Validate(Type type);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicenseProvider

System.ComponentModel (system.dll) abstract class

This abstract base class provides the basis for the implementation of a license provider. You should override the
GetLicense() method to return a suitable license for the object, given the current LicenseContext and the type of the
object requesting the license. If no valid license is available, you should throw a LicenseException.

For a standard implementation of LicenseProvider, see LicFileLicenseProvider.

public abstract class LicenseProvider {
// Protected Constructors
 protected LicenseProvider();
// Public Instance Methods
 public abstract License GetLicense(LicenseContext context, Type type, object instance, bool allowExceptions);
}

Subclasses

LicFileLicenseProvider
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicenseProviderAttribute

System.ComponentModel (system.dll) sealed class

This attribute is used to adorn a class with information about the LicenseProvider that will provide a suitable License for
that class.

See LicenseManager for more information on license management.

public sealed class LicenseProviderAttribute : Attribute {
// Public Constructors
 public LicenseProviderAttribute();
 public LicenseProviderAttribute(string typeName);
 public LicenseProviderAttribute(Type type);
// Public Static Fields
 public static readonly LicenseProviderAttribute Default; // =System.ComponentModel.LicenseProviderAttribute
// Public Instance Properties
 public Type LicenseProvider{get; }
 public override object TypeId{get; }
// overrides Attribute
// Public Instance Methods
 public override bool Equals(object value); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute LicenseProviderAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicenseUsageMode serializable

System.ComponentModel (system.dll) enum

This enumeration specifies whether the current LicenseContext is a Designtime or Runtime context.

public enum LicenseUsageMode {
 Runtime = 0,
 Designtime = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LicenseUsageMode

Returned By

LicenseContext.UsageMode, LicenseManager.UsageMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LicFileLicenseProvider

System.ComponentModel (system.dll) class

In this implementation of LicenseProvider, the GetLicense() member looks for a file called ClassName.LIC in the same
directory as the .dll containing the component. It then uses the IsKeyValid() method to see if the file contains the key
string provided by the GetKey() method. By default, the string is: "ClassName is a licensed component." You could derive
a class that overrides one or both of these methods to provide a more complex .LIC file licensing scheme.

public class LicFileLicenseProvider : LicenseProvider {
// Public Constructors
 public LicFileLicenseProvider();
// Public Instance Methods
 public override License GetLicense(LicenseContext context, Type type, object instance,
 bool allowExceptions); // overrides LicenseProvider
// Protected Instance Methods
 protected virtual string GetKey(Type type);
 protected virtual bool IsKeyValid(string key, Type type);
}

Hierarchy

System.Object LicenseProvider LicFileLicenseProvider

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListBindableAttribute

System.ComponentModel (system.dll) sealed class

This attribute is used to adorn a component to indicate that it can be used as a list in a data-binding scenario.

The ListBindable property determines whether the property is bindable. Note that while this is a Boolean, the attribute
can be compared with the static Yes or No values for equality.

public sealed class ListBindableAttribute : Attribute {
// Public Constructors
 public ListBindableAttribute(BindableSupport flags);
 public ListBindableAttribute(bool listBindable);
// Public Static Fields
 public static readonly ListBindableAttribute Default; // =System.ComponentModel.ListBindableAttribute
 public static readonly ListBindableAttribute No; // =System.ComponentModel.ListBindableAttribute
 public static readonly ListBindableAttribute Yes; // =System.ComponentModel.ListBindableAttribute
// Public Instance Properties
 public bool ListBindable{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ListBindableAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListChangedEventArgs

System.ComponentModel (system.dll) class

This class encapsulates the data for the IBindingList.ListChanged event. You can determine the OldIndex and NewIndex of
the item that was changed. The ListChangedType determines what kind of change raised the event.

public class ListChangedEventArgs : EventArgs {
// Public Constructors
 public ListChangedEventArgs(
 ListChangedType listChangedType, int newIndex);
 public ListChangedEventArgs(
 ListChangedType listChangedType, int newIndex,
 int oldIndex);
 public ListChangedEventArgs(
 ListChangedType listChangedType,
 PropertyDescriptor propDesc);
// Public Instance Properties
 public ListChangedType ListChangedType{get; }
 public int NewIndex{get; }
 public int OldIndex{get; }
}

Hierarchy

System.Object System.EventArgs ListChangedEventArgs

Passed To

ListChangedEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListChangedEventHandler serializable

System.ComponentModel (system.dll) delegate

This is a delegate for the IBindingList.ListChanged event.

public delegate void ListChangedEventHandler(object sender,
 ListChangedEventArgs e);

Associated Events

IBindingList.ListChanged()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListChangedType serializable

System.ComponentModel (system.dll) enum

This enumeration is used by the ListChangedEventArgs class to specify the kind of change that caused the event to be
raised. The possible change types relate to either items being added, removed or changed, or to the schema of the list
changing. The Reset option indicates that substantial changes have been made to the list, and that the observer should
refresh its entire display.

public enum ListChangedType {
 Reset = 0,
 ItemAdded = 1,
 ItemDeleted = 2,
 ItemMoved = 3,
 ItemChanged = 4,
 PropertyDescriptorAdded = 5,
 PropertyDescriptorDeleted = 6,
 PropertyDescriptorChanged = 7
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ListChangedType

Returned By

ListChangedEventArgs.ListChangedType

Passed To

ListChangedEventArgs.ListChangedEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListSortDirection serializable

System.ComponentModel (system.dll) enum

This enumeration determines whether an IBindingList should be sorted in Ascending or Descending order.

public enum ListSortDirection {
 Ascending = 0,
 Descending = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ListSortDirection

Returned By

IBindingList.SortDirection

Passed To

IBindingList.ApplySort()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LocalizableAttribute

System.ComponentModel (system.dll) sealed class

This attribute adorns properties to specify how their values should be serialized by the designer. If the class is
unadorned, or marked with an attribute for which IsLocalizable is false, the designer will attempt to serialize the value in
code. If IsLocalizable is true, it will serialize to a resource file and inject code to retrieve the value from there instead.

public sealed class LocalizableAttribute : Attribute {
// Public Constructors
 public LocalizableAttribute(bool isLocalizable);
// Public Static Fields
 public static readonly LocalizableAttribute Default; // =System.ComponentModel.LocalizableAttribute
 public static readonly LocalizableAttribute No; // =System.ComponentModel.LocalizableAttribute
 public static readonly LocalizableAttribute Yes; // =System.ComponentModel.LocalizableAttribute
// Public Instance Properties
 public bool IsLocalizable{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute LocalizableAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MarshalByValueComponent disposable

System.ComponentModel (system.dll) class

This implementation of the IComponent interface uses marshal-by-value semantics rather than the marshal-by-reference
semantics employed by its cousin Component.

public class MarshalByValueComponent : IComponent, IDisposable, IServiceProvider {
// Public Constructors
 public MarshalByValueComponent();
// Public Instance Properties
 public virtual IContainer Container{get; }
 public virtual bool DesignMode{get; }
 public virtual ISite Site{set; get; }
// implements IComponent
// Protected Instance Properties
 protected EventHandlerList Events{get; }
// Public Instance Methods
 public void Dispose(); // implements IDisposable
 public virtual object GetService(Type service); // implements IServiceProvider
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
// Events
 public event EventHandler Disposed;
// implements IComponent
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MemberDescriptor

System.ComponentModel (system.dll) abstract class

This is the abstract base for classes that represent the member of class, such as properties and events (e.g.,
PropertyDescriptor and EventDescriptor). You can get the Name and DisplayName of the member.

In addition, you can get the collection of Attributes adorning the member. It also provides a set of utility accessors that
indicate the values of particular attribute types: the Category, Description, DesignTimeOnly, and IsBrowsable members.

public abstract class MemberDescriptor {
// Protected Constructors
 protected MemberDescriptor(MemberDescriptor descr);
 protected MemberDescriptor(MemberDescriptor oldMemberDescriptor, Attribute[] newAttributes);
 protected MemberDescriptor(string name);
 protected MemberDescriptor(string name, Attribute[] attributes);
// Public Instance Properties
 public virtual AttributeCollection Attributes{get; }
 public virtual string Category{get; }
 public virtual string Description{get; }
 public virtual bool DesignTimeOnly{get; }
 public virtual string DisplayName{get; }
 public virtual bool IsBrowsable{get; }
 public virtual string Name{get; }
// Protected Instance Properties
 protected virtual Attribute[] AttributeArray{set; get; }
 protected virtual int NameHashCode{get; }
// Protected Static Methods
 protected static MethodInfo FindMethod(Type componentClass, string name, Type[] args, Type returnType);
 protected static MethodInfo FindMethod(Type componentClass, string name, Type[] args, Type returnType,
 bool publicOnly);
 protected static object GetInvokee(Type componentClass, object component);
 protected static ISite GetSite(object component);
// Public Instance Methods
 public override bool Equals(object obj); // overrides object
 public override int GetHashCode(); // overrides object
// Protected Instance Methods
 protected virtual AttributeCollection CreateAttributeCollection();
 protected virtual void FillAttributes(System.Collections.IList attributeList);
}

Subclasses

EventDescriptor, PropertyDescriptor

Passed To

EventDescriptor.EventDescriptor(), PropertyDescriptor.PropertyDescriptor()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MergablePropertyAttribute

System.ComponentModel (system.dll) sealed class

This attribute adorns a property to indicate whether it can be merged with the properties owned by other classes in a
designer that supports a set of objects. The AllowMerge property returns this state.

For example, the System.Windows.Forms.PropertyGrid can bind to several objects to display the common properties. If any
one of these properties is marked with a MergableProperty(false) attribute, that property will not appear in the grid, even
if all objects provide a property of that name and signature.

public sealed class MergablePropertyAttribute : Attribute {
// Public Constructors
 public MergablePropertyAttribute(bool allowMerge);
// Public Static Fields
 public static readonly MergablePropertyAttribute Default; // =System.ComponentModel.MergablePropertyAttribute
 public static readonly MergablePropertyAttribute No; // =System.ComponentModel.MergablePropertyAttribute
 public static readonly MergablePropertyAttribute Yes; // =System.ComponentModel.MergablePropertyAttribute
// Public Instance Properties
 public bool AllowMerge{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute MergablePropertyAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NotifyParentPropertyAttribute

System.ComponentModel (system.dll) sealed class

You can mark a property with this attribute if it should cause its parent property to be updated when updated itself. The
NotifyParent property determines whether the parent should be notified.

For example, the System.Drawing.Size type has two child properties, Width and Height. If either of these properties is
updated, the parent should be updated.

public sealed class NotifyParentPropertyAttribute : Attribute {
// Public Constructors
 public NotifyParentPropertyAttribute(bool notifyParent);
// Public Static Fields
 public static readonly NotifyParentPropertyAttribute Default; // =System.ComponentModel.NotifyParentPropertyAttribute
 public static readonly NotifyParentPropertyAttribute No; // =System.ComponentModel.NotifyParentPropertyAttribute
 public static readonly NotifyParentPropertyAttribute Yes; // =System.ComponentModel.NotifyParentPropertyAttribute
// Public Instance Properties
 public bool NotifyParent{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute NotifyParentPropertyAttribute

Valid On

Property

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ParenthesizePropertyNameAttribute

System.ComponentModel (system.dll) sealed class

You can mark a property with this attribute if its name should be placed in parentheses when displayed in a designer.
Note that this has the side effect of bumping it near to the top of its category or list. Typically, it is used to indicate
derived properties.

public sealed class ParenthesizePropertyNameAttribute : Attribute {
// Public Constructors
 public ParenthesizePropertyNameAttribute();
 public ParenthesizePropertyNameAttribute(bool needParenthesis);
// Public Static Fields
 public static readonly ParenthesizePropertyNameAttribute Default; // =System.ComponentModel.ParenthesizePropertyNameAttribute
// Public Instance Properties
 public bool NeedParenthesis{get; }
// Public Instance Methods
 public override bool Equals(object o); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ParenthesizePropertyNameAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyChangedEventArgs

System.ComponentModel (system.dll) class

This class encapsulates the data for the OnPropertyChanging() event raised by the System.Data.DataSet,
System.Data.DataTable, and System.Data.DataColumn classes.

You can determine the PropertyName of the property that changed.

public class PropertyChangedEventArgs : EventArgs {
// Public Constructors
 public PropertyChangedEventArgs(string propertyName);
// Public Instance Properties
 public virtual string PropertyName{get; }
}

Hierarchy

System.Object System.EventArgs PropertyChangedEventArgs

Passed To

PropertyChangedEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyChangedEventHandler serializable

System.ComponentModel (system.dll) delegate

This is a delegate for the OnPropertyChanging() event.

public delegate void PropertyChangedEventHandler(object sender, PropertyChangedEventArgs e);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyDescriptor

System.ComponentModel (system.dll) abstract class

This is an abstract base class derived from MemberDescriptor for objects that encapsulate information about a property.

In addition to the base attribute utilities, you can determine whether the property IsLocalizable or IsReadOnly. You can
also check the SerializationVisibility. ShouldSerializeValue() can be used to determine whether the property of a particular
component should be serialized. The default implementation of this method uses DefaultValueAttribute or a
ShouldSerialize[PropertyName] method to determine whether it is necessary to serialize the property. See
DefaultValueAttribute for more information on this.

You can also use ComponentType to determine the type of the component to which this property belongs. Converter
retrieves a TypeConverter and GetEditor() gets a custom editor of the specified base type (in case several types of editor
are defined for the property).

AddValueChanged() and RemoveValueChanged() allow you to bind an event handler, to be notified when the property
changes. You can use GetValue(), SetValue(), and ResetValue() to access and modify that value. PropertyType indicates the
type of that value.

If this is a parent property, you can retrieve the PropertyDescriptor objects for the children with the GetChildProperties()
member.

public abstract class PropertyDescriptor : MemberDescriptor {
// Protected Constructors
 protected PropertyDescriptor(MemberDescriptor descr);
 protected PropertyDescriptor(MemberDescriptor descr, Attribute[] attrs);
 protected PropertyDescriptor(string name, Attribute[] attrs);
// Public Instance Properties
 public abstract Type ComponentType{get; }
 public virtual TypeConverter Converter{get; }
 public virtual bool IsLocalizable{get; }
 public abstract bool IsReadOnly{get; }
 public abstract Type PropertyType{get; }
 public DesignerSerializationVisibility SerializationVisibility{get; }
// Public Instance Methods
 public virtual void AddValueChanged(object component, EventHandler handler);
 public abstract bool CanResetValue(object component);
 public override bool Equals(object obj); // overrides MemberDescriptor
 public PropertyDescriptorCollection GetChildProperties();
 public PropertyDescriptorCollection GetChildProperties(Attribute[] filter);
 public PropertyDescriptorCollection GetChildProperties(object instance);
 public virtual PropertyDescriptorCollection GetChildProperties(object instance, Attribute[] filter);
 public virtual object GetEditor(Type editorBaseType);
 public override int GetHashCode(); // overrides MemberDescriptor
 public abstract object GetValue(object component);
 public virtual void RemoveValueChanged(object component, EventHandler handler);
 public abstract void ResetValue(object component);
 public abstract void SetValue(object component, object value);
 public abstract bool ShouldSerializeValue(object component);
// Protected Instance Methods
 protected object CreateInstance(Type type);
 protected Type GetTypeFromName(string typeName);
 protected virtual void OnValueChanged(object component, EventArgs e);
}

Hierarchy

System.Object MemberDescriptor PropertyDescriptor

Returned By

ExtenderProvidedPropertyAttribute.ExtenderProperty, IBindingList.SortProperty, IComNativeDescriptorHandler.GetDefaultProperty(),
ICustomTypeDescriptor.GetDefaultProperty(), ITypeDescriptorContext.PropertyDescriptor,PropertyDescriptorCollection.{Find(), this},
TypeDescriptor.{CreateProperty(), GetDefaultProperty()}, System.Windows.Forms.DataGridColumnStyle.PropertyDescriptor,
System.Windows.Forms.Design.PropertyTab.GetDefaultProperty(), System.Windows.Forms.GridItem.PropertyDescriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms.Design.PropertyTab.GetDefaultProperty(), System.Windows.Forms.GridItem.PropertyDescriptor

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyDescriptorCollection

System.ComponentModel (system.dll) class

This class encapsulates a standard collection of PropertyDescriptor objects, for use with members such as
TypeDescriptor.GetProperties() and PropertyDescriptor.GetChildProperties().

public class PropertyDescriptorCollection : IList, ICollection, IEnumerable, IDictionary {
// Public Constructors
 public PropertyDescriptorCollection(PropertyDescriptor[] properties);
// Public Static Fields
 public static readonly PropertyDescriptorCollection Empty; // =System.ComponentModel.PropertyDescriptorCollection
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual PropertyDescriptor this{get; }
 public virtual PropertyDescriptor this{get; }
// Public Instance Methods
 public int Add(PropertyDescriptor value);
 public void Clear(); // implements System.Collections.IDictionary
 public bool Contains(PropertyDescriptor value);
 public void CopyTo(Array array, int index); // implements ICollection
 public virtual PropertyDescriptor Find(string name, bool ignoreCase);
 public virtual IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(PropertyDescriptor value);
 public void Insert(int index, PropertyDescriptor value);
 public void Remove(PropertyDescriptor value);
 public void RemoveAt(int index); // implements IList
 public virtual PropertyDescriptorCollection Sort();
 public virtual PropertyDescriptorCollection Sort(System.Collections.IComparer comparer);
 public virtual PropertyDescriptorCollection Sort(string[] names);
 public virtual PropertyDescriptorCollection Sort(string[] names, System.Collections.IComparer comparer);
// Protected Instance Methods
 protected void InternalSort(System.Collections.IComparer sorter);
 protected void InternalSort(string[] names);
}

Returned By

IComNativeDescriptorHandler.GetProperties(), ICustomTypeDescriptor.GetProperties(), ITypedList.GetItemProperties(),
PropertyDescriptor.GetChildProperties(), TypeConverter.{GetProperties(), SortProperties()}, TypeDescriptor.GetProperties(),
System.Windows.Forms.BindingManagerBase.GetItemProperties(), System.Windows.Forms.Design.PropertyTab.GetProperties()

Passed To

TypeConverter.SortProperties()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyTabAttribute

System.ComponentModel (system.dll) class

You apply this attribute to a class or property to indicate that a particular class of property tab should be added into a
designer (such as one derived from a System.Windows.Forms.PropertyGrid) when an instance of the attributed class is
selected.

You can get an array of types indicating the TabClasses that the attribute represents, along with the PropertyTabScope for
the tabs. The tab scope indicates how and when the tabs should be shown (e.g., whenever the current component is
selected, when the document containing the component is selected, etc.).

See System.Windows.Forms.Design.PropertyTab for an implementation of a property tab.

public class PropertyTabAttribute : Attribute {
// Public Constructors
 public PropertyTabAttribute();
 public PropertyTabAttribute(string tabClassName);
 public PropertyTabAttribute(string tabClassName, PropertyTabScope tabScope);
 public PropertyTabAttribute(Type tabClass);
 public PropertyTabAttribute(Type tabClass, PropertyTabScope tabScope);
// Public Instance Properties
 public Type[] TabClasses{get; }
 public PropertyTabScope[] TabScopes{get; }
// Protected Instance Properties
 protected string[] TabClassNames{get; }
// Public Instance Methods
 public override bool Equals(object other); // overrides Attribute
 public bool Equals(PropertyTabAttribute other);
 public override int GetHashCode(); // overrides Attribute
// Protected Instance Methods
 protected void InitializeArrays(string[] tabClassNames, PropertyTabScope[] tabScopes);
 protected void InitializeArrays(Type[] tabClasses, PropertyTabScope[] tabScopes);
}

Hierarchy

System.Object System.Attribute PropertyTabAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyTabScope serializable

System.ComponentModel (system.dll) enum

This enumeration is used by PropertyTabAttribute to indicate how and when a particular tab should be shown in a
designer.

public enum PropertyTabScope {
 Static = 0,
 Global = 1,
 Document = 2,
 Component = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PropertyTabScope

Returned By

PropertyTabAttribute.TabScopes

Passed To

PropertyTabAttribute.{InitializeArrays(), PropertyTabAttribute()}, System.Windows.Forms.PropertyGrid.RefreshTabs(),
System.Windows.Forms.PropertyTabCollection.{AddTabType(), Clear()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ProvidePropertyAttribute

System.ComponentModel (system.dll) sealed class

This attribute adorns classes that implement IExtenderProvider in order to indicate the properties it will provide for the
components that it extends. Multiple instances can be added to support multiple extender properties.

You can retrieve the PropertyName of the extender property. The ReceiverTypeName is the name of the root data type that
this class can extend.

See IExtenderProvider for more information on extended properties.

public sealed class ProvidePropertyAttribute : Attribute {
// Public Constructors
 public ProvidePropertyAttribute(string propertyName, string receiverTypeName);
 public ProvidePropertyAttribute(string propertyName, Type receiverType);
// Public Instance Properties
 public string PropertyName{get; }
 public string ReceiverTypeName{get; }
 public override object TypeId{get; }
// overrides Attribute
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ProvidePropertyAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ReadOnlyAttribute

System.ComponentModel (system.dll) sealed class

If you mark a property with this attribute, you can indicate whether it is read-only or read- write in the designer.
Compare this with the DesignOnlyAttribute.

You can use the IsReadOnly property to determine the state of the attribute, but an instance of the attribute can also be
compared against the Yes and No values for equality.

public sealed class ReadOnlyAttribute : Attribute {
// Public Constructors
 public ReadOnlyAttribute(bool isReadOnly);
// Public Static Fields
 public static readonly ReadOnlyAttribute Default; // =System.ComponentModel.ReadOnlyAttribute
 public static readonly ReadOnlyAttribute No; // =System.ComponentModel.ReadOnlyAttribute
 public static readonly ReadOnlyAttribute Yes; // =System.ComponentModel.ReadOnlyAttribute
// Public Instance Properties
 public bool IsReadOnly{get; }
// Public Instance Methods
 public override bool Equals(object value); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ReadOnlyAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RecommendedAsConfigurableAttribute

System.ComponentModel (system.dll) class

This attribute is added to a class to mark it as an application setting. A property decorated with this attribute will appear in
the Configurations section of the designer and will allow you to map its value to a particular key in a configuration file.

The RecommendedAsConfigurable property determines the state of the attribute, but you should compare against the static Yes
and No values for equality.

public class RecommendedAsConfigurableAttribute : Attribute {
// Public Constructors
 public RecommendedAsConfigurableAttribute(bool recommendedAsConfigurable);
// Public Static Fields
 public static readonly RecommendedAsConfigurableAttribute Default; // =System.ComponentModel.RecommendedAsConfigurableAttribute
 public static readonly RecommendedAsConfigurableAttribute No; // =System.ComponentModel.RecommendedAsConfigurableAttribute
 public static readonly RecommendedAsConfigurableAttribute Yes; // =System.ComponentModel.RecommendedAsConfigurableAttribute
// Public Instance Properties
 public bool RecommendedAsConfigurable{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute RecommendedAsConfigurableAttribute

Valid On

Property

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ReferenceConverter

System.ComponentModel (system.dll) class

This TypeConverter is used in serialization and design-time scenarios to translate to and from reference types. You should
not normally call it directly from your own code.

public class ReferenceConverter : TypeConverter {
// Public Constructors
 public ReferenceConverter(Type type);
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
 public override StandardValuesCollection GetStandardValues(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesExclusive(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesSupported(ITypeDescriptorContext context); // overrides TypeConverter
// Protected Instance Methods
 protected virtual bool IsValueAllowed(ITypeDescriptorContext context, object value);
}

Hierarchy

System.Object TypeConverter ReferenceConverter

Subclasses

ComponentConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RefreshEventArgs

System.ComponentModel (system.dll) class

This class encapsulates the data for the TypeDescriptor.Refreshed event, which is raised (at design time) when a
component's properties or events are updated. You can retrieve the identity of the component that was modified with
the ComponentChanged property, and the type of that component is given by TypeChanged.

public class RefreshEventArgs : EventArgs {
// Public Constructors
 public RefreshEventArgs(object componentChanged);
 public RefreshEventArgs(Type typeChanged);
// Public Instance Properties
 public object ComponentChanged{get; }
 public Type TypeChanged{get; }
}

Hierarchy

System.Object System.EventArgs RefreshEventArgs

Passed To

RefreshEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RefreshEventHandler serializable

System.ComponentModel (system.dll) delegate

This is a delegate for the TypeDescriptor.Refreshed event.

public delegate void RefreshEventHandler(RefreshEventArgs e);

Associated Events

TypeDescriptor.Refreshed()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RefreshProperties serializable

System.ComponentModel (system.dll) enum

This enumeration is used by RefreshPropertiesAttribute to determine how a properties window should be updated when a
particular property is changed.

public enum RefreshProperties {
 None = 0,
 All = 1,
 Repaint = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RefreshProperties

Returned By

RefreshPropertiesAttribute.RefreshProperties

Passed To

RefreshPropertiesAttribute.RefreshPropertiesAttribute()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RefreshPropertiesAttribute

System.ComponentModel (system.dll) sealed class

You can adorn a property with this attribute to indicate how a designer properties window should be updated when its
values changes. The RefreshProperties member can be set to Default if only the modified property should be updated,
Repaint if all the properties (including this one) should be repainted, and All if all the properties should be queried afresh,
and then repainted.

public sealed class RefreshPropertiesAttribute : Attribute {
// Public Constructors
 public RefreshPropertiesAttribute(RefreshProperties refresh);
// Public Static Fields
 public static readonly RefreshPropertiesAttribute All; // =System.ComponentModel.RefreshPropertiesAttribute
 public static readonly RefreshPropertiesAttribute Default; // =System.ComponentModel.RefreshPropertiesAttribute
 public static readonly RefreshPropertiesAttribute Repaint; // =System.ComponentModel.RefreshPropertiesAttribute
// Public Instance Properties
 public RefreshProperties RefreshProperties{get; }
// Public Instance Methods
 public override bool Equals(object value); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute RefreshPropertiesAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RunInstallerAttribute

System.ComponentModel (system.dll) class

You mark a class derived from System.Configuration.Install.Installer with this attribute to indicate that it should be invoked
as a custom action when the assembly is installed. See the documentation for that namespace, and see InstallUtil.exe for
more information on installers and custom actions.

You can retrieve the state of the attribute with the RunInstaller property, but note that you must compare the object
against the static Yes and No values for equality.

public class RunInstallerAttribute : Attribute {
// Public Constructors
 public RunInstallerAttribute(bool runInstaller);
// Public Static Fields
 public static readonly RunInstallerAttribute Default; // =System.ComponentModel.RunInstallerAttribute
 public static readonly RunInstallerAttribute No; // =System.ComponentModel.RunInstallerAttribute
 public static readonly RunInstallerAttribute Yes; // =System.ComponentModel.RunInstallerAttribute
// Public Instance Properties
 public bool RunInstaller{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute RunInstallerAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SByteConverter

System.ComponentModel (system.dll) class

This class provides a TypeConverter for the SByte type in serialization and design-time scenarios. You would not normally
call this class from your own code.

public class SByteConverter : BaseNumberConverter {
// Public Constructors
 public SByteConverter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter SByteConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SingleConverter

System.ComponentModel (system.dll) class

This TypeConverter for the single-precision floating-point type is used in serialization and design-time scenarios, and
would not normally be called from your own code.

public class SingleConverter : BaseNumberConverter {
// Public Constructors
 public SingleConverter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter SingleConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringConverter

System.ComponentModel (system.dll) class

This class implements a TypeConverter to transform to and from the string type in serialization and design-time
scenarios. You should not normally call it from your own code.

public class StringConverter : TypeConverter {
// Public Constructors
 public StringConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter StringConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SyntaxCheck

System.ComponentModel (system.dll) class

This is a class private to the framework, which should not be used in your own code.

public class SyntaxCheck {
// Public Static Methods
 public static bool CheckMachineName(string value);
 public static bool CheckPath(string value);
 public static bool CheckRootedPath(string value);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TimeSpanConverter

System.ComponentModel (system.dll) class

This class provides a TypeConverter for the TimeSpan type. It is used in design-time and serialization scenarios, and would
not normally be called from your own code.

public class TimeSpanConverter : TypeConverter {
// Public Constructors
 public TimeSpanConverter();
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter TimeSpanConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolboxItemAttribute

System.ComponentModel (system.dll) class

You can decorate an item with this attribute to indicate that it should provide a particular
System.Drawing.Design.ToolboxItem. You can determine the type of the ToolboxItem with the ToolboxItemType property, and
its name with ToolboxItemTypeName. You can compare against the Default and None values for equality.

public class ToolboxItemAttribute : Attribute {
// Public Constructors
 public ToolboxItemAttribute(bool defaultType);
 public ToolboxItemAttribute(string toolboxItemTypeName);
 public ToolboxItemAttribute(Type toolboxItemType);
// Public Static Fields
 public static readonly ToolboxItemAttribute Default; // =System.ComponentModel.ToolboxItemAttribute
 public static readonly ToolboxItemAttribute None; // =System.ComponentModel.ToolboxItemAttribute
// Public Instance Properties
 public Type ToolboxItemType{get; }
 public string ToolboxItemTypeName{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool IsDefaultAttribute(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ToolboxItemAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolboxItemFilterAttribute serializable

System.ComponentModel (system.dll) sealed class

This attribute adorns a class to allow the framework to filter its availability conditionally on the presence of a similar
attribute on the designer, or using a custom filter provided by the designer by implementing the
System.Drawing.Design.IToolboxUser.GetToolSupported() method.

You can retrieve the FilterString and FilterType for the attribute.

public sealed class ToolboxItemFilterAttribute : Attribute {
// Public Constructors
 public ToolboxItemFilterAttribute(string filterString);
 public ToolboxItemFilterAttribute(string filterString, ToolboxItemFilterType filterType);
// Public Instance Properties
 public string FilterString{get; }
 public ToolboxItemFilterType FilterType{get; }
 public override object TypeId{get; }
// overrides Attribute
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public override bool Match(object obj); // overrides Attribute
}

Hierarchy

System.Object System.Attribute ToolboxItemFilterAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolboxItemFilterType serializable

System.ComponentModel (system.dll) enum

This enumeration lists the various options for the method of filtering to be used when applying the
ToolboxItemFilterAttribute.

public enum ToolboxItemFilterType {
 Allow = 0,
 Custom = 1,
 Prevent = 2,
 Require = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ToolboxItemFilterType

Returned By

ToolboxItemFilterAttribute.FilterType

Passed To

ToolboxItemFilterAttribute.ToolboxItemFilterAttribute()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TypeConverter

System.ComponentModel (system.dll) class

This class provides a means to translate between one type and other representations of that type—typically a string
representation. The designer environment uses type converters to translate between types it does not understand (for
example, a System.Drawing.Size) and one it can represent in a System.Windows.Forms.PropertyGrid (for example, a string).

One of the quickest and simplest ways to make your custom type available in a designer is to implement a TypeConverter
for it and adorn it with a TypeConverterAttribute to bind the appropriate converter. For finer control, you can add the
attribute to a particular property to change the type converter for that particular instance of the type.

To implement a TypeConverter you should override the CanConvertFrom(), CanConvertTo(), ConvertFrom() and ConvertTo()
methods. At a minimum, you should implement conversion to and from a string, and you may also want to support
InstanceDescriptor to support more complex initialization scenarios in design-time serialization.

If your object is immutable and requires recreation to modify it, you need to override CreateInstance() and
GetCreateInstanceSupported(). This will be passed a System.Collections.IDictionary of property name/value pairs and optionally
an ITypeDescriptorContext, which you may need to use in the conversion process.

If the type contains properties or you wish to extend it to appear to support properties of its own, you can override the
GetProperties() and GetPropertiesSupported() methods. If you want add your own properties, derive them from
SimplePropertyDescriptor (overriding the GetValue() and SetValue() methods.

A type can also support standard values (well-known values that can be assigned to the type). Implement
GetStandardValues() and GetStandardValuesSupported() to provide standard values. If you also override
GetStandardValuesExclusive(), you can indicate that the type will only accept one of the standard values.

public class TypeConverter {
// Public Constructors
 public TypeConverter();
// Public Instance Methods
 public virtual bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType);
 public bool CanConvertFrom(Type sourceType);
 public virtual bool CanConvertTo(ITypeDescriptorContext context, Type destinationType);
 public bool CanConvertTo(Type destinationType);
 public virtual object ConvertFrom(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, object value);
 public object ConvertFrom(object value);
 public object ConvertFromInvariantString(ITypeDescriptorContext context, string text);
 public object ConvertFromInvariantString(string text);
 public object ConvertFromString(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, string text);
 public object ConvertFromString(ITypeDescriptorContext context, string text);
 public object ConvertFromString(string text);
 public virtual object ConvertTo(ITypeDescriptorContext context, System.Globalization.CultureInfo culture,
 object value, Type destinationType);
 public object ConvertTo(object value, Type destinationType);
 public string ConvertToInvariantString(ITypeDescriptorContext context, object value);
 public string ConvertToInvariantString(object value);
 public string ConvertToString(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, object value);
 public string ConvertToString(ITypeDescriptorContext context, object value);
 public string ConvertToString(object value);
 public object CreateInstance(System.Collections.IDictionary propertyValues);
 public virtual object CreateInstance(ITypeDescriptorContext context, System.Collections.IDictionary propertyValues);
 public bool GetCreateInstanceSupported();
 public virtual bool GetCreateInstanceSupported(ITypeDescriptorContext context);
 public PropertyDescriptorCollection GetProperties(ITypeDescriptorContext context, object value);
 public virtual PropertyDescriptorCollection GetProperties(ITypeDescriptorContext context, object value,
 Attribute[] attributes);
 public PropertyDescriptorCollection GetProperties(ITypeDescriptorContext context, object value, object value);
 public bool GetPropertiesSupported();
 public virtual bool GetPropertiesSupported(ITypeDescriptorContext context);
 public ICollection GetStandardValues();
 public virtual StandardValuesCollection GetStandardValues(ITypeDescriptorContext context);
 public bool GetStandardValuesExclusive();
 public virtual bool GetStandardValuesExclusive(ITypeDescriptorContext context);
 public bool GetStandardValuesSupported();
 public virtual bool GetStandardValuesSupported(ITypeDescriptorContext context);
 public virtual bool IsValid(ITypeDescriptorContext context, object value);
 public bool IsValid(object value);
// Protected Instance Methods
 protected Exception GetConvertFromException(object value);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected Exception GetConvertFromException(object value);
 protected Exception GetConvertToException(object value, Type destinationType);
 protected PropertyDescriptorCollection SortProperties(PropertyDescriptorCollection props, string[] names);
}

Subclasses

Multiple types

Returned By

IComNativeDescriptorHandler.GetConverter(), ICustomTypeDescriptor.GetConverter(), PropertyDescriptor.Converter,
TypeDescriptor.GetConverter()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TypeConverter.StandardValuesCollection

System.ComponentModel (system.dll) class

This class implements a collection of standard values for the TypeConverter.GetStandardValues() method.

public class TypeConverter.StandardValuesCollection : ICollection, IEnumerable {
// Public Constructors
 public TypeConverter.StandardValuesCollection(System.Collections.ICollection values);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public object this{get; }
// Public Instance Methods
 public void CopyTo(Array array, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TypeConverterAttribute

System.ComponentModel (system.dll) sealed class

You can adorn a class or property with this attribute to bind it to a particular TypeConverter class. The framework then
uses this converter to attempt to translate a user-defined type that it doesn't understand into one that it does.

You can get the type name of the converter with the ConverterTypeName property.

public sealed class TypeConverterAttribute : Attribute {
// Public Constructors
 public TypeConverterAttribute();
 public TypeConverterAttribute(string typeName);
 public TypeConverterAttribute(Type type);
// Public Static Fields
 public static readonly TypeConverterAttribute Default; // =System.ComponentModel.TypeConverterAttribute
// Public Instance Properties
 public string ConverterTypeName{get; }
// Public Instance Methods
 public override bool Equals(object obj); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
}

Hierarchy

System.Object System.Attribute TypeConverterAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TypeDescriptor

System.ComponentModel (system.dll) sealed class

This class encapsulates the information about a component. It provides a set of static utility methods to get details of
the attributes, properties, and events. You can also get the default property or event.

While this appears to provide exactly the same information as System.Type, it adds an extra level of indirection, allowing
you to provide virtual types that would not be represented by the standard type infrastructure.

GetClassName() gets the name of the class, while GetComponentName() gets the name of the component. You can retrieve
the TypeConverter for the class with the GetConverter() method, and you can create the designer associated with the type
with the CreateDesigner() method.

There are two versions of each method: one takes a Type that can be used if you do not have an actual instance of the
type and the other takes an object if you do have a suitable instance.

public sealed class TypeDescriptor {
// Public Static Properties
 public static IComNativeDescriptorHandler ComNativeDescriptorHandler{set; get; }
// Public Static Methods
 public static void AddEditorTable(Type editorBaseType, System.Collections.Hashtable table);
 public static IDesigner CreateDesigner(IComponent component, Type designerBaseType);
 public static EventDescriptor CreateEvent(Type componentType, EventDescriptor oldEventDescriptor,
 params Attribute[] attributes);
 public static EventDescriptor CreateEvent(Type componentType, string name, Type type, params Attribute[] attributes);
 public static PropertyDescriptor CreateProperty(Type componentType, PropertyDescriptor oldPropertyDescriptor,
 params Attribute[] attributes);
 public static PropertyDescriptor CreateProperty(Type componentType, string name, Type type,
 params Attribute[] attributes);
 public static AttributeCollection GetAttributes(object component);
 public static AttributeCollection GetAttributes(object component, bool noCustomTypeDesc);
 public static AttributeCollection GetAttributes(Type componentType);
 public static string GetClassName(object component);
 public static string GetClassName(object component, bool noCustomTypeDesc);
 public static string GetComponentName(object component);
 public static string GetComponentName(object component, bool noCustomTypeDesc);
 public static TypeConverter GetConverter(object component);
 public static TypeConverter GetConverter(object component, bool noCustomTypeDesc);
 public static TypeConverter GetConverter(Type type);
 public static EventDescriptor GetDefaultEvent(object component);
 public static EventDescriptor GetDefaultEvent(object component, bool noCustomTypeDesc);
 public static EventDescriptor GetDefaultEvent(Type componentType);
 public static PropertyDescriptor GetDefaultProperty(object component);
 public static PropertyDescriptor GetDefaultProperty(object component, bool noCustomTypeDesc);
 public static PropertyDescriptor GetDefaultProperty(Type componentType);
 public static object GetEditor(object component, Type editorBaseType);
 public static object GetEditor(object component, Type editorBaseType, bool noCustomTypeDesc);
 public static object GetEditor(Type type, Type editorBaseType);
 public static EventDescriptorCollection GetEvents(object component);
 public static EventDescriptorCollection GetEvents(object component, Attribute[] attributes);
 public static EventDescriptorCollection GetEvents(object component, Attribute[] attributes, bool noCustomTypeDesc);
 public static EventDescriptorCollection GetEvents(object component, bool noCustomTypeDesc);
 public static EventDescriptorCollection GetEvents(Type componentType);
 public static EventDescriptorCollection GetEvents(Type componentType, Attribute[] attributes);
 public static PropertyDescriptorCollection GetProperties(object component);
 public static PropertyDescriptorCollection GetProperties(object component, Attribute[] attributes);
 public static PropertyDescriptorCollection GetProperties(object component, Attribute[] attributes,
 bool noCustomTypeDesc);
 public static PropertyDescriptorCollection GetProperties(object component, bool noCustomTypeDesc);
 public static PropertyDescriptorCollection GetProperties(Type componentType);
 public static PropertyDescriptorCollection GetProperties(Type componentType, Attribute[] attributes);
 public static void Refresh(System.Reflection.Assembly assembly);
 public static void Refresh(System.Reflection.Module module);
 public static void Refresh(object component);
 public static void Refresh(Type type);
 public static void SortDescriptorArray(System.Collections.IList infos);
// Events
 public event RefreshEventHandler Refreshed;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TypeListConverter

System.ComponentModel (system.dll) abstract class

This class implements a TypeConverter for a list of types. It can be used in serialization and design-time scenarios, and
would not normally be called from your own code.

public abstract class TypeListConverter : TypeConverter {
// Protected Constructors
 protected TypeListConverter(Type[] types);
// Public Instance Methods
 public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType); // overrides TypeConverter
 public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType); // overrides TypeConverter
 public override object ConvertFrom(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides TypeConverter
 public override object ConvertTo(ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value, Type destinationType); // overrides TypeConverter
 public override StandardValuesCollection GetStandardValues(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesExclusive(ITypeDescriptorContext context); // overrides TypeConverter
 public override bool GetStandardValuesSupported(ITypeDescriptorContext context); // overrides TypeConverter
}

Hierarchy

System.Object TypeConverter TypeListConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UInt16Converter

System.ComponentModel (system.dll) class

This TypeConverter converts between a UInt16 and other types for serialization and design-time scenarios. You would not
normally call it from your own code.

public class UInt16Converter : BaseNumberConverter {
// Public Constructors
 public UInt16Converter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter UInt16Converter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UInt32Converter

System.ComponentModel (system.dll) class

This class provides a TypeConverter for a UInt32. It is used in serialization and design-time scenarios, and should not
normally be called from your own code.

public class UInt32Converter : BaseNumberConverter {
// Public Constructors
 public UInt32Converter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter UInt32Converter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UInt64Converter

System.ComponentModel (system.dll) class

This class implements a TypeConverter for a UInt64 in serialization and design-time scenarios. It should not normally be
called from your own code.

public class UInt64Converter : BaseNumberConverter {
// Public Constructors
 public UInt64Converter();
}

Hierarchy

System.Object TypeConverter BaseNumberConverter UInt64Converter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WarningException

System.ComponentModel (system.dll) class

This implements an exception that should be treated as a warning rather than an error. You can specify a HelpTopic and
HelpUrl (the URI of the help file associated with the problem).

public class WarningException : SystemException {
// Public Constructors
 public WarningException(string message);
 public WarningException(string message, string helpUrl);
 public WarningException(string message, string helpUrl, string helpTopic);
// Public Instance Properties
 public string HelpTopic{get; }
 public string HelpUrl{get; }
}

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
WarningException
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Win32Exception serializable

System.ComponentModel (system.dll) class

This class encapsulates an exception that is thrown to wrap the failure of a Win32 native method call. The
NativeErrorCode property can retrieve the underlying Win32 error code that caused the exception to be thrown.

public class Win32Exception : System.Runtime.InteropServices.ExternalException {
// Public Constructors
 public Win32Exception();
 public Win32Exception(int error);
 public Win32Exception(int error, string message);
// Protected Constructors
 protected Win32Exception(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public int NativeErrorCode{get; }
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides Exception
}

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
System.Runtime.InteropServices.ExternalException Win32Exception

Subclasses

System.Net.Sockets.SocketException

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. The System.Drawing Namespace
The System.Drawing namespace contains the classes that make up the .NET implementation of GDI+—Microsoft's next-
generation graphics architecture. If you are familiar with the C++ implementation shipped with Microsoft's Platform
SDK, then you will recognize most of the classes found here. However, System.Drawing is not a wrapper around the C++
code; both are implemented in terms of a common, low-level graphics architecture, which at the time of writing has an
unpublished API.

All drawing is carried out on a Graphics surface, using various kinds of Pen, Brush, and Image objects. You can control the
Color (including transparency), Font, line style, and fill patterns of these objects, but the Graphics surface itself is
responsible for the actual painting, providing methods such as DrawString(), DrawRectangle(), and FillClosedCurve() for this
purpose. You can set up clipping Regions, control rendering styles such as antialiasing and compositing, or use a
transform matrix (see System.Drawing.Drawing2D.Matrix) to rotate, scale, shear, and translate the drawing.

Usually, you will be supplied a Graphics surface on which to draw in the PaintEventArgs passed to your Control object's
paint handler. However, you can also create surfaces from Control objects, Image objects (such as Bitmap and Metafile), or
native GDI device contexts (through interop).

Because there are no objects that represent the drawing operations themselves, you cannot simply persist an object
graph to store your drawing. .NET offers two other options, both of which have their limitations. First, you can save a
Bitmap to a stream or file using the standard raster graphics encoders (e.g., BMP, PNG, JPG) by calling one of the Save()
methods. Alternatively, you can use the Metafile support in System.Drawing.Imaging to store and restore a scalable,
vectorized version of your drawing operations. At the present time, it is not possible to write your own encoders, but
this may be possible in future versions of the platform.

The System.Drawing.Drawing2D contains classes that offer enhanced vector graphics support (such as the Matrix
transforms), and System.Drawing.Imaging provides classes that offer enhanced imaging facilities (such as color transforms
and direct pixel data access). Printing support can be found in System.Drawing.Printing.

Figure 14-1 shows many of the types in this namespace, and Figure 14-2 shows various converters.

Figure 14-1. Many types from the System.Drawing namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-2. Converters in the System.Drawing namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Bitmap serializable, marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This subclass of Image encapsulates a picture represented by a 2D array of pixel data. It supports a range of
PixelFormats, including both true-color and palette-color bitmaps, and those with an alpha channel for transparency.

A Bitmap conceptually represents a system bitmap and is ultimately implemented through a native GDI+ bitmap handle.
As with most drawing classes that wrap limited resources (Pen and Brush being other examples), you should have a well-
defined lifetime management plan, calling Dispose() when you are finished to release the resources back to the system
(the using idiom in C# is useful here: see the main body of the text for details). If you rely on the garbage collector to
do this, the Bitmap object will be collected but its pixel data will be leaked until the garbage collector happens to run,
which may be too late.

There are several ways to construct a Bitmap object. One of the most is common is to provide the filename of the
picture that you want to load. The framework will use the installed CODECs (BMP, PNG, JPG, and GIF) to attempt to
load the image. Note that the file itself will remain locked until the Bitmap that loaded it is disposed. However, you can
Clone() the bitmap and Dispose() the original to release the file.

Alternatively, you can construct bitmaps of a specific size and PixelFormat, or bitmaps compatible with a particular
Graphics surface. You can also construct from another Image (optionally rescaling the original in the process), or from a
block of pixel data referenced via an IntPtr. The latter is most useful in interop scenarios, as are the static methods
FromHicon() and FromResource(), which return a Bitmap wrapper for Win32 icons and bitmap resources. (By preference,
you would use the Icon class instead, for a fully managed solution.)

You can also Clone() a specific Rectangle from a Bitmap, optionally changing its PixelFormat in the process, or use the
override of GetThumbnailImage() to retrieve a smaller version of the original. This method does expose its unmanaged
origins somewhat, inconveniently requiring you to pass an Abort delegate that is required to do nothing, and a null
pointer (IntPtr.Zero). It is recommended that you use the rescaling constructor instead.

You can manipulate the image using the GetPixel() and SetPixel() methods, but this is not especially efficient! A better
approach for image processing is to use the LockBits() method to retrieve a BitmapData object, which allows direct access
to the underlying pixel data. LockBits() actually ensures that the pixel data is fixed into system memory, and will not
move while you are using it. For heavy duty processing, you would typically hand this off through interop to an
unmanaged routine, but managed code will often perform adequately if care is taken with the selection of the
processing algorithm, and you are prepared to support unsafe code in your assembly. When you have finished, you can
use UnlockBits() to unlock the pixel data again.

There are a couple of built-in manipulation functions, including RotateFlip() to let you perform fixed rotations and flipping,
and MakeTransparent(), which lets you make a selected color transparent when drawing the image. Classes providing
more advanced manipulation of the bitmap can be found in the System.Drawing.Imaging namespace.

To draw an image on a Graphics surface, use Graphics.DrawImage() and Graphics.DrawImageUnscaled(). The
Graphics.CompositingMode, Graphics.CompositingQuality, and Graphics.InterpolationMode determine how the pixel data will be
drawn onto the surface.

If you want to paint onto the Bitmap itself, you can use Graphics.FromImage() to create a Graphics surface bound to the
bitmap object. Any painting on that surface will be reflected on the Bitmap.

public sealed class Bitmap : Image {
// Public Constructors
 public Bitmap(Image original);
 public Bitmap(Image original, int width, int height);
 public Bitmap(Image original, Size newSize);
 public Bitmap(int width, int height);
 public Bitmap(int width, int height, Graphics g);
 public Bitmap(int width, int height, int stride, System.Drawing.Imaging.PixelFormat format, IntPtr scan0);
 public Bitmap(int width, int height, System.Drawing.Imaging.PixelFormat format);
 public Bitmap(System.IO.Stream stream);
 public Bitmap(System.IO.Stream stream, bool useIcm);
 public Bitmap(string filename);
 public Bitmap(string filename, bool useIcm);
 public Bitmap(Type type, string resource);
// Public Static Methods
 public static Bitmap FromHicon(IntPtr hicon);
 public static Bitmap FromResource(IntPtr hinstance, string bitmapName);
// Public Instance Methods
 public Bitmap Clone(RectangleF rect, System.Drawing.Imaging.PixelFormat format);
 public Bitmap Clone(Rectangle rect, System.Drawing.Imaging.PixelFormat format);
 public IntPtr GetHbitmap();
 public IntPtr GetHbitmap(Color background);
 public IntPtr GetHicon();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public IntPtr GetHicon();
 public Color GetPixel(int x, int y);
 public BitmapData LockBits(Rectangle rect, System.Drawing.Imaging.ImageLockMode flags,
 System.Drawing.Imaging.PixelFormat format);
 public void MakeTransparent();
 public void MakeTransparent(Color transparentColor);
 public void SetPixel(int x, int y, Color color);
 public void SetResolution(float xDpi, float yDpi);
 public void UnlockBits(System.Drawing.Imaging.BitmapData bitmapdata);
}

Hierarchy

System.Object System.MarshalByRefObject Image(System.Runtime.Serialization.ISerializabl, System.ICloneable,
System.IDisposable) Bitmap

Returned By

System.Drawing.Design.ToolboxItem.Bitmap, Icon.ToBitmap(), Image.FromHbitmap(),
System.Windows.Forms.Design.PropertyTab.Bitmap

Passed To

System.Drawing.Design.ToolboxItem.Bitmap, System.Windows.Forms.ControlPaint.{CreateHBitmap16Bit(), CreateHBitmapColorMask(),
CreateHBitmapTransparencyMask()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Brush marshal by reference, disposable

System.Drawing (system.drawing.dll) abstract class

This abstract base represents the class of objects that determine how shapes will be filled. Concrete subclasses such as
SolidBrush and System.Drawing.Drawing2D.LinearGradientBrush can be instantiated to achieve a variety of different fill styles
and techniques.

If you just need a basic SolidBrush of a well-known color, you can use the Brushes or SystemBrushes class to retrieve one.

As all brushes are resource-based entities, you should manage their lifetime appropriately, calling Dispose() when you
are finished to avoid leaking system resources. (See Brushes and SystemBrushes for exceptions to this rule.)

public abstract class Brush : MarshalByRefObject : ICloneable, IDisposable {
// Public Instance Methods
 public abstract object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Brush(System.ICloneabl, System.IDisposable)

Subclasses

SolidBrush, TextureBrush, System.Drawing.Drawing2D.{HatchBrush, LinearGradientBrush, PathGradientBrush}

Returned By

Multiple types

Passed To

Graphics.{DrawString(), FillClosedCurve(), FillEllipse(), FillPath(), FillPie(), FillPolygon(), FillRectangle(), FillRectangles(), FillRegion()},
Pen.{Brush, Pen()}, System.Windows.Forms.DataGridTextBoxColumn.PaintText()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Brushes

System.Drawing (system.drawing.dll) sealed class

This class provides a set of static properties that return Brushes for all the standard web colors.

Unlike most brushes, you must not Dispose() the ones returned from this class, as they are returned from a system
cache and you will leave a nasty hole behind for the next person to try to use.

To retrieve a Brush for one of the basic system colors, see SystemBrushes.

public sealed class Brushes {
// Public Static Properties
 public static Brush AliceBlue{get; }
 public static Brush AntiqueWhite{get; }
 public static Brush Aqua{get; }
 public static Brush Aquamarine{get; }
 public static Brush Azure{get; }
 public static Brush Beige{get; }
 public static Brush Bisque{get; }
 public static Brush Black{get; }
 public static Brush BlanchedAlmond{get; }
 public static Brush Blue{get; }
 public static Brush BlueViolet{get; }
 public static Brush Brown{get; }
 public static Brush BurlyWood{get; }
 public static Brush CadetBlue{get; }
 public static Brush Chartreuse{get; }
 public static Brush Chocolate{get; }
 public static Brush Coral{get; }
 public static Brush CornflowerBlue{get; }
 public static Brush Cornsilk{get; }
 public static Brush Crimson{get; }
 public static Brush Cyan{get; }
 public static Brush DarkBlue{get; }
 public static Brush DarkCyan{get; }
 public static Brush DarkGoldenrod{get; }
 public static Brush DarkGray{get; }
 public static Brush DarkGreen{get; }
 public static Brush DarkKhaki{get; }
 public static Brush DarkMagenta{get; }
 public static Brush DarkOliveGreen{get; }
 public static Brush DarkOrange{get; }
 public static Brush DarkOrchid{get; }
 public static Brush DarkRed{get; }
 public static Brush DarkSalmon{get; }
 public static Brush DarkSeaGreen{get; }
 public static Brush DarkSlateBlue{get; }
 public static Brush DarkSlateGray{get; }
 public static Brush DarkTurquoise{get; }
 public static Brush DarkViolet{get; }
 public static Brush DeepPink{get; }
 public static Brush DeepSkyBlue{get; }
 public static Brush DimGray{get; }
 public static Brush DodgerBlue{get; }
 public static Brush Firebrick{get; }
 public static Brush FloralWhite{get; }
 public static Brush ForestGreen{get; }
 public static Brush Fuchsia{get; }
 public static Brush Gainsboro{get; }
 public static Brush GhostWhite{get; }
 public static Brush Gold{get; }
 public static Brush Goldenrod{get; }
 public static Brush Gray{get; }
 public static Brush Green{get; }
 public static Brush GreenYellow{get; }
 public static Brush Honeydew{get; }
 public static Brush HotPink{get; }
 public static Brush IndianRed{get; }
 public static Brush Indigo{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Brush Indigo{get; }
 public static Brush Ivory{get; }
 public static Brush Khaki{get; }
 public static Brush Lavender{get; }
 public static Brush LavenderBlush{get; }
 public static Brush LawnGreen{get; }
 public static Brush LemonChiffon{get; }
 public static Brush LightBlue{get; }
 public static Brush LightCoral{get; }
 public static Brush LightCyan{get; }
 public static Brush LightGoldenrodYellow{get; }
 public static Brush LightGray{get; }
 public static Brush LightGreen{get; }
 public static Brush LightPink{get; }
 public static Brush LightSalmon{get; }
 public static Brush LightSeaGreen{get; }
 public static Brush LightSkyBlue{get; }
 public static Brush LightSlateGray{get; }
 public static Brush LightSteelBlue{get; }
 public static Brush LightYellow{get; }
 public static Brush Lime{get; }
 public static Brush LimeGreen{get; }
 public static Brush Linen{get; }
 public static Brush Magenta{get; }
 public static Brush Maroon{get; }
 public static Brush MediumAquamarine{get; }
 public static Brush MediumBlue{get; }
 public static Brush MediumOrchid{get; }
 public static Brush MediumPurple{get; }
 public static Brush MediumSeaGreen{get; }
 public static Brush MediumSlateBlue{get; }
 public static Brush MediumSpringGreen{get; }
 public static Brush MediumTurquoise{get; }
 public static Brush MediumVioletRed{get; }
 public static Brush MidnightBlue{get; }
 public static Brush MintCream{get; }
 public static Brush MistyRose{get; }
 public static Brush Moccasin{get; }
 public static Brush NavajoWhite{get; }
 public static Brush Navy{get; }
 public static Brush OldLace{get; }
 public static Brush Olive{get; }
 public static Brush OliveDrab{get; }
 public static Brush Orange{get; }
 public static Brush OrangeRed{get; }
 public static Brush Orchid{get; }
 public static Brush PaleGoldenrod{get; }
 public static Brush PaleGreen{get; }
 public static Brush PaleTurquoise{get; }
 public static Brush PaleVioletRed{get; }
 public static Brush PapayaWhip{get; }
 public static Brush PeachPuff{get; }
 public static Brush Peru{get; }
 public static Brush Pink{get; }
 public static Brush Plum{get; }
 public static Brush PowderBlue{get; }
 public static Brush Purple{get; }
 public static Brush Red{get; }
 public static Brush RosyBrown{get; }
 public static Brush RoyalBlue{get; }
 public static Brush SaddleBrown{get; }
 public static Brush Salmon{get; }
 public static Brush SandyBrown{get; }
 public static Brush SeaGreen{get; }
 public static Brush SeaShell{get; }
 public static Brush Sienna{get; }
 public static Brush Silver{get; }
 public static Brush SkyBlue{get; }
 public static Brush SlateBlue{get; }
 public static Brush SlateGray{get; }
 public static Brush Snow{get; }
 public static Brush SpringGreen{get; }
 public static Brush SteelBlue{get; }
 public static Brush Tan{get; }
 public static Brush Teal{get; }
 public static Brush Thistle{get; }
 public static Brush Tomato{get; }
 public static Brush Transparent{get; }
 public static Brush Turquoise{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Brush Turquoise{get; }
 public static Brush Violet{get; }
 public static Brush Wheat{get; }
 public static Brush White{get; }
 public static Brush WhiteSmoke{get; }
 public static Brush Yellow{get; }
 public static Brush YellowGreen{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CharacterRange

System.Drawing (system.drawing.dll) struct

This value type is used to define a range of characters within a string, by specifying the starting character and the
length of the substring.

public struct CharacterRange {
// Public Constructors
 public CharacterRange(int First, int Length);
// Public Instance Properties
 public int First{set; get; }
 public int Length{set; get; }
}

Hierarchy

System.Object System.ValueType CharacterRange

Passed To

StringFormat.SetMeasurableCharacterRanges()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Color serializable

System.Drawing (system.drawing.dll) struct

The Color structure is a value type that represents a point in the RGB color space, with optional support for a
transparency alpha channel.

You can obtain the value of a particular Color by using one of the static properties that return a well-known web color.
Alternatively, FromArgb() allows you to define a specific color from its red, green, blue, and alpha components.
FromKnownColor() allows you to create a Color from an entry in KnownColor enumeration, and FromName() takes a string
containing the name of well-known color.

There is also a special field, Empty, which represents a null color. This is necessary because Color is a value type, and
therefore nullness cannot be represented by a null reference. It is usually used when a class can optionally inherit its
color from an ambient property (e.g., the ForeColor of a Control is inherited from its Parent if set to Empty). The IsEmpty
property allows you to check for nullness.

There are properties that allow you to retrieve the A, R, G, and B values of the color, and the color's Name (either the
well-known name or a string description of the ARGB values as appropriate). In addition, there are methods—GetHue(),
GetSaturation(), and GetBrightness()—to transform the values to the HSB color space.

If you need to know whether a color is well-known, you can use the IsKnownColor, IsNamedColor, and IsSystemColor
properties.

The Color structure is used pervasively throughout the framework wherever color is needed.

public struct Color {
// Public Static Fields
 public static readonly Color Empty; // = Color [Empty]
// Public Static Properties
 public static Color AliceBlue{get; }
 public static Color AntiqueWhite{get; }
 public static Color Aqua{get; }
 public static Color Aquamarine{get; }
 public static Color Azure{get; }
 public static Color Beige{get; }
 public static Color Bisque{get; }
 public static Color Black{get; }
 public static Color BlanchedAlmond{get; }
 public static Color Blue{get; }
 public static Color BlueViolet{get; }
 public static Color Brown{get; }
 public static Color BurlyWood{get; }
 public static Color CadetBlue{get; }
 public static Color Chartreuse{get; }
 public static Color Chocolate{get; }
 public static Color Coral{get; }
 public static Color CornflowerBlue{get; }
 public static Color Cornsilk{get; }
 public static Color Crimson{get; }
 public static Color Cyan{get; }
 public static Color DarkBlue{get; }
 public static Color DarkCyan{get; }
 public static Color DarkGoldenrod{get; }
 public static Color DarkGray{get; }
 public static Color DarkGreen{get; }
 public static Color DarkKhaki{get; }
 public static Color DarkMagenta{get; }
 public static Color DarkOliveGreen{get; }
 public static Color DarkOrange{get; }
 public static Color DarkOrchid{get; }
 public static Color DarkRed{get; }
 public static Color DarkSalmon{get; }
 public static Color DarkSeaGreen{get; }
 public static Color DarkSlateBlue{get; }
 public static Color DarkSlateGray{get; }
 public static Color DarkTurquoise{get; }
 public static Color DarkViolet{get; }
 public static Color DeepPink{get; }
 public static Color DeepSkyBlue{get; }
 public static Color DimGray{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Color DimGray{get; }
 public static Color DodgerBlue{get; }
 public static Color Firebrick{get; }
 public static Color FloralWhite{get; }
 public static Color ForestGreen{get; }
 public static Color Fuchsia{get; }
 public static Color Gainsboro{get; }
 public static Color GhostWhite{get; }
 public static Color Gold{get; }
 public static Color Goldenrod{get; }
 public static Color Gray{get; }
 public static Color Green{get; }
 public static Color GreenYellow{get; }
 public static Color Honeydew{get; }
 public static Color HotPink{get; }
 public static Color IndianRed{get; }
 public static Color Indigo{get; }
 public static Color Ivory{get; }
 public static Color Khaki{get; }
 public static Color Lavender{get; }
 public static Color LavenderBlush{get; }
 public static Color LawnGreen{get; }
 public static Color LemonChiffon{get; }
 public static Color LightBlue{get; }
 public static Color LightCoral{get; }
 public static Color LightCyan{get; }
 public static Color LightGoldenrodYellow{get; }
 public static Color LightGray{get; }
 public static Color LightGreen{get; }
 public static Color LightPink{get; }
 public static Color LightSalmon{get; }
 public static Color LightSeaGreen{get; }
 public static Color LightSkyBlue{get; }
 public static Color LightSlateGray{get; }
 public static Color LightSteelBlue{get; }
 public static Color LightYellow{get; }
 public static Color Lime{get; }
 public static Color LimeGreen{get; }
 public static Color Linen{get; }
 public static Color Magenta{get; }
 public static Color Maroon{get; }
 public static Color MediumAquamarine{get; }
 public static Color MediumBlue{get; }
 public static Color MediumOrchid{get; }
 public static Color MediumPurple{get; }
 public static Color MediumSeaGreen{get; }
 public static Color MediumSlateBlue{get; }
 public static Color MediumSpringGreen{get; }
 public static Color MediumTurquoise{get; }
 public static Color MediumVioletRed{get; }
 public static Color MidnightBlue{get; }
 public static Color MintCream{get; }
 public static Color MistyRose{get; }
 public static Color Moccasin{get; }
 public static Color NavajoWhite{get; }
 public static Color Navy{get; }
 public static Color OldLace{get; }
 public static Color Olive{get; }
 public static Color OliveDrab{get; }
 public static Color Orange{get; }
 public static Color OrangeRed{get; }
 public static Color Orchid{get; }
 public static Color PaleGoldenrod{get; }
 public static Color PaleGreen{get; }
 public static Color PaleTurquoise{get; }
 public static Color PaleVioletRed{get; }
 public static Color PapayaWhip{get; }
 public static Color PeachPuff{get; }
 public static Color Peru{get; }
 public static Color Pink{get; }
 public static Color Plum{get; }
 public static Color PowderBlue{get; }
 public static Color Purple{get; }
 public static Color Red{get; }
 public static Color RosyBrown{get; }
 public static Color RoyalBlue{get; }
 public static Color SaddleBrown{get; }
 public static Color Salmon{get; }
 public static Color SandyBrown{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Color SandyBrown{get; }
 public static Color SeaGreen{get; }
 public static Color SeaShell{get; }
 public static Color Sienna{get; }
 public static Color Silver{get; }
 public static Color SkyBlue{get; }
 public static Color SlateBlue{get; }
 public static Color SlateGray{get; }
 public static Color Snow{get; }
 public static Color SpringGreen{get; }
 public static Color SteelBlue{get; }
 public static Color Tan{get; }
 public static Color Teal{get; }
 public static Color Thistle{get; }
 public static Color Tomato{get; }
 public static Color Transparent{get; }
 public static Color Turquoise{get; }
 public static Color Violet{get; }
 public static Color Wheat{get; }
 public static Color White{get; }
 public static Color WhiteSmoke{get; }
 public static Color Yellow{get; }
 public static Color YellowGreen{get; }
// Public Instance Properties
 public byte A{get; }
 public byte B{get; }
 public byte G{get; }
 public bool IsEmpty{get; }
 public bool IsKnownColor{get; }
 public bool IsNamedColor{get; }
 public bool IsSystemColor{get; }
 public string Name{get; }
 public byte R{get; }
// Public Static Methods
 public static Color FromArgb(int argb);
 public static Color FromArgb(int alpha, Color baseColor);
 public static Color FromArgb(int red, int green, int blue);
 public static Color FromArgb(int alpha, int red, int green, int blue);
 public static Color FromKnownColor(KnownColor color);
 public static Color FromName(string name);
 public static bool operator !=(Color left, Color right);
 public static bool operator ==(Color left, Color right);
// Public Instance Methods
 public override bool Equals(object obj); // overrides ValueType
 public float GetBrightness();
 public override int GetHashCode(); // overrides ValueType
 public float GetHue();
 public float GetSaturation();
 public int ToArgb();
 public KnownColor ToKnownColor();
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType Color

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorConverter

System.Drawing (system.drawing.dll) class

This subclass of TypeConverter is used to transform Color objects to other types. Specifically, it can convert to and from a
string representation used in persistence and design-time scenarios. Normally, you would use Color.ToString() and
Color.Name to do this conversion yourself.

public class ColorConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public ColorConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture,
 object value, Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter ColorConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorTranslator

System.Drawing (system.drawing.dll) sealed class

This class is used to translate a Color to and from various interop color representations, including an HTML color string,
Win32 GDI, and Win32 OLE colors.

public sealed class ColorTranslator {
// Public Static Methods
 public static Color FromHtml(string htmlColor);
 public static Color FromOle(int oleColor);
 public static Color FromWin32(int win32Color);
 public static string ToHtml(Color c);
 public static int ToOle(Color c);
 public static int ToWin32(Color c);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ContentAlignment serializable

System.Drawing (system.drawing.dll) enum

This enumeration provides a set of values that represent a variety of different alignment styles. It is not used by any
other classes in the drawing namespaces, but many Control classes use it to define the way their text labels and other
visual content should be aligned when rendered.

public enum ContentAlignment {
 TopLeft = 1,
 TopCenter = 2,
 TopRight = 4,
 MiddleLeft = 16,
 MiddleCenter = 32,
 MiddleRight = 64,
 BottomLeft = 256,
 BottomCenter = 512,
 BottomRight = 1024
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ContentAlignment

Returned By

System.Windows.Forms.ButtonBase.{ImageAlign, TextAlign}, System.Windows.Forms.CheckBox.CheckAlign,
System.Windows.Forms.Control.RtlTranslateContent(), System.Windows.Forms.Label.{ImageAlign, TextAlign},
System.Windows.Forms.RadioButton.CheckAlign

Passed To

System.Windows.Forms.ButtonBase.{ImageAlign, TextAlign}, System.Windows.Forms.CheckBox.CheckAlign,
System.Windows.Forms.Control.{RtlTranslateAlignment(), RtlTranslateContent()}, System.Windows.Forms.Label.
{CalcImageRenderBounds(), DrawImage(), ImageAlign, TextAlign}, System.Windows.Forms.RadioButton.CheckAlign

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Font serializable, marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class encapsulates a particular visual representation of a textual character set.

A Font is a resource-based object, and its lifetime therefore needs careful management. As with other such objects, you
should Dispose() the object when you are finished with it to release the resources back to the system.

There are a number of constructors that allow you to create a Font from a particular FontFamily, or with a particular face
Name (represented as a string) and of a particular Size. From the GraphicsUnit enumeration, you can choose which Unit is
used to measure the size. Typically, this might be GraphicsUnit.Point or GraphicsUnit.Pixel. In addition, you can specify a
variety of Style attributes, including Bold, Italic, Strikeout, and Underline. The style elements can be queried individually
using the Boolean properties provided, or by examining the FontStyle object returned from the Style property.

However, it is not possible to set any of these values and change the Font. If you wish to create a new object based on
an existing Font but with a different style, you should use the constructor that takes a prototype Font and a new FontStyle
(perhaps then calling Dispose() on the original to release it if it is no longer needed). Similarly, to create an object
sharing a FontFamily, you can use the constructor that takes a FontFamily and a size.

There are also a number of static members that allow you to create a Font from various entities in interop scenarios,
including FromHdc(), FromHfont(), and FromLogFont(). There are comparable methods to convert ToHfont() and ToLogFont().

To draw a string in a particular Font, you can use the Graphics.DrawString() method. You can also call the GetHeight()
method to determine the height a particular font would be if it were rendered on a specific Graphics surface. However,
there is no method to retrieve the average character width as there is in the Win32 API. Instead, you should use the
Graphics.MeasureString() method to determine the bounding rectangle of a particular string as it would be rendered on
that surface.

Font objects are also used pervasively throughout the frameworks wherever text is rendered.

public sealed class Font : MarshalByRefObject :
ICloneable, System.Runtime.Serialization.ISerializable, IDisposable {
// Public Constructors
 public Font(FontFamily family, float emSize);
 public Font(FontFamily family, float emSize, FontStyle style);
 public Font(FontFamily family, float emSize, FontStyle style, GraphicsUnit unit);
 public Font(FontFamily family, float emSize, FontStyle style, GraphicsUnit unit, byte gdiCharSet);
 public Font(FontFamily family, float emSize, FontStyle style, GraphicsUnit unit, byte gdiCharSet, bool gdiVerticalFont);
 public Font(FontFamily family, float emSize, GraphicsUnit unit);
 public Font(Font prototype, FontStyle newStyle);
 public Font(string familyName, float emSize);
 public Font(string familyName, float emSize, FontStyle style);
 public Font(string familyName, float emSize, FontStyle style, GraphicsUnit unit);
 public Font(string familyName, float emSize, FontStyle style, GraphicsUnit unit, byte gdiCharSet);
 public Font(string familyName, float emSize, FontStyle style, GraphicsUnit unit, byte gdiCharSet, bool gdiVerticalFont);
 public Font(string familyName, float emSize, GraphicsUnit unit);
// Public Instance Properties
 public bool Bold{get; }
 public FontFamily FontFamily{get; }
 public byte GdiCharSet{get; }
 public bool GdiVerticalFont{get; }
 public int Height{get; }
 public bool Italic{get; }
 public string Name{get; }
 public float Size{get; }
 public float SizeInPoints{get; }
 public bool Strikeout{get; }
 public FontStyle Style{get; }
 public bool Underline{get; }
 public GraphicsUnit Unit{get; }
// Public Static Methods
 public static Font FromHdc(IntPtr hdc);
 public static Font FromHfont(IntPtr hfont);
 public static Font FromLogFont(object lf);
 public static Font FromLogFont(object lf, IntPtr hdc);
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
 public override bool Equals(object obj); // overrides object
 public override int GetHashCode(); // overrides object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public override int GetHashCode(); // overrides object
 public float GetHeight();
 public float GetHeight(Graphics graphics);
 public float GetHeight(float dpi);
 public IntPtr ToHfont();
 public void ToLogFont(object logFont);
 public void ToLogFont(object logFont, Graphics graphics);
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Font(System.ICloneabl, System.Runtime.Serialization.ISerializable,
System.IDisposable)

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontConverter

System.Drawing (system.drawing.dll) class

Derived from TypeConverter, this class converts Font objects to and from other types, specifically a string representation
used in persistence and design-time scenarios.

public class FontConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public FontConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter FontConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontConverter.FontNameConverter

System.Drawing (system.drawing.dll) sealed class

This class, derived from TypeConverter, is specifically documented as being for internal use only, despite being in the
public interface—you should therefore not use this class. It is present to support the designers that deal with font
properties.

public sealed class FontConverter.FontNameConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public FontConverter.FontNameConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesExclusive(
// overrides System.ComponentModel.TypeConverter
 System.ComponentModel.ITypeDescriptorContext context);
 public override bool GetStandardValuesSupported(
// overrides System.ComponentModel.TypeConverter
 System.ComponentModel.ITypeDescriptorContext context);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.ComponentModel.TypeConverter FontNameConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontConverter.FontUnitConverter

System.Drawing (system.drawing.dll) class

This class, derived from TypeConverter, is specifically documented as being for internal use only, despite being in the
public interface—you should therefore not use this class. It is present to support the designers that deal with font
properties.

public class FontConverter.FontUnitConverter : System.ComponentModel.EnumConverter {
// Public Constructors
 public FontConverter.FontUnitConverter();
// Public Instance Methods
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.EnumConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter System.ComponentModel.EnumConverter FontUnitConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontFamily marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

A FontFamily represents a set of typefaces that share a common design, varying in particular stylistic ways. The fonts
Arial, Arial Bold, and Arial Italic might make up a font family called Arial, for example.

A FontFamily is a resource-based object, and therefore its lifetime should be carefully managed, calling Dispose() to
release the resources when they are no longer needed.

It can be constructed from a string containing the family name, from an entry in the
System.Drawing.Text.GenericFontFamilies enumeration, or by providing a name to associate with a specific
System.Drawing.Text.FontCollection, if you want to create your own family. In addition, there are static properties to get a
GenericMonospace, GenericSansSerif, or GenericSerifFontFamily.

You can use a FontFamily to help manage font selection in your application—often where font selection is being
determined through a user interface. To do this, there are Font constructors that enable you to select and instantiate a
specific Font from a FontFamily.

public sealed class FontFamily : MarshalByRefObject : IDisposable {
// Public Constructors
 public FontFamily(System.Drawing.Text.GenericFontFamilies genericFamily);
 public FontFamily(string name);
 public FontFamily(string name, System.Drawing.Text.FontCollection fontCollection);
// Public Static Properties
 public static FontFamily[] Families{get; }
 public static FontFamily GenericMonospace{get; }
 public static FontFamily GenericSansSerif{get; }
 public static FontFamily GenericSerif{get; }
// Public Instance Properties
 public string Name{get; }
// Public Static Methods
 public static FontFamily[] GetFamilies(Graphics graphics);
// Public Instance Methods
 public void Dispose(); // implements IDisposable
 public override bool Equals(object obj); // overrides object
 public int GetCellAscent(FontStyle style);
 public int GetCellDescent(FontStyle style);
 public int GetEmHeight(FontStyle style);
 public override int GetHashCode(); // overrides object
 public int GetLineSpacing(FontStyle style);
 public string GetName(int language);
 public bool IsStyleAvailable(FontStyle style);
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject FontFamily(System.IDisposable)

Returned By

Font.FontFamily, System.Drawing.Text.FontCollection.Families

Passed To

System.Drawing.Drawing2D.GraphicsPath.AddString(), Font.Font()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontStyle serializable, flag

System.Drawing (system.drawing.dll) enum

This enumeration provides a set of style modifiers that can be used on a Font. Because it is marked with the
FlagsAttribute, you can combine several values using the bitwise operator (e.g., |) to generate compound styles such as
(Bold | Italic).

public enum FontStyle {
 Regular = 0x00000000,
 Bold = 0x00000001,
 Italic = 0x00000002,
 Underline = 0x00000004,
 Strikeout = 0x00000008
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FontStyle

Returned By

Font.Style

Passed To

Font.Font(), FontFamily.{GetCellAscent(), GetCellDescent(), GetEmHeight(), GetLineSpacing(), IsStyleAvailable()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Graphics marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class is at the heart of the drawing architecture. It encapsulates a surface on which drawing is performed.

Typically, you are passed a Graphics object in the Paint handler of a Control.

Additionally, you can use the static FromImage() method to get a Graphics surface for one of the classes derived from
Image (such as Bitmap or Metafile). Any painting on that surface will be reflected in the image itself.

For interop scenarios, there are static FromHdc() and FromHwnd() methods to construct a Graphics object for a DC or
Win32 window, and the corresponding GetHdc() member to retrieve a Win32 device context for the managed surface.

There are a large number of methods that allow you to paint onto the surface. They fall into four broad categories:

Outline drawing

Surface filling

Image compositing

Drawing text strings

The outline drawing methods all begin with Draw. The first parameter is a Pen object, which determines the weight,
color, and style of the line itself. The remaining parameters vary with the kind of line to be drawn and define the
geometric shape in question.

The surface filling methods all begin with Fill. The first parameter is a Brush object, which specifies the color and pattern
that will be used to fill the surface. The remaining parameters again vary with the kind of line to be drawn and define
the geometric surface to fill.

Most draw and fill methods offer both integer and floating-point versions of the parameters that allow you to define the
shapes concerned—Point and PointF, Rectangle and RectangleF for example. The integer methods do not offer any
performance advantage in the first release, as they are all implemented in terms of the floating-point version.

There are outline drawing methods for both open and closed geometric shapes. The surface filling methods support
closed shapes only.

There are methods for Arcs (portions of an ellipse), Beziers (defined by two anchor points through which the curve
passes and two control points towards which it tends but through which it does not pass—like a chain nailed at both
ends, with magnets nearby), Curves (cardinal splines defined by a set of points through which the line passes and a
tension parameter—like a nailed-down rubber tube), Ellipses, Straight Lines, Pies (portions of an ellipse with radial lines
drawn to the center), Polygons (straight-sided geometric shapes), and Rectangles. There is also a method to paint a
System.Drawing.Drawing2D.GraphicsPath object—a connected or disconnected set of these elements.

For image compositing, there are DrawIcon() and DrawImage() methods. Both also offer what are theoretically optimized
unscaled versions. The Icon method is called DrawIconUnstretched(), whereas the Image method is DrawImageUnscaled(). In
practice, the optimized version is actually implemented in terms of the non-optimized method, so there is no benefit to
be gained in this version of the framework.

There are several overloads of the DrawImage() method, offering control over various aspects of the rendering process.
In addition to allowing you to specify the source rectangle within the original image and the destination rectangle on the
Graphics surface (including the GraphicsUnit of measurement for those rectangles), you can provide a
System.Drawing.Imaging.ImageAttributes object to control the way the individual pixel colors are rendered for this image.

There is also an optional DrawImageAbort delegate and an IntPtr for the user data that is passed to that delegate. The
underlying GDI+ rendering mechanism calls on the delegate to determine whether the long painting operation should
be aborted (for example, the user has scrolled the window and you need to start painting again). The delegate returns
true if the painting should be aborted, and false otherwise. If the operation aborts, a
System.Runtime.InteropServices.ExternalException with the exception text "Function aborted" is thrown, so you need to put
your rendering code in a try/catch block. This is a very thin wrapper over the unmanaged implementation, and should
be used with caution, particularly when passing data in the IntPtr.

Text strings are drawn using the DrawString() family of methods. These typically take the string to paint, a Font with
which to render the string, and a Brush that determines how the characters will be filled. Note that if you wish to paint
the outline of a string rather than fill the characters, you will need to use a System.Drawing.Drawing2D.GraphicsPath and its
AddString() method. You can also specify either the top-left corner of the string or its bounding Rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddString() method. You can also specify either the top-left corner of the string or its bounding Rectangle.

You can determine what the minimum containing rectangle for the string on the surface might be by calling the
MeasureString() method, or MeasureCharacterRanges() to determine the bounding rectangles of various substrings within
the string itself, given a particular overall layout scheme and bounding rectangle. (You might do this to calculate areas
to highlight selected portions of a string, for example.)

Various aspects of the text rendering can be controlled using the StringFormat object, including line spacing, wrapping,
alignment, and clipping characteristics.

There are several properties of the Graphics surface that let you control the rendering techniques used by all these
methods. In each case, there is a trade-off between rendering time and image quality.

You can set the CompositingMode, which determines how source and destination pixels are combined (see
System.Drawing.Drawing2D.CompositingMode for details). You can also modify the CompositingQuality, which determines the
algorithm chosen to combine pixels into the surface for a particular mode (see
System.Drawing.Drawing2D.CompositingQuality).

The InterpolationMode determines how pixel values are calculated during scaling and gradient operations (see
System.Drawing.Drawing2D.InterpolationMode), and the PixelOffsetMode determines how pixels are translated from a sub-pixel
accurate geometric world to the whole-pixel reality of the device underlying the Graphics surface.

The SmoothingMode (System.Drawing.Drawing2D.SmoothingMode) determines the antialiasing technique used for the line and
curve drawing (but not text and images). Text quality is determined by the TextRenderingHint
(System.Drawing.Text.TextRenderingHint). You can also set the gamma correction value for ClearType and Antialiased text
rendering with the TextContrast property (an integer between 0 and 12, with 4 being the default); however, at present
this does not appear to make any difference to the appearance of the rendered text.

There are three coordinate spaces in operation on a graphics surface. The World coordinate space, the Page coordinate
space, and the Device coordinate space. The transform from the World coordinate space to the Page space is called the
World Transform, and is stored as a System.Drawing.Drawing2D.Matrix in the Transform property. The getter for this
property actually returns a copy of the Transform, rather than a reference to the transform itself, so to modify it, you
need to go through a three-phase get, modify, set procedure. As this is rather inefficient, there are the
MultiplyTransform(), TranslateTransform(), RotateTransform(), and ScaleTransform() methods as well.

To transform from the Page space to the Device space, you can set a GraphicsUnit in the PageUnit property, and the
calibration for that unit in the PageScale property. (You can retrieve the PageScale using the DpiX and DpiY properties.)

You can also define a clipping region for the surface. The Clip property allows you to specify a Region to which the
drawing is clipped. This can be a simple, complex, hollow or disconnected shape. You can also query the ClipBounds—the
minimum containing rectangle of the clip region—the VisibleClipBounds, which is the intersection of the ClipBounds for the
Graphics surface, and the current clip rectangle for the window to which the Graphics object is bound (if appropriate).

public sealed class Graphics : MarshalByRefObject : IDisposable {
// Public Instance Properties
 public Region Clip{set; get; }
 public RectangleF ClipBounds{get; }
 public CompositingMode CompositingMode{set; get; }
 public CompositingQuality CompositingQuality{set; get; }
 public float DpiX{get; }
 public float DpiY{get; }
 public InterpolationMode InterpolationMode{set; get; }
 public bool IsClipEmpty{get; }
 public bool IsVisibleClipEmpty{get; }
 public float PageScale{set; get; }
 public GraphicsUnit PageUnit{set; get; }
 public PixelOffsetMode PixelOffsetMode{set; get; }
 public Point RenderingOrigin{set; get; }
 public SmoothingMode SmoothingMode{set; get; }
 public int TextContrast{set; get; }
 public TextRenderingHint TextRenderingHint{set; get; }
 public Matrix Transform{set; get; }
 public RectangleF VisibleClipBounds{get; }
// Public Static Methods
 public static Graphics FromHdc(IntPtr hdc);
 public static Graphics FromHdc(IntPtr hdc, IntPtr hdevice);
 public static Graphics FromHdcInternal(IntPtr hdc);
 public static Graphics FromHwnd(IntPtr hwnd);
 public static Graphics FromHwndInternal(IntPtr hwnd);
 public static Graphics FromImage(Image image);
 public static IntPtr GetHalftonePalette();
// Public Instance Methods
 public void AddMetafileComment(byte[] data);
 public GraphicsContainer BeginContainer();
 public GraphicsContainer BeginContainer(RectangleF dstrect, RectangleF srcrect, GraphicsUnit unit);
 public GraphicsContainer BeginContainer(Rectangle dstrect, Rectangle srcrect, GraphicsUnit unit);
 public void Clear(Color color);
 public void Dispose(); // implements IDisposable
 public void DrawArc(Pen pen, int x, int y, int width, int height, int startAngle, int sweepAngle);
 public void DrawArc(Pen pen, RectangleF rect, float startAngle, float sweepAngle);
 public void DrawArc(Pen pen, Rectangle rect, float startAngle, float sweepAngle);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void DrawArc(Pen pen, Rectangle rect, float startAngle, float sweepAngle);
 public void DrawArc(Pen pen, float x, float y, float width, float height, float startAngle, float sweepAngle);
 public void DrawBezier(Pen pen, PointF pt1, PointF pt2, PointF pt3, PointF pt4);
 public void DrawBezier(Pen pen, Point pt1, Point pt2, Point pt3, Point pt4);
 public void DrawBezier(Pen pen, float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4);
 public void DrawBeziers(Pen pen, Point[] points);
 public void DrawBeziers(Pen pen, PointF[] points);
 public void DrawClosedCurve(Pen pen, Point[] points);
 public void DrawClosedCurve(Pen pen, Point[] points, float tension, System.Drawing.Drawing2D.FillMode fillmode);
 public void DrawClosedCurve(Pen pen, PointF[] points);
 public void DrawClosedCurve(Pen pen, PointF[] points, float tension, System.Drawing.Drawing2D.FillMode fillmode);
 public void DrawCurve(Pen pen, Point[] points);
 public void DrawCurve(Pen pen, Point[] points, int offset, int numberOfSegments, float tension);
 public void DrawCurve(Pen pen, Point[] points, float tension);
 public void DrawCurve(Pen pen, PointF[] points);
 public void DrawCurve(Pen pen, PointF[] points, int offset, int numberOfSegments);
 public void DrawCurve(Pen pen, PointF[] points, int offset, int numberOfSegments, float tension);
 public void DrawCurve(Pen pen, PointF[] points, float tension);
 public void DrawEllipse(Pen pen, int x, int y, int width, int height);
 public void DrawEllipse(Pen pen, Rectangle rect);
 public void DrawEllipse(Pen pen, RectangleF rect);
 public void DrawEllipse(Pen pen, float x, float y, float width, float height);
 public void DrawIcon(Icon icon, int x, int y);
 public void DrawIcon(Icon icon, Rectangle targetRect);
 public void DrawIconUnstretched(Icon icon, Rectangle targetRect);
 public void DrawImage(Image image, int x, int y);
 public void DrawImage(Image image, int x, int y, int width, int height);
 public void DrawImage(Image image, int x, int y, Rectangle srcRect, GraphicsUnit srcUnit);
 public void DrawImage(Image image, Point point);
 public void DrawImage(Image image, Point[] destPoints);
 public void DrawImage(Image image, Point[] destPoints, Rectangle srcRect, GraphicsUnit srcUnit);
 public void DrawImage(Image image, Point[] destPoints, Rectangle srcRect, GraphicsUnit srcUnit,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void DrawImage(Image image, Point[] destPoints, Rectangle srcRect, GraphicsUnit srcUnit,
 System.Drawing.Imaging.ImageAttributes imageAttr, DrawImageAbort callback);
 public void DrawImage(Image image, Point[] destPoints, Rectangle srcRect, GraphicsUnit srcUnit,
 System.Drawing.Imaging.ImageAttributes imageAttr, DrawImageAbort callback, int callbackData);
 public void DrawImage(Image image, PointF point);
 public void DrawImage(Image image, PointF[] destPoints);
 public void DrawImage(Image image, PointF[] destPoints, RectangleF srcRect, GraphicsUnit srcUnit);
 public void DrawImage(Image image, PointF[] destPoints, RectangleF srcRect, GraphicsUnit srcUnit,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void DrawImage(Image image, PointF[] destPoints, RectangleF srcRect, GraphicsUnit srcUnit,
 System.Drawing.Imaging.ImageAttributes imageAttr, DrawImageAbort callback);
 public void DrawImage(Image image, PointF[] destPoints, RectangleF srcRect, GraphicsUnit srcUnit,
 System.Drawing.Imaging.ImageAttributes imageAttr, DrawImageAbort callback, int callbackData);
 public void DrawImage(Image image, Rectangle rect);
 public void DrawImage(Image image, RectangleF rect);
 public void DrawImage(Image image, RectangleF destRect, RectangleF srcRect, GraphicsUnit srcUnit);
 public void DrawImage(Image image, Rectangle destRect, int srcX, int srcY, int srcWidth, int srcHeight,
 GraphicsUnit srcUnit);
 public void DrawImage(Image image, Rectangle destRect, int srcX, int srcY, int srcWidth, int srcHeight,
 GraphicsUnit srcUnit, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void DrawImage(Image image, Rectangle destRect, int srcX, int srcY, int srcWidth, int srcHeight,
 GraphicsUnit srcUnit, System.Drawing.Imaging.ImageAttributes imageAttr, DrawImageAbort callback);
 public void DrawImage(Image image, Rectangle destRect, int srcX, int srcY, int srcWidth, int srcHeight,
 GraphicsUnit srcUnit, System.Drawing.Imaging.ImageAttributes imageAttrs, DrawImageAbort callback,
 IntPtr callbackData);
 public void DrawImage(Image image, Rectangle destRect, Rectangle srcRect, GraphicsUnit srcUnit);
 public void DrawImage(Image image, Rectangle destRect, float srcX, float srcY, float srcWidth, float srcHeight,
 GraphicsUnit srcUnit);
 public void DrawImage(Image image, Rectangle destRect, float srcX, float srcY, float srcWidth, float srcHeight,
 GraphicsUnit srcUnit, System.Drawing.Imaging.ImageAttributes imageAttrs);
 public void DrawImage(Image image, Rectangle destRect, float srcX, float srcY, float srcWidth, float srcHeight,
 GraphicsUnit srcUnit, System.Drawing.Imaging.ImageAttributes imageAttrs, DrawImageAbort callback);
 public void DrawImage(Image image, Rectangle destRect, float srcX, float srcY, float srcWidth, float srcHeight,
 GraphicsUnit srcUnit, System.Drawing.Imaging.ImageAttributes imageAttrs, DrawImageAbort callback,
 IntPtr callbackData);
 public void DrawImage(Image image, float x, float y);
 public void DrawImage(Image image, float x, float y, RectangleF srcRect, GraphicsUnit srcUnit);
 public void DrawImage(Image image, float x, float y, float width, float height);
 public void DrawImageUnscaled(Image image, int x, int y);
 public void DrawImageUnscaled(Image image, int x, int y, int width, int height);
 public void DrawImageUnscaled(Image image, Point point);
 public void DrawImageUnscaled(Image image, Rectangle rect);
 public void DrawLine(Pen pen, int x1, int y1, int x2, int y2);
 public void DrawLine(Pen pen, PointF pt1, PointF pt2);
 public void DrawLine(Pen pen, Point pt1, Point pt2);
 public void DrawLine(Pen pen, float x1, float y1, float x2, float y2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void DrawLine(Pen pen, float x1, float y1, float x2, float y2);
 public void DrawLines(Pen pen, Point[] points);
 public void DrawLines(Pen pen, PointF[] points);
 public void DrawPath(Pen pen, System.Drawing.Drawing2D.GraphicsPath path);
 public void DrawPie(Pen pen, int x, int y, int width, int height, int startAngle, int sweepAngle);
 public void DrawPie(Pen pen, RectangleF rect, float startAngle, float sweepAngle);
 public void DrawPie(Pen pen, Rectangle rect, float startAngle, float sweepAngle);
 public void DrawPie(Pen pen, float x, float y, float width, float height, float startAngle, float sweepAngle);
 public void DrawPolygon(Pen pen, Point[] points);
 public void DrawPolygon(Pen pen, PointF[] points);
 public void DrawRectangle(Pen pen, int x, int y, int width, int height);
 public void DrawRectangle(Pen pen, Rectangle rect);
 public void DrawRectangle(Pen pen, float x, float y, float width, float height);
 public void DrawRectangles(Pen pen, Rectangle[] rects);
 public void DrawRectangles(Pen pen, RectangleF[] rects);
 public void DrawString(string s, Font font, Brush brush, PointF point);
 public void DrawString(string s, Font font, Brush brush, PointF point, StringFormat format);
 public void DrawString(string s, Font font, Brush brush, RectangleF layoutRectangle);
 public void DrawString(string s, Font font, Brush brush, RectangleF layoutRectangle, StringFormat format);
 public void DrawString(string s, Font font, Brush brush, float x, float y);
 public void DrawString(string s, Font font, Brush brush, float x, float y, StringFormat format);
 public void EndContainer(System.Drawing.Drawing2D.GraphicsContainer container);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point[] destPoints,
 EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point[] destPoints,
 EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point[] destPoints,
 EnumerateMetafileProc callback, IntPtr callbackData, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point[] destPoints,
 Rectangle srcRect, GraphicsUnit srcUnit, EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point[] destPoints,
 Rectangle srcRect, GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point[] destPoints,
 Rectangle srcRect, GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point destPoint,
 EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point destPoint,
 EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point destPoint,
 EnumerateMetafileProc callback, IntPtr callbackData, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF[] destPoints,
 EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF[] destPoints,
 EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF[] destPoints,
 EnumerateMetafileProc callback, IntPtr callbackData, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF[] destPoints, RectangleF srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF[] destPoints, RectangleF srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF[] destPoints, RectangleF srcRect,
 GraphicsUnit unit, EnumerateMetafileProc callback, IntPtr callbackData,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF destPoint,
 EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF destPoint,
 EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF destPoint,
 EnumerateMetafileProc callback, IntPtr callbackData, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF destPoint, RectangleF srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF destPoint, RectangleF srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, PointF destPoint, RectangleF srcRect,
 GraphicsUnit unit, EnumerateMetafileProc callback, IntPtr callbackData,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point destPoint, Rectangle srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point destPoint, Rectangle srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Point destPoint, Rectangle srcRect,
 GraphicsUnit unit, EnumerateMetafileProc callback, IntPtr callbackData,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect,
 EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect,
 EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect,
 EnumerateMetafileProc callback, IntPtr callbackData, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, RectangleF destRect,
 EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, RectangleF destRect,
 EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, RectangleF destRect,
 EnumerateMetafileProc callback, IntPtr callbackData, System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, RectangleF destRect, RectangleF srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, RectangleF destRect, RectangleF srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, RectangleF destRect, RectangleF srcRect,
 GraphicsUnit unit, EnumerateMetafileProc callback, IntPtr callbackData,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect, Rectangle srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect, Rectangle srcRect,
 GraphicsUnit srcUnit, EnumerateMetafileProc callback, IntPtr callbackData);
 public void EnumerateMetafile(System.Drawing.Imaging.Metafile metafile, Rectangle destRect, Rectangle srcRect,
 GraphicsUnit unit, EnumerateMetafileProc callback, IntPtr callbackData,
 System.Drawing.Imaging.ImageAttributes imageAttr);
 public void ExcludeClip(Rectangle rect);
 public void ExcludeClip(Region region);
 public void FillClosedCurve(Brush brush, Point[] points);
 public void FillClosedCurve(Brush brush, Point[] points, System.Drawing.Drawing2D.FillMode fillmode);
 public void FillClosedCurve(Brush brush, Point[] points, System.Drawing.Drawing2D.FillMode fillmode, float tension);
 public void FillClosedCurve(Brush brush, PointF[] points);
 public void FillClosedCurve(Brush brush, PointF[] points, System.Drawing.Drawing2D.FillMode fillmode);
 public void FillClosedCurve(Brush brush, PointF[] points, System.Drawing.Drawing2D.FillMode fillmode, float tension);
 public void FillEllipse(Brush brush, int x, int y, int width, int height);
 public void FillEllipse(Brush brush, Rectangle rect);
 public void FillEllipse(Brush brush, RectangleF rect);
 public void FillEllipse(Brush brush, float x, float y, float width, float height);
 public void FillPath(Brush brush, System.Drawing.Drawing2D.GraphicsPath path);
 public void FillPie(Brush brush, int x, int y, int width, int height, int startAngle, int sweepAngle);
 public void FillPie(Brush brush, Rectangle rect, float startAngle, float sweepAngle);
 public void FillPie(Brush brush, float x, float y, float width, float height, float startAngle, float sweepAngle);
 public void FillPolygon(Brush brush, Point[] points);
 public void FillPolygon(Brush brush, Point[] points, System.Drawing.Drawing2D.FillMode fillMode);
 public void FillPolygon(Brush brush, PointF[] points);
 public void FillPolygon(Brush brush, PointF[] points, System.Drawing.Drawing2D.FillMode fillMode);
 public void FillRectangle(Brush brush, int x, int y, int width, int height);
 public void FillRectangle(Brush brush, Rectangle rect);
 public void FillRectangle(Brush brush, RectangleF rect);
 public void FillRectangle(Brush brush, float x, float y, float width, float height);
 public void FillRectangles(Brush brush, Rectangle[] rects);
 public void FillRectangles(Brush brush, RectangleF[] rects);
 public void FillRegion(Brush brush, Region region);
 public void Flush();
 public void Flush(System.Drawing.Drawing2D.FlushIntention intention);
 public IntPtr GetHdc();
 public Color GetNearestColor(Color color);
 public void IntersectClip(Rectangle rect);
 public void IntersectClip(RectangleF rect);
 public void IntersectClip(Region region);
 public bool IsVisible(int x, int y);
 public bool IsVisible(int x, int y, int width, int height);
 public bool IsVisible(Point point);
 public bool IsVisible(PointF point);
 public bool IsVisible(Rectangle rect);
 public bool IsVisible(RectangleF rect);
 public bool IsVisible(float x, float y);
 public bool IsVisible(float x, float y, float width, float height);
 public Region[] MeasureCharacterRanges(string text, Font font, RectangleF layoutRect, StringFormat stringFormat);
 public SizeF MeasureString(string text, Font font);
 public SizeF MeasureString(string text, Font font, int width);
 public SizeF MeasureString(string text, Font font, int width, StringFormat format);
 public SizeF MeasureString(string text, Font font, PointF origin, StringFormat stringFormat);
 public SizeF MeasureString(string text, Font font, SizeF layoutArea);
 public SizeF MeasureString(string text, Font font, SizeF layoutArea, StringFormat stringFormat);
 public SizeF MeasureString(string text, Font font, SizeF layoutArea, StringFormat stringFormat, out int charactersFitted,
 out int linesFilled);
 public void MultiplyTransform(System.Drawing.Drawing2D.Matrix matrix);
 public void MultiplyTransform(System.Drawing.Drawing2D.Matrix matrix,
 System.Drawing.Drawing2D.MatrixOrder order);
 public void ReleaseHdc(IntPtr hdc);
 public void ReleaseHdcInternal(IntPtr hdc);
 public void ResetClip();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ResetClip();
 public void ResetTransform();
 public void Restore(System.Drawing.Drawing2D.GraphicsState gstate);
 public void RotateTransform(float angle);
 public void RotateTransform(float angle, System.Drawing.Drawing2D.MatrixOrder order);
 public GraphicsState Save();
 public void ScaleTransform(float sx, float sy);
 public void ScaleTransform(float sx, float sy, System.Drawing.Drawing2D.MatrixOrder order);
 public void SetClip(Graphics g);
 public void SetClip(Graphics g, System.Drawing.Drawing2D.CombineMode combineMode);
 public void SetClip(System.Drawing.Drawing2D.GraphicsPath path);
 public void SetClip(System.Drawing.Drawing2D.GraphicsPath path,
 System.Drawing.Drawing2D.CombineMode combineMode);
 public void SetClip(Rectangle rect);
 public void SetClip(Rectangle rect, System.Drawing.Drawing2D.CombineMode combineMode);
 public void SetClip(RectangleF rect);
 public void SetClip(RectangleF rect, System.Drawing.Drawing2D.CombineMode combineMode);
 public void SetClip(Region region, System.Drawing.Drawing2D.CombineMode combineMode);
 public void TransformPoints(System.Drawing.Drawing2D.CoordinateSpace destSpace,
 System.Drawing.Drawing2D.CoordinateSpace srcSpace, Point[] pts);
 public void TransformPoints(System.Drawing.Drawing2D.CoordinateSpace destSpace,
 System.Drawing.Drawing2D.CoordinateSpace srcSpace, PointF[] pts);
 public void TranslateClip(int dx, int dy);
 public void TranslateClip(float dx, float dy);
 public void TranslateTransform(float dx, float dy);
 public void TranslateTransform(float dx, float dy, System.Drawing.Drawing2D.MatrixOrder order);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Graphics(System.IDisposable)

Returned By

System.Drawing.Design.PaintValueEventArgs.Graphics, System.Drawing.Printing.PrintController.OnStartPage(),
System.Drawing.Printing.PrinterSettings.CreateMeasurementGraphics(), System.Drawing.Printing.PrintPageEventArgs.Graphics,
System.Windows.Forms.Control.CreateGraphics(), System.Windows.Forms.DrawItemEventArgs.Graphics,
System.Windows.Forms.MeasureItemEventArgs.Graphics, System.Windows.Forms.PaintEventArgs.Graphics

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Graphics.DrawImageAbort serializable

System.Drawing (system.drawing.dll) delegate

This is the delegate for the callback used when your DrawImage method should abort. (See Graphics for more
information.)

public delegate bool Graphics.DrawImageAbort(IntPtr callbackdata);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Graphics.EnumerateMetafileProc serializable

System.Drawing (system.drawing.dll) delegate

This delegate defines the callback used in the Graphics.EnumerateMetafile() method.

public delegate bool Graphics.EnumerateMetafileProc(System.Drawing.Imaging.EmfPlusRecordType recordType,
 int flags, int dataSize, IntPtr data, System.Drawing.Imaging.PlayRecordCallback callbackData);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GraphicsUnit serializable

System.Drawing (system.drawing.dll) enum

This enumeration determines the units used for a graphic measurement. The framework automatically provides
translation between units to allow you to use the most convenient scheme for your particular application.

public enum GraphicsUnit {
 World = 0,
 Display = 1,
 Pixel = 2,
 Point = 3,
 Inch = 4,
 Document = 5,
 Millimeter = 6
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
GraphicsUnit

Returned By

Font.Unit, Graphics.PageUnit

Passed To

Font.Font(), Graphics.{BeginContainer(), DrawImage(), EnumerateMetafile(), PageUnit}, Image.GetBounds()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Icon serializable, marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class, which is not derived from the Image class (whatever may be implied by parts of the documentation shipped
with VS.NET 2002!), represents a small, transparent bitmap—a Win32 icon, in fact. As such, it intrinsically supports a
variety of different resolutions and bit-depths.

As with Bitmap, this is a resource-based class, and therefore you should carefully manage its lifetime, calling Dispose()
when it is no longer needed, to avoid leaking system resources.

You can construct an Icon from a file, or from another Icon optionally looking for the image that best matches a
particular resolution.

The FromHandle() static method, and the Handle property allow you translate to and from native icon handles in interop
scenarios. (Note that you must not delete the handle retrieved from this property as it is the original, not a copy)

Finally, you can translate the Icon to a Bitmap with the ToBitmap() method.

Note that you have very little control over the particular image, resolution, and bit-depth that is ultimately rendered by
the Graphics.DrawIcon() method. If you need that degree of control, then a Bitmap and its Bitmap.MakeTransparent() method
might be a better choice. The icon is something of a hang-over from the days when bitmaps didn't have alpha channels.

public sealed class Icon : MarshalByRefObject :
System.Runtime.Serialization.ISerializable, ICloneable, IDisposable {
// Public Constructors
 public Icon(Icon original, int width, int height);
 public Icon(Icon original, Size size);
 public Icon(System.IO.Stream stream);
 public Icon(System.IO.Stream stream, int width, int height);
 public Icon(string fileName);
 public Icon(Type type, string resource);
// Public Instance Properties
 public IntPtr Handle{get; }
 public int Height{get; }
 public Size Size{get; }
 public int Width{get; }
// Public Static Methods
 public static Icon FromHandle(IntPtr handle);
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
 public void Save(System.IO.Stream outputStream);
 public Bitmap ToBitmap();
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Icon(System.Runtime.Serialization.ISerializabl, System.ICloneable,
System.IDisposable)

Returned By

Multiple types

Passed To

Graphics.{DrawIcon(), DrawIconUnstretched()}, System.Windows.Forms.Design.ComponentEditorPage.Icon,
System.Windows.Forms.ErrorProvider.Icon, System.Windows.Forms.Form.Icon, System.Windows.Forms.ImageCollection.Add(),
System.Windows.Forms.NotifyIcon.Icon, System.Windows.Forms.PrintPreviewDialog.Icon, System.Windows.Forms.StatusBarPanel.Icon

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IconConverter

System.Drawing (system.drawing.dll) class

This class, derived from System.ComponentModel.ExpandableObjectConverter (a kind of TypeConverter), is used to convert
icons to and from other types—specifically, it can convert to strings and byte arrays, for persistence and design-time
scenarios.

public class IconConverter : System.ComponentModel.ExpandableObjectConverter {
// Public Constructors
 public IconConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter System.ComponentModel.ExpandableObjectConverter
IconConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Image serializable, marshal by reference, disposable

System.Drawing (system.drawing.dll) abstract class

This abstract class is the base for Bitmap and System.Drawing.Imaging.Metafile. Microsoft's documentation claims that it is
also the base for Icon, but this is not in fact the case in the first release of the framework.

It serves to define a drawing that has its own Page coordinate space, including a Size, HorizontalResolution, and
VerticalResolution. It also supports multiframe images, in a variety of different dimensions such as time and resolution, as
defined in the System.Drawing.Imaging.FrameDimension class.

Images can be drawn using the Graphics.DrawImage() method.

public abstract class Image : MarshalByRefObject :
System.Runtime.Serialization.ISerializable, ICloneable, IDisposable {
// Public Instance Properties
 public int Flags{get; }
 public Guid[] FrameDimensionsList{get; }
 public int Height{get; }
 public float HorizontalResolution{get; }
 public ColorPalette Palette{set; get; }
 public SizeF PhysicalDimension{get; }
 public PixelFormat PixelFormat{get; }
 public int[] PropertyIdList{get; }
 public PropertyItem[] PropertyItems{get; }
 public ImageFormat RawFormat{get; }
 public Size Size{get; }
 public float VerticalResolution{get; }
 public int Width{get; }
// Public Static Methods
 public static Image FromFile(string filename);
 public static Image FromFile(string filename, bool useEmbeddedColorManagement);
 public static Bitmap FromHbitmap(IntPtr hbitmap);
 public static Bitmap FromHbitmap(IntPtr hbitmap, IntPtr hpalette);
 public static Image FromStream(System.IO.Stream stream);
 public static Image FromStream(System.IO.Stream stream, bool useEmbeddedColorManagement);
 public static int GetPixelFormatSize(System.Drawing.Imaging.PixelFormat pixfmt);
 public static bool IsAlphaPixelFormat(System.Drawing.Imaging.PixelFormat pixfmt);
 public static bool IsCanonicalPixelFormat(System.Drawing.Imaging.PixelFormat pixfmt);
 public static bool IsExtendedPixelFormat(System.Drawing.Imaging.PixelFormat pixfmt);
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
 public RectangleF GetBounds(ref GraphicsUnit pageUnit);
 public EncoderParameters GetEncoderParameterList(Guid encoder);
 public int GetFrameCount(System.Drawing.Imaging.FrameDimension dimension);
 public PropertyItem GetPropertyItem(int propid);
 public Image GetThumbnailImage(int thumbWidth, int thumbHeight, GetThumbnailImageAbort callback,
 IntPtr callbackData);
 public void RemovePropertyItem(int propid);
 public void RotateFlip(RotateFlipType rotateFlipType);
 public void Save(System.IO.Stream stream, System.Drawing.Imaging.ImageCodecInfo encoder,
 System.Drawing.Imaging.EncoderParameters encoderParams);
 public void Save(System.IO.Stream stream, System.Drawing.Imaging.ImageFormat format);
 public void Save(string filename);
 public void Save(string filename, System.Drawing.Imaging.ImageCodecInfo encoder,
 System.Drawing.Imaging.EncoderParameters encoderParams);
 public void Save(string filename, System.Drawing.Imaging.ImageFormat format);
 public void SaveAdd(System.Drawing.Imaging.EncoderParameters encoderParams);
 public void SaveAdd(Image image, System.Drawing.Imaging.EncoderParameters encoderParams);
 public int SelectActiveFrame(System.Drawing.Imaging.FrameDimension dimension, int frameIndex);
 public void SetPropertyItem(System.Drawing.Imaging.PropertyItem propitem);
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
}

Hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.MarshalByRefObject Image(System.Runtime.Serialization.ISerializabl, System.ICloneable,
System.IDisposable)

Subclasses

Bitmap, System.Drawing.Imaging.Metafile

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Image.GetThumbnailImageAbort serializable

System.Drawing (system.drawing.dll) delegate

This is a delegate for the callback that is used to abort the Image.GetThumbnailImage() method.

public delegate bool Image.GetThumbnailImageAbort();

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageAnimator

System.Drawing (system.drawing.dll) sealed class

This class provides static methods to support the animation of an Image class that contains multiple frames in the
System.Drawing.Imaging.FrameDimension.Time dimension: a complex way of saying a time-based image sequence.

The Animate() method takes an image and a callback delegate, which is called whenever a new frame is needed. You can
then paint the image on the appropriate Graphics surface at that time. StopAnimate() brings the animation to a halt.

There is a CanAnimate() method that tells you whether a particular Image has multiple frames in the time dimension, and
an UpdateFrames() function that advances to the next frame immediately.

This may seem like a complex way of allowing you to render an animated GIF (not forgetting your UniSys licensing, of
course), but it means the image framework can provide much more complex animation schemes than that—key frame-
based vector graphics animation for a cartoon, say, or on-the-fly interpolation of bitmap frames. And if you do just want
basic drop-in-and-go animation control, the System.Windows.Forms.PictureBox component will do the job.

public sealed class ImageAnimator {
// Public Static Methods
 public static void Animate(Image image, EventHandler onFrameChangedHandler);
 public static bool CanAnimate(Image image);
 public static void StopAnimate(Image image, EventHandler onFrameChangedHandler);
 public static void UpdateFrames();
 public static void UpdateFrames(Image image);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageConverter

System.Drawing (system.drawing.dll) class

This class, derived from System.ComponentModel.TypeConverter, is used to transform Image classes to and from other
types, specifically strings, and byte arrays in persistence and design-time scenarios.

public class ImageConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public ImageConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter ImageConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageFormatConverter

System.Drawing (system.drawing.dll) class

This class, derived from System.ComponentModel.TypeConverter is used to transform System.Drawing.Imaging.ImageFormat
objects to and from other types, specifically strings, for persistence and design-time scenarios.

public class ImageFormatConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public ImageFormatConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter ImageFormatConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

KnownColor serializable

System.Drawing (system.drawing.dll) enum

This enumeration contains a list of all the well-known colors. This includes both the web colors (such as Aqua and
LightSteelBlue) and the system colors (such as ControlText). It is used by such methods as Color.FromKnownColor() to refer
to a particular Color. Note that the entries in this enumeration are, by their nature, just integers and not the actual Color
values themselves.

public enum KnownColor {
 ActiveBorder = 1,
 ActiveCaption = 2,
 ActiveCaptionText = 3,
 AppWorkspace = 4,
 Control = 5,
 ControlDark = 6,
 ControlDarkDark = 7,
 ControlLight = 8,
 ControlLightLight = 9,
 ControlText = 10,
 Desktop = 11,
 GrayText = 12,
 Highlight = 13,
 HighlightText = 14,
 HotTrack = 15,
 InactiveBorder = 16,
 InactiveCaption = 17,
 InactiveCaptionText = 18,
 Info = 19,
 InfoText = 20,
 Menu = 21,
 MenuText = 22,
 ScrollBar = 23,
 Window = 24,
 WindowFrame = 25,
 WindowText = 26,
 Transparent = 27,
 AliceBlue = 28,
 AntiqueWhite = 29,
 Aqua = 30,
 Aquamarine = 31,
 Azure = 32,
 Beige = 33,
 Bisque = 34,
 Black = 35,
 BlanchedAlmond = 36,
 Blue = 37,
 BlueViolet = 38,
 Brown = 39,
 BurlyWood = 40,
 CadetBlue = 41,
 Chartreuse = 42,
 Chocolate = 43,
 Coral = 44,
 CornflowerBlue = 45,
 Cornsilk = 46,
 Crimson = 47,
 Cyan = 48,
 DarkBlue = 49,
 DarkCyan = 50,
 DarkGoldenrod = 51,
 DarkGray = 52,
 DarkGreen = 53,
 DarkKhaki = 54,
 DarkMagenta = 55,
 DarkOliveGreen = 56,
 DarkOrange = 57,
 DarkOrchid = 58,
 DarkRed = 59,
 DarkSalmon = 60,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DarkSalmon = 60,
 DarkSeaGreen = 61,
 DarkSlateBlue = 62,
 DarkSlateGray = 63,
 DarkTurquoise = 64,
 DarkViolet = 65,
 DeepPink = 66,
 DeepSkyBlue = 67,
 DimGray = 68,
 DodgerBlue = 69,
 Firebrick = 70,
 FloralWhite = 71,
 ForestGreen = 72,
 Fuchsia = 73,
 Gainsboro = 74,
 GhostWhite = 75,
 Gold = 76,
 Goldenrod = 77,
 Gray = 78,
 Green = 79,
 GreenYellow = 80,
 Honeydew = 81,
 HotPink = 82,
 IndianRed = 83,
 Indigo = 84,
 Ivory = 85,
 Khaki = 86,
 Lavender = 87,
 LavenderBlush = 88,
 LawnGreen = 89,
 LemonChiffon = 90,
 LightBlue = 91,
 LightCoral = 92,
 LightCyan = 93,
 LightGoldenrodYellow = 94,
 LightGray = 95,
 LightGreen = 96,
 LightPink = 97,
 LightSalmon = 98,
 LightSeaGreen = 99,
 LightSkyBlue = 100,
 LightSlateGray = 101,
 LightSteelBlue = 102,
 LightYellow = 103,
 Lime = 104,
 LimeGreen = 105,
 Linen = 106,
 Magenta = 107,
 Maroon = 108,
 MediumAquamarine = 109,
 MediumBlue = 110,
 MediumOrchid = 111,
 MediumPurple = 112,
 MediumSeaGreen = 113,
 MediumSlateBlue = 114,
 MediumSpringGreen = 115,
 MediumTurquoise = 116,
 MediumVioletRed = 117,
 MidnightBlue = 118,
 MintCream = 119,
 MistyRose = 120,
 Moccasin = 121,
 NavajoWhite = 122,
 Navy = 123,
 OldLace = 124,
 Olive = 125,
 OliveDrab = 126,
 Orange = 127,
 OrangeRed = 128,
 Orchid = 129,
 PaleGoldenrod = 130,
 PaleGreen = 131,
 PaleTurquoise = 132,
 PaleVioletRed = 133,
 PapayaWhip = 134,
 PeachPuff = 135,
 Peru = 136,
 Pink = 137,
 Plum = 138,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Plum = 138,
 PowderBlue = 139,
 Purple = 140,
 Red = 141,
 RosyBrown = 142,
 RoyalBlue = 143,
 SaddleBrown = 144,
 Salmon = 145,
 SandyBrown = 146,
 SeaGreen = 147,
 SeaShell = 148,
 Sienna = 149,
 Silver = 150,
 SkyBlue = 151,
 SlateBlue = 152,
 SlateGray = 153,
 Snow = 154,
 SpringGreen = 155,
 SteelBlue = 156,
 Tan = 157,
 Teal = 158,
 Thistle = 159,
 Tomato = 160,
 Turquoise = 161,
 Violet = 162,
 Wheat = 163,
 White = 164,
 WhiteSmoke = 165,
 Yellow = 166,
 YellowGreen = 167
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
KnownColor

Returned By

Color.ToKnownColor()

Passed To

Color.FromKnownColor()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Pen marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class describes the kind of line that is drawn when using the Graphics.DrawXXX() members.

Pens are resource-based entities, and it is therefore important to manage their lifetime carefully, calling Dispose() when
you are finished with them, to release the resource to the system.

You can construct a Pen from a Color, Brush, or (optionally) a Width. If you use a Color, the line will be a solid, uniform
color. If you use a Brush, you can take advantage of specific properties to render the line with a gradient or image
texture. If you do not specify a width, the default value of 1 is used.

The width of the Pen is measured in pixels and is modified by any transforms that apply during the rendering process.
As a geometric line has no intrinsic width, you can also specify an Alignment property, which determines where the pixels
are rendered relative to the geometric line (see System.Drawing.Drawing2D.PenAlignment for more information on this). The
default is to center the pixels across this theoretical line.

You can choose how to render the beginning and end of the line by specifying the StartCap and EndCap properties. You
can choose one of several different styles from the System.Drawing.Drawing2D.LineCap enumeration, including butt-ends,
round-ends, and simple arrows. If the predefined styles are not suitable, you can specify a CustomStartCap or
CustomEndCap with an instance of the System.Drawing.Drawing2D.CustomLineCap class. This allows you to render more
complex arrows or markers. The endcap size is scaled by the line width, in addition to any transforms that may be
applicable.

The Pen does not necessarily have to consist of a single, continuous stroke. You can specify one of a number of
predefined dash styles, found in the System.Drawing.Drawing2D.DashStyle enumeration, or define a custom DashPattern by
specifying an array of real numbers that represent the lengths of each dash segment. Note that these values are
multiplied by the line width and scaled by any applicable transforms before they are used. If you wish, you can provide
a DashOffset value, which determines how far along the line the dash pattern begins. You can also specify the style of
the endcaps on the dash line segments using the DashCap property. This is similar to the LineCap properties for the line
itself, but the System.Drawing.Drawing2D.DashCap enumeration offers a smaller set of cap styles.

In addition to the DashStyle, which determines a dash pattern along the length of the line, you can specify a
CompoundArray, which specifies a pattern of parallel lines. Alternate elements in the array specify a gap-width, then a
line-width, as a proportion of the whole line width. That is, a value of 0.2 in the array represents a line or gap that is
20% of the total width. Note that you are precluded from using a compound line if the Alignment property is set to
PenAlignment.Inset.

Finally, if the pen is being used to render multiple line segments, you can specify the LineJoin style with one of the
elements in the System.Drawing.Drawing2D.LineJoin enumeration. If you pick a mitered style, the MiterLimit property
determines the point at which the join is clipped.

public sealed class Pen : MarshalByRefObject :
System.Drawing.Internal.ISystemColorTracker, ICloneable, IDisposable {
// Public Constructors
 public Pen(Brush brush);
 public Pen(Brush brush, float width);
 public Pen(Color color);
 public Pen(Color color, float width);
// Public Instance Properties
 public PenAlignment Alignment{set; get; }
 public Brush Brush{set; get; }
 public Color Color{set; get; }
 public float[] CompoundArray{set; get; }
 public CustomLineCap CustomEndCap{set; get; }
 public CustomLineCap CustomStartCap{set; get; }
 public DashCap DashCap{set; get; }
 public float DashOffset{set; get; }
 public float[] DashPattern{set; get; }
 public DashStyle DashStyle{set; get; }
 public LineCap EndCap{set; get; }
 public LineJoin LineJoin{set; get; }
 public float MiterLimit{set; get; }
 public PenType PenType{get; }
 public LineCap StartCap{set; get; }
 public Matrix Transform{set; get; }
 public float Width{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void Dispose(); // implements IDisposable
 public void MultiplyTransform(System.Drawing.Drawing2D.Matrix matrix);
 public void MultiplyTransform(System.Drawing.Drawing2D.Matrix matrix,
 System.Drawing.Drawing2D.MatrixOrder order);
 public void ResetTransform();
 public void RotateTransform(float angle);
 public void RotateTransform(float angle, System.Drawing.Drawing2D.MatrixOrder order);
 public void ScaleTransform(float sx, float sy);
 public void ScaleTransform(float sx, float sy, System.Drawing.Drawing2D.MatrixOrder order);
 public void SetLineCap(System.Drawing.Drawing2D.LineCap startCap, System.Drawing.Drawing2D.LineCap endCap,
 System.Drawing.Drawing2D.DashCap dashCap);
 public void TranslateTransform(float dx, float dy);
 public void TranslateTransform(float dx, float dy, System.Drawing.Drawing2D.MatrixOrder order);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Pen(System.Drawing.Internal.ISystemColorTracke, System.ICloneable,
System.IDisposable)

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Pens

System.Drawing (system.drawing.dll) sealed class

This class provides a set of static properties, each of which returns a Pen with the default width (1) of the specified well-
known color.

Unlike other pens, you must not Dispose() the returned object to avoid leaving a disposed object in the underlying
system pens table.

public sealed class Pens {
// Public Static Properties
 public static Pen AliceBlue{get; }
 public static Pen AntiqueWhite{get; }
 public static Pen Aqua{get; }
 public static Pen Aquamarine{get; }
 public static Pen Azure{get; }
 public static Pen Beige{get; }
 public static Pen Bisque{get; }
 public static Pen Black{get; }
 public static Pen BlanchedAlmond{get; }
 public static Pen Blue{get; }
 public static Pen BlueViolet{get; }
 public static Pen Brown{get; }
 public static Pen BurlyWood{get; }
 public static Pen CadetBlue{get; }
 public static Pen Chartreuse{get; }
 public static Pen Chocolate{get; }
 public static Pen Coral{get; }
 public static Pen CornflowerBlue{get; }
 public static Pen Cornsilk{get; }
 public static Pen Crimson{get; }
 public static Pen Cyan{get; }
 public static Pen DarkBlue{get; }
 public static Pen DarkCyan{get; }
 public static Pen DarkGoldenrod{get; }
 public static Pen DarkGray{get; }
 public static Pen DarkGreen{get; }
 public static Pen DarkKhaki{get; }
 public static Pen DarkMagenta{get; }
 public static Pen DarkOliveGreen{get; }
 public static Pen DarkOrange{get; }
 public static Pen DarkOrchid{get; }
 public static Pen DarkRed{get; }
 public static Pen DarkSalmon{get; }
 public static Pen DarkSeaGreen{get; }
 public static Pen DarkSlateBlue{get; }
 public static Pen DarkSlateGray{get; }
 public static Pen DarkTurquoise{get; }
 public static Pen DarkViolet{get; }
 public static Pen DeepPink{get; }
 public static Pen DeepSkyBlue{get; }
 public static Pen DimGray{get; }
 public static Pen DodgerBlue{get; }
 public static Pen Firebrick{get; }
 public static Pen FloralWhite{get; }
 public static Pen ForestGreen{get; }
 public static Pen Fuchsia{get; }
 public static Pen Gainsboro{get; }
 public static Pen GhostWhite{get; }
 public static Pen Gold{get; }
 public static Pen Goldenrod{get; }
 public static Pen Gray{get; }
 public static Pen Green{get; }
 public static Pen GreenYellow{get; }
 public static Pen Honeydew{get; }
 public static Pen HotPink{get; }
 public static Pen IndianRed{get; }
 public static Pen Indigo{get; }
 public static Pen Ivory{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Pen Ivory{get; }
 public static Pen Khaki{get; }
 public static Pen Lavender{get; }
 public static Pen LavenderBlush{get; }
 public static Pen LawnGreen{get; }
 public static Pen LemonChiffon{get; }
 public static Pen LightBlue{get; }
 public static Pen LightCoral{get; }
 public static Pen LightCyan{get; }
 public static Pen LightGoldenrodYellow{get; }
 public static Pen LightGray{get; }
 public static Pen LightGreen{get; }
 public static Pen LightPink{get; }
 public static Pen LightSalmon{get; }
 public static Pen LightSeaGreen{get; }
 public static Pen LightSkyBlue{get; }
 public static Pen LightSlateGray{get; }
 public static Pen LightSteelBlue{get; }
 public static Pen LightYellow{get; }
 public static Pen Lime{get; }
 public static Pen LimeGreen{get; }
 public static Pen Linen{get; }
 public static Pen Magenta{get; }
 public static Pen Maroon{get; }
 public static Pen MediumAquamarine{get; }
 public static Pen MediumBlue{get; }
 public static Pen MediumOrchid{get; }
 public static Pen MediumPurple{get; }
 public static Pen MediumSeaGreen{get; }
 public static Pen MediumSlateBlue{get; }
 public static Pen MediumSpringGreen{get; }
 public static Pen MediumTurquoise{get; }
 public static Pen MediumVioletRed{get; }
 public static Pen MidnightBlue{get; }
 public static Pen MintCream{get; }
 public static Pen MistyRose{get; }
 public static Pen Moccasin{get; }
 public static Pen NavajoWhite{get; }
 public static Pen Navy{get; }
 public static Pen OldLace{get; }
 public static Pen Olive{get; }
 public static Pen OliveDrab{get; }
 public static Pen Orange{get; }
 public static Pen OrangeRed{get; }
 public static Pen Orchid{get; }
 public static Pen PaleGoldenrod{get; }
 public static Pen PaleGreen{get; }
 public static Pen PaleTurquoise{get; }
 public static Pen PaleVioletRed{get; }
 public static Pen PapayaWhip{get; }
 public static Pen PeachPuff{get; }
 public static Pen Peru{get; }
 public static Pen Pink{get; }
 public static Pen Plum{get; }
 public static Pen PowderBlue{get; }
 public static Pen Purple{get; }
 public static Pen Red{get; }
 public static Pen RosyBrown{get; }
 public static Pen RoyalBlue{get; }
 public static Pen SaddleBrown{get; }
 public static Pen Salmon{get; }
 public static Pen SandyBrown{get; }
 public static Pen SeaGreen{get; }
 public static Pen SeaShell{get; }
 public static Pen Sienna{get; }
 public static Pen Silver{get; }
 public static Pen SkyBlue{get; }
 public static Pen SlateBlue{get; }
 public static Pen SlateGray{get; }
 public static Pen Snow{get; }
 public static Pen SpringGreen{get; }
 public static Pen SteelBlue{get; }
 public static Pen Tan{get; }
 public static Pen Teal{get; }
 public static Pen Thistle{get; }
 public static Pen Tomato{get; }
 public static Pen Transparent{get; }
 public static Pen Turquoise{get; }
 public static Pen Violet{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Pen Violet{get; }
 public static Pen Wheat{get; }
 public static Pen White{get; }
 public static Pen WhiteSmoke{get; }
 public static Pen Yellow{get; }
 public static Pen YellowGreen{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Point serializable

System.Drawing (system.drawing.dll) struct

This value type represents a point in a 2D coordinate system. It uses integers to define the X and Y coordinates of that
point.

A point has no size in and of itself, but on a pixel-based device context, the pixels are of finite size. The point {0,0} is
therefore located at the center of the pixel (0,0).

You can compare a point to another point using the standard equality operator, and add or subtract Size quantities from
it. There is a conversion operator from Point to Size if required.

The PointF class is equivalent to Point but uses real values instead of integers. You can convert from PointF to Point using
the Round(), Truncate(), and Ceiling() members to control the loss of precision. To go the other way, there is a conversion
operator from Point to PointF.

It also provides an Empty property to represent a null point.

public struct Point {
// Public Constructors
 public Point(int dw);
 public Point(int x, int y);
 public Point(Size sz);
// Public Static Fields
 public static readonly Point Empty; // = {X=0,Y=0}
// Public Instance Properties
 public bool IsEmpty{get; }
 public int X{set; get; }
 public int Y{set; get; }
// Public Static Methods
 public static Point Ceiling(PointF value);
 public static Point Round(PointF value);
 public static Point Truncate(PointF value);
 public static Point operator -(Point pt, Size sz);
 public static Point operator +(Point pt, Size sz);
 public static bool operator !=(Point left, Point right);
 public static bool operator ==(Point left, Point right);
 public static explicit operator Size(Point p);
 public static implicit operator PointF(Point p);
// Public Instance Methods
 public override bool Equals(object obj); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public void Offset(int dx, int dy);
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType Point

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PointConverter

System.Drawing (system.drawing.dll) class

This class, derived from System.ComponentModel.TypeConverter, is used to convert between a Point and other types for
persistence and design-time scenarios.

public class PointConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public PointConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes); // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter PointConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PointF serializable

System.Drawing (system.drawing.dll) struct

This is a value type that represents a point in a 2D coordinate system. It uses reals to define the X and Y coordinates of
that point (c.f. Point).

As with Point, a PointF {0.0, 0.0} is located at the center of the pixel (0,0). However, if you specify a point at {0.5, 0.5}
and draw a single pixel at that location, the rendering engine must resolve that into something it can draw on the
device's pixel array, as it will impact at least 4 adjacent pixels in that grid. The method it uses to resolve that issue is
determined by various properties of the Graphics object, including PixelOffsetMode, CompositingMode, and SmoothingMode.

There are comparison operators between PointF objects, and addition and subtraction operators for Size objects (but not
SizeF objects, curiously).

Conversions between PointF and Point are handled through methods and operators on the Point class.

public struct PointF {
// Public Constructors
 public PointF(float x, float y);
// Public Static Fields
 public static readonly PointF Empty; // = {X=0, Y=0}
// Public Instance Properties
 public bool IsEmpty{get; }
 public float X{set; get; }
 public float Y{set; get; }
// Public Static Methods
 public static PointF operator -(PointF pt, Size sz);
 public static PointF operator +(PointF pt, Size sz);
 public static bool operator !=(PointF left, PointF right);
 public static bool operator ==(PointF left, PointF right);
// Public Instance Methods
 public override bool Equals(object obj); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType PointF

Returned By

System.Drawing.Drawing2D.GraphicsPath.{GetLastPoint(), PathPoints}, System.Drawing.Drawing2D.PathData.Points,
System.Drawing.Drawing2D.PathGradientBrush.{CenterPoint, FocusScales}, RectangleF.Location, SizeF.ToPointF()

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Rectangle serializable

System.Drawing (system.drawing.dll) struct

This value type defines a rectangular region on a 2D surface using integers. Unlike the Win32 RECT structure, the
Rectangle is defined in terms of the X and Y coordinate of its top-left point (also referred to as its Location), and its Width
and Height (also referred to as its Size). These properties can be both read and modified. In addition, you can read
values for the Left, Top, Right, and Bottom independently, and there is a static method, FromLTRB(), to allow you to
construct a Rectangle from these values in interop/legacy situations.

As with Point, there is an equivalent RectangleF structure for real coordinates, and a set of members—Round(), Truncate(),
and Ceiling()—to convert from the real to the integer representation. Comparison operators are also provided, along with
an Empty field to allow you to represent a null rectangle. There is no intrinsic performance advantage in using the
integer version, as the drawing methods are mostly implemented in terms of the floating point structure anyway (c.f.
Point/PointF)

Methods are provided to test whether a rectangle Contains() a Point, and whether one rectangle IntersectsWith() another
for hit testing.

You can also manipulate the rectangle itself in various ways. There is a static member, Union(), which returns the
minimum containing rectangle of two rectangles. Then there is the member function, Intersect(), which modifies a
Rectangle such that it represents the area of intersection between itself and the rectangle supplied as its parameter.

Finally, there are methods to Offset() the rectangle by a fixed amount, or Inflate() the rectangle. There are both static
and non-static versions of Inflate() to return a new rectangle or modify the original, respectively. You can independently
control the inflation in each dimension, and the value in question is subtracted from the Location and added to the Size,
leading to an overall increase of twice the supplied value in each dimension.

public struct Rectangle {
// Public Constructors
 public Rectangle(int x, int y, int width, int height);
 public Rectangle(Point location, Size size);
// Public Static Fields
 public static readonly Rectangle Empty; // = {X=0,Y=0,Width=0,Height=0}
// Public Instance Properties
 public int Bottom{get; }
 public int Height{set; get; }
 public bool IsEmpty{get; }
 public int Left{get; }
 public Point Location{set; get; }
 public int Right{get; }
 public Size Size{set; get; }
 public int Top{get; }
 public int Width{set; get; }
 public int X{set; get; }
 public int Y{set; get; }
// Public Static Methods
 public static Rectangle Ceiling(RectangleF value);
 public static Rectangle FromLTRB(int left, int top, int right, int bottom);
 public static Rectangle Inflate(Rectangle rect, int x, int y);
 public static Rectangle Intersect(Rectangle a, Rectangle b);
 public static Rectangle Round(RectangleF value);
 public static Rectangle Truncate(RectangleF value);
 public static Rectangle Union(Rectangle a, Rectangle b);
 public static bool operator !=(Rectangle left, Rectangle right);
 public static bool operator ==(Rectangle left, Rectangle right);
// Public Instance Methods
 public bool Contains(int x, int y);
 public bool Contains(Point pt);
 public bool Contains(Rectangle rect);
 public override bool Equals(object obj); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public void Inflate(int width, int height);
 public void Inflate(Size size);
 public void Intersect(Rectangle rect);
 public bool IntersectsWith(Rectangle rect);
 public void Offset(int x, int y);
 public void Offset(Point pos);
 public override string ToString(); // overrides ValueType
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.ValueType Rectangle

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RectangleConverter

System.Drawing (system.drawing.dll) class

This class, derived from System.ComponentModel.TypeConverter, converts between Rectangle values and other types,
specifically strings, in persistence and design-time scenarios.

public class RectangleConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public RectangleConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter RectangleConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RectangleF serializable

System.Drawing (system.drawing.dll) struct

This value type is the real equivalent of the integer-based Rectangle. Again, it defines a rectangular region of a 2D
surface. It offers all the basic facilities of the Rectangle structure, and a conversion operator to convert from a Rectangle.

As with the Point / PointF pair, there is no intrinsic performance advantage in using the integer Rectangle, as all the
Graphics painting methods are implemented in terms of the real version anyway (in the first release of the framework).

The same rendering issues also apply as for Rectangle-based shapes if you are not aligned to the pixel boundaries of the
target device.

public struct RectangleF {
// Public Constructors
 public RectangleF(PointF location, SizeF size);
 public RectangleF(float x, float y, float width, float height);
// Public Static Fields
 public static readonly RectangleF Empty; // = {X=0,Y=0,Width=0,Height=0}
// Public Instance Properties
 public float Bottom{get; }
 public float Height{set; get; }
 public bool IsEmpty{get; }
 public float Left{get; }
 public PointF Location{set; get; }
 public float Right{get; }
 public SizeF Size{set; get; }
 public float Top{get; }
 public float Width{set; get; }
 public float X{set; get; }
 public float Y{set; get; }
// Public Static Methods
 public static RectangleF FromLTRB(float left, float top, float right, float bottom);
 public static RectangleF Inflate(RectangleF rect, float x, float y);
 public static RectangleF Intersect(RectangleF a, RectangleF b);
 public static RectangleF Union(RectangleF a, RectangleF b);
 public static bool operator !=(RectangleF left, RectangleF right);
 public static bool operator ==(RectangleF left, RectangleF right);
 public static implicit operator RectangleF(Rectangle r);
// Public Instance Methods
 public bool Contains(PointF pt);
 public bool Contains(RectangleF rect);
 public bool Contains(float x, float y);
 public override bool Equals(object obj); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public void Inflate(float x, float y);
 public void Inflate(SizeF size);
 public void Intersect(RectangleF rect);
 public bool IntersectsWith(RectangleF rect);
 public void Offset(PointF pos);
 public void Offset(float x, float y);
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType RectangleF

Returned By

System.Drawing.Drawing2D.GraphicsPath.GetBounds(), System.Drawing.Drawing2D.LinearGradientBrush.Rectangle,
System.Drawing.Drawing2D.PathGradientBrush.Rectangle, Graphics.{ClipBounds, VisibleClipBounds}, Image.GetBounds(), Region.
{GetBounds(), GetRegionScans()}

Passed To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Region marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class is used to define an arbitrary region on a 2D surface.

This is a resource-based entity (unlike the Rectangle and Point value types), and therefore requires careful lifetime
management. You should Dispose() the object when you are finished with it to release the resources back to the system.

At its simplest, you can construct a Region from a Rectangle or RectangleF. More complex regions can be constructed from
a System.Drawing.Drawing2D.GraphicsPath. For interop with the Win32 HRGN, you can use GetHrgn() and FromHrgn().

You can then manipulate the region in a variety of ways, including logical operations with another Region,
System.Drawing.Drawing2D.GraphicsPath, or Rectangle / RectangleF. It can also be made to represent no area at all with the
MakeEmpty() method, or the whole of the infinite plane with MakeInfinite(). You can create the Complement() (the area of
the supplied object that does not intersect with the Region), Intersect() two regions, create Union() of two regions (the
combined areas of both), and Xor() two regions (which is equivalent to the Union()—Intersect()).

You can also provide a Matrix and Transform() the region, or simply Translate() it. This is not an ambient transformation
like the ones provided for a Pen or Graphics surface—it actually manipulates the underlying
System.Drawing.Drawing2D.RegionData.

There is an Equals() method, which determines whether two Region objects would be equivalent on a given Graphics
surface, and you can determine whether a Point or any portion of a Rectangle (expressed in a variety of ways) will
intersect with the region on a particular Graphics surface.

public sealed class Region : MarshalByRefObject : IDisposable {
// Public Constructors
 public Region();
 public Region(System.Drawing.Drawing2D.GraphicsPath path);
 public Region(Rectangle rect);
 public Region(RectangleF rect);
 public Region(System.Drawing.Drawing2D.RegionData rgnData);
// Public Static Methods
 public static Region FromHrgn(IntPtr hrgn);
// Public Instance Methods
 public Region Clone();
 public void Complement(System.Drawing.Drawing2D.GraphicsPath path);
 public void Complement(Rectangle rect);
 public void Complement(RectangleF rect);
 public void Complement(Region region);
 public void Dispose(); // implements IDisposable
 public bool Equals(Region region, Graphics g);
 public void Exclude(System.Drawing.Drawing2D.GraphicsPath path);
 public void Exclude(Rectangle rect);
 public void Exclude(RectangleF rect);
 public void Exclude(Region region);
 public RectangleF GetBounds(Graphics g);
 public IntPtr GetHrgn(Graphics g);
 public RegionData GetRegionData();
 public RectangleF[] GetRegionScans(System.Drawing.Drawing2D.Matrix matrix);
 public void Intersect(System.Drawing.Drawing2D.GraphicsPath path);
 public void Intersect(Rectangle rect);
 public void Intersect(RectangleF rect);
 public void Intersect(Region region);
 public bool IsEmpty(Graphics g);
 public bool IsInfinite(Graphics g);
 public bool IsVisible(int x, int y, Graphics g);
 public bool IsVisible(int x, int y, int width, int height);
 public bool IsVisible(int x, int y, int width, int height, Graphics g);
 public bool IsVisible(Point point);
 public bool IsVisible(PointF point);
 public bool IsVisible(PointF point, Graphics g);
 public bool IsVisible(Point point, Graphics g);
 public bool IsVisible(Rectangle rect);
 public bool IsVisible(RectangleF rect);
 public bool IsVisible(RectangleF rect, Graphics g);
 public bool IsVisible(Rectangle rect, Graphics g);
 public bool IsVisible(float x, float y);
 public bool IsVisible(float x, float y, Graphics g);
 public bool IsVisible(float x, float y, float width, float height);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public bool IsVisible(float x, float y, float width, float height);
 public bool IsVisible(float x, float y, float width, float height, Graphics g);
 public void MakeEmpty();
 public void MakeInfinite();
 public void Transform(System.Drawing.Drawing2D.Matrix matrix);
 public void Translate(int dx, int dy);
 public void Translate(float dx, float dy);
 public void Union(System.Drawing.Drawing2D.GraphicsPath path);
 public void Union(Rectangle rect);
 public void Union(RectangleF rect);
 public void Union(Region region);
 public void Xor(System.Drawing.Drawing2D.GraphicsPath path);
 public void Xor(Rectangle rect);
 public void Xor(RectangleF rect);
 public void Xor(Region region);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Region(System.IDisposable)

Returned By

Graphics.{Clip, MeasureCharacterRanges()}, System.Windows.Forms.Control.Region

Passed To

Graphics.{Clip, ExcludeClip(), FillRegion(), IntersectClip(), SetClip()}, System.Windows.Forms.Control.{Invalidate(), Region}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RotateFlipType serializable

System.Drawing (system.drawing.dll) enum

This enumeration is used by the Image.RotateFlip() member to determine the nature of the flipping/rotation operation to
be formed.

public enum RotateFlipType {
 Rotate180FlipXY = 0,
 RotateNoneFlipNone = 0,
 Rotate90FlipNone = 1,
 Rotate270FlipXY = 1,
 Rotate180FlipNone = 2,
 RotateNoneFlipXY = 2,
 Rotate270FlipNone = 3,
 Rotate90FlipXY = 3,
 RotateNoneFlipX = 4,
 Rotate180FlipY = 4,
 Rotate90FlipX = 5,
 Rotate270FlipY = 5,
 Rotate180FlipX = 6,
 RotateNoneFlipY = 6,
 Rotate270FlipX = 7,
 Rotate90FlipY = 7
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RotateFlipType

Passed To

Image.RotateFlip()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Size serializable

System.Drawing (system.drawing.dll) struct

Size is part of the set of value types, including Point and Rectangle, that are used to define basic drawing geometry. It
uses integers to represent horizontal and vertical extent (such as the width and height of a Rectangle).

In addition to being able to retrieve the Width and Height, you can determine whether the Size value is Empty (which
means both the Width and Height are equal to 0).

As with the other fundamental value types in the framework, there is an equivalent floating-point structure called SizeF.
Three conversion functions (Round(), Truncate(), and Ceiling()) are provided to allow you to convert from the float
representation to the integer, and there is an operator that allows you to cast the other way. You can also convert to a
Point.

You are also provided with addition, subtraction, and comparison operators.

Note that there is no intrinsic performance advantage in using the integer version of this type over the floating-point
equivalent. As of v1.0 of the .NET Framework, most drawing functions are implemented in terms of the floating-point
version anyway.

public struct Size {
// Public Constructors
 public Size(int width, int height);
 public Size(Point pt);
// Public Static Fields
 public static readonly Size Empty; // = {Width=0, Height=0}
// Public Instance Properties
 public int Height{set; get; }
 public bool IsEmpty{get; }
 public int Width{set; get; }
// Public Static Methods
 public static Size Ceiling(SizeF value);
 public static Size Round(SizeF value);
 public static Size Truncate(SizeF value);
 public static Size operator -(Size sz1, Size sz2);
 public static Size operator +(Size sz1, Size sz2);
 public static bool operator !=(Size sz1, Size sz2);
 public static bool operator ==(Size sz1, Size sz2);
 public static explicit operator Point(Size size);
 public static implicit operator SizeF(Size p);
// Public Instance Methods
 public override bool Equals(object obj); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType Size

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SizeConverter

System.Drawing (system.drawing.dll) class

This class, derived from System.ComponentModel.TypeConverter, converts between Size values and other types, specifically
strings, in persistence and design-time scenarios.

public class SizeConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public SizeConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes); // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter SizeConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SizeF serializable

System.Drawing (system.drawing.dll) struct

A member of the family of basic geometry types, this value is the floating-point equivalent of the integer-based Size
structure.

It provides all the functionality of the integer version, plus a ToSize() member, which uses truncation to perform the
conversion.

public struct SizeF {
// Public Constructors
 public SizeF(PointF pt);
 public SizeF(float width, float height);
 public SizeF(SizeF size);
// Public Static Fields
 public static readonly SizeF Empty; // = {Width=0, Height=0}
// Public Instance Properties
 public float Height{set; get; }
 public bool IsEmpty{get; }
 public float Width{set; get; }
// Public Static Methods
 public static SizeF operator -(SizeF sz1, SizeF sz2);
 public static SizeF operator +(SizeF sz1, SizeF sz2);
 public static bool operator !=(SizeF sz1, SizeF sz2);
 public static bool operator ==(SizeF sz1, SizeF sz2);
 public static explicit operator PointF(SizeF size);
// Public Instance Methods
 public override bool Equals(object obj); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public PointF ToPointF();
 public Size ToSize();
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType SizeF

Returned By

Graphics.MeasureString(), Image.PhysicalDimension, RectangleF.Size, System.Windows.Forms.Form.GetAutoScaleSize()

Passed To

Graphics.MeasureString(), RectangleF.{Inflate(), RectangleF(), Size}, Size.{Ceiling(), Round(), Truncate()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SolidBrush marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class is the day-to-day workhorse of the GDI+ world. If you cannot find the brush you need in SystemBrushes or
Brushes, and you don't need the fancy effects of the options found in System.Drawing.Drawing2D, you will be using
instances of this class (derived from Brush) to fill solid areas of color in your shapes, including the font stroke color when
painting text. You can construct an instance from a Color value, and can also set and retrieve the Color through a
property of that name over the lifetime of the object.

As with most GDI+ resources, this implements IDisposable and must therefore have its lifetime managed carefully,
calling Dispose() when you are finished with it. As with other examples, the C# using idiom is useful here.

public sealed class SolidBrush : Brush : System.Drawing.Internal.ISystemColorTracker {
// Public Constructors
 public SolidBrush(Color color);
// Public Instance Properties
 public Color Color{set; get; }
// Public Instance Methods
 public override object Clone(); // overrides Brush
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides Brush
}

Hierarchy

System.Object System.MarshalByRefObject Brush(System.ICloneabl, System.IDisposable)
SolidBrush(System.Drawing.Internal.ISystemColorTracker)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringAlignment serializable

System.Drawing (system.drawing.dll) enum

This enumeration is used in several places throughout the framework to specify the positioning of a text string within its
clip box. For example, the StringFormat class uses it for both horizontal text alignment and vertical line alignment.

The Center/ Near/ Far notation (rather than left/right or top/bottom, for example) enables you to specify both horizontal
and vertical alignments and to support locales where right-to-left reading is appropriate. For example, a string drawn
with a horizontal alignment, Far, will be drawn at the right of the rectangle in a left-to-right locale, but would be
rendered at the left side of a rectangle with a right-to-left locale.

public enum StringAlignment {
 Near = 0,
 Center = 1,
 Far = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StringAlignment

Returned By

StringFormat.{Alignment, LineAlignment}

Passed To

StringFormat.{Alignment, LineAlignment}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringDigitSubstitute serializable

System.Drawing (system.drawing.dll) enum

This enumeration is used by the StringFormat class when you need to render digits in a font that doesn't provide those
digits (typically non-Western language fonts). You can choose between official National standards, Traditional methods, or
no substitution. There is also the option of a User substitution scheme, but the framework does not expose the same
detailed degree of control over font substitution as is available in the Platform SDK internationalization services (e.g.,
UniScribe).

public enum StringDigitSubstitute {
 User = 0,
 None = 1,
 National = 2,
 Traditional = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StringDigitSubstitute

Returned By

StringFormat.DigitSubstitutionMethod

Passed To

StringFormat.SetDigitSubstitution()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringFormat marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class provides an encapsulation of all the information needed to specify how a text string should be formatted
when rendered to a Graphics surface (e.g., through the Graphics.DrawString() method). Correspondingly, the string
measurement methods (e.g., Graphics.MeasureString()) also require a StringFormat object.

You can specify basic formatting and alignment features (e.g., horizontal Alignment, vertical LineAlignment, and the
StringFormatFlags familiar to anybody who has rendered text in GDI/GDI+ before, specifying wrapping and layout rules).
You can also set display parameters such as the method for dealing with truncated strings (Trimming), whether to
underline HotkeyPrefix, and the Unicode digit substitution method (see StringDigitSubstitute). There is also basic control of
the tab ruler with SetTabStops() and GetTabStops(), and the SetMeasurableCharacterRanges() method allows you to package
up the text string into a series of ranges of characters whose individual regions can be measured. This might be useful
if you needed to highlight selected portions of the text, for example.

In case all this seems a little overwhelming just to render a text string, there are two static properties, GenericDefault
and GenericTypographic, that provide StringFormat objects appropriate for general UI rendering and formal text display
(e.g., in a word processing control), respectively.

public sealed class StringFormat : MarshalByRefObject : ICloneable, IDisposable {
// Public Constructors
 public StringFormat();
 public StringFormat(StringFormat format);
 public StringFormat(StringFormatFlags options);
 public StringFormat(StringFormatFlags options, int language);
// Public Static Properties
 public static StringFormat GenericDefault{get; }
 public static StringFormat GenericTypographic{get; }
// Public Instance Properties
 public StringAlignment Alignment{set; get; }
 public int DigitSubstitutionLanguage{get; }
 public StringDigitSubstitute DigitSubstitutionMethod{get; }
 public StringFormatFlags FormatFlags{set; get; }
 public HotkeyPrefix HotkeyPrefix{set; get; }
 public StringAlignment LineAlignment{set; get; }
 public StringTrimming Trimming{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
 public float[] GetTabStops(out float firstTabOffset);
 public void SetDigitSubstitution(int language, StringDigitSubstitute substitute);
 public void SetMeasurableCharacterRanges(CharacterRange[] ranges);
 public void SetTabStops(float firstTabOffset, float[] tabStops);
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject StringFormat(System.ICloneabl, System.IDisposable)

Passed To

System.Drawing.Drawing2D.GraphicsPath.AddString(), Graphics.{DrawString(), MeasureCharacterRanges(), MeasureString()},
System.Windows.Forms.ControlPaint.DrawStringDisabled()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringFormatFlags serializable, flag

System.Drawing (system.drawing.dll) enum

This enumeration provides a variety of flags that control the way a text string is formatted during rendering and
measurement. Most of the flags relate to the relationship between the string and its bounding rectangle, but there are
also flags that enable you to specify the text direction (e.g., left-to-right or right-to-left) and whether font-substitution
is to be used when a character found in the string does not have a corresponding glyph in the font of choice. These
flags should be familiar to people who have previously used the Win32 GDI text-rendering methods.

public enum StringFormatFlags {
 DirectionRightToLeft = 0x00000001,
 DirectionVertical = 0x00000002,
 FitBlackBox = 0x00000004,
 DisplayFormatControl = 0x00000020,
 NoFontFallback = 0x00000400,
 MeasureTrailingSpaces = 0x00000800,
 NoWrap = 0x00001000,
 LineLimit = 0x00002000,
 NoClip = 0x00004000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StringFormatFlags

Returned By

StringFormat.FormatFlags

Passed To

StringFormat.{FormatFlags, StringFormat()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringTrimming serializable

System.Drawing (system.drawing.dll) enum

This enumeration contains the options for the StringFormat.Trimming property, which determines what happens to a string
that is too large for its bounding box. You can choose not to crop at all (None) or to crop at Character or Word boundaries.
On top of that, you can choose to add an ellipsis (. . .) where the cropping occurs, which may of course trim even
more text to fit it in (there are EllipsisCharacter and EllipsisWord elements to choose this option). There is also the special
case of EllipsisPath which treats the string as a file path and crops in the middle of the string, between \ characters,
adding an appropriate ellipsis.

public enum StringTrimming {
 None = 0,
 Character = 1,
 Word = 2,
 EllipsisCharacter = 3,
 EllipsisWord = 4,
 EllipsisPath = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StringTrimming

Returned By

StringFormat.Trimming

Passed To

StringFormat.Trimming

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StringUnit serializable

System.Drawing (system.drawing.dll) enum

This enumeration allegedly specifies the units of measurement for a string. But as all the string measurement functions
actually use the (remarkably similar!) GraphicsUnit enumeration instead, we will pretend that we never saw it, and move
along quietly

public enum StringUnit {
 World = 0,
 Display = 1,
 Pixel = 2,
 Point = 3,
 Inch = 4,
 Document = 5,
 Millimeter = 6,
 Em = 32
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StringUnit

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SystemBrushes

System.Drawing (system.drawing.dll) sealed class

This class provides a set of static properties that return Brush objects for (almost) all the standard system colors.
Unfortunately, some of the system colors were deemed to be "not for filling surfaces"—InactiveCaptionText for instance—
so you'll have to fall back on SystemColors and SolidBrush if you want to use them.

Unlike most brushes, you do not need to Dispose() the ones returned from this class. In fact, you mustn't dispose of it,
or you will leave an unpleasant hole in the thread-local system brush table.

To retrieve a Brush for one of the web colors, see Brushes.

public sealed class SystemBrushes {
// Public Static Properties
 public static Brush ActiveBorder{get; }
 public static Brush ActiveCaption{get; }
 public static Brush ActiveCaptionText{get; }
 public static Brush AppWorkspace{get; }
 public static Brush Control{get; }
 public static Brush ControlDark{get; }
 public static Brush ControlDarkDark{get; }
 public static Brush ControlLight{get; }
 public static Brush ControlLightLight{get; }
 public static Brush ControlText{get; }
 public static Brush Desktop{get; }
 public static Brush Highlight{get; }
 public static Brush HighlightText{get; }
 public static Brush HotTrack{get; }
 public static Brush InactiveBorder{get; }
 public static Brush InactiveCaption{get; }
 public static Brush Info{get; }
 public static Brush Menu{get; }
 public static Brush ScrollBar{get; }
 public static Brush Window{get; }
 public static Brush WindowText{get; }
// Public Static Methods
 public static Brush FromSystemColor(Color c);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SystemColors

System.Drawing (system.drawing.dll) sealed class

This class contains a set of static properties that return appropriate Color values for current the system theme.

If you are retrieving the color just to create a SolidBrush or Pen, you should use the SystemBrushes or SystemPens class
instead.

public sealed class SystemColors {
// Public Static Properties
 public static Color ActiveBorder{get; }
 public static Color ActiveCaption{get; }
 public static Color ActiveCaptionText{get; }
 public static Color AppWorkspace{get; }
 public static Color Control{get; }
 public static Color ControlDark{get; }
 public static Color ControlDarkDark{get; }
 public static Color ControlLight{get; }
 public static Color ControlLightLight{get; }
 public static Color ControlText{get; }
 public static Color Desktop{get; }
 public static Color GrayText{get; }
 public static Color Highlight{get; }
 public static Color HighlightText{get; }
 public static Color HotTrack{get; }
 public static Color InactiveBorder{get; }
 public static Color InactiveCaption{get; }
 public static Color InactiveCaptionText{get; }
 public static Color Info{get; }
 public static Color InfoText{get; }
 public static Color Menu{get; }
 public static Color MenuText{get; }
 public static Color ScrollBar{get; }
 public static Color Window{get; }
 public static Color WindowFrame{get; }
 public static Color WindowText{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SystemIcons

System.Drawing (system.drawing.dll) sealed class

This class provides you with properties to retrieve those handy system icons, such as the Error and Information symbols.
As an added bonus, you've also got a Hand and the WinLogo.

While these icons implement IDisposable, don't release the resources yourself or you will leave the disposed remains of
an icon in the internal system icons table for the next poor client to use. Unfortunately, the implementation only tests
for nullness before recreating the Icon rather than checking IsDisposed.

public sealed class SystemIcons {
// Public Static Properties
 public static Icon Application{get; }
 public static Icon Asterisk{get; }
 public static Icon Error{get; }
 public static Icon Exclamation{get; }
 public static Icon Hand{get; }
 public static Icon Information{get; }
 public static Icon Question{get; }
 public static Icon Warning{get; }
 public static Icon WinLogo{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SystemPens

System.Drawing (system.drawing.dll) sealed class

This class provides a set of static properties that return Pen objects for (almost) all the standard system colors. Sadly,
as some of the system colors were deemed to be "not for drawing lines"—InactiveCaption for instance—you'll have to fall
back on SystemColors and Pen if you want to use them in some kind of inverse colors cheme.

Like most of these SystemXXX classes, although IDisposable is implemented, you must not dispose of the object yourself.
The internal implementation caches the pens in a system table, but only tests for nullness and not whether the object
has been disposed, so you will leave an unpleasant surprise for the next person to use that pen!

To retrieve a Pen for one of the web colors, see Pens.

public sealed class SystemPens {
// Public Static Properties
 public static Pen ActiveCaptionText{get; }
 public static Pen Control{get; }
 public static Pen ControlDark{get; }
 public static Pen ControlDarkDark{get; }
 public static Pen ControlLight{get; }
 public static Pen ControlLightLight{get; }
 public static Pen ControlText{get; }
 public static Pen GrayText{get; }
 public static Pen Highlight{get; }
 public static Pen HighlightText{get; }
 public static Pen InactiveCaptionText{get; }
 public static Pen InfoText{get; }
 public static Pen MenuText{get; }
 public static Pen WindowFrame{get; }
 public static Pen WindowText{get; }
// Public Static Methods
 public static Pen FromSystemColor(Color c);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextureBrush marshal by reference, disposable

System.Drawing (system.drawing.dll) sealed class

This class provides a means of filling a surface with an image. You can specify how the image is to be tiled with the
WrapMode, and you can also apply a Transform matrix to the brush so that the image appears appropriately in your
particular coordinate space.

public sealed class TextureBrush : Brush {
// Public Constructors
 public TextureBrush(Image bitmap);
 public TextureBrush(Image image, Rectangle dstRect);
 public TextureBrush(Image image, RectangleF dstRect);
 public TextureBrush(Image image, RectangleF dstRect, System.Drawing.Imaging.ImageAttributes imageAttr);
 public TextureBrush(Image image, Rectangle dstRect, System.Drawing.Imaging.ImageAttributes imageAttr);
 public TextureBrush(Image image, System.Drawing.Drawing2D.WrapMode wrapMode);
 public TextureBrush(Image image, System.Drawing.Drawing2D.WrapMode wrapMode, Rectangle dstRect);
 public TextureBrush(Image image, System.Drawing.Drawing2D.WrapMode wrapMode, RectangleF dstRect);
// Public Instance Properties
 public Image Image{get; }
 public Matrix Transform{set; get; }
 public WrapMode WrapMode{set; get; }
// Public Instance Methods
 public override object Clone(); // overrides Brush
 public void MultiplyTransform(System.Drawing.Drawing2D.Matrix matrix);
 public void MultiplyTransform(System.Drawing.Drawing2D.Matrix matrix,
 System.Drawing.Drawing2D.MatrixOrder order);
 public void ResetTransform();
 public void RotateTransform(float angle);
 public void RotateTransform(float angle, System.Drawing.Drawing2D.MatrixOrder order);
 public void ScaleTransform(float sx, float sy);
 public void ScaleTransform(float sx, float sy, System.Drawing.Drawing2D.MatrixOrder order);
 public void TranslateTransform(float dx, float dy);
 public void TranslateTransform(float dx, float dy, System.Drawing.Drawing2D.MatrixOrder order);
}

Hierarchy

System.Object System.MarshalByRefObject Brush(System.ICloneabl, System.IDisposable) TextureBrush

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolboxBitmapAttribute

System.Drawing (system.drawing.dll) class

This Attribute class is something of a refugee from the System.Drawing.Design namespace. If you apply the attribute to a
component and specify either the filename of a 16 x 16 bitmap, or a component type (e.g.,
typeof(SomeOtherComponent)), the appropriate image (either your bitmap or the image specified for the other type) will
be displayed in the designer toolbox next to your component's name.

You can also specify both, and it will fallback on the type imagery if the bitmap file doesn't exist.

This is, of course, extremely useful; but what it is doing in this namespace is a mystery.

public class ToolboxBitmapAttribute : Attribute {
// Public Constructors
 public ToolboxBitmapAttribute(string imageFile);
 public ToolboxBitmapAttribute(Type t);
 public ToolboxBitmapAttribute(Type t, string name);
// Public Static Fields
 public static readonly ToolboxBitmapAttribute Default; // =System.Drawing.ToolboxBitmapAttribute
// Public Static Methods
 public static Image GetImageFromResource(Type t, string imageName, bool large);
// Public Instance Methods
 public override bool Equals(object value); // overrides Attribute
 public override int GetHashCode(); // overrides Attribute
 public Image GetImage(object component);
 public Image GetImage(object component, bool large);
 public Image GetImage(Type type);
 public Image GetImage(Type type, bool large);
 public Image GetImage(Type type, string imgName, bool large);
}

Hierarchy

System.Object System.Attribute ToolboxBitmapAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. The System.Drawing.Drawing2D
Namespace
The System.Drawing.Drawing2D namespace provides a number of classes that support more advanced features of the
vector drawing facilities in GDI+, including custom fill types, paths, and regions.

Most GDI+ applications make extensive use of the classes in this namespace. Figure 15-1 shows the types in this
namespace.

Figure 15-1. Types from the System.Drawing.Drawing2D namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AdjustableArrowCap marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class, derived from CustomLineCap, provides an arrow-like start- or endcap for a path or line. Unlike the default
endcaps, you have control over the shape and size of the arrow.

In addition to functionality of the base class, you can specify whether the arrow is Filled or Hollow, along with the Width
and Height of the arrow head itself. In addition, the MiddleInset property allows you to adjust the "barbs" of the arrow.

public sealed class AdjustableArrowCap : CustomLineCap {
// Public Constructors
 public AdjustableArrowCap(float width, float height);
 public AdjustableArrowCap(float width, float height, bool isFilled);
// Public Instance Properties
 public bool Filled{set; get; }
 public float Height{set; get; }
 public float MiddleInset{set; get; }
 public float Width{set; get; }
}

Hierarchy

System.Object System.MarshalByRefObject CustomLineCap(System.ICloneabl, System.IDisposable)
AdjustableArrowCap
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Blend

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This allows you to define a gradient scheme for the LinearGradientBrush. It consists of two arrays: the Factors and the
Positions. The Factors indicate the relative proportions of the two colors at the corresponding Positions. The system linearly
interpolates between the specified positions to produce a smooth gradient.

Note that the values in the Factors array must be between 0.0 and 1.0 (from 100% color 2, to 100% color 1).

See ColorBlend for a multicolored blend.

public sealed class Blend {
// Public Constructors
 public Blend();
 public Blend(int count);
// Public Instance Properties
 public float[] Factors{set; get; }
 public float[] Positions{set; get; }
}

Returned By

LinearGradientBrush.Blend, PathGradientBrush.Blend

Passed To

LinearGradientBrush.Blend, PathGradientBrush.Blend

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorBlend

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class allows you to define a multicolored gradient blend for the LinearGradientBrush. Similar to Blend, it consists of
two arrays: the Colors and the Positions. The brush linearly interpolates between the colors at the specified positions to
produce a smooth gradient.

public sealed class ColorBlend {
// Public Constructors
 public ColorBlend();
 public ColorBlend(int count);
// Public Instance Properties
 public Color[] Colors{set; get; }
 public float[] Positions{set; get; }
}

Returned By

LinearGradientBrush.InterpolationColors, PathGradientBrush.InterpolationColors

Passed To

LinearGradientBrush.InterpolationColors, PathGradientBrush.InterpolationColors
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CombineMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used to specify the logical operation that should be used when combining clipping
System.Drawing.Region objects.

public enum CombineMode {
 Replace = 0,
 Intersect = 1,
 Union = 2,
 Xor = 3,
 Exclude = 4,
 Complement = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CombineMode

Passed To

System.Drawing.Graphics.SetClip()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CompositingMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used with the System.Drawing.Graphics.CompositingMode property to determine how alpha-blended
colors are merged while drawing. SourceCopy effectively disables alpha blending while drawing into the bitmap, writing
whatever color is specified (including its alpha value) directly into the bitmap. SourceOver reenables alpha blending,
causing colors to be merged as they are drawn.

public enum CompositingMode {
 SourceOver = 0,
 SourceCopy = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CompositingMode

Returned By

System.Drawing.Graphics.CompositingMode

Passed To

System.Drawing.Graphics.CompositingMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CompositingQuality serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used with the System.Drawing.Graphics.CompositingQuality member to specify how pixels will be
rendered. Each step up in rendering quality causes a corresponding decrease in rendering speed. This is because the
better rendering quality is achieved by examining a number of pixels around the target pixel and blending values using
one of several sub-pixel interpolation algorithms.

public enum CompositingQuality {
 Default = 0,
 HighSpeed = 1,
 HighQuality = 2,
 GammaCorrected = 3,
 AssumeLinear = 4,
 Invalid = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CompositingQuality

Returned By

System.Drawing.Graphics.CompositingQuality

Passed To

System.Drawing.Graphics.CompositingQuality

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CoordinateSpace serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration specifies the three possible coordinate spaces to use with the System.Drawing.Graphics.TransformPoints()
method. The Device coordinate space is the physical coordinate space of the target output device (the monitor or
printer, for example). The Page coordinate space is the logical coordinate space of the graphics surface, and the World
coordinate space is the surface coordinate space with the current Graphics.Transform applied. That transform is commonly
referred to as the "World Transform."

public enum CoordinateSpace {
 World = 0,
 Page = 1,
 Device = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CoordinateSpace

Passed To

System.Drawing.Graphics.TransformPoints()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CustomLineCap marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll) class

This class is used to create your own custom imagery for a linecap. It is also a base class for the AdjustableArrowCap.

You can specify the BaseCap on which the custom cap is based. You should pick the cap most similar to the one you are
about to draw. The BaseInset allows you to move the relative position of the end of the line and the endcap. The
StrokeJoin is used to specify the join-style of the line segments in the cap, and the WidthScale is used to specify how the
cap should be scaled as the line width changes.

The actual shape of the cap is specified at construction time, by specifying two GraphicsPath objects: one to make the
outline (the stroke path) and the other to make the fill (the fill path).

Note that a defect in the current version of the GDI+ rendering engine means that the framework does not correctly
calculate the bounds of a path using a custom endcap, if that endcap has radically different proportions to its BaseCap.

public class CustomLineCap : MarshalByRefObject : ICloneable, IDisposable {
// Public Constructors
 public CustomLineCap(GraphicsPath fillPath, GraphicsPath strokePath);
 public CustomLineCap(GraphicsPath fillPath, GraphicsPath strokePath, LineCap baseCap);
 public CustomLineCap(GraphicsPath fillPath, GraphicsPath strokePath, LineCap baseCap, float baseInset);
// Public Instance Properties
 public LineCap BaseCap{set; get; }
 public float BaseInset{set; get; }
 public LineJoin StrokeJoin{set; get; }
 public float WidthScale{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
 public void GetStrokeCaps(out LineCap startCap, out LineCap endCap);
 public void SetStrokeCaps(LineCap startCap, LineCap endCap);
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject CustomLineCap(System.ICloneabl, System.IDisposable)

Subclasses

AdjustableArrowCap

Returned By

System.Drawing.Pen.{CustomEndCap, CustomStartCap}

Passed To

System.Drawing.Pen.{CustomEndCap, CustomStartCap}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DashCap serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used by the System.Drawing.Pen.DashCap property to specify the cap to use on each end of each
individual dash segment.

public enum DashCap {
 Flat = 0,
 Round = 2,
 Triangle = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DashCap

Returned By

System.Drawing.Pen.DashCap

Passed To

System.Drawing.Pen.{DashCap, SetLineCap()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DashStyle serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration specifies the dash pattern of a line. You can set a dash pattern using the System.Drawing.Pen.DashStyle
property.

public enum DashStyle {
 Solid = 0,
 Dash = 1,
 Dot = 2,
 DashDot = 3,
 DashDotDot = 4,
 Custom = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DashStyle

Returned By

System.Drawing.Pen.DashStyle

Passed To

System.Drawing.Pen.DashStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FillMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used to specify the mode to be used to fill a closed path. It is used by the GraphicsPath and
System.Drawing.Graphics members that fill closed shapes.

public enum FillMode {
 Alternate = 0,
 Winding = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FillMode

Returned By

GraphicsPath.FillMode

Passed To

GraphicsPath.{FillMode, GraphicsPath()}, System.Drawing.Graphics.{DrawClosedCurve(), FillClosedCurve(), FillPolygon()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FlushIntention serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used by the System.Drawing.Graphics.Flush() method to determine whether the system should wait for
rendering to be completed (Sync) or whether the graphics operations should be flushed asynchronously (Flush).

public enum FlushIntention {
 Flush = 0,
 Sync = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FlushIntention

Passed To

System.Drawing.Graphics.Flush()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GraphicsContainer marshal by reference

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class encapsulates the state of a Graphics object. It is returned from System.Drawing.Graphics.BeginContainer() and can
be used to restore the graphics state with System.Drawing.Graphics.EndContainer(). It is an opaque type and offers no
additional methods.

public sealed class GraphicsContainer : MarshalByRefObject {
// No public or protected members
}

Hierarchy

System.Object System.MarshalByRefObject GraphicsContainer

Returned By

System.Drawing.Graphics.BeginContainer()

Passed To

System.Drawing.Graphics.EndContainer()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GraphicsPath marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class implements a complex graphics path that can be used to encapsulate a number of different drawing elements
in a single container. It can be used in conjunction with the System.Drawing.Graphics.DrawPath() and
System.Drawing.Graphics.FillPath() members to render outlines or filled shapes. The FillMode specifies the winding mode for
filled shapes. If the path is an open shape, the system automatically adds a straight line to close the path if it is to be
filled; this does not affect outline drawing.

The path can also be used for hit-testing. The IsOutlineVisible() method will widen the path with the specified pen, and
then return a value indicating whether a particular point is to be found under that path. Note that this is non-
destructive, whereas the Widen() method followed by IsVisible(), while logically similar, will irreversibly flatten the path
first. (See below for information on flattened paths.) In a similar vein, GetBounds() will give you the minimum containing
rectangle for the path.

A path consists of one or more figures. A figure is a connected set of drawing objects. A figure is automatically started
when the path is created, and you can then use the various AddXXX() methods to insert shapes into the path. Those
shapes are not actually inserted as-is, but approximated with a set of straight line or Bezier spline segments.

You then call CloseFigure() if you wish to create a closed shape and start a new figure, or alternatively call StartFigure() to
leave the previous figure open, and start a new one. CloseAllFigures() can subsequently be used to close any remaining
open figures, if required.

To modify the path, you can apply a Transform(), or alternatively, you can Warp() the actual path, as defined by a
rectangle and a parallelogram. This method actually flattens the path into a series of straight line segments and moves
those points. As a result, you cannot undo this operation. (See below for information on flattening paths).

You can retrieve the underlying PathData, which consists of a set of Point and PathPointType objects. Alternatively, you can
retrieve the PathPoints and PathTypes independently. You can also retrieve the PointCount, the number of elements in
those arrays.

One feature that can be particularly useful if you need an efficient means of approximating your complex path for
geometric purposes (such as length or area calculations) is the Flatten() method. This returns a set of points
representing the straight line segments approximating the line. You can specify how accurate this approximation should
be, and the default of 0.25 is sufficient to give you an approximation that is visually difficult to distinguish from the "real
thing." Note that you can apply a transform as part of the flattening process so that the approximation can be made in
page or device coordinates for best accuracy.

public sealed class GraphicsPath : MarshalByRefObject : ICloneable, IDisposable {
// Public Constructors
 public GraphicsPath();
 public GraphicsPath(FillMode fillMode);
 public GraphicsPath(System.Drawing.Point[] pts, byte[] types);
 public GraphicsPath(System.Drawing.Point[] pts, byte[] types, FillMode fillMode);
 public GraphicsPath(System.Drawing.PointF[] pts, byte[] types);
 public GraphicsPath(System.Drawing.PointF[] pts, byte[] types, FillMode fillMode);
// Public Instance Properties
 public FillMode FillMode{set; get; }
 public PathData PathData{get; }
 public PointF[] PathPoints{get; }
 public byte[] PathTypes{get; }
 public int PointCount{get; }
// Public Instance Methods
 public void AddArc(int x, int y, int width, int height, float startAngle, float sweepAngle);
 public void AddArc(System.Drawing.RectangleF rect,
 float startAngle, float sweepAngle);
 public void AddArc(System.Drawing.Rectangle rect,
 float startAngle, float sweepAngle);
 public void AddArc(float x, float y, float width,
 float height, float startAngle, float sweepAngle);
 public void AddBezier(int x1, int y1, int x2, int y2,
 int x3, int y3, int x4, int y4);
 public void AddBezier(System.Drawing.PointF pt1,
 System.Drawing.PointF pt2,
 System.Drawing.PointF pt3,
 System.Drawing.PointF pt4);
 public void AddBezier(System.Drawing.Point pt1,
 System.Drawing.Point pt2, System.Drawing.Point pt3,
 System.Drawing.Point pt4);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.Drawing.Point pt4);
 public void AddBezier(float x1, float y1, float x2,
 float y2, float x3, float y3, float x4, float y4);
 public void AddBeziers(System.Drawing.Point[] points);
 public void AddBeziers(System.Drawing.PointF[] points);
 public void AddClosedCurve(System.Drawing.Point[] points);
 public void AddClosedCurve(System.Drawing.Point[] points, float tension);
 public void AddClosedCurve(System.Drawing.PointF[] points);
 public void AddClosedCurve(System.Drawing.PointF[] points, float tension);
 public void AddCurve(System.Drawing.Point[] points);
 public void AddCurve(System.Drawing.Point[] points, int offset, int numberOfSegments, float tension);
 public void AddCurve(System.Drawing.Point[] points, float tension);
 public void AddCurve(System.Drawing.PointF[] points);
 public void AddCurve(System.Drawing.PointF[] points, int offset, int numberOfSegments, float tension);
 public void AddCurve(System.Drawing.PointF[] points, float tension);
 public void AddEllipse(int x, int y, int width, int height);
 public void AddEllipse(System.Drawing.Rectangle rect);
 public void AddEllipse(System.Drawing.RectangleF rect);
 public void AddEllipse(float x, float y, float width, float height);
 public void AddLine(int x1, int y1, int x2, int y2);
 public void AddLine(System.Drawing.PointF pt1, System.Drawing.PointF pt2);
 public void AddLine(System.Drawing.Point pt1, System.Drawing.Point pt2);
 public void AddLine(float x1, float y1, float x2, float y2);
 public void AddLines(System.Drawing.Point[] points);
 public void AddLines(System.Drawing.PointF[] points);
 public void AddPath(GraphicsPath addingPath, bool connect);
 public void AddPie(int x, int y, int width, int height, float startAngle, float sweepAngle);
 public void AddPie(System.Drawing.Rectangle rect, float startAngle, float sweepAngle);
 public void AddPie(float x, float y, float width, float height, float startAngle, float sweepAngle);
 public void AddPolygon(System.Drawing.Point[] points);
 public void AddPolygon(System.Drawing.PointF[] points);
 public void AddRectangle(System.Drawing.Rectangle rect);
 public void AddRectangle(System.Drawing.RectangleF rect);
 public void AddRectangles(System.Drawing.Rectangle[] rects);
 public void AddRectangles(System.Drawing.RectangleF[] rects);
 public void AddString(string s, System.Drawing.FontFamily family, int style, float emSize,
 System.Drawing.PointF origin, System.Drawing.StringFormat format);
 public void AddString(string s, System.Drawing.FontFamily family, int style, float emSize,
 System.Drawing.Point origin, System.Drawing.StringFormat format);
 public void AddString(string s, System.Drawing.FontFamily family, int style, float emSize,
 System.Drawing.RectangleF layoutRect, System.Drawing.StringFormat format);
 public void AddString(string s, System.Drawing.FontFamily family, int style, float emSize,
 System.Drawing.Rectangle layoutRect, System.Drawing.StringFormat format);
 public void ClearMarkers();
 public object Clone(); // implements ICloneable
 public void CloseAllFigures();
 public void CloseFigure();
 public void Dispose(); // implements IDisposable
 public void Flatten();
 public void Flatten(Matrix matrix);
 public void Flatten(Matrix matrix, float flatness);
 public RectangleF GetBounds();
 public RectangleF GetBounds(Matrix matrix);
 public RectangleF GetBounds(Matrix matrix, System.Drawing.Pen pen);
 public PointF GetLastPoint();
 public bool IsOutlineVisible(int x, int y, System.Drawing.Pen pen);
 public bool IsOutlineVisible(int x, int y, System.Drawing.Pen pen, System.Drawing.Graphics graphics);
 public bool IsOutlineVisible(System.Drawing.PointF point, System.Drawing.Pen pen);
 public bool IsOutlineVisible(System.Drawing.PointF pt, System.Drawing.Pen pen, System.Drawing.Graphics graphics);
 public bool IsOutlineVisible(System.Drawing.Point point, System.Drawing.Pen pen);
 public bool IsOutlineVisible(System.Drawing.Point pt, System.Drawing.Pen pen, System.Drawing.Graphics graphics);
 public bool IsOutlineVisible(float x, float y, System.Drawing.Pen pen);
 public bool IsOutlineVisible(float x, float y, System.Drawing.Pen pen, System.Drawing.Graphics graphics);
 public bool IsVisible(int x, int y);
 public bool IsVisible(int x, int y, System.Drawing.Graphics graphics);
 public bool IsVisible(System.Drawing.Point point);
 public bool IsVisible(System.Drawing.PointF point);
 public bool IsVisible(System.Drawing.PointF pt, System.Drawing.Graphics graphics);
 public bool IsVisible(System.Drawing.Point pt, System.Drawing.Graphics graphics);
 public bool IsVisible(float x, float y);
 public bool IsVisible(float x, float y, System.Drawing.Graphics graphics);
 public void Reset();
 public void Reverse();
 public void SetMarkers();
 public void StartFigure();
 public void Transform(Matrix matrix);
 public void Warp(System.Drawing.PointF[] destPoints, System.Drawing.RectangleF srcRect);
 public void Warp(System.Drawing.PointF[] destPoints, System.Drawing.RectangleF srcRect, Matrix matrix);
 public void Warp(System.Drawing.PointF[] destPoints, System.Drawing.RectangleF srcRect, Matrix matrix,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void Warp(System.Drawing.PointF[] destPoints, System.Drawing.RectangleF srcRect, Matrix matrix,
 WarpMode warpMode);
 public void Warp(System.Drawing.PointF[] destPoints, System.Drawing.RectangleF srcRect, Matrix matrix,
 WarpMode warpMode, float flatness);
 public void Widen(System.Drawing.Pen pen);
 public void Widen(System.Drawing.Pen pen, Matrix matrix);
 public void Widen(System.Drawing.Pen pen, Matrix matrix, float flatness);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject GraphicsPath(System.ICloneabl, System.IDisposable)

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GraphicsPathIterator marshal by reference,
disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class is used to iterate the subpaths in a GraphicsPath object.

It can be constructed from a GraphicsPath object, and you can then step through the markers, subpaths, or connected
line segments of the same type using the NextMarker(), NextSubpath(), and NextPathType() methods.

The Enumerate() function copies the path data into the specified arrays, and the CopyData() method allows you to copy
just the path segments in a particular range (as retrieved from the enumeration methods mentioned above).

public sealed class GraphicsPathIterator : MarshalByRefObject : IDisposable {
// Public Constructors
 public GraphicsPathIterator(GraphicsPath path);
// Public Instance Properties
 public int Count{get; }
 public int SubpathCount{get; }
// Public Instance Methods
 public int CopyData(ref System.Drawing.PointF[] points, ref byte[] types, int startIndex, int endIndex);
 public void Dispose(); // implements IDisposable
 public int Enumerate(ref System.Drawing.PointF[] points, ref byte[] types);
 public bool HasCurve();
 public int NextMarker(GraphicsPath path);
 public int NextMarker(out int startIndex, out int endIndex);
 public int NextPathType(out byte pathType, out int startIndex, out int endIndex);
 public int NextSubpath(GraphicsPath path, out bool isClosed);
 public int NextSubpath(out int startIndex, out int endIndex, out bool isClosed);
 public void Rewind();
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject GraphicsPathIterator(System.IDisposable)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GraphicsState marshal by reference

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This opaque type represents the state of a System.Drawing.Graphics object as saved using the Graphics.Save() method. You
can restore the state using the Graphics.Restore() method. Compare this with the GraphicsContainer class, which offers
equivalent functionality.

public sealed class GraphicsState : MarshalByRefObject {
// No public or protected members
}

Hierarchy

System.Object System.MarshalByRefObject GraphicsState

Returned By

System.Drawing.Graphics.Save()

Passed To

System.Drawing.Graphics.Restore()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HatchBrush marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This defines a brush that can be used to fill shapes with a specific HatchStyle. You can also specify the BackgroundColor
and ForegroundColor for the hatch.

public sealed class HatchBrush : System.Drawing.Brush {
// Public Constructors
 public HatchBrush(HatchStyle hatchstyle, System.Drawing.Color foreColor);
 public HatchBrush(HatchStyle hatchstyle, System.Drawing.Color foreColor, System.Drawing.Color backColor);
// Public Instance Properties
 public Color BackgroundColor{get; }
 public Color ForegroundColor{get; }
 public HatchStyle HatchStyle{get; }
// Public Instance Methods
 public override object Clone(); // overrides System.Drawing.Brush
}

Hierarchy

System.Object System.MarshalByRefObject System.Drawing.Brush(System.ICloneabl, System.IDisposable)
HatchBrush

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HatchStyle serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration specifies the various different types of hatch grid that can be used with a HatchBrush.

public enum HatchStyle {
 Horizontal = 0,
 Min = 0,
 Vertical = 1,
 ForwardDiagonal = 2,
 BackwardDiagonal = 3,
 Cross = 4,
 LargeGrid = 4,
 Max = 4,
 DiagonalCross = 5,
 Percent05 = 6,
 Percent10 = 7,
 Percent20 = 8,
 Percent25 = 9,
 Percent30 = 10,
 Percent40 = 11,
 Percent50 = 12,
 Percent60 = 13,
 Percent70 = 14,
 Percent75 = 15,
 Percent80 = 16,
 Percent90 = 17,
 LightDownwardDiagonal = 18,
 LightUpwardDiagonal = 19,
 DarkDownwardDiagonal = 20,
 DarkUpwardDiagonal = 21,
 WideDownwardDiagonal = 22,
 WideUpwardDiagonal = 23,
 LightVertical = 24,
 LightHorizontal = 25,
 NarrowVertical = 26,
 NarrowHorizontal = 27,
 DarkVertical = 28,
 DarkHorizontal = 29,
 DashedDownwardDiagonal = 30,
 DashedUpwardDiagonal = 31,
 DashedHorizontal = 32,
 DashedVertical = 33,
 SmallConfetti = 34,
 LargeConfetti = 35,
 ZigZag = 36,
 Wave = 37,
 DiagonalBrick = 38,
 HorizontalBrick = 39,
 Weave = 40,
 Plaid = 41,
 Divot = 42,
 DottedGrid = 43,
 DottedDiamond = 44,
 Shingle = 45,
 Trellis = 46,
 Sphere = 47,
 SmallGrid = 48,
 SmallCheckerBoard = 49,
 LargeCheckerBoard = 50,
 OutlinedDiamond = 51,
 SolidDiamond = 52
}

Hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
HatchStyle

Returned By

HatchBrush.HatchStyle

Passed To

HatchBrush.HatchBrush()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InterpolationMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used by System.Drawing.Graphics.InterpolationMode to determine how pixel colors are merged when
scaling images. The higher the quality of the interpolation, the slower the rendering will be.

public enum InterpolationMode {
 Default = 0,
 Low = 1,
 High = 2,
 Bilinear = 3,
 Bicubic = 4,
 NearestNeighbor = 5,
 HighQualityBilinear = 6,
 HighQualityBicubic = 7,
 Invalid = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
InterpolationMode

Returned By

System.Drawing.Graphics.InterpolationMode

Passed To

System.Drawing.Graphics.InterpolationMode
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinearGradientBrush marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This brush class can be used to draw both two color and multicolor gradient fills.

For a two-color gradient, you set the LinearColors and the Blend properties. For a multicolor gradient, you instead set a
ColorBlend object into the InterpolationColors member. In either case, you can enable GammaCorrection when rendering the
gradient.

You can specify the logical Rectangle that defines the gradient, either in the constructor or, thereafter, through the
Rectangle property. If the fill extends beyond this rectangle, the WrapMode determines how the areas outside the
rectangle will be filled. When constructing the brush, but not thereafter, you can specify the LinearGradientMode or,
alternatively, the angle (in degrees) at which the gradient should run across that rectangle.

You can also apply a Transform to the brush. There are the usual helper utilities MultiplyTransform(), ResetTransform(),
RotateTransform(), TranslateTransform(), and ScaleTransform() to save you the trouble of the get/modify/set required to
modify the Transform itself.

There are two other helper utilities: SetBlendTriangularShape() and SetSigmaBellShape() set up two common gradient shapes
for you.

For non-rectangular fills, see PathGradientBrush.

public sealed class LinearGradientBrush : System.Drawing.Brush {
// Public Constructors
 public LinearGradientBrush(System.Drawing.PointF point1, System.Drawing.PointF point2,
 System.Drawing.Color color1, System.Drawing.Color color2);
 public LinearGradientBrush(System.Drawing.Point point1, System.Drawing.Point point2,
 System.Drawing.Color color1, System.Drawing.Color color2);
 public LinearGradientBrush(System.Drawing.Rectangle rect, System.Drawing.Color color1,
 System.Drawing.Color color2, LinearGradientMode linearGradientMode);
 public LinearGradientBrush(System.Drawing.Rectangle rect, System.Drawing.Color color1,
 System.Drawing.Color color2, float angle);
 public LinearGradientBrush(System.Drawing.Rectangle rect, System.Drawing.Color color1,
 System.Drawing.Color color2, float angle, bool isAngleScaleable);
 public LinearGradientBrush(System.Drawing.RectangleF rect, System.Drawing.Color color1,
 System.Drawing.Color color2, LinearGradientMode linearGradientMode);
 public LinearGradientBrush(System.Drawing.RectangleF rect, System.Drawing.Color color1,
 System.Drawing.Color color2, float angle);
 public LinearGradientBrush(System.Drawing.RectangleF rect, System.Drawing.Color color1,
 System.Drawing.Color color2, float angle, bool isAngleScaleable);
// Public Instance Properties
 public Blend Blend{set; get; }
 public bool GammaCorrection{set; get; }
 public ColorBlend InterpolationColors{set; get; }
 public Color[] LinearColors{set; get; }
 public RectangleF Rectangle{get; }
 public Matrix Transform{set; get; }
 public WrapMode WrapMode{set; get; }
// Public Instance Methods
 public override object Clone(); // overrides System.Drawing.Brush
 public void MultiplyTransform(Matrix matrix);
 public void MultiplyTransform(Matrix matrix, MatrixOrder order);
 public void ResetTransform();
 public void RotateTransform(float angle);
 public void RotateTransform(float angle, MatrixOrder order);
 public void ScaleTransform(float sx, float sy);
 public void ScaleTransform(float sx, float sy, MatrixOrder order);
 public void SetBlendTriangularShape(float focus);
 public void SetBlendTriangularShape(float focus, float scale);
 public void SetSigmaBellShape(float focus);
 public void SetSigmaBellShape(float focus, float scale);
 public void TranslateTransform(float dx, float dy);
 public void TranslateTransform(float dx, float dy, MatrixOrder order);
}

Hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.MarshalByRefObject System.Drawing.Brush(System.ICloneabl, System.IDisposable)
LinearGradientBrush
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinearGradientMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration lists the predefined angles that can be applied to a LinearGradientBrush.

public enum LinearGradientMode {
 Horizontal = 0,
 Vertical = 1,
 ForwardDiagonal = 2,
 BackwardDiagonal = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LinearGradientMode

Passed To

LinearGradientBrush.LinearGradientBrush()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LineCap serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration lists the various kinds of linecap that be applied to the line drawn by a System.Drawing.Pen.

They come into two categories: the caps, which provide endcaps the same width as the line, and the anchors, which
provide marker shapes at the end of the line. If you wish to use a CustomLineCap, you need to specify the Custom value
here.

public enum LineCap {
 Flat = 0,
 Square = 1,
 Round = 2,
 Triangle = 3,
 NoAnchor = 16,
 SquareAnchor = 17,
 RoundAnchor = 18,
 DiamondAnchor = 19,
 ArrowAnchor = 20,
 AnchorMask = 240,
 Custom = 255
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LineCap

Returned By

CustomLineCap.BaseCap, System.Drawing.Pen.{EndCap, StartCap}

Passed To

CustomLineCap.{BaseCap, CustomLineCap(), GetStrokeCaps(), SetStrokeCaps()}, System.Drawing.Pen.{EndCap, SetLineCap(),
StartCap}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LineJoin serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

Where two line segments join, you can specify the join style using this enumeration. It is used by the
System.Drawing.Pen.LineJoin property.

public enum LineJoin {
 Miter = 0,
 Bevel = 1,
 Round = 2,
 MiterClipped = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LineJoin

Returned By

CustomLineCap.StrokeJoin, System.Drawing.Pen.LineJoin

Passed To

CustomLineCap.StrokeJoin, System.Drawing.Pen.LineJoin
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Matrix marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class encapsulates a 3x3 transformation matrix for use with most of the graphics elements in the System.Drawing
and nested namespaces.

You can get an array of the Elements in the array (ordered {1,1},{1,2},{2,1},{2,2},{3,1},{3,2}). {1,3}, {2,3}, {3,3}
are wired to {0,0,1} and hence do not appear in the array. {3,1} and {3,2} apply a translation and can be retrieved
independently through the OffsetX and OffsetY properties. You can also determine if the matrix IsInvertible (you invert it
with the aptly named Invert() method). If the matrix is the identity matrix {1,0,0},{0,1,0},{0,0,1}, IsIdentity will be
true.

There are then a host of methods that allow you to transform the matrix. You can Rotate(), Translate(), Scale(), and
Shear() the object. You can also Reset() the matrix back to the identity or Multiply() by another matrix. Each method can
be performed either prepending or appending the transform: matrix arithmetic is not commutative.

In addition to being able to apply the matrix to a variety of different graphics structures, you can use the
TransformPoints() and TransformVectors() methods to transform a set of points. The latter does not apply the offset with
the transform.

public sealed class Matrix : MarshalByRefObject : IDisposable {
// Public Constructors
 public Matrix();
 public Matrix(System.Drawing.RectangleF rect, System.Drawing.PointF[] plgpts);
 public Matrix(System.Drawing.Rectangle rect, System.Drawing.Point[] plgpts);
 public Matrix(float m11, float m12, float m21, float m22, float dx, float dy);
// Public Instance Properties
 public float[] Elements{get; }
 public bool IsIdentity{get; }
 public bool IsInvertible{get; }
 public float OffsetX{get; }
 public float OffsetY{get; }
// Public Instance Methods
 public Matrix Clone();
 public void Dispose(); // implements IDisposable
 public override bool Equals(object obj); // overrides object
 public override int GetHashCode(); // overrides object
 public void Invert();
 public void Multiply(Matrix matrix);
 public void Multiply(Matrix matrix, MatrixOrder order);
 public void Reset();
 public void Rotate(float angle);
 public void Rotate(float angle, MatrixOrder order);
 public void RotateAt(float angle, System.Drawing.PointF point);
 public void RotateAt(float angle, System.Drawing.PointF point, MatrixOrder order);
 public void Scale(float scaleX, float scaleY);
 public void Scale(float scaleX, float scaleY, MatrixOrder order);
 public void Shear(float shearX, float shearY);
 public void Shear(float shearX, float shearY, MatrixOrder order);
 public void TransformPoints(System.Drawing.Point[] pts);
 public void TransformPoints(System.Drawing.PointF[] pts);
 public void TransformVectors(System.Drawing.Point[] pts);
 public void TransformVectors(System.Drawing.PointF[] pts);
 public void Translate(float offsetX, float offsetY);
 public void Translate(float offsetX, float offsetY, MatrixOrder order);
 public void VectorTransformPoints(System.Drawing.Point[] pts);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject Matrix(System.IDisposable)

Returned By

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returned By

LinearGradientBrush.Transform, PathGradientBrush.Transform, System.Drawing.Graphics.Transform, System.Drawing.Pen.Transform,
System.Drawing.TextureBrush.Transform

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MatrixOrder serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used by the various classes and methods that apply a transform to a matrix or graphics object to
determine whether the matrix is pre- or post-multiplied. (Remember: matrixes are non-commutative, so the
multiplication order is important).

public enum MatrixOrder {
 Prepend = 0,
 Append = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MatrixOrder

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PathData

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class encapsulates the Points and Types (PathPointType values) that define a GraphicsPath.

public sealed class PathData {
// Public Constructors
 public PathData();
// Public Instance Properties
 public PointF[] Points{set; get; }
 public byte[] Types{set; get; }
}

Returned By

GraphicsPath.PathData
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PathGradientBrush marshal by reference, disposable

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class defines a gradient brush that shades from one color at the center of a GraphicsPath to another at each edge of
the path. The CenterPoint can be set arbitrarily.

You can define a basic fade by setting the CenterColor, populating the SurroundColors array with one Color value for each of
the points defining the path, and setting the Blend object.

Alternatively, you can go for a more complex fade, by setting a ColorBlend object into the InterpolationColors property.

You can also set the bounding Rectangle for the path, and the WrapMode defining how points outside that rectangle
should be filled.

The path itself is set in the constructor of the object and cannot be modified subsequently, but you can apply a
Transform with the usual array of helper methods, such as RotateTransform() and MultiplyTransform().

public sealed class PathGradientBrush : System.Drawing.Brush {
// Public Constructors
 public PathGradientBrush(GraphicsPath path);
 public PathGradientBrush(System.Drawing.Point[] points);
 public PathGradientBrush(System.Drawing.Point[] points, WrapMode wrapMode);
 public PathGradientBrush(System.Drawing.PointF[] points);
 public PathGradientBrush(System.Drawing.PointF[] points, WrapMode wrapMode);
// Public Instance Properties
 public Blend Blend{set; get; }
 public Color CenterColor{set; get; }
 public PointF CenterPoint{set; get; }
 public PointF FocusScales{set; get; }
 public ColorBlend InterpolationColors{set; get; }
 public RectangleF Rectangle{get; }
 public Color[] SurroundColors{set; get; }
 public Matrix Transform{set; get; }
 public WrapMode WrapMode{set; get; }
// Public Instance Methods
 public override object Clone(); // overrides System.Drawing.Brush
 public void MultiplyTransform(Matrix matrix);
 public void MultiplyTransform(Matrix matrix, MatrixOrder order);
 public void ResetTransform();
 public void RotateTransform(float angle);
 public void RotateTransform(float angle, MatrixOrder order);
 public void ScaleTransform(float sx, float sy);
 public void ScaleTransform(float sx, float sy, MatrixOrder order);
 public void SetBlendTriangularShape(float focus);
 public void SetBlendTriangularShape(float focus, float scale);
 public void SetSigmaBellShape(float focus);
 public void SetSigmaBellShape(float focus, float scale);
 public void TranslateTransform(float dx, float dy);
 public void TranslateTransform(float dx, float dy, MatrixOrder order);
}

Hierarchy

System.Object System.MarshalByRefObject System.Drawing.Brush(System.ICloneabl, System.IDisposable)
PathGradientBrush
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PathPointType serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used to specify the type of a point in a GraphicsPath. You can OR the line types with the DashMode
and CloseSubpath values to close the figure, or to apply a dash style to the line.

public enum PathPointType {
 Start = 0,
 Line = 1,
 Bezier = 3,
 Bezier3 = 3,
 PathTypeMask = 7,
 DashMode = 16,
 PathMarker = 32,
 CloseSubpath = 128
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PathPointType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PenAlignment serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used to specify how a System.Drawing.Pen (which has certain width) is to be painted over the
theoretical line of width 0 that defines a path. In v1.0 of GDI+, only the Center option appears to work correctly.

public enum PenAlignment {
 Center = 0,
 Inset = 1,
 Outset = 2,
 Left = 3,
 Right = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PenAlignment

Returned By

System.Drawing.Pen.Alignment

Passed To

System.Drawing.Pen.Alignment
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PenType serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

A System.Drawing.Pen can have a System.Drawing.Brush assigned to fill the stroke (as opposed to fill the shape). The type
of brush that has been assigned can be determined via the System.Drawing.Pen.PenType property. The value returned is
chosen from this enumeration.

public enum PenType {
 SolidColor = 0,
 HatchFill = 1,
 TextureFill = 2,
 PathGradient = 3,
 LinearGradient = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PenType

Returned By

System.Drawing.Pen.PenType

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PixelOffsetMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used to define the options for the System.Drawing.Graphics.PixelOffsetMode property. This is another
parameter that affects rendering quality at the expense of rendering speed.

public enum PixelOffsetMode {
 Default = 0,
 HighSpeed = 1,
 HighQuality = 2,
 None = 3,
 Half = 4,
 Invalid = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PixelOffsetMode

Returned By

System.Drawing.Graphics.PixelOffsetMode

Passed To

System.Drawing.Graphics.PixelOffsetMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QualityMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is not actually used in the framework but represents the basic rendering quality options available. You
can see its equivalent in the InterpolationMode and TextRenderingHint enumerations.

public enum QualityMode {
 Default = 0,
 Low = 1,
 High = 2,
 Invalid = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
QualityMode
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegionData

System.Drawing.Drawing2D
(system.drawing.dll)

sealed
class

This class encapsulates the data that makes up a System.Drawing.Region object. You can get at the byte array that
defines the region through the Data property.

You could use this data to serialize a Region, for example.

public sealed class RegionData {
// Public Instance Properties
 public byte[] Data{set; get; }
}

Returned By

System.Drawing.Region.GetRegionData()

Passed To

System.Drawing.Region.Region()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SmoothingMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration determines the antialiasing mode used when rendering graphics objects. As with all the rendering
hints, this is a trade-off between rendering quality and rendering time.

public enum SmoothingMode {
 Default = 0,
 HighSpeed = 1,
 HighQuality = 2,
 None = 3,
 AntiAlias = 4,
 Invalid = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
SmoothingMode

Returned By

System.Drawing.Graphics.SmoothingMode

Passed To

System.Drawing.Graphics.SmoothingMode
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WarpMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

When using the GraphicsPath.Warp() method, this enumeration defines how the warp is applied. A bilinear warp preserves
horizontal and vertical lines and distorts other lines into curves, whereas a perspective warp preserves straight lines but
foreshortens the image, distorting parallel lines.

public enum WarpMode {
 Perspective = 0,
 Bilinear = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
WarpMode

Passed To

GraphicsPath.Warp()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WrapMode serializable

System.Drawing.Drawing2D
(system.drawing.dll) enum

This enumeration is used by the various gradient brushes to determine how the pixels outside a brush's Rectangle are to
be filled.

public enum WrapMode {
 Tile = 0,
 TileFlipX = 1,
 TileFlipY = 2,
 TileFlipXY = 3,
 Clamp = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
WrapMode

Returned By

LinearGradientBrush.WrapMode, PathGradientBrush.WrapMode, System.Drawing.TextureBrush.WrapMode

Passed To

LinearGradientBrush.WrapMode, PathGradientBrush.{PathGradientBrush(), WrapMode},
System.Drawing.Imaging.ImageAttributes.SetWrapMode(), System.Drawing.TextureBrush.{TextureBrush(), WrapMode}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. The System.Drawing.Imaging
Namespace
This namespace contains a variety of classes and enumerations that are used in imaging applications (as opposed to the
vector drawing facilities found in System.Drawing.Drawing2D). Figure 16-1 shows the types in this namespace.

Figure 16-1. Types from the System.Drawing.Imaging namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BitmapData

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class encapsulates the raw data of a System.Drawing.Bitmap. It is returned by LockBits(), and the Bitmap.UnlockBits()
method releases the data.

You can retrieve the Width, Height, PixelFormat, and Stride (the number of bytes per line including padding, as opposed to
the number of pixels). The sign of the Stride can also be used to determine whether this is a top-down or bottom-up
bitmap.

The pixel data itself can be retrieved through the Scan0 member, which returns an IntPtr to the start of the image. This
can be handed off to either managed or (more commonly) unmanaged image processing code.

public sealed class BitmapData {
// Public Constructors
 public BitmapData();
// Public Instance Properties
 public int Height{set; get; }
 public PixelFormat PixelFormat{set; get; }
 public int Reserved{set; get; }
 public IntPtr Scan0{set; get; }
 public int Stride{set; get; }
 public int Width{set; get; }
}

Returned By

System.Drawing.Bitmap.LockBits()

Passed To

System.Drawing.Bitmap.UnlockBits()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorAdjustType serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration is used by various methods in the ImageAttributes class to determine which types of GDI+ object will
be affected by the color transform it defines.

public enum ColorAdjustType {
 Default = 0,
 Bitmap = 1,
 Brush = 2,
 Pen = 3,
 Text = 4,
 Count = 5,
 Any = 6
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ColorAdjustType

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorChannelFlag serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration is used by the ImageAttributes.SetOutputChannel() to determine which of the CMYK channels should be
output when the image is drawn. This can be used for color-space conversion.

public enum ColorChannelFlag {
 ColorChannelC = 0,
 ColorChannelM = 1,
 ColorChannelY = 2,
 ColorChannelK = 3,
 ColorChannelLast = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.Formattable, System.IConvertible)
ColorChannelFlag

Passed To

ImageAttributes.SetOutputChannel()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorMap

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class defines a mapping of one color to another: the NewColor and the OldColor. Several of the ImageAttributes
methods (such as ImageAttributes.SetRemapTable()) use an array of these objects to define a color mapping table.

public sealed class ColorMap {
// Public Constructors
 public ColorMap();
// Public Instance Properties
 public Color NewColor{set; get; }
 public Color OldColor{set; get; }
}

Passed To

ImageAttributes.{SetBrushRemapTable(), SetRemapTable()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorMapType serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration distinguishes between a Brush and the Default types of color map. It is not used in the public interface
of the framework. The ColorAdjustType enumeration is used where you might expect this to be needed.

public enum ColorMapType {
 Default = 0,
 Brush = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ColorMapType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorMatrix

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

A color matrix (also commonly called a "color twist matrix") is used to transform one color into another, by considering
the color definition to be a 3D vector into a color cube. Only because we now have an alpha channel, it is actually a 4D
vector into a color hypercube!

It is a 5x5 matrix and is used to transform an {R,G,B,A,1} color. Note that the color vector is considered to be "wide"
rather than "tall" (compare this to the System.Drawing.Drawing2D.Matrix class and a Point, which is considered to be tall,
rather than wide).

You can retrieve any Item from the matrix (this is the indexer property), or you can use one of the 25 properties
prefixed with "Matrix" to get or set the values.

The matrix is applied with the ImageAttributes.SetColorMatrix() method.

public sealed class ColorMatrix {
// Public Constructors
 public ColorMatrix();
 public ColorMatrix(float[][] newColorMatrix);
// Public Instance Properties
 public float Matrix00{set; get; }
 public float Matrix01{set; get; }
 public float Matrix02{set; get; }
 public float Matrix03{set; get; }
 public float Matrix04{set; get; }
 public float Matrix10{set; get; }
 public float Matrix11{set; get; }
 public float Matrix12{set; get; }
 public float Matrix13{set; get; }
 public float Matrix14{set; get; }
 public float Matrix20{set; get; }
 public float Matrix21{set; get; }
 public float Matrix22{set; get; }
 public float Matrix23{set; get; }
 public float Matrix24{set; get; }
 public float Matrix30{set; get; }
 public float Matrix31{set; get; }
 public float Matrix32{set; get; }
 public float Matrix33{set; get; }
 public float Matrix34{set; get; }
 public float Matrix40{set; get; }
 public float Matrix41{set; get; }
 public float Matrix42{set; get; }
 public float Matrix43{set; get; }
 public float Matrix44{set; get; }
 public float this{set; get; }
}

Passed To

ImageAttributes.{SetColorMatrices(), SetColorMatrix()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorMatrixFlag serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration is used to specify how a ColorMatrix should be applied to a GDI+ object. You can use the Default mode,
or SkipGrays will ensure that gray values (those with identical red, green, and blue components) will not be affected.

public enum ColorMatrixFlag {
 Default = 0,
 SkipGrays = 1,
 AltGrays = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ColorMatrixFlag

Passed To

ImageAttributes.{SetColorMatrices(), SetColorMatrix()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorMode serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration is used to specify whether color components are 32-bit or 64-bit values. It is not used in the public
interface of the framework.

public enum ColorMode {
 Argb32Mode = 0,
 Argb64Mode = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ColorMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorPalette

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class encapsulates an array of related colors that make up a color palette.

You can retrieve an array of the Entries in the palette (each is a System.Drawing.Color value).

You can also get a Flags integer that rather unpleasantly depends on the magic cookies 0x01 to indicate that the colors
contain alpha information, 0x02 to indicate that the colors represent grayscales, and 0x04 to indicate that the array
contains halftone values. Those values are listed in the PaletteFlags enumeration, but you have to cast them to an
integer before they can be used.

public sealed class ColorPalette {
// Public Instance Properties
 public Color[] Entries{get; }
 public int Flags{get; }
}

Returned By

System.Drawing.Image.Palette

Passed To

System.Drawing.Image.Palette, ImageAttributes.GetAdjustedPalette()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EmfPlusRecordType serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists the types of record that can be defined in a GDI+-format enhanced metafile (EMF). Note that
GDI+ extends the standard EMF format with several new record types. You can play records from a metafile using the
Metafile.PlayRecord() method.

public enum EmfPlusRecordType {
 EmfMin = 1,
 EmfHeader = 1,
 EmfPolyBezier = 2,
 EmfPolygon = 3,
 EmfPolyline = 4,
 EmfPolyBezierTo = 5,
 EmfPolyLineTo = 6,
 EmfPolyPolyline = 7,
 EmfPolyPolygon = 8,
 EmfSetWindowExtEx = 9,
 EmfSetWindowOrgEx = 10,
 EmfSetViewportExtEx = 11,
 EmfSetViewportOrgEx = 12,
 EmfSetBrushOrgEx = 13,
 EmfEof = 14,
 EmfSetPixelV = 15,
 EmfSetMapperFlags = 16,
 EmfSetMapMode = 17,
 EmfSetBkMode = 18,
 EmfSetPolyFillMode = 19,
 EmfSetROP2 = 20,
 EmfSetStretchBltMode = 21,
 EmfSetTextAlign = 22,
 EmfSetColorAdjustment = 23,
 EmfSetTextColor = 24,
 EmfSetBkColor = 25,
 EmfOffsetClipRgn = 26,
 EmfMoveToEx = 27,
 EmfSetMetaRgn = 28,
 EmfExcludeClipRect = 29,
 EmfIntersectClipRect = 30,
 EmfScaleViewportExtEx = 31,
 EmfScaleWindowExtEx = 32,
 EmfSaveDC = 33,
 EmfRestoreDC = 34,
 EmfSetWorldTransform = 35,
 EmfModifyWorldTransform = 36,
 EmfSelectObject = 37,
 EmfCreatePen = 38,
 EmfCreateBrushIndirect = 39,
 EmfDeleteObject = 40,
 EmfAngleArc = 41,
 EmfEllipse = 42,
 EmfRectangle = 43,
 EmfRoundRect = 44,
 EmfRoundArc = 45,
 EmfChord = 46,
 EmfPie = 47,
 EmfSelectPalette = 48,
 EmfCreatePalette = 49,
 EmfSetPaletteEntries = 50,
 EmfResizePalette = 51,
 EmfRealizePalette = 52,
 EmfExtFloodFill = 53,
 EmfLineTo = 54,
 EmfArcTo = 55,
 EmfPolyDraw = 56,
 EmfSetArcDirection = 57,
 EmfSetMiterLimit = 58,
 EmfBeginPath = 59,
 EmfEndPath = 60,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 EmfEndPath = 60,
 EmfCloseFigure = 61,
 EmfFillPath = 62,
 EmfStrokeAndFillPath = 63,
 EmfStrokePath = 64,
 EmfFlattenPath = 65,
 EmfWidenPath = 66,
 EmfSelectClipPath = 67,
 EmfAbortPath = 68,
 EmfReserved069 = 69,
 EmfGdiComment = 70,
 EmfFillRgn = 71,
 EmfFrameRgn = 72,
 EmfInvertRgn = 73,
 EmfPaintRgn = 74,
 EmfExtSelectClipRgn = 75,
 EmfBitBlt = 76,
 EmfStretchBlt = 77,
 EmfMaskBlt = 78,
 EmfPlgBlt = 79,
 EmfSetDIBitsToDevice = 80,
 EmfStretchDIBits = 81,
 EmfExtCreateFontIndirect = 82,
 EmfExtTextOutA = 83,
 EmfExtTextOutW = 84,
 EmfPolyBezier16 = 85,
 EmfPolygon16 = 86,
 EmfPolyline16 = 87,
 EmfPolyBezierTo16 = 88,
 EmfPolylineTo16 = 89,
 EmfPolyPolyline16 = 90,
 EmfPolyPolygon16 = 91,
 EmfPolyDraw16 = 92,
 EmfCreateMonoBrush = 93,
 EmfCreateDibPatternBrushPt = 94,
 EmfExtCreatePen = 95,
 EmfPolyTextOutA = 96,
 EmfPolyTextOutW = 97,
 EmfSetIcmMode = 98,
 EmfCreateColorSpace = 99,
 EmfSetColorSpace = 100,
 EmfDeleteColorSpace = 101,
 EmfGlsRecord = 102,
 EmfGlsBoundedRecord = 103,
 EmfPixelFormat = 104,
 EmfDrawEscape = 105,
 EmfExtEscape = 106,
 EmfStartDoc = 107,
 EmfSmallTextOut = 108,
 EmfForceUfiMapping = 109,
 EmfNamedEscpae = 110,
 EmfColorCorrectPalette = 111,
 EmfSetIcmProfileA = 112,
 EmfSetIcmProfileW = 113,
 EmfAlphaBlend = 114,
 EmfSetLayout = 115,
 EmfTransparentBlt = 116,
 EmfReserved117 = 117,
 EmfGradientFill = 118,
 EmfSetLinkedUfis = 119,
 EmfSetTextJustification = 120,
 EmfColorMatchToTargetW = 121,
 EmfCreateColorSpaceW = 122,
 EmfMax = 122,
 Invalid = 16384,
 EmfPlusRecordBase = 16384,
 Header = 16385,
 Min = 16385,
 EndOfFile = 16386,
 Comment = 16387,
 GetDC = 16388,
 MultiFormatStart = 16389,
 MultiFormatSection = 16390,
 MultiFormatEnd = 16391,
 Object = 16392,
 Clear = 16393,
 FillRects = 16394,
 DrawRects = 16395,
 FillPolygon = 16396,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FillPolygon = 16396,
 DrawLines = 16397,
 FillEllipse = 16398,
 DrawEllipse = 16399,
 FillPie = 16400,
 DrawPie = 16401,
 DrawArc = 16402,
 FillRegion = 16403,
 FillPath = 16404,
 DrawPath = 16405,
 FillClosedCurve = 16406,
 DrawClosedCurve = 16407,
 DrawCurve = 16408,
 DrawBeziers = 16409,
 DrawImage = 16410,
 DrawImagePoints = 16411,
 DrawString = 16412,
 SetRenderingOrigin = 16413,
 SetAntiAliasMode = 16414,
 SetTextRenderingHint = 16415,
 SetTextContrast = 16416,
 SetInterpolationMode = 16417,
 SetPixelOffsetMode = 16418,
 SetCompositingMode = 16419,
 SetCompositingQuality = 16420,
 Save = 16421,
 Restore = 16422,
 BeginContainer = 16423,
 BeginContainerNoParams = 16424,
 EndContainer = 16425,
 SetWorldTransform = 16426,
 ResetWorldTransform = 16427,
 MultiplyWorldTransform = 16428,
 TranslateWorldTransform = 16429,
 ScaleWorldTransform = 16430,
 RotateWorldTransform = 16431,
 SetPageTransform = 16432,
 ResetClip = 16433,
 SetClipRect = 16434,
 SetClipPath = 16435,
 SetClipRegion = 16436,
 OffsetClip = 16437,
 Max = 16438,
 DrawDriverString = 16438,
 Total = 16439,
 WmfRecordBase = 65536,
 WmfSaveDC = 65566,
 WmfRealizePalette = 65589,
 WmfSetPalEntries = 65591,
 WmfCreatePalette = 65783,
 WmfSetBkMode = 65794,
 WmfSetMapMode = 65795,
 WmfSetROP2 = 65796,
 WmfSetRelAbs = 65797,
 WmfSetPolyFillMode = 65798,
 WmfSetStretchBltMode = 65799,
 WmfSetTextCharExtra = 65800,
 WmfRestoreDC = 65831,
 WmfInvertRegion = 65834,
 WmfPaintRegion = 65835,
 WmfSelectClipRegion = 65836,
 WmfSelectObject = 65837,
 WmfSetTextAlign = 65838,
 WmfResizePalette = 65849,
 WmfDibCreatePatternBrush = 65858,
 WmfSetLayout = 65865,
 WmfDeleteObject = 66032,
 WmfCreatePatternBrush = 66041,
 WmfSetBkColor = 66049,
 WmfSetTextColor = 66057,
 WmfSetTextJustification = 66058,
 WmfSetWindowOrg = 66059,
 WmfSetWindowExt = 66060,
 WmfSetViewportOrg = 66061,
 WmfSetViewportExt = 66062,
 WmfOffsetWindowOrg = 66063,
 WmfOffsetViewportOrg = 66065,
 WmfLineTo = 66067,
 WmfMoveTo = 66068,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WmfMoveTo = 66068,
 WmfOffsetCilpRgn = 66080,
 WmfFillRegion = 66088,
 WmfSetMapperFlags = 66097,
 WmfSelectPalette = 66100,
 WmfCreatePenIndirect = 66298,
 WmfCreateFontIndirect = 66299,
 WmfCreateBrushIndirect = 66300,
 WmfPolygon = 66340,
 WmfPolyline = 66341,
 WmfScaleWindowExt = 66576,
 WmfScaleViewportExt = 66578,
 WmfExcludeClipRect = 66581,
 WmfIntersectClipRect = 66582,
 WmfEllipse = 66584,
 WmfFloodFill = 66585,
 WmfRectangle = 66587,
 WmfSetPixel = 66591,
 WmfFrameRegion = 66601,
 WmfAnimatePalette = 66614,
 WmfTextOut = 66849,
 WmfPolyPolygon = 66872,
 WmfExtFloodFill = 66888,
 WmfRoundRect = 67100,
 WmfPatBlt = 67101,
 WmfEscape = 67110,
 WmfCreateRegion = 67327,
 WmfArc = 67607,
 WmfPie = 67610,
 WmfChord = 67632,
 WmfBitBlt = 67874,
 WmfDibBitBlt = 67904,
 WmfExtTextOut = 68146,
 WmfStretchBlt = 68387,
 WmfDibStretchBlt = 68417,
 WmfSetDibToDev = 68915,
 WmfStretchDib = 69443
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
EmfPlusRecordType

Passed To

System.Drawing.EnumerateMetafileProc.{BeginInvoke(), Invoke()}, Metafile.PlayRecord(), PlayRecordCallback.{BeginInvoke(),
Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EmfType serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration is used to specify whether an enhanced metafile should support the pre-GDI+ EMF format only
(EmfOnly), both pre-GDI+ and new GDI+ renderers (EmfPlusDual), or GDI+ renderers only (EmfPlusOnly). This issue
comes about because GDI+ extends the EMF format with some new record types of its own.

It is used in several of the Metafile constructors.

public enum EmfType {
 EmfOnly = 3,
 EmfPlusOnly = 4,
 EmfPlusDual = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
EmfType

Passed To

Metafile.Metafile()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Encoder

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

The EncoderParameter class is used to pass parameters to a GDI+ image-storage codec when saving images. This class
wraps a Guid identifying a particular encoder category for that parameter.

For example, the parameter might relate to the Compression mode, the RenderMethod or the Quality of the image that will
be output by the codec.

public sealed class Encoder {
// Public Constructors
 public Encoder(Guid guid);
// Public Static Fields
 public static readonly Encoder ChrominanceTable; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder ColorDepth; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder Compression; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder LuminanceTable; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder Quality; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder RenderMethod; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder SaveFlag; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder ScanMethod; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder Transformation; // =System.Drawing.Imaging.Encoder
 public static readonly Encoder Version; // =System.Drawing.Imaging.Encoder
// Public Instance Properties
 public Guid Guid{get; }
}

Returned By

EncoderParameter.Encoder

Passed To

EncoderParameter.{Encoder, EncoderParameter()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EncoderParameter disposable

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class encapsulates a parameter to pass to a GDI+ image-storage codec when saving an image using the
Image.Save() method. This can give you control over a number of different aspects of the image storage process, as
enumerated in the Encoder class.

You can determine the Encoder category defining the property that the parameter affects (such as the Quality of the
stored image). The Type and ValueType properties curiously both get the same information: the type of the data stored
in the parameter (as listed in the EncoderParameterValueType enumeration).

You can also determine the count of the data values in the parameter using the NumberOfValues property.

The values themselves can only be set in the constructor of the parameter. Some of these common values are listed in
the EncoderValue enumeration.

public sealed class EncoderParameter : IDisposable {
// Public Constructors
 public EncoderParameter(Encoder encoder, byte value);
 public EncoderParameter(Encoder encoder, byte[] value);
 public EncoderParameter(Encoder encoder, byte[] value, bool undefined);
 public EncoderParameter(Encoder encoder, byte value, bool undefined);
 public EncoderParameter(Encoder encoder, short value);
 public EncoderParameter(Encoder encoder, short[] value);
 public EncoderParameter(Encoder encoder, int[] numerator, int[] denominator);
 public EncoderParameter(Encoder encoder, int[] numerator1, int[] denominator1,
 int[] numerator2, int[] denominator2);
 public EncoderParameter(Encoder encoder, int numerator, int demoninator);
 public EncoderParameter(Encoder encoder, int NumberOfValues, int Type, int Value);
 public EncoderParameter(Encoder encoder, int numerator1, int demoninator1,
 int numerator2, int demoninator2);
 public EncoderParameter(Encoder encoder, long value);
 public EncoderParameter(Encoder encoder, long[] value);
 public EncoderParameter(Encoder encoder, long[] rangebegin, long[] rangeend);
 public EncoderParameter(Encoder encoder, long rangebegin, long rangeend);
 public EncoderParameter(Encoder encoder, string value);
// Public Instance Properties
 public Encoder Encoder{set; get; }
 public int NumberOfValues{get; }
 public EncoderParameterValueType Type{get; }
 public EncoderParameterValueType ValueType{get; }
// Public Instance Methods
 public void Dispose(); // implements IDisposable
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Returned By

EncoderParameters.Param

Passed To

EncoderParameters.Param
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EncoderParameters disposable

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class implements a collection of EncoderParameter objects. It is used to pass a set of parameters to the Image.Save()
method.

Unlike regular collection classes, you can only get or set the contents through the Param property.

public sealed class EncoderParameters : IDisposable {
// Public Constructors
 public EncoderParameters();
 public EncoderParameters(int count);
// Public Instance Properties
 public EncoderParameter[] Param{set; get; }
// Public Instance Methods
 public void Dispose(); // implements IDisposable
}

Returned By

System.Drawing.Image.GetEncoderParameterList()

Passed To

System.Drawing.Image.{Save(), SaveAdd()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EncoderParameterValueType serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists the various data types that can be used to provide parameter values for a GDI+ image encoder.
See EncoderParameters for more information.

public enum EncoderParameterValueType {
 ValueTypeByte = 1,
 ValueTypeAscii = 2,
 ValueTypeShort = 3,
 ValueTypeLong = 4,
 ValueTypeRational = 5,
 ValueTypeLongRange = 6,
 ValueTypeUndefined = 7,
 ValueTypeRationalRange = 8
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
EncoderParameterValueType

Returned By

EncoderParameter.{Type, ValueType}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EncoderValue serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists some common parameter values that can be passed to the JPEG, TIFF, and PNG encoders.

Note that ColorTypeCMYK, ColorTypeYCCK, FrameDimensionResolution, FrameDimensionTime, RenderNonProgressive,
RenderProgressive, ScanMethodInterlaced, ScanMethodNonInterlaced, VersionGif87, and VersionGif89 are not supported in the
current version of GDI+.

See EncoderParameter for more information on parameter values.

public enum EncoderValue {
 ColorTypeCMYK = 0,
 ColorTypeYCCK = 1,
 CompressionLZW = 2,
 CompressionCCITT3 = 3,
 CompressionCCITT4 = 4,
 CompressionRle = 5,
 CompressionNone = 6,
 ScanMethodInterlaced = 7,
 ScanMethodNonInterlaced = 8,
 VersionGif87 = 9,
 VersionGif89 = 10,
 RenderProgressive = 11,
 RenderNonProgressive = 12,
 TransformRotate90 = 13,
 TransformRotate180 = 14,
 TransformRotate270 = 15,
 TransformFlipHorizontal = 16,
 TransformFlipVertical = 17,
 MultiFrame = 18,
 LastFrame = 19,
 Flush = 20,
 FrameDimensionTime = 21,
 FrameDimensionResolution = 22,
 FrameDimensionPage = 23
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
EncoderValue
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FrameDimension

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

An Image is capable of supporting several different frames in a single image. This class encapsulates three different
types of frame. You can get an instance of the class representing a Time-based frame (an animation), a Resolution-based
frame (which allows you to extract multi-resolution versions of the image data), and a Page-based frame (to extract
several pages from the image), using the static properties of those names.

The class actually wraps a Guid identifying the particular frame dimension.

You use this class in the Image.GetFrameCount() and Image.SelectActiveFrame() methods.

public sealed class FrameDimension {
// Public Constructors
 public FrameDimension(Guid guid);
// Public Static Properties
 public static FrameDimension Page{get; }
 public static FrameDimension Resolution{get; }
 public static FrameDimension Time{get; }
// Public Instance Properties
 public Guid Guid{get; }
// Public Instance Methods
 public override bool Equals(object o); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

Passed To

System.Drawing.Image.{GetFrameCount(), SelectActiveFrame()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageAttributes disposable

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class is used to set various color-manipulation effects when rendering on a graphics surface. You can pass an
ImageAttributes object to the System.Drawing.Graphics.DrawImage() and System.Drawing.Graphics.EnumerateMetafile()

There are two methods to remap colors using a ColorMap: SetBrushRemapTable() and SetRemapTable(). You can apply a
ColorMatrix using the SetColorMatrix() method. If you want to set separate matrixes for the color and grayscale parts of an
image, you can use the SetColorMatrices() variant. SetThreshold() applies a bi-level threshold to the image (everything
below the threshold is clamped to 0, and everything above is clamped to the maximum representable value). You can
control the gamma with SetGamma().

You can enable basic color keying with SetColorKey(). This allows you to set a range of colors that will be rendered as
transparent, allowing the background to show through.

The SetOutputChannel() allows you to limit the image rendered to one or more of the CMYK channels (as listed in the
ColorChannelFlag enumeration). This allows you to perform basic color separations for printing.
SetOutputChannelColorProfile() allows you to choose a color-match profile file for the CMYK conversion, to better match the
characteristics of the target output device. Installed color profiles are found in the
%SystemRoot%\System32\Spool\Drivers\Color\ directory, and the system will look in here for the filename you specify. If the
profile file is not installed in that directory, you have to specify a fully qualified filename.

Each of these methods prefixed by "Set" can be made to apply to any and all the GDI+ object types specified in the
ColorAdjustType enumeration. There is also an equivalent Clear... method to remove the specified color transform. You
can also use the SetNoOp() method to disable all color transforms for a particular ColorAdjustType.

public sealed class ImageAttributes : ICloneable, IDisposable {
// Public Constructors
 public ImageAttributes();
// Public Instance Methods
 public void ClearBrushRemapTable();
 public void ClearColorKey();
 public void ClearColorKey(ColorAdjustType type);
 public void ClearColorMatrix();
 public void ClearColorMatrix(ColorAdjustType type);
 public void ClearGamma();
 public void ClearGamma(ColorAdjustType type);
 public void ClearNoOp();
 public void ClearNoOp(ColorAdjustType type);
 public void ClearOutputChannel();
 public void ClearOutputChannel(ColorAdjustType type);
 public void ClearOutputChannelColorProfile();
 public void ClearOutputChannelColorProfile(ColorAdjustType type);
 public void ClearRemapTable();
 public void ClearRemapTable(ColorAdjustType type);
 public void ClearThreshold();
 public void ClearThreshold(ColorAdjustType type);
 public object Clone(); // implements ICloneable
 public void Dispose(); // implements IDisposable
 public void GetAdjustedPalette(ColorPalette palette, ColorAdjustType type);
 public void SetBrushRemapTable(ColorMap[] map);
 public void SetColorKey(System.Drawing.Color colorLow, System.Drawing.Color colorHigh);
 public void SetColorKey(System.Drawing.Color colorLow, System.Drawing.Color colorHigh, ColorAdjustType type);
 public void SetColorMatrices(ColorMatrix newColorMatrix, ColorMatrix grayMatrix);
 public void SetColorMatrices(ColorMatrix newColorMatrix, ColorMatrix grayMatrix, ColorMatrixFlag flags);
 public void SetColorMatrices(ColorMatrix newColorMatrix, ColorMatrix grayMatrix, ColorMatrixFlag mode,
 ColorAdjustType type);
 public void SetColorMatrix(ColorMatrix newColorMatrix);
 public void SetColorMatrix(ColorMatrix newColorMatrix, ColorMatrixFlag flags);
 public void SetColorMatrix(ColorMatrix newColorMatrix, ColorMatrixFlag mode, ColorAdjustType type);
 public void SetGamma(float gamma);
 public void SetGamma(float gamma, ColorAdjustType type);
 public void SetNoOp();
 public void SetNoOp(ColorAdjustType type);
 public void SetOutputChannel(ColorChannelFlag flags);
 public void SetOutputChannel(ColorChannelFlag flags, ColorAdjustType type);
 public void SetOutputChannelColorProfile(string colorProfileFilename);
 public void SetOutputChannelColorProfile(string colorProfileFilename, ColorAdjustType type);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void SetOutputChannelColorProfile(string colorProfileFilename, ColorAdjustType type);
 public void SetRemapTable(ColorMap[] map);
 public void SetRemapTable(ColorMap[] map, ColorAdjustType type);
 public void SetThreshold(float threshold);
 public void SetThreshold(float threshold, ColorAdjustType type);
 public void SetWrapMode(System.Drawing.Drawing2D.WrapMode mode);
 public void SetWrapMode(System.Drawing.Drawing2D.WrapMode mode, System.Drawing.Color color);
 public void SetWrapMode(System.Drawing.Drawing2D.WrapMode mode, System.Drawing.Color color, bool clamp);
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Passed To

System.Drawing.Graphics.{DrawImage(), EnumerateMetafile()}, System.Drawing.TextureBrush.TextureBrush()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageCodecFlags serializable, flag

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists a set of flags that apply to an image storage codec. You can get/set these flags with the
ImageCodecInfo.Flags property.

public enum ImageCodecFlags {
 Encoder = 0x00000001,
 Decoder = 0x00000002,
 SupportBitmap = 0x00000004,
 SupportVector = 0x00000008,
 SeekableEncode = 0x00000010,
 BlockingDecode = 0x00000020,
 Builtin = 0x00010000,
 System = 0x00020000,
 User = 0x00040000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ImageCodecFlags

Returned By

ImageCodecInfo.Flags

Passed To

ImageCodecInfo.Flags

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageCodecInfo

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class encapsulates information about the installed image codecs (components that can encode and decode images
for storage).

Typically, you will use the static GetImageDecoders() and GetImageEncoders() methods to retrieve the installed encoders or
decoders. You can then enumerate those lists to look for a codec that matches your requirements. You might compare
against the MimeType of the codec, the CodecName, or the FormatDescription (a textual description of the file format).

public sealed class ImageCodecInfo {
// Public Instance Properties
 public Guid Clsid{set; get; }
 public string CodecName{set; get; }
 public string DllName{set; get; }
 public string FilenameExtension{set; get; }
 public ImageCodecFlags Flags{set; get; }
 public string FormatDescription{set; get; }
 public Guid FormatID{set; get; }
 public string MimeType{set; get; }
 public byte[][] SignatureMasks{set; get; }
 public byte[][] SignaturePatterns{set; get; }
 public int Version{set; get; }
// Public Static Methods
 public static ImageCodecInfo[] GetImageDecoders();
 public static ImageCodecInfo[] GetImageEncoders();
}

Passed To

System.Drawing.Image.Save()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageFlags serializable, flag

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists various attributes of the underlying pixel data stored in a System.Drawing.Image object. It can be
retrieved using the System.Drawing.Image.Flags property.

public enum ImageFlags {
 None = 0x00000000,
 Scalable = 0x00000001,
 HasAlpha = 0x00000002,
 HasTranslucent = 0x00000004,
 PartiallyScalable = 0x00000008,
 ColorSpaceRgb = 0x00000010,
 ColorSpaceCmyk = 0x00000020,
 ColorSpaceGray = 0x00000040,
 ColorSpaceYcbcr = 0x00000080,
 ColorSpaceYcck = 0x00000100,
 HasRealDpi = 0x00001000,
 HasRealPixelSize = 0x00002000,
 ReadOnly = 0x00010000,
 Caching = 0x00020000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ImageFlags

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageFormat

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class represents the native format of a System.Drawing.Image object. It encapsulates a Guid uniquely identifying the
format. There are a set of static properties that return a format object for the well-known image format types (e.g.,
Bmp, Jpeg, and MemoryBmp).

You can get the internal format of an image by using the RawFormat property.

public sealed class ImageFormat {
// Public Constructors
 public ImageFormat(Guid guid);
// Public Static Properties
 public static ImageFormat Bmp{get; }
 public static ImageFormat Emf{get; }
 public static ImageFormat Exif{get; }
 public static ImageFormat Gif{get; }
 public static ImageFormat Icon{get; }
 public static ImageFormat Jpeg{get; }
 public static ImageFormat MemoryBmp{get; }
 public static ImageFormat Png{get; }
 public static ImageFormat Tiff{get; }
 public static ImageFormat Wmf{get; }
// Public Instance Properties
 public Guid Guid{get; }
// Public Instance Methods
 public override bool Equals(object o); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

Returned By

System.Drawing.Image.RawFormat

Passed To

System.Drawing.Image.Save()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageLockMode serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists the various ways in which you can lock a bitmap with the Bitmap.LockBits() method. You should
pick the option that most closely matches your requirements, as the framework can optimize the marshaling of the
pixel data.

public enum ImageLockMode {
 ReadOnly = 1,
 WriteOnly = 2,
 ReadWrite = 3,
 UserInputBuffer = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ImageLockMode

Passed To

System.Drawing.Bitmap.LockBits()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Metafile serializable, marshal by reference, disposable

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

A metafile represents a set of records, each of which encapsulates a graphics operation.

There are a large number of different constructors, which allow you to construct a metafile from a file or stream (in
Windows Enhanced Metafile File format), a system HDC (which can be obtained from a Graphics surface if necessary), or
a Windows EMF handle. You can subsequently retrieve the EMF handle (for interop) with the GetHenhmetafile() method.
Many of the methods also allow you to specify a rectangle that positions the metafile on the page, along with the units
that define that rectangle (see MetafileFrameUnit).

You can retrieve the MetafileHeader with the GetMetafileHeader() method.

While you can use the System.Drawing.Graphics.DrawImage() method to paint the metafile, you can play an individual
record with the PlayRecord() method. See EmfPlusRecordType for information about EMF records.

To record a metafile, you should create a reference System.Drawing.Graphics surface, and then use the
System.Drawing.Graphics.GetHdc() to lock its Win32 HDC. You can then pass this as the reference HDC in an appropriate
constructor for your Metafile object. You can then use the System.Drawing.Graphics.FromImage() method to get a graphics
surface for the metafile. Everything you then draw on the surface will be recorded on the metafile. If you specified a
filename or stream in the Metafile constructor, the image will automatically be stored, or you can call the Save() method.
You should then Dispose() the System.Drawing.Graphics object, the Metafile, and call System.Drawing.Graphics.ReleaseHdc().

public sealed class Metafile : System.Drawing.Image {
// Public Constructors
 public Metafile(IntPtr henhmetafile, bool deleteEmf);
 public Metafile(IntPtr referenceHdc, EmfType emfType);
 public Metafile(IntPtr referenceHdc, EmfType emfType, string description);
 public Metafile(IntPtr referenceHdc, System.Drawing.Rectangle frameRect);
 public Metafile(IntPtr referenceHdc, System.Drawing.RectangleF frameRect);
 public Metafile(IntPtr referenceHdc, System.Drawing.RectangleF frameRect, MetafileFrameUnit frameUnit);
 public Metafile(IntPtr referenceHdc, System.Drawing.RectangleF frameRect, MetafileFrameUnit frameUnit, EmfType type);
 public Metafile(IntPtr referenceHdc, System.Drawing.RectangleF frameRect, MetafileFrameUnit frameUnit, EmfType type,
 string description);
 public Metafile(IntPtr referenceHdc, System.Drawing.Rectangle frameRect, MetafileFrameUnit frameUnit);
 public Metafile(IntPtr referenceHdc, System.Drawing.Rectangle frameRect, MetafileFrameUnit frameUnit, EmfType type);
 public Metafile(IntPtr referenceHdc, System.Drawing.Rectangle frameRect, MetafileFrameUnit frameUnit, EmfType type,
 string desc);
 public Metafile(IntPtr hmetafile, WmfPlaceableFileHeader wmfHeader);
 public Metafile(IntPtr hmetafile, WmfPlaceableFileHeader wmfHeader, bool deleteWmf);
 public Metafile(System.IO.Stream stream);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, EmfType type);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, EmfType type, string description);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.Rectangle frameRect);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.RectangleF frameRect);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit, EmfType type);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit, EmfType type, string description);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit, EmfType type);
 public Metafile(System.IO.Stream stream, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit, EmfType type, string description);
 public Metafile(string filename);
 public Metafile(string fileName, IntPtr referenceHdc);
 public Metafile(string fileName, IntPtr referenceHdc, EmfType type);
 public Metafile(string fileName, IntPtr referenceHdc, EmfType type, string description);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.Rectangle frameRect);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.RectangleF frameRect);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit, EmfType type);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MetafileFrameUnit frameUnit, EmfType type);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit, EmfType type, string description);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.RectangleF frameRect,
 MetafileFrameUnit frameUnit, string desc);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit, EmfType type);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit, EmfType type, string description);
 public Metafile(string fileName, IntPtr referenceHdc, System.Drawing.Rectangle frameRect,
 MetafileFrameUnit frameUnit, string description);
// Public Static Methods
 public static MetafileHeader GetMetafileHeader(IntPtr henhmetafile);
 public static MetafileHeader GetMetafileHeader(IntPtr hmetafile, WmfPlaceableFileHeader wmfHeader);
 public static MetafileHeader GetMetafileHeader(System.IO.Stream stream);
 public static MetafileHeader GetMetafileHeader(string fileName);
// Public Instance Methods
 public IntPtr GetHenhmetafile();
 public MetafileHeader GetMetafileHeader();
 public void PlayRecord(EmfPlusRecordType recordType, int flags, int dataSize, byte[] data);
}

Hierarchy

System.Object System.MarshalByRefObject System.Drawing.Image(System.Runtime.Serialization.ISerializabl,
System.ICloneable, System.IDisposable) Metafile

Passed To

System.Drawing.Graphics.EnumerateMetafile()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MetafileFrameUnit serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration is used to determine the unit of measurement used to define the Rectangle that positions and sizes the
metafile on the page. It used in several of the Metafile constructor overloads.

public enum MetafileFrameUnit {
 Pixel = 2,
 Point = 3,
 Inch = 4,
 Document = 5,
 Millimeter = 6,
 GdiCompatible = 7
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MetafileFrameUnit

Passed To

Metafile.Metafile()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MetafileHeader

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class encapsulates various attributes of a Metafile. It can be retrieved using the Metafile.GetMetafileHeader() method.

You can find the resolution of the metafile with the DpiX, DpiY, LogicalDpiX, and LogicalDpiY properties. The Bounds of the
metafile on the page can also be obtained.

The header also contains a lot of information about the file itself. You can discover the EmfPlusHeaderSize and MetafileSize
in bytes. The Type (from the MetafileType enumeration) and Version are also accessible. There is also a set of utility
accessor methods to determine the type of metafile (e.g., IsEmfPlus()). As with all this grungy metafile support, these
are something of a hangover from the unmanaged GDI+ interface.

public sealed class MetafileHeader {
// Public Instance Properties
 public Rectangle Bounds{get; }
 public float DpiX{get; }
 public float DpiY{get; }
 public int EmfPlusHeaderSize{get; }
 public int LogicalDpiX{get; }
 public int LogicalDpiY{get; }
 public int MetafileSize{get; }
 public MetafileType Type{get; }
 public int Version{get; }
 public MetaHeader WmfHeader{get; }
// Public Instance Methods
 public bool IsDisplay();
 public bool IsEmf();
 public bool IsEmfOrEmfPlus();
 public bool IsEmfPlus();
 public bool IsEmfPlusDual();
 public bool IsEmfPlusOnly();
 public bool IsWmf();
 public bool IsWmfPlaceable();
}

Returned By

Metafile.GetMetafileHeader()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MetafileType serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists the various types of metafile supported by the framework, including the new GDI+ EMF+ types.
It is used by the MetafileHeader.Type property.

public enum MetafileType {
 Invalid = 0,
 Wmf = 1,
 WmfPlaceable = 2,
 Emf = 3,
 EmfPlusOnly = 4,
 EmfPlusDual = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MetafileType

Returned By

MetafileHeader.Type

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MetaHeader

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class represents a traditional Windows Metafile Header. It can be obtained from the MetafileHeader.WmfHeader
property.

You can determine the HeaderSize in bytes, the number of objects (NoObjects) in the metafile, the size of the largest
record in the file (MaxRecord), the Size of the metafile, the Type of the metafile, and the Version of the header.

public sealed class MetaHeader {
// Public Constructors
 public MetaHeader();
// Public Instance Properties
 public short HeaderSize{set; get; }
 public int MaxRecord{set; get; }
 public short NoObjects{set; get; }
 public short NoParameters{set; get; }
 public int Size{set; get; }
 public short Type{set; get; }
 public short Version{set; get; }
}

Returned By

MetafileHeader.WmfHeader

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaletteFlags serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists the various types of color information that can be stored in a palette. See the ColorPalette.Flags
property for more information.

public enum PaletteFlags {
 HasAlpha = 1,
 GrayScale = 2,
 Halftone = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PaletteFlags
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PixelFormat serializable

System.Drawing.Imaging (system.drawing.dll) enum

This enumeration lists the various formats that can be used for pixel image data. It is most commonly used when
constructing a System.Drawing.Bitmap object and when locking the bitmap data with the System.Drawing.Bitmap.LockBits()
method.

public enum PixelFormat {
 DontCare = 0,
 Undefined = 0,
 Max = 15,
 Indexed = 65536,
 Gdi = 131072,
 Format16bppRgb555 = 135173,
 Format16bppRgb565 = 135174,
 Format24bppRgb = 137224,
 Format32bppRgb = 139273,
 Format1bppIndexed = 196865,
 Format4bppIndexed = 197634,
 Format8bppIndexed = 198659,
 Alpha = 262144,
 Format16bppArgb1555 = 397319,
 PAlpha = 524288,
 Format32bppPArgb = 925707,
 Extended = 1048576,
 Format16bppGrayScale = 1052676,
 Format48bppRgb = 1060876,
 Format64bppPArgb = 1851406,
 Canonical = 2097152,
 Format32bppArgb = 2498570,
 Format64bppArgb = 3424269
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PixelFormat

Returned By

System.Drawing.Image.PixelFormat, BitmapData.PixelFormat

Passed To

System.Drawing.Bitmap.{Bitmap(), Clone(), LockBits()}, System.Drawing.Image.{GetPixelFormatSize(), IsAlphaPixelFormat(),
IsCanonicalPixelFormat(), IsExtendedPixelFormat()}, BitmapData.PixelFormat

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PlayRecordCallback serializable

System.Drawing.Imaging
(system.drawing.dll) delegate

This delegate is used by the System.Drawing.Graphics.EnumerateMetafileProc method to provide a callback to deal with each
record in the Metafile as it is enumerated.

public delegate void PlayRecordCallback(EmfPlusRecordType recordType, int flags, int dataSize, IntPtr recordData);

Passed To

System.Drawing.EnumerateMetafileProc.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyItem

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

A System.Drawing.Image object supports the addition of arbitrary metadata through the
System.Drawing.Image.SetPropertyItem() and System.Drawing.Image.RemovePropertyItem() methods. This class encapsulates
that property.

You can specify an integer Id for the property, along with its length (Len) in bytes and its type (a short). The value itself
is an array of bytes, the length of which is determined by the Len property mentioned earlier.

As with much of the more advanced parts of the GDI+ framework, this byte-oriented arbitrary data storage hints rather
heavily at the fact that it is a thin wrapper over an unmanaged (but undocumented) API.

public sealed class PropertyItem {
// Public Instance Properties
 public int Id{set; get; }
 public int Len{set; get; }
 public short Type{set; get; }
 public byte[] Value{set; get; }
}

Returned By

System.Drawing.Image.{GetPropertyItem(), PropertyItems}

Passed To

System.Drawing.Image.SetPropertyItem()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WmfPlaceableFileHeader

System.Drawing.Imaging
(system.drawing.dll)

sealed
class

This class encapsulates the file header of a placeable metafile.

You can specify a bounding box for the metafile on the output device using the BboxBottom, BboxLeft, BboxRight, and
BboxTop properties. You can also specify the scaling for the metafile using the Inch property. This indicates the number
of twips per inch. A twip is a twentieth of a point, so there should be 1440 twips/inch.

The Hmf can get or set a Win32 handle to the metafile, and the Key is a magic number (0x9AC6CDD7) indicating that this
is a placeable metafile header.

There is a also a Checksum that is calculated by XOR-ing the Key, Hmf, bounding box (in the order Left, Top, Right,
Bottom), and Inch values.

As you may have noticed, this is a very thin and nasty veneer over the unmanaged implementation methods.
Fortunately, you should rarely need this class in your own code, as it is not exposed anywhere else in the framework.

public sealed class WmfPlaceableFileHeader {
// Public Constructors
 public WmfPlaceableFileHeader();
// Public Instance Properties
 public short BboxBottom{set; get; }
 public short BboxLeft{set; get; }
 public short BboxRight{set; get; }
 public short BboxTop{set; get; }
 public short Checksum{set; get; }
 public short Hmf{set; get; }
 public short Inch{set; get; }
 public int Key{set; get; }
 public int Reserved{set; get; }
}

Passed To

Metafile.{GetMetafileHeader(), Metafile()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17. The System.Drawing.Printing
Namespace
This namespace contains the non-visual classes that support printing.

The PrintDocument encapsulates the pages to be printed, while the PrintController manages the printing process.
PrinterSettings represent the printer device and its settings, while the PageSettings encapsulate the format of the output
page.

Look at System.Windows.Forms.PrintDialog and System.Windows.Forms.PrintPreviewDialog for handy prebuilt controls to support
typical printing scenarios. Figure 17-1 shows the types in this namespace.

Figure 17-1. Types from the System.Drawing.Printing namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Duplex serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration is used by the PrinterSettings.Duplex property to define the double-sided printing mode.

public enum Duplex {
 Simplex = 1,
 Vertical = 2,
 Horizontal = 3,
 Default = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
Duplex

Returned By

PrinterSettings.Duplex

Passed To

PrinterSettings.Duplex
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InvalidPrinterException

System.Drawing.Printing (system.drawing.dll) class

This exception is thrown by a number of classes and methods in the printing framework to indicate that the printer or
PrinterSettings were in some way invalid or unusable. Commonly, this is because the specified printer doesn't exist.

public class InvalidPrinterException : SystemException {
// Public Constructors
 public InvalidPrinterException(PrinterSettings settings);
// Protected Constructors
 protected InvalidPrinterException(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides Exception
}

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
InvalidPrinterException

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Margins

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates the position of the margins on a printed page. You can set the margins with the
PageSettings.Margins property. The Top, Left, Bottom, and Right margins can be set in units of 1/100th inch.

public class Margins : ICloneable {
// Public Constructors
 public Margins();
 public Margins(int left, int right, int top, int bottom);
// Public Instance Properties
 public int Bottom{set; get; }
 public int Left{set; get; }
 public int Right{set; get; }
 public int Top{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public override bool Equals(object obj); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

Returned By

PageSettings.Margins, System.Windows.Forms.PageSetupDialog.MinMargins

Passed To

PageSettings.Margins, PrinterUnitConvert.Convert(), System.Windows.Forms.PageSetupDialog.MinMargins

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MarginsConverter

System.Drawing.Printing (system.drawing.dll) class

This is the TypeConverter for a Margins object, transforming it to and from other types in serialization and design-time
scenarios. You should not call this class directly from your own code.

public class MarginsConverter : System.ComponentModel.ExpandableObjectConverter {
// Public Constructors
 public MarginsConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter System.ComponentModel.ExpandableObjectConverter
MarginsConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PageSettings

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates information that defines how a single page will be printed. The default page settings for a
document are specified using the PrintDocument.DefaultPageSettings property, but you can modify them on a page-by-page
basis by handling the PrintDocument.QueryPageSettings event. Note that the PrintDocument.PrintPage event also allows you to
change the page settings, so you do not necessarily need both.

You can get the Bounds of the page, taking into account the Landscape property, which can be used to set the orientation
of the output. This includes the printable area of the page, excluding the Margins that have been defined. You can also
retrieve the actual PaperSize for the selected PaperSource.

You can also find some information about the printer, including the PrinterResolution (see the PrinterResolution class for
more information) and the PrinterSettings.

public class PageSettings : ICloneable {
// Public Constructors
 public PageSettings();
 public PageSettings(PrinterSettings printerSettings);
// Public Instance Properties
 public Rectangle Bounds{get; }
 public bool Color{set; get; }
 public bool Landscape{set; get; }
 public Margins Margins{set; get; }
 public PaperSize PaperSize{set; get; }
 public PaperSource PaperSource{set; get; }
 public PrinterResolution PrinterResolution{set; get; }
 public PrinterSettings PrinterSettings{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public void CopyToHdevmode(IntPtr hdevmode);
 public void SetHdevmode(IntPtr hdevmode);
 public override string ToString(); // overrides object
}

Returned By

PrintDocument.DefaultPageSettings, PrinterSettings.DefaultPageSettings, PrintPageEventArgs.PageSettings,
QueryPageSettingsEventArgs.PageSettings, System.Windows.Forms.PageSetupDialog.PageSettings

Passed To

PrintDocument.DefaultPageSettings, PrinterSettings.GetHdevmode(), PrintPageEventArgs.PrintPageEventArgs(),
QueryPageSettingsEventArgs.{PageSettings, QueryPageSettingsEventArgs()}, System.Windows.Forms.PageSetupDialog.PageSettings
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaperKind serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration lists the various standard paper sizes supported by the framework.

public enum PaperKind {
 Custom = 0,
 Letter = 1,
 LetterSmall = 2,
 Tabloid = 3,
 Ledger = 4,
 Legal = 5,
 Statement = 6,
 Executive = 7,
 A3 = 8,
 A4 = 9,
 A4Small = 10,
 A5 = 11,
 B4 = 12,
 B5 = 13,
 Folio = 14,
 Quarto = 15,
 Standard10x14 = 16,
 Standard11x17 = 17,
 Note = 18,
 Number9Envelope = 19,
 Number10Envelope = 20,
 Number11Envelope = 21,
 Number12Envelope = 22,
 Number14Envelope = 23,
 CSheet = 24,
 DSheet = 25,
 ESheet = 26,
 DLEnvelope = 27,
 C5Envelope = 28,
 C3Envelope = 29,
 C4Envelope = 30,
 C6Envelope = 31,
 C65Envelope = 32,
 B4Envelope = 33,
 B5Envelope = 34,
 B6Envelope = 35,
 ItalyEnvelope = 36,
 MonarchEnvelope = 37,
 PersonalEnvelope = 38,
 USStandardFanfold = 39,
 GermanStandardFanfold = 40,
 GermanLegalFanfold = 41,
 IsoB4 = 42,
 JapanesePostcard = 43,
 Standard9x11 = 44,
 Standard10x11 = 45,
 Standard15x11 = 46,
 InviteEnvelope = 47,
 LetterExtra = 50,
 LegalExtra = 51,
 TabloidExtra = 52,
 A4Extra = 53,
 LetterTransverse = 54,
 A4Transverse = 55,
 LetterExtraTransverse = 56,
 APlus = 57,
 BPlus = 58,
 LetterPlus = 59,
 A4Plus = 60,
 A5Transverse = 61,
 B5Transverse = 62,
 A3Extra = 63,
 A5Extra = 64,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 A5Extra = 64,
 B5Extra = 65,
 A2 = 66,
 A3Transverse = 67,
 A3ExtraTransverse = 68,
 JapaneseDoublePostcard = 69,
 A6 = 70,
 JapaneseEnvelopeKakuNumber2 = 71,
 JapaneseEnvelopeKakuNumber3 = 72,
 JapaneseEnvelopeChouNumber3 = 73,
 JapaneseEnvelopeChouNumber4 = 74,
 LetterRotated = 75,
 A3Rotated = 76,
 A4Rotated = 77,
 A5Rotated = 78,
 B4JisRotated = 79,
 B5JisRotated = 80,
 JapanesePostcardRotated = 81,
 JapaneseDoublePostcardRotated = 82,
 A6Rotated = 83,
 JapaneseEnvelopeKakuNumber2Rotated = 84,
 JapaneseEnvelopeKakuNumber3Rotated = 85,
 JapaneseEnvelopeChouNumber3Rotated = 86,
 JapaneseEnvelopeChouNumber4Rotated = 87,
 B6Jis = 88,
 B6JisRotated = 89,
 Standard12x11 = 90,
 JapaneseEnvelopeYouNumber4 = 91,
 JapaneseEnvelopeYouNumber4Rotated = 92,
 Prc16K = 93,
 Prc32K = 94,
 Prc32KBig = 95,
 PrcEnvelopeNumber1 = 96,
 PrcEnvelopeNumber2 = 97,
 PrcEnvelopeNumber3 = 98,
 PrcEnvelopeNumber4 = 99,
 PrcEnvelopeNumber5 = 100,
 PrcEnvelopeNumber6 = 101,
 PrcEnvelopeNumber7 = 102,
 PrcEnvelopeNumber8 = 103,
 PrcEnvelopeNumber9 = 104,
 PrcEnvelopeNumber10 = 105,
 Prc16KRotated = 106,
 Prc32KRotated = 107,
 Prc32KBigRotated = 108,
 PrcEnvelopeNumber1Rotated = 109,
 PrcEnvelopeNumber2Rotated = 110,
 PrcEnvelopeNumber3Rotated = 111,
 PrcEnvelopeNumber4Rotated = 112,
 PrcEnvelopeNumber5Rotated = 113,
 PrcEnvelopeNumber6Rotated = 114,
 PrcEnvelopeNumber7Rotated = 115,
 PrcEnvelopeNumber8Rotated = 116,
 PrcEnvelopeNumber9Rotated = 117,
 PrcEnvelopeNumber10Rotated = 118
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PaperKind

Returned By

PaperSize.Kind

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaperSize

System.Drawing.Printing (system.drawing.dll) class

This class defines the dimensions of a sheet of paper. You can retrieve the Width and Height of the paper (in units of
1/100th inch), the Kind of the paper (see PaperKind), and a string representing the name of the particular sheet size
(PaperName).

public class PaperSize {
// Public Constructors
 public PaperSize(string name, int width, int height);
// Public Instance Properties
 public int Height{set; get; }
 public PaperKind Kind{get; }
 public string PaperName{set; get; }
 public int Width{set; get; }
// Public Instance Methods
 public override string ToString(); // overrides object
}

Returned By

PageSettings.PaperSize, PaperSizeCollection.this

Passed To

PageSettings.PaperSize, PaperSizeCollection.PaperSizeCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaperSource

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates the selection of a paper tray.

You can retrieve the Kind of paper source (see PaperSourceKind) and a string representing the name of the paper source
(SourceName).

public class PaperSource {
// Public Instance Properties
 public PaperSourceKind Kind{get; }
 public string SourceName{get; }
// Public Instance Methods
 public override string ToString(); // overrides object
}

Returned By

PageSettings.PaperSource, PaperSourceCollection.this

Passed To

PageSettings.PaperSource, PaperSourceCollection.PaperSourceCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaperSourceKind serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration lists the various types of paper tray that can be offered by a printer. See PaperSource for more
information.

public enum PaperSourceKind {
 Upper = 1,
 Lower = 2,
 Middle = 3,
 Manual = 4,
 Envelope = 5,
 ManualFeed = 6,
 AutomaticFeed = 7,
 TractorFeed = 8,
 SmallFormat = 9,
 LargeFormat = 10,
 LargeCapacity = 11,
 Cassette = 14,
 FormSource = 15,
 Custom = 257
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PaperSourceKind

Returned By

PaperSource.Kind
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PreviewPageInfo

System.Drawing.Printing
(system.drawing.dll)

sealed
class

This class encapsulates the information required for the print preview of a single page.

You can retrieve an Image representing the page to be printed and the PhysicalSize of that page (in units of 1/100th
inch).

public sealed class PreviewPageInfo {
// Public Constructors
 public PreviewPageInfo(System.Drawing.Image image, System.Drawing.Size physicalSize);
// Public Instance Properties
 public Image Image{get; }
 public Size PhysicalSize{get; }
}

Returned By

PreviewPrintController.GetPreviewPageInfo()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PreviewPrintController

System.Drawing.Printing (system.drawing.dll) class

This class, derived from PrintController, manages the printing of a document to a series of Image objects, which can then
be displayed to the user as a preview of the final printed output.

You would typically use a System.Windows.Forms.PrintPreviewDialog or System.Windows.Forms.PrintPreviewControl, which then
uses this class in its implementation to display a series of page images to the user.

You can enable antialiasing to improve display quality, with the UseAntiAlias property. GetPreviewPageInfo() returns an
array of PreviewPageInfo objects, which encapsulate the images representing each page to be printed.

To use a PreviewPrintController independently of the aforementioned controls, you can construct an instance and assign it
to the PrintDocument.PrintController. If you then call PrintDocument.Print(), the controller will be populated with the images,
which you can then retrieve with the GetPreviewPageInfo() method.

public class PreviewPrintController : PrintController {
// Public Constructors
 public PreviewPrintController();
// Public Instance Properties
 public virtual bool UseAntiAlias{set; get; }
// Public Instance Methods
 public PreviewPageInfo[] GetPreviewPageInfo();
 public override void OnEndPage(PrintDocument document, PrintPageEventArgs e); // overrides PrintController
 public override void OnEndPrint(PrintDocument document, PrintEventArgs e); // overrides PrintController
 public override Graphics OnStartPage(PrintDocument document, PrintPageEventArgs e); // overrides PrintController
 public override void OnStartPrint(PrintDocument document, PrintEventArgs e); // overrides PrintController
}

Hierarchy

System.Object PrintController PreviewPrintController
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintController

System.Drawing.Printing
(system.drawing.dll)

abstract
class

This is the abstract base for classes that manage the printing of a PrintDocument.

You set a PrintController instance into the PrintDocument.PrintController property. Then, when you call PrintDocument.Print(), it
invokes the OnStartPrint(), then OnStartPage(), OnEndPage(), and finally OnEndPrint() methods.

The start and end print methods receive the PrintDocument and a PrintEventArgs instance, while the start and end page
methods receive the PrintDocument and a PrintPageEventArgs property. These methods control the sending of the
document and its pages to the print device. This is the actual printer, in the case of the StandardPrintController or
PrintControllerWithStatusDialog, but is a set of images, in the case of the PreviewPrintController.

public abstract class PrintController {
// Public Constructors
 public PrintController();
// Public Instance Methods
 public virtual void OnEndPage(PrintDocument document, PrintPageEventArgs e);
 public virtual void OnEndPrint(PrintDocument document, PrintEventArgs e);
 public virtual Graphics OnStartPage(PrintDocument document, PrintPageEventArgs e);
 public virtual void OnStartPrint(PrintDocument document, PrintEventArgs e);
}

Subclasses

PreviewPrintController, StandardPrintController, System.Windows.Forms.PrintControllerWithStatusDialog

Returned By

PrintDocument.PrintController

Passed To

PrintDocument.PrintController, System.Windows.Forms.PrintControllerWithStatusDialog.PrintControllerWithStatusDialog()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintDocument marshal by reference, disposable

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates a document to be printed.

On construction, the DefaultPageSettings and PrinterSettings represent the default system printer, but you could create a
set of PageSettings and assign them to the DefaultPageSettings property, and/or a set of PrinterSettings, which you assign to
the PrinterSettings property if you want to customize the printer output. You can also modify individual properties in the
existing settings (such as the PrinterSettings.Copies to change the number of copies to print). You can also set the
DocumentName to a display name for the print job. You'd see this in the printer queue or a status dialog.

Once the settings are to your satisfaction, you can set a PrintController. The default is a PrintControllerWithStatusDialog, but
you can choose a StandardPrintController or a PreviewPrintController. Call Print() to send the document to the printer.

You're not done yet. To determine what to print, you have to handle several events raised by the document. BeginPrint is
raised when printing is started for the document. Then, the PrintPage event provides the System.Drawing.Graphics object
on which to draw your page, along with a bunch of other settings that allow you to format the output for the page
dimensions and page settings (see the PrintPageEventArgs for details). If you have more pages to print, you can set the
HasMorePages property to true; otherwise, set it to false and the document printing can come to an end. When this
happens, EndPrint is raised and you can clean up. All these events support the Cancel property to abandon printing.

Immediately before the PrintPage event, the framework raises the QueryPageSettings event. You can use this to modify
the settings on a page-by-page basis (by modifying the QueryPageSettingsEventArgs.PageSettings property), without having
to inject code into your existing PrintPage handler.

public class PrintDocument : System.ComponentModel.Component {
// Public Constructors
 public PrintDocument();
// Public Instance Properties
 public PageSettings DefaultPageSettings{set; get; }
 public string DocumentName{set; get; }
 public PrintController PrintController{set; get; }
 public PrinterSettings PrinterSettings{set; get; }
// Public Instance Methods
 public void Print();
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected virtual void OnBeginPrint(PrintEventArgs e);
 protected virtual void OnEndPrint(PrintEventArgs e);
 protected virtual void OnPrintPage(PrintPageEventArgs e);
 protected virtual void OnQueryPageSettings(QueryPageSettingsEventArgs e);
// Events
 public event PrintEventHandler BeginPrint;
 public event PrintEventHandler EndPrint;
 public event PrintPageEventHandler PrintPage;
 public event QueryPageSettingsEventHandler QueryPageSettings;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) PrintDocument

Returned By

System.Windows.Forms.PageSetupDialog.Document, System.Windows.Forms.PrintDialog.Document,
System.Windows.Forms.PrintPreviewControl.Document, System.Windows.Forms.PrintPreviewDialog.Document

Passed To

PrintController.{OnEndPage(), OnEndPrint(), OnStartPage(), OnStartPrint()}, System.Windows.Forms.PageSetupDialog.Document,
System.Windows.Forms.PrintDialog.Document, System.Windows.Forms.PrintPreviewControl.Document,
System.Windows.Forms.PrintPreviewDialog.Document
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterResolution

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates the horizontal X and vertical Y resolution (in dots per inch) of the printer device, and the
resolution Kind this represents. The Kind is chosen from the PrinterResolutionKind enumeration and indicates a print quality
(e.g., Draft or High quality).

public class PrinterResolution {
// Public Instance Properties
 public PrinterResolutionKind Kind{get; }
 public int X{get; }
 public int Y{get; }
// Public Instance Methods
 public override string ToString(); // overrides object
}

Returned By

PageSettings.PrinterResolution, PrinterResolutionCollection.this

Passed To

PageSettings.PrinterResolution, PrinterResolutionCollection.PrinterResolutionCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterResolutionKind serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration is used to specify the print quality of a particular resolution for the PrinterResolution.Kind property.

public enum PrinterResolutionKind {
 Custom = 0,
 High = -4,
 Medium = -3,
 Low = -2,
 Draft = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PrinterResolutionKind

Returned By

PrinterResolution.Kind

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterSettings serializable

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates a printer device, and its associated settings.

First, it offers a static property to retrieve the list of the names of the InstalledPrinters. When you construct a printer
settings object, you set the PrinterName property to one of these values to indicate which printer to use. The default is
the system default printer. Whether you set the name or leave the default, all the properties will be correctly set to the
defaults for that printer. You can determine if it is currently using the default printer by checking the IsDefaultPrinter
property.

You can then override any of those values. This might include the Duplex setting, the number of Copies to print, whether
to Collate the output, and the PrintRange. If you set the range to PrintRange.SomePages, a simple range can be set with the
FromPage and ToPage properties. (Note that the System.Windows.Forms.PrintDialog handles the page printing for you.

The default PageSettings for the printer can be retrieved, and you can also use properties such as PaperSizes, PaperSources,
and PrinterResolutions to determine the options for overriding some of those default PageSettings.

There are also three properties that tell you about the capabilities of the printer: CanDuplex, SupportsColor, and IsPlotter.

To help determine how a document will be printed, you can use the CreateMeasurementGraphics() method to create a
reference System.Drawing.Graphics surface. This can be used to determine the layout for your pages but is not the actual
printer device surface.

See PrintDocument for more information on how to use the PrinterSettings to print a document.

public class PrinterSettings : ICloneable {
// Public Constructors
 public PrinterSettings();
// Public Static Properties
 public static StringCollection InstalledPrinters{get; }
// Public Instance Properties
 public bool CanDuplex{get; }
 public bool Collate{set; get; }
 public short Copies{set; get; }
 public PageSettings DefaultPageSettings{get; }
 public Duplex Duplex{set; get; }
 public int FromPage{set; get; }
 public bool IsDefaultPrinter{get; }
 public bool IsPlotter{get; }
 public bool IsValid{get; }
 public int LandscapeAngle{get; }
 public int MaximumCopies{get; }
 public int MaximumPage{set; get; }
 public int MinimumPage{set; get; }
 public PaperSizeCollection PaperSizes{get; }
 public PaperSourceCollection PaperSources{get; }
 public string PrinterName{set; get; }
 public PrinterResolutionCollection PrinterResolutions{get; }
 public PrintRange PrintRange{set; get; }
 public bool PrintToFile{set; get; }
 public bool SupportsColor{get; }
 public int ToPage{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public Graphics CreateMeasurementGraphics();
 public IntPtr GetHdevmode();
 public IntPtr GetHdevmode(PageSettings pageSettings);
 public IntPtr GetHdevnames();
 public void SetHdevmode(IntPtr hdevmode);
 public void SetHdevnames(IntPtr hdevnames);
 public override string ToString(); // overrides object
}

Returned By

PageSettings.PrinterSettings, PrintDocument.PrinterSettings, System.Windows.Forms.PageSetupDialog.PrinterSettings,
System.Windows.Forms.PrintDialog.PrinterSettings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms.PrintDialog.PrinterSettings

Passed To

InvalidPrinterException.InvalidPrinterException(), PageSettings.{PageSettings(), PrinterSettings}, PrintDocument.PrinterSettings,
System.Windows.Forms.PageSetupDialog.PrinterSettings, System.Windows.Forms.PrintDialog.PrinterSettings

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterSettings.PaperSizeCollection

System.Drawing.Printing (system.drawing.dll) class

This represents a collection of PaperSize objects and is returned by the PrinterSettings.PaperSizes property.

public class PrinterSettings.PaperSizeCollection : ICollection, IEnumerable {
// Public Constructors
 public PrinterSettings.PaperSizeCollection(PaperSize[] array);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual PaperSize this{get; }
// Public Instance Methods
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterSettings.PaperSourceCollection

System.Drawing.Printing (system.drawing.dll) class

This represents a collection of PaperSource objects and is returned by the PrinterSettings.PaperSources property.

public class PrinterSettings.PaperSourceCollection : ICollection, IEnumerable {
// Public Constructors
 public PrinterSettings.PaperSourceCollection(PaperSource[] array);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual PaperSource this{get; }
// Public Instance Methods
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterSettings.PrinterResolutionCollection

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates a collection PrinterResolution objects and is returned by the PrinterSettings.PrinterResolutions
property.

public class PrinterSettings.PrinterResolutionCollection : ICollection, IEnumerable {
// Public Constructors
 public PrinterSettings.PrinterResolutionCollection(PrinterResolution[] array);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual PrinterResolution this{get; }
// Public Instance Methods
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterSettings.StringCollection

System.Drawing.Printing (system.drawing.dll) class

This class represents an array of strings and is returned by the PrinterSettings.InstalledPrinters property. Contrary to the
information in the MSDN documentation, this is not for internal use only, as you are quite entitled to access this
collection to determine the set of printers installed on the machine.

public class PrinterSettings.StringCollection : ICollection, IEnumerable {
// Public Constructors
 public PrinterSettings.StringCollection(string[] array);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public virtual string this{get; }
// Public Instance Methods
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterUnit serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration lists the device resolution units permissible in Win32 print device contexts. See
PrinterUnitConvert.Convert() for information on how to convert a type from one set of units to another.

public enum PrinterUnit {
 Display = 0,
 ThousandthsOfAnInch = 1,
 HundredthsOfAMillimeter = 2,
 TenthsOfAMillimeter = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PrinterUnit

Passed To

PrinterUnitConvert.Convert()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrinterUnitConvert

System.Drawing.Printing
(system.drawing.dll)

sealed
class

This class provides one static utility method, Convert(), to convert a value (such as an integer, a System.Drawing.Rectangle,
etc.) from one PrinterUnit to another.

public sealed class PrinterUnitConvert {
// Public Static Methods
 public static double Convert(double value, PrinterUnit fromUnit, PrinterUnit toUnit);
 public static int Convert(int value, PrinterUnit fromUnit, PrinterUnit toUnit);
 public static Margins Convert(Margins value, PrinterUnit fromUnit, PrinterUnit toUnit);
 public static Point Convert(System.Drawing.Point value, PrinterUnit fromUnit, PrinterUnit toUnit);
 public static Rectangle Convert(System.Drawing.Rectangle value, PrinterUnit fromUnit, PrinterUnit toUnit);
 public static Size Convert(System.Drawing.Size value, PrinterUnit fromUnit, PrinterUnit toUnit);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintEventArgs

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates the data for the PrintDocument.BeginPrint and PrintDocument.EndPrint events.

If you handle this event, you can cancel the print job by setting the Cancel property in this object.

public class PrintEventArgs : System.ComponentModel.CancelEventArgs {
// Public Constructors
 public PrintEventArgs();
}

Hierarchy

System.Object System.EventArgs System.ComponentModel.CancelEventArgs PrintEventArgs

Subclasses

QueryPageSettingsEventArgs

Passed To

PrintController.{OnEndPrint(), OnStartPrint()}, PrintDocument.{OnBeginPrint(), OnEndPrint()}, PrintEventHandler.{BeginInvoke(),
Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintEventHandler serializable

System.Drawing.Printing
(system.drawing.dll) delegate

This is a delegate for the PrintDocument.BeginPrint and PrintDocument.EndPrint events.

public delegate void PrintEventHandler(object sender,
 PrintEventArgs e);

Associated Events

PrintDocument.{BeginPrint(), EndPrint()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintingPermission serializable

System.Drawing.Printing
(system.drawing.dll)

sealed
class

This class encapsulates the permissions the executing code might have to use a printer.

You can determine the access Level that the currently executing code has to printing services (see
PrintingPermissionLevel).

You can also set declarative permissions by using the PrintingPermissionAttribute.

public sealed class PrintingPermission :
System.Security.CodeAccessPermission : System.Security.Permissions.IUnrestrictedPermission {
// Public Constructors
 public PrintingPermission(System.Security.Permissions.PermissionState state);
 public PrintingPermission(PrintingPermissionLevel printingLevel);
// Public Instance Properties
 public PrintingPermissionLevel Level{set; get; }
// Public Instance Methods
 public override IPermission Copy(); // overrides CodeAccessPermission
 public override void FromXml(System.Security.SecurityElement esd); // overrides CodeAccessPermission
 public override IPermission Intersect(System.Security.IPermission target); // overrides CodeAccessPermission
 public override bool IsSubsetOf(System.Security.IPermission target); // overrides CodeAccessPermission
 public bool IsUnrestricted(); // implements IUnrestrictedPermission
 public override SecurityElement ToXml(); // overrides CodeAccessPermission
 public override IPermission Union(System.Security.IPermission target); // overrides CodeAccessPermission
}

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermissio, System.Security.ISecurityEncodable,
System.Security.IStackWalk) PrintingPermission(System.Security.Permissions.IUnrestrictedPermission)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintingPermissionAttribute

System.Drawing.Printing
(system.drawing.dll)

sealed
class

This attribute can be used to adorn a class or member to require a certain Level of printer-access permissions to be
available before the code can execute. See PrintingPermissionLevel for valid access levels.

public sealed class PrintingPermissionAttribute : System.Security.Permissions.CodeAccessSecurityAttribute {
// Public Constructors
 public PrintingPermissionAttribute(System.Security.Permissions.SecurityAction action);
// Public Instance Properties
 public PrintingPermissionLevel Level{set; get; }
// Public Instance Methods
 public override IPermission CreatePermission(); // overrides System.Security.Permissions.SecurityAttribute
}

Hierarchy

System.Object System.Attribute System.Security.Permissions.SecurityAttribute
System.Security.Permissions.CodeAccessSecurityAttribute PrintingPermissionAttribute

Valid On

All

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintingPermissionLevel serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration allows you to determine how access to the printing services can be restricted. You can allow full
access with AllPrinting, no access with NoPrinting, or one of two restricted settings: SafePrinting, which only allows printing
through a (restricted) dialog box, and DefaultPrinting, which extends these permissions to allow full access to the default
printer.

public enum PrintingPermissionLevel {
 NoPrinting = 0,
 SafePrinting = 1,
 DefaultPrinting = 2,
 AllPrinting = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PrintingPermissionLevel

Returned By

PrintingPermission.Level, PrintingPermissionAttribute.Level

Passed To

PrintingPermission.{Level, PrintingPermission()}, PrintingPermissionAttribute.Level
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintPageEventArgs

System.Drawing.Printing (system.drawing.dll) class

This class encapsulates the data for the PrintDocument.PrintPage event.

You should handle this event and paint the page's imagery on the supplied Graphics surface. To determine how the page
should be printed, you can use the MarginBounds, PageBounds, and PageSettings.

If the document contains more pages that need printing, you should set the HasMorePages property to true, but if not,
set it to false and the print job will be completed.

To abandon the print job, you can set the Cancel property.

public class PrintPageEventArgs : EventArgs {
// Public Constructors
 public PrintPageEventArgs(System.Drawing.Graphics graphics, System.Drawing.Rectangle marginBounds,
 System.Drawing.Rectangle pageBounds, PageSettings pageSettings);
// Public Instance Properties
 public bool Cancel{set; get; }
 public Graphics Graphics{get; }
 public bool HasMorePages{set; get; }
 public Rectangle MarginBounds{get; }
 public Rectangle PageBounds{get; }
 public PageSettings PageSettings{get; }
}

Hierarchy

System.Object System.EventArgs PrintPageEventArgs

Passed To

PrintController.{OnEndPage(), OnStartPage()}, PrintDocument.OnPrintPage(), PrintPageEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintPageEventHandler serializable

System.Drawing.Printing
(system.drawing.dll) delegate

This is a delegate for the PrintDocument.PrintPage event.

public delegate void PrintPageEventHandler(object sender, PrintPageEventArgs e);

Associated Events

PrintDocument.PrintPage()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintRange serializable

System.Drawing.Printing (system.drawing.dll) enum

This enumeration determines the type of range of pages to be printed, from AllPages to just a Selection. See PrinterSettings
for more information.

public enum PrintRange {
 AllPages = 0,
 Selection = 1,
 SomePages = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PrintRange

Returned By

PrinterSettings.PrintRange

Passed To

PrinterSettings.PrintRange
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QueryPageSettingsEventArgs

System.Drawing.Printing (system.drawing.dll) class

This class contains the data for the PrintDocument.QueryPageSettings event. It extends the PrintPageEventArgs with the
PageSettings property. You can modify these settings to control the page setup on a page-by-page basis.

public class QueryPageSettingsEventArgs : PrintEventArgs {
// Public Constructors
 public QueryPageSettingsEventArgs(PageSettings pageSettings);
// Public Instance Properties
 public PageSettings PageSettings{set; get; }
}

Hierarchy

System.Object System.EventArgs System.ComponentModel.CancelEventArgs PrintEventArgs
QueryPageSettingsEventArgs

Passed To

PrintDocument.OnQueryPageSettings(), QueryPageSettingsEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QueryPageSettingsEventHandler serializable

System.Drawing.Printing
(system.drawing.dll) delegate

This is a delegate for the PrintDocument.QueryPageSettings event.

public delegate void QueryPageSettingsEventHandler(object sender, QueryPageSettingsEventArgs e);

Associated Events

PrintDocument.QueryPageSettings()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StandardPrintController

System.Drawing.Printing (system.drawing.dll) class

This class implements PrintController to send the print information to a standard printer. You typically set an instance of
this class into the PrintDocument.PrintController property to determine how a document will be printed. See PrintDocument
for more information on the printing process.

public class StandardPrintController : PrintController {
// Public Constructors
 public StandardPrintController();
// Public Instance Methods
 public override void OnEndPage(PrintDocument document, PrintPageEventArgs e); // overrides PrintController
 public override void OnEndPrint(PrintDocument document, PrintEventArgs e); // overrides PrintController
 public override Graphics OnStartPage(PrintDocument document, PrintPageEventArgs e); // overrides PrintController
 public override void OnStartPrint(PrintDocument document, PrintEventArgs e); // overrides PrintController
}

Hierarchy

System.Object PrintController StandardPrintController

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18. The System.Drawing.Text Namespace
The System.Drawing.Text namespace contains various classes related to text and font management in the framework.
Figure 18-1 shows the types in this namespace.

Figure 18-1. Types from the System.Drawing.Text namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontCollection disposable

System.Drawing.Text
(system.drawing.dll)

abstract
class

This class is the abstract base for a collection of fonts.

You can use the Families property to retrieve an array of System.Drawing.FontFamily objects representing the fonts in the
collection.

See InstalledFontCollection and PrivateFontCollection for more information.

public abstract class FontCollection : IDisposable {
// Public Instance Properties
 public FontFamily[] Families{get; }
// Public Instance Methods
 public void Dispose(); // implements IDisposable
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
}

Subclasses

InstalledFontCollection, PrivateFontCollection

Passed To

System.Drawing.FontFamily.FontFamily()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GenericFontFamilies serializable

System.Drawing.Text (system.drawing.dll) enum

This enumeration lists the three generic font families.

Systems can have wildly different sets of fonts installed (particularly in cross-platform environments). By specifying one
of the generic families, you can retrieve a Monospace, SansSerif, or Serif font appropriate to the current platform,
regardless of what might actually be present. For example, the SansSerif font could be Arial on one machine and
Helvetica on another.

public enum GenericFontFamilies {
 Serif = 0,
 SansSerif = 1,
 Monospace = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
GenericFontFamilies

Passed To

System.Drawing.FontFamily.FontFamily()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HotkeyPrefix serializable

System.Drawing.Text (system.drawing.dll) enum

This enumeration is used by the System.Drawing.StringFormat.HotkeyPrefix property to determine how shortcut keys (as
designated by an & character) are displayed in a string.

public enum HotkeyPrefix {
 None = 0,
 Show = 1,
 Hide = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
HotkeyPrefix

Returned By

System.Drawing.StringFormat.HotkeyPrefix

Passed To

System.Drawing.StringFormat.HotkeyPrefix
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InstalledFontCollection disposable

System.Drawing.Text
(system.drawing.dll)

sealed
class

This class, derived from FontCollection, represents all the font families that have been installed on the system. You can
enumerate the Families property to find a font suitable for your purposes.

public sealed class InstalledFontCollection : FontCollection {
// Public Constructors
 public InstalledFontCollection();
}

Hierarchy

System.Object FontCollection(System.IDisposable) InstalledFontCollection

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrivateFontCollection disposable

System.Drawing.Text
(system.drawing.dll)

sealed
class

This class, derived from FontCollection, represents a set of fonts that have not been installed on the system.

You can add a font to the collection using the AddFontFile() and AddMemoryFont() methods. The second of these is a thin
wrapper over the unmanaged implementation code, and you should be careful to ensure that the memory you pass in
will not be garbage collected before you are done with the collection.

You can then enumerate the Families in the collection in the normal way.

public sealed class PrivateFontCollection : FontCollection {
// Public Constructors
 public PrivateFontCollection();
// Public Instance Methods
 public void AddFontFile(string filename);
 public void AddMemoryFont(IntPtr memory, int length);
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides FontCollection
}

Hierarchy

System.Object FontCollection(System.IDisposable) PrivateFontCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextRenderingHint serializable

System.Drawing.Text (system.drawing.dll) enum

This enumeration is used by the System.Drawing.Graphics.TextRenderingHint to determine the quality with which text is
rendered on the graphics surface. As will all the GDI+ rendering hints, there is a trade-off between rendering quality
and speed, from SingleBitPerPixel to ClearTypeGridFit.

public enum TextRenderingHint {
 SystemDefault = 0,
 SingleBitPerPixelGridFit = 1,
 SingleBitPerPixel = 2,
 AntiAliasGridFit = 3,
 AntiAlias = 4,
 ClearTypeGridFit = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TextRenderingHint

Returned By

System.Drawing.Graphics.TextRenderingHint

Passed To

System.Drawing.Graphics.TextRenderingHint
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19. The System.Windows.Forms Namespace
The System.Windows.Forms namespace contains the classes that you use to build rich client applications—the windows,
buttons, drop-down lists, and labels that make up the UIs with which you are familiar. At the center of this universe is
the Control class. Any window that appears on the screen, from dialogs to checkboxes, is derived from Control, and this
class provides almost all the basic behavior a window needs. All the common windows controls provide relatively minor
modifications or extensions to Control to add their own behaviors (painting, click handling, etc.), so a good
understanding of the Control class goes a long, long way.

Figures Figure 19-1 and Figure 19-2 show many of the types in this namespace. Figure 19-3 shows many of this
namespace's event arguments, and Figure 19-4 shows the delegates. The components are shown in Figure 19-5 and
the controls are shown in Figures Figure 19-6 and Figure 19-7.

Figure 19-1. Many types from the System.Windows.Forms namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-2. More types from the System.Windows.Forms namespace

Figure 19-3. Event arguments in the System.Windows.Forms namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-4. Delegates from System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-5. Components in the System.Windows.Forms namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-6. Controls from System.Windows.Forms

Figure 19-7. More controls from System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike the Win32 world, all UI construction is done by writing code. The Designer environment actually generates
source code, rather than generating the dialog resource files that have existed since Windows was first introduced. It
also attempts to round-trip any changes you make to that code, incorporating them back into the visual editor.
Admittedly, this round-tripping comes with do-not-touch warnings in Version 1.0, but with all due care and attention,
you can modify the generated code and have the designers reflect those changes for you.

The other advantage gained by making code the first-class way of generating a UI is that it becomes simple to build
plug-in architectures. You can leverage the reflection APIs to find appropriate controls to instantiate. The Control.Dock
and Control.Anchor architecture make it easy to ensure that the generated UI looks consistent and attractive. Compare
this with the old Win32 hacking of dialog templates, and you'll see a whole new world of UI design opportunities.

To help support RAD development, you can also integrate your own controls into the designer, by making use of the
facilities in the System.Windows.Forms.Design and System.ComponentModel namespaces. This gives you control over
appearance, parameter editing, code generation, round-tripping, and even wizard-style configuration of your
component. You can implement any designer feature you see offered by the built-in controls by using the frameworks.

This doesn't mean resource files have gone away entirely. You can still create files containing your string tables,
images, and similar resources. However, you now define them using an XML format, and the compiler generates a
completely different kind of binary from the old resource manager. These resource files are an integral part of the
internationalization/localization support in the framework and designers. Version 1.0 of the framework has a pretty rich
array of features and controls, but there are a few exceptions. Support for XP Themes is sketchy (but possible), and a
few of the controls suffer from an occasional limitation. Workarounds and examples are noted in the text where
necessary. That said, Windows.Forms offers one of the richest, most flexible UI development frameworks on any
platform, and learning to use it is more of a pleasure than a chore!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AccessibleEvents serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This (enormous) enumeration is a part of the accessibility framework, that allows you to support users who need
assistance with particular aspects of the UI, perhaps as the result of a disability. Microsoft also recommends the use of
these APIs for automated testing. The elements of this enumeration list more or less anything and everything that could
possibly happen to a control, from properties changing to creation and destruction.

The enumeration is used by the AccessibleObject to notify accessibility clients that things are occurring of which they
should take note (perhaps updating their own UI or controlling an external device such as a Braille reader). See
AccessibleObject for a discussion of the accessibility framework.

public enum AccessibleEvents {
 SystemSound = 1,
 SystemAlert = 2,
 SystemForeground = 3,
 SystemMenuStart = 4,
 SystemMenuEnd = 5,
 SystemMenuPopupStart = 6,
 SystemMenuPopupEnd = 7,
 SystemCaptureStart = 8,
 SystemCaptureEnd = 9,
 SystemMoveSizeStart = 10,
 SystemMoveSizeEnd = 11,
 SystemContextHelpStart = 12,
 SystemContextHelpEnd = 13,
 SystemDragDropStart = 14,
 SystemDragDropEnd = 15,
 SystemDialogStart = 16,
 SystemDialogEnd = 17,
 SystemScrollingStart = 18,
 SystemScrollingEnd = 19,
 SystemSwitchStart = 20,
 SystemSwitchEnd = 21,
 SystemMinimizeStart = 22,
 SystemMinimizeEnd = 23,
 Create = 32768,
 Destroy = 32769,
 Show = 32770,
 Hide = 32771,
 Reorder = 32772,
 Focus = 32773,
 Selection = 32774,
 SelectionAdd = 32775,
 SelectionRemove = 32776,
 SelectionWithin = 32777,
 StateChange = 32778,
 LocationChange = 32779,
 NameChange = 32780,
 DescriptionChange = 32781,
 ValueChange = 32782,
 ParentChange = 32783,
 HelpChange = 32784,
 DefaultActionChange = 32785,
 AcceleratorChange = 32786
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
AccessibleEvents

Passed To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed To

Control.AccessibilityNotifyClients(), ControlAccessibleObject.NotifyClients()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AccessibleNavigation serializable

System.Windows.Forms
(system.windows.forms.dll) enum

Another part of the accessibility framework, this enumeration is used when notifying clients that the focus is changing.

public enum AccessibleNavigation {
 Up = 1,
 Down = 2,
 Left = 3,
 Right = 4,
 Next = 5,
 Previous = 6,
 FirstChild = 7,
 LastChild = 8
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
AccessibleNavigation

Passed To

AccessibleObject.Navigate()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AccessibleObject marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the information needed by applications that support users who need assistance with a UI. This
might include magnifiers, Braille readers, specialized pointing devices, etc.

Developers may derive from this class to provide their own accessibility information, to announce navigation, property,
and state changes to these accessibility clients. To make life easier, Microsoft already provides a class called
Control.AccessibilityObject. Unless you create your own custom controls, this provides all the accessibility information
required for your own applications, and you never really need to worry about this stuff—you get it all for free. If you do
create a custom control that adds its own special state or navigation handling, you may need to derive your own
accessibility object and override the appropriate members to notify clients when your state changes.

public class AccessibleObject : MarshalByRefObject :
System.Reflection.IReflect, Accessibility.IAccessible, IEnumVariant {
// Public Constructors
 public AccessibleObject();
// Public Instance Properties
 public virtual Rectangle Bounds{get; }
 public virtual string DefaultAction{get; }
 public virtual string Description{get; }
 public virtual string Help{get; }
 public virtual string KeyboardShortcut{get; }
 public virtual string Name{set; get; }
 public virtual AccessibleObject Parent{get; }
 public virtual AccessibleRole Role{get; }
 public virtual AccessibleStates State{get; }
 public virtual string Value{set; get; }
// Public Instance Methods
 public virtual void DoDefaultAction();
 public virtual AccessibleObject GetChild(int index);
 public virtual int GetChildCount();
 public virtual AccessibleObject GetFocused();
 public virtual int GetHelpTopic(out string fileName);
 public virtual AccessibleObject GetSelected();
 public virtual AccessibleObject HitTest(int x, int y);
 public virtual AccessibleObject Navigate(AccessibleNavigation navdir);
 public virtual void Select(AccessibleSelection flags);
// Protected Instance Methods
 protected void UseStdAccessibleObjects(IntPtr handle);
 protected void UseStdAccessibleObjects(IntPtr handle, int objid);
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant)

Subclasses

ChildAccessibleObject, ControlAccessibleObject, DomainItemAccessibleObject,
System.Windows.Forms.Design.ControlDesignerAccessibleObject

Returned By

Control.{AccessibilityObject, CreateAccessibilityInstance()}, DataGridColumnStyle.{CreateHeaderAccessibleObject(),
HeaderAccessibleObject}, System.Windows.Forms.Design.ControlDesigner.AccessibilityObject,
System.Windows.Forms.Design.ControlDesignerAccessibleObject.{GetChild(), GetFocused(), GetSelected(), HitTest(), Parent}

Passed To

DomainItemAccessibleObject.DomainItemAccessibleObject()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DomainItemAccessibleObject.DomainItemAccessibleObject()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AccessibleRole serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration defines the various well-defined roles that your object plays within an application environment.
Accessibility clients can then use the fact that they know your object is a Diagram or a Clock or whatever, to offer
customized assistance to the end user.

public enum AccessibleRole {
 None = 0,
 TitleBar = 1,
 MenuBar = 2,
 ScrollBar = 3,
 Grip = 4,
 Sound = 5,
 Cursor = 6,
 Caret = 7,
 Alert = 8,
 Window = 9,
 Client = 10,
 MenuPopup = 11,
 MenuItem = 12,
 ToolTip = 13,
 Application = 14,
 Document = 15,
 Pane = 16,
 Chart = 17,
 Dialog = 18,
 Border = 19,
 Grouping = 20,
 Separator = 21,
 ToolBar = 22,
 StatusBar = 23,
 Table = 24,
 ColumnHeader = 25,
 RowHeader = 26,
 Column = 27,
 Row = 28,
 Cell = 29,
 Link = 30,
 HelpBalloon = 31,
 Character = 32,
 List = 33,
 ListItem = 34,
 Outline = 35,
 OutlineItem = 36,
 PageTab = 37,
 PropertyPage = 38,
 Indicator = 39,
 Graphic = 40,
 StaticText = 41,
 Text = 42,
 PushButton = 43,
 CheckButton = 44,
 RadioButton = 45,
 ComboBox = 46,
 DropList = 47,
 ProgressBar = 48,
 Dial = 49,
 HotkeyField = 50,
 Slider = 51,
 SpinButton = 52,
 Diagram = 53,
 Animation = 54,
 Equation = 55,
 ButtonDropDown = 56,
 ButtonMenu = 57,
 ButtonDropDownGrid = 58,
 WhiteSpace = 59,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WhiteSpace = 59,
 PageTabList = 60,
 Clock = 61,
 Default = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
AccessibleRole

Returned By

Control.AccessibleRole, System.Windows.Forms.Design.ControlDesignerAccessibleObject.Role, PrintPreviewDialog.AccessibleRole

Passed To

Control.AccessibleRole, PrintPreviewDialog.AccessibleRole

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AccessibleSelection serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

Users can select items in various ways. This enumeration lists the predefined selection methods understood by the
accessibility framework. It is used to notify accessibility clients that selections are taking place.

public enum AccessibleSelection {
 None = 0x00000000,
 TakeFocus = 0x00000001,
 TakeSelection = 0x00000002,
 ExtendSelection = 0x00000004,
 AddSelection = 0x00000008,
 RemoveSelection = 0x00000010
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
AccessibleSelection

Passed To

AccessibleObject.Select()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AccessibleStates serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists a variety of states that a UI object can take for interactions with accessibility clients.

public enum AccessibleStates {
 None = 0x00000000,
 Unavailable = 0x00000001,
 Selected = 0x00000002,
 Focused = 0x00000004,
 Pressed = 0x00000008,
 Checked = 0x00000010,
 Mixed = 0x00000020,
 Indeterminate = 0x00000020,
 ReadOnly = 0x00000040,
 HotTracked = 0x00000080,
 Default = 0x00000100,
 Expanded = 0x00000200,
 Collapsed = 0x00000400,
 Busy = 0x00000800,
 Floating = 0x00001000,
 Marqueed = 0x00002000,
 Animated = 0x00004000,
 Invisible = 0x00008000,
 Offscreen = 0x00010000,
 Sizeable = 0x00020000,
 Moveable = 0x00040000,
 SelfVoicing = 0x00080000,
 Focusable = 0x00100000,
 Selectable = 0x00200000,
 Linked = 0x00400000,
 Traversed = 0x00800000,
 MultiSelectable = 0x01000000,
 ExtSelectable = 0x02000000,
 AlertLow = 0x04000000,
 AlertMedium = 0x08000000,
 AlertHigh = 0x10000000,
 Protected = 0x20000000,
 Valid = 0x3FFFFFFF
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
AccessibleStates

Returned By

System.Windows.Forms.Design.ControlDesignerAccessibleObject.State

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AmbientProperties

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

The Site is the object that hosts a Control. Control objects can inherit certain properties from their Site, and these are
called ambient properties. At present, the ambient properties are ForeColor, BackColor, Cursor, and Font. If you haven't
specified a particular value for any of these properties, the control will retrieve an AmbientProperties object from the site
by using the GetService() method. The service required is typeof(AmbientProperties). The control can pull the ambient value
from it. If the control is not hosted in a site, or if the site doesn't support ambient properties, the Control.DefaultXXX
member will be used to provide the value instead.

public sealed class AmbientProperties {
// Public Constructors
 public AmbientProperties();
// Public Instance Properties
 public Color BackColor{set; get; }
 public Cursor Cursor{set; get; }
 public Font Font{set; get; }
 public Color ForeColor{set; get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AnchorStyles serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This is used by Control objects to suggest to layout managers how they should be treated. The default layout manager
first looks at Control.Dock on each contained object to see if it should be locked to one edge or another (see DockStyle). If
it is not docked, it then examines the Control.Anchor property.

If a Control is anchored to a particular edge, it means that the side nearest to that edge will be maintained at a fixed
distance from it. You can anchor to more than one edge, allowing you to create controls that move or resize as their
container is resized.

You can replace the default layout management by overriding the OnLayout() method. You might do this in conjunction
with a System.ComponentModel.IExtenderProvider that adds additional properties to the contained Control objects to help
manage the new layout mechanism.

public enum AnchorStyles {
 None = 0x00000000,
 Top = 0x00000001,
 Bottom = 0x00000002,
 Left = 0x00000004,
 Right = 0x00000008
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
AnchorStyles

Returned By

Control.Anchor

Passed To

Control.Anchor
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appearance serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by CheckBox and RadioButton objects to determine whether they should be rendered in the
Normal way or like a Button.

public enum Appearance {
 Normal = 0,
 Button = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
Appearance

Returned By

CheckBox.Appearance, RadioButton.Appearance

Passed To

CheckBox.Appearance, RadioButton.Appearance
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Application

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class provides a variety of static methods to start message processing for a Windows Forms application, and to
retrieve information about the execution environment of the current application, including such useful details as the
shared and user data paths, registry keys, locale/culture settings, and others.

You can also get notifications of and some control over application startup and shutdown, although the exit notification
is not signaled if you use the parameterless version of Run().

Finally, there is a facility to install and remove message filters for your application with AddMessageFilter() and
RemoveMessageFilter(). See IMessageFilter for information on this feature.

public sealed class Application {
// Public Static Properties
 public static bool AllowQuit{get; }
 public static string CommonAppDataPath{get; }
 public static RegistryKey CommonAppDataRegistry{get; }
 public static string CompanyName{get; }
 public static CultureInfo CurrentCulture{set; get; }
 public static InputLanguage CurrentInputLanguage{set; get; }
 public static string ExecutablePath{get; }
 public static string LocalUserAppDataPath{get; }
 public static bool MessageLoop{get; }
 public static string ProductName{get; }
 public static string ProductVersion{get; }
 public static string SafeTopLevelCaptionFormat{set; get; }
 public static string StartupPath{get; }
 public static string UserAppDataPath{get; }
 public static RegistryKey UserAppDataRegistry{get; }
// Public Static Methods
 public static void AddMessageFilter(IMessageFilter value);
 public static void DoEvents();
 public static void Exit();
 public static void ExitThread();
 public static ApartmentState OleRequired();
 public static void OnThreadException(Exception t);
 public static void RemoveMessageFilter(IMessageFilter value);
 public static void Run();
 public static void Run(ApplicationContext context);
 public static void Run(Form mainForm);
// Events
 public event EventHandler ApplicationExit;
 public event EventHandler Idle;
 public event ThreadExceptionEventHandler ThreadException;
 public event EventHandler ThreadExit;
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ApplicationContext

System.Windows.Forms
(system.windows.forms.dll) class

Normally, you call Application.Run(), passing in the Form you wish to use as the MainForm of the application. An alternative
is to use this class, which then allows you to control several features, including starting the message loop (again,
optionally with a MainForm), stopping the message loop, and handling ThreadExit events related to the application
terminating. You can also override the OnMainFormClosed() method to determine whether the message pump is
terminated when the main form is closed.

public class ApplicationContext {
// Public Constructors
 public ApplicationContext();
 public ApplicationContext(Form mainForm);
// Public Instance Properties
 public Form MainForm{set; get; }
// Public Instance Methods
 public void Dispose();
 public void ExitThread();
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected virtual void ExitThreadCore();
 protected override void Finalize(); // overrides object
 protected virtual void OnMainFormClosed(object sender, EventArgs e);
// Events
 public event EventHandler ThreadExit;
}

Passed To

Application.Run()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ArrangeDirection serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the SystemInformation class in its ArrangeDirection property, to determine how minimized
windows are arranged.

public enum ArrangeDirection {
 Left = 0,
 Right = 0,
 Down = 4,
 Up = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ArrangeDirection

Returned By

SystemInformation.ArrangeDirection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ArrangeStartingPosition serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the ArrangeStartingPosition property of the SystemInformation class to determine how
minimized windows are arranged (see ArrangeDirection).

public enum ArrangeStartingPosition {
 BottomLeft = 0,
 BottomRight = 1,
 TopLeft = 2,
 TopRight = 3,
 Hide = 8
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ArrangeStartingPosition

Returned By

SystemInformation.ArrangeStartingPosition

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This Control class wraps ActiveX controls that have been imported into the managed environment (either by use of the
Aximp.exe tool or, more commonly, by adding them to the designer by customizing the toolbox). It extends the base
services to provide methods to get the underlying OCX control (GetOcx()) and show property pages
(ShowPropertyPages()), if they are present (HasPropertyPages()).

Note that several of the events you would normally expect from a Control are not supported (e.g., color and font
property changes), and attempting to bind to them will cause a NotSupportedException. The Liskov substitution principle
states that you should be able to use any instance of a derived class in place of an instance of the base class. Throwing
that exception means that this class violates that principle. Therefore, you have to take care if you are using Control
objects polymorphically in your application (e.g., in your own custom host), in case someone drops an ActiveX control
into the equation.

public abstract class AxHost : Control :
System.ComponentModel.ISupportInitialize, System.ComponentModel.ICustomTypeDescriptor {
// Protected Constructors
 protected AxHost(string clsid);
 protected AxHost(string clsid, int flags);
// Public Instance Properties
 public override Color BackColor{set; get; } // overrides Control
 public override Image BackgroundImage{set; get; } // overrides Control
 public ContainerControl ContainingControl{set; get; }
 public override ContextMenu ContextMenu{set; get; } // overrides Control
 public override Cursor Cursor{set; get; } // overrides Control
 public bool EditMode{get; }
 public virtual bool Enabled{set; get; } // overrides Control
 public override Font Font{set; get; } // overrides Control
 public override Color ForeColor{set; get; } // overrides Control
 public bool HasAboutBox{get; }
 public State OcxState{set; get; }
 public virtual bool RightToLeft{set; get; }
 public override ISite Site{set; } // overrides Control
 public override string Text{set; get; } // overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides Control
 protected override Size DefaultSize{get; } // overrides Control
// Protected Static Methods
 protected static Color GetColorFromOleColor(uint color);
 protected static Font GetFontFromIFont(object font);
 protected static Font GetFontFromIFontDisp(object font);
 protected static object GetIFontDispFromFont(System.Drawing.Font font);
 protected static object GetIFontFromFont(System.Drawing.Font font);
 protected static object GetIPictureDispFromPicture(System.Drawing.Image image);
 protected static object GetIPictureFromCursor(Cursor cursor);
 protected static object GetIPictureFromPicture(System.Drawing.Image image);
 protected static double GetOADateFromTime(DateTime time);
 protected static uint GetOleColorFromColor(System.Drawing.Color color);
 protected static Image GetPictureFromIPicture(object picture);
 protected static Image GetPictureFromIPictureDisp(object picture);
 protected static DateTime GetTimeFromOADate(double date);
// Public Instance Methods
 public void BeginInit(); // implements System.ComponentModel.ISupportInitialize
 public void DoVerb(int verb);
 public void EndInit(); // implements System.ComponentModel.ISupportInitialize
 public object GetOcx();
 public bool HasPropertyPages();
 public void InvokeEditMode();
 public void MakeDirty();
 public override bool PreProcessMessage(ref Message msg); // overrides Control
 public void ShowAboutBox();
 public void ShowPropertyPages();
 public void ShowPropertyPages(Control control);
// Protected Instance Methods
 protected virtual void AttachInterfaces();
 protected override void CreateHandle(); // overrides Control
 protected virtual void CreateSink();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void CreateSink();
 protected override void DestroyHandle(); // overrides Control
 protected virtual void DetachSink();
 protected override void Dispose(bool disposing); // overrides Control
 protected override bool IsInputChar(char charCode); // overrides Control
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnForeColorChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected virtual void OnInPlaceActive();
 protected override void OnLostFocus(EventArgs e); // overrides Control
 protected override bool ProcessMnemonic(char charCode); // overrides Control
 protected bool PropsValid();
 protected void RaiseOnMouseDown(short button, short shift, int x, int y);
 protected void RaiseOnMouseDown(short button, short shift, float x, float y);
 protected void RaiseOnMouseDown(object o1, object o2, object o3, object o4);
 protected void RaiseOnMouseMove(short button, short shift, int x, int y);
 protected void RaiseOnMouseMove(short button, short shift, float x, float y);
 protected void RaiseOnMouseMove(object o1, object o2, object o3, object o4);
 protected void RaiseOnMouseUp(short button, short shift, int x, int y);
 protected void RaiseOnMouseUp(short button, short shift, float x, float y);
 protected void RaiseOnMouseUp(object o1, object o2, object o3, object o4);
 protected void SetAboutBoxDelegate(AboutBoxDelegate d);
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void SetVisibleCore(bool value); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler BackColorChanged; // overrides Control
 public event EventHandler BackgroundImageChanged; // overrides Control
 public event EventHandler BindingContextChanged; // overrides Control
 public event UICuesEventHandler ChangeUICues; // overrides Control
 public event EventHandler Click; // overrides Control
 public event EventHandler ContextMenuChanged; // overrides Control
 public event EventHandler CursorChanged; // overrides Control
 public event EventHandler DoubleClick; // overrides Control
 public event DragEventHandler DragDrop; // overrides Control
 public event DragEventHandler DragEnter; // overrides Control
 public event EventHandler DragLeave; // overrides Control
 public event DragEventHandler DragOver; // overrides Control
 public event EventHandler EnabledChanged; // overrides Control
 public event EventHandler FontChanged; // overrides Control
 public event EventHandler ForeColorChanged; // overrides Control
 public event GiveFeedbackEventHandler GiveFeedback; // overrides Control
 public event HelpEventHandler HelpRequested; // overrides Control
 public event EventHandler ImeModeChanged; // overrides Control
 public event KeyEventHandler KeyDown; // overrides Control
 public event KeyPressEventHandler KeyPress; // overrides Control
 public event KeyEventHandler KeyUp; // overrides Control
 public event LayoutEventHandler Layout; // overrides Control
 public event MouseEventHandler MouseDown; // overrides Control
 public event EventHandler MouseEnter; // overrides Control
 public event EventHandler MouseHover; // overrides Control
 public event EventHandler MouseLeave; // overrides Control
 public event MouseEventHandler MouseMove; // overrides Control
 public event MouseEventHandler MouseUp; // overrides Control
 public event MouseEventHandler MouseWheel; // overrides Control
 public event PaintEventHandler Paint; // overrides Control
 public event QueryAccessibilityHelpEventHandler QueryAccessibilityHelp; // overrides Control
 public event QueryContinueDragEventHandler QueryContinueDrag; // overrides Control
 public event EventHandler RightToLeftChanged; // overrides Control
 public event EventHandler StyleChanged; // overrides Control
 public event EventHandler TabIndexChanged; // overrides Control
 public event EventHandler TabStopChanged; // overrides Control
 public event EventHandler TextChanged; // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) AxHost(System.ComponentModel.ISupportInitializ,
System.ComponentModel.ICustomTypeDescriptor)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.ActiveXInvokeKind serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the InvalidActiveXStateException constructor to specify the kind of access that was attempted
while the control was in an invalid state.

public enum AxHost.ActiveXInvokeKind {
 MethodInvoke = 0,
 PropertyGet = 1,
 PropertySet = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ActiveXInvokeKind
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.AxComponentEditor

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class AxHost.AxComponentEditor : System.Windows.Forms.Design.WindowsFormsComponentEditor {
// Public Constructors
 public AxHost.AxComponentEditor();
// Public Instance Methods
 public override bool EditComponent(System.ComponentModel.ITypeDescriptorContext context,
 object obj, IWin32Window parent); // overrides System.Windows.Forms.Design.WindowsFormsComponentEditor
}

Hierarchy

System.Object System.ComponentModel.ComponentEditor System.Windows.Forms.Design.WindowsFormsComponentEditor
 AxComponentEditor

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.ClsidAttribute

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This attribute class is for internal use only and should not be used to decorate your own code.

public sealed class AxHost.ClsidAttribute : Attribute {
// Public Constructors
 public AxHost.ClsidAttribute(string clsid);
// Public Instance Properties
 public string Value{get; }
}

Hierarchy

System.Object System.Attribute ClsidAttribute

Valid On

Class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.ConnectionPointCookie

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be used in your own code.

public class AxHost.ConnectionPointCookie {
// Public Constructors
 public AxHost.ConnectionPointCookie(object source, object sink, Type eventInterface);
// Public Instance Methods
 public void Disconnect();
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.InvalidActiveXStateException

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the exception that is thrown when an ActiveX control is used while it is in an invalid state.

public class AxHost.InvalidActiveXStateException : Exception {
// Public Constructors
 public AxHost.InvalidActiveXStateException(string name, ActiveXInvokeKind kind);
// Public Instance Methods
 public override string ToString(); // overrides Exception
}

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) InvalidActiveXStateException
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.State serializable

System.Windows.Forms
(system.windows.forms.dll) class

This opaque class encapsulates the state of an ActiveX control in persistence scenarios. You can retrieve the state using
the AxHost.OcxState property, although more normally it would be read from or written to a stream.

public class AxHost.State : System.Runtime.Serialization.ISerializable {
// Public Constructors
 public AxHost.State(System.IO.Stream ms, int storageType, bool manualUpdate, string licKey);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.StateConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used in design-time and serialization scenarios to transform a State object to
and from other types. You would not normally call this class from your own code.

public class AxHost.StateConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public AxHost.StateConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter StateConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxHost.TypeLibraryTimeStampAttribute

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This attribute class is for internal use only and should not be used in your own code.

public sealed class AxHost.TypeLibraryTimeStampAttribute : Attribute {
// Public Constructors
 public AxHost.TypeLibraryTimeStampAttribute(string timestamp);
// Public Instance Properties
 public DateTime Value{get; }
}

Hierarchy

System.Object System.Attribute TypeLibraryTimeStampAttribute

Valid On

Assembly

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BaseCollection marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be used in your own code.

public class BaseCollection : MarshalByRefObject : ICollection, IEnumerable {
// Public Constructors
 public BaseCollection();
// Public Instance Properties
 public virtual int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
 public bool IsSynchronized{get; }
// implements ICollection
 public object SyncRoot{get; }
// implements ICollection
// Protected Instance Properties
 protected virtual ArrayList List{get; }
// Public Instance Methods
 public void CopyTo(Array ar, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

Hierarchy

System.Object System.MarshalByRefObject BaseCollection(System.Collections.ICollectio, System.Collections.IEnumerable)

Subclasses

BindingsCollection, GridColumnStylesCollection, GridTableStylesCollection

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Binding

System.Windows.Forms
(system.windows.forms.dll) class

This class is used in the data-binding framework to bind a property on an object to a property on a Control (e.g., the
Name property of a business object to the Text property on a Control). This process is called simple binding.

A bag of these bindings are held by a BindingManagerBase that manages a set of related bindings. The binding manager
makes sure the current value in the data source is reflected in each Binding it contains.

Finally, a bag of binding managers is called a BindingContext. The BindingContext is associated with a particular control and
contains all the binding managers for all the controls owned by that container.

The Binding is created by specifying the name of the Control property to which you are binding (e.g., "Text"), the object
that is going to provide the data (e.g., a hypothetical Employee business object), and a string that determines the
property to be used on the data source (e.g., the Employee object Name). This final parameter can be an empty string to
bind to the value of the object itself, the name of a property on the object, or a dot-separated path navigating to the
appropriate property (e.g., through the tables and relations of a System.Data.DataSet). These are subsequently obtained
through the Control, DataSource, and PropertyName properties of the Binding class.

When the Binding is created, it automatically finds a binding manager for the data source in the Control objects
BindingContext and adds itself. You can find this binding manager with the Item property (the index for the class).

The Binding object also provides two events that allow you to control the data-binding process more closely.

The Format event is raised whenever data is transferred into the Control. You can use it to modify the information as it is
transferred, converting from one data type to another to get over those awkward impedance problems when there is no
default data type converter.

The other half of this partnership is the Parse event. It allows you to perform the conversion back the other way when
the Control data is transferred back to the bound object. The Parse event is raised if the Control objects Validated event
occurs, if EndCurrentEdit() is called on the BindingManagerBase, or if the Position changes on the BindingManagerBase (i.e., the
Current object in the data binding changes). For the standard Control objects (such as ListBox and DataGrid), these events
occur automatically and the binding proceeds normally without your intervention.

public class Binding {
// Public Constructors
 public Binding(string propertyName, object dataSource, string dataMember);
// Public Instance Properties
 public BindingManagerBase BindingManagerBase{get; }
 public BindingMemberInfo BindingMemberInfo{get; }
 public Control Control{get; }
 public object DataSource{get; }
 public bool IsBinding{get; }
 public string PropertyName{get; }
// Protected Instance Methods
 protected virtual void OnFormat(ConvertEventArgs cevent);
 protected virtual void OnParse(ConvertEventArgs cevent);
// Events
 public event ConvertEventHandler Format;
 public event ConvertEventHandler Parse;
}

Returned By

BindingsCollection.this, ControlBindingsCollection.this

Passed To

BindingsCollection.{AddCore(), RemoveCore()}, ControlBindingsCollection.{Add(), Remove()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BindingContext

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a bag of BindingManagerBase objects for a set of data bound controls. You can retrieve the
BindingContext for a Control using the Control.BindingContext member. You can retrieve the binding manager for a particular
child control using Item (this is the indexer property).

The BindingContext class Add() and Remove() methods, which allow you to add (or remove) a new binding manager for a
data source, are actually protected. To create additional binding managers for a container BindingContext, you create a
new BindingContext object and assign it to the Control.BindingContext of your child control(s). This has the effect of creating
a new binding manager in the parent's BindingContext.

See Binding for more information about the data-binding hierarchy.

public class BindingContext : ICollection, IEnumerable {
// Public Constructors
 public BindingContext();
// Public Instance Properties
 public bool IsReadOnly{get; }
 public BindingManagerBase this{get; }
 public BindingManagerBase this{get; }
// Public Instance Methods
 public bool Contains(object dataSource);
 public bool Contains(object dataSource, string dataMember);
// Protected Instance Methods
 protected internal void Add(object dataSource, BindingManagerBase listManager);
 protected virtual void AddCore(object dataSource, BindingManagerBase listManager);
 protected internal void Clear();
 protected virtual void ClearCore();
 protected virtual void OnCollectionChanged(System.ComponentModel.CollectionChangeEventArgs ccevent);
 protected internal void Remove(object dataSource);
 protected virtual void RemoveCore(object dataSource);
// Events
 public event CollectionChangeEventHandler CollectionChanged;
}

Returned By

Control.BindingContext

Passed To

Control.BindingContext, GridTablesFactory.CreateGridTables()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BindingManagerBase

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This class represents a mapping of a property (or column) in a data source to a property on a Control. In the case of
simple binding, it uses a bag of Binding objects to handle those mappings. For complex data binding, you can derive a
class that handles the data-binding process.

Each binding manager maintains a current Position in the data source, to allow multiple bound controls to remain in
sync, each control displaying a different column in the same selected row.

For example, a ListBox and a TextBox can be bound to a data source with same binding manager (simple binding for the
TextBox providing a Binding object, complex binding for the ListBox without an explicit binding object). The two will remain
synchronized as the ListBox selection changes. Another ListBox and TextBox bound to the same data source but through a
second binding manager will also remain synchronized with one another, but will not be synchronized with the first pair.
(See BindingContext to find out how to create an independent binding manager for your second pair of controls.)

If the current row in the data source changes, the binding manager raises PositionChanged. If the value of the bound
object changes, the CurrentChanged event is raised. See CurrencyManager for information about how this works in practice,
and Binding for more information about the data-binding hierarchy.

public abstract class BindingManagerBase {
// Public Constructors
 public BindingManagerBase();
// Protected Instance Fields
 protected EventHandler onCurrentChangedHandler;
 protected EventHandler onPositionChangedHandler;
// Public Instance Properties
 public BindingsCollection Bindings{get; }
 public abstract int Count{get; }
 public abstract object Current{get; }
 public abstract int Position{set; get; }
// Public Instance Methods
 public abstract void AddNew();
 public abstract void CancelCurrentEdit();
 public abstract void EndCurrentEdit();
 public abstract PropertyDescriptorCollection GetItemProperties();
 public abstract void RemoveAt(int index);
 public abstract void ResumeBinding();
 public abstract void SuspendBinding();
// Protected Instance Methods
 protected internal virtual PropertyDescriptorCollection GetItemProperties(System.Collections.ArrayList dataSources,
 System.Collections.ArrayList listAccessors);
 protected virtual PropertyDescriptorCollection GetItemProperties(Type listType, int offset,
 System.Collections.ArrayList dataSources, System.Collections.ArrayList listAccessors);
 protected internal abstract string GetListName(System.Collections.ArrayList listAccessors);
 protected internal abstract void OnCurrentChanged(EventArgs e);
 protected void PullData();
 protected void PushData();
 protected abstract void UpdateIsBinding();
// Events
 public event EventHandler CurrentChanged;
 public event EventHandler PositionChanged;
}

Subclasses

CurrencyManager, PropertyManager

Returned By

Binding.BindingManagerBase, BindingContext.this

Passed To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed To

BindingContext.AddCore()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BindingMemberInfo

System.Windows.Forms
(system.windows.forms.dll) struct

This value is returned by the Binding.BindingMemberInfo property and represents the property that was passed in the
constructor of a Binding object.

public struct BindingMemberInfo {
// Public Constructors
 public BindingMemberInfo(string dataMember);
// Public Instance Properties
 public string BindingField{get; }
 public string BindingMember{get; }
 public string BindingPath{get; }
// Public Instance Methods
 public override bool Equals(object otherObject); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType BindingMemberInfo

Returned By

Binding.BindingMemberInfo

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BindingsCollection marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of Binding objects for a Control, accessed through the Bindings property.

public class BindingsCollection : BaseCollection {
// Public Instance Properties
 public override int Count{get; } // overrides BaseCollection
 public Binding this{get; } // Protected Instance Properties
 protected override ArrayList List{get; } // overrides BaseCollection
// Protected Instance Methods
 protected internal void Add(Binding binding);
 protected virtual void AddCore(Binding dataBinding);
 protected internal void Clear();
 protected virtual void ClearCore();
 protected virtual void OnCollectionChanged(System.ComponentModel.CollectionChangeEventArgs ccevent);
 protected internal void Remove(Binding binding);
 protected internal void RemoveAt(int index);
 protected virtual void RemoveCore(Binding dataBinding);
 protected internal bool ShouldSerializeMyAll();
// Events
 public event CollectionChangeEventHandler CollectionChanged;
}

Hierarchy

System.Object System.MarshalByRefObject BaseCollection(System.Collections.ICollectio, System.Collections.IEnumerable)
 BindingsCollection

Subclasses

ControlBindingsCollection

Returned By

BindingManagerBase.Bindings
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BootMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration represents the different modes in which a system can have been started. It is returned by the
BootMode property of the SystemInformation class.

public enum BootMode {
 Normal = 0,
 FailSafe = 1,
 FailSafeWithNetwork = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
BootMode

Returned By

SystemInformation.BootMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Border3DSide serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the ControlPaint.DrawBorder3D() method to determine which sides of the border should be
drawn.

public enum Border3DSide {
 Left = 0x00000001,
 Top = 0x00000002,
 Right = 0x00000004,
 Bottom = 0x00000008,
 Middle = 0x00000800,
 All = 0x0000080F
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
Border3DSide

Passed To

ControlPaint.DrawBorder3D()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Border3DStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

Used by the ControlPaint.DrawBorder3D() method, this enumeration determines how the 3D border should appear (e.g.,
Etched, Flat, Raised, etc.)

public enum Border3DStyle {
 RaisedOuter = 1,
 SunkenOuter = 2,
 RaisedInner = 4,
 Raised = 5,
 Etched = 6,
 SunkenInner = 8,
 Bump = 9,
 Sunken = 10,
 Adjust = 8192,
 Flat = 16394
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
Border3DStyle

Passed To

ControlPaint.DrawBorder3D()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BorderStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by many Control classes in the framework to determine how their edges should appear.

public enum BorderStyle {
 None = 0,
 FixedSingle = 1,
 Fixed3D = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
BorderStyle

Returned By

DataGrid.BorderStyle, Label.BorderStyle, ListBox.BorderStyle, ListView.BorderStyle, Panel.BorderStyle, PictureBox.BorderStyle,
Splitter.BorderStyle, TextBoxBase.BorderStyle, ToolBar.BorderStyle, TreeView.BorderStyle, UpDownBase.BorderStyle

Passed To

DataGrid.BorderStyle, Label.BorderStyle, ListBox.BorderStyle, ListView.BorderStyle, Panel.BorderStyle, PictureBox.BorderStyle,
Splitter.BorderStyle, TextBoxBase.BorderStyle, ToolBar.BorderStyle, TreeView.BorderStyle, UpDownBase.BorderStyle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

BoundsSpecified serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

You use this enumeration to specify to the Control.SetBounds() method which aspects of the Control object's bounds you
are setting. It is akin to the size and location related flags in the Win32 SetWindowPos() method.

public enum BoundsSpecified {
 None = 0x00000000,
 X = 0x00000001,
 Y = 0x00000002,
 Location = 0x00000003,
 Width = 0x00000004,
 Height = 0x00000008,
 Size = 0x0000000C,
 All = 0x0000000F
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
BoundsSpecified

Passed To

Control.{SetBounds(), SetBoundsCore()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Button marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control represents the standard windows pushbutton. Derived from ButtonBase, it adds the ability to specify a
DialogResult that will be returned from the Form.ShowDialog() method if this button is clicked to dismiss it.

public class Button : ButtonBase : IButtonControl {
// Public Constructors
 public Button();
// Public Instance Properties
 public virtual DialogResult DialogResult{set; get; }
// implements IButtonControl
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides ButtonBase
// Public Instance Methods
 public virtual void NotifyDefault(bool value); // implements IButtonControl
 public void PerformClick(); // implements IButtonControl
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void OnClick(EventArgs e); // overrides Control
 protected override void OnMouseUp(MouseEventArgs mevent); // overrides ButtonBase
 protected override bool ProcessMnemonic(char charCode); // overrides Control
 protected override void WndProc(ref Message m); // overrides ButtonBase
// Events
 public event EventHandler DoubleClick; // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ButtonBase Button(IButtonControl)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ButtonBase marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This Control is the base class for the various button-like controls supported by the .NET Framework, including Button (a
pushbutton), CheckBox, and RadioButton.

In addition to the standard control features, it provides support for an Image (which can then be positioned in the
control using the ImageAlign property) and for alignment of the text (using the TextAlign property).

Note that the default FlatStyle for this class supports .NET features such as images, font, and color changes, but does
not support Windows XP themes. You must set the FlatStyle to System in this case, but you will lose the .NET features.

public abstract class ButtonBase : Control {
// Protected Constructors
 protected ButtonBase();
// Public Instance Properties
 public FlatStyle FlatStyle{set; get; }
 public Image Image{set; get; }
 public ContentAlignment ImageAlign{set; get; }
 public int ImageIndex{set; get; }
 public ImageList ImageList{set; get; }
 public ImeMode ImeMode{set; get; } // overrides Control
 public virtual ContentAlignment TextAlign{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides Control
 protected override ImeMode DefaultImeMode{get; } // overrides Control
 protected override Size DefaultSize{get; } // overrides Control
 protected bool IsDefault{set; get; }
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected override void OnEnabledChanged(EventArgs e); // overrides Control
 protected override void OnGotFocus(EventArgs e); // overrides Control
 protected override void OnKeyDown(KeyEventArgs kevent); // overrides Control
 protected override void OnKeyUp(KeyEventArgs kevent); // overrides Control
 protected override void OnLostFocus(EventArgs e); // overrides Control
 protected override void OnMouseDown(MouseEventArgs mevent); // overrides Control
 protected override void OnMouseEnter(EventArgs eventargs); // overrides Control
 protected override void OnMouseLeave(EventArgs eventargs); // overrides Control
 protected override void OnMouseMove(MouseEventArgs mevent); // overrides Control
 protected override void OnMouseUp(MouseEventArgs mevent); // overrides Control
 protected override void OnPaint(PaintEventArgs pevent); // overrides Control
 protected override void OnParentChanged(EventArgs e); // overrides Control
 protected override void OnTextChanged(EventArgs e); // overrides Control
 protected override void OnVisibleChanged(EventArgs e); // overrides Control
 protected void ResetFlagsandPaint();
 protected override void WndProc(ref Message m); // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ButtonBase

Subclasses

Button, CheckBox, RadioButton
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ButtonBase.ButtonBaseAccessibleObject marshal by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be used by your own classes.

public class ButtonBase.ButtonBaseAccessibleObject : ControlAccessibleObject {
// Public Constructors
 public ButtonBase.ButtonBaseAccessibleObject(Control owner);
// Public Instance Methods
 public override void DoDefaultAction(); // overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ControlAccessibleObject ButtonBaseAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ButtonBorderStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

To draw a button-like border, you can use the ControlPaint.DrawBorder() method and pass in a value from this
enumeration to determine the type of border to draw.

public enum ButtonBorderStyle {
 None = 0,
 Dotted = 1,
 Dashed = 2,
 Solid = 3,
 Inset = 4,
 Outset = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ButtonBorderStyle

Passed To

ControlPaint.DrawBorder()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ButtonState serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by various ControlPaint methods that deal with drawing buttons, to specify the state in which
the button imagery should be drawn.

public enum ButtonState {
 Normal = 0x00000000,
 Inactive = 0x00000100,
 Pushed = 0x00000200,
 Checked = 0x00000400,
 Flat = 0x00004000,
 All = 0x00004700
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ButtonState

Passed To

ControlPaint.{DrawButton(), DrawCaptionButton(), DrawCheckBox(), DrawComboButton(), DrawMixedCheckBox(), DrawRadioButton(),
DrawScrollButton()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CaptionButton serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the various types of window caption button that the system knows how to render (e.g., the close
button). It is used by the ControlPaint.DrawCaptionButton() method to specify the imagery to be drawn.

public enum CaptionButton {
 Close = 0,
 Minimize = 1,
 Maximize = 2,
 Restore = 3,
 Help = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CaptionButton

Passed To

ControlPaint.DrawCaptionButton()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CharacterCasing serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration allows you to specify that a TextBox control should force the case of characters typed into it, through
the TextBox.CharacterCasing property.

public enum CharacterCasing {
 Normal = 0,
 Upper = 1,
 Lower = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CharacterCasing

Returned By

TextBox.CharacterCasing

Passed To

TextBox.CharacterCasing
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control, derived from ButtonBase, represents a checkable option box. It can represent a two- or ThreeState checkbox.
There are two accessors to get the checked state: Checked (a Boolean for a two-state box) and CheckState (Checked,
Unchecked, and Indeterminate for a three-state box). You can handle the CheckedChanged and CheckStateChanged events
that are raised when these properties are modified.

In addition, you can specify whether the box should AutoCheck when it is clicked (the alternative being to handle the Click
event and set the state yourself), and whether the check should appear to the left or the right of the descriptive text
(using the CheckAlign property).

Compare this to RadioButton for the selection of one option from several.

public class CheckBox : ButtonBase {
// Public Constructors
 public CheckBox();
// Public Instance Properties
 public Appearance Appearance{set; get; }
 public bool AutoCheck{set; get; }
 public ContentAlignment CheckAlign{set; get; }
 public bool Checked{set; get; }
 public CheckState CheckState{set; get; }
 public override ContentAlignment TextAlign{set; get; } // overrides ButtonBase
 public bool ThreeState{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides ButtonBase
 protected override Size DefaultSize{get; } // overrides ButtonBase
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides ButtonBase
 protected virtual void OnAppearanceChanged(EventArgs e);
 protected virtual void OnCheckedChanged(EventArgs e);
 protected virtual void OnCheckStateChanged(EventArgs e);
 protected override void OnClick(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnMouseUp(MouseEventArgs mevent); // overrides ButtonBase
 protected override bool ProcessMnemonic(char charCode); // overrides Control
// Events
 public event EventHandler AppearanceChanged;
 public event EventHandler CheckedChanged;
 public event EventHandler CheckStateChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ButtonBase CheckBox
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckBox.CheckBoxAccessibleObject marshal by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use and should not be called from your own code.

public class CheckBox.CheckBoxAccessibleObject : ButtonBaseAccessibleObject {
// Public Constructors
 public CheckBox.CheckBoxAccessibleObject(Control owner);
// Public Instance Properties
 public override string DefaultAction{get; } // overrides Control.ControlAccessibleObject
 public override AccessibleRole Role{get; } // overrides Control.ControlAccessibleObject
 public override AccessibleStates State{get; } // overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ControlAccessibleObject ButtonBaseAccessibleObject CheckBoxAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckedListBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This control, derived from ListBox, provides a list of items with a check beside each one, providing an alternative
selection mechanism. It extends the base listbox by providing you with two collection accessors: CheckedItemCollection,
which returns the set of all the checked items in the list, and CheckedIndexCollection, which returns a set containing the
index of each checked item in the list. You can then use the GetItemChecked() and GetItemCheckState() methods to
determine the actual check state for the item.

You can support either two- or three-state checkboxes, and ThreeDCheckBoxes, or flat ones. You can also choose whether
the item is checked when it is selected, or whether the checkbox itself must be clicked.

public class CheckedListBox : ListBox {
// Public Constructors
 public CheckedListBox();
// Public Instance Properties
 public CheckedIndexCollection CheckedIndices{get; }
 public CheckedItemCollection CheckedItems{get; }
 public bool CheckOnClick{set; get; }
 public override DrawMode DrawMode{set; get; } // overrides ListBox
 public override int ItemHeight{set; get; } // overrides ListBox
 public ObjectCollection Items{get; } // overrides ListBox
 public override SelectionMode SelectionMode{set; get; } // overrides ListBox
 public bool ThreeDCheckBoxes{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides ListBox
// Public Instance Methods
 public bool GetItemChecked(int index);
 public CheckState GetItemCheckState(int index);
 public void SetItemChecked(int index, bool value);
 public void SetItemCheckState(int index, CheckState value);
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Control
 protected override ObjectCollection CreateItemCollection(); // overrides ListBox
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected override void OnClick(EventArgs e); // overrides Control
 protected override void OnDrawItem(DrawItemEventArgs e); // overrides ListBox
 protected override void OnFontChanged(EventArgs e); // overrides ListBox
 protected override void OnHandleCreated(EventArgs e); // overrides ListBox
 protected virtual void OnItemCheck(ItemCheckEventArgs ice);
 protected override void OnKeyPress(KeyPressEventArgs e); // overrides Control
 protected override void OnMeasureItem(MeasureItemEventArgs e); // overrides ListBox
 protected override void OnSelectedIndexChanged(EventArgs e); // overrides ListBox
 protected override void WmReflectCommand(ref Message m); // overrides ListBox
 protected override void WndProc(ref Message m); // overrides ListBox
// Events
 public event EventHandler Click; // overrides ListBox
 public event DrawItemEventHandler DrawItem; // overrides ListBox
 public event ItemCheckEventHandler ItemCheck;
 public event MeasureItemEventHandler MeasureItem; // overrides ListBox
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ListControl ListBox CheckedListBox

Passed To

ObjectCollection.ObjectCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckedListBox.CheckedIndexCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class is used to specify the list of checked indexes in the CheckedListBox control.

public class CheckedListBox.CheckedIndexCollection : IList, ICollection, IEnumerable {
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public int this{get; }
// Public Instance Methods
 public bool Contains(int index);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(int index);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckedListBox.CheckedItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class is used to specify the list of checked items in the CheckedListBox control.

public class CheckedListBox.CheckedItemCollection : IList, ICollection, IEnumerable {
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public object this{set; get; }
// implements IList
// Public Instance Methods
 public bool Contains(object item); // implements IList
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(object item); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckedListBox.ObjectCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of items in a CheckedListBox.

public class CheckedListBox.ObjectCollection : ObjectCollection {
// Public Constructors
 public CheckedListBox.ObjectCollection(CheckedListBox owner);
// Public Instance Methods
 public int Add(object item, bool isChecked);
 public int Add(object item, CheckState check);
}

Hierarchy

System.Object ObjectCollection(System.Collections.ILis, System.Collections.ICollection, System.Collections.IEnumerable)
ObjectCollection

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CheckState serializable

System.Windows.Forms
(system.windows.forms.dll) enum

Used by CheckBox and CheckedListBox, this enumeration determines whether an item is Checked, Unchecked, or
Indeterminate.

public enum CheckState {
 Unchecked = 0,
 Checked = 1,
 Indeterminate = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
CheckState

Returned By

CheckBox.CheckState, CheckedListBox.GetItemCheckState(), ItemCheckEventArgs.{CurrentValue, NewValue}

Passed To

CheckBox.CheckState, CheckedListBox.SetItemCheckState(), ObjectCollection.Add(), ItemCheckEventArgs.{ItemCheckEventArgs(),
NewValue}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Clipboard

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class allows you to put data onto (SetDataObject()) and get data from (GetDataObject()) the clipboard. See IDataObject
and DataObject for information on how to encapsulate data for the clipboard and drag-and-drop operations.

public sealed class Clipboard {
// Public Static Methods
 public static IDataObject GetDataObject();
 public static void SetDataObject(object data);
 public static void SetDataObject(object data, bool copy);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorDepth serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the number of colors in an image in an ImageList control (through the ImageList.ColorDepth
property).

public enum ColorDepth {
 Depth4Bit = 4,
 Depth8Bit = 8,
 Depth16Bit = 16,
 Depth24Bit = 24,
 Depth32Bit = 32
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ColorDepth

Returned By

ImageList.ColorDepth

Passed To

ImageList.ColorDepth

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColorDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This common dialog allows you to present a standard interface to allow the user to select and define a color. You can
programmatically show or hide the custom color definition part of the dialog by default by specifying the FullOpen
property, and you can predefine the set of custom colors by using the CustomColors property. Unfortunately, this betrays
its interop origins, because the colors have to be specified as Int32 values encapsulating the ARGB color, rather than as
an array of System.Drawing.Color values.

You can retrieve the user's selection through the System.Drawing.Color property.

public class ColorDialog : CommonDialog {
// Public Constructors
 public ColorDialog();
// Public Instance Properties
 public virtual bool AllowFullOpen{set; get; }
 public virtual bool AnyColor{set; get; }
 public Color Color{set; get; }
 public int[] CustomColors{set; get; }
 public virtual bool FullOpen{set; get; }
 public virtual bool ShowHelp{set; get; }
 public virtual bool SolidColorOnly{set; get; }
// Protected Instance Properties
 protected virtual IntPtr Instance{get; }
 protected virtual int Options{get; }
// Public Instance Methods
 public override void Reset(); // overrides CommonDialog
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override bool RunDialog(IntPtr hwndOwner); // overrides CommonDialog
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog ColorDialog
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColumnClickEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This System.EventArgs class is sent as the data with the ColumnClick event from the ListView control, when one of the
header items is clicked. It contains the Column index of the clicked header in the ListView object's Columns collection.

public class ColumnClickEventArgs : EventArgs {
// Public Constructors
 public ColumnClickEventArgs(int column);
// Public Instance Properties
 public int Column{get; }
}

Hierarchy

System.Object System.EventArgs ColumnClickEventArgs

Passed To

ColumnClickEventHandler.{BeginInvoke(), Invoke()}, ListView.OnColumnClick()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColumnClickEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate used for the ListView.ColumnClick event.

public delegate void ColumnClickEventHandler(object sender, ColumnClickEventArgs e);

Associated Events

ListView.ColumnClick()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColumnHeader marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the heading of a column in a ListView control. Headers are added to a ListView through its Columns
property, using the Add() method.

You can specify the Text to use to label the column, and how it is to be aligned horizontally within the column
(TextAlign). You do not receive events directly from the header; instead, you should monitor the ListView class for
appropriate notifications (e.g., the ColumnClick event).

public class ColumnHeader : System.ComponentModel.Component : ICloneable {
// Public Constructors
 public ColumnHeader();
// Public Instance Properties
 public int Index{get; }
 public ListView ListView{get; }
 public string Text{set; get; }
 public HorizontalAlignment TextAlign{set; get; }
 public int Width{set; get; }
// Public Instance Methods
 public object Clone(); // implements ICloneable
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) ColumnHeader(System.ICloneable)

Returned By

ColumnHeaderCollection.this

Passed To

ColumnHeaderCollection.{Add(), AddRange(), Contains(), IndexOf(), Insert(), Remove()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ColumnHeaderStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

Used by ListView.HeaderStyle to determine whether the headers are clickable.

public enum ColumnHeaderStyle {
 None = 0,
 Nonclickable = 1,
 Clickable = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ColumnHeaderStyle

Returned By

ListView.HeaderStyle

Passed To

ListView.HeaderStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComboBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This control represents an edit box with a drop-down list—a standard Win32 combobox. It extends the base ListControl
that supports a variety of list-like controls. In addition to the standard control facilities, you can set the DropDownStyle
property, which determines whether the edit box allows you to type into it and whether the list view is always visible,
and set the DropDownWidth property of the drop-down list. You can set the IntegralHeight property, which can
automatically adjust the height of the control to ensure that only whole items are displayed. The MaxDropDownItems
property sets the maximum number of items that will be displayed in the drop-down list (without scrolling), and the
MaxLength property sets the number of characters allowed in the edit field.

The selected item can be retrieved through the SelectedItem and SelectedIndex properties, which should not be confused
with the SelectedText property, which gets the selected text in the edit field.

You can add and remove objects from the Items collection to alter the contents of the listbox, and the very useful
members FindString() and FindStringExact() can help you locate a particular item in the list. Finally, you can select the text
in the edit field using Select() or SelectAll().

Unfortunately, the implementation of ComboBox in Version 1.0 of the framework is something of a minor fiasco. The edit
control doesn't support the standard pop-up menus, and the selection and edit behavior is idiosyncratic to say the least
(especially when hosted on a TabPage). Microsoft has indicated that this will almost certainly be improved in the next
release.

public class ComboBox : ListControl { // Public Constructors
 public ComboBox(); // Public Instance Properties
 public override Color BackColor{set; get; } // overrides Control
 public override Image BackgroundImage{set; get; } // overrides Control
 public DrawMode DrawMode{set; get; }
 public ComboBoxStyle DropDownStyle{set; get; }
 public int DropDownWidth{set; get; }
 public bool DroppedDown{set; get; }
 public override bool Focused{get; } // overrides Control
 public override Color ForeColor{set; get; } // overrides Control
 public bool IntegralHeight{set; get; }
 public int ItemHeight{set; get; }
 public ObjectCollection Items{get; }
 public int MaxDropDownItems{set; get; }
 public int MaxLength{set; get; }
 public int PreferredHeight{get; }
 public override int SelectedIndex{set; get; } // overrides ListControl
 public object SelectedItem{set; get; }
 public string SelectedText{set; get; }
 public int SelectionLength{set; get; }
 public int SelectionStart{set; get; }
 public bool Sorted{set; get; }
 public override string Text{set; get; } // overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides Control
 protected override Size DefaultSize{get; } // overrides Control
// Public Instance Methods
 public void BeginUpdate();
 public void EndUpdate();
 public int FindString(string s);
 public int FindString(string s, int startIndex);
 public int FindStringExact(string s);
 public int FindStringExact(string s, int startIndex);
 public int GetItemHeight(int index);
 public void Select(int start, int length);
 public void SelectAll();
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected virtual void AddItemsCore(object[] value);
 protected override void Dispose(bool disposing); // overrides Control
 protected override bool IsInputKey(Keys keyData); // overrides ListControl
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected override void OnDataSourceChanged(EventArgs e); // overrides ListControl
 protected override void OnDisplayMemberChanged(EventArgs e); // overrides ListControl
 protected virtual void OnDrawItem(DrawItemEventArgs e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void OnDrawItem(DrawItemEventArgs e);
 protected virtual void OnDropDown(EventArgs e);
 protected virtual void OnDropDownStyleChanged(EventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnForeColorChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected override void OnKeyPress(KeyPressEventArgs e); // overrides Control
 protected virtual void OnMeasureItem(MeasureItemEventArgs e);
 protected override void OnParentBackColorChanged(EventArgs e); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected override void OnSelectedIndexChanged(EventArgs e); // overrides ListControl
 protected virtual void OnSelectedItemChanged(EventArgs e);
 protected virtual void OnSelectionChangeCommitted(EventArgs e);
 protected override void RefreshItem(int index); // overrides ListControl
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void SetItemCore(int index, object value); // overrides ListControl
 protected override void SetItemsCore(System.Collections.IList value); // overrides ListControl
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event DrawItemEventHandler DrawItem;
 public event EventHandler DropDown;
 public event EventHandler DropDownStyleChanged;
 public event MeasureItemEventHandler MeasureItem;
 public event PaintEventHandler Paint; // overrides Control
 public event EventHandler SelectedIndexChanged;
 public event EventHandler SelectionChangeCommitted;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ListControl ComboBox

Passed To

ChildAccessibleObject.ChildAccessibleObject(), ObjectCollection.ObjectCollection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComboBox.ChildAccessibleObject marshal by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class ComboBox.ChildAccessibleObject : AccessibleObject {
// Public Constructors
 public ComboBox.ChildAccessibleObject(ComboBox owner, IntPtr handle);
// Public Instance Properties
 public override string Name{get; } // overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ChildAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComboBox.ObjectCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of items in a ComboBox.

public class ComboBox.ObjectCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ComboBox.ObjectCollection(ComboBox owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual object this{set; get; }
// implements IList
// Public Instance Methods
 public int Add(object item); // implements IList
 public void AddRange(object[] items);
 public void Clear(); // implements IList
 public bool Contains(object value); // implements IList
 public void CopyTo(object[] dest, int arrayIndex);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(object value); // implements IList
 public void Insert(int index, object item); // implements IList
 public void Remove(object value); // implements IList
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComboBoxStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by ComboBox.DropDownStyle to determine the appearance of the combobox.

public enum ComboBoxStyle {
 Simple = 0,
 DropDown = 1,
 DropDownList = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ComboBoxStyle

Returned By

ComboBox.DropDownStyle

Passed To

ComboBox.DropDownStyle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CommonDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This is the base class for the set of common system dialogs, such as the File and Print dialogs. You should not use this
class directly.

public abstract class CommonDialog : System.ComponentModel.Component {
// Public Constructors
 public CommonDialog();
// Public Instance Methods
 public abstract void Reset();
 public DialogResult ShowDialog();
 public DialogResult ShowDialog(IWin32Window owner);
// Protected Instance Methods
 protected virtual IntPtr HookProc(IntPtr hWnd, int msg, IntPtr wparam, IntPtr lparam);
 protected virtual void OnHelpRequest(EventArgs e);
 protected virtual IntPtr OwnerWndProc(IntPtr hWnd, int msg, IntPtr wparam, IntPtr lparam);
 protected abstract bool RunDialog(IntPtr hwndOwner);
// Events
 public event EventHandler HelpRequest;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog

Subclasses

ColorDialog, FileDialog, FontDialog, PageSetupDialog, PrintDialog

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ContainerControl marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This control extends ScrollableControl and also implements the IContainerControl interface. It provides the base
functionality required to manage the focus control and tab ordering for the controls that it hosts. It also adds support
for a ParentForm member, which provides the root containing form for the control, and the ActiveControl (implementing
the IContainerControl interface), which determines which of the hosted controls has the focus.

Note that the ContainerControl never takes the focus itself. It always passes it through to one of the contained controls.

You would not normally derive your own containers from this class. Instead, you should look at UserControl or Form.

public class ContainerControl : ScrollableControl : IContainerControl {
// Public Constructors
 public ContainerControl();
// Public Instance Properties
 public Control ActiveControl{set; get; }
// implements IContainerControl
 public override BindingContext BindingContext{set; get; } // overrides Control
 public Form ParentForm{get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides ScrollableControl
// Public Instance Methods
 public bool Validate();
// Protected Instance Methods
 protected override void AdjustFormScrollbars(bool displayScrollbars); // overrides ScrollableControl
 protected override void Dispose(bool disposing); // overrides Control
 protected override void OnControlRemoved(ControlEventArgs e); // overrides Control
 protected override void OnCreateControl(); // overrides Control
 protected override bool ProcessDialogChar(char charCode); // overrides Control
 protected override bool ProcessDialogKey(Keys keyData); // overrides Control
 protected override bool ProcessMnemonic(char charCode); // overrides Control
 protected virtual bool ProcessTabKey(bool forward);
 protected override void Select(bool directed, bool forward); // overrides Control
 protected virtual void UpdateDefaultButton();
 protected override void WndProc(ref Message m); // overrides ScrollableControl
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)

Subclasses

Form, PropertyGrid, UpDownBase, UserControl

Returned By

AxHost.ContainingControl, ErrorProvider.ContainerControl

Passed To

AxHost.ContainingControl, ErrorProvider.{ContainerControl, ErrorProvider()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ContentsResizedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

These are the EventArgs for the ContentsResized event, raised by the RichTextBox class when a contained element is
resized. It allows you to retrieve the NewRectangle for the contents.

public class ContentsResizedEventArgs : EventArgs {
// Public Constructors
 public ContentsResizedEventArgs(System.Drawing.Rectangle newRectangle);
// Public Instance Properties
 public Rectangle NewRectangle{get; }
}

Hierarchy

System.Object System.EventArgs ContentsResizedEventArgs

Passed To

ContentsResizedEventHandler.{BeginInvoke(), Invoke()}, RichTextBox.OnContentsResized()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ContentsResizedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for RichTextBox.ContentsResized.

public delegate void ContentsResizedEventHandler(object sender, ContentsResizedEventArgs e);

Associated Events

RichTextBox.ContentsResized()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ContextMenu marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

Derived from Menu, this represents a pop-up menu. Extending the base functionality, you can Show() the menu at a
particular System.Drawing.Point, and you can set the owner Control, which you can retrieve through the SourceControl
property.

public class ContextMenu : Menu {
// Public Constructors
 public ContextMenu();
 public ContextMenu(MenuItem[] menuItems);
// Public Instance Properties
 public virtual RightToLeft RightToLeft{set; get; }
 public Control SourceControl{get; }
// Public Instance Methods
 public void Show(Control control, System.Drawing.Point pos);
// Protected Instance Methods
 protected internal virtual void OnPopup(EventArgs e);
// Events
 public event EventHandler Popup;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Menu ContextMenu

Returned By

Control.ContextMenu, Menu.GetContextMenu(), NotifyIcon.ContextMenu

Passed To

Control.ContextMenu, NotifyIcon.ContextMenu

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Control marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This is the fundamental base class for all the controls and forms in the framework.

After constructing a Control, you can add it to the Controls collection of a parent control and Show() it. (You can
subsequently Hide() it again or change the Visible property.) You can also toggle whether it is Enabled.

Adding it to the Controls collection causes its Parent property to be set appropriately. HasChildren determines whether this
control contains any children itself. Its index in the parent collection also determines its position in the z-order. You can
use BringToFront() and SendToBack() for gross control of this feature.

TopLevelControl returns the top-level container—this is (usually) the outermost Form in which you will find the control.
Note that if the control is contained in a TabPage that is not currently showing in the TabControl, the TopLevelControl
property will return null.

You can set a ForeColor, BackColor, and Font with which to paint the control imagery (in particular, the Text). If you do not
set these explicitly, it will inherit the AmbientProperties from its container. If all else fails, it will use the DefaultForeColor,
DefaultBackColor, or DefaultFont. You can also specify a BackgroundImage that will be tiled across the control. Should the
system theme or colors change, you can bind to the SystemColorsChanged event to update the controls appearance.

The general shape of the control can be specified with the Bounds property and SetBounds() method. To support
nonrectangular controls you can assign a custom Region. Anything outside that region will be truly transparent.

You can query the ClientRectangle and the DisplayRectangle. In the base implementation, these are equivalent, but derived
classes may return a smaller DisplayRectangle to account for some additional imagery when laying out children (a
GroupBox-like control might do this, for example).

The Anchor and Dock properties are used by the default layout manager to determine how the control is moved and
resized within it parent container. (See AnchorStyles and DockStyle for more details).

SuspendLayout() and ResumeLayout() temporarily disable (or reenable) layout management, and you can bind to the Layout
event to provide your own layout handling. PerformLayout() forces the control to refresh the layout. You can also handle
the Resize, Move, SizeChanged, and LocationChanged events if you are only interested in the controls bounding box, rather
than full layout support. You can also Scale() the control and all its children by some factor. This is used by
Form.AutoScale to manage the resizing of a form to allow for different sizes of default font.

Several members deal with the translation of coordinates from one system to another: RectangleToClient(), PointToClient(),
RectangleToScreen(), and PointToScreen().

To support non-western scripts, you can also change the RightToLeft mode, and the ImeMode. Note that not all derived
classes deal with these properties very well, but you should be aware of the need to support them when rendering your
own custom controls.

Some controls can be selected or focused in their own right, whereas others (typically container controls) always pass
their selection/focus on to another (such as a child). CanSelect and CanFocus determine whether this is the case. You can
determine if the control or one of its children has the focus with the ContainsFocus property. If the control itself has the
focus, the Focused property is true. You can set the Focus() to the control or Select() it. If you want to pass the activation
on, call SelectNextControl() to give it up to the control with the next TabIndex. The TabIndex property controls the standard
tab order, in conjunction with the TabStop flag. To track the selection/focus, bind to the Enter and Leave, or LostFocus and
GotFocus events. The next item in the tab order is returned from the GetNextControl() method.

A right-click can be used to show a particular ContextMenu. Alternatively, you can handle the MouseDown, MouseUp,
MouseWheel, MouseMove, MouseLeave, MouseEnter, and MouseHover events to deal with mouse activity. Note that you will
only ever get one MouseHover event for each MouseEnter/MouseLeave pair. See MouseEventArgs for more information.

Similarly, keyboard support is provided via the KeyDown, KeyPress, and KeyUp events. See the KeyEventArgs and
KeyPressEventArgs for more on this.

The user input can be validated by binding to the Validating and Validated events. If CausesValidation is true, any controls
that require it will be validated when this control receives the focus. This slightly roundabout route to validation means
your control must necessarily lose the focus to validate.

To support drag and drop, you can set the AllowDrop property to accept data dragged into the control. Handle the
DragEnter, DragLeave, QueryContinueDrag, and DragDrop events to manage the drag-drop process. To initiate a drag from
the control, simply call DoDragDrop(). The framework will pump messages for you until the drag is completed. See
DataObject and DragEventArgs for more information on drag and drop.

It is important to know that Control objects have a strong thread affinity. While you can create controls on any thread,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is important to know that Control objects have a strong thread affinity. While you can create controls on any thread,
you cannot call any members from a thread other than that on which it was created. Even if you think you're getting
away with it, don't do it! InvokeRequired determines whether you must use the Invoke() (or BeginInvoke()/EndInvoke())
methods first to marshal the call back onto the correct thread, or whether it can be called directly.

To handle custom painting for your control, you can override the protected OnPaint() and OnPaintBackground() members or
bind to the Paint event. (Note that there is no PaintBackground event.) See PaintEventArgs for more information on this. At
any time, you can use the CreateGraphics() method to create a graphics surface on which to paint (or measure) your
imagery. You can Invalidate() portions of the control for repainting and force an immediate repaint with the Update()
method, although updating can swiftly become inefficient, as the operating system already attempts to optimize the
process.

public class Control : System.ComponentModel.Component :
IOleControl, IOleObject, IOleInPlaceObject,
 IOleInPlaceActiveObject, IOleWindow, IViewObject, IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag,
 IPersistStorage, IQuickActivate, System.ComponentModel.ISynchronizeInvoke, IWin32Window {
// Public Constructors
 public Control();
 public Control(Control parent, string text);
 public Control(Control parent, string text, int left, int top, int width, int height);
 public Control(string text);
 public Control(string text, int left, int top, int width, int height);
// Public Static Properties
 public static Color DefaultBackColor{get; }
 public static Font DefaultFont{get; }
 public static Color DefaultForeColor{get; }
 public static Keys ModifierKeys{get; }
 public static MouseButtons MouseButtons{get; }
 public static Point MousePosition{get; }
// Public Instance Properties
 public AccessibleObject AccessibilityObject{get; }
 public string AccessibleDefaultActionDescription{set; get; }
 public string AccessibleDescription{set; get; }
 public string AccessibleName{set; get; }
 public AccessibleRole AccessibleRole{set; get; }
 public virtual bool AllowDrop{set; get; }
 public virtual AnchorStyles Anchor{set; get; }
 public virtual Color BackColor{set; get; }
 public virtual Image BackgroundImage{set; get; }
 public virtual BindingContext BindingContext{set; get; }
 public int Bottom{get; }
 public Rectangle Bounds{set; get; }
 public bool CanFocus{get; }
 public bool CanSelect{get; }
 public bool Capture{set; get; }
 public bool CausesValidation{set; get; }
 public Rectangle ClientRectangle{get; }
 public Size ClientSize{set; get; }
 public string CompanyName{get; }
 public bool ContainsFocus{get; }
 public virtual ContextMenu ContextMenu{set; get; }
 public ControlCollection Controls{get; }
 public bool Created{get; }
 public virtual Cursor Cursor{set; get; }
 public ControlBindingsCollection DataBindings{get; }
 public virtual Rectangle DisplayRectangle{get; }
 public bool Disposing{get; }
 public virtual DockStyle Dock{set; get; }
 public bool Enabled{set; get; }
 public virtual bool Focused{get; }
 public virtual Font Font{set; get; }
 public virtual Color ForeColor{set; get; }
 public IntPtr Handle{get; }
// implements IWin32Window
 public bool HasChildren{get; }
 public int Height{set; get; }
 public ImeMode ImeMode{set; get; }
 public bool InvokeRequired{get; }
// implements System.ComponentModel.ISynchronizeInvoke
 public bool IsAccessible{set; get; }
 public bool IsDisposed{get; }
 public bool IsHandleCreated{get; }
 public int Left{set; get; }
 public Point Location{set; get; }
 public string Name{set; get; }
 public Control Parent{set; get; }
 public string ProductName{get; }
 public string ProductVersion{get; }
 public bool RecreatingHandle{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public bool RecreatingHandle{get; }
 public Region Region{set; get; }
 public int Right{get; }
 public virtual RightToLeft RightToLeft{set; get; }
 public override ISite Site{set; get; } // overrides System.ComponentModel.Component
 public Size Size{set; get; }
 public int TabIndex{set; get; }
 public bool TabStop{set; get; }
 public object Tag{set; get; }
 public virtual string Text{set; get; }
 public int Top{set; get; }
 public Control TopLevelControl{get; }
 public bool Visible{set; get; }
 public int Width{set; get; }
 public IWindowTarget WindowTarget{set; get; }
// Protected Instance Properties
 protected virtual CreateParams CreateParams{get; }
 protected virtual ImeMode DefaultImeMode{get; }
 protected virtual Size DefaultSize{get; }
 protected int FontHeight{set; get; }
 protected bool RenderRightToLeft{get; }
 protected bool ResizeRedraw{set; get; }
 protected virtual bool ShowFocusCues{get; }
 protected bool ShowKeyboardCues{get; }
// Public Static Methods
 public static Control FromChildHandle(IntPtr handle);
 public static Control FromHandle(IntPtr handle);
 public static bool IsMnemonic(char charCode, string text);
// Protected Static Methods
 protected static bool ReflectMessage(IntPtr hWnd, ref Message m);
// Public Instance Methods
 public IAsyncResult BeginInvoke(Delegate method);
 public IAsyncResult BeginInvoke(Delegate method,
 object[] args); // implements System.ComponentModel.ISynchronizeInvoke
 public void BringToFront();
 public bool Contains(Control ctl);
 public void CreateControl();
 public Graphics CreateGraphics();
 public DragDropEffects DoDragDrop(object data, DragDropEffects allowedEffects);
 public object EndInvoke(IAsyncResult asyncResult); // implements System.ComponentModel.ISynchronizeInvoke
 public Form FindForm();
 public bool Focus();
 public Control GetChildAtPoint(System.Drawing.Point pt);
 public IContainerControl GetContainerControl();
 public Control GetNextControl(Control ctl, bool forward);
 public void Hide();
 public void Invalidate();
 public void Invalidate(bool invalidateChildren);
 public void Invalidate(System.Drawing.Rectangle rc);
 public void Invalidate(System.Drawing.Rectangle rc, bool invalidateChildren);
 public void Invalidate(System.Drawing.Region region);
 public void Invalidate(System.Drawing.Region region, bool invalidateChildren);
 public object Invoke(Delegate method);
 public object Invoke(Delegate method, object[] args); // implements System.ComponentModel.ISynchronizeInvoke
 public void PerformLayout();
 public void PerformLayout(Control affectedControl, string affectedProperty);
 public Point PointToClient(System.Drawing.Point p);
 public Point PointToScreen(System.Drawing.Point p);
 public virtual bool PreProcessMessage(ref Message msg);
 public Rectangle RectangleToClient(System.Drawing.Rectangle r);
 public Rectangle RectangleToScreen(System.Drawing.Rectangle r);
 public virtual void Refresh();
 public virtual void ResetBackColor();
 public void ResetBindings();
 public virtual void ResetCursor();
 public virtual void ResetFont();
 public virtual void ResetForeColor();
 public void ResetImeMode();
 public virtual void ResetRightToLeft();
 public virtual void ResetText();
 public void ResumeLayout();
 public void ResumeLayout(bool performLayout);
 public void Scale(float ratio);
 public void Scale(float dx, float dy);
 public void Select();
 public bool SelectNextControl(Control ctl, bool forward, bool tabStopOnly, bool nested, bool wrap);
 public void SendToBack();
 public void SetBounds(int x, int y, int width, int height);
 public void SetBounds(int x, int y, int width, int height, BoundsSpecified specified);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void SetBounds(int x, int y, int width, int height, BoundsSpecified specified);
 public void Show();
 public void SuspendLayout();
 public void Update();
// Protected Instance Methods
 protected void AccessibilityNotifyClients(AccessibleEvents accEvent, int childID);
 protected virtual AccessibleObject CreateAccessibilityInstance();
 protected virtual ControlCollection CreateControlsInstance();
 protected virtual void CreateHandle();
 protected virtual void DefWndProc(ref Message m);
 protected virtual void DestroyHandle();
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
 protected bool GetStyle(ControlStyles flag);
 protected bool GetTopLevel();
 protected virtual void InitLayout();
 protected void InvokeGotFocus(Control toInvoke, EventArgs e);
 protected void InvokeLostFocus(Control toInvoke, EventArgs e);
 protected void InvokeOnClick(Control toInvoke, EventArgs e);
 protected void InvokePaint(Control c, PaintEventArgs e);
 protected void InvokePaintBackground(Control c, PaintEventArgs e);
 protected virtual bool IsInputChar(char charCode);
 protected virtual bool IsInputKey(Keys keyData);
 protected virtual void NotifyInvalidate(System.Drawing.Rectangle invalidatedArea);
 protected virtual void OnBackColorChanged(EventArgs e);
 protected virtual void OnBackgroundImageChanged(EventArgs e);
 protected virtual void OnBindingContextChanged(EventArgs e);
 protected virtual void OnCausesValidationChanged(EventArgs e);
 protected virtual void OnChangeUICues(UICuesEventArgs e);
 protected virtual void OnClick(EventArgs e);
 protected virtual void OnContextMenuChanged(EventArgs e);
 protected virtual void OnControlAdded(ControlEventArgs e);
 protected virtual void OnControlRemoved(ControlEventArgs e);
 protected virtual void OnCreateControl();
 protected virtual void OnCursorChanged(EventArgs e);
 protected virtual void OnDockChanged(EventArgs e);
 protected virtual void OnDoubleClick(EventArgs e);
 protected virtual void OnDragDrop(DragEventArgs drgevent);
 protected virtual void OnDragEnter(DragEventArgs drgevent);
 protected virtual void OnDragLeave(EventArgs e);
 protected virtual void OnDragOver(DragEventArgs drgevent);
 protected virtual void OnEnabledChanged(EventArgs e);
 protected virtual void OnEnter(EventArgs e);
 protected virtual void OnFontChanged(EventArgs e);
 protected virtual void OnForeColorChanged(EventArgs e);
 protected virtual void OnGiveFeedback(GiveFeedbackEventArgs gfbevent);
 protected virtual void OnGotFocus(EventArgs e);
 protected virtual void OnHandleCreated(EventArgs e);
 protected virtual void OnHandleDestroyed(EventArgs e);
 protected virtual void OnHelpRequested(HelpEventArgs hevent);
 protected virtual void OnImeModeChanged(EventArgs e);
 protected virtual void OnInvalidated(InvalidateEventArgs e);
 protected virtual void OnKeyDown(KeyEventArgs e);
 protected virtual void OnKeyPress(KeyPressEventArgs e);
 protected virtual void OnKeyUp(KeyEventArgs e);
 protected virtual void OnLayout(LayoutEventArgs levent);
 protected virtual void OnLeave(EventArgs e);
 protected virtual void OnLocationChanged(EventArgs e);
 protected virtual void OnLostFocus(EventArgs e);
 protected virtual void OnMouseDown(MouseEventArgs e);
 protected virtual void OnMouseEnter(EventArgs e);
 protected virtual void OnMouseHover(EventArgs e);
 protected virtual void OnMouseLeave(EventArgs e);
 protected virtual void OnMouseMove(MouseEventArgs e);
 protected virtual void OnMouseUp(MouseEventArgs e);
 protected virtual void OnMouseWheel(MouseEventArgs e);
 protected virtual void OnMove(EventArgs e);
 protected virtual void OnNotifyMessage(Message m);
 protected virtual void OnPaint(PaintEventArgs e);
 protected virtual void OnPaintBackground(PaintEventArgs pevent);
 protected virtual void OnParentBackColorChanged(EventArgs e);
 protected virtual void OnParentBackgroundImageChanged(EventArgs e);
 protected virtual void OnParentBindingContextChanged(EventArgs e);
 protected virtual void OnParentChanged(EventArgs e);
 protected virtual void OnParentEnabledChanged(EventArgs e);
 protected virtual void OnParentFontChanged(EventArgs e);
 protected virtual void OnParentForeColorChanged(EventArgs e);
 protected virtual void OnParentRightToLeftChanged(EventArgs e);
 protected virtual void OnParentVisibleChanged(EventArgs e);
 protected virtual void OnQueryContinueDrag(QueryContinueDragEventArgs qcdevent);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void OnQueryContinueDrag(QueryContinueDragEventArgs qcdevent);
 protected virtual void OnResize(EventArgs e);
 protected virtual void OnRightToLeftChanged(EventArgs e);
 protected virtual void OnSizeChanged(EventArgs e);
 protected virtual void OnStyleChanged(EventArgs e);
 protected virtual void OnSystemColorsChanged(EventArgs e);
 protected virtual void OnTabIndexChanged(EventArgs e);
 protected virtual void OnTabStopChanged(EventArgs e);
 protected virtual void OnTextChanged(EventArgs e);
 protected virtual void OnValidated(EventArgs e);
 protected virtual void OnValidating(System.ComponentModel.CancelEventArgs e);
 protected virtual void OnVisibleChanged(EventArgs e);
 protected virtual bool ProcessCmdKey(ref Message msg, Keys keyData);
 protected virtual bool ProcessDialogChar(char charCode);
 protected virtual bool ProcessDialogKey(Keys keyData);
 protected virtual bool ProcessKeyEventArgs(ref Message m);
 protected internal virtual bool ProcessKeyMessage(ref Message m);
 protected virtual bool ProcessKeyPreview(ref Message m);
 protected virtual bool ProcessMnemonic(char charCode);
 protected void RaiseDragEvent(object key, DragEventArgs e);
 protected void RaiseKeyEvent(object key, KeyEventArgs e);
 protected void RaiseMouseEvent(object key, MouseEventArgs e);
 protected void RaisePaintEvent(object key, PaintEventArgs e);
 protected void RecreateHandle();
 protected void ResetMouseEventArgs();
 protected ContentAlignment RtlTranslateAlignment(System.Drawing.ContentAlignment align);
 protected HorizontalAlignment RtlTranslateAlignment(HorizontalAlignment align);
 protected LeftRightAlignment RtlTranslateAlignment(LeftRightAlignment align);
 protected ContentAlignment RtlTranslateContent(System.Drawing.ContentAlignment align);
 protected HorizontalAlignment RtlTranslateHorizontal(HorizontalAlignment align);
 protected LeftRightAlignment RtlTranslateLeftRight(LeftRightAlignment align);
 protected virtual void ScaleCore(float dx, float dy);
 protected virtual void Select(bool directed, bool forward);
 protected virtual void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified);
 protected virtual void SetClientSizeCore(int x, int y);
 protected void SetStyle(ControlStyles flag, bool value);
 protected void SetTopLevel(bool value);
 protected virtual void SetVisibleCore(bool value);
 protected void UpdateBounds();
 protected void UpdateBounds(int x, int y, int width, int height);
 protected void UpdateBounds(int x, int y, int width, int height, int clientWidth, int clientHeight);
 protected void UpdateStyles();
 protected void UpdateZOrder();
 protected virtual void WndProc(ref Message m);
// Events
 public event EventHandler BackColorChanged;
 public event EventHandler BackgroundImageChanged;
 public event EventHandler BindingContextChanged;
 public event EventHandler CausesValidationChanged;
 public event UICuesEventHandler ChangeUICues;
 public event EventHandler Click;
 public event EventHandler ContextMenuChanged;
 public event ControlEventHandler ControlAdded;
 public event ControlEventHandler ControlRemoved;
 public event EventHandler CursorChanged;
 public event EventHandler DockChanged;
 public event EventHandler DoubleClick;
 public event DragEventHandler DragDrop;
 public event DragEventHandler DragEnter;
 public event EventHandler DragLeave;
 public event DragEventHandler DragOver;
 public event EventHandler EnabledChanged;
 public event EventHandler Enter;
 public event EventHandler FontChanged;
 public event EventHandler ForeColorChanged;
 public event GiveFeedbackEventHandler GiveFeedback;
 public event EventHandler GotFocus;
 public event EventHandler HandleCreated;
 public event EventHandler HandleDestroyed;
 public event HelpEventHandler HelpRequested;
 public event EventHandler ImeModeChanged;
 public event InvalidateEventHandler Invalidated;
 public event KeyEventHandler KeyDown;
 public event KeyPressEventHandler KeyPress;
 public event KeyEventHandler KeyUp;
 public event LayoutEventHandler Layout;
 public event EventHandler Leave;
 public event EventHandler LocationChanged;
 public event EventHandler LostFocus;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public event EventHandler LostFocus;
 public event MouseEventHandler MouseDown;
 public event EventHandler MouseEnter;
 public event EventHandler MouseHover;
 public event EventHandler MouseLeave;
 public event MouseEventHandler MouseMove;
 public event MouseEventHandler MouseUp;
 public event MouseEventHandler MouseWheel;
 public event EventHandler Move;
 public event PaintEventHandler Paint;
 public event EventHandler ParentChanged;
 public event QueryAccessibilityHelpEventHandler QueryAccessibilityHelp;
 public event QueryContinueDragEventHandler QueryContinueDrag;
 public event EventHandler Resize;
 public event EventHandler RightToLeftChanged;
 public event EventHandler SizeChanged;
 public event EventHandler StyleChanged;
 public event EventHandler SystemColorsChanged;
 public event EventHandler TabIndexChanged;
 public event EventHandler TabStopChanged;
 public event EventHandler TextChanged;
 public event EventHandler Validated;
 public event CancelEventHandler Validating;
 public event EventHandler VisibleChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window)

Subclasses

Multiple types

Returned By

Multiple types

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Control.ControlAccessibleObject marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class Control.ControlAccessibleObject : AccessibleObject {
// Public Constructors
 public Control.ControlAccessibleObject(Control ownerControl);
// Public Instance Properties
 public override string DefaultAction{get; } // overrides AccessibleObject
 public override string Description{get; } // overrides AccessibleObject
 public IntPtr Handle{set; get; }
 public override string Help{get; } // overrides AccessibleObject
 public override string KeyboardShortcut{get; } // overrides AccessibleObject
 public override string Name{set; get; } // overrides AccessibleObject
 public Control Owner{get; }
 public override AccessibleRole Role{get; } // overrides AccessibleObject
// Public Instance Methods
 public override int GetHelpTopic(out string fileName); // overrides AccessibleObject
 public void NotifyClients(AccessibleEvents accEvent);
 public void NotifyClients(AccessibleEvents accEvent, int childID);
 public override string ToString(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ControlAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Control.ControlCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of child Controls in a Control object.

public class Control.ControlCollection : IList, ICollection, IEnumerable, ICloneable {
// Public Constructors
 public Control.ControlCollection(Control owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual Control this{get; }
// Public Instance Methods
 public virtual void Add(Control value);
 public virtual void AddRange(Control[] controls);
 public virtual void Clear(); // implements IList
 public bool Contains(Control control);
 public void CopyTo(Array dest, int index); // implements ICollection
 public override bool Equals(object other); // overrides object
 public int GetChildIndex(Control child);
 public int GetChildIndex(Control child, bool throwException);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public override int GetHashCode(); // overrides object
 public int IndexOf(Control control);
 public virtual void Remove(Control value);
 public void RemoveAt(int index); // implements IList
 public void SetChildIndex(Control child, int newIndex);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlBindingsCollection marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class, derived from BindingsCollection, implements a set of data Binding objects for a Control, and is accessed through
the Control objects DataBindings property. See Binding and its associated classes for more details on the data-binding
framework.

public class ControlBindingsCollection : BindingsCollection {
// Public Instance Properties
 public Control Control{get; }
 public Binding this{get; }
// Public Instance Methods
 public Binding Add(string propertyName, object dataSource, string dataMember);
 public void Add(Binding binding); // overrides BindingsCollection
 public void Clear(); // overrides BindingsCollection
 public void Remove(Binding binding); // overrides BindingsCollection
 public void RemoveAt(int index); // overrides BindingsCollection
// Protected Instance Methods
 protected override void AddCore(Binding dataBinding); // overrides BindingsCollection
 protected override void ClearCore(); // overrides BindingsCollection
 protected override void RemoveCore(Binding dataBinding); // overrides BindingsCollection
}

Hierarchy

System.Object System.MarshalByRefObject BaseCollection(System.Collections.ICollectio, System.Collections.IEnumerable)
 BindingsCollection ControlBindingsCollection

Returned By

Control.DataBindings, PrintPreviewDialog.DataBindings
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

These are the EventArgs for the ControlAdded and ControlRemoved events, raised by a Control when objects are added to, or
removed from, its ControlCollection. You can retrieve the identity of the object affected by using the Control property.

public class ControlEventArgs : EventArgs {
// Public Constructors
 public ControlEventArgs(Control control);
// Public Instance Properties
 public Control Control{get; }
}

Hierarchy

System.Object System.EventArgs ControlEventArgs

Passed To

Control.{OnControlAdded(), OnControlRemoved()}, ControlEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the ControlAdded and ControlRemoved events raised by a Control. (See ControlEventArgs for more
details).

public delegate void ControlEventHandler(object sender, ControlEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlPaint

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class encapsulates a variety of static methods to help you paint your own custom controls and maintain
consistency with the appearance of the rest of the UI. Unfortunately, none of these methods support Windows XP
themes.

Most common UI elements are supported, including caption buttons, resizing grips, buttons, edit fields, comboboxes,
various kinds of flat and 3D borders and frames, focus rectangles, and grids.

In addition, there is a class of methods that will automatically generate the Light(), LightLight(), Dark(), and DarkDark()
versions of a specific System.Drawing.Color. If your control is, say, Red instead of Control, you don't want to use
System.Drawing.SystemColors.ControlDark to paint a dark edge. Instead, use Dark() to retrieve a dark version of Red instead.

Probably the most frequently asked question in Windows.Forms development is "How do I draw a rubberband box/line?"
ControlPaint offers DrawReversibleLine(), DrawReversibleFrame(), and FillReversibleRectangle(). Again, it is worth noting that
Windows XP doesn't use XOR-ed rectangles any more, because of their limitations when painting over a mid-level color,
so you should consider an alternative drawing strategy. One possible approach is to paint a semitransparent rectangle
to represent your selection instead, calling Control.Invalidate() to restore the previous background between updates. This
works best (and flicker free!) if your selection rectangle is painted as part of your Control.OnPaint() override, and your
control has ControlStyles.DoubleBuffer set.

public sealed class ControlPaint {
// Public Static Properties
 public static Color ContrastControlDark{get; }
// Public Static Methods
 public static IntPtr CreateHBitmap16Bit(System.Drawing.Bitmap bitmap, System.Drawing.Color background);
 public static IntPtr CreateHBitmapColorMask(System.Drawing.Bitmap bitmap, IntPtr monochromeMask);
 public static IntPtr CreateHBitmapTransparencyMask(System.Drawing.Bitmap bitmap);
 public static Color Dark(System.Drawing.Color baseColor);
 public static Color Dark(System.Drawing.Color baseColor, float percOfDarkDark);
 public static Color DarkDark(System.Drawing.Color baseColor);
 public static void DrawBorder(System.Drawing.Graphics graphics, System.Drawing.Rectangle bounds,
 System.Drawing.Color color, ButtonBorderStyle style);
 public static void DrawBorder(System.Drawing.Graphics graphics, System.Drawing.Rectangle bounds,
 System.Drawing.Color leftColor, int leftWidth, ButtonBorderStyle leftStyle, System.Drawing.Color topColor, int topWidth,
 ButtonBorderStyle topStyle, System.Drawing.Color rightColor, int rightWidth, ButtonBorderStyle rightStyle,
 System.Drawing.Color bottomColor, int bottomWidth, ButtonBorderStyle bottomStyle);
 public static void DrawBorder3D(System.Drawing.Graphics graphics, int x, int y, int width, int height);
 public static void DrawBorder3D(System.Drawing.Graphics graphics, int x, int y, int width, int height, Border3DStyle style);
 public static void DrawBorder3D(System.Drawing.Graphics graphics, int x, int y, int width, int height, Border3DStyle style,
 Border3DSide sides);
 public static void DrawBorder3D(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle);
 public static void DrawBorder3D(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 Border3DStyle style);
 public static void DrawBorder3D(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 Border3DStyle style, Border3DSide sides);
 public static void DrawButton(System.Drawing.Graphics graphics, int x, int y, int width, int height, ButtonState state);
 public static void DrawButton(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 ButtonState state);
 public static void DrawCaptionButton(System.Drawing.Graphics graphics, int x, int y, int width, int height,
 CaptionButton button, ButtonState state);
 public static void DrawCaptionButton(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 CaptionButton button, ButtonState state);
 public static void DrawCheckBox(System.Drawing.Graphics graphics, int x, int y, int width, int height, ButtonState state);
 public static void DrawCheckBox(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 ButtonState state);
 public static void DrawComboButton(System.Drawing.Graphics graphics, int x, int y, int width, int height,
 ButtonState state);
 public static void DrawComboButton(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 ButtonState state);
 public static void DrawContainerGrabHandle(System.Drawing.Graphics graphics, System.Drawing.Rectangle bounds);
 public static void DrawFocusRectangle(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle);
 public static void DrawFocusRectangle(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 System.Drawing.Color foreColor, System.Drawing.Color backColor);
 public static void DrawGrabHandle(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 bool primary, bool enabled);
 public static void DrawGrid(System.Drawing.Graphics graphics, System.Drawing.Rectangle area,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static void DrawGrid(System.Drawing.Graphics graphics, System.Drawing.Rectangle area,
 System.Drawing.Size pixelsBetweenDots, System.Drawing.Color backColor);
 public static void DrawImageDisabled(System.Drawing.Graphics graphics, System.Drawing.Image image, int x, int y,
 System.Drawing.Color background);
 public static void DrawLockedFrame(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 bool primary);
 public static void DrawMenuGlyph(System.Drawing.Graphics graphics, int x, int y, int width, int height, MenuGlyph glyph);
 public static void DrawMenuGlyph(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 MenuGlyph glyph);
 public static void DrawMixedCheckBox(System.Drawing.Graphics graphics, int x, int y, int width, int height,
 ButtonState state);
 public static void DrawMixedCheckBox(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 ButtonState state);
 public static void DrawRadioButton(System.Drawing.Graphics graphics, int x, int y, int width, int height, |
 ButtonState state);
 public static void DrawRadioButton(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 ButtonState state);
 public static void DrawReversibleFrame(System.Drawing.Rectangle rectangle, System.Drawing.Color backColor,
 FrameStyle style);
 public static void DrawReversibleLine(System.Drawing.Point start, System.Drawing.Point end,
 System.Drawing.Color backColor);
 public static void DrawScrollButton(System.Drawing.Graphics graphics, int x, int y, int width, int height,
 ScrollButton button, ButtonState state);
 public static void DrawScrollButton(System.Drawing.Graphics graphics, System.Drawing.Rectangle rectangle,
 ScrollButton button, ButtonState state);
 public static void DrawSelectionFrame(System.Drawing.Graphics graphics, bool active,
 System.Drawing.Rectangle outsideRect, System.Drawing.Rectangle insideRect, System.Drawing.Color backColor);
 public static void DrawSizeGrip(System.Drawing.Graphics graphics, System.Drawing.Color backColor, int x, int y,
 int width, int height);
 public static void DrawSizeGrip(System.Drawing.Graphics graphics, System.Drawing.Color backColor,
 System.Drawing.Rectangle bounds);
 public static void DrawStringDisabled(System.Drawing.Graphics graphics, string s, System.Drawing.Font font,
 System.Drawing.Color color, System.Drawing.RectangleF layoutRectangle, System.Drawing.StringFormat format);
 public static void FillReversibleRectangle(System.Drawing.Rectangle rectangle, System.Drawing.Color backColor);
 public static Color Light(System.Drawing.Color baseColor);
 public static Color Light(System.Drawing.Color baseColor, float percOfLightLight);
 public static Color LightLight(System.Drawing.Color baseColor);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlStyles serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by Control.SetStyle() to enable or disable a variety of different features in a custom control.

Several features relate to the painting of the control. AllPaintingInWmPaint causes both the OnPaint() and
OnPaintBackground() methods to be called during WM_PAINT handling, rather than WM_PAINT and WM_ERASEBACKGROUND
as normal.

UserPaint indicates to the platform that you will be painting the control yourself, rather than relying on the operating
system to do it for you (i.e., your control does not wrap a Win32 control and you therefore expect to handle WM_PAINT
yourself).

DoubleBuffer enables automatic double buffering for your control. A back buffer is created before OnPaint() is called, and
the System.Drawing.Graphics surface for that buffer is passed to your paint handler. When you complete your painting, the
buffer is blitted to the window surface, dramatically reducing the amount of flicker that occurs when you paint, at the
cost of one extra blit into the window, and potentially an awful lot of extra committed memory for the back buffer. To
get double buffering to work properly, you should also set AllPaintingInWmPaint (to prevent two separate blits for the
background and the foreground, which will induce flicker) and UserPaint.

SupportsTransparentBackColor allows you to set a back System.Drawing.Color with an Alpha value less than 255. Because
standard Win32 controls do not really support true transparency, the default OnPaintBackground() fakes the painting of
the background for you by getting the parent to paint itself into your object's System.Drawing.Graphics surface. While this
is OK in simple scenarios, it starts to work badly when you have nested or overlapping transparent controls. Note that
the technique used is different from (and less effective than) the XP API DrawThemeParentBackground(), so interop may
offer some additional benefit if you can rely on XP deployment. The system requires that you also set UserPaint for
transparency.

ResizeRedraw causes the entire control to be repainted each time it is resized. Note that while this used to be the default
behavior in MFC applications, for .NET, it is turned off unless you explicitly enable it. This is a good thing, because it
allows your repaint to be much more efficient, only invalidating the newly exposed rectangles as the control expands.
However, if your painted content is scaled to fit, you should re-enable the feature to allow you to repaint the whole
thing every time.

Finally, there is Opaque. If you enable this, it implies that you are going to cover every visible pixel in your control in the
OnPaint() function, and that there is therefore no need to paint the background at all. Be prepared for a total mess if you
fail to cover every pixel!

The second class of styles apply to the input behavior of the object.

If you enable StandardClick, the framework will automatically handle mouse button clicks, and raise the Control.Click event
for you. If you set StandardDoubleClick as well, it will raise Control.DoubleClick too.

Similar to UserPaint, enabling UserMouse lets the framework know you will be dealing with the mouse handling, rather
than wrapping a Win32 control that does that work for you.

The remaining styles are a mixed bag of other bits and pieces.

The Selectable style can be enabled to indicate that the control can receive the focus, and ContainerControl indicates the
object may act as the parent to other controls (like a GroupBox, for example). Two styles, FixedWidth and FixedHeight,
indicate that you cannot resize the control in one or both of these directions.

Finally, there is the EnableNotifyMessage style. This causes OnNotifyMessage() to be called for every WM_XXX message
passed to your control. This allows you to handle the message, but not to change it. Compare this with the
Control.WndProc() method that requires the System.Security.Permissions.SecurityPermissionFlag.UnmanagedCode permission to
override it, but gives you considerably greater opportunity to mess with the messages as they pass through.

public enum ControlStyles {
 ContainerControl = 0x00000001,
 UserPaint = 0x00000002,
 Opaque = 0x00000004,
 ResizeRedraw = 0x00000010,
 FixedWidth = 0x00000020,
 FixedHeight = 0x00000040,
 StandardClick = 0x00000100,
 Selectable = 0x00000200,
 UserMouse = 0x00000400,
 SupportsTransparentBackColor = 0x00000800,
 StandardDoubleClick = 0x00001000,
 AllPaintingInWmPaint = 0x00002000,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AllPaintingInWmPaint = 0x00002000,
 CacheText = 0x00004000,
 EnableNotifyMessage = 0x00008000,
 DoubleBuffer = 0x00010000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ControlStyles

Passed To

Control.{GetStyle(), SetStyle()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ConvertEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

Part of the data-binding framework, this EventArgs class is used when the Binding.Format event is raised. You can find out
what the DesiredType is to which the Value object should be converted. See Binding for more information.

public class ConvertEventArgs : EventArgs {
// Public Constructors
 public ConvertEventArgs(object value, Type desiredType);
// Public Instance Properties
 public Type DesiredType{get; }
 public object Value{set; get; }
}

Hierarchy

System.Object System.EventArgs ConvertEventArgs

Passed To

Binding.{OnFormat(), OnParse()}, ConvertEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ConvertEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Binding.Format event. See ConvertEventArgs and Binding for more information.

public delegate void ConvertEventHandler(object sender, ConvertEventArgs e);

Associated Events

Binding.{Format(), Parse()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CreateParams

System.Windows.Forms
(system.windows.forms.dll) class

This class wraps the set of parameters passed to a Win32 window in its CreateWindow() or CreateWindowEx() function. If
you are wrapping a Win32 control with your own managed Control, you can override the Control.CreateParams member to
return a modified set of creation attributes. You should not use this class under any other circumstances.

public class CreateParams {
// Public Constructors
 public CreateParams();
// Public Instance Properties
 public string Caption{set; get; }
 public string ClassName{set; get; }
 public int ClassStyle{set; get; }
 public int ExStyle{set; get; }
 public int Height{set; get; }
 public object Param{set; get; }
 public IntPtr Parent{set; get; }
 public int Style{set; get; }
 public int Width{set; get; }
 public int X{set; get; }
 public int Y{set; get; }
// Public Instance Methods
 public override string ToString(); // overrides object
}

Returned By

Control.CreateParams

Passed To

NativeWindow.CreateHandle()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CurrencyManager

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a bag of Binding objects for a list-like data source. List-like objects (such as arrays, collections, and
System.Data.DataTable objects) implement IList, System.ComponentModel.IListSource, or System.ComponentModel.IBindingList.
Compare this with PropertyManager that deals with simple properties.

It maintains the concept of the Current item in the list. When the current item is changed (by setting the Position
property, or because the System.ComponentModel.IBindingList.ListChanged event was raised), all the objects bound to the
data source through the Binding objects are updated with the new value. (See Binding for details on how this update can
be controlled through the Parse and Format events).

Note that the standard controls such as ListBox and DataGrid will update the Position automatically as the UI selection
changes.

See Binding for more information on the data-binding hierarchy.

public class CurrencyManager : BindingManagerBase {
// Protected Instance Fields
 protected Type finalType;
 protected int listposition;
// Public Instance Properties
 public override int Count{get; } // overrides BindingManagerBase
 public override object Current{get; } // overrides BindingManagerBase
 public IList List{get; }
 public override int Position{set; get; } // overrides BindingManagerBase
// Public Instance Methods
 public override void AddNew(); // overrides BindingManagerBase
 public override void CancelCurrentEdit(); // overrides BindingManagerBase
 public override void EndCurrentEdit(); // overrides BindingManagerBase
 public override PropertyDescriptorCollection GetItemProperties(); // overrides BindingManagerBase
 public void Refresh();
 public override void RemoveAt(int index); // overrides BindingManagerBase
 public override void ResumeBinding(); // overrides BindingManagerBase
 public override void SuspendBinding(); // overrides BindingManagerBase
// Protected Instance Methods
 protected void CheckEmpty();
 protected internal override string GetListName(
 System.Collections.ArrayList listAccessors); // overrides BindingManagerBase
 protected internal override void OnCurrentChanged(EventArgs e); // overrides BindingManagerBase
 protected virtual void OnItemChanged(ItemChangedEventArgs e);
 protected virtual void OnPositionChanged(EventArgs e);
 protected override void UpdateIsBinding(); // overrides BindingManagerBase
// Events
 public event ItemChangedEventHandler ItemChanged;
}

Hierarchy

System.Object BindingManagerBase CurrencyManager

Returned By

ListControl.DataManager

Passed To

DataGridColumnStyle.CheckValidDataSource(), DataGridTableStyle.DataGridTableStyle()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Cursor serializable, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class wraps a Win32 cursor—the image that represents the mouse pointer. Cursor is a slightly curious class in that it
wraps up both GDI-like functionality and global system cursor/pointer behavior.

Unlike Win32, .NET cursors are static images—you cannot create them from animations. You can, however, create
cursors from COM IPicture objects, files and streams, and Win32 cursor handles. You can also retrieve a Win32 handle
using the Handle property, or get a copy of the underlying Win32 object with the CopyHandle() method. Predefined
cursors are available as static properties on the Cursors class.

Similar to most of the System.Drawing objects, Cursor objects are a scarce system resource, and therefore you should
manage their lifetimes carefully, calling Dispose() when you are finished to release the resources back to the OS. Also in
keeping with the drawing objects, you can paint the cursor imagery on a System.Drawing.Graphics surface using the Draw(
) and DrawStretched() methods. The object's dimensions can be obtained from the Size property.

Each Control object has a Cursor property, which you can use to the set the default cursor shown while the mouse is over
the control. You can also temporarily set the cursor to something else (such as the Cursors.WaitCursor) by using the static
Current property. This overrides any other settings until you either set the Current value back to Cursors.Default or call the
DoEvents() method.

You can find the screen coordinates at which the cursor is currently being rendered by using the static Position property,
and the expected dimensions of the system cursor from the static Clip.

You can also Show() and Hide() the cursor through static methods of those names. If the cursor is hidden, Current will
return null.

public sealed class Cursor : IDisposable, System.Runtime.Serialization.ISerializable {
// Public Constructors
 public Cursor(IntPtr handle);
 public Cursor(System.IO.Stream stream);
 public Cursor(string fileName);
 public Cursor(Type type, string resource);
// Public Static Properties
 public static Rectangle Clip{set; get; }
 public static Cursor Current{set; get; }
 public static Point Position{set; get; }
// Public Instance Properties
 public IntPtr Handle{get; }
 public Size Size{get; }
// Public Static Methods
 public static void Hide();
 public static void Show();
 public static bool operator !=(Cursor left, Cursor right);
 public static bool operator ==(Cursor left, Cursor right);
// Public Instance Methods
 public IntPtr CopyHandle();
 public void Dispose(); // implements IDisposable
 public void Draw(System.Drawing.Graphics g, System.Drawing.Rectangle targetRect);
 public void DrawStretched(System.Drawing.Graphics g, System.Drawing.Rectangle targetRect);
 public override bool Equals(object obj); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected override void Finalize(); // overrides object
}

Returned By

Multiple types

Passed To

AmbientProperties.Cursor, AxHost.GetIPictureFromCursor(), Control.Cursor, LinkLabel.OverrideCursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CursorConverter

System.Windows.Forms
(system.windows.forms.dll) class

This class converts between Cursor objects and String objects or Byte arrays, for various serialization scenarios. This
should not be used directly in your own applications.

public class CursorConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public CursorConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter CursorConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Cursors

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class provides a set of standard cursors, such as the Hand, WaitCursor, and IBeam for you to use. In addition, there
is the special Default cursor that allows you to restore the default appearance after you have set a custom Cursor for a
Control, or changed the Cursor.Current value.

public sealed class Cursors {
// Public Static Properties
 public static Cursor AppStarting{get; }
 public static Cursor Arrow{get; }
 public static Cursor Cross{get; }
 public static Cursor Default{get; }
 public static Cursor Hand{get; }
 public static Cursor Help{get; }
 public static Cursor HSplit{get; }
 public static Cursor IBeam{get; }
 public static Cursor No{get; }
 public static Cursor NoMove2D{get; }
 public static Cursor NoMoveHoriz{get; }
 public static Cursor NoMoveVert{get; }
 public static Cursor PanEast{get; }
 public static Cursor PanNE{get; }
 public static Cursor PanNorth{get; }
 public static Cursor PanNW{get; }
 public static Cursor PanSE{get; }
 public static Cursor PanSouth{get; }
 public static Cursor PanSW{get; }
 public static Cursor PanWest{get; }
 public static Cursor SizeAll{get; }
 public static Cursor SizeNESW{get; }
 public static Cursor SizeNS{get; }
 public static Cursor SizeNWSE{get; }
 public static Cursor SizeWE{get; }
 public static Cursor UpArrow{get; }
 public static Cursor VSplit{get; }
 public static Cursor WaitCursor{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataFormats

System.Windows.Forms
(system.windows.forms.dll) class

The Clipboard and drag-and-drop operations require you to encapsulate data into an IDataObject derived class. In part,
this demands that you specify the Format of the data encapsulated, represented as string. There are several standard
formats that the system understands, such as Dib (device-independent bitmap) and UnicodeText, and static properties
are provided that return an appropriate format string to identify them. For more complex situations, there are also two
static GetFormat() methods. Both return a Format object, mapping a format identification string to a clipboard format ID
(an integer). The string version also registers the specified clipboard format with the OS if it hasn't been registered
previously.

public class DataFormats {
// Public Static Fields
 public static readonly string Bitmap; // =Bitmap
 public static readonly string CommaSeparatedValue; // =Csv
 public static readonly string Dib; // =DeviceIndependentBitmap
 public static readonly string Dif; // =DataInterchangeFormat
 public static readonly string EnhancedMetafile; // =EnhancedMetafile
 public static readonly string FileDrop; // =FileDrop
 public static readonly string Html; // =HTML Format
 public static readonly string Locale; // =Locale
 public static readonly string MetafilePict; // =MetaFilePict
 public static readonly string OemText; // =OEMText
 public static readonly string Palette; // =Palette
 public static readonly string PenData; // =PenData
 public static readonly string Riff; // =RiffAudio
 public static readonly string Rtf; // =Rich Text Format
 public static readonly string Serializable; // =WindowsForms10PersistentObject
 public static readonly string StringFormat; // =System.String
 public static readonly string SymbolicLink; // =SymbolicLink
 public static readonly string Text; // =Text
 public static readonly string Tiff; // =TaggedImageFileFormat
 public static readonly string UnicodeText; // =UnicodeText
 public static readonly string WaveAudio; // =WaveAudio
// Public Static Methods
 public static Format GetFormat(int ID);
 public static Format GetFormat(string format);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataFormats.Format

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the Id and Name of a Clipboard data format.

public class DataFormats.Format {
// Public Constructors
 public DataFormats.Format(string name, int ID);
// Public Instance Properties
 public int Id{get; }
 public string Name{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGrid marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class is the successor to the old unmanaged FlexGrid control, and has considerably more power, fully supporting
complex data-binding scenarios.

A grid offers a two dimensional view of the rows and columns on a data source. The data source itself may consist of
several related tables, each with different rows and columns, so the grid offers support for drilling down through these
relations, updating the display to reflect the current view on the data.

There are a variety of basic areas in the grid whose appearance you can change. You can show and hide a caption
(title) area with the CaptionVisible property. You can set the CaptionFont, CaptionForeColor, and CaptionBackColor, as well as
the CaptionText.

If a particular row in the data source has been defined to have relations to another table, the grid displays a hyperlink
for you to click on to follow that relation. You can set its LinkColor and LinkHoverColor. This drill-down behavior is enabled
and disabled with the AllowNavigation property. When you have drilled down into a table, a line is added to display the
parent rows through which you have navigated. You can set the ParentRowsBackColor, ParentRowsForeColor, and visibility
(ParentRowsVisible). In addition, you can set the ParentRowsLabelStyle to display either the parent ColumnName, TableName,
or both. You can also NavigateTo() a particular row and relation, or NavigateBack() to the parent of the current view.

Then, there are the column headers (which run across the top of the grid) and the row headers (which run down the
side of the grid). You can make the ColumnHeadersVisible and the RowHeadersVisible, and also set the RowHeaderWidth.
Their appearance can be modified with the HeaderBackColor, HeaderForeColor, and HeaderFont. (Note that this means the
row and column headers must have the same basic appearance).

Finally, there are the data rows themselves. You can optionally display gridlines between the rows and/or columns by
setting GridLineStyle and GridLineColor. You can set a PreferredRowHeight property that acts as a hint for the default row
height, and find out the number of displayed rows using the VisibleRowCount property.

Rows can be selected, either with the mouse or programmatically through the Select() and UnSelect() methods (note the
capital "S"), and you can set the SelectionForeColor and SelectionBackColor. The IsSelected() method determines the
selection state of a particular row, and the CurrentRowIndex property tells you which row is currently selected. You can
also set an AlternatingBackColor property to enable a ledger-like appearance for unselected rows.

The columns divide each row up into a series of cells. You can get the identity of the CurrentCell. Alternatively, you can
get or set the value of a particular cell using the Item property (which is the indexer property). The display bounds of a
particular cell can be retrieved using the GetCellBounds() method, or GetCurrentCellBounds() for the cell with the focus. You
can choose whether the columns should be sorted by clicking on their headers by setting the AllowSorting property.

By default, the system automatically generates all the columns needed for each of the tables in the data source,
generating textual, numeric, and Boolean columns as appropriate. However, you can also take control over the entire
grid through the TableStyles property. This allows you to set up custom columns for each table. (See DataGridTableStyle
and DataGridColumnStyle for more information on this feature of data grids.) Note that you must add your
DataGridColumnStyle objects to your DataGridTableStyle objects before you add the table styles to the DataGrid, or the
framework will handily create a default set of columns for you.

public class DataGrid : Control : System.ComponentModel.ISupportInitialize, IDataGridEditingService {
// Public Constructors
 public DataGrid();
// Public Instance Properties
 public bool AllowNavigation{set; get; }
 public bool AllowSorting{set; get; }
 public Color AlternatingBackColor{set; get; }
 public override Color BackColor{set; get; } // overrides Control
 public Color BackgroundColor{set; get; }
 public override Image BackgroundImage{set; get; } // overrides Control
 public BorderStyle BorderStyle{set; get; }
 public Color CaptionBackColor{set; get; }
 public Font CaptionFont{set; get; }
 public Color CaptionForeColor{set; get; }
 public string CaptionText{set; get; }
 public bool CaptionVisible{set; get; }
 public bool ColumnHeadersVisible{set; get; }
 public DataGridCell CurrentCell{set; get; }
 public int CurrentRowIndex{set; get; }
 public override Cursor Cursor{set; get; } // overrides Control
 public string DataMember{set; get; }
 public object DataSource{set; get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public object DataSource{set; get; }
 public int FirstVisibleColumn{get; }
 public bool FlatMode{set; get; }
 public override Color ForeColor{set; get; } // overrides Control
 public Color GridLineColor{set; get; }
 public DataGridLineStyle GridLineStyle{set; get; }
 public Color HeaderBackColor{set; get; }
 public Font HeaderFont{set; get; }
 public Color HeaderForeColor{set; get; }
 public Color LinkColor{set; get; }
 public Color LinkHoverColor{set; get; }
 public Color ParentRowsBackColor{set; get; }
 public Color ParentRowsForeColor{set; get; }
 public DataGridParentRowsLabelStyle ParentRowsLabelStyle{set; get; }
 public bool ParentRowsVisible{set; get; }
 public int PreferredColumnWidth{set; get; }
 public int PreferredRowHeight{set; get; }
 public bool ReadOnly{set; get; }
 public bool RowHeadersVisible{set; get; }
 public int RowHeaderWidth{set; get; }
 public Color SelectionBackColor{set; get; }
 public Color SelectionForeColor{set; get; }
 public override ISite Site{set; get; } // overrides Control
 public GridTableStylesCollection TableStyles{get; }
 public override string Text{set; get; } // overrides Control
 public object this{set; get; }
 public object this{set; get; }
 public int VisibleColumnCount{get; }
 public int VisibleRowCount{get; }
// Protected Instance Properties
 protected override Size DefaultSize{get; } // overrides Control
 protected ScrollBar HorizScrollBar{get; }
 protected internal CurrencyManager ListManager{set; get; }
 protected ScrollBar VertScrollBar{get; }
// Public Instance Methods
 public bool BeginEdit(DataGridColumnStyle gridColumn, int rowNumber); // implements IDataGridEditingService
 public void BeginInit(); // implements System.ComponentModel.ISupportInitialize
 public void Collapse(int row);
 public bool EndEdit(DataGridColumnStyle gridColumn, int rowNumber,
 bool shouldAbort); // implements IDataGridEditingService
 public void EndInit(); // implements System.ComponentModel.ISupportInitialize
 public void Expand(int row);
 public Rectangle GetCellBounds(DataGridCell dgc);
 public Rectangle GetCellBounds(int row, int col);
 public Rectangle GetCurrentCellBounds();
 public HitTestInfo HitTest(int x, int y);
 public HitTestInfo HitTest(System.Drawing.Point position);
 public bool IsExpanded(int rowNumber);
 public bool IsSelected(int row);
 public void NavigateBack();
 public void NavigateTo(int rowNumber, string relationName);
 public void ResetAlternatingBackColor();
 public override void ResetBackColor(); // overrides Control
 public override void ResetForeColor(); // overrides Control
 public void ResetGridLineColor();
 public void ResetHeaderBackColor();
 public void ResetHeaderFont();
 public void ResetHeaderForeColor();
 public void ResetLinkColor();
 public void ResetLinkHoverColor();
 public void ResetSelectionBackColor();
 public void ResetSelectionForeColor();
 public void Select(int row);
 public void SetDataBinding(object dataSource, string dataMember);
 public void SubObjectsSiteChange(bool site);
 public void UnSelect(int row);
// Protected Instance Methods
 protected virtual void CancelEditing();
 protected internal virtual void ColumnStartedEditing(Control editingControl);
 protected internal virtual void ColumnStartedEditing(System.Drawing.Rectangle bounds);
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Control
 protected virtual DataGridColumnStyle CreateGridColumn(System.ComponentModel.PropertyDescriptor prop);
 protected virtual DataGridColumnStyle CreateGridColumn(System.ComponentModel.PropertyDescriptor prop,
 bool isDefault);
 protected override void Dispose(bool disposing); // overrides Control
 protected virtual string GetOutputTextDelimiter();
 protected virtual void GridHScrolled(object sender, ScrollEventArgs se);
 protected virtual void GridVScrolled(object sender, ScrollEventArgs se);
 protected virtual void OnAllowNavigationChanged(EventArgs e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void OnAllowNavigationChanged(EventArgs e);
 protected void OnBackButtonClicked(object sender, EventArgs e);
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected virtual void OnBackgroundColorChanged(EventArgs e);
 protected override void OnBindingContextChanged(EventArgs e); // overrides Control
 protected virtual void OnBorderStyleChanged(EventArgs e);
 protected virtual void OnCaptionVisibleChanged(EventArgs e);
 protected virtual void OnCurrentCellChanged(EventArgs e);
 protected virtual void OnDataSourceChanged(EventArgs e);
 protected override void OnEnter(EventArgs e); // overrides Control
 protected virtual void OnFlatModeChanged(EventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnForeColorChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected override void OnKeyDown(KeyEventArgs ke); // overrides Control
 protected override void OnKeyPress(KeyPressEventArgs kpe); // overrides Control
 protected override void OnLayout(LayoutEventArgs levent); // overrides Control
 protected override void OnLeave(EventArgs e); // overrides Control
 protected override void OnMouseDown(MouseEventArgs e); // overrides Control
 protected override void OnMouseLeave(EventArgs e); // overrides Control
 protected override void OnMouseMove(MouseEventArgs e); // overrides Control
 protected override void OnMouseUp(MouseEventArgs e); // overrides Control
 protected override void OnMouseWheel(MouseEventArgs e); // overrides Control
 protected void OnNavigate(NavigateEventArgs e);
 protected override void OnPaint(PaintEventArgs pe); // overrides Control
 protected override void OnPaintBackground(PaintEventArgs ebe); // overrides Control
 protected virtual void OnParentRowsLabelStyleChanged(EventArgs e);
 protected virtual void OnParentRowsVisibleChanged(EventArgs e);
 protected virtual void OnReadOnlyChanged(EventArgs e);
 protected override void OnResize(EventArgs e); // overrides Control
 protected void OnRowHeaderClick(EventArgs e);
 protected void OnScroll(EventArgs e);
 protected void OnShowParentDetailsButtonClicked(object sender, EventArgs e);
 protected override bool ProcessDialogKey(Keys keyData); // overrides Control
 protected bool ProcessGridKey(KeyEventArgs ke);
 protected override bool ProcessKeyPreview(ref Message m); // overrides Control
 protected bool ProcessTabKey(Keys keyData);
 protected void ResetSelection();
 protected virtual bool ShouldSerializeAlternatingBackColor();
 protected virtual bool ShouldSerializeBackgroundColor();
 protected virtual bool ShouldSerializeCaptionBackColor();
 protected virtual bool ShouldSerializeCaptionForeColor();
 protected virtual bool ShouldSerializeGridLineColor();
 protected virtual bool ShouldSerializeHeaderBackColor();
 protected bool ShouldSerializeHeaderFont();
 protected virtual bool ShouldSerializeHeaderForeColor();
 protected virtual bool ShouldSerializeLinkHoverColor();
 protected virtual bool ShouldSerializeParentRowsBackColor();
 protected virtual bool ShouldSerializeParentRowsForeColor();
 protected bool ShouldSerializePreferredRowHeight();
 protected bool ShouldSerializeSelectionBackColor();
 protected virtual bool ShouldSerializeSelectionForeColor();
// Events
 public event EventHandler AllowNavigationChanged;
 public event EventHandler BackButtonClick;
 public event EventHandler BackgroundColorChanged;
 public event EventHandler BorderStyleChanged;
 public event EventHandler CaptionVisibleChanged;
 public event EventHandler CurrentCellChanged;
 public event EventHandler DataSourceChanged;
 public event EventHandler FlatModeChanged;
 public event NavigateEventHandler Navigate;
 public event EventHandler ParentRowsLabelStyleChanged;
 public event EventHandler ParentRowsVisibleChanged;
 public event EventHandler ReadOnlyChanged;
 public event EventHandler Scroll;
 public event EventHandler ShowParentDetailsButtonClick;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) DataGrid(System.ComponentModel.ISupportInitializ,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel.ISynchronizeInvoke, IWin32Window) DataGrid(System.ComponentModel.ISupportInitializ,
IDataGridEditingService)

Returned By

DataGridTableStyle.DataGrid

Passed To

DataGridColumnStyle.{SetDataGrid(), SetDataGridInColumn()}, DataGridTableStyle.DataGrid, DataGridTextBox.SetDataGrid()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGrid.HitTestInfo

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class is used by the DataGrid.HitTest() method to determine where a particular point is with respect to the grid. You
can get the DataGrid.HitTestType from the Type property, as well as the index of the Column and Row that were hit.

The static Nowhere property returns an instance that represents a point entirely outside the grid.

public sealed class DataGrid.HitTestInfo {
// Public Static Fields
 public static readonly HitTestInfo Nowhere; // ={ None,-1,-1}
// Public Instance Properties
 public int Column{get; }
 public int Row{get; }
 public HitTestType Type{get; }
// Public Instance Methods
 public override bool Equals(object value); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGrid.HitTestType serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration indicates the area of the grid that was hit. It is used by the DataGrid.HitTestInfo class.

public enum DataGrid.HitTestType {
 None = 0x00000000,
 Cell = 0x00000001,
 ColumnHeader = 0x00000002,
 RowHeader = 0x00000004,
 ColumnResize = 0x00000008,
 RowResize = 0x00000010,
 Caption = 0x00000020,
 ParentRows = 0x00000040
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
HitTestType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridBoolColumn marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This DataGridColumnStyle class supports true/false values, representing them as a checkbox. If you set the AllowNull
property, you can extend this to true/false/null support, with a tristate checkbox.

In addition to the base behavior, you can set the TrueValue, FalseValue, and NullValue properties (the object values that
represent true, false, and null), in the particular data type of the bound column.

public class DataGridBoolColumn : DataGridColumnStyle {
// Public Constructors
 public DataGridBoolColumn();
 public DataGridBoolColumn(System.ComponentModel.PropertyDescriptor prop);
 public DataGridBoolColumn(System.ComponentModel.PropertyDescriptor prop, bool isDefault);
// Public Instance Properties
 public bool AllowNull{set; get; }
 public object FalseValue{set; get; }
 public object NullValue{set; get; }
 public object TrueValue{set; get; }
// Protected Instance Methods
 protected internal override void Abort(int rowNum); // overrides DataGridColumnStyle
 protected internal override bool Commit(CurrencyManager dataSource, int rowNum); // overrides DataGridColumnStyle
 protected internal override void ConcedeFocus(); // overrides DataGridColumnStyle
 protected internal override void Edit(CurrencyManager source, int rowNum,
 System.Drawing.Rectangle bounds, bool readOnly, string instantText,
 bool cellIsVisible); // overrides DataGridColumnStyle
 protected internal override void EnterNullValue(); // overrides DataGridColumnStyle
 protected internal override object GetColumnValueAtRow(CurrencyManager lm,
 int row); // overrides DataGridColumnStyle
 protected internal override int GetMinimumHeight(); // overrides DataGridColumnStyle
 protected internal override int GetPreferredHeight(System.Drawing.Graphics g,
 object value); // overrides DataGridColumnStyle
 protected internal override Size GetPreferredSize(System.Drawing.Graphics g,
 object value); // overrides DataGridColumnStyle
 protected internal override void Paint(System.Drawing.Graphics g,
 System.Drawing.Rectangle bounds, CurrencyManager source, int rowNum); // overrides DataGridColumnStyle
 protected internal override void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum, bool alignToRight); // overrides DataGridColumnStyle
 protected internal override void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum, System.Drawing.Brush backBrush,
 System.Drawing.Brush foreBrush, bool alignToRight); // overrides DataGridColumnStyle
 protected internal override void SetColumnValueAtRow(
 CurrencyManager lm, int row, object value); // overrides DataGridColumnStyle
// Events
 public event EventHandler AllowNullChanged;
 public event EventHandler FalseValueChanged;
 public event EventHandler TrueValueChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) DataGridColumnStyle(IDataGridColumnStyleEditingNotificationService) DataGridBoolColumn
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridCell

System.Windows.Forms
(system.windows.forms.dll) struct

This value type represents a particular RowNumber and ColumnNumber in a data grid.

public struct DataGridCell {
// Public Constructors
 public DataGridCell(int r, int c);
// Public Instance Properties
 public int ColumnNumber{set; get; }
 public int RowNumber{set; get; }
// Public Instance Methods
 public override bool Equals(object o); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType DataGridCell

Returned By

DataGrid.CurrentCell

Passed To

DataGrid.{CurrentCell, GetCellBounds(), this, this}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridColumnStyle marshal by reference,
disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

DataGridColumnStyle objects tell the data grid how to manage and display a particular column of data. First, you can
specify the name of the data member to which this particular column is bound using the MappingName property. Note
that you can only have one column per unique mapping. Then, specify the column HeaderText, the Alignment of the
column text, and the Width of the column.

While various column style objects are provided by the system (such as DataGridBoolColumn and DataGridTextBoxColumn),
you can derive your own to provide custom display and/or editing facilities.

You can override the Paint() method to provide custom rendering. Editing is initiated with the Edit() method, giving you
the opportunity to show your own editing control, and Abort() is called if the grid wants you to attempt to abandon
editing. If you need control over the row height, you can override GetMinimumHeight(), GetPreferredHeight(), and
GetPreferredSize() to indicate to the system the requirements for this particular column.

public abstract class DataGridColumnStyle : System.ComponentModel.Component : IDataGridColumnStyleEditingNotificationService {
// Public Constructors
 public DataGridColumnStyle();
 public DataGridColumnStyle(System.ComponentModel.PropertyDescriptor prop);
// Public Instance Properties
 public virtual HorizontalAlignment Alignment{set; get; }
 public virtual DataGridTableStyle DataGridTableStyle{get; }
 public AccessibleObject HeaderAccessibleObject{get; }
 public virtual string HeaderText{set; get; }
 public string MappingName{set; get; }
 public virtual string NullText{set; get; }
 public virtual PropertyDescriptor PropertyDescriptor{set; get; }
 public virtual bool ReadOnly{set; get; }
 public virtual int Width{set; get; }
// Protected Instance Properties
 protected int FontHeight{get; }
// Public Instance Methods
 public void ResetHeaderText();
// Protected Instance Methods
 protected internal abstract void Abort(int rowNum);
 protected void BeginUpdate();
 protected void CheckValidDataSource(CurrencyManager value);
 protected internal virtual void ColumnStartedEditing(
 Control editingControl); // implements IDataGridColumnStyleEditingNotificationService
 protected internal abstract bool Commit(CurrencyManager dataSource, int rowNum);
 protected internal virtual void ConcedeFocus();
 protected virtual AccessibleObject CreateHeaderAccessibleObject();
 protected internal virtual void Edit(CurrencyManager source, int rowNum, System.Drawing.Rectangle bounds,
 bool readOnly);
 protected internal virtual void Edit(CurrencyManager source, int rowNum, System.Drawing.Rectangle bounds,
 bool readOnly, string instantText);
 protected internal abstract void Edit(CurrencyManager source, int rowNum, System.Drawing.Rectangle bounds,
 bool readOnly, string instantText, bool cellIsVisible);
 protected void EndUpdate();
 protected internal virtual void EnterNullValue();
 protected internal virtual object GetColumnValueAtRow(CurrencyManager source, int rowNum);
 protected internal abstract int GetMinimumHeight();
 protected internal abstract int GetPreferredHeight(System.Drawing.Graphics g, object value);
 protected internal abstract Size GetPreferredSize(System.Drawing.Graphics g, object value);
 protected virtual void Invalidate();
 protected internal abstract void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum);
 protected internal abstract void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum, bool alignToRight);
 protected internal virtual void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum, System.Drawing.Brush backBrush, System.Drawing.Brush foreBrush,
 bool alignToRight);
 protected internal virtual void SetColumnValueAtRow(CurrencyManager source, int rowNum, object value);
 protected virtual void SetDataGrid(DataGrid value);
 protected virtual void SetDataGridInColumn(DataGrid value);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void SetDataGridInColumn(DataGrid value);
 protected internal virtual void UpdateUI(CurrencyManager source, int rowNum, string instantText);
// Events
 public event EventHandler AlignmentChanged;
 public event EventHandler FontChanged;
 public event EventHandler HeaderTextChanged;
 public event EventHandler MappingNameChanged;
 public event EventHandler NullTextChanged;
 public event EventHandler PropertyDescriptorChanged;
 public event EventHandler ReadOnlyChanged;
 public event EventHandler WidthChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) DataGridColumnStyle(IDataGridColumnStyleEditingNotificationService)

Subclasses

DataGridBoolColumn, DataGridTextBoxColumn

Returned By

DataGrid.CreateGridColumn(), GridColumnStylesCollection.this

Passed To

DataGrid.{BeginEdit(), EndEdit()}, DataGridTableStyle.{BeginEdit(), EndEdit()}, GridColumnStylesCollection.{Add(), AddRange(),
Contains(), IndexOf(), Remove()}, IDataGridEditingService.{BeginEdit(), EndEdit()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridLineStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies whether the data grid has Solid grid lines or None at all.

public enum DataGridLineStyle {
 None = 0,
 Solid = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DataGridLineStyle

Returned By

DataGrid.GridLineStyle, DataGridTableStyle.GridLineStyle

Passed To

DataGrid.GridLineStyle, DataGridTableStyle.GridLineStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridParentRowsLabelStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used to specify how parent rows are labeled in a grid control. See DataGrid for more information.

public enum DataGridParentRowsLabelStyle {
 None = 0,
 TableName = 1,
 ColumnName = 2,
 Both = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DataGridParentRowsLabelStyle

Returned By

DataGrid.ParentRowsLabelStyle

Passed To

DataGrid.ParentRowsLabelStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridPreferredColumnWidthTypeConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used to transform to and from the integer DataGrid.PreferredColumnWidth
value, in serialization and design-time scenarios.

public class DataGridPreferredColumnWidthTypeConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public DataGridPreferredColumnWidthTypeConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter DataGridPreferredColumnWidthTypeConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridTableStyle marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class is used to customize the binding and appearance of a DataGrid. While the default implementation will
automatically create appropriate tables and columns for your data source, you can take more control by adding this
information by hand.

You do this through the DataGrid.TableStyles property. For each table in your data source that you want to display in the
grid, you create a DataGridTableStyle object. First, you can set the data table to which this object is bound through the
MappingName property. You can then independently control the colors, grid lines, widths, and heights for which you set
defaults in the parent grid, before adding DataGridColumnStyle objects to the GridColumnStyles collection that represent
each column in that table.

public class DataGridTableStyle : System.ComponentModel.Component : IDataGridEditingService {
// Public Constructors
 public DataGridTableStyle();
 public DataGridTableStyle(bool isDefaultTableStyle);
 public DataGridTableStyle(CurrencyManager listManager);
// Public Static Fields
 public static DataGridTableStyle DefaultTableStyle; // =System.Windows.Forms.DataGridTableStyle
// Public Instance Properties
 public bool AllowSorting{set; get; }
 public Color AlternatingBackColor{set; get; }
 public Color BackColor{set; get; }
 public bool ColumnHeadersVisible{set; get; }
 public virtual DataGrid DataGrid{set; get; }
 public Color ForeColor{set; get; }
 public virtual GridColumnStylesCollection GridColumnStyles{get; }
 public Color GridLineColor{set; get; }
 public DataGridLineStyle GridLineStyle{set; get; }
 public Color HeaderBackColor{set; get; }
 public Font HeaderFont{set; get; }
 public Color HeaderForeColor{set; get; }
 public Color LinkColor{set; get; }
 public Color LinkHoverColor{set; get; }
 public string MappingName{set; get; }
 public int PreferredColumnWidth{set; get; }
 public int PreferredRowHeight{set; get; }
 public virtual bool ReadOnly{set; get; }
 public bool RowHeadersVisible{set; get; }
 public int RowHeaderWidth{set; get; }
 public Color SelectionBackColor{set; get; }
 public Color SelectionForeColor{set; get; }
// Public Instance Methods
 public bool BeginEdit(DataGridColumnStyle gridColumn, int rowNumber); // implements IDataGridEditingService
 public bool EndEdit(DataGridColumnStyle gridColumn, int rowNumber,
 bool shouldAbort); // implements IDataGridEditingService
 public void ResetAlternatingBackColor();
 public void ResetBackColor();
 public void ResetForeColor();
 public void ResetGridLineColor();
 public void ResetHeaderBackColor();
 public void ResetHeaderFont();
 public void ResetHeaderForeColor();
 public void ResetLinkColor();
 public void ResetLinkHoverColor();
 public void ResetSelectionBackColor();
 public void ResetSelectionForeColor();
// Protected Instance Methods
 protected internal virtual DataGridColumnStyle CreateGridColumn(System.ComponentModel.PropertyDescriptor prop);
 protected internal virtual DataGridColumnStyle CreateGridColumn(System.ComponentModel.PropertyDescriptor prop,
 bool isDefault);
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
 protected virtual void OnAllowSortingChanged(EventArgs e);
 protected virtual void OnAlternatingBackColorChanged(EventArgs e);
 protected virtual void OnBackColorChanged(EventArgs e);
 protected virtual void OnColumnHeadersVisibleChanged(EventArgs e);
 protected virtual void OnForeColorChanged(EventArgs e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void OnForeColorChanged(EventArgs e);
 protected virtual void OnGridLineColorChanged(EventArgs e);
 protected virtual void OnGridLineStyleChanged(EventArgs e);
 protected virtual void OnHeaderBackColorChanged(EventArgs e);
 protected virtual void OnHeaderFontChanged(EventArgs e);
 protected virtual void OnHeaderForeColorChanged(EventArgs e);
 protected virtual void OnLinkColorChanged(EventArgs e);
 protected virtual void OnLinkHoverColorChanged(EventArgs e);
 protected virtual void OnMappingNameChanged(EventArgs e);
 protected virtual void OnPreferredColumnWidthChanged(EventArgs e);
 protected virtual void OnPreferredRowHeightChanged(EventArgs e);
 protected virtual void OnReadOnlyChanged(EventArgs e);
 protected virtual void OnRowHeadersVisibleChanged(EventArgs e);
 protected virtual void OnRowHeaderWidthChanged(EventArgs e);
 protected virtual void OnSelectionBackColorChanged(EventArgs e);
 protected virtual void OnSelectionForeColorChanged(EventArgs e);
 protected virtual bool ShouldSerializeAlternatingBackColor();
 protected bool ShouldSerializeBackColor();
 protected bool ShouldSerializeForeColor();
 protected virtual bool ShouldSerializeGridLineColor();
 protected virtual bool ShouldSerializeHeaderBackColor();
 protected virtual bool ShouldSerializeHeaderForeColor();
 protected virtual bool ShouldSerializeLinkColor();
 protected virtual bool ShouldSerializeLinkHoverColor();
 protected bool ShouldSerializePreferredRowHeight();
 protected bool ShouldSerializeSelectionBackColor();
 protected virtual bool ShouldSerializeSelectionForeColor();
// Events
 public event EventHandler AllowSortingChanged;
 public event EventHandler AlternatingBackColorChanged;
 public event EventHandler BackColorChanged;
 public event EventHandler ColumnHeadersVisibleChanged;
 public event EventHandler ForeColorChanged;
 public event EventHandler GridLineColorChanged;
 public event EventHandler GridLineStyleChanged;
 public event EventHandler HeaderBackColorChanged;
 public event EventHandler HeaderFontChanged;
 public event EventHandler HeaderForeColorChanged;
 public event EventHandler LinkColorChanged;
 public event EventHandler LinkHoverColorChanged;
 public event EventHandler MappingNameChanged;
 public event EventHandler PreferredColumnWidthChanged;
 public event EventHandler PreferredRowHeightChanged;
 public event EventHandler ReadOnlyChanged;
 public event EventHandler RowHeadersVisibleChanged;
 public event EventHandler RowHeaderWidthChanged;
 public event EventHandler SelectionBackColorChanged;
 public event EventHandler SelectionForeColorChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) DataGridTableStyle(IDataGridEditingService)

Returned By

DataGridColumnStyle.DataGridTableStyle, GridTablesFactory.CreateGridTables(), GridTableStylesCollection.this

Passed To

GridTablesFactory.CreateGridTables(), GridTableStylesCollection.{Add(), AddRange(), Contains(), Remove()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridTextBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class, derived from the standard TextBox control, is used by the DataGridTextBoxColumn to support the editing of
column text. You can access the DataGridTextBox for a specific column by using the DataGridTextBoxColumn.TextBox
property. You could then hook the text box for validation, for example.

public class DataGridTextBox : TextBox {
// Public Constructors
 public DataGridTextBox();
// Public Instance Properties
 public bool IsInEditOrNavigateMode{set; get; }
// Public Instance Methods
 public void SetDataGrid(DataGrid parentGrid);
// Protected Instance Methods
 protected override void OnKeyPress(KeyPressEventArgs e); // overrides Control
 protected override void OnMouseWheel(MouseEventArgs e); // overrides Control
 protected internal override bool ProcessKeyMessage(ref Message m); // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TextBoxBase TextBox DataGridTextBox
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataGridTextBoxColumn marshal by reference,
disposable

System.Windows.Forms
(system.windows.forms.dll) class

This DataGridColumnStyle-derived class supports columns that display strings and are editable using a standard text box.

In addition to the base-class features, you can set optional Format and FormatInfo, to format numeric or DateTime values
using the standard .NET formatting strings. This enables the column style to support Byte, DateTime, Decimal, Double,
Int16, Int64, UInt16, UInt64, and Single types, in addition to string itself.

public class DataGridTextBoxColumn : DataGridColumnStyle {
// Public Constructors
 public DataGridTextBoxColumn();
 public DataGridTextBoxColumn(System.ComponentModel.PropertyDescriptor prop);
 public DataGridTextBoxColumn(System.ComponentModel.PropertyDescriptor prop, bool isDefault);
 public DataGridTextBoxColumn(System.ComponentModel.PropertyDescriptor prop, string format);
 public DataGridTextBoxColumn(System.ComponentModel.PropertyDescriptor prop, string format, bool isDefault);
// Public Instance Properties
 public string Format{set; get; }
 public IFormatProvider FormatInfo{set; get; }
 public override PropertyDescriptor PropertyDescriptor{set; } // overrides DataGridColumnStyle
 public override bool ReadOnly{set; get; } // overrides DataGridColumnStyle
 public virtual TextBox TextBox{get; }
// Protected Instance Methods
 protected internal override void Abort(int rowNum); // overrides DataGridColumnStyle
 protected internal override bool Commit(CurrencyManager dataSource, int rowNum); // overrides DataGridColumnStyle
 protected internal override void ConcedeFocus(); // overrides DataGridColumnStyle
 protected internal override void Edit(CurrencyManager source, int rowNum,
 System.Drawing.Rectangle bounds, bool readOnly, string instantText,
 bool cellIsVisible); // overrides DataGridColumnStyle
 protected void EndEdit();
 protected internal override void EnterNullValue(); // overrides DataGridColumnStyle
 protected internal override int GetMinimumHeight(); // overrides DataGridColumnStyle
 protected internal override int GetPreferredHeight(System.Drawing.Graphics g,
 object value); // overrides DataGridColumnStyle
 protected internal override Size GetPreferredSize(System.Drawing.Graphics g,
 object value); // overrides DataGridColumnStyle
 protected void HideEditBox();
 protected internal override void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum); // overrides DataGridColumnStyle
 protected internal override void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum, bool alignToRight); // overrides DataGridColumnStyle
 protected internal override void Paint(System.Drawing.Graphics g, System.Drawing.Rectangle bounds,
 CurrencyManager source, int rowNum, System.Drawing.Brush backBrush,
 System.Drawing.Brush foreBrush, bool alignToRight); // overrides DataGridColumnStyle
 protected void PaintText(System.Drawing.Graphics g, System.Drawing.Rectangle bounds, string text,
 bool alignToRight);
 protected void PaintText(System.Drawing.Graphics g, System.Drawing.Rectangle textBounds, string text,
 System.Drawing.Brush backBrush, System.Drawing.Brush foreBrush, bool alignToRight);
 protected override void SetDataGridInColumn(DataGrid value); // overrides DataGridColumnStyle
 protected internal override void UpdateUI(CurrencyManager source, int rowNum,
 string instantText); // overrides DataGridColumnStyle
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) DataGridColumnStyle(IDataGridColumnStyleEditingNotificationService) DataGridTextBoxColumn
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DataObject

System.Windows.Forms
(system.windows.forms.dll) class

This class provides a basic implementation of the IDataObject interface that supports data transfer in Clipboard and drag-
and-drop scenarios.

You can add the data you wish to encapsulate in one or more different formats using the SetData() method. There are
three overloads that allow you to add the data either specifying a string indicating the format (perhaps from the
DataFormats class), using a Type name as the format ID, or with no extra information, which defaults to using the class
name as the ID.

When you are on the receiving end of one of these objects, you can use the GetData() method to retrieve the data for a
particular format ID, perhaps using the GetDataPresent() method to determine whether there is any data stored in a
particular format. You can also call GetFormats() to get a list of all the formats for which data is stored in the object.

public class DataObject : IDataObject, IOleDataObject {
// Public Constructors
 public DataObject();
 public DataObject(object data);
 public DataObject(string format, object data);
// Public Instance Methods
 public virtual object GetData(string format); // implements IDataObject
 public virtual object GetData(string format, bool autoConvert); // implements IDataObject
 public virtual object GetData(Type format); // implements IDataObject
 public virtual bool GetDataPresent(string format); // implements IDataObject
 public virtual bool GetDataPresent(string format, bool autoConvert); // implements IDataObject
 public virtual bool GetDataPresent(Type format); // implements IDataObject
 public virtual string[] GetFormats(); // implements IDataObject
 public virtual string[] GetFormats(bool autoConvert); // implements IDataObject
 public virtual void SetData(object data); // implements IDataObject
 public virtual void SetData(string format, bool autoConvert, object data); // implements IDataObject
 public virtual void SetData(string format, object data); // implements IDataObject
 public virtual void SetData(Type format, object data); // implements IDataObject
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateBoldEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class DateBoldEventArgs : EventArgs {
// Public Instance Properties
 public int[] DaysToBold{set; get; }
 public int Size{get; }
 public DateTime StartDate{get; }
}

Hierarchy

System.Object System.EventArgs DateBoldEventArgs

Passed To

DateBoldEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateBoldEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This delegate is for internal use only and should not be used in your own code.

public delegate void DateBoldEventHandler(object sender, DateBoldEventArgs e);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateRangeEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event arguments for the MonthCalendar.DateChanged and DateSelected events. You can retrieve
the Start and End date of the new selection from this object.

public class DateRangeEventArgs : EventArgs {
// Public Constructors
 public DateRangeEventArgs(DateTime start, DateTime end);
// Public Instance Properties
 public DateTime End{get; }
 public DateTime Start{get; }
}

Hierarchy

System.Object System.EventArgs DateRangeEventArgs

Passed To

DateRangeEventHandler.{BeginInvoke(), Invoke()}, MonthCalendar.{OnDateChanged(), OnDateSelected()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateRangeEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the MonthCalendar.DateChanged and MonthCalendar.DateSelected events.

public delegate void DateRangeEventHandler(object sender, DateRangeEventArgs e);

Associated Events

MonthCalendar.{DateChanged(), DateSelected()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateTimePicker marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control class wraps the Win32 date/time selection common control. This is perhaps the least used of all the
common controls—most commercial applications seem to roll their own Outlook-style date and time pickers (or use one
of several third-party controls available).

First, you can set the Format of the control. This can cause considerable changes in behavior from a Long or Short date
(in which case you are provided with a drop-down calendar date picker and a formatted date edit field) to a Time (in
which case you lose the calendar and gain a formatted time edit field). There is also Custom, which requires you to set
the CustomFormat property and use your own date-time format string. The standard formats are derived from the
system locale settings.

As well as the standard Control appearance properties, you can independently set the CalendarFont, CalendarForeColor,
CalendarMonthBackground, CalendarTitleBackColor, CalendarTitleForeColor, and CalendarTrailingForeColor (that's the color of the
days from last and next month that are shown on this months calendar grid). You can choose how the calendar drop-
down menu is aligned (to the LeftRightAlignment.Left or Right edge of the control), by using the DropDownAlign property.

The control can display a checkbox using the ShowCheckBox property. It indicates whether a value is actually selected
(Checked)—this lets you support null dates. You can also add a spin button with ShowUpDown that gives you another way
to adjust the date.

The date range available can be set with MaxDate and MinDate (and there are static MaxDateTime and MinDateTime
properties, which get the theoretical maximum and minimum values, that can be displayed by the control). However,
you can only select a single Value in the control, which defaults to DateTime.Now. Compare this to the MonthCalendar
control which allows you to select a range of dates, embolden certain dates, etc.

public class DateTimePicker : Control {
// Public Constructors
 public DateTimePicker();
// Public Static Fields
 public static readonly DateTime MaxDateTime; // =12/31/9998 12:00:00 AM
 public static readonly DateTime MinDateTime; // =1/1/1753 12:00:00 AM
// Protected Static Fields
 protected static readonly Color DefaultMonthBackColor; // =Color [Window]
 protected static readonly Color DefaultTitleBackColor; // =Color [ActiveCaption]
 protected static readonly Color DefaultTitleForeColor; // =Color [ActiveCaptionText]
 protected static readonly Color DefaultTrailingForeColor; // =Color [GrayText]
// Public Instance Properties
 public override Color BackColor{set; get; } // overrides Control
 public override Image BackgroundImage{set; get; } // overrides Control
 public Font CalendarFont{set; get; }
 public Color CalendarForeColor{set; get; }
 public Color CalendarMonthBackground{set; get; }
 public Color CalendarTitleBackColor{set; get; }
 public Color CalendarTitleForeColor{set; get; }
 public Color CalendarTrailingForeColor{set; get; }
 public bool Checked{set; get; }
 public string CustomFormat{set; get; }
 public LeftRightAlignment DropDownAlign{set; get; }
 public override Color ForeColor{set; get; } // overrides Control
 public DateTimePickerFormat Format{set; get; }
 public DateTime MaxDate{set; get; }
 public DateTime MinDate{set; get; }
 public int PreferredHeight{get; }
 public bool ShowCheckBox{set; get; }
 public bool ShowUpDown{set; get; }
 public override string Text{set; get; } // overrides Control
 public DateTime Value{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; } // overrides Control
 protected override Size DefaultSize{get; } // overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Control
 protected override void CreateHandle(); // overrides Control
 protected override void DestroyHandle(); // overrides Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected override void DestroyHandle(); // overrides Control
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected virtual void OnCloseUp(EventArgs eventargs);
 protected virtual void OnDropDown(EventArgs eventargs);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected virtual void OnFormatChanged(EventArgs e);
 protected override void OnSystemColorsChanged(EventArgs e); // overrides Control
 protected virtual void OnValueChanged(EventArgs eventargs);
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler CloseUp;
 public event EventHandler DropDown;
 public event EventHandler FormatChanged;
 public event PaintEventHandler Paint; // overrides Control
 public event EventHandler ValueChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) DateTimePicker

Passed To

DateTimePickerAccessibleObject.DateTimePickerAccessibleObject()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateTimePicker.DateTimePickerAccessibleObject
marshal

by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class DateTimePicker.DateTimePickerAccessibleObject : ControlAccessibleObject {
// Public Constructors
 public DateTimePicker.DateTimePickerAccessibleObject(DateTimePicker owner);
// Public Instance Properties
 public override AccessibleStates State{get; } // overrides AccessibleObject
 public override string Value{get; } // overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ControlAccessibleObject DateTimePickerAccessibleObject
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateTimePickerFormat serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration allows you to specify the format for a DateTimePicker control.

public enum DateTimePickerFormat {
 Long = 1,
 Short = 2,
 Time = 4,
 Custom = 8
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DateTimePickerFormat

Returned By

DateTimePicker.Format

Passed To

DateTimePicker.Format
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the MonthCalendar control to set the FirstDayOfWeek property.

public enum Day {
 Monday = 0,
 Tuesday = 1,
 Wednesday = 2,
 Thursday = 3,
 Friday = 4,
 Saturday = 5,
 Sunday = 6,
 Default = 7
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible) Day

Returned By

MonthCalendar.FirstDayOfWeek

Passed To

MonthCalendar.FirstDayOfWeek
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DialogResult serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration defines the standard user responses from a dialog. A value from this enumeration is returned from
the Form.ShowDialog() method once the (modal) form has been closed. You can also specify a Button object's DialogResult
property to determine which value is returned when that particular button is used to close the dialog.

public enum DialogResult {
 None = 0,
 OK = 1,
 Cancel = 2,
 Abort = 3,
 Retry = 4,
 Ignore = 5,
 Yes = 6,
 No = 7
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DialogResult

Returned By

Button.DialogResult, CommonDialog.ShowDialog(), System.Windows.Forms.Design.ComponentEditorForm.ShowForm(),
System.Windows.Forms.Design.IUIService.{ShowDialog(), ShowMessage()},
System.Windows.Forms.Design.IWindowsFormsEditorService.ShowDialog(), Form.{DialogResult, ShowDialog()},
IButtonControl.DialogResult, MessageBox.Show()

Passed To

Button.DialogResult, Form.DialogResult, IButtonControl.DialogResult
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DockStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used to specify how the default layout manager should treat a particular control. You can set the
Control.Dock property to one of these values, to ensure that the control is attached to the specified edge of the parent,
expanded to the full width and/or height, or resized as the parent changes its layout.

public enum DockStyle {
 None = 0,
 Top = 1,
 Bottom = 2,
 Left = 3,
 Right = 4,
 Fill = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DockStyle

Returned By

Control.Dock

Passed To

Control.Dock

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DomainUpDown marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control allows you to specify a list of Items from which you can select—similar to a ListBox or ComboBox, except only
a single item is displayed at any one time, and there are up-down spin buttons to enable selection from that list. You
can retrieve the SelectedIndex or SelectedItem.

This control is extremely difficult to use, and you should always consider using a ComboBox instead, unless there is really
no room on your display for the drop list (e.g., you have a 320 x 100 LCD) .

public class DomainUpDown : UpDownBase {
// Public Constructors
 public DomainUpDown();
// Public Instance Properties
 public DomainUpDownItemCollection Items{get; }
 public int SelectedIndex{set; get; }
 public object SelectedItem{set; get; }
 public bool Sorted{set; get; }
 public bool Wrap{set; get; }
// Public Instance Methods
 public override void DownButton(); // overrides UpDownBase
 public override string ToString(); // overrides System.ComponentModel.Component
 public override void UpButton(); // overrides UpDownBase
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Control
 protected override void OnChanged(object source, EventArgs e); // overrides UpDownBase
 protected void OnSelectedItemChanged(object source, EventArgs e);
 protected override void OnTextBoxKeyDown(object source, KeyEventArgs e); // overrides UpDownBase
 protected override void UpdateEditText(); // overrides UpDownBase
 protected override void WndProc(ref Message m); // overrides ContainerControl
// Events
 public event EventHandler SelectedItemChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
UpDownBase DomainUpDown
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DomainUpDown.DomainItemAccessibleObject
marshal

by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use and should not be called from your own code.

public class DomainUpDown.DomainItemAccessibleObject : AccessibleObject {
// Public Constructors
 public DomainUpDown.DomainItemAccessibleObject(string name, AccessibleObject parent);
// Public Instance Properties
 public override string Name{set; get; }
// overrides AccessibleObject
 public override AccessibleObject Parent{get; }
// overrides AccessibleObject
 public override AccessibleRole Role{get; }
// overrides AccessibleObject
 public override AccessibleStates State{get; }
// overrides AccessibleObject
 public override string Value{get; }
// overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) DomainItemAccessibleObject
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DomainUpDown.DomainUpDownAccessibleObject
marshal

by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use and should not be called from your own code.

public class DomainUpDown.DomainUpDownAccessibleObject : ControlAccessibleObject {
// Public Constructors
 public DomainUpDown.DomainUpDownAccessibleObject(Control owner);
// Public Instance Properties
 public override AccessibleRole Role{get; }
// overrides Control.ControlAccessibleObject
// Public Instance Methods
 public override AccessibleObject GetChild(int index); // overrides AccessibleObject
 public override int GetChildCount(); // overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ControlAccessibleObject DomainUpDownAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DomainUpDown.DomainUpDownItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the set of objects in the DomainUpDown.Items collection.

public class DomainUpDown.DomainUpDownItemCollection : ArrayList {
// Public Instance Properties
 public override object this{set; get; }
// overrides System.Collections.ArrayList
// Public Instance Methods
 public override int Add(object item); // overrides System.Collections.ArrayList
 public override void Insert(int index, object item); // overrides System.Collections.ArrayList
 public override void Remove(object item); // overrides System.Collections.ArrayList
 public override void RemoveAt(int item); // overrides System.Collections.ArrayList
}

Hierarchy

System.Object System.Collections.ArrayList(System.Collections.ILis, System.Collections.ICollection,
System.Collections.IEnumerable, System.ICloneable) DomainUpDownItemCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DragAction serializable

System.Windows.Forms
(system.windows.forms.dll) enum

You should set a value selected from this enumeration in the QueryContinueDragEventArgs.Action property to specify
whether the framework should Cancel, Continue, or Drop the drag operation in your QueryContinueDragEventHandler.

public enum DragAction {
 Continue = 0,
 Drop = 1,
 Cancel = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DragAction

Returned By

QueryContinueDragEventArgs.Action

Passed To

QueryContinueDragEventArgs.{Action, QueryContinueDragEventArgs()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DragDropEffects serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This bitfield enumeration is used to specify how a drop operation might be concluded by a drop target. See
DragEventArgs for more information.

public enum DragDropEffects {
 None = 0x00000000,
 Copy = 0x00000001,
 Move = 0x00000002,
 Link = 0x00000004,
 Scroll = 0x80000000,
 All = 0x80000003
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DragDropEffects

Returned By

Control.DoDragDrop(), DragEventArgs.{AllowedEffect, Effect}, GiveFeedbackEventArgs.Effect

Passed To

Control.DoDragDrop(), DragEventArgs.{DragEventArgs(), Effect}, GiveFeedbackEventArgs.GiveFeedbackEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DragEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event arguments for the Control.DragEnter, Control.DragDrop, and Control.DragOver events.

When you start a drag-drop operation using Control.DoDragDrop(), you can specify the DragDropEffects that the drag
source can support.

Then, as the drag-drop action proceeds, controls receive DragEnter, DragDrop, and DragOver events, which have
DragEventArgs. You can retrieve the AllowedEffect property to determine what the source will permit, and then set the
Effect property to specify which you can support as a target. It will also raise GiveFeedback events, which allow you to
determine the current Effect, perhaps changing the Control object's appearance or cursors. You might base this on the
KeyState. Sadly, the KeyState has not been well encapsulated, and you have to mess around with magic numbers in a
bitfield:

1

The left mouse button

2

The right mouse button

4

The Shift key

8

The Control key

16

The middle mouse button

32

The Alt key

You can also retrieve the actual Data that is being dragged, through the IDataObject that encapsulates it.

public class DragEventArgs : EventArgs {
// Public Constructors
 public DragEventArgs(IDataObject data, int keyState, int x, int y, DragDropEffects allowedEffect,
 DragDropEffects effect);
// Public Instance Properties
 public DragDropEffects AllowedEffect{get; }
 public IDataObject Data{get; }
 public DragDropEffects Effect{set; get; }
 public int KeyState{get; }
 public int X{get; }
 public int Y{get; }
}

Hierarchy

System.Object System.EventArgs DragEventArgs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Object System.EventArgs DragEventArgs

Passed To

Control.RaiseDragEvent(), System.Windows.Forms.Design.ComponentTray.{OnDragDrop(), OnDragEnter(), OnDragOver()},
System.Windows.Forms.Design.ControlDesigner.{OnDragDrop(), OnDragEnter(), OnDragOver()}, DragEventHandler.{BeginInvoke(),
Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DragEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.DragEnter, Control.DragDrop and Control.DragOver events.

public delegate void DragEventHandler(object sender, DragEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DrawItemEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event arguments for owner-draw events. CheckedListBox, ComboBox, ListBox, MenuItem,
StatusBar, and TabControl controls all support owner draw features, if you set their DrawMode property appropriately.

When you handle an item's DrawItem event, you can retrieve information about the BackColor, ForeColor, and Font of the
item to be painted. You can also get the System.Drawing.Graphics surface on which to paint the item, and the Bounds of
the item to draw on that surface.

Other properties specify the Index of the item to paint, and the State of the item from the DrawItemState enumeration.

Two utility methods will DrawBackground() or DrawFocusRectangle() imagery.

public class DrawItemEventArgs : EventArgs {
// Public Constructors
 public DrawItemEventArgs(System.Drawing.Graphics graphics, System.Drawing.Font font,
 System.Drawing.Rectangle rect, int index, DrawItemState state);
 public DrawItemEventArgs(System.Drawing.Graphics graphics, System.Drawing.Font font,
 System.Drawing.Rectangle rect, int index, DrawItemState state, System.Drawing.Color foreColor,
 System.Drawing.Color backColor);
// Public Instance Properties
 public Color BackColor{get; }
 public Rectangle Bounds{get; }
 public Font Font{get; }
 public Color ForeColor{get; }
 public Graphics Graphics{get; }
 public int Index{get; }
 public DrawItemState State{get; }
// Public Instance Methods
 public virtual void DrawBackground();
 public virtual void DrawFocusRectangle();
}

Hierarchy

System.Object System.EventArgs DrawItemEventArgs

Subclasses

StatusBarDrawItemEventArgs

Passed To

ComboBox.OnDrawItem(), DrawItemEventHandler.{BeginInvoke(), Invoke()}, ListBox.OnDrawItem(), MenuItem.OnDrawItem(),
TabControl.OnDrawItem()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DrawItemEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the various DrawItem events that are raised to permit owner drawing of items in a Control. See
DrawItemEventArgs for more information on owner draw.

public delegate void DrawItemEventHandler(object sender, DrawItemEventArgs e);

Associated Events

CheckedListBox.DrawItem(), ComboBox.DrawItem(), ListBox.DrawItem(), MenuItem.DrawItem(), TabControl.DrawItem()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DrawItemState serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This bitfield enumeration can specify the various styles with which you should paint an item in an owner draw operation
(e.g., with or without Focus, Checked, etc.) See DrawItemEventArgs for more information on owner draw.

public enum DrawItemState {
 None = 0x00000000,
 Selected = 0x00000001,
 Grayed = 0x00000002,
 Disabled = 0x00000004,
 Checked = 0x00000008,
 Focus = 0x00000010,
 Default = 0x00000020,
 HotLight = 0x00000040,
 Inactive = 0x00000080,
 NoAccelerator = 0x00000100,
 NoFocusRect = 0x00000200,
 ComboBoxEdit = 0x00001000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DrawItemState

Returned By

DrawItemEventArgs.State

Passed To

DrawItemEventArgs.DrawItemEventArgs(), StatusBarDrawItemEventArgs.StatusBarDrawItemEventArgs()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DrawMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by Control objects that support owner drawing. If you set their DrawMode properties to
OwnerDrawFixed, you will raise DrawItem events to paint each item in the Control. The height of each item is fixed to the
value in the ItemHeight property. On the other hand, if you set it to OwnerDrawVariable, the framework will also raise
MeasureItem events that allow you to individually specify the height of each item in the list. See DrawItemEventArgs for
more information on the owner draw painting process.

public enum DrawMode {
 Normal = 0,
 OwnerDrawFixed = 1,
 OwnerDrawVariable = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
DrawMode

Returned By

ComboBox.DrawMode, ListBox.DrawMode

Passed To

ComboBox.DrawMode, ListBox.DrawMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ErrorBlinkStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration allows you to set the ErrorProvider.BlinkStyle. It controls whether the error icon will NeverBlink,
AlwaysBlink, or only blink when an icon is already displayed, and the error changes (BlinkIfDifferentError). If the
ErrorProvider.BlinkRate is set to zero, these are all equivalent to NeverBlink.

public enum ErrorBlinkStyle {
 BlinkIfDifferentError = 0,
 AlwaysBlink = 1,
 NeverBlink = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ErrorBlinkStyle

Returned By

ErrorProvider.BlinkStyle

Passed To

ErrorProvider.BlinkStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ErrorIconAlignment serializable

System.Windows.Forms
(system.windows.forms.dll) enum

The enumeration specifies the locations at which you can place an ErrorProvider icon, relative to a particular Control.

public enum ErrorIconAlignment {
 TopLeft = 0,
 TopRight = 1,
 MiddleLeft = 2,
 MiddleRight = 3,
 BottomLeft = 4,
 BottomRight = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ErrorIconAlignment

Returned By

ErrorProvider.GetIconAlignment()

Passed To

ErrorProvider.SetIconAlignment()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ErrorProvider marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This component allows you to display a small Icon next to a Control to indicate that there is something wrong with the
user input. When the user hovers the mouse over the icon, a ToolTip appears containing some text descriptive of the
error.

First, you must set the ContainerControl property to the container for the controls that need validation. This happens
automatically if the ErrorProvider is dropped onto a designer surface. You can also set a specific Icon if the default red
circle with a white exclamation is not to your taste or culture. The position at which an icon should appear is set using
the Get/SetIconAlignment() and Get/SetIconPadding() methods. The icon can also be made to blink using the BlinkRate and
BlinkStyle properties. (See ErrorBlinkStyle for more information about this).

There are two principle modes of operation. The simplest is to set the DataSource property to refer to a
System.Data.DataSet, and you will automatically get errors displayed for any rows that have a column error (either set by
the framework, or with the System.Data.DataRow.SetColumnError() method).

The alternative is to use the SetError() method, which allows you to set specific error text for any control. To clear the
error condition, call SetError() for the control with an empty string ("").

public class ErrorProvider : System.ComponentModel.Component : System.ComponentModel.IExtenderProvider {
// Public Constructors
 public ErrorProvider();
 public ErrorProvider(ContainerControl parentControl);
// Public Instance Properties
 public int BlinkRate{set; get; }
 public ErrorBlinkStyle BlinkStyle{set; get; }
 public ContainerControl ContainerControl{set; get; }
 public string DataMember{set; get; }
 public object DataSource{set; get; }
 public Icon Icon{set; get; }
 public override ISite Site{set; }
// overrides System.ComponentModel.Component
// Public Instance Methods
 public void BindToDataAndErrors(object newDataSource, string newDataMember);
 public bool CanExtend(object extendee); // implements System.ComponentModel.IExtenderProvider
 public string GetError(Control control);
 public ErrorIconAlignment GetIconAlignment(Control control);
 public int GetIconPadding(Control control);
 public void SetError(Control control, string value);
 public void SetIconAlignment(Control control, ErrorIconAlignment value);
 public void SetIconPadding(Control control, int padding);
 public void UpdateBinding();
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) ErrorProvider(System.ComponentModel.IExtenderProvider)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FeatureSupport

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This abstract base class provides a mechanism to determine whether particular features are supported by a particular
class or object.

There methods to find out whether a particular feature or version of a feature IsPresent(), and another method to
determine exactly which version of particular feature is available: GetVersionPresent().

The OSFeature class, derived from FeatureSupport, allows you to determine whether particular operating system features
are present.

You can also derive your own classes from FeatureSupport (or the IFeatureSupport interface it implements) to give an
indication of the features in your own frameworks. You have two design choices: you can either implement the
IFeatureSupport interface on each of your objects that support feature presentation, in which case you can use the static
versions of IsPresent() and GetVersionPresent(), or you can inherit from FeatureSupport and override the GetVersionPresent()
and/or IsPresent() members that handle the feature information for arbitrary named classes.

public abstract class FeatureSupport : IFeatureSupport {
// Protected Constructors
 protected FeatureSupport();
// Public Static Methods
 public static Version GetVersionPresent(string featureClassName, string featureConstName);
 public static bool IsPresent(string featureClassName, string featureConstName);
 public static bool IsPresent(string featureClassName, string featureConstName, Version minimumVersion);
// Public Instance Methods
 public abstract Version GetVersionPresent(object feature); // implements IFeatureSupport
 public virtual bool IsPresent(object feature); // implements IFeatureSupport
 public virtual bool IsPresent(object feature, Version minimumVersion); // implements IFeatureSupport
}

Subclasses

OSFeature
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This CommonDialog class is the abstract base for OpenFileDialog and SaveFileDialog objects.

The AddExtension property determines whether the DefaultExt (file extension) is automatically added to the end of the
filename if no extension is present.

There are two properties, CheckFileExists and CheckPathExists, which when true, cause the dialog to test whether a path or
file exists and display a warning if not.

The DereferenceLinks property tells the dialog whether it should display shortcuts as the underlying .lnk file (false) or link
to the referenced file.

The standard file dialogs can filter the displayed list of files. The Filter string can be set, and the FilterIndex determines
which filter from that string is currently selected. For some reason, no one I know can ever remember the exact format
of a filter string, so here is an example in case you suffer from the same affliction. "Text files (*.txt)|*.TXT|Image Files
(*.BMP;*.JPG;*.GIF)|*.BMP;*.JPG;*.GIF|All files (*.*)|*.*"

The InitialDirectory can be specified, and you can also set a property called RestoreDirectory to determine whether the
system will reset the current directory back to where it was initially, if the dialog is closed.

Finally, to retrieve the selected file or files, you can use the FileName and FileNames properties.

public abstract class FileDialog : CommonDialog {
// Protected Static Fields
 protected static readonly object EventFileOk; // =System.Object
// Public Instance Properties
 public bool AddExtension{set; get; }
 public virtual bool CheckFileExists{set; get; }
 public bool CheckPathExists{set; get; }
 public string DefaultExt{set; get; }
 public bool DereferenceLinks{set; get; }
 public string FileName{set; get; }
 public string[] FileNames{get; }
 public string Filter{set; get; }
 public int FilterIndex{set; get; }
 public string InitialDirectory{set; get; }
 public bool RestoreDirectory{set; get; }
 public bool ShowHelp{set; get; }
 public string Title{set; get; }
 public bool ValidateNames{set; get; }
// Protected Instance Properties
 protected virtual IntPtr Instance{get; }
 protected int Options{get; }
// Public Instance Methods
 public override void Reset(); // overrides CommonDialog
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override IntPtr HookProc(IntPtr hWnd, int msg, IntPtr wparam, IntPtr lparam); // overrides CommonDialog
 protected void OnFileOk(System.ComponentModel.CancelEventArgs e);
 protected override bool RunDialog(IntPtr hWndOwner); // overrides CommonDialog
// Events
 public event CancelEventHandler FileOk;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog FileDialog

Subclasses

OpenFileDialog, SaveFileDialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FlatStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the drawing style for button-like classes, including group boxes, checkboxes, etc.

The Flat, Popup, and Standard styles are fairly self-explanatory. The System style causes the repaint to be handled by the
OS rather than the framework. You should set the System style if you wish to support Windows XP Themes on these
objects, but bear in mind that you will then lose the framework features such as font and image support.

public enum FlatStyle {
 Flat = 0,
 Popup = 1,
 Standard = 2,
 System = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FlatStyle

Returned By

ButtonBase.FlatStyle, GroupBox.FlatStyle, Label.FlatStyle

Passed To

ButtonBase.FlatStyle, GroupBox.FlatStyle, Label.FlatStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FontDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This CommonDialog allows users to select a particular Font and System.Drawing.Color.

There are various properties that can permit or deny particular types of font such as AllowSimulations, AllowVectorFonts,
AllowVerticalFonts, ScriptsOnly (which eliminates nontext fonts such as Wingdings) and FixedPitchOnly (which limits the list
to monospaced fonts such as Courier).

In addition, there are a variety of properties to control the appearance and function of the dialog. The ShowApply
property determines whether the dialog has an apply button. ShowColor enables or disables the System.Drawing.Color
selector, interacting with the ShowEffects property, which determines whether the group of controls that allow you to set
effects such as bold, underline, and the System.Drawing.Color, is shown.

public class FontDialog : CommonDialog {
// Public Constructors
 public FontDialog();
// Protected Static Fields
 protected static readonly object EventApply; // =System.Object
// Public Instance Properties
 public bool AllowScriptChange{set; get; }
 public bool AllowSimulations{set; get; }
 public bool AllowVectorFonts{set; get; }
 public bool AllowVerticalFonts{set; get; }
 public Color Color{set; get; }
 public bool FixedPitchOnly{set; get; }
 public Font Font{set; get; }
 public bool FontMustExist{set; get; }
 public int MaxSize{set; get; }
 public int MinSize{set; get; }
 public bool ScriptsOnly{set; get; }
 public bool ShowApply{set; get; }
 public bool ShowColor{set; get; }
 public bool ShowEffects{set; get; }
 public bool ShowHelp{set; get; }
// Protected Instance Properties
 protected int Options{get; }
// Public Instance Methods
 public override void Reset(); // overrides CommonDialog
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override IntPtr HookProc(IntPtr hWnd, int msg, IntPtr wparam, IntPtr lparam); // overrides CommonDialog
 protected virtual void OnApply(EventArgs e);
 protected override bool RunDialog(IntPtr hWndOwner); // overrides CommonDialog
// Events
 public event EventHandler Apply;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog FontDialog
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Form marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

A Form is a specialization of Control that supports top-level windows such as tool windows, frame windows, application
pop-ups, and MDI child windows.

The appearance of the form's non-client imagery can be set using the FormBorderStyle to determine the basic
appearance, along with the SizeGripStyle to determine whether to show the resizing grippy. The non-client controls are
enabled and disabled with the ControlBox (which enables the system menu and close button), MaximizeBox, MinimizeBox,
and HelpButton properties. You can also set the Icon to use for the ControlBox.

The Form can also show a Menu, and a MergedMenu can be retrieved for the current context if you are using the MDI
idiom.

You can create and Show() a form modelessly as with any other control, or use the ShowDialog() method to create and
show a modal window. The Modal property can be used to determine which method is used to display the form. How the
Form is initially positioned is determined by the StartPosition property. You can subsequently minimize or maximize the
form by setting the WindowState. It will float above all other windows if you set TopMost to true. While it is showing, it
can be made to appear in the taskbar by setting the ShowInTaskbar property.

When the Form is closed, the ShowDialog() method returns the DialogResult.

Default button processing is handled through the AcceptButton and CancelButton properties. You can assign any
IButtonControl-derived class to this property (which includes Button and LinkLabel, for example). When the button is
clicked, it will close the window, setting the DialogResult property appropriately.

Normally, a Form cannot be contained by another control. There are two exceptions to this rule. MDI support is provided
through the MdiParent property. If you host a Form in another by setting its MdiParent, it will appear in the containing Form
objects MdiChildren array, and the ActiveMdiChild can also be retrieved. Alternatively, you can set the TopLevel property to
false to allow you to embed the form in another ContainerControl. Note that if the control has MdiChildren, TopLevel must
remain set to true. You can tile or stack the MdiChildren by calling the LayoutMdi() method.

Unlike Win32, there are two separate, well-defined Form hierarchies: the Parent, which determines containment
relationships of non-toplevel objects (as with all Control objects), and the Owner, which determines the message routing
and ownership hierarchy of toplevel windows. For example, a Form object should be the Owner of its pop-up tool
windows, dialogs, etc.

The Form has the ability to intercept keyboard messages destined for its child controls. You can set the KeyPreview
property to true, and then receive KeyPress, KeyUp, and KeyDown events that would normally (and will eventually) be
sent to a child.

A Form can automatically resize itself and scale its contained controls when the Font size changes—the same kind of
behavior as Win32 dialogs, only without the horrible complexities of dialog units to pixel mapping. This is enabled using
the AutoScale property. Before you show the Form, you can set the AutoScaleBaseSize to specify the size of the default
Font. The designer environment will set this property for you, but if you need to do it yourself, you should set it to the
font's em-height and average character width. While on the subject of sizing, you can specify a MinimumSize and a
MaximumSize, and you can get the DesktopBounds and DesktopLocation, in addition to the standard Location and Bounds.

Finally, you can support transparent forms in two ways. You can set the overall Opacity of the form (1.00 is completely
opaque, and 0.00 is completely transparent, with 0.50 partially transparent). Note that this is different to the 0-255
range for the alpha value of System.Drawing.Color objects. Alternatively, you can set a TransparencyKey for a simple
chroma-key effect. Any pixel painted in that System.Drawing.Color will become transparent. Note that the transparency
features are supported only on Windows 2000 and above, and there is absolutely no per-pixel alpha transparency
support.

public class Form : ContainerControl {
// Public Constructors
 public Form();
// Public Static Properties
 public static Form ActiveForm{get; }
// Public Instance Properties
 public IButtonControl AcceptButton{set; get; }
 public Form ActiveMdiChild{get; }
 public bool AllowTransparency{set; get; }
 public bool AutoScale{set; get; }
 public virtual Size AutoScaleBaseSize{set; get; }
 public override bool AutoScroll{set; get; }
// overrides ScrollableControl
 public override Color BackColor{set; get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public override Color BackColor{set; get; }
// overrides Control
 public IButtonControl CancelButton{set; get; }
 public Size ClientSize{set; get; }
// overrides Control
 public bool ControlBox{set; get; }
 public Rectangle DesktopBounds{set; get; }
 public Point DesktopLocation{set; get; }
 public DialogResult DialogResult{set; get; }
 public FormBorderStyle FormBorderStyle{set; get; }
 public bool HelpButton{set; get; }
 public Icon Icon{set; get; }
 public bool IsMdiChild{get; }
 public bool IsMdiContainer{set; get; }
 public bool IsRestrictedWindow{get; }
 public bool KeyPreview{set; get; }
 public bool MaximizeBox{set; get; }
 public Size MaximumSize{set; get; }
 public Form[] MdiChildren{get; }
 public Form MdiParent{set; get; }
 public MainMenu Menu{set; get; }
 public MainMenu MergedMenu{get; }
 public bool MinimizeBox{set; get; }
 public Size MinimumSize{set; get; }
 public bool Modal{get; }
 public double Opacity{set; get; }
 public Form[] OwnedForms{get; }
 public Form Owner{set; get; }
 public bool ShowInTaskbar{set; get; }
 public Size Size{set; get; }
// overrides Control
 public SizeGripStyle SizeGripStyle{set; get; }
 public FormStartPosition StartPosition{set; get; }
 public int TabIndex{set; get; }
// overrides Control
 public bool TopLevel{set; get; }
 public bool TopMost{set; get; }
 public Color TransparencyKey{set; get; }
 public FormWindowState WindowState{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides ContainerControl
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
 protected Rectangle MaximizedBounds{set; get; }
// Public Static Methods
 public static SizeF GetAutoScaleSize(System.Drawing.Font font);
// Public Instance Methods
 public void Activate();
 public void AddOwnedForm(Form ownedForm);
 public void Close();
 public void LayoutMdi(MdiLayout value);
 public void RemoveOwnedForm(Form ownedForm);
 public void SetDesktopBounds(int x, int y, int width, int height);
 public void SetDesktopLocation(int x, int y);
 public DialogResult ShowDialog();
 public DialogResult ShowDialog(IWin32Window owner);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected void ActivateMdiChild(Form form);
 protected override void AdjustFormScrollbars(bool displayScrollbars); // overrides ContainerControl
 protected void ApplyAutoScaling();
 protected void CenterToParent();
 protected void CenterToScreen();
 protected override ControlCollection CreateControlsInstance();
 // overrides Control
 protected override void CreateHandle(); // overrides Control
 protected override void DefWndProc(ref Message m); // overrides Control
 protected override void Dispose(bool disposing); // overrides ContainerControl
 protected virtual void OnActivated(EventArgs e);
 protected virtual void OnClosed(EventArgs e);
 protected virtual void OnClosing(System.ComponentModel.CancelEventArgs e);
 protected override void OnCreateControl(); // overrides ContainerControl
 protected virtual void OnDeactivate(EventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected virtual void OnInputLanguageChanged(InputLanguageChangedEventArgs e);
 protected virtual void OnInputLanguageChanging(InputLanguageChangingEventArgs e);
 protected virtual void OnLoad(EventArgs e);
 protected virtual void OnMaximizedBoundsChanged(EventArgs e);
 protected virtual void OnMaximumSizeChanged(EventArgs e);
 protected virtual void OnMdiChildActivate(EventArgs e);
 protected virtual void OnMenuComplete(EventArgs e);
 protected virtual void OnMenuStart(EventArgs e);
 protected virtual void OnMinimumSizeChanged(EventArgs e);
 protected override void OnPaint(PaintEventArgs e); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected override void OnStyleChanged(EventArgs e); // overrides Control
 protected override void OnTextChanged(EventArgs e); // overrides Control
 protected override void OnVisibleChanged(EventArgs e); // overrides ScrollableControl
 protected override bool ProcessCmdKey(ref Message msg, Keys keyData); // overrides Control
 protected override bool ProcessDialogKey(Keys keyData); // overrides ContainerControl
 protected override bool ProcessKeyPreview(ref Message m); // overrides Control
 protected override bool ProcessTabKey(bool forward); // overrides ContainerControl
 protected override void ScaleCore(float x, float y); // overrides ScrollableControl
 protected override void Select(bool directed, bool forward); // overrides ContainerControl
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void SetClientSizeCore(int x, int y); // overrides Control
 protected override void SetVisibleCore(bool value); // overrides Control
 protected override void UpdateDefaultButton(); // overrides ContainerControl
 protected override void WndProc(ref Message m); // overrides ContainerControl
// Events
 public event EventHandler Activated;
 public event EventHandler Closed;
 public event CancelEventHandler Closing;
 public event EventHandler Deactivate;
 public event InputLanguageChangedEventHandler InputLanguageChanged;
 public event InputLanguageChangingEventHandler InputLanguageChanging;
 public event EventHandler Load;
 public event EventHandler MaximizedBoundsChanged;
 public event EventHandler MaximumSizeChanged;
 public event EventHandler MdiChildActivate;
 public event EventHandler MenuComplete;
 public event EventHandler MenuStart;
 public event EventHandler MinimumSizeChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
Form

Subclasses

PrintPreviewDialog, ThreadExceptionDialog, System.Windows.Forms.Design.ComponentEditorForm

Returned By

ApplicationContext.MainForm, ContainerControl.ParentForm, Control.FindForm(), MainMenu.GetForm(), MdiClient.MdiChildren

Passed To

Application.Run(), ApplicationContext.{ApplicationContext(), MainForm}, System.Windows.Forms.Design.IUIService.ShowDialog(),
System.Windows.Forms.Design.IWindowsFormsEditorService.ShowDialog(), ControlCollection.ControlCollection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Form.ControlCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the set of objects contained by a Form.

public class Form.ControlCollection : ControlCollection {
// Public Constructors
 public Form.ControlCollection(Form owner);
// Public Instance Methods
 public override void Add(Control value); // overrides Control.ControlCollection
 public override void Remove(Control value); // overrides Control.ControlCollection
}

Hierarchy

System.Object ControlCollection(System.Collections.ILis, System.Collections.ICollection, System.Collections.IEnumerable,
System.ICloneable) ControlCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FormBorderStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration allows you to set the appearance of the non-client area of a Form.

public enum FormBorderStyle {
 None = 0,
 FixedSingle = 1,
 Fixed3D = 2,
 FixedDialog = 3,
 Sizable = 4,
 FixedToolWindow = 5,
 SizableToolWindow = 6
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FormBorderStyle

Returned By

Form.FormBorderStyle, PrintPreviewDialog.FormBorderStyle

Passed To

Form.FormBorderStyle, PrintPreviewDialog.FormBorderStyle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FormStartPosition serializable

System.Windows.Forms
(system.windows.forms.dll) enum

The position at which a Form appears when it is first shown can be defined by a value from this enumeration. Note that
you must set StartPosition before a Form is shown for it to have any effect.

public enum FormStartPosition {
 Manual = 0,
 CenterScreen = 1,
 WindowsDefaultLocation = 2,
 WindowsDefaultBounds = 3,
 CenterParent = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FormStartPosition

Returned By

Form.StartPosition, PrintPreviewDialog.StartPosition

Passed To

Form.StartPosition, PrintPreviewDialog.StartPosition
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FormWindowState serializable

System.Windows.Forms
(system.windows.forms.dll) enum

Specifies whether a Form is Minimized, Maximized, or Normal. Note that a Form is Normal before it has been shown,
regardless of the Form.StartPosition.

public enum FormWindowState {
 Normal = 0,
 Minimized = 1,
 Maximized = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FormWindowState

Returned By

Form.WindowState, PrintPreviewDialog.WindowState

Passed To

Form.WindowState, PrintPreviewDialog.WindowState
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FrameStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by ControlPaint.DrawReversibleFrame() and ControlPaint.DrawReversibleLine() to determine the
appearance of the line drawn.

public enum FrameStyle {
 Dashed = 0,
 Thick = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
FrameStyle

Passed To

ControlPaint.DrawReversibleFrame()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GiveFeedbackEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event arguments for the Control.GiveFeedback event, which is raised during drag-and-drop
operations. When you handle this event, you can use the Effect property to determine what sort of drag-and-drop
operation is in progress, and then either UseDefaultCursors or set your own custom cursor.

public class GiveFeedbackEventArgs : EventArgs {
// Public Constructors
 public GiveFeedbackEventArgs(DragDropEffects effect, bool useDefaultCursors);
// Public Instance Properties
 public DragDropEffects Effect{get; }
 public bool UseDefaultCursors{set; get; }
}

Hierarchy

System.Object System.EventArgs GiveFeedbackEventArgs

Passed To

System.Windows.Forms.Design.ComponentTray.OnGiveFeedback(), System.Windows.Forms.Design.ControlDesigner.OnGiveFeedback(),
GiveFeedbackEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GiveFeedbackEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.GiveFeedback event.

public delegate void GiveFeedbackEventHandler(
 object sender, GiveFeedbackEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GridColumnStylesCollection marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This typed collection class represents the list of GridColumnStyles in a GridTableStylesCollection object. As you might expect
from a collection, you can Add() and Remove() objects, find the IndexOf() a particular object, or the Item at a particular
index (this is the indexer property).

See DataGrid for more information about columns, tables, and grids.

public class GridColumnStylesCollection : BaseCollection : IList {
// Public Instance Properties
 public DataGridColumnStyle this{get; }
 public DataGridColumnStyle this{get; }
 public DataGridColumnStyle this{get; }
// Protected Instance Properties
 protected override ArrayList List{get; }
// overrides BaseCollection
// Public Instance Methods
 public virtual int Add(DataGridColumnStyle column);
 public void AddRange(DataGridColumnStyle[] columns);
 public void Clear(); // implements IList
 public bool Contains(DataGridColumnStyle column);
 public bool Contains(System.ComponentModel.PropertyDescriptor propDesc);
 public bool Contains(string name);
 public int IndexOf(DataGridColumnStyle element);
 public void Remove(DataGridColumnStyle column);
 public void RemoveAt(int index); // implements IList
 public void ResetPropertyDescriptors();
// Protected Instance Methods
 protected void OnCollectionChanged(System.ComponentModel.CollectionChangeEventArgs ccevent);
// Events
 public event CollectionChangeEventHandler CollectionChanged;
}

Hierarchy

System.Object System.MarshalByRefObject BaseCollection(System.Collections.ICollectio, System.Collections.IEnumerable)
 GridColumnStylesCollection(System.Collections.IList)

Returned By

DataGridTableStyle.GridColumnStyles

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GridItem

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This class represents a particular row in a PropertyGrid and is used in the PropertyGrid.SelectedGridItem and
PropertyGrid.SelectedGridItemChanged members.

You can discover whether the row is Expandable (and whether it is Expanded), which GridItems are children of this one,
and which is its Parent.

The Label and Value can be retrieved (but not set) through those properties, and you can also retrieve the
PropertyDescriptor for the item, to discover what type the item Value might be and which
System.ComponentModel.TypeConverter is available for it.

The Select() method causes the row represented by this object to be selected in the PropertyGrid.

The GridItemType property is used to determine whether this row in the grid represents an ArrayValue, a Category line
(e.g., the Behavior, Layout labels), a simple Property, or a Root item for an expandable row.

public abstract class GridItem {
// Protected Constructors
 protected GridItem();
// Public Instance Properties
 public virtual bool Expandable{get; }
 public virtual bool Expanded{set; get; }
 public abstract GridItemCollection GridItems{get; }
 public abstract GridItemType GridItemType{get; }
 public abstract string Label{get; }
 public abstract GridItem Parent{get; }
 public abstract PropertyDescriptor PropertyDescriptor{get; }
 public abstract object Value{get; }
// Public Instance Methods
 public abstract bool Select();
}

Returned By

GridItemCollection.this, PropertyGrid.SelectedGridItem, PropertyValueChangedEventArgs.ChangedItem,
SelectedGridItemChangedEventArgs.{NewSelection, OldSelection}

Passed To

PropertyGrid.SelectedGridItem, PropertyValueChangedEventArgs.PropertyValueChangedEventArgs(),
SelectedGridItemChangedEventArgs.SelectedGridItemChangedEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GridItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class is a typed collection of GridItems, and is used to contain the list of child items for a particular GridItem.

As you might expect from a collection, you can Add() and Remove() objects, find the IndexOf() a particular object, or the
Item at a particular index (this is the indexer property).

public class GridItemCollection : ICollection, IEnumerable {
// Public Static Fields
 public static GridItemCollection Empty; // =System.Windows.Forms.GridItemCollection
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public GridItem this{get; }
 public GridItem this{get; }
// Public Instance Methods
 public IEnumerator GetEnumerator(); // implements IEnumerable
}

Returned By

GridItem.GridItems

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GridItemType serializable

System.Windows.Forms
(system.windows.forms.dll) enum

An enumeration specifying the various kinds of row in a PropertyGrid. See GridItem and PropertyGrid for more information.

public enum GridItemType {
 Property = 0,
 Category = 1,
 ArrayValue = 2,
 Root = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
GridItemType

Returned By

GridItem.GridItemType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GridTablesFactory

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class GridTablesFactory {
// Public Static Methods
 public static DataGridTableStyle[] CreateGridTables(DataGridTableStyle gridTable, object dataSource,
 string dataMember, BindingContext bindingManager);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GridTableStylesCollection marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This typed collection class represents the list of DataGridTableStyle objects in a DataGrid object. As you might expect from
a collection, you can Add() and Remove() objects, find the IndexOf() a particular object, or the Item at a particular index
(this is the indexer property).

See DataGrid for more information about columns, tables, and grids.

public class GridTableStylesCollection : BaseCollection : IList {
// Public Instance Properties
 public DataGridTableStyle this{get; }
 public DataGridTableStyle this{get; }
// Protected Instance Properties
 protected override ArrayList List{get; }
// overrides BaseCollection
// Public Instance Methods
 public virtual int Add(DataGridTableStyle table);
 public virtual void AddRange(DataGridTableStyle[] tables);
 public void Clear(); // implements IList
 public bool Contains(DataGridTableStyle table);
 public bool Contains(string name);
 public void Remove(DataGridTableStyle table);
 public void RemoveAt(int index); // implements IList
// Protected Instance Methods
 protected void OnCollectionChanged(System.ComponentModel.CollectionChangeEventArgs ccevent);
// Events
 public event CollectionChangeEventHandler CollectionChanged;
}

Hierarchy

System.Object System.MarshalByRefObject BaseCollection(System.Collections.ICollectio, System.Collections.IEnumerable)
 GridTableStylesCollection(System.Collections.IList)

Returned By

DataGrid.TableStyles

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GroupBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control class can contain other controls (like a ContainerControl), but it does not provide scrolling support, instead
rendering a label and border around its children, which have been added to the Controls collection.

You can set the FlatStyle for a group box to determine how it will be rendered. Note that you should set the FlatStyle to
System if you wish your GroupBox to support Windows XP theming.

public class GroupBox : Control {
// Public Constructors
 public GroupBox();
// Public Instance Properties
 public override bool AllowDrop{set; get; }
// overrides Control
 public override Rectangle DisplayRectangle{get; }
// overrides Control
 public FlatStyle FlatStyle{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnPaint(PaintEventArgs e); // overrides Control
 protected override bool ProcessMnemonic(char charCode); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler Click;
// overrides Control
 public event EventHandler DoubleClick;
// overrides Control
 public event KeyEventHandler KeyDown;
// overrides Control
 public event KeyPressEventHandler KeyPress;
// overrides Control
 public event KeyEventHandler KeyUp;
// overrides Control
 public event MouseEventHandler MouseDown;
// overrides Control
 public event EventHandler MouseEnter;
// overrides Control
 public event EventHandler MouseLeave;
// overrides Control
 public event MouseEventHandler MouseMove;
// overrides Control
 public event MouseEventHandler MouseUp;
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) GroupBox

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Help

System.Windows.Forms
(system.windows.forms.dll) class

This utility class provides two members, ShowHelp() and ShowHelpIndex(), which allow you to display HTML help files in
your application.

There are several overrides of the ShowHelp() method. One allows you to show specific pages. Others show the index or
contents page in a specified .chm, .col, or .htm help file.

For most simple help applications, you should consider using the HelpProvider component instead, which deals with
Control.HelpRequested events, automatically showing the appropriate help for a Control.

public class Help {
// Public Static Methods
 public static void ShowHelp(Control parent, string url);
 public static void ShowHelp(Control parent, string url, HelpNavigator navigator);
 public static void ShowHelp(Control parent, string url, HelpNavigator command, object param);
 public static void ShowHelp(Control parent, string url, string keyword);
 public static void ShowHelpIndex(Control parent, string url);
 public static void ShowPopup(Control parent, string caption, System.Drawing.Point location);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HelpEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event arguments for the Control.HelpRequested event. It includes a Handled property, which
you should set to true if you do handle the event, or the framework will pass the event on for further processing.

You can also retrieve the current MousePos if you need to use this to resolve the help item.

You can display help using the Help class, or use the HelpProvider component to provide automated help support.

public class HelpEventArgs : EventArgs {
// Public Constructors
 public HelpEventArgs(System.Drawing.Point mousePos);
// Public Instance Properties
 public bool Handled{set; get; }
 public Point MousePos{get; }
}

Hierarchy

System.Object System.EventArgs HelpEventArgs

Passed To

Control.OnHelpRequested(), HelpEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HelpEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.HelpRequested and HelpRequested events.

public delegate void HelpEventHandler(object sender, HelpEventArgs hlpevent);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HelpNavigator serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the different types of page that might be shown in an HTML help file by either the Help or
HelpProvider classes.

public enum HelpNavigator {
 Topic = -2147483647,
 TableOfContents = -2147483646,
 Index = -2147483645,
 Find = -2147483644,
 AssociateIndex = -2147483643,
 KeywordIndex = -2147483642
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
HelpNavigator

Returned By

HelpProvider.GetHelpNavigator()

Passed To

Help.ShowHelp(), HelpProvider.SetHelpNavigator()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HelpProvider marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.Component can be dropped onto a Form design surface to provide help support.

Unfortunately, the naming conventions are not remotely consistent between the HelpProvider and the Help classes,
despite the fact that they carry out exactly the same task with different levels of automation. HelpProvider offers
extender properties for the HelpKeyword (the Topic ID) and HelpNavigator, and handles help requests (through the
Control.HelpRequested event) to show the selected page of the HelpNamespace (the curiously named property that allows
you to specify the URI of the help file). See Help for more information on these parameters. Help can be individually
switched on and off for a particular Control through another extender property: ShowHelp.

Finally, there is a HelpString extender property, which lets you set a string for What's This? help (the little pop-up
ToolTip-like help boxes). Again, the class automatically deals with this for you.

Programmatically, you can access all extender properties through the Get and Set member functions of the same name.

public class HelpProvider : System.ComponentModel.Component : System.ComponentModel.IExtenderProvider {
// Public Constructors
 public HelpProvider();
// Public Instance Properties
 public virtual string HelpNamespace{set; get; }
// Public Instance Methods
 public virtual bool CanExtend(object target); // implements System.ComponentModel.IExtenderProvider
 public virtual string GetHelpKeyword(Control ctl);
 public virtual HelpNavigator GetHelpNavigator(Control ctl);
 public virtual string GetHelpString(Control ctl);
 public virtual bool GetShowHelp(Control ctl);
 public virtual void ResetShowHelp(Control ctl);
 public virtual void SetHelpKeyword(Control ctl, string keyword);
 public virtual void SetHelpNavigator(Control ctl, HelpNavigator navigator);
 public virtual void SetHelpString(Control ctl, string helpString);
 public virtual void SetShowHelp(Control ctl, bool value);
 public override string ToString(); // overrides System.ComponentModel.Component
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) HelpProvider(System.ComponentModel.IExtenderProvider)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HorizontalAlignment serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by most of the Control classes to specify how particular parts of their imagery should be
positioned (e.g., the TextBox.TextAlign property).

Note that this enumeration uses Left, Center, and Right rather than the usual Near, Center, and Far, but the Control objects
still honor the setting for Control.RightToLeft. So, if you set Left, but also RightToLeft.Yes, the element will actually be
aligned to the right.

public enum HorizontalAlignment {
 Left = 0,
 Right = 1,
 Center = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
HorizontalAlignment

Returned By

ColumnHeader.TextAlign, Control.{RtlTranslateAlignment(), RtlTranslateHorizontal()}, DataGridColumnStyle.Alignment,
RichTextBox.SelectionAlignment, StatusBarPanel.Alignment, TextBox.TextAlign, UpDownBase.TextAlign

Passed To

ColumnHeader.TextAlign, Control.{RtlTranslateAlignment(), RtlTranslateHorizontal()}, DataGridColumnStyle.Alignment,
ColumnHeaderCollection.{Add(), Insert()}, RichTextBox.SelectionAlignment, StatusBarPanel.Alignment, TextBox.TextAlign,
UpDownBase.TextAlign

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

HScrollBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

While most controls provide their own scrollbars—including Form and UserControl objects—sometimes the default
behavior of these objects is inadequate. In those cases, you may wish to manage your own scrollbars (the shortened
scrollbars at the bottom of an Excel tab-sheet for example).

This class, derived from the base ScrollBar, provides a horizontal bar. See the VScrollBar class for its vertical partner.

public class HScrollBar : ScrollBar {
// Public Constructors
 public HScrollBar();
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides ScrollBar
 protected override Size DefaultSize{get; }
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollBar HScrollBar
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IButtonControl

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is implemented by Control objects such as Button and LinkLabel, which provide button-like behavior.

The framework requires the PerformClick() method to provide a way of programmatically clicking the button.

NotifyDefault() is called by the framework when the button becomes the default (i.e., when it is set as the active Form
object's AcceptButton).

Finally, DialogResult is the property you should implement to maintain the result code that will be set if the button is
clicked to terminate a Form that has been shown modally with the ShowDialog() method.

public interface IButtonControl {
// Public Instance Properties
 public DialogResult DialogResult{set; get; }
// Public Instance Methods
 public void NotifyDefault(bool value);
 public void PerformClick();
}

Implemented By

Button, LinkLabel

Returned By

Form.{AcceptButton, CancelButton}, PrintPreviewDialog.{AcceptButton, CancelButton}

Passed To

Form.{AcceptButton, CancelButton}, PrintPreviewDialog.{AcceptButton, CancelButton}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ICommandExecutor

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is for internal use only and should not be used from your own code.

public interface ICommandExecutor {
// Public Instance Methods
 public void Execute();
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IComponentEditorPageSite

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is for internal use only and should not be used from your own code.

public interface IComponentEditorPageSite {
// Public Instance Methods
 public Control GetControl();
 public void SetDirty();
}

Returned By

System.Windows.Forms.Design.ComponentEditorPage.PageSite

Passed To

System.Windows.Forms.Design.ComponentEditorPage.{PageSite, SetSite()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IContainerControl

System.Windows.Forms
(system.windows.forms.dll) interface

Any derived Control object can be made to contain other controls. In addition to setting the ControlStyles.ContainerControl,
you should implement this interface to support the management and activation of child controls.

The current ActiveControl can be set or retrieved, and you should implement ActivateControl() to allow the framework to
activate a particular child.

public interface IContainerControl {
// Public Instance Properties
 public Control ActiveControl{set; get; }
// Public Instance Methods
 public bool ActivateControl(Control active);
}

Implemented By

ContainerControl

Returned By

Control.GetContainerControl()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IDataGridColumnStyleEditingNotificationService

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is implemented by the DataGridColumnStyle to manage the start and end of the editing process. The default
implementation notifies the containing DataGrid that the column is being edited by calling that object's
ColumnStartedEditing() method.

public interface IDataGridColumnStyleEditingNotificationService {
// Public Instance Methods
 public void ColumnStartedEditing(Control editingControl);
}

Implemented By

DataGridColumnStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IDataGridEditingService

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is defined for internal purposes and should not be used from your own code.

public interface IDataGridEditingService {
// Public Instance Methods
 public bool BeginEdit(DataGridColumnStyle gridColumn, int rowNumber);
 public bool EndEdit(DataGridColumnStyle gridColumn, int rowNumber, bool shouldAbort);
}

Implemented By

DataGrid, DataGridTableStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IDataObject

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is used by Clipboard and drag-and-drop operations to encapsulate the data that is being moved around.
See DataObject for a description of a typical implementation.

You could provide more complex IDataObject implementations than the simple in-memory version offered by DataObject,
perhaps using persistent storage for robustness, but DataObject will do fine for most applications.

public interface IDataObject {
// Public Instance Methods
 public object GetData(string format);
 public object GetData(string format, bool autoConvert);
 public object GetData(Type format);
 public bool GetDataPresent(string format);
 public bool GetDataPresent(string format, bool autoConvert);
 public bool GetDataPresent(Type format);
 public string[] GetFormats();
 public string[] GetFormats(bool autoConvert);
 public void SetData(object data);
 public void SetData(string format, bool autoConvert, object data);
 public void SetData(string format, object data);
 public void SetData(Type format, object data);
}

Implemented By

DataObject

Returned By

Clipboard.GetDataObject(), DragEventArgs.Data

Passed To

DragEventArgs.DragEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IFeatureSupport

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is implemented by the FeatureSupport and OSFeature classes to allow you to determine whether a specific
feature IsPresent(), and if so which version, using the GetVersionPresent() method.

See FeatureSupport for a discussion of these techniques.

public interface IFeatureSupport {
// Public Instance Methods
 public Version GetVersionPresent(object feature);
 public bool IsPresent(object feature);
 public bool IsPresent(object feature, Version minimumVersion);
}

Implemented By

FeatureSupport

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IFileReaderService

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is defined internally by the framework and should not be used in your own code.

public interface IFileReaderService {
// Public Instance Methods
 public Stream OpenFileFromSource(string relativePath);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageIndexConverter

System.Windows.Forms
(system.windows.forms.dll) class

This class is a type converter for image index values. You need a special type converter for these despite the fact that
they are just integers, because it needs to be able to support a None value. Typically these are used in Control classes
that need to specify the index into an image list for a part of their imagery.

You would not normally need to use this class yourself, as it is to support serialization and design-time scenarios.

public class ImageIndexConverter : System.ComponentModel.Int32Converter {
// Public Constructors
 public ImageIndexConverter();
// Protected Instance Properties
 protected virtual bool IncludeNoneAsStandardValue{get; }
// Public Instance Methods
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.BaseNumberConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.BaseNumberConverter
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesExclusive(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter System.ComponentModel.BaseNumberConverter
System.ComponentModel.Int32Converter ImageIndexConverter

Subclasses

TreeViewImageIndexConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageList marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This System.ComponentModel.Component wraps a Win32 ImageList control. In theory, this is the best way to manage sets of
images for the UI; in practice, there are a few complications, because it tends to reflect the fact that it is a thin wrapper
over the Win32 common control, rather than a native part of the .NET Framework.

It offers functions to Draw() a specific image from the list onto a System.Drawing.Graphics surface. Unlike the standard
GDI+ image classes, support for alpha channel is limited, unless you are using Windows XP and Common Controls v6.
You can, however, set a TransparentColor for basic transparency support.

For interop scenarios, you can retrieve the underlying Handle and determine whether the native list has actually been
created yet with the HandleCreated property. (The image resources are lazy-allocated the first time they are needed).

The format of the images can be set and retrieved using the ImageSize and ColorDepth properties. The image data itself
can be serialized and deserialized using the ImageStream. Typically, you would be deserializing the data from system
resources, and this is all handled for you by the design-time environment.

Finally, the actual images in the list can be accessed through the Images property.

The ImageList control is present because several of the Control classes that wrap Win32 objects are a thin veneer over
the raw control, and therefore expose the unmanaged image list functionality. If you want to deal with your own sets of
images, a managed collection class would probably be the way to go, rather than trying to shoehorn this component
into a role for which it is not designed.

public sealed class ImageList : System.ComponentModel.Component {
// Public Constructors
 public ImageList();
 public ImageList(System.ComponentModel.IContainer container);
// Public Instance Properties
 public ColorDepth ColorDepth{set; get; }
 public IntPtr Handle{get; }
 public bool HandleCreated{get; }
 public ImageCollection Images{get; }
 public Size ImageSize{set; get; }
 public ImageListStreamer ImageStream{set; get; }
 public Color TransparentColor{set; get; }
// Public Instance Methods
 public void Draw(System.Drawing.Graphics g, int x, int y, int index);
 public void Draw(System.Drawing.Graphics g, int x, int y, int width, int height, int index);
 public void Draw(System.Drawing.Graphics g, System.Drawing.Point pt, int index);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
// Events
 public event EventHandler RecreateHandle;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) ImageList

Returned By

ButtonBase.ImageList, Label.ImageList, ListView.{LargeImageList, SmallImageList, StateImageList}, ListViewItem.ImageList,
TabControl.ImageList, ToolBar.ImageList, TreeView.ImageList

Passed To

ButtonBase.ImageList, Label.ImageList, ListView.{LargeImageList, SmallImageList, StateImageList}, TabControl.ImageList,
ToolBar.ImageList, TreeView.ImageList
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageList.ImageCollection

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This collection class represents the set of images in an ImageList control.

public sealed class ImageList.ImageCollection : IList, ICollection, IEnumerable {
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool Empty{get; }
 public bool IsReadOnly{get; }
// implements IList
 public Image this{set; get; }
// Public Instance Methods
 public int Add(System.Drawing.Image value, System.Drawing.Color transparentColor);
 public void Add(System.Drawing.Icon value);
 public void Add(System.Drawing.Image value);
 public int AddStrip(System.Drawing.Image value);
 public void Clear(); // implements IList
 public bool Contains(System.Drawing.Image image);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(System.Drawing.Image image);
 public void Remove(System.Drawing.Image image);
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImageListStreamer serializable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class implements ISerializable and is used to serialize and deserialize ImageList data. Normally, you would be
serializing from resources, and this will be handled by the designer for you. If not, this is the type of object you should
retrieve from the System.Resources.ResourceManager for ImageList data.

public sealed class ImageListStreamer : System.Runtime.Serialization.ISerializable {
// Public Instance Methods
 public void GetObjectData(System.Runtime.Serialization.SerializationInfo si,
 System.Runtime.Serialization.StreamingContext context); // implements ISerializable
}

Returned By

ImageList.ImageStream

Passed To

ImageList.ImageStream
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ImeMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the kind of Input Method Editor to use for a Control. An IME is a utility that allows you to
enter characters in complex non-western scripts, such as the far eastern characters.

public enum ImeMode {
 NoControl = 0,
 On = 1,
 Off = 2,
 Disable = 3,
 Hiragana = 4,
 Katakana = 5,
 KatakanaHalf = 6,
 AlphaFull = 7,
 Alpha = 8,
 HangulFull = 9,
 Hangul = 10,
 Inherit = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ImeMode

Returned By

Multiple types

Passed To

ButtonBase.ImeMode, Control.ImeMode, Label.ImeMode, MonthCalendar.ImeMode, PictureBox.ImeMode, PrintPreviewDialog.ImeMode,
ProgressBar.ImeMode, ScrollBar.ImeMode, Splitter.ImeMode, StatusBar.ImeMode, ToolBar.ImeMode, TrackBar.ImeMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IMessageFilter

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is implemented by classes that want to filter messages before they are dispatched to your application.
You should implement the PreFilterMessage() method, to intercept messages, carry out any additional processing you
require, and then either pass them on to the rest of the system (by returning false) or cancel the dispatch by returning
true.

To install a message filter, you can use the Application.AddMessageFilter() method. Note that the installation of message
filters can impede the performance of your application, as it requires a small block of extra code and a method call for
every message dispatched.

public interface IMessageFilter {
// Public Instance Methods
 public bool PreFilterMessage(ref Message m);
}

Implemented By

Splitter

Passed To

Application.{AddMessageFilter(), RemoveMessageFilter()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputLanguage

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class encapsulates a Culture and a keyboard LayoutName, which determine how input is handled in the current
thread or process.

There are static members, which allow you to retrieve the CurrentInputLanguage and the DefaultInputLanguage, as well as a
list of all the InstalledInputLanguages on a system.

You could use this class to provide custom input handling for different environments, perhaps modifying the
Control.RightToLeft status or changing the IME (see ImeMode).

public sealed class InputLanguage {
// Public Static Properties
 public static InputLanguage CurrentInputLanguage{set; get; }
 public static InputLanguage DefaultInputLanguage{get; }
 public static InputLanguageCollection InstalledInputLanguages{get; }
// Public Instance Properties
 public CultureInfo Culture{get; }
 public IntPtr Handle{get; }
 public string LayoutName{get; }
// Public Static Methods
 public static InputLanguage FromCulture(System.Globalization.CultureInfo culture);
// Public Instance Methods
 public override bool Equals(object value); // overrides object
 public override int GetHashCode(); // overrides object
}

Returned By

Application.CurrentInputLanguage, InputLanguageChangedEventArgs.InputLanguage,
InputLanguageChangingEventArgs.InputLanguage, InputLanguageCollection.this

Passed To

Application.CurrentInputLanguage, InputLanguageChangedEventArgs.InputLanguageChangedEventArgs(),
InputLanguageChangingEventArgs.InputLanguageChangingEventArgs(), InputLanguageCollection.{Contains(), CopyTo(), IndexOf()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputLanguageChangedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This encapsulates the event arguments for the Form.InputLanguageChanged event, which is raised when the system
regional settings are changed. You can retrieve the CharSet associated with the new input language, the Culture, and the
InputLanguage.

public class InputLanguageChangedEventArgs : EventArgs {
// Public Constructors
 public InputLanguageChangedEventArgs(System.Globalization.CultureInfo culture, byte charSet);
 public InputLanguageChangedEventArgs(InputLanguage inputLanguage, byte charSet);
// Public Instance Properties
 public byte CharSet{get; }
 public CultureInfo Culture{get; }
 public InputLanguage InputLanguage{get; }
}

Hierarchy

System.Object System.EventArgs InputLanguageChangedEventArgs

Passed To

Form.OnInputLanguageChanged(), InputLanguageChangedEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputLanguageChangedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Form.InputLanguageChanged event.

public delegate void InputLanguageChangedEventHandler(object sender, InputLanguageChangedEventArgs e);

Associated Events

System.Windows.Forms.Design.ComponentEditorForm.InputLanguageChanged(), Form.InputLanguageChanged(),
PrintPreviewDialog.InputLanguageChanged(), ThreadExceptionDialog.InputLanguageChanged()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputLanguageChangingEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

Similar to the InputLanguageChangedEventArgs, this encapsulates the same information but for the InputLanguageChanging
event, which is raised before the input language is changed, giving you an opportunity to Cancel it.

public class InputLanguageChangingEventArgs : System.ComponentModel.CancelEventArgs {
// Public Constructors
 public InputLanguageChangingEventArgs(System.Globalization.CultureInfo culture, bool sysCharSet);
 public InputLanguageChangingEventArgs(InputLanguage inputLanguage, bool sysCharSet);
// Public Instance Properties
 public CultureInfo Culture{get; }
 public InputLanguage InputLanguage{get; }
 public bool SysCharSet{get; }
}

Hierarchy

System.Object System.EventArgs System.ComponentModel.CancelEventArgs InputLanguageChangingEventArgs

Passed To

Form.OnInputLanguageChanging(), InputLanguageChangingEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputLanguageChangingEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Form.InputLanguageChanging event.

public delegate void InputLanguageChangingEventHandler(object sender, InputLanguageChangingEventArgs e);

Associated Events

System.Windows.Forms.Design.ComponentEditorForm.InputLanguageChanging(), Form.InputLanguageChanging(),
PrintPreviewDialog.InputLanguageChanging(),ThreadExceptionDialog.InputLanguageChanging()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputLanguageCollection

System.Windows.Forms
(system.windows.forms.dll) class

This is a read-only collection of InputLanguage objects, obtained from the InputLanguage.InstalledInputLanguages method.

public class InputLanguageCollection : ReadOnlyCollectionBase {
// Public Instance Properties
 public InputLanguage this{get; }
// Public Instance Methods
 public bool Contains(InputLanguage value);
 public void CopyTo(InputLanguage[] array, int index);
 public int IndexOf(InputLanguage value);
}

Hierarchy

System.Object System.Collections.ReadOnlyCollectionBase(System.Collections.ICollectio, System.Collections.IEnumerable)
InputLanguageCollection

Returned By

InputLanguage.InstalledInputLanguages

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InvalidateEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the InvalidRect of a Control for the Invalidated event, which is raised when an area of the window is
dirty and needs repainting.

public class InvalidateEventArgs : EventArgs {
// Public Constructors
 public InvalidateEventArgs(System.Drawing.Rectangle invalidRect);
// Public Instance Properties
 public Rectangle InvalidRect{get; }
}

Hierarchy

System.Object System.EventArgs InvalidateEventArgs

Passed To

Control.OnInvalidated(), InvalidateEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InvalidateEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.Invalidated event.

public delegate void InvalidateEventHandler(object sender, InvalidateEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemActivation serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the ListView control to determine what click behavior it will express: the old-style Standard
double-click, the new explorer-style OneClick with link-style highlighting on mouse over, or a TwoClick mode, which
couples the link-like highlighting with a double-click.

public enum ItemActivation {
 Standard = 0,
 OneClick = 1,
 TwoClick = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ItemActivation

Returned By

ListView.Activation

Passed To

ListView.Activation
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemBoundsPortion serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the different parts of an item in a ListView and is used in the ListView.GetItemRect() and
ListViewItem.GetBounds() methods.

public enum ItemBoundsPortion {
 Entire = 0,
 Icon = 1,
 Label = 2,
 ItemOnly = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ItemBoundsPortion

Passed To

ListView.GetItemRect(), ListViewItem.GetBounds()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemChangedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

Encapsulating the data for the CurrencyManager.ItemChanged event, this class allows you to retrieve the Index of the item
that changed.

However, it is recommend that you do not handle this event if you are building your own data-aware control. As with
the DataGrid, it is recommended that you instead depend on the data source implementing the
System.ComponentModel.IBindingList interface and that you bind to the ListChanged event.

public class ItemChangedEventArgs : EventArgs {
// Public Instance Properties
 public int Index{get; }
}

Hierarchy

System.Object System.EventArgs ItemChangedEventArgs

Passed To

CurrencyManager.OnItemChanged(), ItemChangedEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemChangedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the CurrencyManager.ItemChanged event.

public delegate void ItemChangedEventHandler(object sender, ItemChangedEventArgs e);

Associated Events

CurrencyManager.ItemChanged()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemCheckEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class is used by the ListView and the CheckedListBox to encapsulate the data for the ItemCheck event, which is raised
when one of the items is about to be checked or unchecked.

Note that it occurs before the item is checked. You can retrieve the Index of the item to be changed, and the
CurrentValue. You can also get or set the NewValue to which it will be changed, perhaps changing it if the circumstances
demand.

public class ItemCheckEventArgs : EventArgs {
// Public Constructors
 public ItemCheckEventArgs(int index, CheckState newCheckValue, CheckState currentValue);
// Public Instance Properties
 public CheckState CurrentValue{get; }
 public int Index{get; }
 public CheckState NewValue{set; get; }
}

Hierarchy

System.Object System.EventArgs ItemCheckEventArgs

Passed To

CheckedListBox.OnItemCheck(), ItemCheckEventHandler.{BeginInvoke(), Invoke()}, ListView.OnItemCheck()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemCheckEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the ListView and CheckedListBoxItemCheck events.

public delegate void ItemCheckEventHandler(object sender, ItemCheckEventArgs e);

Associated Events

CheckedListBox.ItemCheck(), ListView.ItemCheck()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemDragEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

When the user begins to drag an item from the ListView or TreeView controls, they raise an ItemDrag event. This class
encapsulates the Item that is being dragged and the Button that initiated the drag.

public class ItemDragEventArgs : EventArgs {
// Public Constructors
 public ItemDragEventArgs(MouseButtons button);
 public ItemDragEventArgs(MouseButtons button, object item);
// Public Instance Properties
 public MouseButtons Button{get; }
 public object Item{get; }
}

Hierarchy

System.Object System.EventArgs ItemDragEventArgs

Passed To

ItemDragEventHandler.{BeginInvoke(), Invoke()}, ListView.OnItemDrag(), TreeView.OnItemDrag()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ItemDragEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the ItemDrag event of the ListView and TreeView controls.

public delegate void ItemDragEventHandler(object sender, ItemDragEventArgs e);

Associated Events

ListView.ItemDrag(), TreeView.ItemDrag()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IWin32Window

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is implemented by classes that wrap a system window. Most visual classes in the Windows Forms
framework ultimately wrap a Win32 window, and this interface is implemented by Control to support that. It provides the
Handle property to retrieve the underlying HWND for the window.

Note that not everything that is apparently a window is actually a window. For example, all the components of the
Win32 ExplorerBar are actually rendered into a single Win32 window.

public interface IWin32Window {
// Public Instance Properties
 public IntPtr Handle{get; }
}

Implemented By

Control

Returned By

System.Windows.Forms.Design.IUIService.GetDialogOwnerWindow()

Passed To

CommonDialog.ShowDialog(), System.Windows.Forms.Design.ComponentEditorForm.ShowForm(),
System.Windows.Forms.Design.IUIService.ShowComponentEditor(),
System.Windows.Forms.Design.WindowsFormsComponentEditor.EditComponent(), Form.ShowDialog(), MessageBox.Show()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IWindowTarget

System.Windows.Forms
(system.windows.forms.dll) interface

This interface is for internal use and should not be called from your own code.

public interface IWindowTarget {
// Public Instance Methods
 public void OnHandleChange(IntPtr newHandle);
 public void OnMessage(ref Message m);
}

Returned By

Control.WindowTarget

Passed To

Control.WindowTarget
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

KeyEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This encapsulates the data for Control.KeyDown and Control.KeyUp events. Unlike the Control.KeyPress event, you can
retrieve raw, unprocessed key data for the event.

You can retrieve the state of the modifier keys through the Alt, Control, and Shift properties. The actual KeyCode can be
retrieved, which can be directly compared for equality with an entry in the Keys enumeration. The KeyData is similar, but
also includes the modifier key status in the upper 4 bits, so you should compare using the & operator. You can also
retrieve the KeyValue, which is an integer representation of the KeyData (i.e., the raw value that came from the OS).
Finally, you can retrieve the Modifiers only.

If you do not wish to process the event further, you can set the Handled property to true.

public class KeyEventArgs : EventArgs {
// Public Constructors
 public KeyEventArgs(Keys keyData);
// Public Instance Properties
 public virtual bool Alt{get; }
 public bool Control{get; }
 public bool Handled{set; get; }
 public Keys KeyCode{get; }
 public Keys KeyData{get; }
 public int KeyValue{get; }
 public Keys Modifiers{get; }
 public virtual bool Shift{get; }
}

Hierarchy

System.Object System.EventArgs KeyEventArgs

Passed To

Control.{OnKeyDown(), OnKeyUp(), RaiseKeyEvent()}, DataGrid.ProcessGridKey(), KeyEventHandler.{BeginInvoke(), Invoke()},
UpDownBase.OnTextBoxKeyDown()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

KeyEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.KeyDown and Control.KeyUp events.

public delegate void KeyEventHandler(object sender, KeyEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

KeyPressEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

Similar to the KeyEventArgs, this class encapsulates the data for the Control.KeyPress event.

You can simply retrieve the KeyChar corresponding to the key that was pressed. For example, pressing Shift-H would
provide H, whereas pressing H would return h (of course, the Caps Lock key would change this).

public class KeyPressEventArgs : EventArgs {
// Public Constructors
 public KeyPressEventArgs(char keyChar);
// Public Instance Properties
 public bool Handled{set; get; }
 public char KeyChar{get; }
}

Hierarchy

System.Object System.EventArgs KeyPressEventArgs

Passed To

Control.OnKeyPress(), KeyPressEventHandler.{BeginInvoke(), Invoke()}, UpDownBase.OnTextBoxKeyPress()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

KeyPressEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.KeyPress event.

public delegate void KeyPressEventHandler(object sender, KeyPressEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Keys serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists all the raw key values. The enumeration sports the FlagsAttribute, and you can therefore combine
the key codes in a bitwise manner to indicate multiple keys pressed simultaneously. In particular, this supports modifier
keys such as CTRL, SHIFT, and ALT.

public enum Keys {
 None = 0x00000000,
 LButton = 0x00000001,
 RButton = 0x00000002,
 Cancel = 0x00000003,
 MButton = 0x00000004,
 XButton1 = 0x00000005,
 XButton2 = 0x00000006,
 Back = 0x00000008,
 Tab = 0x00000009,
 LineFeed = 0x0000000A,
 Clear = 0x0000000C,
 Return = 0x0000000D,
 Enter = 0x0000000D,
 ShiftKey = 0x00000010,
 ControlKey = 0x00000011,
 Menu = 0x00000012,
 Pause = 0x00000013,
 CapsLock = 0x00000014,
 Capital = 0x00000014,
 KanaMode = 0x00000015,
 HanguelMode = 0x00000015,
 HangulMode = 0x00000015,
 JunjaMode = 0x00000017,
 FinalMode = 0x00000018,
 KanjiMode = 0x00000019,
 HanjaMode = 0x00000019,
 Escape = 0x0000001B,
 IMEConvert = 0x0000001C,
 IMENonconvert = 0x0000001D,
 IMEAceept = 0x0000001E,
 IMEModeChange = 0x0000001F,
 Space = 0x00000020,
 PageUp = 0x00000021,
 Prior = 0x00000021,
 PageDown = 0x00000022,
 Next = 0x00000022,
 End = 0x00000023,
 Home = 0x00000024,
 Left = 0x00000025,
 Up = 0x00000026,
 Right = 0x00000027,
 Down = 0x00000028,
 Select = 0x00000029,
 Print = 0x0000002A,
 Execute = 0x0000002B,
 PrintScreen = 0x0000002C,
 Snapshot = 0x0000002C,
 Insert = 0x0000002D,
 Delete = 0x0000002E,
 Help = 0x0000002F,
 D0 = 0x00000030,
 D1 = 0x00000031,
 D2 = 0x00000032,
 D3 = 0x00000033,
 D4 = 0x00000034,
 D5 = 0x00000035,
 D6 = 0x00000036,
 D7 = 0x00000037,
 D8 = 0x00000038,
 D9 = 0x00000039,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 D9 = 0x00000039,
 A = 0x00000041,
 B = 0x00000042,
 C = 0x00000043,
 D = 0x00000044,
 E = 0x00000045,
 F = 0x00000046,
 G = 0x00000047,
 H = 0x00000048,
 I = 0x00000049,
 J = 0x0000004A,
 K = 0x0000004B,
 L = 0x0000004C,
 M = 0x0000004D,
 N = 0x0000004E,
 O = 0x0000004F,
 P = 0x00000050,
 Q = 0x00000051,
 R = 0x00000052,
 S = 0x00000053,
 T = 0x00000054,
 U = 0x00000055,
 V = 0x00000056,
 W = 0x00000057,
 X = 0x00000058,
 Y = 0x00000059,
 Z = 0x0000005A,
 LWin = 0x0000005B,
 RWin = 0x0000005C,
 Apps = 0x0000005D,
 NumPad0 = 0x00000060,
 NumPad1 = 0x00000061,
 NumPad2 = 0x00000062,
 NumPad3 = 0x00000063,
 NumPad4 = 0x00000064,
 NumPad5 = 0x00000065,
 NumPad6 = 0x00000066,
 NumPad7 = 0x00000067,
 NumPad8 = 0x00000068,
 NumPad9 = 0x00000069,
 Multiply = 0x0000006A,
 Add = 0x0000006B,
 Separator = 0x0000006C,
 Subtract = 0x0000006D,
 Decimal = 0x0000006E,
 Divide = 0x0000006F,
 F1 = 0x00000070,
 F2 = 0x00000071,
 F3 = 0x00000072,
 F4 = 0x00000073,
 F5 = 0x00000074,
 F6 = 0x00000075,
 F7 = 0x00000076,
 F8 = 0x00000077,
 F9 = 0x00000078,
 F10 = 0x00000079,
 F11 = 0x0000007A,
 F12 = 0x0000007B,
 F13 = 0x0000007C,
 F14 = 0x0000007D,
 F15 = 0x0000007E,
 F16 = 0x0000007F,
 F17 = 0x00000080,
 F18 = 0x00000081,
 F19 = 0x00000082,
 F20 = 0x00000083,
 F21 = 0x00000084,
 F22 = 0x00000085,
 F23 = 0x00000086,
 F24 = 0x00000087,
 NumLock = 0x00000090,
 Scroll = 0x00000091,
 LShiftKey = 0x000000A0,
 RShiftKey = 0x000000A1,
 LControlKey = 0x000000A2,
 RControlKey = 0x000000A3,
 LMenu = 0x000000A4,
 RMenu = 0x000000A5,
 BrowserBack = 0x000000A6,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BrowserBack = 0x000000A6,
 BrowserForward = 0x000000A7,
 BrowserRefresh = 0x000000A8,
 BrowserStop = 0x000000A9,
 BrowserSearch = 0x000000AA,
 BrowserFavorites = 0x000000AB,
 BrowserHome = 0x000000AC,
 VolumeMute = 0x000000AD,
 VolumeDown = 0x000000AE,
 VolumeUp = 0x000000AF,
 MediaNextTrack = 0x000000B0,
 MediaPreviousTrack = 0x000000B1,
 MediaStop = 0x000000B2,
 MediaPlayPause = 0x000000B3,
 LaunchMail = 0x000000B4,
 SelectMedia = 0x000000B5,
 LaunchApplication1 = 0x000000B6,
 LaunchApplication2 = 0x000000B7,
 OemSemicolon = 0x000000BA,
 Oemplus = 0x000000BB,
 Oemcomma = 0x000000BC,
 OemMinus = 0x000000BD,
 OemPeriod = 0x000000BE,
 OemQuestion = 0x000000BF,
 Oemtilde = 0x000000C0,
 OemOpenBrackets = 0x000000DB,
 OemPipe = 0x000000DC,
 OemCloseBrackets = 0x000000DD,
 OemQuotes = 0x000000DE,
 Oem8 = 0x000000DF,
 OemBackslash = 0x000000E2,
 ProcessKey = 0x000000E5,
 Attn = 0x000000F6,
 Crsel = 0x000000F7,
 Exsel = 0x000000F8,
 EraseEof = 0x000000F9,
 Play = 0x000000FA,
 Zoom = 0x000000FB,
 NoName = 0x000000FC,
 Pa1 = 0x000000FD,
 OemClear = 0x000000FE,
 KeyCode = 0x0000FFFF,
 Shift = 0x00010000,
 Control = 0x00020000,
 Alt = 0x00040000,
 Modifiers = 0xFFFF0000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible) Keys

Returned By

Control.ModifierKeys, KeyEventArgs.{KeyCode, KeyData, Modifiers}

Passed To

Control.{IsInputKey(), ProcessCmdKey(), ProcessDialogKey()}, DataGrid.ProcessTabKey(), KeyEventArgs.KeyEventArgs()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

KeysConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter object converts between the Keys enumeration and a String. It is used in
serialization and design-time scenarios and should not normally be called directly from your code.

public class KeysConverter : System.ComponentModel.TypeConverter : IComparer {
// Public Constructors
 public KeysConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public int Compare(object a, object b); // implements System.Collections.IComparer
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override StandardValuesCollection GetStandardValues(
 System.ComponentModel.ITypeDescriptorContext context);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesExclusive(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override bool GetStandardValuesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter KeysConverter(System.Collections.IComparer)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Label marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control provides a simple, non-editable text label.

The control has the ability to AutoSize to the content, although care should be taken to ensure that the layout engine can
cope with this neatly. If you set the UseMnemonic property to true, you can use Alt key shortcuts. The control strips out
the first &, underlines the subsequent character, and ensures that the focus is set to the next element in the tab order
when the Alt key combination is pressed. The label itself cannot receive the focus.

In addition to the Text, you can add an Image or an item from an ImageList (the one at a particular ImageIndex).

Alternatively, you can set the FlatStyle to System, and fall back on the standard OS rendering, perhaps for XP theme
support. You lose the image support, however.

public class Label : Control {
// Public Constructors
 public Label();
// Public Instance Properties
 public virtual bool AutoSize{set; get; }
 public override Image BackgroundImage{set; get; }
// overrides Control
 public virtual BorderStyle BorderStyle{set; get; }
 public FlatStyle FlatStyle{set; get; }
 public Image Image{set; get; }
 public ContentAlignment ImageAlign{set; get; }
 public int ImageIndex{set; get; }
 public ImageList ImageList{set; get; }
 public ImeMode ImeMode{set; get; }
// overrides Control
 public virtual int PreferredHeight{get; }
 public virtual int PreferredWidth{get; }
 public bool TabStop{set; get; }
// overrides Control
 public virtual ContentAlignment TextAlign{set; get; }
 public bool UseMnemonic{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
 protected virtual bool RenderTransparent{set; get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected Rectangle CalcImageRenderBounds(System.Drawing.Image image, System.Drawing.Rectangle r,
 System.Drawing.ContentAlignment align);
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected void DrawImage(System.Drawing.Graphics g, System.Drawing.Image image,
 System.Drawing.Rectangle r, System.Drawing.ContentAlignment align);
 protected virtual void OnAutoSizeChanged(EventArgs e);
 protected override void OnEnabledChanged(EventArgs e); // overrides Control
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnPaint(PaintEventArgs e); // overrides Control
 protected override void OnParentChanged(EventArgs e); // overrides Control
 protected virtual void OnTextAlignChanged(EventArgs e);
 protected override void OnTextChanged(EventArgs e); // overrides Control
 protected override void OnVisibleChanged(EventArgs e); // overrides Control
 protected override bool ProcessMnemonic(char charCode); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler AutoSizeChanged;
 public event KeyEventHandler KeyDown;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public event KeyEventHandler KeyDown;
// overrides Control
 public event KeyPressEventHandler KeyPress;
// overrides Control
 public event KeyEventHandler KeyUp;
// overrides Control
 public event EventHandler TextAlignChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) Label

Subclasses

LinkLabel

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LabelEditEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

The data for the ListView.BeforeLabelEdit and AfterLabelEdit events is encapsulated in this class. BeforeLabelEdit occurs just
before the editing begins, and AfterLabelEdit occurs when the user attempts to commit (or abort) an edit. The Item being
edited can be retrieved, and the current (or new) Label text can also be obtained. If you wish to abort the operation,
you can set the CancelEdit property.

public class LabelEditEventArgs : EventArgs {
// Public Constructors
 public LabelEditEventArgs(int item);
 public LabelEditEventArgs(int item, string label);
// Public Instance Properties
 public bool CancelEdit{set; get; }
 public int Item{get; }
 public string Label{get; }
}

Hierarchy

System.Object System.EventArgs LabelEditEventArgs

Passed To

LabelEditEventHandler.{BeginInvoke(), Invoke()}, ListView.{OnAfterLabelEdit(), OnBeforeLabelEdit()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LabelEditEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the ListView.BeforeLabelEdit and ListView.AfterLabelEdit events.

public delegate void LabelEditEventHandler(object sender, LabelEditEventArgs e);

Associated Events

ListView.{AfterLabelEdit(), BeforeLabelEdit()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LayoutEventArgs

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This encapsulates the data for the Control.Layout event.

In Win32 applications, you would tend to hook the WM_SIZE event if you were developing a layout manager. However,
handling the Control.Resize event is no longer the preferred way of doing this.

The Layout event is raised not just when the window is resized, but also when controls are added, removed, and
modified, giving you a single point to hook all the activities that might cause you to reformat the layout of a form. You
can also raise a Layout event with the Control.PerformLayout() method, which allows you to specify the control that caused
the event, and a string indicating the property that changed. These event arguments encapsulate those two pieces of
information, although more often than not you will find that they are null when you are dealing with events raised by
the framework. The layout event will not be raised if Control.SuspendLayout() is called, until the corresponding
Control.ResumeLayout().

public sealed class LayoutEventArgs : EventArgs {
// Public Constructors
 public LayoutEventArgs(Control affectedControl, string affectedProperty);
// Public Instance Properties
 public Control AffectedControl{get; }
 public string AffectedProperty{get; }
}

Hierarchy

System.Object System.EventArgs LayoutEventArgs

Passed To

System.Windows.Forms.Design.ComponentTray.OnLayout(), LayoutEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LayoutEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.Layout event.

public delegate void LayoutEventHandler(object sender, LayoutEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LeftRightAlignment serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by various controls to align visual components either to the left or the right of the main body
of the control (e.g., the DateTimePicker, or the ComboBox). Note that while the values of the enumeration are Left and
Right, the RightToLeft status of the control comes into play, so Left would actually appear on the right if RightToLeft is set
to Yes.

public enum LeftRightAlignment {
 Left = 0,
 Right = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LeftRightAlignment

Returned By

Control.RtlTranslateLeftRight(), DateTimePicker.DropDownAlign, UpDownBase.UpDownAlign

Passed To

Control.{RtlTranslateAlignment(), RtlTranslateLeftRight()}, DateTimePicker.DropDownAlign, UpDownBase.UpDownAlign

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkArea serializable

System.Windows.Forms
(system.windows.forms.dll) struct

A LinkLabel class by default contains only one hyperlink attached to the entire text in the control. However, it is actually
capable of supporting several links within the text.

A LinkArea value defines the index into the text string at which the hyperlink will Start, and the Length of the link. You can
also determine whether the link is Empty.

If you only want one link, but one that does not encompass the entire text, you can assign to the LinkLabel.LinkArea. To
add multiple areas, you need to use the LinkLabel.Links property.

public struct LinkArea {
// Public Constructors
 public LinkArea(int start, int length);
// Public Instance Properties
 public bool IsEmpty{get; }
 public int Length{set; get; }
 public int Start{set; get; }
// Public Instance Methods
 public override bool Equals(object o); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType LinkArea

Returned By

LinkLabel.LinkArea

Passed To

LinkLabel.LinkArea

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkArea.LinkAreaConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used to convert a LinkArea to and from other types in serialization and
design-time scenarios. You should not use it from your own code.

public class LinkArea.LinkAreaConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public LinkArea.LinkAreaConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter LinkAreaConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkBehavior serializable

System.Windows.Forms
(system.windows.forms.dll) enum

As with the ListView control, a LinkLabel can display its hyperlinks in a variety of ways. This enumeration defines those
modes. You can set a LinkLabel object's link display mode using the LinkLabel.LinkBehavior property.

public enum LinkBehavior {
 SystemDefault = 0,
 AlwaysUnderline = 1,
 HoverUnderline = 2,
 NeverUnderline = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LinkBehavior

Returned By

LinkLabel.LinkBehavior

Passed To

LinkLabel.LinkBehavior
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkClickedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event arguments for the RichTextBox.LinkClicked event. It allows you to retrieve the LinkText
for the particular link that was clicked. See LinkLabelLinkClickedEventArgs for the equivalent for the LinkLabel.

public class LinkClickedEventArgs : EventArgs {
// Public Constructors
 public LinkClickedEventArgs(string linkText);
// Public Instance Properties
 public string LinkText{get; }
}

Hierarchy

System.Object System.EventArgs LinkClickedEventArgs

Passed To

LinkClickedEventHandler.{BeginInvoke(), Invoke()}, RichTextBox.OnLinkClicked()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkClickedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the LinkLabel.LinkClicked and RichTextBox.LinkClicked events.

public delegate void LinkClickedEventHandler(object sender, LinkClickedEventArgs e);

Associated Events

RichTextBox.LinkClicked()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkLabel marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control, derived from Label, adds the ability to insert one or more hyperlinks in the control Text.

By default, the whole text is assigned to a single link. To specify a range of text that constitutes the link (instead of the
entire text), you can assign a LinkArea value to the LinkArea property. You can determine whether the link has been
clicked through the LinkVisited property.

If you wish to create several links within the text, you can add items to the Links collection. You need to Clear() the
collection first to get rid of the default link, then create new Link instances to Add() to the collection.

See Link for more information on the class.

public class LinkLabel : Label : IButtonControl {
// Public Constructors
 public LinkLabel();
// Public Instance Properties
 public Color ActiveLinkColor{set; get; }
 public Color DisabledLinkColor{set; get; }
 public LinkArea LinkArea{set; get; }
 public LinkBehavior LinkBehavior{set; get; }
 public Color LinkColor{set; get; }
 public LinkCollection Links{get; }
 public bool LinkVisited{set; get; }
 public override string Text{set; get; }
// overrides Control
 public Color VisitedLinkColor{set; get; }
// Protected Instance Properties
 protected Cursor OverrideCursor{set; get; }
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides Label
 protected override void CreateHandle(); // overrides Control
 protected override void OnEnabledChanged(EventArgs e); // overrides Label
 protected override void OnFontChanged(EventArgs e); // overrides Label
 protected override void OnGotFocus(EventArgs e); // overrides Control
 protected override void OnKeyDown(KeyEventArgs e); // overrides Control
 protected virtual void OnLinkClicked(LinkLabelLinkClickedEventArgs e);
 protected override void OnLostFocus(EventArgs e); // overrides Control
 protected override void OnMouseDown(MouseEventArgs e); // overrides Control
 protected override void OnMouseLeave(EventArgs e); // overrides Control
 protected override void OnMouseMove(MouseEventArgs e); // overrides Control
 protected override void OnMouseUp(MouseEventArgs e); // overrides Control
 protected override void OnPaint(PaintEventArgs e); // overrides Label
 protected override void OnPaintBackground(PaintEventArgs e); // overrides Control
 protected override void OnTextAlignChanged(EventArgs e); // overrides Label
 protected override void OnTextChanged(EventArgs e); // overrides Label
 protected Link PointInLink(int x, int y);
 protected override bool ProcessDialogKey(Keys keyData); // overrides Control
 protected override void Select(bool directed, bool forward); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Label
 protected override void WndProc(ref Message msg); // overrides Label
// Events
 public event LinkLabelLinkClickedEventHandler LinkClicked;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) Label LinkLabel(IButtonControl)

Passed To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed To

LinkCollection.LinkCollection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkLabel.Link

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates a section of link text within a LinkLabel control.

It allows you to set the Start and Length of the link, whether it is Enabled or has been Visited, and also the LinkData—an
arbitrary object you can associate with the link.

public class LinkLabel.Link {
// Public Instance Properties
 public bool Enabled{set; get; }
 public int Length{set; get; }
 public object LinkData{set; get; }
 public int Start{set; get; }
 public bool Visited{set; get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkLabel.LinkCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class is used to contain the set of LinkLabel.Link objects in a LinkLabel.

public class LinkLabel.LinkCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public LinkLabel.LinkCollection(LinkLabel owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual Link this{set; get; }
// Public Instance Methods
 public Link Add(int start, int length);
 public Link Add(int start, int length, object linkData);
 public virtual void Clear(); // implements IList
 public bool Contains(Link link);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(Link link);
 public void Remove(Link value);
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkLabelLinkClickedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event data for the LinkLabel.LinkClicked event. You can retrieve the LinkLabel.Link that has been
clicked.

public class LinkLabelLinkClickedEventArgs : EventArgs {
// Public Constructors
 public LinkLabelLinkClickedEventArgs(Link link);
// Public Instance Properties
 public Link Link{get; }
}

Hierarchy

System.Object System.EventArgs LinkLabelLinkClickedEventArgs

Passed To

LinkLabel.OnLinkClicked(), LinkLabelLinkClickedEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkLabelLinkClickedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the LinkLabel.LinkClicked event.

public delegate void LinkLabelLinkClickedEventHandler(object sender, LinkLabelLinkClickedEventArgs e);

Associated Events

LinkLabel.LinkClicked()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LinkState serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is for internal purposes only and should not be called from your own code.

public enum LinkState {
 Normal = 0,
 Hover = 1,
 Active = 2,
 Visited = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
LinkState
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListBindingConverter

System.Windows.Forms
(system.windows.forms.dll) class

This class is a System.ComponentModel.TypeConverter for Binding objects. This is used to support designer and serialization
scenarios, and you should not normally create an instance yourself. It is capable of conversion to an
System.ComponentModel.Design.Serialization.InstanceDescriptor for serialization.

public class ListBindingConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public ListBindingConverter();
// Public Instance Methods
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter ListBindingConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control wraps the Win32 listbox common control, allowing you to display and select one or more items from a list.
It derives from the ListControl abstract base class, in common with the ComboBox.

You can add or remove objects in the list by using the Items collection. This could simply be a list of strings, but could
equally be any object that can be converted to a string (which, in practice, means pretty much anything through the
ToString() member).

Alternatively, you can use data binding to bind to a data source. You can independently set a DisplayMember and a
ValueMember.

In either case, the selected item can be retrieved through the Text property (which returns the DisplayMember) and
SelectedValue (which returns the ValueMember), or you can retrieve its index with the SelectedIndex property.

The SelectionMode allows you to specify the various kinds of single- and multiple-selection modes available. If multiple
selection is enabled, you can use the SelectedIndices and SelectedItems collections to enumerate the entire selection. You
can select or deselect individual items using the SetSelected() method.

If you need to locate a particular item in the list, you can use the FindString() and FindStringExact() methods. FindString()
identifies the first item in the list that starts with the string specified, and is therefore extremely useful for those match-
as-you-type controls.

If the items added to the control are wider than the control itself, you can enable a HorizontalScrollbar. The HorizontalExtent
property is then used to ensure that the scrollbar width is set to the maximum width of an item for the scrollbar to
determine the appropriate range across which to scroll.

You can also specify the ItemHeight in owner draw scenarios. (See DrawItemEventArgs for more information on owner
draw).

public class ListBox : ListControl {
// Public Constructors
 public ListBox();
// Public Static Fields
 public const int DefaultItemHeight; // =13
 public const int NoMatches; // =-1
// Public Instance Properties
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public int ColumnWidth{set; get; }
 public virtual DrawMode DrawMode{set; get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public int HorizontalExtent{set; get; }
 public bool HorizontalScrollbar{set; get; }
 public bool IntegralHeight{set; get; }
 public virtual int ItemHeight{set; get; }
 public ObjectCollection Items{get; }
 public bool MultiColumn{set; get; }
 public int PreferredHeight{get; }
 public override RightToLeft RightToLeft{set; get; }
// overrides Control
 public bool ScrollAlwaysVisible{set; get; }
 public override int SelectedIndex{set; get; }
// overrides ListControl
 public SelectedIndexCollection SelectedIndices{get; }
 public object SelectedItem{set; get; }
 public SelectedObjectCollection SelectedItems{get; }
 public virtual SelectionMode SelectionMode{set; get; }
 public bool Sorted{set; get; }
 public override string Text{set; get; }
// overrides Control
 public int TopIndex{set; get; }
 public bool UseTabStops{set; get; }
// Protected Instance Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public void BeginUpdate();
 public void ClearSelected();
 public void EndUpdate();
 public int FindString(string s);
 public int FindString(string s, int startIndex);
 public int FindStringExact(string s);
 public int FindStringExact(string s, int startIndex);
 public int GetItemHeight(int index);
 public Rectangle GetItemRectangle(int index);
 public bool GetSelected(int index);
 public int IndexFromPoint(int x, int y);
 public int IndexFromPoint(System.Drawing.Point p);
 public void SetSelected(int index, bool value);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected virtual void AddItemsCore(object[] value);
 protected virtual ObjectCollection CreateItemCollection();
 protected override void OnChangeUICues(UICuesEventArgs e); // overrides Control
 protected override void OnDataSourceChanged(EventArgs e); // overrides ListControl
 protected override void OnDisplayMemberChanged(EventArgs e); // overrides ListControl
 protected virtual void OnDrawItem(DrawItemEventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected virtual void OnMeasureItem(MeasureItemEventArgs e);
 protected override void OnParentChanged(EventArgs e); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected override void OnSelectedIndexChanged(EventArgs e); // overrides ListControl
 protected override void RefreshItem(int index); // overrides ListControl
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void SetItemCore(int index, object value); // overrides ListControl
 protected override void SetItemsCore(System.Collections.IList value); // overrides ListControl
 protected virtual void Sort();
 protected virtual void WmReflectCommand(ref Message m);
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler Click;
// overrides Control
 public event DrawItemEventHandler DrawItem;
 public event MeasureItemEventHandler MeasureItem;
 public event PaintEventHandler Paint;
// overrides Control
 public event EventHandler SelectedIndexChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ListControl ListBox

Subclasses

CheckedListBox

Passed To

ObjectCollection.ObjectCollection(), SelectedIndexCollection.SelectedIndexCollection(),
SelectedObjectCollection.SelectedObjectCollection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListBox.ObjectCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the set of items in a ListBox.

public class ListBox.ObjectCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListBox.ObjectCollection(ListBox owner);
 public ListBox.ObjectCollection(ListBox owner, object[] value);
 public ListBox.ObjectCollection(ListBox owner, ObjectCollection value);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual object this{set; get; }
// implements IList
// Public Instance Methods
 public int Add(object item); // implements IList
 public void AddRange(object[] items);
 public void AddRange(ObjectCollection value);
 public virtual void Clear(); // implements IList
 public bool Contains(object value); // implements IList
 public void CopyTo(object[] dest, int arrayIndex);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(object value); // implements IList
 public void Insert(int index, object item); // implements IList
 public void Remove(object value); // implements IList
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListBox.SelectedIndexCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the set of selected indexes in a ListBox.

public class ListBox.SelectedIndexCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListBox.SelectedIndexCollection(ListBox owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public int this{get; }
// Public Instance Methods
 public bool Contains(int selectedIndex);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(int selectedIndex);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListBox.SelectedObjectCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the set of selected objects in a ListBox.

public class ListBox.SelectedObjectCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListBox.SelectedObjectCollection(ListBox owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public object this{set; get; }
// implements IList
// Public Instance Methods
 public bool Contains(object selectedObject); // implements IList
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(object selectedObject); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListControl marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This is the abstract base class for list-like Control objects, such as the ListBox, ComboBox, and derived classes.

It provides the basic template for data binding through the DataSource, DisplayMember, and ValueMember properties.
Simple selection is accomplished with the SelectedIndex and SelectedValue members.

The concrete derived classes will extend these basic features to offer more specific functionality.

public abstract class ListControl : Control {
// Protected Constructors
 protected ListControl();
// Public Instance Properties
 public object DataSource{set; get; }
 public string DisplayMember{set; get; }
 public abstract int SelectedIndex{set; get; }
 public object SelectedValue{set; get; }
 public string ValueMember{set; get; }
// Protected Instance Properties
 protected CurrencyManager DataManager{get; }
// Public Instance Methods
 public string GetItemText(object item);
// Protected Instance Methods
 protected object FilterItemOnProperty(object item);
 protected object FilterItemOnProperty(object item, string field);
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected override void OnBindingContextChanged(EventArgs e); // overrides Control
 protected virtual void OnDataSourceChanged(EventArgs e);
 protected virtual void OnDisplayMemberChanged(EventArgs e);
 protected virtual void OnSelectedIndexChanged(EventArgs e);
 protected virtual void OnSelectedValueChanged(EventArgs e);
 protected virtual void OnValueMemberChanged(EventArgs e);
 protected abstract void RefreshItem(int index);
 protected virtual void SetItemCore(int index, object value);
 protected abstract void SetItemsCore(System.Collections.IList items);
// Events
 public event EventHandler DataSourceChanged;
 public event EventHandler DisplayMemberChanged;
 public event EventHandler SelectedValueChanged;
 public event EventHandler ValueMemberChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ListControl

Subclasses

ComboBox, ListBox
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This control wraps the ubiquitous and multifunctional Win32 ListView common control. You will be very familiar with this
from the Windows Explorer icon, list, and details views.

To choose the general appearance of the control, you can use the View property, switching between two icon views
(View.LargeIcon and View.SmallIcon), the basic View.List and the View.Details report format.

To control what is actually displayed in the list, you can add or remove ListViewItem objects from the Items list. See the
ListViewItem class for more information about this.

In all views, you can choose the item Activation style (see ItemActivation for more details).

You can also determine whether CheckBoxes appear next to the items. To find out which items are checked, you can
refer to the CheckedIndices or CheckedItems properties. Similarly, the selected items can be retrieved through the
SelectedIndices and SelectedItems properties. The item that currently has the focus can be obtained through the
FocusedItem property. You can enable or disable multiple selection with the MultiSelect property.

Items can be selected automatically just by hovering over them. The HoverSelection property controls this.

By default, the selection will not be rendered (but still maintained) when the control loses the focus. You can set
HideSelection to false if you want the selection to be visible all the time.

Items can be sorted in the list by calling the Sort() method. To specify how the items should be sorted (a lexicographical
compare of the labels is the default), you can set a ListViewItemSorter, which is a class derived from the
System.Collections.IComparer interface. You can also choose the SortOrder with the Sorting property. The default is None, but
you can choose Ascending or Descending.

It is possible to allow the user to edit the label text on items by setting the LabelEdit property. You can handle the
BeforeLabelEdit and AfterLabelEdit events to if you want special handling such as validation (see LabelEditEventArgs for more
information). Unfortunately, this only allows you to edit the primary label of the item, not any subitem text (such as you
would display in a details view). You should consider the DataGrid if you want this more complex behavior.

There are two methods related to the item bounds. You can call GetItemAt() to determine which item is to be found at a
particular pixel location. GetItemRect() will return you the bounding rectangle of an item. You can refine this to a
particular part of the imagery of an item (see ItemBoundsPortion).

Several features apply only to the icon views. You can set the Alignment of the icons within the container and AutoArrange
them. To see how this works, play with the Explorer view "Arrange Icons By..." menu. To programmatically force a
rearrangement, you can call ArrangeIcons(). You can also choose whether the LabelWrap feature is enabled, automatically
wrapping the icon label text rather than cropping it.

To support the details view, there are a number of additional members. You can Add() (or Remove()) ColumnHeader items
to the collection of Columns that will be displayed in the report. The first ColumnHeader corresponds to the root
ListViewItem objects in the Items collection. Each subsequent column requires another ListViewItem.ListViewSubItem to be
added to each item object's ListViewItem.SubItems collection to build the full row.

The columns can be either fixed in place, or you can AllowColumnReorder, which permits them to be dragged around by
the user. You can also change the column HeaderStyle. While the default is ColumnHeaderStyle.Clickable (to support Sorting
behavior), you can choose Nonclickable or None, to hide the header altogether.

When you select an item, normally you are only permitted to click on imagery representing the parent item (i.e., the
first column in the collection). This can sometimes be awkward, so you can enable FullRowSelect to give users a larger
target to stab at with the mouse.

You can also show GridLines between the rows and columns. As with all the common controls wrappers, ListView only
supports pre-Windows XP features, so you have to derive your own Control to take advantage of XP supported views
such as groups.

public class ListView : Control {
// Public Constructors
 public ListView();
// Public Instance Properties
 public ItemActivation Activation{set; get; }
 public ListViewAlignment Alignment{set; get; }
 public bool AllowColumnReorder{set; get; }
 public bool AutoArrange{set; get; }
 public override Color BackColor{set; get; }
// overrides Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public bool CheckBoxes{set; get; }
 public CheckedIndexCollection CheckedIndices{get; }
 public CheckedListViewItemCollection CheckedItems{get; }
 public ColumnHeaderCollection Columns{get; }
 public ListViewItem FocusedItem{get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public bool FullRowSelect{set; get; }
 public bool GridLines{set; get; }
 public ColumnHeaderStyle HeaderStyle{set; get; }
 public bool HideSelection{set; get; }
 public bool HoverSelection{set; get; }
 public ListViewItemCollection Items{get; }
 public bool LabelEdit{set; get; }
 public bool LabelWrap{set; get; }
 public ImageList LargeImageList{set; get; }
 public IComparer ListViewItemSorter{set; get; }
 public bool MultiSelect{set; get; }
 public bool Scrollable{set; get; }
 public SelectedIndexCollection SelectedIndices{get; }
 public SelectedListViewItemCollection SelectedItems{get; }
 public ImageList SmallImageList{set; get; }
 public SortOrder Sorting{set; get; }
 public ImageList StateImageList{set; get; }
 public override string Text{set; get; }
// overrides Control
 public ListViewItem TopItem{get; }
 public View View{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public void ArrangeIcons();
 public void ArrangeIcons(ListViewAlignment value);
 public void BeginUpdate();
 public void Clear();
 public void EndUpdate();
 public void EnsureVisible(int index);
 public ListViewItem GetItemAt(int x, int y);
 public Rectangle GetItemRect(int index);
 public Rectangle GetItemRect(int index, ItemBoundsPortion portion);
 public void Sort();
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected virtual void OnAfterLabelEdit(LabelEditEventArgs e);
 protected virtual void OnBeforeLabelEdit(LabelEditEventArgs e);
 protected virtual void OnColumnClick(ColumnClickEventArgs e);
 protected override void OnEnabledChanged(EventArgs e); // overrides Control
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected virtual void OnItemActivate(EventArgs e);
 protected virtual void OnItemCheck(ItemCheckEventArgs ice);
 protected virtual void OnItemDrag(ItemDragEventArgs e);
 protected virtual void OnSelectedIndexChanged(EventArgs e);
 protected override void OnSystemColorsChanged(EventArgs e); // overrides Control
 protected void RealizeProperties();
 protected void UpdateExtendedStyles();
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event LabelEditEventHandler AfterLabelEdit;
 public event LabelEditEventHandler BeforeLabelEdit;
 public event ColumnClickEventHandler ColumnClick;
 public event EventHandler ItemActivate;
 public event ItemCheckEventHandler ItemCheck;
 public event ItemDragEventHandler ItemDrag;
 public event PaintEventHandler Paint;
// overrides Control
 public event EventHandler SelectedIndexChanged;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ListView

Returned By

ColumnHeader.ListView, ListViewItem.ListView

Passed To

CheckedIndexCollection.CheckedIndexCollection(), CheckedListViewItemCollection.CheckedListViewItemCollection(),
ColumnHeaderCollection.ColumnHeaderCollection(),ListViewItemCollection.ListViewItemCollection(),
SelectedIndexCollection.SelectedIndexCollection(), SelectedListViewItemCollection.SelectedListViewItemCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView.CheckedIndexCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the set of indexes of the checked items in the ListView.

public class ListView.CheckedIndexCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListView.CheckedIndexCollection(ListView owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public int this{get; }
// Public Instance Methods
 public bool Contains(int checkedIndex);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(int checkedIndex);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView.CheckedListViewItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection represents the set of selected items in the ListView.

public class ListView.CheckedListViewItemCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListView.CheckedListViewItemCollection(ListView owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public ListViewItem this{get; }
// Public Instance Methods
 public bool Contains(ListViewItem item);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(ListViewItem item);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView.ColumnHeaderCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a collection of column headers in a ListView.

public class ListView.ColumnHeaderCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListView.ColumnHeaderCollection(ListView owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual ColumnHeader this{get; }
// Public Instance Methods
 public virtual ColumnHeader Add(string str, int width, HorizontalAlignment textAlign);
 public virtual int Add(ColumnHeader value);
 public virtual void AddRange(ColumnHeader[] values);
 public virtual void Clear(); // implements IList
 public bool Contains(ColumnHeader value);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(ColumnHeader value);
 public void Insert(int index, ColumnHeader value);
 public void Insert(int index, string str, int width, HorizontalAlignment textAlign);
 public virtual void Remove(ColumnHeader column);
 public virtual void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView.ListViewItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates a collection of items in a ListView control.

public class ListView.ListViewItemCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListView.ListViewItemCollection(ListView owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual ListViewItem this{set; get; }
// Public Instance Methods
 public virtual ListViewItem Add(ListViewItem value);
 public virtual ListViewItem Add(string text);
 public virtual ListViewItem Add(string text, int imageIndex);
 public void AddRange(ListViewItem[] values);
 public virtual void Clear(); // implements IList
 public bool Contains(ListViewItem item);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(ListViewItem item);
 public ListViewItem Insert(int index, ListViewItem item);
 public ListViewItem Insert(int index, string text);
 public ListViewItem Insert(int index, string text, int imageIndex);
 public virtual void Remove(ListViewItem item);
 public virtual void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView.SelectedIndexCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of selected indexes in the ListView control.

public class ListView.SelectedIndexCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListView.SelectedIndexCollection(ListView owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public int this{get; }
// Public Instance Methods
 public bool Contains(int selectedIndex);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(int selectedIndex);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListView.SelectedListViewItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the selected items in the ListView control.

public class ListView.SelectedListViewItemCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListView.SelectedListViewItemCollection(ListView owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public ListViewItem this{get; }
// Public Instance Methods
 public void Clear(); // implements IList
 public bool Contains(ListViewItem item);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(ListViewItem item);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListViewAlignment serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used to specify how icons will be aligned in a ListView control.

public enum ListViewAlignment {
 Default = 0,
 Left = 1,
 Top = 2,
 SnapToGrid = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ListViewAlignment

Returned By

ListView.Alignment

Passed To

ListView.{Alignment, ArrangeIcons()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListViewItem serializable

System.Windows.Forms
(system.windows.forms.dll) class

This class represents an item in a ListView control. You can add and remove these objects from the ListView.Items
collection.

In one of the icon views, the imagery displayed comes from the Text and ImageIndex properties (inherited from the
various ListView image lists; the list currently in play can be retrieved from ImageList). You can also specify various other
aspects of the items appearance such as the Font, ForeColor, and BackColor. You can also discover whether the item is
Selected, Focused, or Checked. (See ListView for more information on these features.)

In the details view, the ListView displays several columns, in addition to the simple text and icon for the item. To support
this, you should add additional ListViewSubItem objects to the SubItems collection.

public class ListViewItem : ICloneable, System.Runtime.Serialization.ISerializable {
// Public Constructors
 public ListViewItem();
 public ListViewItem(ListViewSubItem[] subItems, int imageIndex);
 public ListViewItem(string text);
 public ListViewItem(string[] items);
 public ListViewItem(string[] items, int imageIndex);
 public ListViewItem(string[] items, int imageIndex, System.Drawing.Color foreColor, System.Drawing.Color backColor,
 System.Drawing.Font font);
 public ListViewItem(string text, int imageIndex);
// Public Instance Properties
 public Color BackColor{set; get; }
 public Rectangle Bounds{get; }
 public bool Checked{set; get; }
 public bool Focused{set; get; }
 public Font Font{set; get; }
 public Color ForeColor{set; get; }
 public int ImageIndex{set; get; }
 public ImageList ImageList{get; }
 public int Index{get; }
 public ListView ListView{get; }
 public bool Selected{set; get; }
 public int StateImageIndex{set; get; }
 public ListViewSubItemCollection SubItems{get; }
 public object Tag{set; get; }
 public string Text{set; get; }
 public bool UseItemStyleForSubItems{set; get; }
// Public Instance Methods
 public void BeginEdit();
 public virtual object Clone(); // implements ICloneable
 public virtual void EnsureVisible();
 public Rectangle GetBounds(ItemBoundsPortion portion);
 public virtual void Remove();
 public override string ToString(); // overrides object
// Protected Instance Methods
 protected virtual void Deserialize(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
 protected virtual void Serialize(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
}

Returned By

ListView.{FocusedItem, GetItemAt(), TopItem}, CheckedListViewItemCollection.this, ListViewItemCollection.{Add(), Insert(), this},
SelectedListViewItemCollection.this

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListViewItem.ListViewSubItem serializable

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a subitem in ListView. It is similar to a ListViewItem, but does not support the ListViewItem.SubItems
property, and so it represents a leaf item in the collection.

public class ListViewItem.ListViewSubItem {
// Public Constructors
 public ListViewItem.ListViewSubItem();
 public ListViewItem.ListViewSubItem(ListViewItem owner, string text);
 public ListViewItem.ListViewSubItem(ListViewItem owner, string text, System.Drawing.Color foreColor,
 System.Drawing.Color backColor, System.Drawing.Font font);
// Public Instance Properties
 public Color BackColor{set; get; }
 public Font Font{set; get; }
 public Color ForeColor{set; get; }
 public string Text{set; get; }
// Public Instance Methods
 public void ResetStyle();
 public override string ToString(); // overrides object
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListViewItem.ListViewSubItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of subitems of a ListViewItem.

public class ListViewItem.ListViewSubItemCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ListViewItem.ListViewSubItemCollection(ListViewItem owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public ListViewSubItem this{set; get; }
// Public Instance Methods
 public ListViewSubItem Add(ListViewSubItem item);
 public ListViewSubItem Add(string text);
 public ListViewSubItem Add(string text, System.Drawing.Color foreColor, System.Drawing.Color backColor,
 System.Drawing.Font font);
 public void AddRange(ListViewSubItem[] items);
 public void AddRange(string[] items);
 public void AddRange(string[] items, System.Drawing.Color foreColor, System.Drawing.Color backColor,
 System.Drawing.Font font);
 public void Clear(); // implements IList
 public bool Contains(ListViewSubItem subItem);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(ListViewSubItem subItem);
 public void Insert(int index, ListViewSubItem item);
 public void Remove(ListViewSubItem item);
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ListViewItemConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used in serialization and design-time scenarios for the ListViewItem class. You
would not normally use this directly from your own code.

public class ListViewItemConverter : System.ComponentModel.ExpandableObjectConverter {
// Public Constructors
 public ListViewItemConverter();
// Public Instance Methods
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter System.ComponentModel.ExpandableObjectConverter
ListViewItemConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MainMenu marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

A MainMenu is the Menu strip across the top of a Form. You can bind it to a particular form by using the Form.Menu
property.

There is an additional typed CloneMenu() method, which allows you to copy the menu structure for reuse elsewhere.

See Menu for more information on menu functionality.

public class MainMenu : Menu {
// Public Constructors
 public MainMenu();
 public MainMenu(MenuItem[] items);
// Public Instance Properties
 public virtual RightToLeft RightToLeft{set; get; }
// Public Instance Methods
 public virtual MainMenu CloneMenu();
 public Form GetForm();
 public override string ToString(); // overrides Menu
// Protected Instance Methods
 protected override IntPtr CreateMenuHandle(); // overrides Menu
 protected override void Dispose(bool disposing); // overrides Menu
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Menu MainMenu

Returned By

Form.{Menu, MergedMenu}, Menu.GetMainMenu(), PrintPreviewDialog.Menu

Passed To

Form.Menu, PrintPreviewDialog.Menu

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MdiClient marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class is for internal use and should not be called from your own code.

public sealed class MdiClient : Control {
// Public Constructors
 public MdiClient();
// Public Instance Properties
 public override Image BackgroundImage{set; get; }
// overrides Control
 public Form[] MdiChildren{get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
// Public Instance Methods
 public void LayoutMdi(MdiLayout value);
// Protected Instance Methods
 protected override ControlCollection CreateControlsInstance(); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected override void ScaleCore(float dx, float dy); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) MdiClient

Passed To

ControlCollection.ControlCollection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MdiClient.ControlCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use and should not be called from your own code.

public class MdiClient.ControlCollection : ControlCollection {
// Public Constructors
 public MdiClient.ControlCollection(MdiClient owner);
// Public Instance Methods
 public override void Add(Control value); // overrides Control.ControlCollection
 public override void Remove(Control value); // overrides Control.ControlCollection
}

Hierarchy

System.Object ControlCollection(System.Collections.ILis, System.Collections.ICollection, System.Collections.IEnumerable,
System.ICloneable) ControlCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MdiLayout serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the Form.LayoutMdi() method to determine how the Form.MdiChildren will be arranged.

public enum MdiLayout {
 Cascade = 0,
 TileHorizontal = 1,
 TileVertical = 2,
 ArrangeIcons = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MdiLayout

Passed To

Form.LayoutMdi(), MdiClient.LayoutMdi()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MeasureItemEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class wraps the data for the MeasureItem event, raised by various controls including ListBox, ComboBox, and
MenuItem, which support owner draw modes.

MeasureItem is raised when the DrawMode is set to OwnerDrawVariable, and is used to determine the ItemWidth and
ItemHeight of the item at a particular Index in the controls collection, when it is drawn on a particular
System.Drawing.Graphics surface.

It is not raised when the DrawMode is OwnerDrawFixed. Instead, you should use the ItemHeight property on the owner
drawn control.

public class MeasureItemEventArgs : EventArgs {
// Public Constructors
 public MeasureItemEventArgs(System.Drawing.Graphics graphics, int index);
 public MeasureItemEventArgs(System.Drawing.Graphics graphics, int index, int itemHeight);
// Public Instance Properties
 public Graphics Graphics{get; }
 public int Index{get; }
 public int ItemHeight{set; get; }
 public int ItemWidth{set; get; }
}

Hierarchy

System.Object System.EventArgs MeasureItemEventArgs

Passed To

ComboBox.OnMeasureItem(), ListBox.OnMeasureItem(), MeasureItemEventHandler.{BeginInvoke(), Invoke()},
MenuItem.OnMeasureItem()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MeasureItemEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the MeasureItem event, raised by ListBox, ComboBox, and MenuItem controls, which support owner
draw modes.

public delegate void MeasureItemEventHandler(object sender, MeasureItemEventArgs e);

Associated Events

CheckedListBox.MeasureItem(), ComboBox.MeasureItem(), ListBox.MeasureItem(), MenuItem.MeasureItem()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Menu marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This System.ComponentModel.Component is the abstract base for ContextMenu, MainMenu, and MenuItem classes. It provides
most of the functionality of each of these classes but cannot be instantiated itself.

You can add MenuItem objects to the menu through the MenuItems collection. A MenuItem itself can contain further
MenuItem objects, to allow for cascading child menus. You can determine if the menu has any children through the
IsParent property.

You can also determine which menu item is a special MdiListItem—an item that will display a list of MDI child forms as a
child menu. This is a read-only property—you set it through the MenuItem.MdiList property.

The Menu may be hosted in either a ContextMenu or a MainMenu, and you can determine which through the
GetContextMenu() and GetMainMenu() methods.

Finally, there is a MergeMenu() method. This merges two menus together (performed automatically for MDI child
menus). There is nothing to stop you from using it for your own menu management, however. It is particularly useful
where you have a UI plug-in architecture, where various components provide their own little bit of menu structure that
you can merge in to the overall menu hierarchy. To control the merge, specify the MenuItem.MergeOrder and
MenuItem.MergeType properties (see MenuItem for more information on this).

public abstract class Menu : System.ComponentModel.Component {
// Protected Constructors
 protected Menu(MenuItem[] items);
// Public Static Fields
 public const int FindHandle; // =0
 public const int FindShortcut; // =1
// Public Instance Properties
 public IntPtr Handle{get; }
 public virtual bool IsParent{get; }
 public MenuItem MdiListItem{get; }
 public MenuItemCollection MenuItems{get; }
// Public Instance Methods
 public MenuItem FindMenuItem(int type, IntPtr value);
 public ContextMenu GetContextMenu();
 public MainMenu GetMainMenu();
 public virtual void MergeMenu(Menu menuSrc);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected void CloneMenu(Menu menuSrc);
 protected virtual IntPtr CreateMenuHandle();
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
 protected int FindMergePosition(int mergeOrder);
 protected internal virtual bool ProcessCmdKey(ref Message msg, Keys keyData);
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Menu

Subclasses

ContextMenu, MainMenu, MenuItem

Returned By

System.Windows.Forms.Design.IMenuEditorService.GetMenu(), MenuItem.Parent, ToolBarButton.DropDownMenu

Passed To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed To

System.Windows.Forms.Design.IMenuEditorService.SetMenu(), MenuItemCollection.MenuItemCollection(),
ToolBarButton.DropDownMenu

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Menu.MenuItemCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class provides a standard collection of MenuItems for the Menu class.

public class Menu.MenuItemCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public Menu.MenuItemCollection(Menu owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual MenuItem this{get; }
// Public Instance Methods
 public virtual int Add(int index, MenuItem item);
 public virtual int Add(MenuItem item);
 public virtual MenuItem Add(string caption);
 public virtual MenuItem Add(string caption, EventHandler onClick);
 public virtual MenuItem Add(string caption, MenuItem[] items);
 public virtual void AddRange(MenuItem[] items);
 public virtual void Clear(); // implements IList
 public bool Contains(MenuItem value);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(MenuItem value);
 public virtual void Remove(MenuItem item);
 public virtual void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MenuGlyph serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the various kinds of Arrow, Bullet, and Checkmark glyphs that can be drawn using the
ControlPaint.DrawMenuGlyph() method. Note that this will render pre-XP glyphs; you will need to provide your own
implementation to draw themed imagery.

public enum MenuGlyph {
 Arrow = 0,
 Min = 0,
 Checkmark = 1,
 Bullet = 2,
 Max = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MenuGlyph

Passed To

ControlPaint.DrawMenuGlyph()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MenuItem marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Menu class represents the submenus of either a MainMenu, ContextMenu, or other MenuItem object. You can add it to
the MenuItems property of any of these classes to create such a submenu.

You can control the appearance of the item with a number of different properties. You can set the Text for the menu
item, and it can be Enabled, and made Visible. The BarBreak and Break properties cause the menu item to start a new
column in the menu, with and without a dividing line, respectively. Checked determines whether a check mark appears
next to item text, and RadioCheck determines whether the check mark appears as a radio button instead of a checkmark.
Note that you have to handle the mutual exclusion yourself. You can set a Shortcut key to associate with the item, and
ShowShortcut determines whether the key is displayed to the right of the text. You can also find out which Mnemonic
character is acting as an Alt key shortcut.

To support MDI applications, you can mark an item as the MdiListItem. The system will automatically create and maintain
a child menu for this object with a list of the MDI windows owned by the parent Form.

Also for the benefit of MDI and similar applications, Menu objects allow the merging of their items to meld together
menus from disparate sources. To control this, you can specify the MergeOrder of a particular item. This is essentially a
numeric priority for the item when merging two submenus with the same name. A low number will appear higher in the
menu than a higher number. It is best to think of these as numeric groups where the same numbers will be bundled
together in the final menu.

In addition to the MergeOrder, you can specify the MergeType. This allows you to specify whether the system will Add() the
item to the existing collection (this is the default), Remove() the item when merging (i.e., it will not appear in the final
menu), Replace any existing items at the same position in the merged menu, or MergeItems: interleave the items with
the existing items, adding and replacing as appropriate. Note that the settings on both parties in the merge affect the
end results. It is best to play with these options until you get a feel for how menu merging works in practice.

To determine when items are being manipulated, you can bind to the Click, Popup (a child menu is about to appear), and
Select (the item has been highlighted) events. You can programmatically raise these events with the PerformClick() and
PerformSelect() methods.

Note that MenuItem objects also support OwnerDraw. See MeasureItemEventArgs and DrawItemEventArgs for more
information on owner draw facilities.

public class MenuItem : Menu {
// Public Constructors
 public MenuItem();
 public MenuItem(MenuMerge mergeType, int mergeOrder, Shortcut shortcut, string text, EventHandler onClick,
 EventHandler onPopup, EventHandler onSelect, MenuItem[] items);
 public MenuItem(string text);
 public MenuItem(string text, EventHandler onClick);
 public MenuItem(string text, EventHandler onClick, Shortcut shortcut);
 public MenuItem(string text, MenuItem[] items);
// Public Instance Properties
 public bool BarBreak{set; get; }
 public bool Break{set; get; }
 public bool Checked{set; get; }
 public bool DefaultItem{set; get; }
 public bool Enabled{set; get; }
 public int Index{set; get; }
 public override bool IsParent{get; }
// overrides Menu
 public bool MdiList{set; get; }
 public int MergeOrder{set; get; }
 public MenuMerge MergeType{set; get; }
 public char Mnemonic{get; }
 public bool OwnerDraw{set; get; }
 public Menu Parent{get; }
 public bool RadioCheck{set; get; }
 public Shortcut Shortcut{set; get; }
 public bool ShowShortcut{set; get; }
 public string Text{set; get; }
 public bool Visible{set; get; }
// Protected Instance Properties
 protected int MenuID{get; }
// Public Instance Methods
 public virtual MenuItem CloneMenu();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public virtual MenuItem CloneMenu();
 public virtual MenuItem MergeMenu();
 public void MergeMenu(MenuItem itemSrc);
 public void PerformClick();
 public virtual void PerformSelect();
 public override string ToString(); // overrides Menu
// Protected Instance Methods
 protected void CloneMenu(MenuItem itemSrc);
 protected override void Dispose(bool disposing); // overrides Menu
 protected virtual void OnClick(EventArgs e);
 protected virtual void OnDrawItem(DrawItemEventArgs e);
 protected virtual void OnInitMenuPopup(EventArgs e);
 protected virtual void OnMeasureItem(MeasureItemEventArgs e);
 protected virtual void OnPopup(EventArgs e);
 protected virtual void OnSelect(EventArgs e);
// Events
 public event EventHandler Click;
 public event DrawItemEventHandler DrawItem;
 public event MeasureItemEventHandler MeasureItem;
 public event EventHandler Popup;
 public event EventHandler Select;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Menu MenuItem

Returned By

Menu.{FindMenuItem(), MdiListItem}, MenuItemCollection.this

Passed To

ContextMenu.ContextMenu(), System.Windows.Forms.Design.IMenuEditorService.SetSelection(), MainMenu.MainMenu(), Menu.Menu(),
MenuItemCollection.{Add(), AddRange(), Contains(), IndexOf(), Remove()}, MenuItem.MenuItem()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MenuMerge serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This is the enumeration that is used by the MenuItem.MergeType to determine how menu merging should proceed for this
item.

public enum MenuMerge {
 Add = 0,
 Replace = 1,
 MergeItems = 2,
 Remove = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MenuMerge

Returned By

MenuItem.MergeType

Passed To

MenuItem.{MenuItem(), MergeType}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Message

System.Windows.Forms
(system.windows.forms.dll) struct

This value type wraps a Win32 message, and is used in message filtering (through the Application.AddMessageFilter()
method) and Control.WndProc() message processing. Obviously, this is very closely bound to the operating system, and
you should only use this sort of message processing in interop applications—typically, when you are wrapping a Win32
control for your own purposes. You can retrieve the HWnd, LParam, WParam, and Msg ID. You can also set the Result to be
returned to Windows if you handle the message.

You shouldn't create instances of this class directly, but instead use the static Create() factory method, which ensures
that the message is properly initialized.

public struct Message {
// Public Instance Properties
 public IntPtr HWnd{set; get; }
 public IntPtr LParam{set; get; }
 public int Msg{set; get; }
 public IntPtr Result{set; get; }
 public IntPtr WParam{set; get; }
// Public Static Methods
 public static Message Create(IntPtr hWnd, int msg, IntPtr wparam, IntPtr lparam);
// Public Instance Methods
 public override bool Equals(object o); // overrides ValueType
 public override int GetHashCode(); // overrides ValueType
 public object GetLParam(Type cls);
 public override string ToString(); // overrides ValueType
}

Hierarchy

System.Object System.ValueType Message

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MessageBox

System.Windows.Forms
(system.windows.forms.dll) class

This class provides a simple means to display a modal pop-up box with a title, message, and icon, and obtain some
basic Yes/No, OK/Cancel information from the user. It is essentially a wrapper around the Win32 MessageBox() method.

You can Show() a message, which returns the DialogResult indicating which button the end user clicked. When showing
the message, you can specify the title and body text, the MessageBoxButtons to show (and which button is the
MessageBoxDefaultButton), the MessageBoxIcon, and some MessageBoxOptions that deal with right-to-left mode, multiple
desktop alignment, and alignment.

Don't forget that popping up a message box is highly intrusive, forcibly interrupting a users workflow. You might
consider ErrorProvider, or even a ToolTip, as a better way of notifying the user of problems.

public class MessageBox {
// Public Static Methods
 public static DialogResult Show(IWin32Window owner, string text);
 public static DialogResult Show(IWin32Window owner, string text, string caption);
 public static DialogResult Show(IWin32Window owner, string text, string caption, MessageBoxButtons buttons);
 public static DialogResult Show(IWin32Window owner, string text, string caption, MessageBoxButtons buttons,
 MessageBoxIcon icon);
 public static DialogResult Show(IWin32Window owner, string text, string caption, MessageBoxButtons buttons,
 MessageBoxIcon icon, MessageBoxDefaultButton defaultButton);
 public static DialogResult Show(IWin32Window owner, string text, string caption, MessageBoxButtons buttons,
 MessageBoxIcon icon, MessageBoxDefaultButton defaultButton, MessageBoxOptions options);
 public static DialogResult Show(string text);
 public static DialogResult Show(string text, string caption);
 public static DialogResult Show(string text, string caption, MessageBoxButtons buttons);
 public static DialogResult Show(string text, string caption, MessageBoxButtons buttons, MessageBoxIcon icon);
 public static DialogResult Show(string text, string caption, MessageBoxButtons buttons, MessageBoxIcon icon,
 MessageBoxDefaultButton defaultButton);
 public static DialogResult Show(string text, string caption, MessageBoxButtons buttons, MessageBoxIcon icon,
 MessageBoxDefaultButton defaultButton, MessageBoxOptions options);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MessageBoxButtons serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the various button combinations you can request in the MessageBox.Show() method.

public enum MessageBoxButtons {
 OK = 0,
 OKCancel = 1,
 AbortRetryIgnore = 2,
 YesNoCancel = 3,
 YesNo = 4,
 RetryCancel = 5
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MessageBoxButtons

Passed To

System.Windows.Forms.Design.IUIService.ShowMessage(), MessageBox.Show()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MessageBoxDefaultButton serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration determines which button should be the default accept button in a MessageBox. The left-most in a left-
to-right reading message box is Button1.

public enum MessageBoxDefaultButton {
 Button1 = 0,
 Button2 = 256,
 Button3 = 512
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MessageBoxDefaultButton

Passed To

MessageBox.Show()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MessageBoxIcon serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the icon types that can be displayed in a MessageBox.

public enum MessageBoxIcon {
 None = 0,
 Hand = 16,
 Error = 16,
 Stop = 16,
 Question = 32,
 Exclamation = 48,
 Warning = 48,
 Asterisk = 64,
 Information = 64
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MessageBoxIcon

Passed To

MessageBox.Show()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MessageBoxOptions serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration provides several additional options to a MessageBox, including the right-to-left status (RtlReading),
whether the box should always be shown on the DefaultDesktopOnly, whether it should RightAlign the text, and whether
this is a ServiceNotification (i.e., the MessageBox is shown even if no user is logged on to the system).

public enum MessageBoxOptions {
 DefaultDesktopOnly = 0x00020000,
 RightAlign = 0x00080000,
 RtlReading = 0x00100000,
 ServiceNotification = 0x00200000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MessageBoxOptions

Passed To

MessageBox.Show()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MethodInvoker serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This (extremely useful!) delegate encapsulates a void method with no parameters. This is one of the most common
utility delegates, and it saves you from repeatedly having to define your own. As an example, you might use it in
conjunction with Control.Invoke() to marshal an inter-thread call back onto the UI thread. I only wish I'd found it sooner .
. . .

public delegate void MethodInvoker();

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MonthCalendar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control represents a calendar for selecting a single date or a range of dates. It is more powerful than the
DateTimePicker control, but it takes up a lot more real estate.

To alter the appearance of the control, you can set the CalendarDimensions to specify the number of columns and rows of
months to display (1x1 would look like a single calendar month, 6x2 would allow you to display an entire year). The
minimum size of any individual month can be determined with SingleMonthSize.

The current date can be shown with a circle by specifying ShowTodayCircle, or as some text at the bottom of the control
with the ShowToday property. You can also change what the calendar believes to be today's date with the TodayDate
property. TodayDateSet will tell you whether this has been explicitly modified. You can also specify the FirstDayOfWeek
and, optionally, ShowWeekNumbers.

In addition to the standard Control appearance properties, you can independently set the TitleBackColor, TitleForeColor, and
TrailingForeColor (the color of the days from last and next month that are shown on a calendar grid).

You can also set specific dates to be displayed with bold text either individually with BoldedDates, monthly with
MonthlyBoldedDates, or annually with AnnuallyBoldedDates. While you can use these properties to get and set the dates
concerned, they return copies of the internal date arrays. It is more efficient to use AddBoldedDate(),
AddMonthlyBoldedDate(), and AddAnnuallyBoldedDate(), along with the Remove() and RemoveAll() equivalents.

Date selection can be done by setting the SelectionStart and SelectionEnd, or getting/setting both at once through the
SelectionRange. You can bind to DateChanged and SelectionChanged events to be notified of the selection changing.

public class MonthCalendar : Control {
// Public Constructors
 public MonthCalendar();
// Public Instance Properties
 public DateTime[] AnnuallyBoldedDates{set; get; }
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public DateTime[] BoldedDates{set; get; }
 public Size CalendarDimensions{set; get; }
 public Day FirstDayOfWeek{set; get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public ImeMode ImeMode{set; get; }
// overrides Control
 public DateTime MaxDate{set; get; }
 public int MaxSelectionCount{set; get; }
 public DateTime MinDate{set; get; }
 public DateTime[] MonthlyBoldedDates{set; get; }
 public int ScrollChange{set; get; }
 public DateTime SelectionEnd{set; get; }
 public SelectionRange SelectionRange{set; get; }
 public DateTime SelectionStart{set; get; }
 public bool ShowToday{set; get; }
 public bool ShowTodayCircle{set; get; }
 public bool ShowWeekNumbers{set; get; }
 public Size SingleMonthSize{get; }
 public override string Text{set; get; }
// overrides Control
 public Color TitleBackColor{set; get; }
 public Color TitleForeColor{set; get; }
 public DateTime TodayDate{set; get; }
 public bool TodayDateSet{get; }
 public Color TrailingForeColor{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// overrides Control
// Public Instance Methods
 public void AddAnnuallyBoldedDate(DateTime date);
 public void AddBoldedDate(DateTime date);
 public void AddMonthlyBoldedDate(DateTime date);
 public SelectionRange GetDisplayRange(bool visible);
 public HitTestInfo HitTest(int x, int y);
 public HitTestInfo HitTest(System.Drawing.Point point);
 public void RemoveAllAnnuallyBoldedDates();
 public void RemoveAllBoldedDates();
 public void RemoveAllMonthlyBoldedDates();
 public void RemoveAnnuallyBoldedDate(DateTime date);
 public void RemoveBoldedDate(DateTime date);
 public void RemoveMonthlyBoldedDate(DateTime date);
 public void SetCalendarDimensions(int x, int y);
 public void SetDate(DateTime date);
 public void SetSelectionRange(DateTime date1, DateTime date2);
 public override string ToString(); // overrides System.ComponentModel.Component
 public void UpdateBoldedDates();
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected virtual void OnDateChanged(DateRangeEventArgs drevent);
 protected virtual void OnDateSelected(DateRangeEventArgs drevent);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnForeColorChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler Click;
// overrides Control
 public event DateRangeEventHandler DateChanged;
 public event DateRangeEventHandler DateSelected;
 public event EventHandler DoubleClick;
// overrides Control
 public event PaintEventHandler Paint;
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) MonthCalendar
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MonthCalendar.HitArea serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration defines the various parts of a MonthCalendar control for use with the HitArea property.

public enum MonthCalendar.HitArea {
 Nowhere = 0,
 TitleBackground = 1,
 TitleMonth = 2,
 TitleYear = 3,
 NextMonthButton = 4,
 PrevMonthButton = 5,
 CalendarBackground = 6,
 Date = 7,
 NextMonthDate = 8,
 PrevMonthDate = 9,
 DayOfWeek = 10,
 WeekNumbers = 11,
 TodayLink = 12
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
HitArea
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MonthCalendar.HitTestInfo

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class is used to encapsulate the results of the MonthCalendar.HitTest() method. You can use this method to determine
the HitArea of the calendar under a particular Point. You can also get the Time represented by that part of the
MonthCalendar, if any.

public sealed class MonthCalendar.HitTestInfo {
// Public Instance Properties
 public HitArea HitArea{get; }
 public Point Point{get; }
 public DateTime Time{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MouseButtons serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used throughout the framework to specify which mouse buttons are currently pressed. It is
decorated with the FlagsAttribute, so the values may be combined with one of the logical operators (and you should test
with the & operator rather than simple equality, as more than one bit may be set).

public enum MouseButtons {
 None = 0x00000000,
 Left = 0x00100000,
 Right = 0x00200000,
 Middle = 0x00400000,
 XButton1 = 0x00800000,
 XButton2 = 0x01000000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
MouseButtons

Returned By

Control.MouseButtons, ItemDragEventArgs.Button, MouseEventArgs.Button

Passed To

ItemDragEventArgs.ItemDragEventArgs(), MouseEventArgs.MouseEventArgs(),
StatusBarPanelClickEventArgs.StatusBarPanelClickEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MouseEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the Control.MouseDown, Control.MouseUp, and Control.MouseMove events. You can
determine the X and Y coordinates of the mouse (in client coordinates—contrast this with Control.MousePosition), the
Button that was pressed (note that this is the button that caused the event, not the total set of buttons currently
depressed—you should use Control.MouseButtons for this information).

You can also determine the number of Clicks that have occurred (i.e., single, double, triple, etc.), and the Delta through
which the mouse wheel has rotated.

public class MouseEventArgs : EventArgs {
// Public Constructors
 public MouseEventArgs(MouseButtons button, int clicks, int x, int y, int delta);
// Public Instance Properties
 public MouseButtons Button{get; }
 public int Clicks{get; }
 public int Delta{get; }
 public int X{get; }
 public int Y{get; }
}

Hierarchy

System.Object System.EventArgs MouseEventArgs

Subclasses

StatusBarPanelClickEventArgs

Passed To

Control.{OnMouseWheel(), RaiseMouseEvent()}, System.Windows.Forms.Design.ComponentTray.{OnMouseDown(), OnMouseMove(),
OnMouseUp()}, MouseEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MouseEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.MouseDown, Control.MouseUp, and Control.MouseMove events.

public delegate void MouseEventHandler(object sender, MouseEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NativeWindow marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates a system window but does not implement the IWin32Window interface. It provides CreateHandle()
and AssignHandle() methods to wrap a native HWND, and DestroyHandle() to clean it up. You can also retrieve a
NativeWindow for a particular handle with the static FromHandle() method. The Handle can be retrieved at any time.

You can also invoke the DefWndProc() with a particular Message.

You would typically use this control when you are creating a System.ComponentModel.Component (rather than a Control)
that uses a native Win32 window. An example of this in the framework is the ToolTip. It uses a NativeWindow derived
class in its implementation to manage the pop-up tip window.

public class NativeWindow : MarshalByRefObject {
// Public Constructors
 public NativeWindow();
// Public Instance Properties
 public IntPtr Handle{get; }
// Public Static Methods
 public static NativeWindow FromHandle(IntPtr handle);
// Public Instance Methods
 public void AssignHandle(IntPtr handle);
 public virtual void CreateHandle(CreateParams cp);
 public void DefWndProc(ref Message m);
 public virtual void DestroyHandle();
 public virtual void ReleaseHandle();
// Protected Instance Methods
 protected override void Finalize(); // overrides object
 protected virtual void OnHandleChange();
 protected virtual void OnThreadException(Exception e);
 protected virtual void WndProc(ref Message m);
}

Hierarchy

System.Object System.MarshalByRefObject NativeWindow
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NavigateEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the information for the DataGrid.Navigate event, which is raised when the user navigates through
a data relation to a new table. You can determine whether the navigation is occurring Forward through the relation or
back to the previous table.

public class NavigateEventArgs : EventArgs {
// Public Constructors
 public NavigateEventArgs(bool isForward);
// Public Instance Properties
 public bool Forward{get; }
}

Hierarchy

System.Object System.EventArgs NavigateEventArgs

Passed To

DataGrid.OnNavigate(), NavigateEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NavigateEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the DataGrid.Navigate event.

public delegate void NavigateEventHandler(object sender, NavigateEventArgs ne);

Associated Events

DataGrid.Navigate()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NodeLabelEditEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the data for the TreeView.BeforeLabelEdit and TreeView.AfterLabelEdit events. You can discover the
Node that is being edited and the new Label that will be set into the control.

You can also set CancelEdit to cancel the editing process (or get the value to determine if the event has already been
canceled).

public class NodeLabelEditEventArgs : EventArgs {
// Public Constructors
 public NodeLabelEditEventArgs(TreeNode node);
 public NodeLabelEditEventArgs(TreeNode node, string label);
// Public Instance Properties
 public bool CancelEdit{set; get; }
 public string Label{get; }
 public TreeNode Node{get; }
}

Hierarchy

System.Object System.EventArgs NodeLabelEditEventArgs

Passed To

NodeLabelEditEventHandler.{BeginInvoke(), Invoke()}, TreeView.{OnAfterLabelEdit(), OnBeforeLabelEdit()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NodeLabelEditEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the TreeView.BeforeLabelEdit and TreeView.AfterLabelEdit events.

public delegate void NodeLabelEditEventHandler(object sender, NodeLabelEditEventArgs e);

Associated Events

TreeView.{AfterLabelEdit(), BeforeLabelEdit()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NotifyIcon marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class creates an icon in the system tray. You can specify the tooltip Text (which must be fewer than 64 characters),
the actual Icon itself, and a ContextMenu. You can also show and hide the icon with the Visible property.

Various events are provided to which you can bind to handle Click, DoubleClick, MouseDown, MouseUp, and MouseMove
events while the control is visible.

Note that there is no support for the Windows 2000 and above balloon pop-ups, just the standard tooltips.

public sealed class NotifyIcon : System.ComponentModel.Component {
// Public Constructors
 public NotifyIcon();
 public NotifyIcon(System.ComponentModel.IContainer container);
// Public Instance Properties
 public ContextMenu ContextMenu{set; get; }
 public Icon Icon{set; get; }
 public string Text{set; get; }
 public bool Visible{set; get; }
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
// Events
 public event EventHandler Click;
 public event EventHandler DoubleClick;
 public event MouseEventHandler MouseDown;
 public event MouseEventHandler MouseMove;
 public event MouseEventHandler MouseUp;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) NotifyIcon
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NumericUpDown marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This control combines a TextBox with an up-down button to select a number. If the ReadOnly property is set to true, you
can only alter the number with the up-down buttons, but otherwise you can also type into the text box. If the user does
type into the box, the ValidateEditText() method will be called, and the UserEdit property is set to true. Subsequent typing
causes the UpdateEditText() method to be called, as for all controls derived from UpDownBase. You can override these
methods in a derived class to validate user input.

You can specify the Value displayed in the box, in addition to a Text representation of that number. The number may
also be displayed with a ThousandsSeparator (the character for which is determined by the Culture settings currently in
operation), and you can select the number of DecimalPlaces to show. Alternatively, you can choose a Hexadecimal
representation.

Finally, the range of the control is limited by the Minimum and Maximum properties, and the value that will be added or
removed as the buttons are clicked is defined by the Increment property.

public class NumericUpDown : UpDownBase : System.ComponentModel.ISupportInitialize {
// Public Constructors
 public NumericUpDown();
// Public Instance Properties
 public int DecimalPlaces{set; get; }
 public bool Hexadecimal{set; get; }
 public decimal Increment{set; get; }
 public decimal Maximum{set; get; }
 public decimal Minimum{set; get; }
 public override string Text{set; get; }
// overrides UpDownBase
 public bool ThousandsSeparator{set; get; }
 public decimal Value{set; get; }
// Public Instance Methods
 public void BeginInit(); // implements System.ComponentModel.ISupportInitialize
 public override void DownButton(); // overrides UpDownBase
 public void EndInit(); // implements System.ComponentModel.ISupportInitialize
 public override string ToString(); // overrides System.ComponentModel.Component
 public override void UpButton(); // overrides UpDownBase
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance();
 // overrides Control
 protected override void OnTextBoxKeyPress(object source, KeyPressEventArgs e); // overrides UpDownBase
 protected virtual void OnValueChanged(EventArgs e);
 protected void ParseEditText();
 protected override void UpdateEditText(); // overrides UpDownBase
 protected override void ValidateEditText(); // overrides UpDownBase
// Events
 public event EventHandler ValueChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
UpDownBase NumericUpDown(System.ComponentModel.ISupportInitialize)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

OpacityConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter can convert from an opacity value to a string. It is used in serialization and
design-time scenarios and should not normally be called directly from your code.

public class OpacityConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public OpacityConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter OpacityConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

OpenFileDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This FileDialog class provides a means for a user to select a file to open. In addition to the base functionality, it adds an
OpenFile() method, which will open a file Stream for the first selected file.

public sealed class OpenFileDialog : FileDialog {
// Public Constructors
 public OpenFileDialog();
// Public Instance Properties
 public override bool CheckFileExists{set; get; }
// overrides FileDialog
 public bool Multiselect{set; get; }
 public bool ReadOnlyChecked{set; get; }
 public bool ShowReadOnly{set; get; }
// Public Instance Methods
 public Stream OpenFile();
 public override void Reset(); // overrides FileDialog
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog FileDialog OpenFileDialog

Passed To

System.Windows.Forms.Design.FileNameEditor.InitializeDialog()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Orientation serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration defines Horizontal and Vertical orientation members for the TrackBar class. It could be used by any of
your own custom controls that offer horizontal or vertical alternatives.

public enum Orientation {
 Horizontal = 0,
 Vertical = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
Orientation

Returned By

TrackBar.Orientation

Passed To

TrackBar.Orientation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

OSFeature

System.Windows.Forms
(system.windows.forms.dll) class

This class, derived from the FeatureSupport abstract base, is used to determine whether particular operating system
features are present.

In Version 1.0 of the framework, it can be used to determine whether LayeredWindows and Themes are present, through
static members of those names.

public class OSFeature : FeatureSupport {
// Protected Constructors
 protected OSFeature();
// Public Static Fields
 public static readonly object LayeredWindows; // =System.Object
 public static readonly object Themes; // =System.Object
// Public Static Properties
 public static OSFeature Feature{get; }
// Public Instance Methods
 public override Version GetVersionPresent(object feature); // overrides FeatureSupport
}

Hierarchy

System.Object FeatureSupport(IFeatureSupport) OSFeature

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

OwnerDrawPropertyBag serializable, marshal by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class OwnerDrawPropertyBag : MarshalByRefObject : System.Runtime.Serialization.ISerializable {
// Public Instance Properties
 public Color BackColor{set; get; }
 public Font Font{set; get; }
 public Color ForeColor{set; get; }
// Public Static Methods
 public static OwnerDrawPropertyBag Copy(OwnerDrawPropertyBag value);
// Public Instance Methods
 public virtual bool IsEmpty();
}

Hierarchy

System.Object System.MarshalByRefObject OwnerDrawPropertyBag(System.Runtime.Serialization.ISerializable)

Returned By

TreeView.GetItemRenderStyles()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PageSetupDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This CommonDialog allows a user to set up the PageSettings and PrinterSettings for a System.Drawing.Printing.PrintDocument.
Use the Document property to specify the System.Drawing.Printing.PrintDocument that will be manipulated by the dialog.
Alternatively, you can specify the PageSettings and PrinterSettings individually.

Various parts of the standard dialog can be enabled or disabled with the AllowMargins, AllowOrientation, AllowPaper,
AllowPrinter, and ShowNetwork properties. You can also specify the MinMargins that can be set for this particular dialog.

public sealed class PageSetupDialog : CommonDialog {
// Public Constructors
 public PageSetupDialog();
// Public Instance Properties
 public bool AllowMargins{set; get; }
 public bool AllowOrientation{set; get; }
 public bool AllowPaper{set; get; }
 public bool AllowPrinter{set; get; }
 public PrintDocument Document{set; get; }
 public Margins MinMargins{set; get; }
 public PageSettings PageSettings{set; get; }
 public PrinterSettings PrinterSettings{set; get; }
 public bool ShowHelp{set; get; }
 public bool ShowNetwork{set; get; }
// Public Instance Methods
 public override void Reset(); // overrides CommonDialog
// Protected Instance Methods
 protected override bool RunDialog(IntPtr hwndOwner); // overrides CommonDialog
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog PageSetupDialog
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaintEventArgs disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data used by the Control.Paint event, raised when the Control needs repainting.

You can retrieve the System.Drawing.Graphics surface on which to draw and the ClipRectangle that needs repainting (to
optimize your paint function).

Information about repaint is also included under Control and ControlStyles.

public class PaintEventArgs : EventArgs : IDisposable {
// Public Constructors
 public PaintEventArgs(System.Drawing.Graphics graphics, System.Drawing.Rectangle clipRect);
// Public Instance Properties
 public Rectangle ClipRectangle{get; }
 public Graphics Graphics{get; }
// Public Instance Methods
 public void Dispose(); // implements IDisposable
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 protected override void Finalize(); // overrides object
}

Hierarchy

System.Object System.EventArgs PaintEventArgs(System.IDisposable)

Passed To

Control.{InvokePaint(), InvokePaintBackground(), OnPaintBackground(), RaisePaintEvent()},
System.Windows.Forms.Design.ComponentTray.OnPaint(), System.Windows.Forms.Design.ControlDesigner.OnPaintAdornments(),
PaintEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PaintEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.Paint event.

public delegate void PaintEventHandler(object sender, PaintEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Panel marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control acts as a container for other controls. The usual reason for creating a Panel is to support a particular layout
scheme. It also supports a BorderStyle.

Note that introducing a Panel starts to play havoc with the pseudotransparency supported by the framework (you will
often see the background painted into the panel with (0,0) in client coordinates, rather than parent coordinates, which
can cause trouble with panels inside group boxes, for example.

When you are creating your own classes, you should derive from UserControl rather than Panel. While the only superficial
difference at this time is that you can set the BorderStyle of a Panel, a UserControl also offers design-time support.

public class Panel : ScrollableControl {
// Public Constructors
 public Panel();
// Public Instance Properties
 public BorderStyle BorderStyle{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides ScrollableControl
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void OnResize(EventArgs eventargs); // overrides Control
// Events
 public event KeyEventHandler KeyDown;
// overrides Control
 public event KeyPressEventHandler KeyPress;
// overrides Control
 public event KeyEventHandler KeyUp;
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl Panel

Subclasses

TabPage, System.Windows.Forms.Design.ComponentEditorPage
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PictureBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control allows you to display an Image in a control. The control itself can adapt to the size of the image by setting
the PictureBoxSizeMode. AutoSize locks the horizontal and vertical dimensions of the control to be the same as those of the
Image. CenterImage ensures that the center of the image and the center of the control coincide, StretchImage distorts the
image to fit the control dimensions (note that this does not preserve the aspect ratio of the original image), and Normal
ensures that the top left of the control coincides with the top left of the image, regardless of their relative sizes.

If the Image supports animation, this control will play that animation. There is no need for a separate animation control
such as the one provided by Win32.

public class PictureBox : Control {
// Public Constructors
 public PictureBox();
// Public Instance Properties
 public override bool AllowDrop{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public bool CausesValidation{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public Image Image{set; get; }
 public ImeMode ImeMode{set; get; }
// overrides Control
 public override RightToLeft RightToLeft{set; get; }
// overrides Control
 public PictureBoxSizeMode SizeMode{set; get; }
 public int TabIndex{set; get; }
// overrides Control
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides Control
 protected override void OnEnabledChanged(EventArgs e); // overrides Control
 protected override void OnPaint(PaintEventArgs pe); // overrides Control
 protected override void OnParentChanged(EventArgs e); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected virtual void OnSizeModeChanged(EventArgs e);
 protected override void OnVisibleChanged(EventArgs e); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
// Events
 public event EventHandler Enter;
// overrides Control
 public event KeyEventHandler KeyDown;
// overrides Control
 public event KeyPressEventHandler KeyPress;
// overrides Control
 public event KeyEventHandler KeyUp;
// overrides Control
 public event EventHandler Leave;
// overrides Control
 public event EventHandler SizeModeChanged;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) PictureBox

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PictureBoxSizeMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies the sizing options for a PictureBox control.

public enum PictureBoxSizeMode {
 Normal = 0,
 StretchImage = 1,
 AutoSize = 2,
 CenterImage = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PictureBoxSizeMode

Returned By

PictureBox.SizeMode

Passed To

PictureBox.SizeMode
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintControllerWithStatusDialog

System.Windows.Forms
(system.windows.forms.dll) class

This class, derived from System.Drawing.Printing.PrintController, provides a status dialog while printing occurs. The dialog is
hosted on a separate thread, and it automatically updates the document title and page number as printing continues.

The implementation of this class is interesting, as it illustrates one way of managing a multithreaded progress dialog. A
decompilation tool such as Anakrino allows you to examine this for yourself.

public class PrintControllerWithStatusDialog : System.Drawing.Printing.PrintController {
// Public Constructors
 public PrintControllerWithStatusDialog(System.Drawing.Printing.PrintController underlyingController);
 public PrintControllerWithStatusDialog(System.Drawing.Printing.PrintController underlyingController,
 string dialogTitle);
// Public Instance Methods
 public override void OnEndPage(System.Drawing.Printing.PrintDocument document,
 System.Drawing.Printing.PrintPageEventArgs e); // overrides System.Drawing.Printing.PrintController
 public override void OnEndPrint(System.Drawing.Printing.PrintDocument document,
 System.Drawing.Printing.PrintEventArgs e); // overrides System.Drawing.Printing.PrintController
 public override Graphics OnStartPage(System.Drawing.Printing.PrintDocument document,
 System.Drawing.Printing.PrintPageEventArgs e); // overrides System.Drawing.Printing.PrintController
 public override void OnStartPrint(System.Drawing.Printing.PrintDocument document,
 System.Drawing.Printing.PrintEventArgs e); // overrides System.Drawing.Printing.PrintController
}

Hierarchy

System.Object System.Drawing.Printing.PrintController PrintControllerWithStatusDialog

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This CommonDialog is used to determine which portions of a document to print, on which printer.

You can enable and disable various bits of functionality with the AllowPrintToFile, AllowSelection, AllowSomePages, and
ShowNetwork properties. The PrintToFile member allows you to programmatically switch between file and printer output.

The PrinterSettings to be modified can be specified either through the Document, or alternatively, you can choose a
particular PrinterSettings object to manipulate.

Finally, you can restore default settings with the Reset() method.

public sealed class PrintDialog : CommonDialog {
// Public Constructors
 public PrintDialog();
// Public Instance Properties
 public bool AllowPrintToFile{set; get; }
 public bool AllowSelection{set; get; }
 public bool AllowSomePages{set; get; }
 public PrintDocument Document{set; get; }
 public PrinterSettings PrinterSettings{set; get; }
 public bool PrintToFile{set; get; }
 public bool ShowHelp{set; get; }
 public bool ShowNetwork{set; get; }
// Public Instance Methods
 public override void Reset(); // overrides CommonDialog
// Protected Instance Methods
 protected override bool RunDialog(IntPtr hwndOwner); // overrides CommonDialog
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog PrintDialog

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintPreviewControl marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control provides standardized print preview facilities to your application. It includes only the body of the print
preview, rather than all the buttons and other facilities. For standard print preview you should use the PrintPreviewDialog,
but if you have specific, custom requirements, you can embed this object instead and provide your own supporting UI.

To use the control, you should provide a Document to be previewed. You can then decide how many Columns and Rows of
pages will be displayed and whether to AutoZoom to fit (if not, you can specify your own Zoom factor). You can also
enable or disable high-quality antialiasing with the UseAntiAlias property.

public class PrintPreviewControl : Control {
// Public Constructors
 public PrintPreviewControl();
// Public Instance Properties
 public bool AutoZoom{set; get; }
 public int Columns{set; get; }
 public PrintDocument Document{set; get; }
 public int Rows{set; get; }
 public int StartPage{set; get; }
 public override string Text{set; get; }
// overrides Control
 public bool UseAntiAlias{set; get; }
 public double Zoom{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
// Public Instance Methods
 public void InvalidatePreview();
 public override void ResetBackColor(); // overrides Control
 public override void ResetForeColor(); // overrides Control
// Protected Instance Methods
 protected override void OnPaint(PaintEventArgs pevent); // overrides Control
 protected override void OnResize(EventArgs eventargs); // overrides Control
 protected virtual void OnStartPageChanged(EventArgs e);
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler StartPageChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) PrintPreviewControl

Returned By

PrintPreviewDialog.PrintPreviewControl

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PrintPreviewDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Form hosts the PrintPreviewControl to provide a print preview facility in your application, including the standard
control buttons you require to alter the zoom factor, display page layout (including the range of pages to view), and to
start a print to the default print device.

It exposes the same programmatic interface as the PrintPreviewControl, through delegation.

public class PrintPreviewDialog : Form {
// Public Constructors
 public PrintPreviewDialog();
// Public Instance Properties
 public IButtonControl AcceptButton{set; get; }
// overrides Form
 public string AccessibleDescription{set; get; }
// overrides Control
 public string AccessibleName{set; get; }
// overrides Control
 public AccessibleRole AccessibleRole{set; get; }
// overrides Control
 public override bool AllowDrop{set; get; }
// overrides Control
 public override AnchorStyles Anchor{set; get; }
// overrides Control
 public bool AutoScale{set; get; }
// overrides Form
 public override Size AutoScaleBaseSize{set; get; }
// overrides Form
 public override bool AutoScroll{set; get; }
// overrides Form
 public Size AutoScrollMargin{set; get; }
// overrides ScrollableControl
 public Size AutoScrollMinSize{set; get; }
// overrides ScrollableControl
 public override Color BackColor{set; get; }
// overrides Form
 public override Image BackgroundImage{set; get; }
// overrides Control
 public IButtonControl CancelButton{set; get; }
// overrides Form
 public bool CausesValidation{set; get; }
// overrides Control
 public override ContextMenu ContextMenu{set; get; }
// overrides Control
 public bool ControlBox{set; get; }
// overrides Form
 public override Cursor Cursor{set; get; }
// overrides Control
 public ControlBindingsCollection DataBindings{get; }
// overrides Control
 public override DockStyle Dock{set; get; }
// overrides Control
 public DockPaddingEdges DockPadding{get; }
// overrides ScrollableControl
 public PrintDocument Document{set; get; }
 public bool Enabled{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public FormBorderStyle FormBorderStyle{set; get; }
// overrides Form
 public bool HelpButton{set; get; }
// overrides Form
 public Icon Icon{set; get; }
// overrides Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// overrides Form
 public ImeMode ImeMode{set; get; }
// overrides Control
 public bool IsMdiContainer{set; get; }
// overrides Form
 public bool KeyPreview{set; get; }
// overrides Form
 public Point Location{set; get; }
// overrides Control
 public bool MaximizeBox{set; get; }
// overrides Form
 public Size MaximumSize{set; get; }
// overrides Form
 public MainMenu Menu{set; get; }
// overrides Form
 public bool MinimizeBox{set; get; }
// overrides Form
 public Size MinimumSize{set; get; }
// overrides Form
 public double Opacity{set; get; }
// overrides Form
 public PrintPreviewControl PrintPreviewControl{get; }
 public override RightToLeft RightToLeft{set; get; }
// overrides Control
 public bool ShowInTaskbar{set; get; }
// overrides Form
 public Size Size{set; get; }
// overrides Form
 public SizeGripStyle SizeGripStyle{set; get; }
// overrides Form
 public FormStartPosition StartPosition{set; get; }
// overrides Form
 public bool TabStop{set; get; }
// overrides Control
 public object Tag{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
 public bool TopMost{set; get; }
// overrides Form
 public Color TransparencyKey{set; get; }
// overrides Form
 public bool UseAntiAlias{set; get; }
 public bool Visible{set; get; }
// overrides Control
 public FormWindowState WindowState{set; get; }
// overrides Form
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Form
 protected override void OnClosing(System.ComponentModel.CancelEventArgs e); // overrides Form
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
Form PrintPreviewDialog
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ProgressBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

The ProgressBar class wraps the Win32 progress control to graphically represent the completion of a long operation.

You can specify the Minimum and Maximum value that can be represented by the control, along with the current Value.
The control fills from the minimum on the left to the maximum on the right. Note that it does not honor right-to-left
reading, so left and right really do mean left and right.

You can also specify a Step, which will be added to the current Value each time you call PerformStep(), or you can
Increment() the value by a particular amount.

public sealed class ProgressBar : Control {
// Public Constructors
 public ProgressBar();
// Public Instance Properties
 public override bool AllowDrop{set; get; }
// overrides Control
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public bool CausesValidation{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public ImeMode ImeMode{set; get; }
// overrides Control
 public int Maximum{set; get; }
 public int Minimum{set; get; }
 public override RightToLeft RightToLeft{set; get; }
// overrides Control
 public int Step{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
 public int Value{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public void Increment(int value);
 public void PerformStep();
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
// Events
 public event EventHandler DoubleClick;
// overrides Control
 public event EventHandler Enter;
// overrides Control
 public event KeyEventHandler KeyDown;
// overrides Control
 public event KeyPressEventHandler KeyPress;
// overrides Control
 public event KeyEventHandler KeyUp;
// overrides Control
 public event EventHandler Leave;
// overrides Control
 public event PaintEventHandler Paint;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public event PaintEventHandler Paint;
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ProgressBar
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyGrid marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control will be very familiar to users of the Visual Studio .NET IDE, as it is used to provide the property inspector for
objects in the designer. You can use it to provide a similar function in your own applications.

At its simplest, you can assign any object to the SelectedObject property, and it will use reflection to discover the
properties and events in your object. You can also set an array of SelectedObjects. The grid will then display only those
properties common to the entire array. This should not be confused with the SelectedGridItem property, which returns a
GridItem representing the currently selected row in the grid. You can bind to the SelectedGridItemChanged event to receive
notification when the selection is modified. As the values in the grid change, the PropertyValueChanged event is raised. If
the SelectedObject (or SelectedObjects) changes, the grid will fire SelectedObjectsChanged.

Beyond that, you can use several designer attributes to mark up your target objects for use with the PropertyGrid,
including System.ComponentModel.CategoryAttribute, which provides a means of visually grouping properties, and
System.ComponentModel.DescriptionAttribute, which displays help text.

A property will appear in the grid unless it is annotated with No. You can customize this behavior by creating a new
System.ComponentModel.AttributeCollection (passing an array of Attribute objects in the constructor) and assigning it to the
grid's BrowsableAttributes property. The object must then be annotated with every attribute in this collection for it to
appear.

To facilitate the editing of properties that are not understood by the default designers, you can provide a custom
System.ComponentModel.TypeConverter and/or System.Drawing.Design.UITypeEditor for any and all of the types the target
object exposes.

The grid can also display any System.ComponentModel.Design.DesignerVerb (essentially design-time commands) that a
System.ComponentModel.Design.IDesigner-derived class exposes for the target object through its Verbs property. All these
features are exactly like those facilities provided by the design-time environment.

Aside from the design-time features, there are a number of properties that you can use to control the appearance of
the grid itself.

The PropertyGrid has a toolbar that allows the user to customize various aspects of its appearance. If you don't require
this toolbar, it can be hidden with the ToolbarVisible property.

A panel for the verbs can be shown or hidden using the CommandsVisible property, but you can determine whether this is
permissible at all with the CanShowCommands member. You can also decide not to show the verb panel if there are no
verbs defined by using the CommandsVisibleIfAvailable property. The color of this pane can be changed with the
CommandsBackColor and CommandsForeColor properties.

Similarly, you can show or hide the help region with the HelpVisible property and set its colors with the HelpForeColor and
HelpBackColor. The grid will display the text specified in the System.ComponentModel.DescriptionAttribute with which you
adorned a property.

By default, the grid sorts the properties into groups according to their System.ComponentModel.CategoryAttributes (with Misc
being the default group for unattributed properties). If you don't want this behavior, it can be modified by changing the
PropertySort member (Alphabetical, for instance, would display a single alphabetical list).

You can also change the LineColor of the grid lines and the size of the toolbar buttons (with the LargeButtons member).

public class PropertyGrid : ContainerControl :
System.Windows.Forms.ComponentModel.Com2Interop.IComPropertyBrowser, IPropertyNotifySink {
// Public Constructors
 public PropertyGrid();
// Public Instance Properties
 public override bool AutoScroll{set; get; }
// overrides ScrollableControl
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public AttributeCollection BrowsableAttributes{set; get; }
 public virtual bool CanShowCommands{get; }
 public Color CommandsBackColor{set; get; }
 public Color CommandsForeColor{set; get; }
 public virtual bool CommandsVisible{get; }
 public virtual bool CommandsVisibleIfAvailable{set; get; }
 public Point ContextMenuDefaultLocation{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public Point ContextMenuDefaultLocation{get; }
 public ControlCollection Controls{get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public Color HelpBackColor{set; get; }
 public Color HelpForeColor{set; get; }
 public virtual bool HelpVisible{set; get; }
 public bool LargeButtons{set; get; }
 public Color LineColor{set; get; }
 public PropertySort PropertySort{set; get; }
 public PropertyTabCollection PropertyTabs{get; }
 public GridItem SelectedGridItem{set; get; }
 public object SelectedObject{set; get; }
 public object[] SelectedObjects{set; get; }
 public PropertyTab SelectedTab{get; }
 public override ISite Site{set; get; }
// overrides Control
 public virtual bool ToolbarVisible{set; get; }
 public Color ViewBackColor{set; get; }
 public Color ViewForeColor{set; get; }
// Protected Instance Properties
 protected override Size DefaultSize{get; }
// overrides Control
 protected virtual Type DefaultTabType{get; }
 protected bool DrawFlatToolbar{set; get; }
 protected override bool ShowFocusCues{get; }
// overrides Control
// Public Instance Methods
 public void CollapseAllGridItems();
 public void ExpandAllGridItems();
 public override void Refresh(); // overrides Control
 public void RefreshTabs(System.ComponentModel.PropertyTabScope tabScope);
 public void ResetSelectedProperty();
// Protected Instance Methods
 protected virtual PropertyTab CreatePropertyTab(Type tabType);
 protected override void Dispose(bool disposing); // overrides ContainerControl
 protected void OnComComponentNameChanged(System.ComponentModel.Design.ComponentRenameEventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnGotFocus(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected override void OnMouseDown(MouseEventArgs me); // overrides Control
 protected override void OnMouseMove(MouseEventArgs me); // overrides Control
 protected override void OnMouseUp(MouseEventArgs me); // overrides Control
 protected void OnNotifyPropertyValueUIItemsChanged(object sender, EventArgs e);
 protected override void OnPaint(PaintEventArgs pevent); // overrides Control
 protected virtual void OnPropertyTabChanged(PropertyTabChangedEventArgs e);
 protected virtual void OnPropertyValueChanged(PropertyValueChangedEventArgs e);
 protected override void OnResize(EventArgs e); // overrides Control
 protected virtual void OnSelectedGridItemChanged(SelectedGridItemChangedEventArgs e);
 protected virtual void OnSelectedObjectsChanged(EventArgs e);
 protected override void OnSystemColorsChanged(EventArgs e); // overrides Control
 protected override void OnVisibleChanged(EventArgs e); // overrides ScrollableControl
 protected override bool ProcessDialogKey(Keys keyData); // overrides ContainerControl
 protected override void ScaleCore(float dx, float dy); // overrides ScrollableControl
 protected void ShowEventsButton(bool value);
 protected override void WndProc(ref Message m); // overrides ContainerControl
// Events
 public event EventHandler PropertySortChanged;
 public event PropertyTabChangedEventHandler PropertyTabChanged;
 public event PropertyValueChangedEventHandler PropertyValueChanged;
 public event SelectedGridItemChangedEventHandler SelectedGridItemChanged;
 public event EventHandler SelectedObjectsChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
PropertyGrid(System.Windows.Forms.ComponentModel.Com2Interop.IComPropertyBrowse, IPropertyNotifySink)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyGrid.PropertyTabCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents the collection of System.Windows.Forms.Design.PropertyTab objects being displayed by the PropertyGrid.

public class PropertyGrid.PropertyTabCollection : ICollection, IEnumerable {
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public PropertyTab this{get; }
// Public Instance Methods
 public void AddTabType(Type propertyTabType);
 public void AddTabType(Type propertyTabType, System.ComponentModel.PropertyTabScope tabScope);
 public void Clear(System.ComponentModel.PropertyTabScope tabScope);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public void RemoveTabType(Type propertyTabType);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyManager

System.Windows.Forms
(system.windows.forms.dll) class

This class, derived from BindingManagerBase represents a bag of Binding objects for a simple property-like data source.

While CurrencyManager deals with lists of objects, the PropertyManager is bound to a single item. Therefore, it is hardwired
to look like a list with one entry (at Position zero).

It ensures that all the Binding objects update correctly as the value of this single property changes, by binding to an
appropriately named event. For example, a component providing a Text property must also raise a TextChanged event.

See Binding for more information on the data-binding architecture.

public class PropertyManager : BindingManagerBase {
// Public Constructors
 public PropertyManager();
// Public Instance Properties
 public override int Count{get; }
// overrides BindingManagerBase
 public override object Current{get; }
// overrides BindingManagerBase
 public override int Position{set; get; }
// overrides BindingManagerBase
// Public Instance Methods
 public override void AddNew(); // overrides BindingManagerBase
 public override void CancelCurrentEdit(); // overrides BindingManagerBase
 public override void EndCurrentEdit(); // overrides BindingManagerBase
 public override PropertyDescriptorCollection GetItemProperties(); // overrides BindingManagerBase
 public override void RemoveAt(int index); // overrides BindingManagerBase
 public override void ResumeBinding(); // overrides BindingManagerBase
 public override void SuspendBinding(); // overrides BindingManagerBase
// Protected Instance Methods
 protected internal override string GetListName(
 System.Collections.ArrayList listAccessors); // overrides BindingManagerBase
 protected internal override void OnCurrentChanged(EventArgs ea); // overrides BindingManagerBase
 protected override void UpdateIsBinding(); // overrides BindingManagerBase
}

Hierarchy

System.Object BindingManagerBase PropertyManager

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertySort serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the PropertyGrid.PropertySort member to determine how the items in the grid are arranged
and grouped.

public enum PropertySort {
 NoSort = 0,
 Alphabetical = 1,
 Categorized = 2,
 CategorizedAlphabetical = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
PropertySort

Returned By

PropertyGrid.PropertySort

Passed To

PropertyGrid.PropertySort
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyTabChangedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

The PropertyGrid control may display a number of different System.Windows.Forms.Design.PropertyTab panes. When the tab
changes, the grid raises PropertyGrid.PropertyTabChanged, and this class encapsulates the data for that event.

You can retrieve the NewTab (to which the grid is about to change) and the OldTab (from which the grid is about to
change).

public class PropertyTabChangedEventArgs : EventArgs {
// Public Constructors
 public PropertyTabChangedEventArgs(System.Windows.Forms.Design.PropertyTab oldTab,
 System.Windows.Forms.Design.PropertyTab newTab);
// Public Instance Properties
 public PropertyTab NewTab{get; }
 public PropertyTab OldTab{get; }
}

Hierarchy

System.Object System.EventArgs PropertyTabChangedEventArgs

Passed To

PropertyGrid.OnPropertyTabChanged(), PropertyTabChangedEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyTabChangedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the PropertyGrid.PropertyTabChanged event.

public delegate void PropertyTabChangedEventHandler(object s, PropertyTabChangedEventArgs e);

Associated Events

PropertyGrid.PropertyTabChanged()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyValueChangedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the event data for the PropertyGrid.PropertyValueChanged event. You can retrieve the GridItem that
changed (from which you can also determine the new value of the property) and the OldValue of the object.

public class PropertyValueChangedEventArgs : EventArgs {
// Public Constructors
 public PropertyValueChangedEventArgs(GridItem changedItem, object oldValue);
// Public Instance Properties
 public GridItem ChangedItem{get; }
 public object OldValue{get; }
}

Hierarchy

System.Object System.EventArgs PropertyValueChangedEventArgs

Passed To

PropertyGrid.OnPropertyValueChanged(), PropertyValueChangedEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyValueChangedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the PropertyGrid.PropertyValueChanged event.

public delegate void PropertyValueChangedEventHandler(object s, PropertyValueChangedEventArgs e);

Associated Events

PropertyGrid.PropertyValueChanged()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QueryAccessibilityHelpEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

When an accessibility client (such as a screen reader) requires help information from a Control, it raises the
QueryAccessibilityHelp event, to allow you to provide custom help information. This class encapsulates the data for this
event.

You should set the HelpNamespace (the URI of the help file), the HelpKeyword (the topic ID within that file, as a string),
and the HelpString (the What's This? help information) for the control on which help is requested.

public class QueryAccessibilityHelpEventArgs : EventArgs {
// Public Constructors
 public QueryAccessibilityHelpEventArgs();
 public QueryAccessibilityHelpEventArgs(string helpNamespace, string helpString, string helpKeyword);
// Public Instance Properties
 public string HelpKeyword{set; get; }
 public string HelpNamespace{set; get; }
 public string HelpString{set; get; }
}

Hierarchy

System.Object System.EventArgs QueryAccessibilityHelpEventArgs

Passed To

QueryAccessibilityHelpEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QueryAccessibilityHelpEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.QueryAccessibilityHelp event.

public delegate void QueryAccessibilityHelpEventHandler(object sender, QueryAccessibilityHelpEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QueryContinueDragEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the Control.QueryContinueDrag event.

The Control raises this event periodically throughout a drag-and-drop operation initiated by Control.DoDragDrop().

If you bind to it, you can use this object to set the expected Action, perhaps forcing the operation to Continue or Cancel.

EscapePressed and KeyState provide information as to whether the user pressed the Esc key, and which other modifier
keys (CTRL, SHIFT, ALT) were depressed at the time.

public class QueryContinueDragEventArgs : EventArgs {
// Public Constructors
 public QueryContinueDragEventArgs(int keyState, bool escapePressed, DragAction action);
// Public Instance Properties
 public DragAction Action{set; get; }
 public bool EscapePressed{get; }
 public int KeyState{get; }
}

Hierarchy

System.Object System.EventArgs QueryContinueDragEventArgs

Passed To

Control.OnQueryContinueDrag(), QueryContinueDragEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

QueryContinueDragEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the Control.QueryContinueDrag event.

public delegate void QueryContinueDragEventHandler(object sender, QueryContinueDragEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RadioButton marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control provides a means of selecting one of a set of mutually exclusive options. (Compare this with a set of
CheckBox objects that may all be selected simultaneously.) All the RadioButton objects within a single container act as a
single exclusion group. Therefore, to have several independent groups on the same parent Control, you must place them
in different containers. Panel or GroupBox objects will do the job.

You can change the Appearance of the control from the Normal dot with a label to a Button-like style. In the Normal view,
the position of the RadioButton relative to the label can be modified with the CheckAlign property.

As with the CheckBox, you can determine whether the item is Checked (although it does not have an equivalent of the
CheckBox.CheckState property, as there is no tristate support). You can also enable AutoCheck to ensure that the system
automatically checks the selected button and unchecks the others in the group. You can bind to the CheckedChanged
event to be notified when the Checked state changes.

public class RadioButton : ButtonBase {
// Public Constructors
 public RadioButton();
// Public Instance Properties
 public Appearance Appearance{set; get; }
 public bool AutoCheck{set; get; }
 public ContentAlignment CheckAlign{set; get; }
 public bool Checked{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override ContentAlignment TextAlign{set; get; }
// overrides ButtonBase
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides ButtonBase
 protected override Size DefaultSize{get; }
// overrides ButtonBase
// Public Instance Methods
 public void PerformClick();
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override AccessibleObject CreateAccessibilityInstance(); // overrides ButtonBase
 protected virtual void OnCheckedChanged(EventArgs e);
 protected override void OnClick(EventArgs e); // overrides Control
 protected override void OnEnter(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnMouseUp(MouseEventArgs mevent); // overrides ButtonBase
 protected override bool ProcessMnemonic(char charCode); // overrides Control
// Events
 public event EventHandler AppearanceChanged;
 public event EventHandler CheckedChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ButtonBase RadioButton

Passed To

RadioButtonAccessibleObject.RadioButtonAccessibleObject()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RadioButton.RadioButtonAccessibleObject marshal by
reference

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use and should not be called from your own code.

public class RadioButton.RadioButtonAccessibleObject : ControlAccessibleObject {
// Public Constructors
 public RadioButton.RadioButtonAccessibleObject(RadioButton owner);
// Public Instance Properties
 public override string DefaultAction{get; }
// overrides Control.ControlAccessibleObject
 public override AccessibleRole Role{get; }
// overrides Control.ControlAccessibleObject
 public override AccessibleStates State{get; }
// overrides AccessibleObject
// Public Instance Methods
 public override void DoDefaultAction(); // overrides AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject AccessibleObject(System.Reflection.IReflec, Accessibility.IAccessible,
IEnumVariant) ControlAccessibleObject RadioButtonAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control, derived from TextBoxBase, extends the basic text box functionality to include character and paragraph
formatting. It can also display embedded objects such as images, all with an arbitrary ZoomFactor and optional ScrollBars.

Content can be assigned with the standard Text property and AppendText() methods. In addition to these TextBoxBase
methods, LoadFile() will bring plain ASCII text or an RTF file into the control. Alternatively, you can assign formatted Rtf
markup directly. If the content contains embedded objects, the string obtained from the Text property will include a
placeholder character for each such item. The content can be saved to a file as either ASCII or RTF markup using the
SaveFile() method.

Once you have some text in the control, you can begin to manipulate it. First, some of this content must be selected,
either by the user, or programmatically. To assist the user, you can enable the AutoWordSelection property. This provides
the highlight-completion behavior seen in Microsoft WordPad: if you double-click or select a portion of a word, the
entire word will be highlighted. You can get and set the SelectionStart and the SelectionLength independently, or set both
at once with the Select() or SelectAll() methods. If the SelectionLength is 0, the SelectionStart represents the position of the
caret. ScrollToCaret() ensures that the current cursor position is visible on screen.

You can also get the SelectionType. This returns a combination of flags from the RichTextBoxSelectionTypes enumeration.
For example, you can determine whether the selection is Empty, Text only, or contains an embedded Object. Bind to the
SelectionChanged event to be notified when the selection is modified. You can get or set a string object representing
either the SelectedText or SelectedRtf (analogous to Text and Rtf).

You can then set the SelectionAlignment, a SelectionBullet style (and the BulletIndent), SelectionIndent, SelectionHangingIndent,
SelectionRightIndent, an array of SelectionTabs, the SelectionColor, and SelectionFont.

Text or objects from the clipboard or drag-and-drop operations can be inserted at the current caret position using the
Paste() method. To determine whether a particular object's DataFormats.Format is suitable, you should call CanPaste(). The
Cut() and Copy() methods will place the current selection onto the clipboard (removing the selection or leaving it in place
respectively).

You can Find() text within the control, optionally specifying one or more of the RichTextBoxFinds flags to determine what
the control does when it finds the specified string.

It also supports multilevel undo and redo. There are properties to retrieve the current UndoActionName and
RedoActionName. If either of these is the empty string (""), it indicates that no action is available at this time. Undo() and
Redo() methods invoke the current action, while ClearUndo() empties the undo list.

One final feature the control offers is the ability to automatically DetectUrls in the body of the text. It reformats the text
for you and raises the LinkClicked events when the user clicks them.

public class RichTextBox : TextBoxBase {
// Public Constructors
 public RichTextBox();
// Public Instance Properties
 public override bool AllowDrop{set; get; }
// overrides Control
 public override bool AutoSize{set; get; }
// overrides TextBoxBase
 public bool AutoWordSelection{set; get; }
 public override Image BackgroundImage{set; get; }
// overrides TextBoxBase
 public int BulletIndent{set; get; }
 public bool CanRedo{get; }
 public bool DetectUrls{set; get; }
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides TextBoxBase
 public override int MaxLength{set; get; }
// overrides TextBoxBase
 public override bool Multiline{set; get; }
// overrides TextBoxBase
 public string RedoActionName{get; }
 public int RightMargin{set; get; }
 public string Rtf{set; get; }
 public RichTextBoxScrollBars ScrollBars{set; get; }
 public string SelectedRtf{set; get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public string SelectedRtf{set; get; }
 public override string SelectedText{set; get; }
// overrides TextBoxBase
 public HorizontalAlignment SelectionAlignment{set; get; }
 public bool SelectionBullet{set; get; }
 public int SelectionCharOffset{set; get; }
 public Color SelectionColor{set; get; }
 public Font SelectionFont{set; get; }
 public int SelectionHangingIndent{set; get; }
 public int SelectionIndent{set; get; }
 public override int SelectionLength{set; get; }
// overrides TextBoxBase
 public bool SelectionProtected{set; get; }
 public int SelectionRightIndent{set; get; }
 public int[] SelectionTabs{set; get; }
 public RichTextBoxSelectionTypes SelectionType{get; }
 public bool ShowSelectionMargin{set; get; }
 public override string Text{set; get; }
// overrides TextBoxBase
 public override int TextLength{get; }
// overrides TextBoxBase
 public string UndoActionName{get; }
 public float ZoomFactor{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides TextBoxBase
 protected override Size DefaultSize{get; }
// overrides TextBoxBase
// Public Instance Methods
 public bool CanPaste(Format clipFormat);
 public int Find(char[] characterSet);
 public int Find(char[] characterSet, int start);
 public int Find(char[] characterSet, int start, int end);
 public int Find(string str);
 public int Find(string str, int start, int end, RichTextBoxFinds options);
 public int Find(string str, int start, RichTextBoxFinds options);
 public int Find(string str, RichTextBoxFinds options);
 public char GetCharFromPosition(System.Drawing.Point pt);
 public int GetCharIndexFromPosition(System.Drawing.Point pt);
 public int GetLineFromCharIndex(int index);
 public Point GetPositionFromCharIndex(int index);
 public void LoadFile(System.IO.Stream data, RichTextBoxStreamType fileType);
 public void LoadFile(string path);
 public void LoadFile(string path, RichTextBoxStreamType fileType);
 public void Paste(Format clipFormat);
 public void Redo();
 public void SaveFile(System.IO.Stream data, RichTextBoxStreamType fileType);
 public void SaveFile(string path);
 public void SaveFile(string path, RichTextBoxStreamType fileType);
// Protected Instance Methods
 protected virtual object CreateRichEditOleCallback();
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected virtual void OnContentsResized(ContentsResizedEventArgs e);
 protected override void OnContextMenuChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides TextBoxBase
 protected override void OnHandleDestroyed(EventArgs e); // overrides TextBoxBase
 protected virtual void OnHScroll(EventArgs e);
 protected virtual void OnImeChange(EventArgs e);
 protected virtual void OnLinkClicked(LinkClickedEventArgs e);
 protected virtual void OnProtected(EventArgs e);
 protected override void OnRightToLeftChanged(EventArgs e); // overrides Control
 protected virtual void OnSelectionChanged(EventArgs e);
 protected override void OnSystemColorsChanged(EventArgs e); // overrides Control
 protected override void OnTextChanged(EventArgs e); // overrides Control
 protected virtual void OnVScroll(EventArgs e);
 protected override void WndProc(ref Message m); // overrides TextBoxBase
// Events
 public event ContentsResizedEventHandler ContentsResized;
 public event EventHandler DoubleClick;
// overrides Control
 public event DragEventHandler DragDrop;
// overrides Control
 public event DragEventHandler DragEnter;
// overrides Control
 public event EventHandler DragLeave;
// overrides Control
 public event DragEventHandler DragOver;
// overrides Control
 public event GiveFeedbackEventHandler GiveFeedback;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public event GiveFeedbackEventHandler GiveFeedback;
// overrides Control
 public event EventHandler HScroll;
 public event EventHandler ImeChange;
 public event LinkClickedEventHandler LinkClicked;
 public event EventHandler Protected;
 public event QueryContinueDragEventHandler QueryContinueDrag;
// overrides Control
 public event EventHandler SelectionChanged;
 public event EventHandler VScroll;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TextBoxBase RichTextBox

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBoxFinds serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration defines a set of flags to use with the RichTextBox.Find() method.

public enum RichTextBoxFinds {
 None = 0x00000000,
 WholeWord = 0x00000002,
 MatchCase = 0x00000004,
 NoHighlight = 0x00000008,
 Reverse = 0x00000010
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RichTextBoxFinds

Passed To

RichTextBox.Find()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBoxScrollBars serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the RichTextBox.ScrollBars property to determine how the control manages scrolling.

public enum RichTextBoxScrollBars {
 None = 0,
 Horizontal = 1,
 Vertical = 2,
 Both = 3,
 ForcedHorizontal = 17,
 ForcedVertical = 18,
 ForcedBoth = 19
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RichTextBoxScrollBars

Returned By

RichTextBox.ScrollBars

Passed To

RichTextBox.ScrollBars
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBoxSelectionAttribute serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This attribute class is for internal use only and should not be used to adorn your own code.

public enum RichTextBoxSelectionAttribute {
 None = 0,
 All = 1,
 Mixed = -1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RichTextBoxSelectionAttribute

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBoxSelectionTypes serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the RichTextBox.SelectionType property to define the nature of the selection.

public enum RichTextBoxSelectionTypes {
 Empty = 0x00000000,
 Text = 0x00000001,
 Object = 0x00000002,
 MultiChar = 0x00000004,
 MultiObject = 0x00000008
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RichTextBoxSelectionTypes

Returned By

RichTextBox.SelectionType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBoxStreamType serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the RichTextBox.SaveFile() method to specify the format of the file to save (e.g., PlainText will
replace any embedded OLE objects with spaces and strip out RTF markup, while RichText will save an RTF stream
including all the formatting and embedded objects).

public enum RichTextBoxStreamType {
 RichText = 0,
 PlainText = 1,
 RichNoOleObjs = 2,
 TextTextOleObjs = 3,
 UnicodePlainText = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RichTextBoxStreamType

Passed To

RichTextBox.{LoadFile(), SaveFile()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RichTextBoxWordPunctuations serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is for internal use only and should not be used in your own code.

public enum RichTextBoxWordPunctuations {
 Level1 = 128,
 Level2 = 256,
 Custom = 512,
 All = 896
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RichTextBoxWordPunctuations

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RightToLeft serializable

System.Windows.Forms
(system.windows.forms.dll) enum

A Control supporting right-to-left reading cultures will use this enumeration to specify whether the RTL behavior is
enabled.

public enum RightToLeft {
 No = 0,
 Yes = 1,
 Inherit = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
RightToLeft

Returned By

ContextMenu.RightToLeft, Control.RightToLeft, MainMenu.RightToLeft

Passed To

ContextMenu.RightToLeft, Control.RightToLeft, MainMenu.RightToLeft
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SaveFileDialog marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This FileDialog class provides a means for a user to select a filename with which to save a file. You can choose to display
a prompt if the file does not exist by setting the CreatePrompt property.

OverwritePrompt will do the same if a file with the selected name does exist. The OpenFile() method will (create and) open
a file Stream for the selected filename.

public sealed class SaveFileDialog : FileDialog {
// Public Constructors
 public SaveFileDialog();
// Public Instance Properties
 public bool CreatePrompt{set; get; }
 public bool OverwritePrompt{set; get; }
// Public Instance Methods
 public Stream OpenFile();
 public override void Reset(); // overrides FileDialog
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) CommonDialog FileDialog SaveFileDialog
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Screen

System.Windows.Forms
(system.windows.forms.dll) class

This class allows you to enumerate the various displays attached to a system.

There are a number of static properties and methods. AllScreens returns an array of Screen objects, one for each
attached display. PrimaryScreen gets the primary display. FromPoint() finds the display that contains a specified point,
while FromControl() and FromRectangle() find the display that contains the majority of the specified object. GetBounds() and
GetWorkingArea() return the total bounds and desktop area (respectively) of the display containing the specified Control.

For a particular Screen object, the Bounds property returns the total area of the display, and the WorkingArea returns the
desktop bounds (i.e., excluding such things as taskbars, toolbars, etc.). The Primary property specifies whether it is the
primary display, and the DeviceName returns the name associated with the display.

public class Screen {
// Public Static Properties
 public static Screen[] AllScreens{get; }
 public static Screen PrimaryScreen{get; }
// Public Instance Properties
 public Rectangle Bounds{get; }
 public string DeviceName{get; }
 public bool Primary{get; }
 public Rectangle WorkingArea{get; }
// Public Static Methods
 public static Screen FromControl(Control control);
 public static Screen FromHandle(IntPtr hwnd);
 public static Screen FromPoint(System.Drawing.Point point);
 public static Screen FromRectangle(System.Drawing.Rectangle rect);
 public static Rectangle GetBounds(Control ctl);
 public static Rectangle GetBounds(System.Drawing.Point pt);
 public static Rectangle GetBounds(System.Drawing.Rectangle rect);
 public static Rectangle GetWorkingArea(Control ctl);
 public static Rectangle GetWorkingArea(System.Drawing.Point pt);
 public static Rectangle GetWorkingArea(System.Drawing.Rectangle rect);
// Public Instance Methods
 public override bool Equals(object obj); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollableControl marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This is the base class for controls that support automatic scrolling. This includes ContainerControl (and its subclasses such
as UserControl) and Panel.

To enable scrolling, you set the AutoScroll property. You can then specify the AutoScrollMinSize. If the control is made
smaller than the AutoScrollMinSize, scrollbars are displayed. Alternatively, if any child controls are found within
AutoScrollMargin pixels of the edge of its visible area, the scrollbars will also be shown.

You can set or retrieve the current AutoScrollPosition. Note that when you retrieve the position, it comes back as {-x,-y},
whereas when you set it, you must specify {x,y}.

As the AutoScrollPosition is changed, the window content is automatically blitted into the new position, child controls are
offset by the appropriate amount, and any newly revealed parts of the control are invalidated for repaint. While this is
the most efficient repaint scheme, it is not necessarily ideal for all applications. As an alternative, you can create and
manage your own ScrollBar controls.

public class ScrollableControl : Control {
// Public Constructors
 public ScrollableControl();
// Protected Static Fields
 protected const int ScrollStateAutoScrolling; // =1
 protected const int ScrollStateFullDrag; // =16
 protected const int ScrollStateHScrollVisible; // =2
 protected const int ScrollStateUserHasScrolled; // =8
 protected const int ScrollStateVScrollVisible; // =4
// Public Instance Properties
 public virtual bool AutoScroll{set; get; }
 public Size AutoScrollMargin{set; get; }
 public Size AutoScrollMinSize{set; get; }
 public Point AutoScrollPosition{set; get; }
 public override Rectangle DisplayRectangle{get; }
// overrides Control
 public DockPaddingEdges DockPadding{get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected bool HScroll{set; get; }
 protected bool VScroll{set; get; }
// Public Instance Methods
 public void ScrollControlIntoView(Control activeControl);
 public void SetAutoScrollMargin(int x, int y);
// Protected Instance Methods
 protected virtual void AdjustFormScrollbars(bool displayScrollbars);
 protected bool GetScrollState(int bit);
 protected override void OnLayout(LayoutEventArgs levent); // overrides Control
 protected override void OnMouseWheel(MouseEventArgs e); // overrides Control
 protected override void OnVisibleChanged(EventArgs e); // overrides Control
 protected override void ScaleCore(float dx, float dy); // overrides Control
 protected void SetDisplayRectLocation(int x, int y);
 protected void SetScrollState(int bit, bool value);
 protected override void WndProc(ref Message m); // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl

Subclasses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subclasses

ContainerControl, Panel, System.Windows.Forms.Design.ComponentTray
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollableControl.DockPaddingEdges

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the margins around the edge of a ScrollableControl.

public class ScrollableControl.DockPaddingEdges : ICloneable {
// Public Instance Properties
 public int All{set; get; }
 public int Bottom{set; get; }
 public int Left{set; get; }
 public int Right{set; get; }
 public int Top{set; get; }
// Public Instance Methods
 public override bool Equals(object other); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollableControl.DockPaddingEdgesConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used to translate to and from a DockPaddingEdges class in design-time and
serialization scenarios.

public class ScrollableControl.DockPaddingEdgesConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public ScrollableControl.DockPaddingEdgesConverter();
// Public Instance Methods
 public override PropertyDescriptorCollection GetProperties(
 System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter DockPaddingEdgesConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This is the abstract base class for the HScrollBar and the VScrollBar controls.

It has properties that define the Minimum and Maximum values for the scrollbar, and you can get or set the current Value.

The SmallChange property determines the value to be added or subtracted when the buttons are clicked (or the arrow
keys are pressed). Similarly, the LargeChange property determines the value to be added or subtracted when the slider
body is clicked (or the page up/down keys are pressed).

As the Value is changed, the control raises the ValueChanged event. When the scrollbox moves, it raises a Scroll event.
Note that if you drag the slider knob, you get a Scroll when the mouse button is first depressed (with
ScrollEventArgs.NewValue = = Value). As the mouse moves, you get a Scroll before the Value has been updated, then a
ValueChanged event as the Value is updated. Finally, you get another Scroll as the mouse is released (with
ScrollEventArgs.NewValue = = Value).

public abstract class ScrollBar : Control {
// Public Constructors
 public ScrollBar();
// Public Instance Properties
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public ImeMode ImeMode{set; get; }
// overrides Control
 public int LargeChange{set; get; }
 public int Maximum{set; get; }
 public int Minimum{set; get; }
 public int SmallChange{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
 public int Value{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void OnEnabledChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected virtual void OnScroll(ScrollEventArgs se);
 protected virtual void OnValueChanged(EventArgs e);
 protected void UpdateScrollInfo();
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler Click;
// overrides Control
 public event EventHandler DoubleClick;
// overrides Control
 public event MouseEventHandler MouseDown;
// overrides Control
 public event MouseEventHandler MouseMove;
// overrides Control
 public event MouseEventHandler MouseUp;
// overrides Control
 public event PaintEventHandler Paint;
// overrides Control
 public event ScrollEventHandler Scroll;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public event ScrollEventHandler Scroll;
 public event EventHandler ValueChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollBar

Subclasses

HScrollBar, VScrollBar

Returned By

DataGrid.{HorizScrollBar, VertScrollBar}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollBars serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by TextBox and RichTextBox to determine whether it will show scrollbars when there is too much
text to display within the visible area of the control.

public enum ScrollBars {
 None = 0,
 Horizontal = 1,
 Vertical = 2,
 Both = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ScrollBars

Returned By

TextBox.ScrollBars

Passed To

TextBox.ScrollBars
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollButton serializable

System.Windows.Forms
(system.windows.forms.dll) enum

ControlPaint.DrawScrollButton() uses this enumeration to specify the type of button imagery to paint.

public enum ScrollButton {
 Min = 0,
 Up = 0,
 Down = 1,
 Left = 2,
 Right = 3,
 Max = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ScrollButton

Passed To

ControlPaint.DrawScrollButton()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the ScrollBar.Scroll event. You can determine the NewValue of the scrollbar and the
Type of the scroll event (see ScrollEventType for details).

public class ScrollEventArgs : EventArgs {
// Public Constructors
 public ScrollEventArgs(ScrollEventType type, int newValue);
// Public Instance Properties
 public int NewValue{set; get; }
 public ScrollEventType Type{get; }
}

Hierarchy

System.Object System.EventArgs ScrollEventArgs

Passed To

DataGrid.{GridHScrolled(), GridVScrolled()}, ScrollBar.OnScroll(), ScrollEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is a delegate for the ScrollBar.Scroll event.

public delegate void ScrollEventHandler(object sender, ScrollEventArgs e);

Associated Events

HScrollBar.Scroll(), ScrollBar.Scroll(), VScrollBar.Scroll()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollEventType serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the various kinds of ScrollBar.Scroll events that can be raised, depending on how the scrollbar was
moved.

public enum ScrollEventType {
 SmallDecrement = 0,
 SmallIncrement = 1,
 LargeDecrement = 2,
 LargeIncrement = 3,
 ThumbPosition = 4,
 ThumbTrack = 5,
 First = 6,
 Last = 7,
 EndScroll = 8
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ScrollEventType

Returned By

ScrollEventArgs.Type

Passed To

ScrollEventArgs.ScrollEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SecurityIDType serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is for internal use only and should not be referenced directly in your own code.

public enum SecurityIDType {
 User = 1,
 Group = 2,
 Domain = 3,
 Alias = 4,
 WellKnownGroup = 5,
 DeletedAccount = 6,
 Invalid = 7,
 Unknown = 8,
 Computer = 9
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
SecurityIDType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SelectedGridItemChangedEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the PropertyGrid.SelectedGridItemChanged event. You can retrieve both the OldSelection
and the NewSelection.

public class SelectedGridItemChangedEventArgs : EventArgs {
// Public Constructors
 public SelectedGridItemChangedEventArgs(GridItem oldSel, GridItem newSel);
// Public Instance Properties
 public GridItem NewSelection{get; }
 public GridItem OldSelection{get; }
}

Hierarchy

System.Object System.EventArgs SelectedGridItemChangedEventArgs

Passed To

PropertyGrid.OnSelectedGridItemChanged(), SelectedGridItemChangedEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SelectedGridItemChangedEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is a delegate for the PropertyGrid.SelectedGridItemChanged event.

public delegate void SelectedGridItemChangedEventHandler(object sender, SelectedGridItemChangedEventArgs e);

Associated Events

PropertyGrid.SelectedGridItemChanged()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SelectionMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the ListBox and CheckedListBox controls to determine what kind of selection is supported.
None implies that selection is disabled (although the control itself is still enabled), One offers single selection, while
MultiSimple and MultiExtended reflect the two Windows multiple-selection modes.

public enum SelectionMode {
 None = 0,
 One = 1,
 MultiSimple = 2,
 MultiExtended = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
SelectionMode

Returned By

ListBox.SelectionMode

Passed To

ListBox.SelectionMode
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SelectionRange

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

This class represents the Start and End of a range of dates in a MonthCalendar control.

public sealed class SelectionRange {
// Public Constructors
 public SelectionRange();
 public SelectionRange(DateTime lower, DateTime upper);
 public SelectionRange(SelectionRange range);
// Public Instance Properties
 public DateTime End{set; get; }
 public DateTime Start{set; get; }
// Public Instance Methods
 public override string ToString(); // overrides object
}

Returned By

MonthCalendar.{GetDisplayRange(), SelectionRange}

Passed To

MonthCalendar.SelectionRange
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SelectionRangeConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used in serialization and design-time scenarios and would not normally be
used directly in your own code.

public class SelectionRangeConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public SelectionRangeConverter();
// Public Instance Methods
 public override bool CanConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 Type sourceType); // overrides System.ComponentModel.TypeConverter
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertFrom(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object CreateInstance(System.ComponentModel.ITypeDescriptorContext context,
 System.Collections.IDictionary propertyValues); // overrides System.ComponentModel.TypeConverter
 public override bool GetCreateInstanceSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object value, Attribute[] attributes);
 // overrides System.ComponentModel.TypeConverter
 public override bool GetPropertiesSupported(
 System.ComponentModel.ITypeDescriptorContext context); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter SelectionRangeConverter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SendKeys

System.Windows.Forms
(system.windows.forms.dll) class

This utility class offers three methods to dispatch keypresses to the active application.

Send() sends a string of keystrokes. Nonprintable keys are represented by a series of special character codes between
curly braces (for example Page Down is {PGDN}).

Flush() pumps messages until the keys have all been sent. SendWait() sends the keystrokes and pumps messages until all
the keys have been sent. It is equivalent to Send() followed by Flush().

public class SendKeys {
// Public Static Methods
 public static void Flush();
 public static void Send(string keys);
 public static void SendWait(string keys);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Shortcut serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the shortcut keys that can be assigned to a MenuItem.Shortcut.

public enum Shortcut {
 None = 0,
 Ins = 45,
 Del = 46,
 F1 = 112,
 F2 = 113,
 F3 = 114,
 F4 = 115,
 F5 = 116,
 F6 = 117,
 F7 = 118,
 F8 = 119,
 F9 = 120,
 F10 = 121,
 F11 = 122,
 F12 = 123,
 ShiftIns = 65581,
 ShiftDel = 65582,
 ShiftF1 = 65648,
 ShiftF2 = 65649,
 ShiftF3 = 65650,
 ShiftF4 = 65651,
 ShiftF5 = 65652,
 ShiftF6 = 65653,
 ShiftF7 = 65654,
 ShiftF8 = 65655,
 ShiftF9 = 65656,
 ShiftF10 = 65657,
 ShiftF11 = 65658,
 ShiftF12 = 65659,
 CtrlIns = 131117,
 CtrlDel = 131118,
 Ctrl0 = 131120,
 Ctrl1 = 131121,
 Ctrl2 = 131122,
 Ctrl3 = 131123,
 Ctrl4 = 131124,
 Ctrl5 = 131125,
 Ctrl6 = 131126,
 Ctrl7 = 131127,
 Ctrl8 = 131128,
 Ctrl9 = 131129,
 CtrlA = 131137,
 CtrlB = 131138,
 CtrlC = 131139,
 CtrlD = 131140,
 CtrlE = 131141,
 CtrlF = 131142,
 CtrlG = 131143,
 CtrlH = 131144,
 CtrlI = 131145,
 CtrlJ = 131146,
 CtrlK = 131147,
 CtrlL = 131148,
 CtrlM = 131149,
 CtrlN = 131150,
 CtrlO = 131151,
 CtrlP = 131152,
 CtrlQ = 131153,
 CtrlR = 131154,
 CtrlS = 131155,
 CtrlT = 131156,
 CtrlU = 131157,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CtrlU = 131157,
 CtrlV = 131158,
 CtrlW = 131159,
 CtrlX = 131160,
 CtrlY = 131161,
 CtrlZ = 131162,
 CtrlF1 = 131184,
 CtrlF2 = 131185,
 CtrlF3 = 131186,
 CtrlF4 = 131187,
 CtrlF5 = 131188,
 CtrlF6 = 131189,
 CtrlF7 = 131190,
 CtrlF8 = 131191,
 CtrlF9 = 131192,
 CtrlF10 = 131193,
 CtrlF11 = 131194,
 CtrlF12 = 131195,
 CtrlShift0 = 196656,
 CtrlShift1 = 196657,
 CtrlShift2 = 196658,
 CtrlShift3 = 196659,
 CtrlShift4 = 196660,
 CtrlShift5 = 196661,
 CtrlShift6 = 196662,
 CtrlShift7 = 196663,
 CtrlShift8 = 196664,
 CtrlShift9 = 196665,
 CtrlShiftA = 196673,
 CtrlShiftB = 196674,
 CtrlShiftC = 196675,
 CtrlShiftD = 196676,
 CtrlShiftE = 196677,
 CtrlShiftF = 196678,
 CtrlShiftG = 196679,
 CtrlShiftH = 196680,
 CtrlShiftI = 196681,
 CtrlShiftJ = 196682,
 CtrlShiftK = 196683,
 CtrlShiftL = 196684,
 CtrlShiftM = 196685,
 CtrlShiftN = 196686,
 CtrlShiftO = 196687,
 CtrlShiftP = 196688,
 CtrlShiftQ = 196689,
 CtrlShiftR = 196690,
 CtrlShiftS = 196691,
 CtrlShiftT = 196692,
 CtrlShiftU = 196693,
 CtrlShiftV = 196694,
 CtrlShiftW = 196695,
 CtrlShiftX = 196696,
 CtrlShiftY = 196697,
 CtrlShiftZ = 196698,
 CtrlShiftF1 = 196720,
 CtrlShiftF2 = 196721,
 CtrlShiftF3 = 196722,
 CtrlShiftF4 = 196723,
 CtrlShiftF5 = 196724,
 CtrlShiftF6 = 196725,
 CtrlShiftF7 = 196726,
 CtrlShiftF8 = 196727,
 CtrlShiftF9 = 196728,
 CtrlShiftF10 = 196729,
 CtrlShiftF11 = 196730,
 CtrlShiftF12 = 196731,
 AltBksp = 262152,
 Alt0 = 262192,
 Alt1 = 262193,
 Alt2 = 262194,
 Alt3 = 262195,
 Alt4 = 262196,
 Alt5 = 262197,
 Alt6 = 262198,
 Alt7 = 262199,
 Alt8 = 262200,
 Alt9 = 262201,
 AltF1 = 262256,
 AltF2 = 262257,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AltF2 = 262257,
 AltF3 = 262258,
 AltF4 = 262259,
 AltF5 = 262260,
 AltF6 = 262261,
 AltF7 = 262262,
 AltF8 = 262263,
 AltF9 = 262264,
 AltF10 = 262265,
 AltF11 = 262266,
 AltF12 = 262267
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
Shortcut

Returned By

MenuItem.Shortcut

Passed To

MenuItem.{MenuItem(), Shortcut}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SizeGripStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration contains the possible settings for the Form.SizeGripStyle.

public enum SizeGripStyle {
 Auto = 0,
 Show = 1,
 Hide = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
SizeGripStyle

Returned By

Form.SizeGripStyle, PrintPreviewDialog.SizeGripStyle

Passed To

Form.SizeGripStyle, PrintPreviewDialog.SizeGripStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SortOrder serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration determines how items are sorted with the ListView.Sorting property.

public enum SortOrder {
 None = 0,
 Ascending = 1,
 Descending = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
SortOrder

Returned By

ListView.Sorting

Passed To

ListView.Sorting

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Splitter marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control is automatically docked to either the Top, Bottom, Left, or Right of a control. It is then used to automatically
resize the Control object docked to the same edge immediately preceding it in the Z order, as the user drags it around
with the mouse.

You can set the minimum dimension for the Control you are adjusting with the MinSize property. The split bar can be
further constrained by specifying MinExtra. This determines the minimum size of the remaining portion of the control
(i.e., the area into which a Control with the Dock property set to DockStyle.Fill would be positioned).

The current position of the bar can be controlled with the SplitPosition property.

The split bar raises SplitterMoving and SplitterMoved events as it is dragged around and then released. You can modify the
splitter position dynamically by binding to these events and changing the event data.

public class Splitter : Control : IMessageFilter {
// Public Constructors
 public Splitter();
// Public Instance Properties
 public override bool AllowDrop{set; get; }
// overrides Control
 public override AnchorStyles Anchor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public override DockStyle Dock{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public ImeMode ImeMode{set; get; }
// overrides Control
 public int MinExtra{set; get; }
 public int MinSize{set; get; }
 public int SplitPosition{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public bool PreFilterMessage(ref Message m); // implements IMessageFilter
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void OnKeyDown(KeyEventArgs e); // overrides Control
 protected override void OnMouseDown(MouseEventArgs e); // overrides Control
 protected override void OnMouseMove(MouseEventArgs e); // overrides Control
 protected override void OnMouseUp(MouseEventArgs e); // overrides Control
 protected virtual void OnSplitterMoved(SplitterEventArgs sevent);
 protected virtual void OnSplitterMoving(SplitterEventArgs sevent);
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
// Events
 public event EventHandler Enter;
// overrides Control
 public event KeyEventHandler KeyDown;
// overrides Control
 public event KeyPressEventHandler KeyPress;
// overrides Control
 public event KeyEventHandler KeyUp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public event KeyEventHandler KeyUp;
// overrides Control
 public event EventHandler Leave;
// overrides Control
 public event SplitterEventHandler SplitterMoved;
 public event SplitterEventHandler SplitterMoving;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) Splitter(IMessageFilter)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SplitterEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

The data for the Splitter.SplitterMoving and SplitterMoved events is encapsulated by this class. You can retrieve the location
of the top left of the Splitter with the SplitX and SplitY members, and the current mouse position (in the client coordinates
of the splitters Parent window) with X and Y.

public class SplitterEventArgs : EventArgs {
// Public Constructors
 public SplitterEventArgs(int x, int y, int splitX, int splitY);
// Public Instance Properties
 public int SplitX{set; get; }
 public int SplitY{set; get; }
 public int X{get; }
 public int Y{get; }
}

Hierarchy

System.Object System.EventArgs SplitterEventArgs

Passed To

Splitter.{OnSplitterMoved(), OnSplitterMoving()}, SplitterEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SplitterEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is a delegate for the Splitter.SplitterMoving and Splitter.SplitterMoved events.

public delegate void SplitterEventHandler(object sender, SplitterEventArgs e);

Associated Events

Splitter.{SplitterMoved(), SplitterMoving()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control can be docked at the bottom of a form to display either a simple Text string, or a number of StatusBarPanel
objects.

Initially, the status bar will not contain any panels, and text will be displayed. You can Add() one or more StatusBarPanel
objects to the Panels property and enable the ShowPanels property, and it will display the panels instead, aligned from
left to right.

For resizable containers, you can optionally display a SizingGrip in addition to the basic imagery.

Note that right-to-left reading forms will continue to display the panels on the left and the grippy on the right,
regardless of the setting.

You can customize the rendering of the panels by binding to the DrawItem event. Any StatusBarPanel that is enabled for
owner draw will cause the StatusBar to raise this event. See StatusBarDrawItemEventArgs for more information.

public class StatusBar : Control {
// Public Constructors
 public StatusBar();
// Public Instance Properties
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public override DockStyle Dock{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public ImeMode ImeMode{set; get; }
// overrides Control
 public StatusBarPanelCollection Panels{get; }
 public bool ShowPanels{set; get; }
 public bool SizingGrip{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected virtual void OnDrawItem(StatusBarDrawItemEventArgs sbdievent);
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected override void OnLayout(LayoutEventArgs levent); // overrides Control
 protected override void OnMouseDown(MouseEventArgs e); // overrides Control
 protected virtual void OnPanelClick(StatusBarPanelClickEventArgs e);
 protected override void OnResize(EventArgs e); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event StatusBarDrawItemEventHandler DrawItem;
 public event PaintEventHandler Paint;
// overrides Control
 public event StatusBarPanelClickEventHandler PanelClick;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) StatusBar

Returned By

StatusBarPanel.Parent

Passed To

StatusBarPanelCollection.StatusBarPanelCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBar.StatusBarPanelCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the collection of panels in the StatusBar.Panels property.

public class StatusBar.StatusBarPanelCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public StatusBar.StatusBarPanelCollection(StatusBar owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual StatusBarPanel this{set; get; }
// Public Instance Methods
 public virtual int Add(StatusBarPanel value);
 public virtual StatusBarPanel Add(string text);
 public virtual void AddRange(StatusBarPanel[] panels);
 public virtual void Clear(); // implements IList
 public bool Contains(StatusBarPanel panel);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(StatusBarPanel panel);
 public virtual void Insert(int index, StatusBarPanel value);
 public virtual void Remove(StatusBarPanel value);
 public virtual void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarDrawItemEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the StatusBar.DrawItem event. It provides the actual Panel to be drawn and its Index
in the StatusBar.Panels collection along with the BackColor, ForeColor, and Font of that object.

You can also get a System.Drawing.Graphics surface on which to paint and the Bounds of the panel on that surface.

public class StatusBarDrawItemEventArgs : DrawItemEventArgs {
// Public Constructors
 public StatusBarDrawItemEventArgs(System.Drawing.Graphics g, System.Drawing.Font font,
 System.Drawing.Rectangle r, int itemId, DrawItemState itemState, StatusBarPanel panel);
// Public Instance Properties
 public StatusBarPanel Panel{get; }
}

Hierarchy

System.Object System.EventArgs DrawItemEventArgs StatusBarDrawItemEventArgs

Passed To

StatusBar.OnDrawItem(), StatusBarDrawItemEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarDrawItemEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the StatusBar.DrawItem event.

public delegate void StatusBarDrawItemEventHandler(object sender, StatusBarDrawItemEventArgs sbdevent);

Associated Events

StatusBar.DrawItem()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarPanel marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a single panel within a StatusBar. It can display Text and/or an Icon. Unlike other controls in the
framework, this Icon really must be an Icon and not a generic Image. You can choose the Alignment of the text and icons
within the panel, which honors the right-to-left reading status of the parent control (unlike the general layout of the
status bar itself).

You can specify a standard Width for the panel as well as its MinWidth. Alternatively, you can set the AutoSize style to size
to the Contents or Spring (which will evenly divide up the remaining space in the StatusBar).

The border around the panel is set with the BorderStyle property, and you can assign a ToolTip with the ToolTipText.

If you want to handle the repaint for the panel yourself (for example, creating a progress indicator panel), you can set
the Style property to StatusBarPanelStyle.OwnerDraw.

If the user clicks on a panel, the StatusBar raises a PanelClick event. See StatusBarPanelClickEventArgs for more information.

public class StatusBarPanel : System.ComponentModel.Component : System.ComponentModel.ISupportInitialize {
// Public Constructors
 public StatusBarPanel();
// Public Instance Properties
 public HorizontalAlignment Alignment{set; get; }
 public StatusBarPanelAutoSize AutoSize{set; get; }
 public StatusBarPanelBorderStyle BorderStyle{set; get; }
 public Icon Icon{set; get; }
 public int MinWidth{set; get; }
 public StatusBar Parent{get; }
 public StatusBarPanelStyle Style{set; get; }
 public string Text{set; get; }
 public string ToolTipText{set; get; }
 public int Width{set; get; }
// Public Instance Methods
 public void BeginInit(); // implements System.ComponentModel.ISupportInitialize
 public void EndInit(); // implements System.ComponentModel.ISupportInitialize
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) StatusBarPanel(System.ComponentModel.ISupportInitialize)

Returned By

StatusBarPanelCollection.this, StatusBarDrawItemEventArgs.Panel, StatusBarPanelClickEventArgs.StatusBarPanel

Passed To

StatusBarPanelCollection.{Add(), AddRange(), Contains(), IndexOf(), Insert(), Remove(), this},
StatusBarDrawItemEventArgs.StatusBarDrawItemEventArgs(), StatusBarPanelClickEventArgs.StatusBarPanelClickEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarPanelAutoSize serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the options for the AutoSize property.

public enum StatusBarPanelAutoSize {
 None = 1,
 Spring = 2,
 Contents = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StatusBarPanelAutoSize

Returned By

StatusBarPanel.AutoSize

Passed To

StatusBarPanel.AutoSize

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarPanelBorderStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration contains the options for the BorderStyle property.

public enum StatusBarPanelBorderStyle {
 None = 1,
 Raised = 2,
 Sunken = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StatusBarPanelBorderStyle

Returned By

StatusBarPanel.BorderStyle

Passed To

StatusBarPanel.BorderStyle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarPanelClickEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the StatusBar.PanelClick event. You can determine which Button was pressed, the
number of Clicks (single, double, triple, etc.), the Delta through which the mouse wheel has been rotated, and the X and
Y coordinates of the click (in the StatusBar coordinate space). You can also find out which StatusBarPanel was clicked.

public class StatusBarPanelClickEventArgs : MouseEventArgs {
// Public Constructors
 public StatusBarPanelClickEventArgs(StatusBarPanel statusBarPanel, MouseButtons button, int clicks, int x, int y);
// Public Instance Properties
 public StatusBarPanel StatusBarPanel{get; }
}

Hierarchy

System.Object System.EventArgs MouseEventArgs StatusBarPanelClickEventArgs

Passed To

StatusBar.OnPanelClick(), StatusBarPanelClickEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarPanelClickEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the StatusBar.PanelClick event.

public delegate void StatusBarPanelClickEventHandler(object sender, StatusBarPanelClickEventArgs e);

Associated Events

StatusBar.PanelClick()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StatusBarPanelStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by StatusBarPanel.Style to specify the owner draw style.

public enum StatusBarPanelStyle {
 Text = 1,
 OwnerDraw = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StatusBarPanelStyle

Returned By

StatusBarPanel.Style

Passed To

StatusBarPanel.Style

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StructFormat serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is for internal use only and should not be referenced from your own code.

public enum StructFormat {
 Ansi = 1,
 Unicode = 2,
 Auto = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
StructFormat
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SystemInformation

System.Windows.Forms
(system.windows.forms.dll) class

This utility class provides a large number of static properties that can give you information about the current system
settings, such as the HorizontalScrollBarHeight and whether this is a DebugOS.

Note that some of these properties, such as ComputerName and UserName, are retrieved from corresponding environment
variables and are therefore susceptible to spoofing, and should not be considered to be secure.

public class SystemInformation {
// Public Static Properties
 public static ArrangeDirection ArrangeDirection{get; }
 public static ArrangeStartingPosition ArrangeStartingPosition{get; }
 public static BootMode BootMode{get; }
 public static Size Border3DSize{get; }
 public static Size BorderSize{get; }
 public static Size CaptionButtonSize{get; }
 public static int CaptionHeight{get; }
 public static string ComputerName{get; }
 public static Size CursorSize{get; }
 public static bool DbcsEnabled{get; }
 public static bool DebugOS{get; }
 public static Size DoubleClickSize{get; }
 public static int DoubleClickTime{get; }
 public static bool DragFullWindows{get; }
 public static Size DragSize{get; }
 public static Size FixedFrameBorderSize{get; }
 public static Size FrameBorderSize{get; }
 public static bool HighContrast{get; }
 public static int HorizontalScrollBarArrowWidth{get; }
 public static int HorizontalScrollBarHeight{get; }
 public static int HorizontalScrollBarThumbWidth{get; }
 public static Size IconSize{get; }
 public static Size IconSpacingSize{get; }
 public static int KanjiWindowHeight{get; }
 public static Size MaxWindowTrackSize{get; }
 public static Size MenuButtonSize{get; }
 public static Size MenuCheckSize{get; }
 public static Font MenuFont{get; }
 public static int MenuHeight{get; }
 public static bool MidEastEnabled{get; }
 public static Size MinimizedWindowSize{get; }
 public static Size MinimizedWindowSpacingSize{get; }
 public static Size MinimumWindowSize{get; }
 public static Size MinWindowTrackSize{get; }
 public static int MonitorCount{get; }
 public static bool MonitorsSameDisplayFormat{get; }
 public static int MouseButtons{get; }
 public static bool MouseButtonsSwapped{get; }
 public static bool MousePresent{get; }
 public static bool MouseWheelPresent{get; }
 public static int MouseWheelScrollLines{get; }
 public static bool NativeMouseWheelSupport{get; }
 public static bool Network{get; }
 public static bool PenWindows{get; }
 public static Size PrimaryMonitorMaximizedWindowSize{get; }
 public static Size PrimaryMonitorSize{get; }
 public static bool RightAlignedMenus{get; }
 public static bool Secure{get; }
 public static bool ShowSounds{get; }
 public static Size SmallIconSize{get; }
 public static Size ToolWindowCaptionButtonSize{get; }
 public static int ToolWindowCaptionHeight{get; }
 public static string UserDomainName{get; }
 public static bool UserInteractive{get; }
 public static string UserName{get; }
 public static int VerticalScrollBarArrowHeight{get; }
 public static int VerticalScrollBarThumbHeight{get; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static int VerticalScrollBarThumbHeight{get; }
 public static int VerticalScrollBarWidth{get; }
 public static Rectangle VirtualScreen{get; }
 public static Rectangle WorkingArea{get; }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabAlignment serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the TabControl.Alignment property to determine where the tabs will appear relative to the
body of the control.

public enum TabAlignment {
 Top = 0,
 Bottom = 1,
 Left = 2,
 Right = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TabAlignment

Returned By

TabControl.Alignment

Passed To

TabControl.Alignment

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabAppearance serializable

System.Windows.Forms
(system.windows.forms.dll) enum

The TabControl.Appearance property uses a value from this enumeration to determine how the tabs will be rendered.

public enum TabAppearance {
 Normal = 0,
 Buttons = 1,
 FlatButtons = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TabAppearance

Returned By

TabControl.Appearance

Passed To

TabControl.Appearance

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabControl marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

A TabControl is a multipage container that can be used to display several related forms in a compact manner.

The TabControl maintains a collection of TabPages and renders a set of buttons that can be used to switch between those
tabs. The number of tabs in the control can be obtained through the TabCount property. You can also retrieve the
SelectedTab (or the SelectedIndex in the TabPages collection).

If there are more tabs than there is room for, you can enable Multiline display to show them in multiple rows, rather
than allow the default scrolling behavior. The number of these rows is available in the RowCount property. The position
of the tabs relative to the container can be set with the Alignment property.

The Appearance of the tabs can be modified. The SizeMode allows you to determine whether the tabs are of a Fixed width
size to their content (Normal) or run the entire width of the control (FillToRight—you must enable Multiline to use this
mode). You can also enable HotTrack, which changes the appearance of the tab on mouse over. For maximum control,
you can set the DrawMode to TabDrawMode.OwnerDrawFixed and bind to the DrawItem event to paint the tabs yourself. See
DrawItemEventArgs for more information about owner draw in general.

If you want to support Windows XP themes, you need to ensure that the controls Appearance is set to Normal, and that
you have a manifest reference for the Common Controls v6. This will cause the tabs themselves to appear correctly, but
the tab page will not render with the XP-style graduated background. You must use the DrawThemeBackground() Win32
API and a custom TabPage to achieve the full themed result.

It is also worth noting that the TabControl does not work correctly with pseudotransparency. There is no known
workaround for this issue.

When the current tab page changes, the SelectedIndexChanged event is raised, the old page is hidden, and the new page
is made visible. Controls on the new page will raise a VisibleChanged event, but not those on the old page.

public class TabControl : Control {
// Public Constructors
 public TabControl();
// Public Instance Properties
 public TabAlignment Alignment{set; get; }
 public TabAppearance Appearance{set; get; }
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public override Rectangle DisplayRectangle{get; }
// overrides Control
 public TabDrawMode DrawMode{set; get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public bool HotTrack{set; get; }
 public ImageList ImageList{set; get; }
 public Size ItemSize{set; get; }
 public bool Multiline{set; get; }
 public Point Padding{set; get; }
 public int RowCount{get; }
 public int SelectedIndex{set; get; }
 public TabPage SelectedTab{set; get; }
 public bool ShowToolTips{set; get; }
 public TabSizeMode SizeMode{set; get; }
 public int TabCount{get; }
 public TabPageCollection TabPages{get; }
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public Control GetControl(int index);
 public Rectangle GetTabRect(int index);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Protected Instance Methods
 protected override ControlCollection CreateControlsInstance(); // overrides Control
 protected override void CreateHandle(); // overrides Control
 protected virtual object[] GetItems();
 protected virtual object[] GetItems(Type baseType);
 protected string GetToolTipText(object item);
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected virtual void OnDrawItem(DrawItemEventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected override void OnKeyDown(KeyEventArgs ke); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected virtual void OnSelectedIndexChanged(EventArgs e);
 protected override void OnStyleChanged(EventArgs e); // overrides Control
 protected override bool ProcessKeyPreview(ref Message m); // overrides Control
 protected void RemoveAll();
 protected void UpdateTabSelection(bool uiselected);
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event DrawItemEventHandler DrawItem;
 public event PaintEventHandler Paint;
// overrides Control
 public event EventHandler SelectedIndexChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TabControl

Passed To

ControlCollection.ControlCollection(), TabPageCollection.TabPageCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabControl.ControlCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class represents the set of controls contained by the TabControl class.

public class TabControl.ControlCollection : ControlCollection {
// Public Constructors
 public TabControl.ControlCollection(TabControl owner);
// Public Instance Methods
 public override void Add(Control value); // overrides Control.ControlCollection
 public override void Remove(Control value); // overrides Control.ControlCollection
}

Hierarchy

System.Object ControlCollection(System.Collections.ILis, System.Collections.ICollection, System.Collections.IEnumerable,
System.ICloneable) ControlCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabControl.TabPageCollection

System.Windows.Forms
(system.windows.forms.dll) class

This collection class encapsulates the set of TabPage objects being displayed by the TabControl.

public class TabControl.TabPageCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public TabControl.TabPageCollection(TabControl owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual TabPage this{set; get; }
// Public Instance Methods
 public void Add(TabPage value);
 public void AddRange(TabPage[] pages);
 public virtual void Clear(); // implements IList
 public bool Contains(TabPage page);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(TabPage page);
 public void Remove(TabPage value);
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabDrawMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by TabControl.DrawMode to determine whether owner draw is to be enabled.

public enum TabDrawMode {
 Normal = 0,
 OwnerDrawFixed = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TabDrawMode

Returned By

TabControl.DrawMode

Passed To

TabControl.DrawMode

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabPage marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Panel control is used as a container for a page of Control objects to be displayed in a TabControl.

See TabControl for more information.

public class TabPage : Panel {
// Public Constructors
 public TabPage();
 public TabPage(string text);
// Public Instance Properties
 public override AnchorStyles Anchor{set; get; }
// overrides Control
 public override DockStyle Dock{set; get; }
// overrides Control
 public bool Enabled{set; get; }
// overrides Control
 public int ImageIndex{set; get; }
 public int TabIndex{set; get; }
// overrides Control
 public bool TabStop{set; get; }
// overrides Panel
 public override string Text{set; get; }
// overrides Panel
 public string ToolTipText{set; get; }
 public bool Visible{set; get; }
// overrides Control
// Public Static Methods
 public static TabPage GetTabPageOfComponent(object comp);
// Public Instance Methods
 public override string ToString(); // overrides Panel
// Protected Instance Methods
 protected override ControlCollection CreateControlsInstance(); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl Panel TabPage

Returned By

TabControl.SelectedTab, TabPageCollection.this

Passed To

TabControl.SelectedTab, TabPageCollection.{Add(), AddRange(), Contains(), IndexOf(), Remove(), this},
TabPageControlCollection.TabPageControlCollection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabPage.TabPageControlCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates a collection of Control objects contained by a TabPage.

public class TabPage.TabPageControlCollection : ControlCollection {
// Public Constructors
 public TabPage.TabPageControlCollection(TabPage owner);
// Public Instance Methods
 public override void Add(Control value); // overrides Control.ControlCollection
}

Hierarchy

System.Object ControlCollection(System.Collections.ILis, System.Collections.ICollection, System.Collections.IEnumerable,
System.ICloneable) TabPageControlCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TabSizeMode serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the possible TabControl.SizeMode options.

public enum TabSizeMode {
 Normal = 0,
 FillToRight = 1,
 Fixed = 2
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TabSizeMode

Returned By

TabControl.SizeMode

Passed To

TabControl.SizeMode
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextBox marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control, derived from TextBoxBase, allows a user to enter and edit simple text strings.

In addition to the base functionality, it allows you to specify the alignment of the text within the control. This TextAlign
property respects the right-to-left reading status of the parent. You can also force the CharacterCasing to
CharacterCasing.Lower or CharacterCasing.Upper.

The base class provides an AcceptsTab property, which allows the control to receive tab keypresses from the user (and
insert them into the text).

TextBox enhances this with an AcceptsReturn property to do the same for the Enter and Return keys.

A PasswordChar can obscure the text displayed for added security. Prior to Windows XP, this was typically *. On Windows
XP it is \u25CF (a small round dot).

public class TextBox : TextBoxBase {
// Public Constructors
 public TextBox();
// Public Instance Properties
 public bool AcceptsReturn{set; get; }
 public CharacterCasing CharacterCasing{set; get; }
 public char PasswordChar{set; get; }
 public ScrollBars ScrollBars{set; get; }
 public override string Text{set; get; }
// overrides TextBoxBase
 public HorizontalAlignment TextAlign{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides TextBoxBase
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
// Protected Instance Methods
 protected override bool IsInputKey(Keys keyData); // overrides TextBoxBase
 protected override void OnGotFocus(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides TextBoxBase
 protected override void OnMouseUp(MouseEventArgs mevent); // overrides Control
 protected virtual void OnTextAlignChanged(EventArgs e);
 protected override void WndProc(ref Message m); // overrides TextBoxBase
// Events
 public event EventHandler TextAlignChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TextBoxBase TextBox

Subclasses

DataGridTextBox

Returned By

DataGridTextBoxColumn.TextBox
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextBoxBase marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This is the base class for the TextBox and RichTextBox classes. It provides the base functionality for a Control into which
the user can type and edit text.

You can set the Text in the control, or AppendText(). You can also find the TextLength. You can Select() text, or manipulate
the SelectionStart and SelectionLength. A SelectedText property allows you to retrieve the current selection. If the
SelectionLength is 0, the SelectionStart represents the current position of the caret. You can ensure that the caret is visible
using ScrollToCaret(). SelectAll() will select the entire content, and Clear() will remove it.

You can Cut() or Copy() the selection to the clipboard, and Paste() an IDataObject from the clipboard or a drag-and-drop
operation.

The textbox is single line by default, but you can enable Multiline support (and find the number of Lines in the control). If
you have a multiline control, you can enable WordWrap.

There is basic Undo() support. You can find out if the control CanUndo the previous operation, and you can use
ClearUndo() to clear the undo buffer.

public abstract class TextBoxBase : Control {
// Public Instance Properties
 public bool AcceptsTab{set; get; }
 public virtual bool AutoSize{set; get; }
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public bool CanUndo{get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public bool HideSelection{set; get; }
 public string[] Lines{set; get; }
 public virtual int MaxLength{set; get; }
 public bool Modified{set; get; }
 public virtual bool Multiline{set; get; }
 public int PreferredHeight{get; }
 public bool ReadOnly{set; get; }
 public virtual string SelectedText{set; get; }
 public virtual int SelectionLength{set; get; }
 public int SelectionStart{set; get; }
 public override string Text{set; get; }
// overrides Control
 public virtual int TextLength{get; }
 public bool WordWrap{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public void AppendText(string text);
 public void Clear();
 public void ClearUndo();
 public void Copy();
 public void Cut();
 public void Paste();
 public void ScrollToCaret();
 public void Select(int start, int length);
 public void SelectAll();
 public override string ToString(); // overrides System.ComponentModel.Component
 public void Undo();
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected virtual void OnAcceptsTabChanged(EventArgs e);
 protected virtual void OnAutoSizeChanged(EventArgs e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected virtual void OnAutoSizeChanged(EventArgs e);
 protected virtual void OnBorderStyleChanged(EventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected virtual void OnHideSelectionChanged(EventArgs e);
 protected virtual void OnModifiedChanged(EventArgs e);
 protected virtual void OnMultilineChanged(EventArgs e);
 protected virtual void OnReadOnlyChanged(EventArgs e);
 protected override bool ProcessDialogKey(Keys keyData); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler AcceptsTabChanged;
 public event EventHandler AutoSizeChanged;
 public event EventHandler BorderStyleChanged;
 public event EventHandler Click;
// overrides Control
 public event EventHandler HideSelectionChanged;
 public event EventHandler ModifiedChanged;
 public event EventHandler MultilineChanged;
 public event PaintEventHandler Paint;
// overrides Control
 public event EventHandler ReadOnlyChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TextBoxBase

Subclasses

RichTextBox, TextBox
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ThreadExceptionDialog marshal by reference,
disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use and should not be called directly from your own code.

public class ThreadExceptionDialog : Form {
// Public Constructors
 public ThreadExceptionDialog(Exception t);
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
Form ThreadExceptionDialog

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TickStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the TrackBar.TickStyle property to place the tickmarks on the TrackBar control.

public enum TickStyle {
 None = 0,
 TopLeft = 1,
 BottomRight = 2,
 Both = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TickStyle

Returned By

TrackBar.TickStyle

Passed To

TrackBar.TickStyle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Timer marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class provides a Component that can be used to trigger a periodic event. It is similar to the System.Threading.Timer
class, in that it offers an Interval between events (counted in milliseconds), methods to Start() and Stop() the timer
(which are thin wrappers around the Enabled property), and a Tick event, which is raised when the interval is elapsed.

The major difference is that the timer event is guaranteed to occur on the main UI thread, rather than coming in on an
arbitrary thread, so you can use it transparently in UI situations.

public class Timer : System.ComponentModel.Component {
// Public Constructors
 public Timer();
 public Timer(System.ComponentModel.IContainer container);
// Public Instance Properties
 public virtual bool Enabled{set; get; }
 public int Interval{set; get; }
// Public Instance Methods
 public void Start();
 public void Stop();
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
 protected virtual void OnTick(EventArgs e);
// Events
 public event EventHandler Tick;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Timer
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This class can be docked to the top of a container to provide a deck of clickable buttons.

You add ToolBarButton objects to the controls Buttons member, and set the ButtonSize and ImageSize for the bar as a
whole. If you don't set the sizes, the control will calculate defaults for you. (See ToolBarButton for details of the different
types of button you can add).

You can change the Appearance from Normal to Flat, choose whether DropDownArrows are drawn on drop-down buttons,
and elect whether to ShowToolTips. TextAlign determines where the text will appear relative to the imagery. Note that this
does not honor the right-to-left reading status of the control.

If the toolbar becomes too short for the buttons, Wrappable determines whether it will create a new deck on another line
to accommodate them. Note that you bind to the ToolBar to receive ButtonClick events, not the ToolBarButton objects.

public class ToolBar : Control {
// Public Constructors
 public ToolBar();
// Public Instance Properties
 public ToolBarAppearance Appearance{set; get; }
 public bool AutoSize{set; get; }
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public ToolBarButtonCollection Buttons{get; }
 public Size ButtonSize{set; get; }
 public bool Divider{set; get; }
 public override DockStyle Dock{set; get; }
// overrides Control
 public bool DropDownArrows{set; get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public ImageList ImageList{set; get; }
 public Size ImageSize{get; }
 public ImeMode ImeMode{set; get; }
// overrides Control
 public override RightToLeft RightToLeft{set; get; }
// overrides Control
 public bool ShowToolTips{set; get; }
 public bool TabStop{set; get; }
// overrides Control
 public override string Text{set; get; }
// overrides Control
 public ToolBarTextAlign TextAlign{set; get; }
 public bool Wrappable{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected virtual void OnButtonClick(ToolBarButtonClickEventArgs e);
 protected virtual void OnButtonDropDown(ToolBarButtonClickEventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnResize(EventArgs e); // overrides Control
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Events
 public event ToolBarButtonClickEventHandler ButtonClick;
 public event ToolBarButtonClickEventHandler ButtonDropDown;
 public event PaintEventHandler Paint;
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ToolBar

Returned By

ToolBarButton.Parent

Passed To

ToolBarButtonCollection.ToolBarButtonCollection()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBar.ToolBarButtonCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a collection of buttons in a ToolBar control.

public class ToolBar.ToolBarButtonCollection : IList, ICollection, IEnumerable {
// Public Constructors
 public ToolBar.ToolBarButtonCollection(ToolBar owner);
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual ToolBarButton this{set; get; }
// Public Instance Methods
 public int Add(string text);
 public int Add(ToolBarButton button);
 public void AddRange(ToolBarButton[] buttons);
 public void Clear(); // implements IList
 public bool Contains(ToolBarButton button);
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(ToolBarButton button);
 public void Insert(int index, ToolBarButton button);
 public void Remove(ToolBarButton button);
 public void RemoveAt(int index); // implements IList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBarAppearance serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration specifies whether a ToolBar will have the Flat or Normal appearance.

public enum ToolBarAppearance {
 Normal = 0,
 Flat = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ToolBarAppearance

Returned By

ToolBar.Appearance

Passed To

ToolBar.Appearance

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBarButton marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This component represents a button on a ToolBar.

By default, the Style is a regular ToolBarButtonStyle.PushButton, but you can change this to a
ToolBarButtonStyle.DropDownButton (displaying a menu or pop-up window when clicked), ToolBarButtonStyle.ToggleButton, or
ToolBarButtonStyle.Separator (dividing line between the controls).

You can define the Text it will display and the ImageIndex of an image in the Parent controls ToolBar.ImageList. Note that
the position in which the text will be displayed on the button is determined by the ToolBar, not the ToolBarButton

It can be enabled and disabled with the Enabled property, and you can change the Visible state. Toggle buttons can be
set Pushed (or a tristate-like PartialPush). Drop-down buttons can have a DropDownMenu assigned.

You can also find the bounding Rectangle of the button in the parent coordinate space.

public class ToolBarButton : System.ComponentModel.Component {
// Public Constructors
 public ToolBarButton();
 public ToolBarButton(string text);
// Public Instance Properties
 public Menu DropDownMenu{set; get; }
 public bool Enabled{set; get; }
 public int ImageIndex{set; get; }
 public ToolBar Parent{get; }
 public bool PartialPush{set; get; }
 public bool Pushed{set; get; }
 public Rectangle Rectangle{get; }
 public ToolBarButtonStyle Style{set; get; }
 public object Tag{set; get; }
 public string Text{set; get; }
 public string ToolTipText{set; get; }
 public bool Visible{set; get; }
// Public Instance Methods
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) ToolBarButton

Returned By

ToolBarButtonCollection.this, ToolBarButtonClickEventArgs.Button

Passed To

ToolBarButtonCollection.{Add(), AddRange(), Contains(), IndexOf(), Insert(), Remove(), this}, ToolBarButtonClickEventArgs.{Button,
ToolBarButtonClickEventArgs()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBarButtonClickEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the ToolBar.ButtonClick event. You can determine which Button caused the event.

public class ToolBarButtonClickEventArgs : EventArgs {
// Public Constructors
 public ToolBarButtonClickEventArgs(ToolBarButton button);
// Public Instance Properties
 public ToolBarButton Button{set; get; }
}

Hierarchy

System.Object System.EventArgs ToolBarButtonClickEventArgs

Passed To

ToolBar.{OnButtonClick(), OnButtonDropDown()}, ToolBarButtonClickEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBarButtonClickEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is the delegate for the ToolBar.ButtonClick event.

public delegate void ToolBarButtonClickEventHandler(object sender, ToolBarButtonClickEventArgs e);

Associated Events

ToolBar.{ButtonClick(), ButtonDropDown()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBarButtonStyle serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration lists the options for the ToolBarButton.Style property.

public enum ToolBarButtonStyle {
 PushButton = 1,
 ToggleButton = 2,
 Separator = 3,
 DropDownButton = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ToolBarButtonStyle

Returned By

ToolBarButton.Style

Passed To

ToolBarButton.Style
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolBarTextAlign serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the ToolBar.TextAlign property to determine whether the text is found to the Right of the
image or Underneath the image.

public enum ToolBarTextAlign {
 Underneath = 0,
 Right = 1
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
ToolBarTextAlign

Returned By

ToolBar.TextAlign

Passed To

ToolBar.TextAlign
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ToolTip marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

sealed
class

The ToolTip component can provide pop-up tips: the little yellow boxes that offer pithy assistance to the user if they
hover their mouse over a Control. It implements System.ComponentModel.IExtenderProvider to provide a ToolTip extender
property for Control objects on the design surface.

Programatically, you can use GetToolTip() and SetToolTip() to specify the tip text for a specific Control, and enable or
disable the tips with the Active property. You can clear the tips with the RemoveAll() method.

The AutoPopDelay is the amount of time for which the tip will show before it disappears.

The InitialDelay is the period for which the user has to hover the mouse before the tip will appear.

The ReshowDelay is the amount of time that must elapse between the user moving the cursor over another control and
the tool tip updating with the new tip text.

Instead of setting all these individual elements, you can set the AutomaticDelay property. This sets each property to a
sensible number, based on the value you provide.

public sealed class ToolTip : System.ComponentModel.Component : System.ComponentModel.IExtenderProvider {
// Public Constructors
 public ToolTip();
 public ToolTip(System.ComponentModel.IContainer cont);
// Public Instance Properties
 public bool Active{set; get; }
 public int AutomaticDelay{set; get; }
 public int AutoPopDelay{set; get; }
 public int InitialDelay{set; get; }
 public int ReshowDelay{set; get; }
 public bool ShowAlways{set; get; }
// Public Instance Methods
 public bool CanExtend(object target); // implements System.ComponentModel.IExtenderProvider
 public string GetToolTip(Control control);
 public void RemoveAll();
 public void SetToolTip(Control control, string caption);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void Dispose(bool disposing); // overrides System.ComponentModel.Component
 protected override void Finalize(); // overrides System.ComponentModel.Component
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) ToolTip(System.ComponentModel.IExtenderProvider)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TrackBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control represents a horizontal or vertical slider control, similar to a ScrollBar in function. The Orientation property
determines whether the control will offer the horizontal or vertical imagery. You can also specify whether tickmarks
appear with the TickStyle and TickFrequency properties.

It has further properties that define the Minimum and Maximum values for the range (SetRange() also allows you to do
this), and you can get or set the current Value.

The SmallChange property determines the value to be added or subtracted when the arrow keys are pressed. Similarly,
the LargeChange property determines the value to be added or subtracted when the slider body is clicked (or the page
up/down keys are pressed).

As the Value is changed, the control raises the ValueChanged event. When the slider moves, it raises a Scroll event (this is
much simpler than the ScrollBar equivalent).

public class TrackBar : Control : System.ComponentModel.ISupportInitialize {
// Public Constructors
 public TrackBar();
// Public Instance Properties
 public bool AutoSize{set; get; }
 public override Image BackgroundImage{set; get; }
// overrides Control
 public override Font Font{set; get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public ImeMode ImeMode{set; get; }
// overrides Control
 public int LargeChange{set; get; }
 public int Maximum{set; get; }
 public int Minimum{set; get; }
 public Orientation Orientation{set; get; }
 public int SmallChange{set; get; }
 public override string Text{set; get; }
// overrides Control
 public int TickFrequency{set; get; }
 public TickStyle TickStyle{set; get; }
 public int Value{set; get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override ImeMode DefaultImeMode{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public void BeginInit(); // implements System.ComponentModel.ISupportInitialize
 public void EndInit(); // implements System.ComponentModel.ISupportInitialize
 public void SetRange(int minValue, int maxValue);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected override void OnBackColorChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected virtual void OnScroll(EventArgs e);
 protected virtual void OnValueChanged(EventArgs e);
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event EventHandler Click;
// overrides Control
 public event EventHandler DoubleClick;
// overrides Control
 public event PaintEventHandler Paint;
// overrides Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// overrides Control
 public event EventHandler Scroll;
 public event EventHandler ValueChanged;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TrackBar(System.ComponentModel.ISupportInitialize)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeNode serializable, marshal by reference

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a single node in a TreeView.

You can set its BackColor, ForeColor, and the Text to display on the label. The ImageIndex and SelectedImageIndex can be
chosen from the parent TreeView objects ImageList. The selection state can be queried with IsSelected. The node can also
be Checked.

If the node has any children in its Nodes collection (GetNodeCount() can tell you this), you can Expand() and Collapse()
those children, Toggle() the expanded state, and determine whether the node IsExpanded().

You can get the FirstNode and LastNode from the child Nodes list. Contrast this with the NextNode and PrevNode—these are
sibling nodes in the TreeView rather than children of this node. Because those nodes may actually be collapsed, you can
also retrieve the NextVisibleNode and PrevVisibleNode.

You can Remove() the node (and all its children) from the parent TreeView or scroll it into view (perhaps expanding any
parent nodes) with EnsureVisible().

You can start to edit the node text (if TreeView.LabelEdit is enabled) with BeginEdit(), and cancel or commit an edit with
EndEdit(). To query whether the node is being edited, you may use the IsEditing property.

Note that a TreeNode may appear several times in a TreeView. The FullPath property will tell you exactly where you are in
the tree control.

public class TreeNode : MarshalByRefObject : ICloneable, System.Runtime.Serialization.ISerializable {
// Public Constructors
 public TreeNode();
 public TreeNode(string text);
 public TreeNode(string text, int imageIndex, int selectedImageIndex);
 public TreeNode(string text, int imageIndex, int selectedImageIndex, TreeNode[] children);
 public TreeNode(string text, TreeNode[] children);
// Public Instance Properties
 public Color BackColor{set; get; }
 public Rectangle Bounds{get; }
 public bool Checked{set; get; }
 public TreeNode FirstNode{get; }
 public Color ForeColor{set; get; }
 public string FullPath{get; }
 public IntPtr Handle{get; }
 public int ImageIndex{set; get; }
 public int Index{get; }
 public bool IsEditing{get; }
 public bool IsExpanded{get; }
 public bool IsSelected{get; }
 public bool IsVisible{get; }
 public TreeNode LastNode{get; }
 public TreeNode NextNode{get; }
 public TreeNode NextVisibleNode{get; }
 public Font NodeFont{set; get; }
 public TreeNodeCollection Nodes{get; }
 public TreeNode Parent{get; }
 public TreeNode PrevNode{get; }
 public TreeNode PrevVisibleNode{get; }
 public int SelectedImageIndex{set; get; }
 public object Tag{set; get; }
 public string Text{set; get; }
 public TreeView TreeView{get; }
// Public Static Methods
 public static TreeNode FromHandle(TreeView tree, IntPtr handle);
// Public Instance Methods
 public void BeginEdit();
 public virtual object Clone(); // implements ICloneable
 public void Collapse();
 public void EndEdit(bool cancel);
 public void EnsureVisible();
 public void Expand();
 public void ExpandAll();
 public int GetNodeCount(bool includeSubTrees);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public int GetNodeCount(bool includeSubTrees);
 public void Remove();
 public void Toggle();
 public override string ToString(); // overrides object
}

Hierarchy

System.Object System.MarshalByRefObject TreeNode(System.ICloneabl, System.Runtime.Serialization.ISerializable)

Returned By

NodeLabelEditEventArgs.Node, TreeNodeCollection.this, TreeView.{GetNodeAt(), SelectedNode, TopNode},
TreeViewCancelEventArgs.Node, TreeViewEventArgs.Node

Passed To

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeNodeCollection

System.Windows.Forms
(system.windows.forms.dll) class

This class represents a typed collection of TreeNode objects. It is used by the TreeView.Nodes and TreeNode.Nodes
properties.

public class TreeNodeCollection : IList, ICollection, IEnumerable {
// Public Instance Properties
 public int Count{get; }
// implements ICollection
 public bool IsReadOnly{get; }
// implements IList
 public virtual TreeNode this{set; get; }
// Public Instance Methods
 public virtual int Add(TreeNode node);
 public virtual TreeNode Add(string text);
 public virtual void AddRange(TreeNode[] nodes);
 public virtual void Clear(); // implements IList
 public bool Contains(TreeNode node);
 public void CopyTo(Array dest, int index); // implements ICollection
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public int IndexOf(TreeNode node);
 public virtual void Insert(int index, TreeNode node);
 public void Remove(TreeNode node);
 public virtual void RemoveAt(int index); // implements IList
}

Returned By

TreeNode.Nodes, TreeView.Nodes
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeNodeConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter for TreeNode objects is used in serialization and design-time scenarios, and
would not normally be called from your own code.

public class TreeNodeConverter : System.ComponentModel.TypeConverter {
// Public Constructors
 public TreeNodeConverter();
// Public Instance Methods
 public override bool CanConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
 public override object ConvertTo(System.ComponentModel.ITypeDescriptorContext context,
 System.Globalization.CultureInfo culture, object value,
 Type destinationType); // overrides System.ComponentModel.TypeConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter TreeNodeConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeView marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

This Control represents a hierarchical set of nodes in a tree view (similar to the Windows Explorer Folder View). You can
add TreeNode objects to the Nodes collection. These are root nodes. To add further elements to the hierarchy you add
additional TreeNode objects to the root TreeNode.Nodes collections. GetNodeCount() will return you the count of all nodes in
the tree.

You can add CheckBoxes for each node, enable HotTracking (link-like) behavior, ShowLines and ShowRootLines (drawn from
node to node), and ShowPlusMinus glyphs (little plus-shaped expansion boxes next to nodes with children). You can also
set the distance by which to Indent each level of child nodes.

When you select an item, normally you are only permitted to click on imagery representing the label text. This can
sometimes be awkward, so you can enable FullRowSelect to give users a larger target. HideSelection determines whether
the selection highlight is displayed even when the control loses the focus. You can get or set the selected node with the
SelectedNode property.

The nodes can be Sorted, and you can ExpandAll() and CollapseAll() nodes. To find the node under a particular point, you
can use the GetNodeAt() method.

The tree raises events both Before and After select, check, collapse, and expand operations. If the control allows
LabelEdit, you will also get BeforeLabelEdit and AfterLabelEdit events. The BeforeXXX events use the TreeViewCancelEventArgs
class and can therefore be aborted.

public class TreeView : Control {
// Public Constructors
 public TreeView();
// Public Instance Properties
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public bool CheckBoxes{set; get; }
 public override Color ForeColor{set; get; }
// overrides Control
 public bool FullRowSelect{set; get; }
 public bool HideSelection{set; get; }
 public bool HotTracking{set; get; }
 public int ImageIndex{set; get; }
 public ImageList ImageList{set; get; }
 public int Indent{set; get; }
 public int ItemHeight{set; get; }
 public bool LabelEdit{set; get; }
 public TreeNodeCollection Nodes{get; }
 public string PathSeparator{set; get; }
 public bool Scrollable{set; get; }
 public int SelectedImageIndex{set; get; }
 public TreeNode SelectedNode{set; get; }
 public bool ShowLines{set; get; }
 public bool ShowPlusMinus{set; get; }
 public bool ShowRootLines{set; get; }
 public bool Sorted{set; get; }
 public override string Text{set; get; }
// overrides Control
 public TreeNode TopNode{get; }
 public int VisibleCount{get; }
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides Control
 protected override Size DefaultSize{get; }
// overrides Control
// Public Instance Methods
 public void BeginUpdate();
 public void CollapseAll();
 public void EndUpdate();
 public void ExpandAll();
 public TreeNode GetNodeAt(int x, int y);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public TreeNode GetNodeAt(int x, int y);
 public TreeNode GetNodeAt(System.Drawing.Point pt);
 public int GetNodeCount(bool includeSubTrees);
 public override string ToString(); // overrides System.ComponentModel.Component
// Protected Instance Methods
 protected override void CreateHandle(); // overrides Control
 protected override void Dispose(bool disposing); // overrides Control
 protected OwnerDrawPropertyBag GetItemRenderStyles(TreeNode node, int state);
 protected override bool IsInputKey(Keys keyData); // overrides Control
 protected virtual void OnAfterCheck(TreeViewEventArgs e);
 protected virtual void OnAfterCollapse(TreeViewEventArgs e);
 protected virtual void OnAfterExpand(TreeViewEventArgs e);
 protected virtual void OnAfterLabelEdit(NodeLabelEditEventArgs e);
 protected virtual void OnAfterSelect(TreeViewEventArgs e);
 protected virtual void OnBeforeCheck(TreeViewCancelEventArgs e);
 protected virtual void OnBeforeCollapse(TreeViewCancelEventArgs e);
 protected virtual void OnBeforeExpand(TreeViewCancelEventArgs e);
 protected virtual void OnBeforeLabelEdit(NodeLabelEditEventArgs e);
 protected virtual void OnBeforeSelect(TreeViewCancelEventArgs e);
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnHandleDestroyed(EventArgs e); // overrides Control
 protected virtual void OnItemDrag(ItemDragEventArgs e);
 protected override void OnKeyDown(KeyEventArgs e); // overrides Control
 protected override void OnKeyPress(KeyPressEventArgs e); // overrides Control
 protected override void OnKeyUp(KeyEventArgs e); // overrides Control
 protected override void WndProc(ref Message m); // overrides Control
// Events
 public event TreeViewEventHandler AfterCheck;
 public event TreeViewEventHandler AfterCollapse;
 public event TreeViewEventHandler AfterExpand;
 public event NodeLabelEditEventHandler AfterLabelEdit;
 public event TreeViewEventHandler AfterSelect;
 public event TreeViewCancelEventHandler BeforeCheck;
 public event TreeViewCancelEventHandler BeforeCollapse;
 public event TreeViewCancelEventHandler BeforeExpand;
 public event NodeLabelEditEventHandler BeforeLabelEdit;
 public event TreeViewCancelEventHandler BeforeSelect;
 public event ItemDragEventHandler ItemDrag;
 public event PaintEventHandler Paint;
// overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) TreeView

Returned By

TreeNode.TreeView

Passed To

TreeNode.FromHandle()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeViewAction serializable

System.Windows.Forms
(system.windows.forms.dll) enum

This enumeration is used by the TreeViewEventArgs to determine how the particular event was initiated.

public enum TreeViewAction {
 Unknown = 0,
 ByKeyboard = 1,
 ByMouse = 2,
 Collapse = 3,
 Expand = 4
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
TreeViewAction

Returned By

TreeViewCancelEventArgs.Action, TreeViewEventArgs.Action

Passed To

TreeViewCancelEventArgs.TreeViewCancelEventArgs(), TreeViewEventArgs.TreeViewEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeViewCancelEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

The class encapsulates the event data for the various TreeView.BeforeXXX events. You can determine the Action that
caused the event and the Node that will be modified. If you wish to abort the action, you can set the Cancel property.

public class TreeViewCancelEventArgs : System.ComponentModel.CancelEventArgs {
// Public Constructors
 public TreeViewCancelEventArgs(TreeNode node, bool cancel, TreeViewAction action);
// Public Instance Properties
 public TreeViewAction Action{get; }
 public TreeNode Node{get; }
}

Hierarchy

System.Object System.EventArgs System.ComponentModel.CancelEventArgs TreeViewCancelEventArgs

Passed To

TreeView.{OnBeforeCheck(), OnBeforeCollapse(), OnBeforeExpand(), OnBeforeSelect()}, TreeViewCancelEventHandler.{BeginInvoke(),
Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeViewCancelEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is a delegate for the various TreeView.BeforeXXX events.

public delegate void TreeViewCancelEventHandler(object sender, TreeViewCancelEventArgs e);

Associated Events

TreeView.{BeforeCheck(), BeforeCollapse(), BeforeExpand(), BeforeSelect()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeViewEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the TreeView.AfterXXX events. You can determine the Action that raised the event and
the Node that has been modified.

public class TreeViewEventArgs : EventArgs {
// Public Constructors
 public TreeViewEventArgs(TreeNode node);
 public TreeViewEventArgs(TreeNode node, TreeViewAction action);
// Public Instance Properties
 public TreeViewAction Action{get; }
 public TreeNode Node{get; }
}

Hierarchy

System.Object System.EventArgs TreeViewEventArgs

Passed To

System.Windows.Forms.Design.ComponentEditorForm.OnSelChangeSelector(), TreeView.{OnAfterCheck(), OnAfterCollapse(),
OnAfterExpand(), OnAfterSelect()}, TreeViewEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeViewEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is a delegate for the various TreeView.AfterXXX events.

public delegate void TreeViewEventHandler(object sender, TreeViewEventArgs e);

Associated Events

TreeView.{AfterCheck(), AfterCollapse(), AfterExpand(), AfterSelect()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TreeViewImageIndexConverter

System.Windows.Forms
(system.windows.forms.dll) class

This System.ComponentModel.TypeConverter is used in serialization and design-time scenarios and would not normally be
called from your own code.

public class TreeViewImageIndexConverter : ImageIndexConverter {
// Public Constructors
 public TreeViewImageIndexConverter();
// Protected Instance Properties
 protected override bool IncludeNoneAsStandardValue{get; }
// overrides ImageIndexConverter
}

Hierarchy

System.Object System.ComponentModel.TypeConverter System.ComponentModel.BaseNumberConverter
System.ComponentModel.Int32Converter ImageIndexConverter TreeViewImageIndexConverter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UICues serializable, flag

System.Windows.Forms
(system.windows.forms.dll) enum

This set of flags is used by the UICuesEventArgs class to specify which of the UI cues has changed when the
Control.ChangeUICues event is raised. The cues include such things as the focus rectangle, Alt key shortcuts, etc.

public enum UICues {
 None = 0x00000000,
 ShowFocus = 0x00000001,
 ShowKeyboard = 0x00000002,
 Shown = 0x00000003,
 ChangeFocus = 0x00000004,
 ChangeKeyboard = 0x00000008,
 Changed = 0x0000000C
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible)
UICues

Returned By

UICuesEventArgs.Changed

Passed To

UICuesEventArgs.UICuesEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UICuesEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class encapsulates the data for the Control.ChangeUICues event. It allows you to determine which of the UICues have
Changed.

public class UICuesEventArgs : EventArgs {
// Public Constructors
 public UICuesEventArgs(UICues uicues);
// Public Instance Properties
 public UICues Changed{get; }
 public bool ChangeFocus{get; }
 public bool ChangeKeyboard{get; }
 public bool ShowFocus{get; }
 public bool ShowKeyboard{get; }
}

Hierarchy

System.Object System.EventArgs UICuesEventArgs

Passed To

Control.OnChangeUICues(), UICuesEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UICuesEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This is a delegate for the Control.ChangeUICues event.

public delegate void UICuesEventHandler(object sender, UICuesEventArgs e);

Associated Events

Multiple types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UpDownBase marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll)

abstract
class

This class provides the base functionality for the DomainUpDown and NumericUpDown controls. It offers a text box with an
attached spin control.

InterceptArrowKeys determines whether you can use the arrow keys to spin the value up and down. UpDownAlign sets the
spin buttons to the left or right of the control, respecting the right-to-left setting of the context. UpButton() and
DownButton() programmatically invoke the pressing of the respective spin buttons.

public abstract class UpDownBase : ContainerControl {
// Public Constructors
 public UpDownBase();
// Public Instance Properties
 public override bool AutoScroll{set; get; }
// overrides ScrollableControl
 public Size AutoScrollMargin{set; get; }
// overrides ScrollableControl
 public Size AutoScrollMinSize{set; get; }
// overrides ScrollableControl
 public override Color BackColor{set; get; }
// overrides Control
 public override Image BackgroundImage{set; get; }
// overrides Control
 public BorderStyle BorderStyle{set; get; }
 public override ContextMenu ContextMenu{set; get; }
// overrides Control
 public DockPaddingEdges DockPadding{get; }
// overrides ScrollableControl
 public override bool Focused{get; }
// overrides Control
 public override Color ForeColor{set; get; }
// overrides Control
 public bool InterceptArrowKeys{set; get; }
 public int PreferredHeight{get; }
 public bool ReadOnly{set; get; }
 public override string Text{set; get; }
// overrides Control
 public HorizontalAlignment TextAlign{set; get; }
 public LeftRightAlignment UpDownAlign{set; get; }
// Protected Instance Properties
 protected bool ChangingText{set; get; }
 protected override CreateParams CreateParams{get; }
// overrides ContainerControl
 protected override Size DefaultSize{get; }
// overrides Control
 protected bool UserEdit{set; get; }
// Public Instance Methods
 public abstract void DownButton();
 public void Select(int start, int length);
 public abstract void UpButton();
// Protected Instance Methods
 protected virtual void OnChanged(object source, EventArgs e);
 protected override void OnFontChanged(EventArgs e); // overrides Control
 protected override void OnHandleCreated(EventArgs e); // overrides Control
 protected override void OnLayout(LayoutEventArgs e); // overrides ScrollableControl
 protected override void OnMouseWheel(MouseEventArgs e); // overrides ScrollableControl
 protected virtual void OnTextBoxKeyDown(object source, KeyEventArgs e);
 protected virtual void OnTextBoxKeyPress(object source, KeyPressEventArgs e);
 protected virtual void OnTextBoxLostFocus(object source, EventArgs e);
 protected virtual void OnTextBoxResize(object source, EventArgs e);
 protected virtual void OnTextBoxTextChanged(object source, EventArgs e);
 protected override void SetBoundsCore(int x, int y, int width, int height, BoundsSpecified specified); // overrides Control
 protected abstract void UpdateEditText();
 protected virtual void ValidateEditText();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
UpDownBase

Subclasses

DomainUpDown, NumericUpDown

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UpDownEventArgs

System.Windows.Forms
(system.windows.forms.dll) class

This class is for internal use only and should not be called from your own code.

public class UpDownEventArgs : EventArgs {
// Public Constructors
 public UpDownEventArgs(int buttonPushed);
// Public Instance Properties
 public int ButtonID{get; }
}

Hierarchy

System.Object System.EventArgs UpDownEventArgs

Passed To

UpDownEventHandler.{BeginInvoke(), Invoke()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UpDownEventHandler serializable

System.Windows.Forms
(system.windows.forms.dll) delegate

This delegate is for internal use only and should not be used in your own code.

public delegate void UpDownEventHandler(object source, UpDownEventArgs e);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UserControl marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

You should derive your own custom container controls from this base class. It manages focus, tab, and mnemonic
(shortcut) behavior for you, and provides designer integration support.

public class UserControl : ContainerControl {
// Public Constructors
 public UserControl();
// Public Instance Properties
 public override string Text{set; get; }
// overrides Control
// Protected Instance Properties
 protected override Size DefaultSize{get; }
// overrides Control
// Protected Instance Methods
 protected override void OnCreateControl(); // overrides ContainerControl
 protected virtual void OnLoad(EventArgs e);
 protected override void OnMouseDown(MouseEventArgs e); // overrides Control
 protected override void WndProc(ref Message m); // overrides ContainerControl
// Events
 public event EventHandler Load;
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollableControl ContainerControl(IContainerControl)
UserControl

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

View serializable

System.Windows.Forms
(system.windows.forms.dll) enum

The options for the ListView.View property are provided by this enumeration.

public enum View {
 LargeIcon = 0,
 Details = 1,
 SmallIcon = 2,
 List = 3
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparabl, System.IFormattable, System.IConvertible) View

Returned By

ListView.View

Passed To

ListView.View

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

VScrollBar marshal by reference, disposable

System.Windows.Forms
(system.windows.forms.dll) class

While most controls provide their own scrollbars (including Form and UserControl objects) sometimes the default behavior
of these objects is inadequate. In these circumstances, you may wish to manage your own scrollbars (the shortened
scrollbars at the bottom of an Excel tab-sheet for example). This class, derived from the base ScrollBar, provides a
vertical bar. See the HScrollBar class for its horizontal partner.

public class VScrollBar : ScrollBar {
// Public Constructors
 public VScrollBar();
// Public Instance Properties
 public override RightToLeft RightToLeft{set; get; }
// overrides Control
// Protected Instance Properties
 protected override CreateParams CreateParams{get; }
// overrides ScrollBar
 protected override Size DefaultSize{get; } // overrides Control
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.IComponen,
System.IDisposable) Control(IOleContro, IOleObject, IOleInPlaceObject, IOleInPlaceActiveObject, IOleWindow, IViewObject,
IViewObject2, IPersist, IPersistStreamInit, IPersistPropertyBag, IPersistStorage, IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, IWin32Window) ScrollBar VScrollBar
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20. The System.Windows.Forms.Design
Namespace
The System.Windows.Forms.Design namespace contains various classes that relate to the design-time environment. Figure
20-1 shows the types in this namespace.

Figure 20-1. Types from the System.Windows.Forms.Design namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AnchorEditor

System.Windows.Forms.Design
(system.design.dll)

sealed
class

This class provides the editor for the Anchor property. You would not normally use it directly in your own code.

public sealed class AnchorEditor : System.Drawing.Design.UITypeEditor {
// Public Constructors
 public AnchorEditor();
// Public Instance Methods
 public override object EditValue(System.ComponentModel.ITypeDescriptorContext context,
 // overrides System.Drawing.Design.UITypeEditor
 public override UITypeEditorEditStyle GetEditStyle(
 // overrides System.Drawing.Design.UITypeEditor
}

Hierarchy

System.Object System.Drawing.Design.UITypeEditor AnchorEditor
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxImporter

System.Windows.Forms.Design
(system.design.dll) class

This class is used by the design environment to generate wrapper classes for an ActiveX control that has been imported
into a project. You would not normally use it directly in your own code.

public class AxImporter {
// Public Constructors
 public AxImporter(Options options);
// Public Instance Properties
 public string[] GeneratedAssemblies{get; }
 public string[] GeneratedSources{get; }
 public TYPELIBATTR[] GeneratedTypeLibAttributes{get; }
// Public Static Methods
 public static string GetFileOfTypeLib(ref System.Runtime.InteropServices.TYPELIBATTR tlibattr);
// Public Instance Methods
 public string GenerateFromFile(System.IO.FileInfo file);
 public string GenerateFromTypeLibrary(System.Runtime.InteropServices.UCOMITypeLib typeLib);
 public string GenerateFromTypeLibrary(System.Runtime.InteropServices.UCOMITypeLib typeLib, Guid clsid);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxImporter.IReferenceResolver

System.Windows.Forms.Design
(system.design.dll) interface

This interface is implemented by wrapper classes generated by the AxImporter class. You would not normally use it
directly from your own code.

public interface AxImporter.IReferenceResolver {
// Public Instance Methods
 public string ResolveActiveXReference(System.Runtime.InteropServices.UCOMITypeLib typeLib);
 public string ResolveComReference(System.Reflection.AssemblyName name);
 public string ResolveComReference(System.Runtime.InteropServices.UCOMITypeLib typeLib);
 public string ResolveManagedReference(string assemName);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxImporter.Options

System.Windows.Forms.Design
(system.design.dll)

sealed
class

This class is used to specify the options to be used when generating wrapper classes for an ActiveX control, using the
AxImporter class. It would not normally be used directly in your own code.

public sealed class AxImporter.Options {
// Public Constructors
 public AxImporter.Options();
// Public Instance Fields
 public bool delaySign;
 public bool genSources;
 public string keyContainer;
 public string keyFile;
 public StrongNameKeyPair keyPair;
 public bool noLogo;
 public string outputDirectory;
 public string outputName;
 public bool overwriteRCW;
 public byte[] publicKey;
 public IReferenceResolver references;
 public bool silentMode;
 public bool verboseMode;
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxParameterData

System.Windows.Forms.Design
(system.design.dll) class

This class is for internal use by the framework and should not be used from your own code.

public class AxParameterData {
// Public Constructors
 public AxParameterData(System.Reflection.ParameterInfo info);
 public AxParameterData(System.Reflection.ParameterInfo info, bool ignoreByRefs);
 public AxParameterData(string inname, string typeName);
 public AxParameterData(string inname, Type type);
// Public Instance Properties
 public FieldDirection Direction{get; }
 public bool IsByRef{get; }
 public bool IsIn{get; }
 public bool IsOptional{get; }
 public bool IsOut{get; }
 public string Name{set; get; }
 public Type ParameterType{get; }
 public string TypeName{get; }
// Public Static Methods
 public static AxParameterData[] Convert(System.Reflection.ParameterInfo[] infos);
 public static AxParameterData[] Convert(System.Reflection.ParameterInfo[] infos, bool ignoreByRefs);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

AxWrapperGen

System.Windows.Forms.Design
(system.design.dll) class

This class is for internal use by the framework and should not be used from your own code.

public class AxWrapperGen {
// Public Constructors
 public AxWrapperGen(Type axType);
// Public Static Fields
 // =System.Collections.ArrayList
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentDocumentDesigner disposable

System.Windows.Forms.Design
(system.design.dll) class

This class is used to provide design-time behavior for a design document that contains one or more System.ComponentModel.Component
the non-visual components can be rendered.

public class ComponentDocumentDesigner :
System.ComponentModel.Design.ComponentDesigner : System.ComponentModel.Design.IRootDesigner, System.Drawing.Design.IToolboxUser, IOleDragClient, System.ComponentModel.Design.ITypeDescriptorFilterService {
// Public Constructors
 public ComponentDocumentDesigner();
// Public Instance Properties
 public Control Control{get; }
 public bool TrayAutoArrange{set; get; }
 public bool TrayLargeIcon{set; get; }
// Public Instance Methods
 public override void Initialize(
 // overrides System.ComponentModel.Design.ComponentDesigner
// Protected Instance Methods
 // overrides System.ComponentModel.Design.ComponentDesigner
 protected virtual bool GetToolSupported(
 // implements System.Drawing.Design.IToolboxUser
 protected override void PreFilterProperties(
 // overrides System.ComponentModel.Design.ComponentDesigner
}

Hierarchy

System.Object System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesign, System.IDisposable,
ComponentDocumentDesigner(System.ComponentModel.Design.IRootDesign, System.Drawing.Design.IToolboxUser, IOleDragClient, System.ComponentModel.Design.ITypeDescriptorFilterService)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentEditorForm marshal by reference,
disposable

System.Windows.Forms.Design
(system.windows.forms.dll) class

This class provides the user interface for a WindowsFormsComponentEditor. It can show a number of ComponentEditorPage
objects for a particular component. You specify the source component and the types of the pages to show in the
constructor.

It is very similar in conception to the Win32 PropertySheet control, but is used by Visual Studio .NET to display
component properties.

public class ComponentEditorForm : System.Windows.Forms.Form {
// Public Constructors
 public ComponentEditorForm(object component, Type[] pageTypes);
// Public Instance Methods
 public override bool PreProcessMessage(
 // overrides System.Windows.Forms.Control
 public virtual DialogResult ShowForm();
 public virtual DialogResult ShowForm(int page);
 public virtual DialogResult ShowForm(System.Windows.Forms.IWin32Window owner);
 public virtual DialogResult ShowForm(System.Windows.Forms.IWin32Window owner, int page);
// Protected Instance Methods
 // overrides System.Windows.Forms.Form
 protected override void OnHelpRequested(
 // overrides System.Windows.Forms.Control
 protected virtual void OnSelChangeSelector(object source, System.Windows.Forms.TreeViewEventArgs e);
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.ICompone,
System.IDisposable) System.Windows.Forms.Control(System.Windows.Forms.IOleContr, System.Windows.Forms.IOleObject,
System.Windows.Forms.IOleInPlaceObject, System.Windows.Forms.IOleInPlaceActiveObject, System.Windows.Forms.IOleWindow,
System.Windows.Forms.IViewObject, System.Windows.Forms.IViewObject2, System.Windows.Forms.IPersist,
System.Windows.Forms.IPersistStreamInit, System.Windows.Forms.IPersistPropertyBag, System.Windows.Forms.IPersistStorage,
System.Windows.Forms.IQuickActivate, System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window)
System.Windows.Forms.ScrollableControl System.Windows.Forms.ContainerControl(System.Windows.Forms.IContainerControl)

 System.Windows.Forms.Form ComponentEditorForm
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentEditorPage marshal by reference,
disposable

System.Windows.Forms.Design
(system.windows.forms.dll)

abstract
class

This class represents a page of properties for a component that can be displayed in a ComponentEditorForm. The
component to edit is determined using the SetComponent() method. It is very similar in concept to the Win32
PropertyPage control.

You can set a Title and an Icon for the page. Then, the page can be shown with the Activate() method and hidden again
with Deactivate(). You can also use the CommitOnDeactivate property to determine whether the changes made to the
component's configuration should be committed before the page is deactivated. Changes are committed using the
ApplyChanges() method. When all the changes have been committed by all pages in the ComponentEditorForm, the
framework calls OnApplyComplete().

Help is implemented with the SupportsHelp() and ShowHelp() methods.

public abstract class ComponentEditorPage : System.Windows.Forms.Panel {
// Public Constructors
 public ComponentEditorPage();
// Public Instance Properties
 public bool CommitOnDeactivate{set; get; }
 public Icon Icon{set; get; }
 public virtual string Title{get; }
// Protected Instance Properties
 protected IComponent Component{set; get; }
 protected override CreateParams CreateParams{get; }
// overrides System.Windows.Forms.Panel
 protected bool FirstActivate{set; get; }
 protected int Loading{set; get; }
 protected bool LoadRequired{set; get; }
 protected IComponentEditorPageSite PageSite{set; get; }
// Public Instance Methods
 public virtual void Activate();
 public virtual void ApplyChanges();
 public virtual void Deactivate();
 public virtual Control GetControl();
 public virtual bool IsPageMessage(ref System.Windows.Forms.Message msg);
 public virtual void OnApplyComplete();
 public virtual void SetComponent(System.ComponentModel.IComponent component);
 public virtual void SetSite(System.Windows.Forms.IComponentEditorPageSite site);
 public virtual void ShowHelp();
 public virtual bool SupportsHelp();
// Protected Instance Methods
 protected void EnterLoadingMode();
 protected void ExitLoadingMode();
 protected IComponent GetSelectedComponent();
 protected bool IsFirstActivate();
 protected bool IsLoading();
 protected abstract void LoadComponent();
 protected virtual void ReloadComponent();
 protected abstract void SaveComponent();
 protected virtual void SetDirty();
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.ICompone,
System.IDisposable) System.Windows.Forms.Control(System.Windows.Forms.IOleContr, System.Windows.Forms.IOleObject,
System.Windows.Forms.IOleInPlaceObject, System.Windows.Forms.IOleInPlaceActiveObject, System.Windows.Forms.IOleWindow,
System.Windows.Forms.IViewObject, System.Windows.Forms.IViewObject2, System.Windows.Forms.IPersist,
System.Windows.Forms.IPersistStreamInit, System.Windows.Forms.IPersistPropertyBag, System.Windows.Forms.IPersistStorage,
System.Windows.Forms.IQuickActivate, System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window)
System.Windows.Forms.ScrollableControl System.Windows.Forms.Panel ComponentEditorPage
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ComponentTray marshal by reference, disposable

System.Windows.Forms.Design
(system.design.dll) class

This Control implements the component tray portion of the forms designer.

You can retrieve the number of components in the tray using the ComponentCount property. The icons can be
automatically lined up using the AutoArrange property, and their appearance can be modified with ShowLargeIcons. The
position of an individual icon can be set using SetLocation().

The components themselves can be added using CreateComponentFromTool() and removed using RemoveComponent().

public class ComponentTray : System.Windows.Forms.ScrollableControl : System.ComponentModel.IExtenderProvider,
 ISelectionUIHandler, IOleDragClient {
// Public Constructors
 public ComponentTray(System.ComponentModel.Design.IDesigner mainDesigner, IServiceProvider serviceProvider);
// Public Instance Properties
 public bool AutoArrange{set; get; }
 public int ComponentCount{get; }
 public bool ShowLargeIcons{set; get; }
// Public Instance Methods
 public virtual void AddComponent(System.ComponentModel.IComponent component);
 public void CreateComponentFromTool(System.Drawing.Design.ToolboxItem tool);
 public Point GetLocation(System.ComponentModel.IComponent receiver);
 public virtual void RemoveComponent(System.ComponentModel.IComponent component);
 public void SetLocation(System.ComponentModel.IComponent receiver, System.Drawing.Point location);
// Protected Instance Methods
 protected virtual bool CanCreateComponentFromTool(System.Drawing.Design.ToolboxItem tool);
 protected virtual bool CanDisplayComponent(System.ComponentModel.IComponent component);
 protected void DisplayError(Exception e);
 // overrides System.Windows.Forms.Control
 // overrides System.ComponentModel.Component
 // overrides System.Windows.Forms.Control
 protected override void OnDragDrop(
 // overrides System.Windows.Forms.Control
 protected override void OnDragEnter(
 // overrides System.Windows.Forms.Control
 // overrides System.Windows.Forms.Control
 protected override void OnDragOver(
 // overrides System.Windows.Forms.Control
 protected override void OnGiveFeedback(
 // overrides System.Windows.Forms.Control
 protected override void OnLayout(
 // overrides System.Windows.Forms.ScrollableControl
 protected virtual void OnLostCapture();
 protected override void OnMouseDown(
 // overrides System.Windows.Forms.Control
 protected override void OnMouseMove(
 // overrides System.Windows.Forms.Control
 protected override void OnMouseUp(
 // overrides System.Windows.Forms.Control
 protected override void OnPaint(
 // overrides System.Windows.Forms.Control
 protected virtual void OnSetCursor();
 protected override void WndProc(
 // overrides System.Windows.Forms.ScrollableControl
}

Hierarchy

System.Object System.MarshalByRefObject System.ComponentModel.Component(System.ComponentModel.ICompone,
System.IDisposable) System.Windows.Forms.Control(System.Windows.Forms.IOleContr, System.Windows.Forms.IOleObject,
System.Windows.Forms.IOleInPlaceObject, System.Windows.Forms.IOleInPlaceActiveObject, System.Windows.Forms.IOleWindow,
System.Windows.Forms.IViewObject, System.Windows.Forms.IViewObject2, System.Windows.Forms.IPersist,
System.Windows.Forms.IPersistStreamInit, System.Windows.Forms.IPersistPropertyBag, System.Windows.Forms.IPersistStorage,
System.Windows.Forms.IQuickActivate, System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms.IQuickActivate, System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window)
System.Windows.Forms.ScrollableControl ComponentTray(System.ComponentModel.IExtenderProvid, ISelectionUIHandler,
IOleDragClient)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlDesigner disposable

System.Windows.Forms.Design
(system.design.dll) class

This class extends System.ComponentModel.Design.ComponentDesigner to provide a designer for Control classes. It provides
properties to specify the Control that is being designed, and the SelectionRules that determine how that control can be
selected and manipulated.

public class ControlDesigner : System.ComponentModel.Design.ComponentDesigner {
// Public Constructors
 public ControlDesigner();
// Protected Static Fields
 // ={X=-2147483648,Y=-2147483648}
// Protected Instance Fields
 protected AccessibleObject accessibilityObj;
// Public Instance Properties
 public virtual AccessibleObject AccessibilityObject{get; }
 public override ICollection AssociatedComponents{get; }
// overrides System.ComponentModel.Design.ComponentDesigner
 public virtual Control Control{get; }
 public virtual SelectionRules SelectionRules{get; }
// Protected Instance Properties
 protected virtual bool EnableDragRect{get; }
// Public Instance Methods
 public virtual bool CanBeParentedTo(System.ComponentModel.Design.IDesigner parentDesigner);
 public override void Initialize(
 // overrides System.ComponentModel.Design.ComponentDesigner
 // overrides System.ComponentModel.Design.ComponentDesigner
 // overrides System.ComponentModel.Design.ComponentDesigner
// Protected Instance Methods
 protected void BaseWndProc(ref System.Windows.Forms.Message m);
 protected void DefWndProc(ref System.Windows.Forms.Message m);
 protected void DisplayError(Exception e);
 // overrides System.ComponentModel.Design.ComponentDesigner
 protected void EnableDragDrop(bool value);
 protected virtual bool GetHitTest(System.Drawing.Point point);
 protected void HookChildControls(System.Windows.Forms.Control firstChild);
 protected virtual void OnContextMenu(int x, int y);
 protected virtual void OnCreateHandle();
 protected virtual void OnDragDrop(System.Windows.Forms.DragEventArgs de);
 protected virtual void OnDragEnter(System.Windows.Forms.DragEventArgs de);
 protected virtual void OnDragLeave(EventArgs e);
 protected virtual void OnDragOver(System.Windows.Forms.DragEventArgs de);
 protected virtual void OnGiveFeedback(System.Windows.Forms.GiveFeedbackEventArgs e);
 protected virtual void OnMouseDragBegin(int x, int y);
 protected virtual void OnMouseDragEnd(bool cancel);
 protected virtual void OnMouseDragMove(int x, int y);
 protected virtual void OnMouseEnter();
 protected virtual void OnMouseHover();
 protected virtual void OnMouseLeave();
 protected virtual void OnPaintAdornments(System.Windows.Forms.PaintEventArgs pe);
 protected virtual void OnSetCursor();
 protected override void PreFilterProperties(
 // overrides System.ComponentModel.Design.ComponentDesigner
 protected void UnhookChildControls(System.Windows.Forms.Control firstChild);
 protected virtual void WndProc(ref System.Windows.Forms.Message m);
}

Hierarchy

System.Object System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesign,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter) ControlDesigner

Subclasses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subclasses

ParentControlDesigner

Passed To

ControlDesignerAccessibleObject.ControlDesignerAccessibleObject(), ParentControlDesigner.CanParent()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ControlDesigner.ControlDesignerAccessibleObject
marshal

by
reference

System.Windows.Forms.Design
(system.design.dll) class

This class provides an AccessibleObject for the ControlDesigner. It would not normally be used directly from your own code.

public class ControlDesigner.ControlDesignerAccessibleObject : System.Windows.Forms.AccessibleObject {
// Public Constructors
 public ControlDesigner.ControlDesignerAccessibleObject(ControlDesigner designer,
 System.Windows.Forms.Control control);
// Public Instance Properties
 public override Rectangle Bounds{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override string DefaultAction{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override string Description{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override string Name{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override AccessibleObject Parent{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override AccessibleRole Role{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override AccessibleStates State{get; }
// overrides System.Windows.Forms.AccessibleObject
 public override string Value{get; }
// overrides System.Windows.Forms.AccessibleObject
// Public Instance Methods
 // overrides System.Windows.Forms.AccessibleObject
 // overrides System.Windows.Forms.AccessibleObject
 // overrides System.Windows.Forms.AccessibleObject
 // overrides System.Windows.Forms.AccessibleObject
 // overrides System.Windows.Forms.AccessibleObject
}

Hierarchy

System.Object System.MarshalByRefObject System.Windows.Forms.AccessibleObject(System.Reflection.IRefle,
Accessibility.IAccessible, System.Windows.Forms.IEnumVariant) ControlDesignerAccessibleObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DockEditor

System.Windows.Forms.Design
(system.design.dll)

sealed
class

This class provides an editor for the Dock property.

public sealed class DockEditor : System.Drawing.Design.UITypeEditor {
// Public Constructors
 public DockEditor();
// Public Instance Methods
 public override object EditValue(System.ComponentModel.ITypeDescriptorContext context,
 // overrides System.Drawing.Design.UITypeEditor
 public override UITypeEditorEditStyle GetEditStyle(
 // overrides System.Drawing.Design.UITypeEditor
}

Hierarchy

System.Object System.Drawing.Design.UITypeEditor DockEditor
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DocumentDesigner disposable

System.Windows.Forms.Design
(system.design.dll) class

This class extends ScrollableControlDesigner to provide design-time behavior for forms and user controls. This designer can
be extended to include design-time functionality common to a particular class of design documents.

public class DocumentDesigner : ScrollableControlDesigner : System.ComponentModel.Design.IRootDesigner,
 System.Drawing.Design.IToolboxUser {
// Public Constructors
 public DocumentDesigner();
// Protected Instance Fields
 protected IMenuEditorService menuEditorService;
// Public Instance Properties
 public override SelectionRules SelectionRules{get; }
// overrides ControlDesigner
// Public Instance Methods
 // overrides ParentControlDesigner
// Protected Instance Methods
 // overrides ParentControlDesigner
 protected virtual void EnsureMenuEditorService(System.ComponentModel.IComponent c);
 protected virtual bool GetToolSupported(
 // implements System.Drawing.Design.IToolboxUser
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ParentControlDesigner
 protected virtual void ToolPicked(
 // implements System.Drawing.Design.IToolboxUser
 // overrides ScrollableControlDesigner
}

Hierarchy

System.Object System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesign,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter) ControlDesigner
ParentControlDesigner(ISelectionUIHandl, IOleDragClient) ScrollableControlDesigner
DocumentDesigner(System.ComponentModel.Design.IRootDesign, System.Drawing.Design.IToolboxUser)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EventHandlerService

System.Windows.Forms.Design
(system.design.dll)

sealed
class

This class is for internal use by the framework and should not be used from your own code.

public sealed class EventHandlerService : IEventHandlerService {
// Public Constructors
 public EventHandlerService(System.Windows.Forms.Control focusWnd);
// Public Instance Properties
 public Control FocusWindow{get; }
// implements IEventHandlerService
// Public Instance Methods
 // implements IEventHandlerService
 // implements IEventHandlerService
 // implements IEventHandlerService
// Events
 public event EventHandler EventHandlerChanged;
// implements IEventHandlerService
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EventsTab

System.Windows.Forms.Design
(system.windows.forms.dll) class

This class implements a PropertyTab (for a System.Windows.Forms.PropertyGrid) that can be used to list and bind to events.
You will be familiar with this control from the Visual Studio .NET designer environment.

public class EventsTab : PropertyTab {
// Public Constructors
 public EventsTab(IServiceProvider sp);
// Public Instance Properties
 public override string HelpKeyword{get; }
// overrides PropertyTab
 public override string TabName{get; }
// overrides PropertyTab
// Public Instance Methods
 // overrides PropertyTab
 // overrides PropertyTab
 public override PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object component, Attribute[] attributes);
 // overrides PropertyTab
 public override PropertyDescriptorCollection GetProperties(object component,
 // overrides PropertyTab
}

Hierarchy

System.Object PropertyTab(System.ComponentModel.IExtenderProvider) EventsTab

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileNameEditor

System.Windows.Forms.Design
(system.design.dll) class

This class provides an editor for the selection of a filename (using the common dialog). You can inherit from this class
to provide file and filter extensions, and to set the dialog title.

public class FileNameEditor : System.Drawing.Design.UITypeEditor {
// Public Constructors
 public FileNameEditor();
// Public Instance Methods
 public override object EditValue(System.ComponentModel.ITypeDescriptorContext context,
 // overrides System.Drawing.Design.UITypeEditor
 public override UITypeEditorEditStyle GetEditStyle(
 // overrides System.Drawing.Design.UITypeEditor
// Protected Instance Methods
 protected virtual void InitializeDialog(System.Windows.Forms.OpenFileDialog openFileDialog);
}

Hierarchy

System.Object System.Drawing.Design.UITypeEditor FileNameEditor
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FolderNameEditor

System.Windows.Forms.Design
(system.design.dll) class

This class provides an editor for the selection of a folder or path (using the Shell32 common dialog).

public class FolderNameEditor : System.Drawing.Design.UITypeEditor {
// Public Constructors
 public FolderNameEditor();
// Public Instance Methods
 public override object EditValue(System.ComponentModel.ITypeDescriptorContext context,
 // overrides System.Drawing.Design.UITypeEditor
 public override UITypeEditorEditStyle GetEditStyle(
 // overrides System.Drawing.Design.UITypeEditor
// Protected Instance Methods
 protected virtual void InitializeDialog(FolderBrowser folderBrowser);
}

Hierarchy

System.Object System.Drawing.Design.UITypeEditor FolderNameEditor
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IMenuEditorService

System.Windows.Forms.Design
(system.design.dll) interface

This interface is implemented by the design-time menu editing service. It provides methods to get the current menu
(GetMenu()) and determine whether the menu IsActive(). The current menu can be changed with the SetMenu() method,
and the current menu item can be set with SetSelection().

public interface IMenuEditorService {
// Public Instance Methods
 public Menu GetMenu();
 public bool IsActive();
 public bool MessageFilter(ref System.Windows.Forms.Message m);
 public void SetMenu(System.Windows.Forms.Menu menu);
 public void SetSelection(System.Windows.Forms.MenuItem item);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IUIService

System.Windows.Forms.Design
(system.windows.forms.dll) interface

You can obtain this service from the design-time environment object hosting your designer, which will implement
System.IServiceProvider (that's the Site for a Component). It can be used to obtain various functions that you may require
to present your designer's UI.

CanShowComponentEditor() determines whether the environment supports the display of a ComponentEditorForm for the
specified component. You can then use ShowComponentEditor() to show the editor. ShowDialog() will display the specified
Form modally, returning a System.Windows.Forms.DialogResult. ShowMessage() and ShowError() display a message in a
message box, with the appropriate warning icon, and ShowToolWindow() displays the tool window with the specified Guid.
(Some standard GUIDs can be found in the System.ComponentModel.Design.StandardToolWindows class).

You can also mark the UI as dirty (and therefore needing an update), with SetUIDirty(), and retrieve a
System.Windows.Forms.IWin32Window to use as the owner for your dialogs with the GetDialogOwnerWindow() method.

public interface IUIService {
// Public Instance Properties
 public IDictionary Styles{get; }
// Public Instance Methods
 public bool CanShowComponentEditor(object component);
 public IWin32Window GetDialogOwnerWindow();
 public void SetUIDirty();
 public bool ShowComponentEditor(object component, System.Windows.Forms.IWin32Window parent);
 public DialogResult ShowDialog(System.Windows.Forms.Form form);
 public void ShowError(Exception ex);
 public void ShowError(Exception ex, string message);
 public void ShowError(string message);
 public DialogResult ShowMessage(string message, string caption, System.Windows.Forms.MessageBoxButtons buttons);
 public void ShowMessage(string message);
 public void ShowMessage(string message, string caption);
 public bool ShowToolWindow(Guid toolWindow);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IWindowsFormsEditorService

System.Windows.Forms.Design
(system.windows.forms.dll) interface

This service can be obtained from the local IServiceProvider. Typically, this will be the instance supplied to the EditValue()
method.

DropDownControl() will show a System.Windows.Forms.Control as a drop-down, and CloseDropDown() will clear any control
currently showing. Alternatively, you can show a System.Windows.Forms.Form using ShowDialog().

public interface IWindowsFormsEditorService {
// Public Instance Methods
 public void CloseDropDown();
 public void DropDownControl(System.Windows.Forms.Control control);
 public DialogResult ShowDialog(
 System.Windows.Forms.Form dialog);
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MenuCommands

System.Windows.Forms.Design
(system.design.dll)

sealed
class

This class defines a set of static members that allow you to access the standard menu commands available in the
designer host (e.g., KeySelectNext, SelectionMenu), through the System.ComponentModel.Design.IMenuCommandService.

public sealed class MenuCommands : System.ComponentModel.Design.StandardCommands {
// Public Constructors
 public MenuCommands();
// Public Static Fields
 // =74d21312-2aee-11d1-8bfb-00a0c90f26f7 : 1286
 // =74d21312-2aee-11d1-8bfb-00a0c90f26f7 : 1281
 // =74d21313-2aee-11d1-8bfb-00a0c90f26f7 : 4097
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 103
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 3
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 13
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 7
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 9
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 11
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1225
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1229
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1228
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1224
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1226
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1227
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1230
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 1231
 // =74d21313-2aee-11d1-8bfb-00a0c90f26f7 : 16385
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 4
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 5
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 14
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 12
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 8
 // =1496a755-94de-11d0-8c3f-00c04fc2aae2 : 10
 // =74d21313-2aee-11d1-8bfb-00a0c90f26f7 : 16405
 // =74d21312-2aee-11d1-8bfb-00a0c90f26f7 : 1280
 // =74d21312-2aee-11d1-8bfb-00a0c90f26f7 : 1283
}

Hierarchy

System.Object System.ComponentModel.Design.StandardCommands MenuCommands
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ParentControlDesigner disposable

System.Windows.Forms.Design
(system.design.dll) class

This designer extends ControlDesigner to support Control objects that can contain child controls.

public class ParentControlDesigner : ControlDesigner : ISelectionUIHandler, IOleDragClient {
// Public Constructors
 public ParentControlDesigner();
// Protected Instance Properties
 protected virtual Point DefaultControlLocation{get; }
 protected virtual bool DrawGrid{set; get; }
 protected override bool EnableDragRect{get; }
// overrides ControlDesigner
 protected Size GridSize{set; get; }
// Protected Static Methods
 protected static void InvokeCreateTool(ParentControlDesigner toInvoke, System.Drawing.Design.ToolboxItem tool);
// Public Instance Methods
 public virtual bool CanParent(System.Windows.Forms.Control control);
 public virtual bool CanParent(ControlDesigner controlDesigner);
 // overrides ControlDesigner
// Protected Instance Methods
 protected void CreateTool(System.Drawing.Design.ToolboxItem tool);
 protected void CreateTool(System.Drawing.Design.ToolboxItem tool, System.Drawing.Point location);
 protected void CreateTool(System.Drawing.Design.ToolboxItem tool, System.Drawing.Rectangle bounds);
 protected virtual IComponent[] CreateToolCore(System.Drawing.Design.ToolboxItem tool, int x,
 int y, int width, int height, bool hasLocation, bool hasSize);
 // overrides ControlDesigner
 protected Control GetControl(object component);
 protected Rectangle GetUpdatedRect(System.Drawing.Rectangle originalRect, System.Drawing.Rectangle dragRect,
 bool updateSize);
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
 // overrides ControlDesigner
}

Hierarchy

System.Object System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesign,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter) ControlDesigner
ParentControlDesigner(ISelectionUIHandl, IOleDragClient)

Subclasses

ScrollableControlDesigner
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PropertyTab

System.Windows.Forms.Design
(system.windows.forms.dll)

abstract
class

This class provides an abstract base for the property tabs shown in a System.Windows.Forms.PropertyGrid.

You can specify the TabName and a Bitmap to display in the tab. You can also get or set the array of Components for which
the tab will display properties. For help support, you can set the HelpKeyword associated with the tab. The
System.Windows.Forms.PropertyGrid will use this to manage help display for the control while it is showing.

To manage the properties of the bound components, GetProperties() will return a
System.ComponentModel.PropertyDescriptorCollection listing the available properties, and GetDefaultProperty() will return the
default System.ComponentModel.PropertyDescriptor.

public abstract class PropertyTab : System.ComponentModel.IExtenderProvider {
// Protected Constructors
 protected PropertyTab();
// Public Instance Properties
 public virtual Bitmap Bitmap{get; }
 public virtual object[] Components{set; get; }
 public virtual string HelpKeyword{get; }
 public abstract string TabName{get; }
// Public Instance Methods
 // implements System.ComponentModel.IExtenderProvider
 public virtual void Dispose();
 public virtual PropertyDescriptor GetDefaultProperty(object component);
 public virtual PropertyDescriptorCollection GetProperties(System.ComponentModel.ITypeDescriptorContext context,
 object component, Attribute[] attributes);
 public virtual PropertyDescriptorCollection GetProperties(object component);
 public abstract PropertyDescriptorCollection GetProperties(object component, Attribute[] attributes);
// Protected Instance Methods
 protected virtual void Dispose(bool disposing);
 // overrides object
}

Subclasses

EventsTab

Returned By

System.Windows.Forms.PropertyGrid.{CreatePropertyTab(), SelectedTab}, System.Windows.Forms.PropertyTabCollection.this,
System.Windows.Forms.PropertyTabChangedEventArgs.{NewTab, OldTab}

Passed To

System.Windows.Forms.PropertyTabChangedEventArgs.PropertyTabChangedEventArgs()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScrollableControlDesigner disposable

System.Windows.Forms.Design
(system.design.dll) class

This designer extends ParentControlDesigner to provide support for scrollable Control objects.

public class ScrollableControlDesigner : ParentControlDesigner {
// Public Constructors
 public ScrollableControlDesigner();
// Protected Instance Methods
 // overrides ControlDesigner
 // overrides ParentControlDesigner
}

Hierarchy

System.Object System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesign,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter) ControlDesigner
ParentControlDesigner(ISelectionUIHandl, IOleDragClient) ScrollableControlDesigner

Subclasses

DocumentDesigner
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SelectionRules serializable, flag

System.Windows.Forms.Design
(system.design.dll) enum

This bitfield enumeration is used by the ControlDesigner.SelectionRules property to determine whether the control is
selectable, movable, and how it might be resized. The ControlDesigner uses this when rendering selection handles and
manipulating the control on the design surface.

public enum SelectionRules {
 None = 0x00000000,
 TopSizeable = 0x00000001,
 BottomSizeable = 0x00000002,
 LeftSizeable = 0x00000004,
 RightSizeable = 0x00000008,
 AllSizeable = 0x0000000F,
 Moveable = 0x10000000,
 Visible = 0x40000000,
 Locked = 0x80000000
}

Hierarchy

System.Object System.ValueType System.Enum(System.IComparab, System.IFormattable, System.IConvertible)
SelectionRules

Returned By

ControlDesigner.SelectionRules
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WindowsFormsComponentEditor

System.Windows.Forms.Design
(system.windows.forms.dll)

abstract
class

This class provides the abstract base for classes that provide a modal dialog that displays tab pages of settings, similar
to a Win32 PropertySheet.

The EditComponent() method displays an editor window that contains the pages obtained from the protected
GetComponentEditorPages() method. The protected GetInitialComponentEditorPageIndex() retrieves the index of the page in
the list that should be displayed by default.

For example, System.Windows.Forms.AxHost.AxComponentEditor derives from this class to display the OLE Property Pages for
the hosted ActiveX control.

public abstract class WindowsFormsComponentEditor : System.ComponentModel.ComponentEditor {
// Protected Constructors
 protected WindowsFormsComponentEditor();
// Public Instance Methods
 public override bool EditComponent(System.ComponentModel.ITypeDescriptorContext context,
 // overrides System.ComponentModel.ComponentEditor
 public virtual bool EditComponent(System.ComponentModel.ITypeDescriptorContext context,
 object component, System.Windows.Forms.IWin32Window owner);
 public bool EditComponent(object component, System.Windows.Forms.IWin32Window owner);
// Protected Instance Methods
 protected virtual Type[] GetComponentEditorPages();
 protected virtual int GetInitialComponentEditorPageIndex();
}

Hierarchy

System.Object System.ComponentModel.ComponentEditor WindowsFormsComponentEditor

Subclasses

System.Windows.Forms.AxComponentEditor

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: Appendixes
Part III contains two appendixes that supplement the core reference material found in Part II. These
include:

Appendix A, Namespaces and Assemblies, which lists the namespaces documented in Part II
and provides the filenames of the DLLs in which they reside.
Appendix B, Type, Method, Property, Event, and Field Index, which lists each type and member
documented in Part II and shows either the type or types to which it belongs (in the case of a
type member) or the namespace to which it belongs (in the case of a class, structure, or
interface).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Namespaces and Assemblies
This appendix allows you to look up a namespace and determine which assemblies export it. This information is helpful
when constructing the appropriate /reference:<file list> command-line option for the C# and VB.NET compilers.

Namespace DLLs

System.ComponentModel System.dll, System.Windows.Forms.dll

System.Drawing System.Drawing.dll

System.Drawing.Drawing2d System.Drawing.dll

System.Drawing.Imaging System.Drawing.dll

System.Drawing.Printing System.Drawing.dll

System.Drawing.Text System.Drawing.dll

System.Windows.Forms System.Windows.Forms.dll

System.Windows.Forms.Design System.Windows.Forms.dll

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. Type, Method, Property, Event, and
Field Index
Use this index to look up a type or member and see where it is defined. For a type (a class or interface), you can find
the enclosing namespace. If you know the name of a member (a method, property, event, or field), you can find all the
types that define it.

A

Color, Keys

A2

PaperKind

A3

PaperKind

A3Extra

PaperKind

A3ExtraTransverse

PaperKind

A3Rotated

PaperKind

A3Transverse

PaperKind

A4

PaperKind

A4Extra

PaperKind

A4Plus

PaperKind

A4Rotated

PaperKind

A4Small

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

A4Transverse

PaperKind

A5

PaperKind

A5Extra

PaperKind

A5Rotated

PaperKind

A5Transverse

PaperKind

A6

PaperKind

A6Rotated

PaperKind

Abort

DialogResult

AbortRetryIgnore

MessageBoxButtons

AcceleratorChange

AccessibleEvents

AcceptButton

Form, PrintPreviewDialog

AcceptsReturn

TextBox

AcceptsTab

TextBoxBase

AcceptsTabChanged

TextBoxBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextBoxBase

AccessibilityNotifyClients()

Control

accessibilityObj

ControlDesigner

AccessibilityObject

Control, ControlDesigner

AccessibleDefaultActionDescription

Control

AccessibleDescription

Control, PrintPreviewDialog

AccessibleEvents

System.Windows.Forms

AccessibleName

Control, PrintPreviewDialog

AccessibleNavigation

System.Windows.Forms

AccessibleObject

System.Windows.Forms

AccessibleRole

Control, PrintPreviewDialog, System.Windows.Forms

AccessibleSelection

System.Windows.Forms

AccessibleStates

System.Windows.Forms

Action

CategoryAttribute, CollectionChangeEventArgs, QueryContinueDragEventArgs, TreeViewCancelEventArgs,
TreeViewEventArgs

Activate()

ComponentEditorPage, Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage, Form

ActivateControl()

IContainerControl

Activated

Form

ActivateMdiChild()

Form

Activation

ListView

Active

LinkState, ToolTip

ActiveBorder

KnownColor, SystemBrushes, SystemColors

ActiveCaption

KnownColor, SystemBrushes, SystemColors

ActiveCaptionText

KnownColor, SystemBrushes, SystemColors, SystemPens

ActiveControl

ContainerControl, IContainerControl

ActiveForm

Form

ActiveLinkColor

LinkLabel

ActiveMdiChild

Form

ActiveXInvokeKind

System.Windows.Forms

Add

CollectionChangeAction, Keys, MenuMerge

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CollectionChangeAction, Keys, MenuMerge

Add()

ColumnHeaderCollection, Container, ControlBindingsCollection, ControlCollection,
DomainUpDownItemCollection, EventDescriptorCollection, GridColumnStylesCollection,
GridTableStylesCollection, IContainer, ImageCollection, LinkCollection, ListViewItemCollection,
ListViewSubItemCollection, MenuItemCollection, ObjectCollection, PropertyDescriptorCollection,
StatusBarPanelCollection, TabPageCollection, TabPageControlCollection, ToolBarButtonCollection,
TreeNodeCollection

AddAnnuallyBoldedDate()

MonthCalendar

AddArc()

GraphicsPath

AddBezier()

GraphicsPath

AddBeziers()

GraphicsPath

AddBoldedDate()

MonthCalendar

AddClosedCurve()

GraphicsPath

AddComponent()

ComponentTray

AddCore()

BindingContext, BindingsCollection, ControlBindingsCollection

AddCreator()

IToolboxService

AddCurve()

GraphicsPath

AddEditorTable()

TypeDescriptor

AddEllipse()

GraphicsPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GraphicsPath

AddEventHandler()

EventDescriptor

AddExtension

FileDialog

AddFontFile()

PrivateFontCollection

AddHandler()

EventHandlerList

AddIndex()

IBindingList

AddItemsCore()

ComboBox, ListBox

AddLine()

GraphicsPath

AddLines()

GraphicsPath

AddLinkedToolboxItem()

IToolboxService

AddMemoryFont()

PrivateFontCollection

AddMessageFilter()

Application

AddMetafileComment()

Graphics

AddMonthlyBoldedDate()

MonthCalendar

AddNew()

BindingManagerBase, CurrencyManager, IBindingList, PropertyManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BindingManagerBase, CurrencyManager, IBindingList, PropertyManager

AddOwnedForm()

Form

AddPath()

GraphicsPath

AddPie()

GraphicsPath

AddPolygon()

GraphicsPath

AddPropertyValueUIHandler()

IPropertyValueUIService

AddRange()

ColumnHeaderCollection, ControlCollection, GridColumnStylesCollection, GridTableStylesCollection,
ListViewItemCollection, ListViewSubItemCollection, MenuItemCollection, ObjectCollection,
StatusBarPanelCollection, TabPageCollection, ToolBarButtonCollection, TreeNodeCollection

AddRectangle()

GraphicsPath

AddRectangles()

GraphicsPath

AddSelection

AccessibleSelection

AddString()

GraphicsPath

AddStrip()

ImageCollection

AddTabType()

PropertyTabCollection

AddToolboxItem()

IToolboxService

AddValueChanged()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PropertyDescriptor

Adjust

Border3DStyle

AdjustableArrowCap

System.Drawing.Drawing2D

AdjustFormScrollbars()

ContainerControl, Form, ScrollableControl

Advanced

EditorBrowsableState

AffectedControl

LayoutEventArgs

AffectedProperty

LayoutEventArgs

AfterCheck

TreeView

AfterCollapse

TreeView

AfterExpand

TreeView

AfterLabelEdit

ListView, TreeView

AfterSelect

TreeView

Alert

AccessibleRole

AlertHigh

AccessibleStates

AlertLow

AccessibleStates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessibleStates

AlertMedium

AccessibleStates

Alias

SecurityIDType

AliceBlue

Brushes, Color, KnownColor, Pens

Alignment

DataGridColumnStyle, ListView, Pen, StatusBarPanel, StringFormat, TabControl

AlignmentChanged

DataGridColumnStyle

All

Border3DSide, BoundsSpecified, ButtonState, DockPaddingEdges, DragDropEffects, RefreshProperties,
RefreshPropertiesAttribute, RichTextBoxSelectionAttribute, RichTextBoxWordPunctuations

Allow

ToolboxItemFilterType

AllowColumnReorder

ListView

AllowDrop

Control, GroupBox, PictureBox, PrintPreviewDialog, ProgressBar, RichTextBox, Splitter

AllowedEffect

DragEventArgs

AllowEdit

IBindingList

AllowFullOpen

ColorDialog

AllowMargins

PageSetupDialog

AllowMerge

MergablePropertyAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MergablePropertyAttribute

AllowNavigation

DataGrid

AllowNavigationChanged

DataGrid

AllowNew

IBindingList

AllowNull

DataGridBoolColumn

AllowNullChanged

DataGridBoolColumn

AllowOrientation

PageSetupDialog

AllowPaper

PageSetupDialog

AllowPrinter

PageSetupDialog

AllowPrintToFile

PrintDialog

AllowQuit

Application

AllowRemove

IBindingList

AllowScriptChange

FontDialog

AllowSelection

PrintDialog

AllowSimulations

FontDialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontDialog

AllowSomePages

PrintDialog

AllowSorting

DataGrid, DataGridTableStyle

AllowSortingChanged

DataGridTableStyle

AllowTransparency

Form

AllowVectorFonts

FontDialog

AllowVerticalFonts

FontDialog

AllPages

PrintRange

AllPaintingInWmPaint

ControlStyles

AllPrinting

PrintingPermissionLevel

AllScreens

Screen

AllSizeable

SelectionRules

Alpha

ImeMode, PixelFormat

Alphabetical

PropertySort

AlphaFull

ImeMode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImeMode

Alt

KeyEventArgs, Keys

Alt0

Shortcut

Alt1

Shortcut

Alt2

Shortcut

Alt3

Shortcut

Alt4

Shortcut

Alt5

Shortcut

Alt6

Shortcut

Alt7

Shortcut

Alt8

Shortcut

Alt9

Shortcut

AltBksp

Shortcut

Alternate

FillMode

AlternatingBackColor

DataGrid, DataGridTableStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGrid, DataGridTableStyle

AlternatingBackColorChanged

DataGridTableStyle

AltF1

Shortcut

AltF10

Shortcut

AltF11

Shortcut

AltF12

Shortcut

AltF2

Shortcut

AltF3

Shortcut

AltF4

Shortcut

AltF5

Shortcut

AltF6

Shortcut

AltF7

Shortcut

AltF8

Shortcut

AltF9

Shortcut

AltGrays

ColorMatrixFlag

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ColorMatrixFlag

Always

EditorBrowsableState

AlwaysBlink

ErrorBlinkStyle

AlwaysUnderline

LinkBehavior

AmbientProperties

System.Windows.Forms

AmbientValueAttribute

System.ComponentModel

Anchor

Control, PrintPreviewDialog, Splitter, TabPage

AnchorEditor

System.Windows.Forms.Design

AnchorMask

LineCap

AnchorStyles

System.Windows.Forms

Animate()

ImageAnimator

Animated

AccessibleStates

Animation

AccessibleRole

AnnuallyBoldedDates

MonthCalendar

Ansi

StructFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StructFormat

AntiAlias

SmoothingMode, TextRenderingHint

AntiAliasGridFit

TextRenderingHint

AntiqueWhite

Brushes, Color, KnownColor, Pens

Any

ColorAdjustType

AnyColor

ColorDialog

APlus

PaperKind

Appearance

CategoryAttribute, CheckBox, RadioButton, System.Windows.Forms, TabControl, ToolBar

AppearanceChanged

CheckBox, RadioButton

Append

MatrixOrder

AppendText()

TextBoxBase

Application

AccessibleRole, System.Windows.Forms, SystemIcons

ApplicationContext

System.Windows.Forms

ApplicationExit

Application

Apply

FontDialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontDialog

ApplyAutoScaling()

Form

ApplyChanges()

ComponentEditorPage

ApplySort()

IBindingList

Apps

Keys

AppStarting

Cursors

AppWorkspace

KnownColor, SystemBrushes, SystemColors

Aqua

Brushes, Color, KnownColor, Pens

Aquamarine

Brushes, Color, KnownColor, Pens

Argb32Mode

ColorMode

Argb64Mode

ColorMode

ArrangeDirection

System.Windows.Forms, SystemInformation

ArrangeIcons

MdiLayout

ArrangeIcons()

ListView

ArrangeStartingPosition

System.Windows.Forms, SystemInformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms, SystemInformation

ArrayConverter

System.ComponentModel

ArrayValue

GridItemType

Arrow

Cursors, MenuGlyph

ArrowAnchor

LineCap

Ascending

ListSortDirection, SortOrder

AssemblyName

ToolboxItem

AssignHandle()

NativeWindow

AssociatedComponents

ControlDesigner

AssociateIndex

HelpNavigator

AssumeLinear

CompositingQuality

Asterisk

MessageBoxIcon, SystemIcons

AttachInterfaces()

AxHost

Attn

Keys

AttributeCollection

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

Attributes

MemberDescriptor

Auto

SizeGripStyle, StructFormat

AutoArrange

ComponentTray, ListView

AutoCheck

CheckBox, RadioButton

AutomaticDelay

ToolTip

AutomaticFeed

PaperSourceKind

AutoPopDelay

ToolTip

AutoScale

Form, PrintPreviewDialog

AutoScaleBaseSize

Form, PrintPreviewDialog

AutoScroll

Form, PrintPreviewDialog, PropertyGrid, ScrollableControl, UpDownBase

AutoScrollMargin

PrintPreviewDialog, ScrollableControl, UpDownBase

AutoScrollMinSize

PrintPreviewDialog, ScrollableControl, UpDownBase

AutoScrollPosition

ScrollableControl

AutoSize

Label, PictureBoxSizeMode, RichTextBox, StatusBarPanel, TextBoxBase, ToolBar, TrackBar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Label, PictureBoxSizeMode, RichTextBox, StatusBarPanel, TextBoxBase, ToolBar, TrackBar

AutoSizeChanged

Label, TextBoxBase

AutoWordSelection

RichTextBox

AutoZoom

PrintPreviewControl

AxComponentEditor

System.Windows.Forms

AxHost

System.Windows.Forms

AxImporter

System.Windows.Forms.Design

AxParameterData

System.Windows.Forms.Design

AxWrapperGen

System.Windows.Forms.Design

Azure

Brushes, Color, KnownColor, Pens

B

Color, Keys

B4

PaperKind

B4Envelope

PaperKind

B4JisRotated

PaperKind

B5

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

B5Envelope

PaperKind

B5Extra

PaperKind

B5JisRotated

PaperKind

B5Transverse

PaperKind

B6Envelope

PaperKind

B6Jis

PaperKind

B6JisRotated

PaperKind

Back

Keys

BackButtonClick

DataGrid

BackColor

AmbientProperties, AxHost, ComboBox, Control, DataGrid, DataGridTableStyle, DateTimePicker,
DrawItemEventArgs, Form, ListBox, ListView, ListViewItem, ListViewSubItem, MonthCalendar,
OwnerDrawPropertyBag, PrintPreviewDialog, ProgressBar, PropertyGrid, ScrollBar, StatusBar, TabControl,
TextBoxBase, ToolBar, TreeNode, TreeView, UpDownBase

BackColorChanged

AxHost, Control, DataGridTableStyle

BackgroundColor

DataGrid, HatchBrush

BackgroundColorChanged

DataGrid

BackgroundImage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BackgroundImage

AxHost, ComboBox, Control, DataGrid, DateTimePicker, Label, ListBox, ListView, MdiClient, MonthCalendar,
PrintPreviewDialog, ProgressBar, PropertyGrid, RichTextBox, ScrollBar, Splitter, StatusBar, TabControl,
TextBoxBase, ToolBar, TrackBar, TreeView, UpDownBase

BackgroundImageChanged

AxHost, Control

BackwardDiagonal

HatchStyle, LinearGradientMode

BarBreak

MenuItem

BaseCap

CustomLineCap

BaseCollection

System.Windows.Forms

BaseInset

CustomLineCap

BaseNumberConverter

System.ComponentModel

BaseWndProc()

ControlDesigner

BboxBottom

WmfPlaceableFileHeader

BboxLeft

WmfPlaceableFileHeader

BboxRight

WmfPlaceableFileHeader

BboxTop

WmfPlaceableFileHeader

BeforeCheck

TreeView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BeforeCollapse

TreeView

BeforeExpand

TreeView

BeforeLabelEdit

ListView, TreeView

BeforeSelect

TreeView

BeginContainer

EmfPlusRecordType

BeginContainer()

Graphics

BeginContainerNoParams

EmfPlusRecordType

BeginEdit()

DataGrid, DataGridTableStyle, IDataGridEditingService, IEditableObject, ListViewItem, TreeNode

BeginInit()

AxHost, DataGrid, ISupportInitialize, NumericUpDown, StatusBarPanel, TrackBar

BeginInvoke()

CancelEventHandler, CollectionChangeEventHandler, ColumnClickEventHandler, ContentsResizedEventHandler,
Control, ControlEventHandler, ConvertEventHandler, DateBoldEventHandler, DateRangeEventHandler,
DragEventHandler, DrawImageAbort, DrawItemEventHandler, EnumerateMetafileProc,
GetThumbnailImageAbort, GiveFeedbackEventHandler, HelpEventHandler,
InputLanguageChangedEventHandler, InputLanguageChangingEventHandler, InvalidateEventHandler,
ISynchronizeInvoke, ItemChangedEventHandler, ItemCheckEventHandler, ItemDragEventHandler,
KeyEventHandler, KeyPressEventHandler, LabelEditEventHandler, LayoutEventHandler,
LinkClickedEventHandler, LinkLabelLinkClickedEventHandler, ListChangedEventHandler,
MeasureItemEventHandler, MethodInvoker, MouseEventHandler, NavigateEventHandler,
NodeLabelEditEventHandler, PaintEventHandler, PlayRecordCallback, PrintEventHandler, PrintPageEventHandler,
PropertyChangedEventHandler, PropertyTabChangedEventHandler, PropertyValueChangedEventHandler,
PropertyValueUIHandler, PropertyValueUIItemInvokeHandler, QueryAccessibilityHelpEventHandler,
QueryContinueDragEventHandler, QueryPageSettingsEventHandler, RefreshEventHandler, ScrollEventHandler,
SelectedGridItemChangedEventHandler, SplitterEventHandler, StatusBarDrawItemEventHandler,
StatusBarPanelClickEventHandler, ToolBarButtonClickEventHandler, ToolboxComponentsCreatedEventHandler,
ToolboxComponentsCreatingEventHandler, ToolboxItemCreatorCallback, TreeViewCancelEventHandler,
TreeViewEventHandler, UICuesEventHandler, UpDownEventHandler

BeginPrint

PrintDocument

BeginUpdate()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComboBox, DataGridColumnStyle, ListBox, ListView, TreeView

Behavior

CategoryAttribute

Beige

Brushes, Color, KnownColor, Pens

Bevel

LineJoin

Bezier

PathPointType

Bezier3

PathPointType

Bicubic

InterpolationMode

Bilinear

InterpolationMode, WarpMode

Bindable

BindableAttribute

BindableAttribute

System.ComponentModel

BindableSupport

System.ComponentModel

Binding

System.Windows.Forms

BindingContext

ContainerControl, Control, System.Windows.Forms

BindingContextChanged

AxHost, Control

BindingField

BindingMemberInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BindingMemberInfo

BindingManagerBase

Binding, System.Windows.Forms

BindingMember

BindingMemberInfo

BindingMemberInfo

Binding, System.Windows.Forms

BindingPath

BindingMemberInfo

Bindings

BindingManagerBase

BindingsCollection

System.Windows.Forms

BindToDataAndErrors()

ErrorProvider

Bisque

Brushes, Color, KnownColor, Pens

Bitmap

ColorAdjustType, DataFormats, PropertyTab, System.Drawing, ToolboxItem

BitmapData

System.Drawing.Imaging

BitmapEditor

System.Drawing.Design

Black

Brushes, Color, KnownColor, Pens

BlanchedAlmond

Brushes, Color, KnownColor, Pens

Blend

LinearGradientBrush, PathGradientBrush, System.Drawing.Drawing2D

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LinearGradientBrush, PathGradientBrush, System.Drawing.Drawing2D

BlinkIfDifferentError

ErrorBlinkStyle

BlinkRate

ErrorProvider

BlinkStyle

ErrorProvider

BlockingDecode

ImageCodecFlags

Blue

Brushes, Color, KnownColor, Pens

BlueViolet

Brushes, Color, KnownColor, Pens

Bmp

ImageFormat

Bold

Font, FontStyle

BoldedDates

MonthCalendar

BooleanConverter

System.ComponentModel

BootMode

System.Windows.Forms, SystemInformation

Border

AccessibleRole

Border3DSide

System.Windows.Forms

Border3DSize

SystemInformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemInformation

Border3DStyle

System.Windows.Forms

BorderSize

SystemInformation

BorderStyle

DataGrid, Label, ListBox, ListView, Panel, PictureBox, Splitter, StatusBarPanel, System.Windows.Forms,
TextBoxBase, ToolBar, TreeView, UpDownBase

BorderStyleChanged

DataGrid, TextBoxBase

Both

DataGridParentRowsLabelStyle, RichTextBoxScrollBars, ScrollBars, TickStyle

Bottom

AnchorStyles, Border3DSide, Control, DockPaddingEdges, DockStyle, Margins, Rectangle, RectangleF,
TabAlignment

BottomCenter

ContentAlignment

BottomLeft

ArrangeStartingPosition, ContentAlignment, ErrorIconAlignment

BottomRight

ArrangeStartingPosition, ContentAlignment, ErrorIconAlignment, TickStyle

BottomSizeable

SelectionRules

Bounds

AccessibleObject, Control, ControlDesignerAccessibleObject, DrawItemEventArgs, ListViewItem, MetafileHeader,
PageSettings, PaintValueEventArgs, Screen, TreeNode

BoundsSpecified

System.Windows.Forms

BPlus

PaperKind

Break

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Break

MenuItem

BringToFront()

Control

Brown

Brushes, Color, KnownColor, Pens

Browsable

BrowsableAttribute

BrowsableAttribute

System.ComponentModel

BrowsableAttributes

PropertyGrid

BrowserBack

Keys

BrowserFavorites

Keys

BrowserForward

Keys

BrowserHome

Keys

BrowserRefresh

Keys

BrowserSearch

Keys

BrowserStop

Keys

Brush

ColorAdjustType, ColorMapType, Pen, System.Drawing

Brushes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing

Builtin

ImageCodecFlags

Bullet

MenuGlyph

BulletIndent

RichTextBox

Bump

Border3DStyle

BurlyWood

Brushes, Color, KnownColor, Pens

Busy

AccessibleStates

Button

Appearance, ItemDragEventArgs, MouseEventArgs, System.Windows.Forms, ToolBarButtonClickEventArgs

Button1

MessageBoxDefaultButton

Button2

MessageBoxDefaultButton

Button3

MessageBoxDefaultButton

ButtonBase

System.Windows.Forms

ButtonBaseAccessibleObject

System.Windows.Forms

ButtonBorderStyle

System.Windows.Forms

ButtonClick

ToolBar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolBar

ButtonDropDown

AccessibleRole, ToolBar

ButtonDropDownGrid

AccessibleRole

ButtonID

UpDownEventArgs

ButtonMenu

AccessibleRole

Buttons

TabAppearance, ToolBar

ButtonSize

ToolBar

ButtonState

System.Windows.Forms

ByKeyboard

TreeViewAction

ByMouse

TreeViewAction

ByteConverter

System.ComponentModel

C

Keysa

C3Envelope

PaperKind

C4Envelope

PaperKind

C5Envelope

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

C65Envelope

PaperKind

C6Envelope

PaperKind

CacheText

ControlStyles

Caching

ImageFlags

CadetBlue

Brushes, Color, KnownColor, Pens

CalcImageRenderBounds()

Label

CalendarBackground

HitArea

CalendarDimensions

MonthCalendar

CalendarFont

DateTimePicker

CalendarForeColor

DateTimePicker

CalendarMonthBackground

DateTimePicker

CalendarTitleBackColor

DateTimePicker

CalendarTitleForeColor

DateTimePicker

CalendarTrailingForeColor

DateTimePicker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateTimePicker

CanAnimate()

ImageAnimator

CanBeParentedTo()

ControlDesigner

Cancel

CancelEventArgs, DialogResult, DragAction, Keys, PrintPageEventArgs

CancelButton

Form, PrintPreviewDialog

CancelCurrentEdit()

BindingManagerBase, CurrencyManager, PropertyManager

CancelEdit

LabelEditEventArgs, NodeLabelEditEventArgs

CancelEdit()

IEditableObject

CancelEditing()

DataGrid

CancelEventArgs

System.ComponentModel

CancelEventHandler

System.ComponentModel

CanConvertFrom()

BaseNumberConverter, BooleanConverter, CharConverter, ColorConverter, CultureInfoConverter,
CursorConverter, DataGridPreferredColumnWidthTypeConverter, DateTimeConverter, EnumConverter,
FontConverter, FontNameConverter, GuidConverter, IconConverter, ImageConverter, ImageFormatConverter,
KeysConverter, LinkAreaConverter, MarginsConverter, OpacityConverter, PointConverter, RectangleConverter,
ReferenceConverter, SelectionRangeConverter, SizeConverter, StateConverter, StringConverter,
TimeSpanConverter, TypeConverter, TypeListConverter

CanConvertTo()

BaseNumberConverter, ColorConverter, CultureInfoConverter, CursorConverter, DateTimeConverter,
DecimalConverter, EnumConverter, FontConverter, GuidConverter, IconConverter, ImageConverter,
ImageFormatConverter, LinkAreaConverter, ListBindingConverter, ListViewItemConverter, MarginsConverter,
PointConverter, RectangleConverter, SelectionRangeConverter, SizeConverter, StateConverter,
TimeSpanConverter, TreeNodeConverter, TypeConverter, TypeListConverter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CanCreateComponentFromTool()

ComponentTray

CanDisplayComponent()

ComponentTray

CanDuplex

PrinterSettings

CanExtend()

ErrorProvider, EventsTab, HelpProvider, IExtenderProvider, PropertyTab, ToolTip

CanFocus

Control

Canonical

PixelFormat

CanParent()

ParentControlDesigner

CanPaste()

RichTextBox

CanRedo

RichTextBox

CanResetValue()

PropertyDescriptor

CanSelect

Control

CanShowCommands

PropertyGrid

CanShowComponentEditor()

IUIService

CanUndo

TextBoxBase

Capital

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Capital

Keys

CapsLock

Keys

Caption

CreateParams, HitTestType

CaptionBackColor

DataGrid

CaptionButton

System.Windows.Forms

CaptionButtonSize

SystemInformation

CaptionFont

DataGrid

CaptionForeColor

DataGrid

CaptionHeight

SystemInformation

CaptionText

DataGrid

CaptionVisible

DataGrid

CaptionVisibleChanged

DataGrid

Capture

Control

Caret

AccessibleRole

Cascade

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MdiLayout

Cassette

PaperSourceKind

Categorized

PropertySort

CategorizedAlphabetical

PropertySort

Category

CategoryAttribute, DesignerCategoryAttribute, GridItemType, MemberDescriptor

CategoryAttribute

System.ComponentModel

CategoryNameCollection

System.Drawing.Design

CategoryNames

IToolboxService

CausesValidation

Control, PictureBox, PrintPreviewDialog, ProgressBar

CausesValidationChanged

Control

Ceiling()

Point, Rectangle, Size

Cell

AccessibleRole, HitTestType

Center

HorizontalAlignment, PenAlignment, StringAlignment

CenterColor

PathGradientBrush

CenterImage

PictureBoxSizeMode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PictureBoxSizeMode

CenterParent

FormStartPosition

CenterPoint

PathGradientBrush

CenterScreen

FormStartPosition

CenterToParent()

Form

CenterToScreen()

Form

Changed

UICues, UICuesEventArgs

ChangedItem

PropertyValueChangedEventArgs

ChangeFocus

UICues, UICuesEventArgs

ChangeKeyboard

UICues, UICuesEventArgs

ChangeUICues

AxHost, Control

Character

AccessibleRole, StringTrimming

CharacterCasing

System.Windows.Forms, TextBox

CharacterRange

System.Drawing

CharConverter

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

CharSet

InputLanguageChangedEventArgs

Chart

AccessibleRole

Chartreuse

Brushes, Color, KnownColor, Pens

CheckAlign

CheckBox, RadioButton

CheckBox

System.Windows.Forms

CheckBoxAccessibleObject

System.Windows.Forms

CheckBoxes

ListView, TreeView

CheckButton

AccessibleRole

Checked

AccessibleStates, ButtonState, CheckBox, CheckState, DateTimePicker, DrawItemState, ListViewItem,
MenuItem, RadioButton, TreeNode

CheckedChanged

CheckBox, RadioButton

CheckedIndexCollection

System.Windows.Forms

CheckedIndices

CheckedListBox, ListView

CheckedItemCollection

System.Windows.Forms

CheckedItems

CheckedListBox, ListView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CheckedListBox, ListView

CheckedListBox

System.Windows.Forms

CheckedListViewItemCollection

System.Windows.Forms

CheckEmpty()

CurrencyManager

CheckFileExists

FileDialog, OpenFileDialog

CheckMachineName()

SyntaxCheck

Checkmark

MenuGlyph

CheckOnClick

CheckedListBox

CheckPath()

SyntaxCheck

CheckPathExists

FileDialog

CheckRootedPath()

SyntaxCheck

CheckState

CheckBox, System.Windows.Forms

CheckStateChanged

CheckBox

Checksum

WmfPlaceableFileHeader

CheckUnlocked()

ToolboxItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolboxItem

CheckValidDataSource()

DataGridColumnStyle

ChildAccessibleObject

System.Windows.Forms

Chocolate

Brushes, Color, KnownColor, Pens

ChrominanceTable

Encoder

Clamp

WrapMode

ClassName

CreateParams

ClassStyle

CreateParams

Clear

EmfPlusRecordType, Keys

Clear()

ColumnHeaderCollection, ControlBindingsCollection, ControlCollection, EventDescriptorCollection, Graphics,
GridColumnStylesCollection, GridTableStylesCollection, ImageCollection, LinkCollection, ListView,
ListViewItemCollection, ListViewSubItemCollection, MenuItemCollection, ObjectCollection,
PropertyDescriptorCollection, PropertyTabCollection, SelectedListViewItemCollection, StatusBarPanelCollection,
TabPageCollection, TextBoxBase, ToolBarButtonCollection, TreeNodeCollection

ClearBrushRemapTable()

ImageAttributes

ClearColorKey()

ImageAttributes

ClearColorMatrix()

ImageAttributes

ClearCore()

BindingContext, BindingsCollection, ControlBindingsCollection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ClearGamma()

ImageAttributes

ClearMarkers()

GraphicsPath

ClearNoOp()

ImageAttributes

ClearOutputChannel()

ImageAttributes

ClearOutputChannelColorProfile()

ImageAttributes

ClearRemapTable()

ImageAttributes

ClearSelected()

ListBox

ClearThreshold()

ImageAttributes

ClearTypeGridFit

TextRenderingHint

ClearUndo()

TextBoxBase

Click

AxHost, CheckedListBox, Control, GroupBox, ListBox, MenuItem, MonthCalendar, NotifyIcon, ScrollBar,
TextBoxBase, TrackBar

Clickable

ColumnHeaderStyle

Clicks

MouseEventArgs

Client

AccessibleRole

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ClientRectangle

Control

ClientSize

Control, Form

Clip

Cursor, Graphics

Clipboard

System.Windows.Forms

ClipBounds

Graphics

ClipRectangle

PaintEventArgs

Clock

AccessibleRole

Clone()

Bitmap, Brush, ColumnHeader, CustomLineCap, Font, GraphicsPath, HatchBrush, Icon, Image, ImageAttributes,
LinearGradientBrush, ListViewItem, Margins, Matrix, PageSettings, PathGradientBrush, Pen, PrinterSettings,
Region, SolidBrush, StringFormat, TextureBrush, TreeNode

CloneMenu()

MainMenu, Menu, MenuItem

Close

CaptionButton

Close()

Form

CloseAllFigures()

GraphicsPath

Closed

Form

CloseDropDown()

IWindowsFormsEditorService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IWindowsFormsEditorService

CloseFigure()

GraphicsPath

CloseSubpath

PathPointType

CloseUp

DateTimePicker

Closing

Form

Clsid

ImageCodecInfo

ClsidAttribute

System.Windows.Forms

CodecName

ImageCodecInfo

Collapse

TreeViewAction

Collapse()

DataGrid, TreeNode

CollapseAll()

TreeView

CollapseAllGridItems()

PropertyGrid

Collapsed

AccessibleStates

Collate

PrinterSettings

CollectionChangeAction

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

CollectionChanged

BindingContext, BindingsCollection, GridColumnStylesCollection, GridTableStylesCollection

CollectionChangeEventArgs

System.ComponentModel

CollectionChangeEventHandler

System.ComponentModel

CollectionConverter

System.ComponentModel

Color

ColorDialog, FontDialog, PageSettings, Pen, SolidBrush, System.Drawing

ColorAdjustType

System.Drawing.Imaging

ColorBlend

System.Drawing.Drawing2D

ColorChannelC

ColorChannelFlag

ColorChannelFlag

System.Drawing.Imaging

ColorChannelK

ColorChannelFlag

ColorChannelLast

ColorChannelFlag

ColorChannelM

ColorChannelFlag

ColorChannelY

ColorChannelFlag

ColorConverter

System.Drawing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing

ColorDepth

Encoder, ImageList, System.Windows.Forms

ColorDialog

System.Windows.Forms

ColorEditor

System.Drawing.Design

ColorMap

System.Drawing.Imaging

ColorMapType

System.Drawing.Imaging

ColorMatrix

System.Drawing.Imaging

ColorMatrixFlag

System.Drawing.Imaging

ColorMode

System.Drawing.Imaging

ColorPalette

System.Drawing.Imaging

Colors

ColorBlend

ColorSpaceCmyk

ImageFlags

ColorSpaceGray

ImageFlags

ColorSpaceRgb

ImageFlags

ColorSpaceYcbcr

ImageFlags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageFlags

ColorSpaceYcck

ImageFlags

ColorTranslator

System.Drawing

ColorTypeCMYK

EncoderValue

ColorTypeYCCK

EncoderValue

Column

AccessibleRole, ColumnClickEventArgs, HitTestInfo

ColumnClick

ListView

ColumnClickEventArgs

System.Windows.Forms

ColumnClickEventHandler

System.Windows.Forms

ColumnHeader

AccessibleRole, HitTestType, System.Windows.Forms

ColumnHeaderCollection

System.Windows.Forms

ColumnHeaderStyle

System.Windows.Forms

ColumnHeadersVisible

DataGrid, DataGridTableStyle

ColumnHeadersVisibleChanged

DataGridTableStyle

ColumnName

DataGridParentRowsLabelStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridParentRowsLabelStyle

ColumnNumber

DataGridCell

ColumnResize

HitTestType

Columns

ListView, PrintPreviewControl

ColumnStartedEditing()

IDataGridColumnStyleEditingNotificationService

ColumnWidth

ListBox

CombineMode

System.Drawing.Drawing2D

ComboBox

AccessibleRole, System.Windows.Forms

ComboBoxEdit

DrawItemState

ComboBoxStyle

System.Windows.Forms

CommandsBackColor

PropertyGrid

CommandsForeColor

PropertyGrid

CommandsVisible

PropertyGrid

CommandsVisibleIfAvailable

PropertyGrid

CommaSeparatedValue

DataFormats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataFormats

Comment

EmfPlusRecordType

CommitOnDeactivate

ComponentEditorPage

CommonAppDataPath

Application

CommonAppDataRegistry

Application

CommonDialog

System.Windows.Forms

ComNativeDescriptorHandler

TypeDescriptor

CompanyName

Application, Control

Compare()

KeysConverter

Complement

CombineMode

Complement()

Region

Component

DesignerCategoryAttribute, ISite, PropertyTabScope, System.ComponentModel

ComponentChanged

RefreshEventArgs

ComponentCollection

System.ComponentModel

ComponentConverter

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

ComponentCount

ComponentTray

ComponentDocumentDesigner

System.Windows.Forms.Design

ComponentEditor

System.ComponentModel

ComponentEditorForm

System.Windows.Forms.Design

ComponentEditorPage

System.Windows.Forms.Design

Components

Container, IContainer, PropertyTab, ToolboxComponentsCreatedEventArgs

ComponentsCreated

ToolboxItem

ComponentsCreating

ToolboxItem

ComponentTray

System.Windows.Forms.Design

ComponentTrayMenu

MenuCommands

ComponentType

EventDescriptor, PropertyDescriptor

CompositingMode

Graphics, System.Drawing.Drawing2D

CompositingQuality

Graphics, System.Drawing.Drawing2D

CompoundArray

Pen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pen

Compression

Encoder

CompressionCCITT3

EncoderValue

CompressionCCITT4

EncoderValue

CompressionLZW

EncoderValue

CompressionNone

EncoderValue

CompressionRle

EncoderValue

Computer

SecurityIDType

ComputerName

SystemInformation

ConnectionPointCookie

System.Windows.Forms

Container

Component, ISite, ITypeDescriptorContext, MarshalByValueComponent, System.ComponentModel

ContainerControl

ControlStyles, ErrorProvider, System.Windows.Forms

ContainerMenu

MenuCommands

ContainingControl

AxHost

Contains()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AttributeCollection, BindingContext, CategoryNameCollection, CheckedIndexCollection, CheckedItemCollection,
CheckedListViewItemCollection, ColumnHeaderCollection, Control, ControlCollection, EventDescriptorCollection,
GridColumnStylesCollection, GridTableStylesCollection, ImageCollection, InputLanguageCollection,
LinkCollection, ListViewItemCollection, ListViewSubItemCollection, MenuItemCollection, ObjectCollection,
PropertyDescriptorCollection, Rectangle, RectangleF, SelectedIndexCollection, SelectedListViewItemCollection,
SelectedObjectCollection, StatusBarPanelCollection, TabPageCollection, ToolBarButtonCollection,
ToolboxItemCollection, TreeNodeCollection

ContainsFocus

Control

ContainsListCollection

IListSource

Content

DesignerSerializationVisibility, DesignerSerializationVisibilityAttribute

ContentAlignment

System.Drawing

ContentAlignmentEditor

System.Drawing.Design

Contents

StatusBarPanelAutoSize

ContentsResized

RichTextBox

ContentsResizedEventArgs

System.Windows.Forms

ContentsResizedEventHandler

System.Windows.Forms

Context

PaintValueEventArgs

ContextMenu

AxHost, Control, NotifyIcon, PrintPreviewDialog, System.Windows.Forms, UpDownBase

ContextMenuChanged

AxHost, Control

ContextMenuDefaultLocation

PropertyGrid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PropertyGrid

Continue

DragAction

ContrastControlDark

ControlPaint

Control

Binding, ComponentDocumentDesigner, ControlBindingsCollection, ControlDesigner, ControlEventArgs,
KeyEventArgs, Keys, KnownColor, System.Windows.Forms, SystemBrushes, SystemColors, SystemPens

ControlAccessibleObject

System.Windows.Forms

ControlAdded

Control

ControlBindingsCollection

System.Windows.Forms

ControlBox

Form, PrintPreviewDialog

ControlCollection

System.Windows.Forms

ControlDark

KnownColor, SystemBrushes, SystemColors, SystemPens

ControlDarkDark

KnownColor, SystemBrushes, SystemColors, SystemPens

ControlDesigner

System.Windows.Forms.Design

ControlDesignerAccessibleObject

System.Windows.Forms.Design

ControlEventArgs

System.Windows.Forms

ControlEventHandler

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

ControlKey

Keys

ControlLight

KnownColor, SystemBrushes, SystemColors, SystemPens

ControlLightLight

KnownColor, SystemBrushes, SystemColors, SystemPens

ControlPaint

System.Windows.Forms

ControlRemoved

Control

Controls

Control, PropertyGrid

ControlStyles

System.Windows.Forms

ControlText

KnownColor, SystemBrushes, SystemColors, SystemPens

Convert()

AxParameterData, PrinterUnitConvert

Converter

PropertyDescriptor

ConverterTypeName

TypeConverterAttribute

ConvertEventArgs

System.Windows.Forms

ConvertEventHandler

System.Windows.Forms

ConvertFrom()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BaseNumberConverter, BooleanConverter, CharConverter, ColorConverter, CultureInfoConverter,
CursorConverter, DataGridPreferredColumnWidthTypeConverter, DateTimeConverter, EnumConverter,
FontConverter, FontNameConverter, GuidConverter, IconConverter, ImageConverter, ImageFormatConverter,
ImageIndexConverter, KeysConverter, LinkAreaConverter, MarginsConverter, OpacityConverter,
PointConverter, RectangleConverter, ReferenceConverter, SelectionRangeConverter, SizeConverter,
StateConverter, StringConverter, TimeSpanConverter, TypeConverter, TypeListConverter

ConvertFromInvariantString()

TypeConverter

ConvertFromString()

TypeConverter

ConvertTo()

ArrayConverter, BaseNumberConverter, CharConverter, CollectionConverter, ColorConverter,
CultureInfoConverter, CursorConverter, DataGridPreferredColumnWidthTypeConverter, DateTimeConverter,
DecimalConverter, EnumConverter, FontConverter, GuidConverter, IconConverter, ImageConverter,
ImageFormatConverter, ImageIndexConverter, KeysConverter, LinkAreaConverter, ListBindingConverter,
ListViewItemConverter, MarginsConverter, OpacityConverter, PointConverter, RectangleConverter,
ReferenceConverter, SelectionRangeConverter, SizeConverter, StateConverter, TimeSpanConverter,
TreeNodeConverter, TypeConverter, TypeListConverter

ConvertToInvariantString()

TypeConverter

ConvertToString()

TypeConverter

CoordinateSpace

System.Drawing.Drawing2D

Copies

PrinterSettings

Copy

DragDropEffects

Copy()

OwnerDrawPropertyBag, PrintingPermission, TextBoxBase

CopyData()

GraphicsPathIterator

CopyHandle()

Cursor

CopyTo()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AttributeCollection, BaseCollection, CategoryNameCollection, CheckedIndexCollection, CheckedItemCollection,
CheckedListViewItemCollection, ComponentCollection, ControlCollection, InputLanguageCollection,
ListViewItemCollection, MenuItemCollection, ObjectCollection, PropertyDescriptorCollection,
SelectedIndexCollection, SelectedListViewItemCollection, SelectedObjectCollection, StandardValuesCollection,
ToolboxItemCollection, TreeNodeCollection

CopyToHdevmode()

PageSettings

Coral

Brushes, Color, KnownColor, Pens

CornflowerBlue

Brushes, Color, KnownColor, Pens

Cornsilk

Brushes, Color, KnownColor, Pens

Count

AttributeCollection, BaseCollection, BindingManagerBase, BindingsCollection, CheckedIndexCollection,
CheckedItemCollection, CheckedListViewItemCollection, ColorAdjustType, ColumnHeaderCollection,
ControlCollection, CurrencyManager, EventDescriptorCollection, GraphicsPathIterator, GridItemCollection,
ImageCollection, LinkCollection, ListViewItemCollection, ListViewSubItemCollection, MenuItemCollection,
ObjectCollection, PaperSizeCollection, PaperSourceCollection, PrinterResolutionCollection,
PropertyDescriptorCollection, PropertyManager, PropertyTabCollection, SelectedIndexCollection,
SelectedListViewItemCollection, SelectedObjectCollection, StandardValuesCollection, StatusBarPanelCollection,
StringCollection, TabPageCollection, ToolBarButtonCollection, TreeNodeCollection

Create

AccessibleEvents

Create()

Message

CreateAccessibilityInstance()

ButtonBase, CheckBox, CheckedListBox, Control, DataGrid, DateTimePicker, DomainUpDown, Label, LinkLabel,
NumericUpDown, RadioButton

CreateAttributeCollection()

MemberDescriptor

CreateComponentFromTool()

ComponentTray

CreateComponents()

ToolboxItem

CreateComponentsCore()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolboxItem

CreateControl()

Control

CreateControlsInstance()

Control, Form, MdiClient, TabControl, TabPage

Created

Control

CreateDesigner()

TypeDescriptor

CreateEvent()

TypeDescriptor

CreateExtensionsString()

IconEditor, ImageEditor

CreateFilterEntry()

IconEditor, ImageEditor

CreateGraphics()

Control

CreateGridColumn()

DataGrid

CreateGridTables()

GridTablesFactory

CreateHandle()

AxHost, Control, DateTimePicker, Form, LinkLabel, ListView, MonthCalendar, NativeWindow, PrintPreviewDialog,
ProgressBar, StatusBar, TabControl, TextBoxBase, ToolBar, TrackBar, TreeView

CreateHBitmap16Bit()

ControlPaint

CreateHBitmapColorMask()

ControlPaint

CreateHBitmapTransparencyMask()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ControlPaint

CreateHeaderAccessibleObject()

DataGridColumnStyle

CreateInstance()

FontConverter, LinkAreaConverter, ListBindingConverter, MarginsConverter, PointConverter, PropertyDescriptor,
RectangleConverter, SelectionRangeConverter, SizeConverter, TypeConverter

CreateItemCollection()

CheckedListBox, ListBox

CreateMeasurementGraphics()

PrinterSettings

CreateMenuHandle()

MainMenu, Menu

CreateParams

System.Windows.Forms

CreatePermission()

PrintingPermissionAttribute

CreatePrompt

SaveFileDialog

CreateProperty()

TypeDescriptor

CreatePropertyTab()

PropertyGrid

CreateRichEditOleCallback()

RichTextBox

CreateSink()

AxHost

CreateSite()

Container

CreateTool()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ParentControlDesigner

CreateToolCore()

ParentControlDesigner

CreateWithContext()

LicenseManager

Crimson

Brushes, Color, KnownColor, Pens

Cross

Cursors, HatchStyle

Crsel

Keys

CSheet

PaperKind

Ctrl0

Shortcut

Ctrl1

Shortcut

Ctrl2

Shortcut

Ctrl3

Shortcut

Ctrl4

Shortcut

Ctrl5

Shortcut

Ctrl6

Shortcut

Ctrl7

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

Ctrl8

Shortcut

Ctrl9

Shortcut

CtrlA

Shortcut

CtrlB

Shortcut

CtrlC

Shortcut

CtrlD

Shortcut

CtrlDel

Shortcut

CtrlE

Shortcut

CtrlF

Shortcut

CtrlF1

Shortcut

CtrlF10

Shortcut

CtrlF11

Shortcut

CtrlF12

Shortcut

CtrlF2

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

CtrlF3

Shortcut

CtrlF4

Shortcut

CtrlF5

Shortcut

CtrlF6

Shortcut

CtrlF7

Shortcut

CtrlF8

Shortcut

CtrlF9

Shortcut

CtrlG

Shortcut

CtrlH

Shortcut

CtrlI

Shortcut

CtrlIns

Shortcut

CtrlJ

Shortcut

CtrlK

Shortcut

CtrlL

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

CtrlM

Shortcut

CtrlN

Shortcut

CtrlO

Shortcut

CtrlP

Shortcut

CtrlQ

Shortcut

CtrlR

Shortcut

CtrlS

Shortcut

CtrlShift0

Shortcut

CtrlShift1

Shortcut

CtrlShift2

Shortcut

CtrlShift3

Shortcut

CtrlShift4

Shortcut

CtrlShift5

Shortcut

CtrlShift6

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

CtrlShift7

Shortcut

CtrlShift8

Shortcut

CtrlShift9

Shortcut

CtrlShiftA

Shortcut

CtrlShiftB

Shortcut

CtrlShiftC

Shortcut

CtrlShiftD

Shortcut

CtrlShiftE

Shortcut

CtrlShiftF

Shortcut

CtrlShiftF1

Shortcut

CtrlShiftF10

Shortcut

CtrlShiftF11

Shortcut

CtrlShiftF12

Shortcut

CtrlShiftF2

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

CtrlShiftF3

Shortcut

CtrlShiftF4

Shortcut

CtrlShiftF5

Shortcut

CtrlShiftF6

Shortcut

CtrlShiftF7

Shortcut

CtrlShiftF8

Shortcut

CtrlShiftF9

Shortcut

CtrlShiftG

Shortcut

CtrlShiftH

Shortcut

CtrlShiftI

Shortcut

CtrlShiftJ

Shortcut

CtrlShiftK

Shortcut

CtrlShiftL

Shortcut

CtrlShiftM

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

CtrlShiftN

Shortcut

CtrlShiftO

Shortcut

CtrlShiftP

Shortcut

CtrlShiftQ

Shortcut

CtrlShiftR

Shortcut

CtrlShiftS

Shortcut

CtrlShiftT

Shortcut

CtrlShiftU

Shortcut

CtrlShiftV

Shortcut

CtrlShiftW

Shortcut

CtrlShiftX

Shortcut

CtrlShiftY

Shortcut

CtrlShiftZ

Shortcut

CtrlT

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

CtrlU

Shortcut

CtrlV

Shortcut

CtrlW

Shortcut

CtrlX

Shortcut

CtrlY

Shortcut

CtrlZ

Shortcut

Culture

InputLanguage, InputLanguageChangedEventArgs, InputLanguageChangingEventArgs

CultureInfoConverter

System.ComponentModel

CurrencyManager

System.Windows.Forms

Current

BindingManagerBase, CurrencyManager, Cursor, PropertyManager

CurrentCell

DataGrid

CurrentCellChanged

DataGrid

CurrentChanged

BindingManagerBase

CurrentContext

LicenseManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LicenseManager

CurrentCulture

Application

CurrentInputLanguage

Application, InputLanguage

CurrentRowIndex

DataGrid

CurrentValue

ItemCheckEventArgs

Cursor

AccessibleRole, AmbientProperties, AxHost, Control, DataGrid, PrintPreviewDialog, System.Windows.Forms

CursorChanged

AxHost, Control

CursorConverter

System.Windows.Forms

CursorEditor

System.Drawing.Design

Cursors

System.Windows.Forms

CursorSize

SystemInformation

Custom

DashStyle, DateTimePickerFormat, LineCap, PaperKind, PaperSourceKind, PrinterResolutionKind,
RichTextBoxWordPunctuations, ToolboxItemFilterType

CustomColors

ColorDialog

CustomEndCap

Pen

CustomFormat

DateTimePicker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateTimePicker

CustomLineCap

System.Drawing.Drawing2D

CustomStartCap

Pen

Cut()

TextBoxBase

Cyan

Brushes, Color, KnownColor, Pens

D

Keys

D0

Keys

D1

Keys

D2

Keys

D3

Keys

D4

Keys

D5

Keys

D6

Keys

D7

Keys

D8

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

D9

Keys

Dark()

ControlPaint

DarkBlue

Brushes, Color, KnownColor, Pens

DarkCyan

Brushes, Color, KnownColor, Pens

DarkDark()

ControlPaint

DarkDownwardDiagonal

HatchStyle

DarkGoldenrod

Brushes, Color, KnownColor, Pens

DarkGray

Brushes, Color, KnownColor, Pens

DarkGreen

Brushes, Color, KnownColor, Pens

DarkHorizontal

HatchStyle

DarkKhaki

Brushes, Color, KnownColor, Pens

DarkMagenta

Brushes, Color, KnownColor, Pens

DarkOliveGreen

Brushes, Color, KnownColor, Pens

DarkOrange

Brushes, Color, KnownColor, Pens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brushes, Color, KnownColor, Pens

DarkOrchid

Brushes, Color, KnownColor, Pens

DarkRed

Brushes, Color, KnownColor, Pens

DarkSalmon

Brushes, Color, KnownColor, Pens

DarkSeaGreen

Brushes, Color, KnownColor, Pens

DarkSlateBlue

Brushes, Color, KnownColor, Pens

DarkSlateGray

Brushes, Color, KnownColor, Pens

DarkTurquoise

Brushes, Color, KnownColor, Pens

DarkUpwardDiagonal

HatchStyle

DarkVertical

HatchStyle

DarkViolet

Brushes, Color, KnownColor, Pens

Dash

DashStyle

DashCap

Pen, System.Drawing.Drawing2D

DashDot

DashStyle

DashDotDot

DashStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DashStyle

Dashed

ButtonBorderStyle, FrameStyle

DashedDownwardDiagonal

HatchStyle

DashedHorizontal

HatchStyle

DashedUpwardDiagonal

HatchStyle

DashedVertical

HatchStyle

DashMode

PathPointType

DashOffset

Pen

DashPattern

Pen

DashStyle

Pen, System.Drawing.Drawing2D

Data

CategoryAttribute, DragEventArgs, RegionData

DataBindings

Control, PrintPreviewDialog

DataFormats

System.Windows.Forms

DataGrid

DataGridTableStyle, System.Windows.Forms

DataGridBoolColumn

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

DataGridCell

System.Windows.Forms

DataGridColumnStyle

System.Windows.Forms

DataGridLineStyle

System.Windows.Forms

DataGridParentRowsLabelStyle

System.Windows.Forms

DataGridPreferredColumnWidthTypeConverter

System.Windows.Forms

DataGridTableStyle

DataGridColumnStyle, System.Windows.Forms

DataGridTextBox

System.Windows.Forms

DataGridTextBoxColumn

System.Windows.Forms

DataMember

DataGrid, ErrorProvider

DataObject

System.Windows.Forms

DataSource

Binding, DataGrid, ErrorProvider, ListControl

DataSourceChanged

DataGrid, ListControl

Date

HitArea

DateBoldEventArgs

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

DateBoldEventHandler

System.Windows.Forms

DateChanged

MonthCalendar

DateRangeEventArgs

System.Windows.Forms

DateRangeEventHandler

System.Windows.Forms

DateSelected

MonthCalendar

DateTimeConverter

System.ComponentModel

DateTimePicker

System.Windows.Forms

DateTimePickerAccessibleObject

System.Windows.Forms

DateTimePickerFormat

System.Windows.Forms

Day

System.Windows.Forms

DayOfWeek

HitArea

DaysToBold

DateBoldEventArgs

DbcsEnabled

SystemInformation

Deactivate

Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form

Deactivate()

ComponentEditorPage

DebugOS

SystemInformation

Decimal

Keys

DecimalConverter

System.ComponentModel

DecimalPlaces

NumericUpDown

Decoder

ImageCodecFlags

DeepPink

Brushes, Color, KnownColor, Pens

DeepSkyBlue

Brushes, Color, KnownColor, Pens

Default

AccessibleRole, AccessibleStates, BindableAttribute, BindableSupport, BrowsableAttribute, CategoryAttribute,
ColorAdjustType, ColorMapType, ColorMatrixFlag, CompositingQuality, Cursors, Day, DefaultEventAttribute,
DefaultPropertyAttribute, DescriptionAttribute, DesignerCategoryAttribute,
DesignerSerializationVisibilityAttribute, DesignOnlyAttribute, DesignTimeVisibleAttribute, DrawItemState,
Duplex, ImmutableObjectAttribute, InheritanceAttribute, InterpolationMode, LicenseProviderAttribute,
ListBindableAttribute, ListViewAlignment, LocalizableAttribute, MergablePropertyAttribute,
NotifyParentPropertyAttribute, ParenthesizePropertyNameAttribute, PixelOffsetMode, QualityMode,
ReadOnlyAttribute, RecommendedAsConfigurableAttribute, RefreshPropertiesAttribute, RunInstallerAttribute,
SmoothingMode, ToolboxBitmapAttribute, ToolboxItemAttribute, TypeConverterAttribute

DefaultAction

AccessibleObject, CheckBoxAccessibleObject, ControlAccessibleObject, ControlDesignerAccessibleObject,
RadioButtonAccessibleObject

DefaultActionChange

AccessibleEvents

DefaultBackColor

Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefaultDesktopOnly

MessageBoxOptions

DefaultEventAttribute

System.ComponentModel

DefaultExt

FileDialog

DefaultFont

Control

DefaultForeColor

Control

DefaultInputLanguage

InputLanguage

DefaultItem

MenuItem

DefaultItemHeight

ListBox

DefaultMonthBackColor

DateTimePicker

DefaultPageSettings

PrintDocument, PrinterSettings

DefaultPrinting

PrintingPermissionLevel

DefaultPropertyAttribute

System.ComponentModel

DefaultTableStyle

DataGridTableStyle

DefaultTitleBackColor

DateTimePicker

DefaultTitleForeColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefaultTitleForeColor

DateTimePicker

DefaultTrailingForeColor

DateTimePicker

DefaultValueAttribute

System.ComponentModel

DefWndProc()

Control, ControlDesigner, Form, NativeWindow

Del

Shortcut

delaySign

Options

Delete

Keys

DeletedAccount

SecurityIDType

Delta

MouseEventArgs

Depth16Bit

ColorDepth

Depth24Bit

ColorDepth

Depth32Bit

ColorDepth

Depth4Bit

ColorDepth

Depth8Bit

ColorDepth

DereferenceLinks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileDialog

Descending

ListSortDirection, SortOrder

Description

AccessibleObject, ControlAccessibleObject, ControlDesignerAccessibleObject, DescriptionAttribute,
MemberDescriptor

DescriptionAttribute

System.ComponentModel

DescriptionChange

AccessibleEvents

Deserialize()

ListViewItem, ToolboxItem

DeserializeToolboxItem()

IToolboxService

Design

CategoryAttribute

DesignerAttribute

System.ComponentModel

DesignerBaseTypeName

DesignerAttribute

DesignerCategoryAttribute

System.ComponentModel

DesignerHost

ToolboxComponentsCreatingEventArgs

DesignerProperties

MenuCommands

DesignerSerializationVisibility

System.ComponentModel

DesignerSerializationVisibilityAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

DesignerTypeName

DesignerAttribute

DesignMode

ISite, MarshalByValueComponent

DesignOnlyAttribute

System.ComponentModel

Designtime

LicenseUsageMode

DesignTimeOnly

MemberDescriptor

DesignTimeVisibleAttribute

System.ComponentModel

DesiredType

ConvertEventArgs

Desktop

KnownColor, SystemBrushes, SystemColors

DesktopBounds

Form

DesktopLocation

Form

Destroy

AccessibleEvents

DestroyHandle()

AxHost, Control, DateTimePicker, NativeWindow

DetachSink()

AxHost

Details

View

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

View

DetectUrls

RichTextBox

Device

CoordinateSpace

DeviceName

Screen

DiagonalBrick

HatchStyle

DiagonalCross

HatchStyle

Diagram

AccessibleRole

Dial

AccessibleRole

Dialog

AccessibleRole

DialogResult

Button, Form, IButtonControl, System.Windows.Forms

DiamondAnchor

LineCap

Dib

DataFormats

Dif

DataFormats

DigitSubstitutionLanguage

StringFormat

DigitSubstitutionMethod

StringFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StringFormat

DimGray

Brushes, Color, KnownColor, Pens

Direction

AxParameterData

DirectionRightToLeft

StringFormatFlags

DirectionVertical

StringFormatFlags

Disable

ImeMode

Disabled

DrawItemState

DisabledLinkColor

LinkLabel

Disconnect()

ConnectionPointCookie

Display

GraphicsUnit, PrinterUnit, StringUnit

DisplayError()

ComponentTray, ControlDesigner

DisplayFormatControl

StringFormatFlags

DisplayMember

ListControl

DisplayMemberChanged

ListControl

DisplayName

MemberDescriptor, ToolboxItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MemberDescriptor, ToolboxItem

DisplayRectangle

Control, GroupBox, ScrollableControl, TabControl

Dispose()

ApplicationContext, AxHost, Brush, ButtonBase, ColumnHeader, ComboBox, Component,
ComponentDocumentDesigner, ComponentTray, Container, ContainerControl, Control, ControlDesigner, Cursor,
CustomLineCap, DataGrid, DataGridTableStyle, DocumentDesigner, EncoderParameter, EncoderParameters,
ErrorProvider, EventHandlerList, Font, FontCollection, FontFamily, Form, Graphics, GraphicsPath,
GraphicsPathIterator, Icon, Image, ImageAttributes, ImageList, Label, License, ListView, MainMenu,
MarshalByValueComponent, Matrix, Menu, MenuItem, MonthCalendar, NotifyIcon, PaintEventArgs,
ParentControlDesigner, Pen, PictureBox, PrivateFontCollection, PropertyGrid, PropertyTab, Region, SolidBrush,
StatusBar, StatusBarPanel, StringFormat, Timer, ToolBar, ToolBarButton, ToolTip, TreeView

Disposed

Component, IComponent, MarshalByValueComponent

Disposing

Control

disposingHandler

ControlDesigner

Divide

Keys

Divider

ToolBar

Divot

HatchStyle

DLEnvelope

PaperKind

DllName

ImageCodecInfo

Dock

Control, PrintPreviewDialog, Splitter, StatusBar, TabPage, ToolBar

DockChanged

Control

DockEditor

System.Windows.Forms.Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms.Design

DockPadding

PrintPreviewDialog, ScrollableControl, UpDownBase

DockPaddingEdges

System.Windows.Forms

DockPaddingEdgesConverter

System.Windows.Forms

DockStyle

System.Windows.Forms

Document

AccessibleRole, GraphicsUnit, MetafileFrameUnit, PageSetupDialog, PrintDialog, PrintPreviewControl,
PrintPreviewDialog, PropertyTabScope, StringUnit

DocumentDesigner

System.Windows.Forms.Design

DocumentName

PrintDocument

DoDefaultAction()

AccessibleObject, ButtonBaseAccessibleObject, RadioButtonAccessibleObject

DodgerBlue

Brushes, Color, KnownColor, Pens

DoDragDrop()

Control

DoEvents()

Application

Domain

SecurityIDType

DomainItemAccessibleObject

System.Windows.Forms

DomainUpDown

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

DomainUpDownAccessibleObject

System.Windows.Forms

DomainUpDownItemCollection

System.Windows.Forms

DontCare

PixelFormat

Dot

DashStyle

Dotted

ButtonBorderStyle

DottedDiamond

HatchStyle

DottedGrid

HatchStyle

DoubleBuffer

ControlStyles

DoubleClick

AxHost, Button, Control, GroupBox, MonthCalendar, NotifyIcon, ProgressBar, RichTextBox, ScrollBar, TrackBar

DoubleClickSize

SystemInformation

DoubleClickTime

SystemInformation

DoubleConverter

System.ComponentModel

DoVerb()

AxHost

Down

AccessibleNavigation, ArrangeDirection, Keys, ScrollButton

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessibleNavigation, ArrangeDirection, Keys, ScrollButton

DownButton()

DomainUpDown, NumericUpDown, UpDownBase

DpiX

Graphics, MetafileHeader

DpiY

Graphics, MetafileHeader

Draft

PrinterResolutionKind

DragAction

System.Windows.Forms

DragDrop

AxHost, CategoryAttribute, Control, RichTextBox

DragDropEffects

System.Windows.Forms

DragEnter

AxHost, Control, RichTextBox

DragEventArgs

System.Windows.Forms

DragEventHandler

System.Windows.Forms

DragFullWindows

SystemInformation

DragLeave

AxHost, Control, RichTextBox

DragOver

AxHost, Control, RichTextBox

DragSize

SystemInformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemInformation

Draw()

Cursor, ImageList

DrawArc

EmfPlusRecordType

DrawArc()

Graphics

DrawBackground()

DrawItemEventArgs

DrawBezier()

Graphics

DrawBeziers

EmfPlusRecordType

DrawBeziers()

Graphics

DrawBorder()

ControlPaint

DrawBorder3D()

ControlPaint

DrawButton()

ControlPaint

DrawCaptionButton()

ControlPaint

DrawCheckBox()

ControlPaint

DrawClosedCurve

EmfPlusRecordType

DrawClosedCurve()

Graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphics

DrawComboButton()

ControlPaint

DrawContainerGrabHandle()

ControlPaint

DrawCurve

EmfPlusRecordType

DrawCurve()

Graphics

DrawDriverString

EmfPlusRecordType

DrawEllipse

EmfPlusRecordType

DrawEllipse()

Graphics

DrawFocusRectangle()

ControlPaint, DrawItemEventArgs

DrawGrabHandle()

ControlPaint

DrawGrid()

ControlPaint

DrawIcon()

Graphics

DrawIconUnstretched()

Graphics

DrawImage

EmfPlusRecordType

DrawImage()

Graphics, Label

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphics, Label

DrawImageAbort

System.Drawing

DrawImageDisabled()

ControlPaint

DrawImagePoints

EmfPlusRecordType

DrawImageUnscaled()

Graphics

DrawItem

CheckedListBox, ComboBox, ListBox, MenuItem, StatusBar, TabControl

DrawItemEventArgs

System.Windows.Forms

DrawItemEventHandler

System.Windows.Forms

DrawItemState

System.Windows.Forms

DrawLine()

Graphics

DrawLines

EmfPlusRecordType

DrawLines()

Graphics

DrawLockedFrame()

ControlPaint

DrawMenuGlyph()

ControlPaint

DrawMixedCheckBox()

ControlPaint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ControlPaint

DrawMode

CheckedListBox, ComboBox, ListBox, System.Windows.Forms, TabControl

DrawPath

EmfPlusRecordType

DrawPath()

Graphics

DrawPie

EmfPlusRecordType

DrawPie()

Graphics

DrawPolygon()

Graphics

DrawRadioButton()

ControlPaint

DrawRectangle()

Graphics

DrawRectangles()

Graphics

DrawRects

EmfPlusRecordType

DrawReversibleFrame()

ControlPaint

DrawReversibleLine()

ControlPaint

DrawScrollButton()

ControlPaint

DrawSelectionFrame()

ControlPaint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ControlPaint

DrawSizeGrip()

ControlPaint

DrawStretched()

Cursor

DrawString

EmfPlusRecordType

DrawString()

Graphics

DrawStringDisabled()

ControlPaint

Drop

DragAction

DropDown

ComboBox, ComboBoxStyle, DateTimePicker, UITypeEditorEditStyle

DropDownAlign

DateTimePicker

DropDownArrows

ToolBar

DropDownButton

ToolBarButtonStyle

DropDownControl()

IWindowsFormsEditorService

DropDownList

ComboBoxStyle

DropDownMenu

ToolBarButton

DropDownStyle

ComboBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComboBox

DropDownStyleChanged

ComboBox

DropDownWidth

ComboBox

DropList

AccessibleRole

DroppedDown

ComboBox

DSheet

PaperKind

Duplex

PrinterSettings, System.Drawing.Printing

E

Keys

EditComponent()

AxComponentEditor, ComponentEditor, WindowsFormsComponentEditor

EditMode

AxHost

EditorAttribute

System.ComponentModel

EditorBaseTypeName

EditorAttribute

EditorBrowsableAttribute

System.ComponentModel

EditorBrowsableState

System.ComponentModel

EditorTypeName

EditorAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EditorAttribute

EditValue()

AnchorEditor, ColorEditor, ContentAlignmentEditor, CursorEditor, DockEditor, FileNameEditor,
FolderNameEditor, FontEditor, IconEditor, ImageEditor, UITypeEditor

Effect

DragEventArgs, GiveFeedbackEventArgs

Element

CollectionChangeEventArgs

Elements

Matrix

EllipsisCharacter

StringTrimming

EllipsisPath

StringTrimming

EllipsisWord

StringTrimming

Em

StringUnit

Emf

ImageFormat, MetafileType

EmfAbortPath

EmfPlusRecordType

EmfAlphaBlend

EmfPlusRecordType

EmfAngleArc

EmfPlusRecordType

EmfArcTo

EmfPlusRecordType

EmfBeginPath

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfBitBlt

EmfPlusRecordType

EmfChord

EmfPlusRecordType

EmfCloseFigure

EmfPlusRecordType

EmfColorCorrectPalette

EmfPlusRecordType

EmfColorMatchToTargetW

EmfPlusRecordType

EmfCreateBrushIndirect

EmfPlusRecordType

EmfCreateColorSpace

EmfPlusRecordType

EmfCreateColorSpaceW

EmfPlusRecordType

EmfCreateDibPatternBrushPt

EmfPlusRecordType

EmfCreateMonoBrush

EmfPlusRecordType

EmfCreatePalette

EmfPlusRecordType

EmfCreatePen

EmfPlusRecordType

EmfDeleteColorSpace

EmfPlusRecordType

EmfDeleteObject

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfDrawEscape

EmfPlusRecordType

EmfEllipse

EmfPlusRecordType

EmfEndPath

EmfPlusRecordType

EmfEof

EmfPlusRecordType

EmfExcludeClipRect

EmfPlusRecordType

EmfExtCreateFontIndirect

EmfPlusRecordType

EmfExtCreatePen

EmfPlusRecordType

EmfExtEscape

EmfPlusRecordType

EmfExtFloodFill

EmfPlusRecordType

EmfExtSelectClipRgn

EmfPlusRecordType

EmfExtTextOutA

EmfPlusRecordType

EmfExtTextOutW

EmfPlusRecordType

EmfFillPath

EmfPlusRecordType

EmfFillRgn

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfFlattenPath

EmfPlusRecordType

EmfForceUfiMapping

EmfPlusRecordType

EmfFrameRgn

EmfPlusRecordType

EmfGdiComment

EmfPlusRecordType

EmfGlsBoundedRecord

EmfPlusRecordType

EmfGlsRecord

EmfPlusRecordType

EmfGradientFill

EmfPlusRecordType

EmfHeader

EmfPlusRecordType

EmfIntersectClipRect

EmfPlusRecordType

EmfInvertRgn

EmfPlusRecordType

EmfLineTo

EmfPlusRecordType

EmfMaskBlt

EmfPlusRecordType

EmfMax

EmfPlusRecordType

EmfMin

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfModifyWorldTransform

EmfPlusRecordType

EmfMoveToEx

EmfPlusRecordType

EmfNamedEscpae

EmfPlusRecordType

EmfOffsetClipRgn

EmfPlusRecordType

EmfOnly

EmfType

EmfPaintRgn

EmfPlusRecordType

EmfPie

EmfPlusRecordType

EmfPixelFormat

EmfPlusRecordType

EmfPlgBlt

EmfPlusRecordType

EmfPlusDual

EmfType, MetafileType

EmfPlusHeaderSize

MetafileHeader

EmfPlusOnly

EmfType, MetafileType

EmfPlusRecordBase

EmfPlusRecordType

EmfPlusRecordType

System.Drawing.Imaging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Imaging

EmfPolyBezier

EmfPlusRecordType

EmfPolyBezier16

EmfPlusRecordType

EmfPolyBezierTo

EmfPlusRecordType

EmfPolyBezierTo16

EmfPlusRecordType

EmfPolyDraw

EmfPlusRecordType

EmfPolyDraw16

EmfPlusRecordType

EmfPolygon

EmfPlusRecordType

EmfPolygon16

EmfPlusRecordType

EmfPolyline

EmfPlusRecordType

EmfPolyline16

EmfPlusRecordType

EmfPolyLineTo

EmfPlusRecordType

EmfPolylineTo16

EmfPlusRecordType

EmfPolyPolygon

EmfPlusRecordType

EmfPolyPolygon16

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfPolyPolyline

EmfPlusRecordType

EmfPolyPolyline16

EmfPlusRecordType

EmfPolyTextOutA

EmfPlusRecordType

EmfPolyTextOutW

EmfPlusRecordType

EmfRealizePalette

EmfPlusRecordType

EmfRectangle

EmfPlusRecordType

EmfReserved069

EmfPlusRecordType

EmfReserved117

EmfPlusRecordType

EmfResizePalette

EmfPlusRecordType

EmfRestoreDC

EmfPlusRecordType

EmfRoundArc

EmfPlusRecordType

EmfRoundRect

EmfPlusRecordType

EmfSaveDC

EmfPlusRecordType

EmfScaleViewportExtEx

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfScaleWindowExtEx

EmfPlusRecordType

EmfSelectClipPath

EmfPlusRecordType

EmfSelectObject

EmfPlusRecordType

EmfSelectPalette

EmfPlusRecordType

EmfSetArcDirection

EmfPlusRecordType

EmfSetBkColor

EmfPlusRecordType

EmfSetBkMode

EmfPlusRecordType

EmfSetBrushOrgEx

EmfPlusRecordType

EmfSetColorAdjustment

EmfPlusRecordType

EmfSetColorSpace

EmfPlusRecordType

EmfSetDIBitsToDevice

EmfPlusRecordType

EmfSetIcmMode

EmfPlusRecordType

EmfSetIcmProfileA

EmfPlusRecordType

EmfSetIcmProfileW

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfSetLayout

EmfPlusRecordType

EmfSetLinkedUfis

EmfPlusRecordType

EmfSetMapMode

EmfPlusRecordType

EmfSetMapperFlags

EmfPlusRecordType

EmfSetMetaRgn

EmfPlusRecordType

EmfSetMiterLimit

EmfPlusRecordType

EmfSetPaletteEntries

EmfPlusRecordType

EmfSetPixelV

EmfPlusRecordType

EmfSetPolyFillMode

EmfPlusRecordType

EmfSetROP2

EmfPlusRecordType

EmfSetStretchBltMode

EmfPlusRecordType

EmfSetTextAlign

EmfPlusRecordType

EmfSetTextColor

EmfPlusRecordType

EmfSetTextJustification

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

EmfSetViewportExtEx

EmfPlusRecordType

EmfSetViewportOrgEx

EmfPlusRecordType

EmfSetWindowExtEx

EmfPlusRecordType

EmfSetWindowOrgEx

EmfPlusRecordType

EmfSetWorldTransform

EmfPlusRecordType

EmfSmallTextOut

EmfPlusRecordType

EmfStartDoc

EmfPlusRecordType

EmfStretchBlt

EmfPlusRecordType

EmfStretchDIBits

EmfPlusRecordType

EmfStrokeAndFillPath

EmfPlusRecordType

EmfStrokePath

EmfPlusRecordType

EmfTransparentBlt

EmfPlusRecordType

EmfType

System.Drawing.Imaging

EmfWidenPath

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

Empty

AttributeCollection, Color, EventDescriptorCollection, GridItemCollection, ImageCollection, Point, PointF,
PropertyDescriptorCollection, Rectangle, RectangleF, RichTextBoxSelectionTypes, Size, SizeF

Enabled

AxHost, Control, Link, MenuItem, PrintPreviewDialog, TabPage, Timer, ToolBarButton

EnabledChanged

AxHost, Control

EnableDragDrop()

ControlDesigner

EnableNotifyMessage

ControlStyles

Encoder

EncoderParameter, ImageCodecFlags, System.Drawing.Imaging

EncoderParameter

System.Drawing.Imaging

EncoderParameters

System.Drawing.Imaging

EncoderParameterValueType

System.Drawing.Imaging

EncoderValue

System.Drawing.Imaging

End

DateRangeEventArgs, Keys, SelectionRange

EndCap

Pen

EndContainer

EmfPlusRecordType

EndContainer()

Graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphics

EndCurrentEdit()

BindingManagerBase, CurrencyManager, PropertyManager

EndEdit()

DataGrid, DataGridTableStyle, DataGridTextBoxColumn, IDataGridEditingService, IEditableObject, TreeNode

EndInit()

AxHost, DataGrid, ISupportInitialize, NumericUpDown, StatusBarPanel, TrackBar

EndInvoke()

CancelEventHandler, CollectionChangeEventHandler, ColumnClickEventHandler, ContentsResizedEventHandler,
Control, ControlEventHandler, ConvertEventHandler, DateBoldEventHandler, DateRangeEventHandler,
DragEventHandler, DrawImageAbort, DrawItemEventHandler, EnumerateMetafileProc,
GetThumbnailImageAbort, GiveFeedbackEventHandler, HelpEventHandler,
InputLanguageChangedEventHandler, InputLanguageChangingEventHandler, InvalidateEventHandler,
ISynchronizeInvoke, ItemChangedEventHandler, ItemCheckEventHandler, ItemDragEventHandler,
KeyEventHandler, KeyPressEventHandler, LabelEditEventHandler, LayoutEventHandler,
LinkClickedEventHandler, LinkLabelLinkClickedEventHandler, ListChangedEventHandler,
MeasureItemEventHandler, MethodInvoker, MouseEventHandler, NavigateEventHandler,
NodeLabelEditEventHandler, PaintEventHandler, PlayRecordCallback, PrintEventHandler, PrintPageEventHandler,
PropertyChangedEventHandler, PropertyTabChangedEventHandler, PropertyValueChangedEventHandler,
PropertyValueUIHandler, PropertyValueUIItemInvokeHandler, QueryAccessibilityHelpEventHandler,
QueryContinueDragEventHandler, QueryPageSettingsEventHandler, RefreshEventHandler, ScrollEventHandler,
SelectedGridItemChangedEventHandler, SplitterEventHandler, StatusBarDrawItemEventHandler,
StatusBarPanelClickEventHandler, ToolBarButtonClickEventHandler, ToolboxComponentsCreatedEventHandler,
ToolboxComponentsCreatingEventHandler, ToolboxItemCreatorCallback, TreeViewCancelEventHandler,
TreeViewEventHandler, UICuesEventHandler, UpDownEventHandler

EndOfFile

EmfPlusRecordType

EndPrint

PrintDocument

EndScroll

ScrollEventType

EndUpdate()

ComboBox, DataGridColumnStyle, ListBox, ListView, TreeView

EnhancedMetafile

DataFormats

EnsureMenuEditorService()

DocumentDesigner

EnsureVisible()

ListView, ListViewItem, TreeNode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListView, ListViewItem, TreeNode

Enter

Control, Keys, PictureBox, ProgressBar, Splitter

EnterLoadingMode()

ComponentEditorPage

Entire

ItemBoundsPortion

Entries

ColorPalette

EnumConverter

System.ComponentModel

Enumerate()

GraphicsPathIterator

EnumerateMetafile()

Graphics

EnumerateMetafileProc

System.Drawing

Envelope

PaperSourceKind

Equals()

AmbientValueAttribute, BindableAttribute, BindingMemberInfo, BrowsableAttribute, CategoryAttribute, Color,
ControlCollection, Cursor, DataGridCell, DefaultEventAttribute, DefaultPropertyAttribute, DefaultValueAttribute,
DescriptionAttribute, DesignerAttribute, DesignerCategoryAttribute, DesignerSerializationVisibilityAttribute,
DesignOnlyAttribute, DesignTimeVisibleAttribute, DockPaddingEdges, EditorAttribute, EditorBrowsableAttribute,
ExtenderProvidedPropertyAttribute, Font, FontFamily, FrameDimension, HitTestInfo, ImageFormat,
ImmutableObjectAttribute, InheritanceAttribute, InputLanguage, InstallerTypeAttribute,
LicenseProviderAttribute, LinkArea, ListBindableAttribute, LocalizableAttribute, Margins, Matrix,
MemberDescriptor, MergablePropertyAttribute, Message, NotifyParentPropertyAttribute,
ParenthesizePropertyNameAttribute, Point, PointF, PropertyDescriptor, PropertyTabAttribute,
ProvidePropertyAttribute, ReadOnlyAttribute, RecommendedAsConfigurableAttribute, Rectangle, RectangleF,
RefreshPropertiesAttribute, Region, RunInstallerAttribute, Screen, Size, SizeF, ToolboxBitmapAttribute,
ToolboxItem, ToolboxItemAttribute, ToolboxItemFilterAttribute, TypeConverterAttribute

Equation

AccessibleRole

EraseEof

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

Error

IDataErrorInfo, MessageBoxIcon, SystemIcons

ErrorBlinkStyle

System.Windows.Forms

ErrorIconAlignment

System.Windows.Forms

ErrorProvider

System.Windows.Forms

Escape

Keys

EscapePressed

QueryContinueDragEventArgs

ESheet

PaperKind

Etched

Border3DStyle

EventApply

FontDialog

EventDescriptor

System.ComponentModel

EventDescriptorCollection

System.ComponentModel

EventFileOk

FileDialog

EventHandlerChanged

EventHandlerService

EventHandlerList

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

EventHandlerService

System.Windows.Forms.Design

EventsTab

System.Windows.Forms.Design

EventType

EventDescriptor

Exclamation

MessageBoxIcon, SystemIcons

Exclude

CombineMode

Exclude()

Region

ExcludeClip()

Graphics

ExecutablePath

Application

Execute

Keys

Execute()

ICommandExecutor

Executive

PaperKind

Exif

ImageFormat

Exit()

Application

ExitLoadingMode()

ComponentEditorPage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage

ExitThread()

Application, ApplicationContext

ExitThreadCore()

ApplicationContext

Expand

TreeViewAction

Expand()

DataGrid, TreeNode

Expandable

GridItem

ExpandableObjectConverter

System.ComponentModel

ExpandAll()

TreeNode, TreeView

ExpandAllGridItems()

PropertyGrid

Expanded

AccessibleStates, GridItem

Exsel

Keys

ExStyle

CreateParams

Extended

PixelFormat

ExtenderProperty

ExtenderProvidedPropertyAttribute

ExtenderProvidedPropertyAttribute

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

ExtendSelection

AccessibleSelection

ExtSelectable

AccessibleStates

F

Keys

F1

Keys, Shortcut

F10

Keys, Shortcut

F11

Keys, Shortcut

F12

Keys, Shortcut

F13

Keys

F14

Keys

F15

Keys

F16

Keys

F17

Keys

F18

Keys

F19

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

F2

Keys, Shortcut

F20

Keys

F21

Keys

F22

Keys

F23

Keys

F24

Keys

F3

Keys, Shortcut

F4

Keys, Shortcut

F5

Keys, Shortcut

F6

Keys, Shortcut

F7

Keys, Shortcut

F8

Keys, Shortcut

F9

Keys, Shortcut

Factors

Blend

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Blend

FailSafe

BootMode

FailSafeWithNetwork

BootMode

FalseValue

DataGridBoolColumn

FalseValueChanged

DataGridBoolColumn

Families

FontCollection, FontFamily

Far

StringAlignment

Feature

OSFeature

FeatureSupport

System.Windows.Forms

FileDialog

System.Windows.Forms

FileDrop

DataFormats

FileName

FileDialog

FileNameEditor

System.Windows.Forms.Design

FilenameExtension

ImageCodecInfo

FileNames

FileDialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileDialog

FileOk

FileDialog

Fill

DockStyle

FillAttributes()

MemberDescriptor

FillClosedCurve

EmfPlusRecordType

FillClosedCurve()

Graphics

Filled

AdjustableArrowCap

FillEllipse

EmfPlusRecordType

FillEllipse()

Graphics

FillMode

GraphicsPath, System.Drawing.Drawing2D

FillPath

EmfPlusRecordType

FillPath()

Graphics

FillPie

EmfPlusRecordType

FillPie()

Graphics

FillPolygon

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

FillPolygon()

Graphics

FillRectangle()

Graphics

FillRectangles()

Graphics

FillRects

EmfPlusRecordType

FillRegion

EmfPlusRecordType

FillRegion()

Graphics

FillReversibleRectangle()

ControlPaint

FillToRight

TabSizeMode

Filter

FileDialog, ToolboxItem

FilterIndex

FileDialog

FilterItemOnProperty()

ListControl

FilterString

ToolboxItemFilterAttribute

FilterType

ToolboxItemFilterAttribute

Finalize()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ApplicationContext, Brush, Component, ConnectionPointCookie, Container, Cursor, CustomLineCap,
EncoderParameter, Font, FontCollection, FontFamily, FontNameConverter, Graphics, GraphicsPath,
GraphicsPathIterator, Icon, Image, ImageAttributes, MarshalByValueComponent, Matrix, NativeWindow,
PaintEventArgs, Pen, PropertyTab, Region, StringFormat, ToolTip

FinalMode

Keys

finalType

CurrencyManager

Find

HelpNavigator

Find()

EventDescriptorCollection, IBindingList, PropertyDescriptorCollection, RichTextBox

FindForm()

Control

FindHandle

Menu

FindMenuItem()

Menu

FindMergePosition()

Menu

FindMethod()

MemberDescriptor

FindShortcut

Menu

FindString()

ComboBox, ListBox

FindStringExact()

ComboBox, ListBox

Firebrick

Brushes, Color, KnownColor, Pens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First

CharacterRange, ScrollEventType

FirstChild

AccessibleNavigation

FirstDayOfWeek

MonthCalendar

FirstNode

TreeNode

FirstVisibleColumn

DataGrid

FitBlackBox

StringFormatFlags

Fixed

TabSizeMode

Fixed3D

BorderStyle, FormBorderStyle

FixedDialog

FormBorderStyle

FixedFrameBorderSize

SystemInformation

FixedHeight

ControlStyles

FixedPitchOnly

FontDialog

FixedSingle

BorderStyle, FormBorderStyle

FixedToolWindow

FormBorderStyle

FixedWidth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FixedWidth

ControlStyles

Flags

ColorPalette, Image, ImageCodecInfo

Flat

Border3DStyle, ButtonState, DashCap, FlatStyle, LineCap, ToolBarAppearance

FlatButtons

TabAppearance

FlatMode

DataGrid

FlatModeChanged

DataGrid

FlatStyle

ButtonBase, GroupBox, Label, System.Windows.Forms

Flatten()

GraphicsPath

Floating

AccessibleStates

FloralWhite

Brushes, Color, KnownColor, Pens

Flush

EncoderValue, FlushIntention

Flush()

Graphics, SendKeys

FlushIntention

System.Drawing.Drawing2D

Focus

AccessibleEvents, CategoryAttribute, DrawItemState

Focus()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control

Focusable

AccessibleStates

Focused

AccessibleStates, ComboBox, Control, ListViewItem, UpDownBase

FocusedItem

ListView

FocusScales

PathGradientBrush

FocusWindow

EventHandlerService

FolderNameEditor

System.Windows.Forms.Design

Folio

PaperKind

Font

AmbientProperties, AxHost, Control, DrawItemEventArgs, FontDialog, ListViewItem, ListViewSubItem,
OwnerDrawPropertyBag, PictureBox, PrintPreviewDialog, ProgressBar, RichTextBox, ScrollBar, Splitter,
StatusBar, System.Drawing, TrackBar

FontChanged

AxHost, Control, DataGridColumnStyle

FontCollection

System.Drawing.Text

FontConverter

System.Drawing

FontDialog

System.Windows.Forms

FontEditor

System.Drawing.Design

FontFamily

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontFamily

Font, System.Drawing

FontMustExist

FontDialog

FontNameConverter

System.Drawing

FontNameEditor

System.Drawing.Design

FontStyle

System.Drawing

FontUnitConverter

System.Drawing

ForcedBoth

RichTextBoxScrollBars

ForcedHorizontal

RichTextBoxScrollBars

ForcedVertical

RichTextBoxScrollBars

ForeColor

AmbientProperties, AxHost, ComboBox, Control, DataGrid, DataGridTableStyle, DateTimePicker,
DrawItemEventArgs, ListBox, ListView, ListViewItem, ListViewSubItem, MonthCalendar,
OwnerDrawPropertyBag, PictureBox, PrintPreviewDialog, ProgressBar, PropertyGrid, RichTextBox, ScrollBar,
Splitter, StatusBar, TabControl, TextBoxBase, ToolBar, TrackBar, TreeNode, TreeView, UpDownBase

ForeColorChanged

AxHost, Control, DataGridTableStyle

ForegroundColor

HatchBrush

ForestGreen

Brushes, Color, KnownColor, Pens

Form

DesignerCategoryAttribute, System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DesignerCategoryAttribute, System.Windows.Forms

Format

Binding, CategoryAttribute, DataGridTextBoxColumn, DateTimePicker, System.Windows.Forms

Format16bppArgb1555

PixelFormat

Format16bppGrayScale

PixelFormat

Format16bppRgb555

PixelFormat

Format16bppRgb565

PixelFormat

Format1bppIndexed

PixelFormat

Format24bppRgb

PixelFormat

Format32bppArgb

PixelFormat

Format32bppPArgb

PixelFormat

Format32bppRgb

PixelFormat

Format48bppRgb

PixelFormat

Format4bppIndexed

PixelFormat

Format64bppArgb

PixelFormat

Format64bppPArgb

PixelFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PixelFormat

Format8bppIndexed

PixelFormat

FormatChanged

DateTimePicker

FormatDescription

ImageCodecInfo

FormatFlags

StringFormat

FormatID

ImageCodecInfo

FormatInfo

DataGridTextBoxColumn

FormBorderStyle

Form, PrintPreviewDialog, System.Windows.Forms

FormSource

PaperSourceKind

FormStartPosition

System.Windows.Forms

FormWindowState

System.Windows.Forms

Forward

NavigateEventArgs

ForwardDiagonal

HatchStyle, LinearGradientMode

FrameBorderSize

SystemInformation

FrameDimension

System.Drawing.Imaging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Imaging

FrameDimensionPage

EncoderValue

FrameDimensionResolution

EncoderValue

FrameDimensionsList

Image

FrameDimensionTime

EncoderValue

FrameStyle

System.Windows.Forms

Friday

Day

FromArgb()

Color

FromChildHandle()

Control

FromControl()

Screen

FromCulture()

InputLanguage

FromFile()

Image

FromHandle()

Control, Icon, NativeWindow, Screen, TreeNode

FromHbitmap()

Image

FromHdc()

Font, Graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Font, Graphics

FromHdcInternal()

Graphics

FromHfont()

Font

FromHicon()

Bitmap

FromHrgn()

Region

FromHtml()

ColorTranslator

FromHwnd()

Graphics

FromHwndInternal()

Graphics

FromImage()

Graphics

FromKnownColor()

Color

FromLogFont()

Font

FromLTRB()

Rectangle, RectangleF

FromName()

Color

FromOle()

ColorTranslator

FromPage

PrinterSettings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrinterSettings

FromPoint()

Screen

FromRectangle()

Screen

FromResource()

Bitmap

FromStream()

Image

FromSystemColor()

SystemBrushes, SystemPens

FromWin32()

ColorTranslator

FromXml()

PrintingPermission

Fuchsia

Brushes, Color, KnownColor, Pens

FullOpen

ColorDialog

FullPath

TreeNode

FullRowSelect

ListView, TreeView

G

Color, Keys

Gainsboro

Brushes, Color, KnownColor, Pens

GammaCorrected

CompositingQuality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CompositingQuality

GammaCorrection

LinearGradientBrush

Gdi

PixelFormat

GdiCharSet

Font

GdiCompatible

MetafileFrameUnit

GdiVerticalFont

Font

GeneratedAssemblies

AxImporter

GeneratedSources

AxImporter, AxWrapperGen

GeneratedTypeLibAttributes

AxImporter

GenerateFromFile()

AxImporter

GenerateFromTypeLibrary()

AxImporter

Generic

DesignerCategoryAttribute

GenericDefault

StringFormat

GenericFontFamilies

System.Drawing.Text

GenericMonospace

FontFamily

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontFamily

GenericSansSerif

FontFamily

GenericSerif

FontFamily

GenericTypographic

StringFormat

genSources

Options

GermanLegalFanfold

PaperKind

GermanStandardFanfold

PaperKind

GetAdjustedPalette()

ImageAttributes

GetAttributes()

IComNativeDescriptorHandler, ICustomTypeDescriptor, TypeDescriptor

GetAutoScaleSize()

Form

GetBounds()

GraphicsPath, Image, ListViewItem, Region, Screen

GetBrightness()

Color

GetCellAscent()

FontFamily

GetCellBounds()

DataGrid

GetCellDescent()

FontFamily

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontFamily

GetCharFromPosition()

RichTextBox

GetCharIndexFromPosition()

RichTextBox

GetChild()

AccessibleObject, ControlDesignerAccessibleObject, DomainUpDownAccessibleObject

GetChildAtPoint()

Control

GetChildCount()

AccessibleObject, ControlDesignerAccessibleObject, DomainUpDownAccessibleObject

GetChildIndex()

ControlCollection

GetChildProperties()

PropertyDescriptor

GetClassName()

IComNativeDescriptorHandler, ICustomTypeDescriptor, TypeDescriptor

GetColorFromOleColor()

AxHost

GetComponentEditorPages()

WindowsFormsComponentEditor

GetComponentName()

ICustomTypeDescriptor, TypeDescriptor

GetContainerControl()

Control

GetContextMenu()

Menu

GetControl()

ComponentEditorPage, IComponentEditorPageSite, ParentControlDesigner, TabControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage, IComponentEditorPageSite, ParentControlDesigner, TabControl

GetConverter()

IComNativeDescriptorHandler, ICustomTypeDescriptor, TypeDescriptor

GetConvertFromException()

TypeConverter

GetConvertToException()

TypeConverter

GetCreateInstanceSupported()

FontConverter, LinkAreaConverter, ListBindingConverter, MarginsConverter, PointConverter,
RectangleConverter, SelectionRangeConverter, SizeConverter, TypeConverter

GetCurrentCellBounds()

DataGrid

GetData()

DataObject, IDataObject

GetDataObject()

Clipboard

GetDataPresent()

DataObject, IDataObject

GetDC

EmfPlusRecordType

GetDefaultAttribute()

AttributeCollection

GetDefaultEvent()

IComNativeDescriptorHandler, ICustomTypeDescriptor, TypeDescriptor

GetDefaultProperty()

EventsTab, IComNativeDescriptorHandler, ICustomTypeDescriptor, PropertyTab, TypeDescriptor

GetDialogOwnerWindow()

IUIService

GetDisplayRange()

MonthCalendar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MonthCalendar

GetEditor()

IComNativeDescriptorHandler, ICustomTypeDescriptor, PropertyDescriptor, TypeDescriptor

GetEditStyle()

AnchorEditor, ColorEditor, ContentAlignmentEditor, CursorEditor, DockEditor, FileNameEditor,
FolderNameEditor, FontEditor, IconEditor, ImageEditor, UITypeEditor

GetEmHeight()

FontFamily

GetEncoderParameterList()

Image

GetEnumerator()

AttributeCollection, BaseCollection, CheckedIndexCollection, CheckedItemCollection,
CheckedListViewItemCollection, ColumnHeaderCollection, ControlCollection, EventDescriptorCollection,
GridItemCollection, ImageCollection, LinkCollection, ListViewItemCollection, ListViewSubItemCollection,
MenuItemCollection, ObjectCollection, PaperSizeCollection, PaperSourceCollection, PrinterResolutionCollection,
PropertyDescriptorCollection, PropertyTabCollection, SelectedIndexCollection, SelectedListViewItemCollection,
SelectedObjectCollection, StandardValuesCollection, StatusBarPanelCollection, StringCollection,
TabPageCollection, ToolBarButtonCollection, TreeNodeCollection

GetError()

ErrorProvider

GetEvents()

IComNativeDescriptorHandler, ICustomTypeDescriptor, TypeDescriptor

GetExtensions()

BitmapEditor, IconEditor, ImageEditor, MetafileEditor

GetFamilies()

FontFamily

GetFileDialogDescription()

BitmapEditor, IconEditor, ImageEditor, MetafileEditor

GetFileOfTypeLib()

AxImporter

GetFocused()

AccessibleObject, ControlDesignerAccessibleObject

GetFontFromIFont()

AxHost

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AxHost

GetFontFromIFontDisp()

AxHost

GetForm()

MainMenu

GetFormat()

DataFormats

GetFormats()

DataObject, IDataObject

GetFrameCount()

Image

GetHalftonePalette()

Graphics

GetHandler()

EventHandlerService

GetHashCode()

AmbientValueAttribute, BindableAttribute, BindingMemberInfo, BrowsableAttribute, CategoryAttribute, Color,
ControlCollection, Cursor, DataGridCell, DefaultEventAttribute, DefaultPropertyAttribute, DefaultValueAttribute,
DescriptionAttribute, DesignerAttribute, DesignerCategoryAttribute, DesignerSerializationVisibilityAttribute,
DesignOnlyAttribute, DesignTimeVisibleAttribute, DockPaddingEdges, EditorAttribute, EditorBrowsableAttribute,
ExtenderProvidedPropertyAttribute, Font, FontFamily, FrameDimension, HitTestInfo, ImageFormat,
ImmutableObjectAttribute, InheritanceAttribute, InputLanguage, InstallerTypeAttribute,
LicenseProviderAttribute, LinkArea, ListBindableAttribute, LocalizableAttribute, Margins, Matrix,
MemberDescriptor, MergablePropertyAttribute, Message, NotifyParentPropertyAttribute,
ParenthesizePropertyNameAttribute, Point, PointF, PropertyDescriptor, PropertyTabAttribute,
ProvidePropertyAttribute, ReadOnlyAttribute, RecommendedAsConfigurableAttribute, Rectangle, RectangleF,
RefreshPropertiesAttribute, RunInstallerAttribute, Screen, Size, SizeF, ToolboxBitmapAttribute, ToolboxItem,
ToolboxItemAttribute, ToolboxItemFilterAttribute, TypeConverterAttribute

GetHbitmap()

Bitmap

GetHdc()

Graphics

GetHdevmode()

PrinterSettings

GetHdevnames()

PrinterSettings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrinterSettings

GetHeight()

Font

GetHelpKeyword()

HelpProvider

GetHelpNavigator()

HelpProvider

GetHelpString()

HelpProvider

GetHelpTopic()

AccessibleObject, ControlAccessibleObject

GetHenhmetafile()

Metafile

GetHicon()

Bitmap

GetHitTest()

ControlDesigner, ScrollableControlDesigner

GetHrgn()

Region

GetHue()

Color

GetIconAlignment()

ErrorProvider

GetIconPadding()

ErrorProvider

GetIFontDispFromFont()

AxHost

GetIFontFromFont()

AxHost

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AxHost

GetImage()

ToolboxBitmapAttribute

GetImageDecoders()

ImageCodecInfo

GetImageEncoders()

ImageCodecInfo

GetImageFromResource()

ToolboxBitmapAttribute

GetInitialComponentEditorPageIndex()

WindowsFormsComponentEditor

GetInvokee()

MemberDescriptor

GetIPictureDispFromPicture()

AxHost

GetIPictureFromCursor()

AxHost

GetIPictureFromPicture()

AxHost

GetItemAt()

ListView

GetItemChecked()

CheckedListBox

GetItemCheckState()

CheckedListBox

GetItemHeight()

ComboBox, ListBox

GetItemProperties()

BindingManagerBase, CurrencyManager, ITypedList, PropertyManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BindingManagerBase, CurrencyManager, ITypedList, PropertyManager

GetItemRect()

ListView

GetItemRectangle()

ListBox

GetItemRenderStyles()

TreeView

GetItems()

TabControl

GetItemText()

ListControl

GetKey()

LicFileLicenseProvider

GetLastPoint()

GraphicsPath

GetLicense()

LicenseProvider, LicFileLicenseProvider

GetLineFromCharIndex()

RichTextBox

GetLineSpacing()

FontFamily

GetList()

IListSource

GetListName()

ITypedList

GetLocalizedString()

CategoryAttribute

GetLocation()

ComponentTray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentTray

GetLParam()

Message

GetMainMenu()

Menu

GetMenu()

IMenuEditorService

GetMetafileHeader()

Metafile

GetName()

FontFamily, IComNativeDescriptorHandler

GetNearestColor()

Graphics

GetNextControl()

Control

GetNodeAt()

TreeView

GetNodeCount()

TreeNode, TreeView

GetOADateFromTime()

AxHost

GetObjectData()

ImageListStreamer, InvalidPrinterException, Win32Exception

GetOcx()

AxHost

GetOleColorFromColor()

AxHost

GetOutputTextDelimiter()

DataGrid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGrid

GetPaintValueSupported()

ColorEditor, FontNameEditor, IconEditor, ImageEditor, UITypeEditor

GetPictureFromIPicture()

AxHost

GetPictureFromIPictureDisp()

AxHost

GetPixel()

Bitmap

GetPixelFormatSize()

Image

GetPositionFromCharIndex()

RichTextBox

GetPreviewPageInfo()

PreviewPrintController

GetProperties()

ArrayConverter, CollectionConverter, ComponentConverter, DockPaddingEdgesConverter, EventsTab,
ExpandableObjectConverter, FontConverter, IComNativeDescriptorHandler, ICustomTypeDescriptor,
ImageConverter, LinkAreaConverter, PointConverter, PropertyTab, RectangleConverter,
SelectionRangeConverter, SizeConverter, TypeConverter, TypeDescriptor

GetPropertiesSupported()

ArrayConverter, CollectionConverter, ComponentConverter, DockPaddingEdgesConverter,
ExpandableObjectConverter, FontConverter, ImageConverter, LinkAreaConverter, PointConverter,
RectangleConverter, SelectionRangeConverter, SizeConverter, TypeConverter

GetPropertyItem()

Image

GetPropertyOwner()

ICustomTypeDescriptor

GetPropertyUIValueItems()

IPropertyValueUIService

GetPropertyValue()

IComNativeDescriptorHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IComNativeDescriptorHandler

GetRegionData()

Region

GetRegionScans()

Region

GetSaturation()

Color

GetSavedLicenseKey()

LicenseContext

GetScrollState()

ScrollableControl

GetSelected()

AccessibleObject, ControlDesignerAccessibleObject, ListBox

GetSelectedComponent()

ComponentEditorPage

GetSelectedToolboxItem()

IToolboxService

GetService()

Component, ComponentTray, Container, LicenseContext, MarshalByValueComponent

GetShowHelp()

HelpProvider

GetSite()

MemberDescriptor

GetStandardValues()

BooleanConverter, ColorConverter, CultureInfoConverter, CursorConverter, EnumConverter,
FontNameConverter, FontUnitConverter, ImageFormatConverter, ImageIndexConverter, KeysConverter,
ReferenceConverter, TypeConverter, TypeListConverter

GetStandardValuesExclusive()

BooleanConverter, CultureInfoConverter, EnumConverter, FontNameConverter, ImageIndexConverter,
KeysConverter, ReferenceConverter, TypeConverter, TypeListConverter

GetStandardValuesSupported()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetStandardValuesSupported()

BooleanConverter, ColorConverter, CultureInfoConverter, CursorConverter, EnumConverter,
FontNameConverter, ImageFormatConverter, ImageIndexConverter, KeysConverter, ReferenceConverter,
TypeConverter, TypeListConverter

GetStrokeCaps()

CustomLineCap

GetStyle()

Control

GetTabPageOfComponent()

TabPage

GetTabRect()

TabControl

GetTabStops()

StringFormat

GetThumbnailImage()

Image

GetThumbnailImageAbort

System.Drawing

GetTimeFromOADate()

AxHost

GetToolboxItems()

IToolboxService

GetToolSupported()

ComponentDocumentDesigner, DocumentDesigner, IToolboxUser

GetToolTip()

ToolTip

GetToolTipText()

TabControl

GetTopLevel()

Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetType()

ToolboxItem

GetTypeFromName()

PropertyDescriptor

GetUpdatedRect()

ParentControlDesigner

GetValue()

PropertyDescriptor

GetVersionPresent()

FeatureSupport, IFeatureSupport, OSFeature

GetWorkingArea()

Screen

GhostWhite

Brushes, Color, KnownColor, Pens

Gif

ImageFormat

GiveFeedback

AxHost, Control, RichTextBox

GiveFeedbackEventArgs

System.Windows.Forms

GiveFeedbackEventHandler

System.Windows.Forms

Global

PropertyTabScope

Gold

Brushes, Color, KnownColor, Pens

Goldenrod

Brushes, Color, KnownColor, Pens

GotFocus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GotFocus

Control

Graphic

AccessibleRole

Graphics

DrawItemEventArgs, MeasureItemEventArgs, PaintEventArgs, PaintValueEventArgs, PrintPageEventArgs,
System.Drawing

GraphicsContainer

System.Drawing.Drawing2D

GraphicsPath

System.Drawing.Drawing2D

GraphicsPathIterator

System.Drawing.Drawing2D

GraphicsState

System.Drawing.Drawing2D

GraphicsUnit

System.Drawing

Gray

Brushes, Color, KnownColor, Pens

Grayed

DrawItemState

GrayScale

PaletteFlags

GrayText

KnownColor, SystemColors, SystemPens

Green

Brushes, Color, KnownColor, Pens

GreenYellow

Brushes, Color, KnownColor, Pens

GridColumnStyles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GridColumnStyles

DataGridTableStyle

GridColumnStylesCollection

System.Windows.Forms

GridHScrolled()

DataGrid

GridItem

System.Windows.Forms

GridItemCollection

System.Windows.Forms

GridItems

GridItem

GridItemType

GridItem, System.Windows.Forms

GridLineColor

DataGrid, DataGridTableStyle

GridLineColorChanged

DataGridTableStyle

GridLines

ListView

GridLineStyle

DataGrid, DataGridTableStyle

GridLineStyleChanged

DataGridTableStyle

GridTablesFactory

System.Windows.Forms

GridTableStylesCollection

System.Windows.Forms

GridVScrolled()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGrid

Grip

AccessibleRole

Group

SecurityIDType

GroupBox

System.Windows.Forms

Grouping

AccessibleRole

Guid

Encoder, FrameDimension, ImageFormat

GuidConverter

System.ComponentModel

H

Keys

Half

PixelOffsetMode

Halftone

PaletteFlags

Hand

Cursors, MessageBoxIcon, SystemIcons

Handle

Control, ControlAccessibleObject, Cursor, Icon, ImageList, InputLanguage, IWin32Window, Menu,
NativeWindow, TreeNode

HandleCreated

Control, ImageList

Handled

HelpEventArgs, KeyEventArgs, KeyPressEventArgs

HandleDestroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control

HanguelMode

Keys

Hangul

ImeMode

HangulFull

ImeMode

HangulMode

Keys

HanjaMode

Keys

HasAboutBox

AxHost

HasAlpha

ImageFlags, PaletteFlags

HasChildren

Control

HasCurve()

GraphicsPathIterator

HasMorePages

PrintPageEventArgs

HasPropertyPages()

AxHost

HasRealDpi

ImageFlags

HasRealPixelSize

ImageFlags

HasTranslucent

ImageFlags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageFlags

HatchBrush

System.Drawing.Drawing2D

HatchFill

PenType

HatchStyle

HatchBrush, System.Drawing.Drawing2D

Header

EmfPlusRecordType

HeaderAccessibleObject

DataGridColumnStyle

HeaderBackColor

DataGrid, DataGridTableStyle

HeaderBackColorChanged

DataGridTableStyle

HeaderFont

DataGrid, DataGridTableStyle

HeaderFontChanged

DataGridTableStyle

HeaderForeColor

DataGrid, DataGridTableStyle

HeaderForeColorChanged

DataGridTableStyle

HeaderSize

MetaHeader

HeaderStyle

ListView

HeaderText

DataGridColumnStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridColumnStyle

HeaderTextChanged

DataGridColumnStyle

Height

AdjustableArrowCap, BitmapData, BoundsSpecified, Control, CreateParams, Font, Icon, Image, PaperSize,
Rectangle, RectangleF, Size, SizeF

Help

AccessibleObject, CaptionButton, ControlAccessibleObject, Cursors, Keys, System.Windows.Forms

HelpBackColor

PropertyGrid

HelpBalloon

AccessibleRole

HelpButton

Form, PrintPreviewDialog

HelpChange

AccessibleEvents

HelpEventArgs

System.Windows.Forms

HelpEventHandler

System.Windows.Forms

HelpForeColor

PropertyGrid

HelpKeyword

EventsTab, PropertyTab, QueryAccessibilityHelpEventArgs

HelpNamespace

HelpProvider, QueryAccessibilityHelpEventArgs

HelpNavigator

System.Windows.Forms

HelpProvider

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

HelpRequest

CommonDialog

HelpRequested

AxHost, Control

HelpString

QueryAccessibilityHelpEventArgs

HelpTopic

WarningException

HelpUrl

WarningException

HelpVisible

PropertyGrid

Hexadecimal

NumericUpDown

Hidden

DesignerSerializationVisibility, DesignerSerializationVisibilityAttribute

Hide

AccessibleEvents, ArrangeStartingPosition, HotkeyPrefix, SizeGripStyle

Hide()

Control, Cursor

HideEditBox()

DataGridTextBoxColumn

HideSelection

ListView, TextBoxBase, TreeView

HideSelectionChanged

TextBoxBase

High

InterpolationMode, PrinterResolutionKind, QualityMode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InterpolationMode, PrinterResolutionKind, QualityMode

HighContrast

SystemInformation

Highlight

KnownColor, SystemBrushes, SystemColors, SystemPens

HighlightText

KnownColor, SystemBrushes, SystemColors, SystemPens

HighQuality

CompositingQuality, PixelOffsetMode, SmoothingMode

HighQualityBicubic

InterpolationMode

HighQualityBilinear

InterpolationMode

HighSpeed

CompositingQuality, PixelOffsetMode, SmoothingMode

Hiragana

ImeMode

HitArea

HitTestInfo, System.Windows.Forms

HitTest()

AccessibleObject, ControlDesignerAccessibleObject, DataGrid, MonthCalendar

HitTestInfo

System.Windows.Forms

HitTestType

System.Windows.Forms

Hmf

WmfPlaceableFileHeader

Home

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

Honeydew

Brushes, Color, KnownColor, Pens

HookChildControls()

ControlDesigner

HookProc()

CommonDialog, FileDialog, FontDialog

Horizontal

Duplex, HatchStyle, LinearGradientMode, Orientation, RichTextBoxScrollBars, ScrollBars

HorizontalAlignment

System.Windows.Forms

HorizontalBrick

HatchStyle

HorizontalExtent

ListBox

HorizontalResolution

Image

HorizontalScrollbar

ListBox

HorizontalScrollBarArrowWidth

SystemInformation

HorizontalScrollBarHeight

SystemInformation

HorizontalScrollBarThumbWidth

SystemInformation

HotkeyField

AccessibleRole

HotkeyPrefix

StringFormat, System.Drawing.Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StringFormat, System.Drawing.Text

HotLight

DrawItemState

HotPink

Brushes, Color, KnownColor, Pens

HotTrack

KnownColor, SystemBrushes, SystemColors, TabControl

HotTracked

AccessibleStates

HotTracking

TreeView

Hover

LinkState

HoverSelection

ListView

HoverUnderline

LinkBehavior

HScroll

RichTextBox

HScrollBar

System.Windows.Forms

HSplit

Cursors

Html

DataFormats

HundredthsOfAMillimeter

PrinterUnit

HWnd

Message

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Message

I

Keys

IBeam

Cursors

IBindingList

System.ComponentModel

IButtonControl

System.Windows.Forms

ICommandExecutor

System.Windows.Forms

IComNativeDescriptorHandler

System.ComponentModel

IComponent

System.ComponentModel

IComponentEditorPageSite

System.Windows.Forms

Icon

ComponentEditorPage, ErrorProvider, Form, ImageFormat, ItemBoundsPortion, NotifyIcon, PrintPreviewDialog,
StatusBarPanel, System.Drawing

IconConverter

System.Drawing

IconEditor

System.Drawing.Design

IconSize

SystemInformation

IconSpacingSize

SystemInformation

IContainer

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

IContainerControl

System.Windows.Forms

ICustomTypeDescriptor

System.ComponentModel

Id

Format, PropertyItem

IDataErrorInfo

System.ComponentModel

IDataGridColumnStyleEditingNotificationService

System.Windows.Forms

IDataGridEditingService

System.Windows.Forms

IDataObject

System.Windows.Forms

Idle

Application

IEditableObject

System.ComponentModel

IExtenderProvider

System.ComponentModel

IFeatureSupport

System.Windows.Forms

IFileReaderService

System.Windows.Forms

Ignore

DialogResult

IListSource

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

Image

ButtonBase, Label, PictureBox, PreviewPageInfo, PropertyValueUIItem, System.Drawing, TextureBrush

ImageAlign

ButtonBase, Label

ImageAnimator

System.Drawing

ImageAttributes

System.Drawing.Imaging

ImageCodecFlags

System.Drawing.Imaging

ImageCodecInfo

System.Drawing.Imaging

ImageCollection

System.Windows.Forms

ImageConverter

System.Drawing

ImageEditor

System.Drawing.Design

ImageFlags

System.Drawing.Imaging

ImageFormat

System.Drawing.Imaging

ImageFormatConverter

System.Drawing

ImageIndex

ButtonBase, Label, ListViewItem, TabPage, ToolBarButton, TreeNode, TreeView

ImageIndexConverter

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

ImageList

ButtonBase, Label, ListViewItem, System.Windows.Forms, TabControl, ToolBar, TreeView

ImageListStreamer

System.Windows.Forms

ImageLockMode

System.Drawing.Imaging

Images

ImageList

ImageSize

ImageList, ToolBar

ImageStream

ImageList

IMEAceept

Keys

ImeChange

RichTextBox

IMEConvert

Keys

ImeMode

ButtonBase, Control, Label, MonthCalendar, PictureBox, PrintPreviewDialog, ProgressBar, ScrollBar, Splitter,
StatusBar, System.Windows.Forms, ToolBar, TrackBar

IMEModeChange

Keys

ImeModeChanged

AxHost, Control

IMENonconvert

Keys

IMenuEditorService

System.Windows.Forms.Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms.Design

IMessageFilter

System.Windows.Forms

Immutable

ImmutableObjectAttribute

ImmutableObjectAttribute

System.ComponentModel

Inactive

ButtonState, DrawItemState

InactiveBorder

KnownColor, SystemBrushes, SystemColors

InactiveCaption

KnownColor, SystemBrushes, SystemColors

InactiveCaptionText

KnownColor, SystemColors, SystemPens

Inch

GraphicsUnit, MetafileFrameUnit, StringUnit, WmfPlaceableFileHeader

Increment

NumericUpDown

Increment()

ProgressBar

Indent

TreeView

Indeterminate

AccessibleStates, CheckState

Index

ColumnHeader, DrawItemEventArgs, HelpNavigator, ItemChangedEventArgs, ItemCheckEventArgs,
ListViewItem, MeasureItemEventArgs, MenuItem, TreeNode

Indexed

PixelFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PixelFormat

IndexFromPoint()

ListBox

IndexOf()

CategoryNameCollection, CheckedIndexCollection, CheckedItemCollection, CheckedListViewItemCollection,
ColumnHeaderCollection, ControlCollection, EventDescriptorCollection, GridColumnStylesCollection,
ImageCollection, InputLanguageCollection, LinkCollection, ListViewItemCollection, ListViewSubItemCollection,
MenuItemCollection, ObjectCollection, PropertyDescriptorCollection, SelectedIndexCollection,
SelectedListViewItemCollection, SelectedObjectCollection, StatusBarPanelCollection, TabPageCollection,
ToolBarButtonCollection, ToolboxItemCollection, TreeNodeCollection

IndianRed

Brushes, Color, KnownColor, Pens

Indicator

AccessibleRole

Indigo

Brushes, Color, KnownColor, Pens

Inflate()

Rectangle, RectangleF

Info

KnownColor, SystemBrushes, SystemColors

Information

MessageBoxIcon, SystemIcons

InfoText

KnownColor, SystemColors, SystemPens

Inherit

ImeMode, RightToLeft

InheritanceAttribute

System.ComponentModel

InheritanceLevel

InheritanceAttribute, System.ComponentModel

Inherited

InheritanceAttribute, InheritanceLevel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InheritanceAttribute, InheritanceLevel

InheritedReadOnly

InheritanceAttribute, InheritanceLevel

InitialDelay

ToolTip

InitialDirectory

FileDialog

Initialize()

ComponentDocumentDesigner, ControlDesigner, DocumentDesigner, ParentControlDesigner, ToolboxItem

InitializeArrays()

PropertyTabAttribute

InitializeDialog()

FileNameEditor, FolderNameEditor

InitializeNonDefault()

ControlDesigner

InitLayout()

Control

InputLanguage

InputLanguageChangedEventArgs, InputLanguageChangingEventArgs, System.Windows.Forms

InputLanguageChanged

Form

InputLanguageChangedEventArgs

System.Windows.Forms

InputLanguageChangedEventHandler

System.Windows.Forms

InputLanguageChanging

Form

InputLanguageChangingEventArgs

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

InputLanguageChangingEventHandler

System.Windows.Forms

InputLanguageCollection

System.Windows.Forms

Ins

Shortcut

Insert

Keys

Insert()

ColumnHeaderCollection, DomainUpDownItemCollection, EventDescriptorCollection, ListViewItemCollection,
ListViewSubItemCollection, ObjectCollection, PropertyDescriptorCollection, StatusBarPanelCollection,
ToolBarButtonCollection, TreeNodeCollection

Inset

ButtonBorderStyle, PenAlignment

InstalledFontCollection

System.Drawing.Text

InstalledInputLanguages

InputLanguage

InstalledPrinters

PrinterSettings

InstallerType

InstallerTypeAttribute

InstallerTypeAttribute

System.ComponentModel

Instance

ITypeDescriptorContext

Int16Converter

System.ComponentModel

Int32Converter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

Int64Converter

System.ComponentModel

IntegralHeight

ComboBox, ListBox

InterceptArrowKeys

UpDownBase

InternalSort()

EventDescriptorCollection, PropertyDescriptorCollection

InterpolationColors

LinearGradientBrush, PathGradientBrush

InterpolationMode

Graphics, System.Drawing.Drawing2D

Intersect

CombineMode

Intersect()

PrintingPermission, Rectangle, RectangleF, Region

IntersectClip()

Graphics

IntersectsWith()

Rectangle, RectangleF

Interval

Timer

Invalid

CompositingQuality, EmfPlusRecordType, InterpolationMode, MetafileType, PixelOffsetMode, QualityMode,
SecurityIDType, SmoothingMode

InvalidActiveXStateException

System.Windows.Forms

Invalidate()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control, DataGridColumnStyle

Invalidated

Control

InvalidateEventArgs

System.Windows.Forms

InvalidateEventHandler

System.Windows.Forms

InvalidatePreview()

PrintPreviewControl

InvalidEnumArgumentException

System.ComponentModel

InvalidPoint

ControlDesigner

InvalidPrinterException

System.Drawing.Printing

InvalidRect

InvalidateEventArgs

Invert()

Matrix

Invisible

AccessibleStates

InviteEnvelope

PaperKind

Invoke()

CancelEventHandler, CollectionChangeEventHandler, ColumnClickEventHandler, ContentsResizedEventHandler,
Control, ControlEventHandler, ConvertEventHandler, DateBoldEventHandler, DateRangeEventHandler,
DragEventHandler, DrawImageAbort, DrawItemEventHandler, EnumerateMetafileProc,
GetThumbnailImageAbort, GiveFeedbackEventHandler, HelpEventHandler,
InputLanguageChangedEventHandler, InputLanguageChangingEventHandler, InvalidateEventHandler,
ISynchronizeInvoke, ItemChangedEventHandler, ItemCheckEventHandler, ItemDragEventHandler,
KeyEventHandler, KeyPressEventHandler, LabelEditEventHandler, LayoutEventHandler,
LinkClickedEventHandler, LinkLabelLinkClickedEventHandler, ListChangedEventHandler,
MeasureItemEventHandler, MethodInvoker, MouseEventHandler, NavigateEventHandler,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MeasureItemEventHandler, MethodInvoker, MouseEventHandler, NavigateEventHandler,
NodeLabelEditEventHandler, PaintEventHandler, PlayRecordCallback, PrintEventHandler, PrintPageEventHandler,
PropertyChangedEventHandler, PropertyTabChangedEventHandler, PropertyValueChangedEventHandler,
PropertyValueUIHandler, PropertyValueUIItemInvokeHandler, QueryAccessibilityHelpEventHandler,
QueryContinueDragEventHandler, QueryPageSettingsEventHandler, RefreshEventHandler, ScrollEventHandler,
SelectedGridItemChangedEventHandler, SplitterEventHandler, StatusBarDrawItemEventHandler,
StatusBarPanelClickEventHandler, ToolBarButtonClickEventHandler, ToolboxComponentsCreatedEventHandler,
ToolboxComponentsCreatingEventHandler, ToolboxItemCreatorCallback, TreeViewCancelEventHandler,
TreeViewEventHandler, UICuesEventHandler, UpDownEventHandler

InvokeCreateTool()

ParentControlDesigner

InvokeEditMode()

AxHost

InvokeGotFocus()

Control

InvokeHandler

PropertyValueUIItem

InvokeLostFocus()

Control

InvokeOnClick()

Control

InvokePaint()

Control

InvokePaintBackground()

Control

InvokeRequired

Control, ISynchronizeInvoke

IPropertyValueUIService

System.Drawing.Design

IReferenceResolver

System.Windows.Forms.Design

IsAccessible

Control

IsActive()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IMenuEditorService

IsAlphaPixelFormat()

Image

IsBinding

Binding

IsBrowsable

MemberDescriptor

IsByRef

AxParameterData

IsCanonicalPixelFormat()

Image

IsClipEmpty

Graphics

IsDefaultAttribute()

BindableAttribute, BrowsableAttribute, CategoryAttribute, DesignerCategoryAttribute,
DesignerSerializationVisibilityAttribute, DesignOnlyAttribute, DesignTimeVisibleAttribute,
ExtenderProvidedPropertyAttribute, ImmutableObjectAttribute, InheritanceAttribute, ListBindableAttribute,
LocalizableAttribute, MergablePropertyAttribute, NotifyParentPropertyAttribute,
ParenthesizePropertyNameAttribute, ReadOnlyAttribute, RecommendedAsConfigurableAttribute,
RefreshPropertiesAttribute, RunInstallerAttribute, ToolboxItemAttribute

IsDefaultPrinter

PrinterSettings

IsDesignOnly

DesignOnlyAttribute

IsDisplay()

MetafileHeader

IsDisposed

Control

IsEditing

TreeNode

IsEmf()

MetafileHeader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MetafileHeader

IsEmfOrEmfPlus()

MetafileHeader

IsEmfPlus()

MetafileHeader

IsEmfPlusDual()

MetafileHeader

IsEmfPlusOnly()

MetafileHeader

IsEmpty

Color, LinkArea, Point, PointF, Rectangle, RectangleF, Size, SizeF

IsEmpty()

OwnerDrawPropertyBag, Region

IsExpanded

TreeNode

IsExpanded()

DataGrid

IsExtendedPixelFormat()

Image

IsFirstActivate()

ComponentEditorPage

IsHandleCreated

Control

IsIdentity

Matrix

IsIn

AxParameterData

IsInEditOrNavigateMode

DataGridTextBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridTextBox

IsInfinite()

Region

IsInputChar()

AxHost, Control

IsInputKey()

ComboBox, Control, DateTimePicker, ListControl, ListView, MonthCalendar, TabControl, TextBox, TextBoxBase,
TrackBar, TreeView

IsInvertible

Matrix

ISite

System.ComponentModel

IsKeyValid()

LicFileLicenseProvider

IsKnownColor

Color

IsLicensed()

LicenseManager

IsLoading()

ComponentEditorPage

IsLocalizable

LocalizableAttribute, PropertyDescriptor

IsMdiChild

Form

IsMdiContainer

Form, PrintPreviewDialog

IsMnemonic()

Control

IsMulticast

EventDescriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventDescriptor

IsNamedColor

Color

IsoB4

PaperKind

IsOptional

AxParameterData

IsOut

AxParameterData

IsOutlineVisible()

GraphicsPath

IsPageMessage()

ComponentEditorPage

IsParent

Menu, MenuItem

IsPlotter

PrinterSettings

IsPresent()

FeatureSupport, IFeatureSupport

IsReadOnly

BaseCollection, BindingContext, CheckedIndexCollection, CheckedItemCollection,
CheckedListViewItemCollection, ColumnHeaderCollection, ControlCollection, ImageCollection, LinkCollection,
ListViewItemCollection, ListViewSubItemCollection, MenuItemCollection, ObjectCollection, PropertyDescriptor,
ReadOnlyAttribute, SelectedIndexCollection, SelectedListViewItemCollection, SelectedObjectCollection,
StatusBarPanelCollection, TabPageCollection, ToolBarButtonCollection, TreeNodeCollection

IsRestrictedWindow

Form

IsSelected

TreeNode

IsSelected()

DataGrid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsSorted

IBindingList

IsStyleAvailable()

FontFamily

IsSubsetOf()

PrintingPermission

IsSupported()

IToolboxService

IsSynchronized

BaseCollection

IsSystemColor

Color

IsToolboxItem()

IToolboxService

IsUnrestricted()

PrintingPermission

ISupportInitialize

System.ComponentModel

IsValid

PrinterSettings

IsValid()

EnumConverter, LicenseManager, TypeConverter

IsValueAllowed()

ReferenceConverter

IsVisible

TreeNode

IsVisible()

Graphics, GraphicsPath, Region

IsVisibleClipEmpty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsVisibleClipEmpty

Graphics

IsWmf()

MetafileHeader

IsWmfPlaceable()

MetafileHeader

ISynchronizeInvoke

System.ComponentModel

Italic

Font, FontStyle

ItalyEnvelope

PaperKind

Item

AttributeCollection, BindingContext, BindingsCollection, CategoryNameCollection, CheckedIndexCollection,
CheckedItemCollection, CheckedListViewItemCollection, ColorMatrix, ColumnHeaderCollection,
ComponentCollection, ControlBindingsCollection, ControlCollection, DataGrid, DomainUpDownItemCollection,
EventDescriptorCollection, EventHandlerList, GridColumnStylesCollection, GridItemCollection,
GridTableStylesCollection, IDataErrorInfo, ImageCollection, InputLanguageCollection, ItemDragEventArgs,
LabelEditEventArgs, LinkCollection, ListViewItemCollection, ListViewSubItemCollection, MenuItemCollection,
ObjectCollection, PaperSizeCollection, PaperSourceCollection, PrinterResolutionCollection,
PropertyDescriptorCollection, PropertyTabCollection, SelectedIndexCollection, SelectedListViewItemCollection,
SelectedObjectCollection, StandardValuesCollection, StatusBarPanelCollection, StringCollection,
TabPageCollection, ToolBarButtonCollection, ToolboxItemCollection, TreeNodeCollection

ItemActivate

ListView

ItemActivation

System.Windows.Forms

ItemAdded

ListChangedType

ItemBoundsPortion

System.Windows.Forms

ItemChanged

CurrencyManager, ListChangedType

ItemChangedEventArgs

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

ItemChangedEventHandler

System.Windows.Forms

ItemCheck

CheckedListBox, ListView

ItemCheckEventArgs

System.Windows.Forms

ItemCheckEventHandler

System.Windows.Forms

ItemDeleted

ListChangedType

ItemDrag

ListView, TreeView

ItemDragEventArgs

System.Windows.Forms

ItemDragEventHandler

System.Windows.Forms

ItemHeight

CheckedListBox, ComboBox, ListBox, MeasureItemEventArgs, TreeView

ItemMoved

ListChangedType

ItemOnly

ItemBoundsPortion

Items

CheckedListBox, ComboBox, DomainUpDown, ListBox, ListView

ItemSize

TabControl

ItemWidth

MeasureItemEventArgs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MeasureItemEventArgs

IToolboxService

System.Drawing.Design

IToolboxUser

System.Drawing.Design

ITypeDescriptorContext

System.ComponentModel

ITypedList

System.ComponentModel

IUIService

System.Windows.Forms.Design

Ivory

Brushes, Color, KnownColor, Pens

IWin32Window

System.Windows.Forms

IWindowsFormsEditorService

System.Windows.Forms.Design

IWindowTarget

System.Windows.Forms

J

Keys

JapaneseDoublePostcard

PaperKind

JapaneseDoublePostcardRotated

PaperKind

JapaneseEnvelopeChouNumber3

PaperKind

JapaneseEnvelopeChouNumber3Rotated

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

JapaneseEnvelopeChouNumber4

PaperKind

JapaneseEnvelopeChouNumber4Rotated

PaperKind

JapaneseEnvelopeKakuNumber2

PaperKind

JapaneseEnvelopeKakuNumber2Rotated

PaperKind

JapaneseEnvelopeKakuNumber3

PaperKind

JapaneseEnvelopeKakuNumber3Rotated

PaperKind

JapaneseEnvelopeYouNumber4

PaperKind

JapaneseEnvelopeYouNumber4Rotated

PaperKind

JapanesePostcard

PaperKind

JapanesePostcardRotated

PaperKind

Jpeg

ImageFormat

JunjaMode

Keys

K

Keys

KanaMode

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

KanjiMode

Keys

KanjiWindowHeight

SystemInformation

Katakana

ImeMode

KatakanaHalf

ImeMode

Key

CategoryAttribute, WmfPlaceableFileHeader

KeyboardShortcut

AccessibleObject, ControlAccessibleObject

KeyCancel

MenuCommands

KeyChar

KeyPressEventArgs

KeyCode

KeyEventArgs, Keys

keyContainer

Options

KeyData

KeyEventArgs

KeyDefaultAction

MenuCommands

KeyDown

AxHost, Control, GroupBox, Label, Panel, PictureBox, ProgressBar, Splitter

KeyEventArgs

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

KeyEventHandler

System.Windows.Forms

keyFile

Options

KeyMoveDown

MenuCommands

KeyMoveLeft

MenuCommands

KeyMoveRight

MenuCommands

KeyMoveUp

MenuCommands

KeyNudgeDown

MenuCommands

KeyNudgeHeightDecrease

MenuCommands

KeyNudgeHeightIncrease

MenuCommands

KeyNudgeLeft

MenuCommands

KeyNudgeRight

MenuCommands

KeyNudgeUp

MenuCommands

KeyNudgeWidthDecrease

MenuCommands

KeyNudgeWidthIncrease

MenuCommands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MenuCommands

keyPair

Options

KeyPress

AxHost, Control, GroupBox, Label, Panel, PictureBox, ProgressBar, Splitter

KeyPressEventArgs

System.Windows.Forms

KeyPressEventHandler

System.Windows.Forms

KeyPreview

Form, PrintPreviewDialog

KeyReverseCancel

MenuCommands

Keys

System.Windows.Forms

KeysConverter

System.Windows.Forms

KeySelectNext

MenuCommands

KeySelectPrevious

MenuCommands

KeySizeHeightDecrease

MenuCommands

KeySizeHeightIncrease

MenuCommands

KeySizeWidthDecrease

MenuCommands

KeySizeWidthIncrease

MenuCommands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MenuCommands

KeyState

DragEventArgs, QueryContinueDragEventArgs

KeyTabOrderSelect

MenuCommands

KeyUp

AxHost, Control, GroupBox, Label, Panel, PictureBox, ProgressBar, Splitter

KeyValue

KeyEventArgs

KeywordIndex

HelpNavigator

Khaki

Brushes, Color, KnownColor, Pens

Kind

PaperSize, PaperSource, PrinterResolution

KnownColor

System.Drawing

L

Keys

Label

GridItem, ItemBoundsPortion, LabelEditEventArgs, NodeLabelEditEventArgs, System.Windows.Forms

LabelEdit

ListView, TreeView

LabelEditEventArgs

System.Windows.Forms

LabelEditEventHandler

System.Windows.Forms

LabelWrap

ListView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListView

Landscape

PageSettings

LandscapeAngle

PrinterSettings

LargeButtons

PropertyGrid

LargeCapacity

PaperSourceKind

LargeChange

ScrollBar, TrackBar

LargeCheckerBoard

HatchStyle

LargeConfetti

HatchStyle

LargeDecrement

ScrollEventType

LargeFormat

PaperSourceKind

LargeGrid

HatchStyle

LargeIcon

View

LargeImageList

ListView

LargeIncrement

ScrollEventType

Last

ScrollEventType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScrollEventType

LastChild

AccessibleNavigation

LastFrame

EncoderValue

LastNode

TreeNode

LaunchApplication1

Keys

LaunchApplication2

Keys

LaunchMail

Keys

Lavender

Brushes, Color, KnownColor, Pens

LavenderBlush

Brushes, Color, KnownColor, Pens

LawnGreen

Brushes, Color, KnownColor, Pens

LayeredWindows

OSFeature

Layout

AxHost, CategoryAttribute, Control

LayoutEventArgs

System.Windows.Forms

LayoutEventHandler

System.Windows.Forms

LayoutMdi()

Form, MdiClient

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form, MdiClient

LayoutName

InputLanguage

LButton

Keys

LControlKey

Keys

Leave

Control, PictureBox, ProgressBar, Splitter

Ledger

PaperKind

Left

AccessibleNavigation, AnchorStyles, ArrangeDirection, Border3DSide, Control, DockPaddingEdges, DockStyle,
HorizontalAlignment, Keys, LeftRightAlignment, ListViewAlignment, Margins, MouseButtons, PenAlignment,
Rectangle, RectangleF, ScrollButton, TabAlignment

LeftRightAlignment

System.Windows.Forms

LeftSizeable

SelectionRules

Legal

PaperKind

LegalExtra

PaperKind

LemonChiffon

Brushes, Color, KnownColor, Pens

Len

PropertyItem

Length

CharacterRange, Link, LinkArea

Letter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

LetterExtra

PaperKind

LetterExtraTransverse

PaperKind

LetterPlus

PaperKind

LetterRotated

PaperKind

LetterSmall

PaperKind

LetterTransverse

PaperKind

Level

PrintingPermission, PrintingPermissionAttribute

Level1

RichTextBoxWordPunctuations

Level2

RichTextBoxWordPunctuations

License

System.ComponentModel

LicenseContext

System.ComponentModel

LicensedType

LicenseException

LicenseException

System.ComponentModel

LicenseKey

License

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

License

LicenseManager

System.ComponentModel

LicenseProvider

LicenseProviderAttribute, System.ComponentModel

LicenseProviderAttribute

System.ComponentModel

LicenseUsageMode

System.ComponentModel

LicFileLicenseProvider

System.ComponentModel

Light()

ControlPaint

LightBlue

Brushes, Color, KnownColor, Pens

LightCoral

Brushes, Color, KnownColor, Pens

LightCyan

Brushes, Color, KnownColor, Pens

LightDownwardDiagonal

HatchStyle

LightGoldenrodYellow

Brushes, Color, KnownColor, Pens

LightGray

Brushes, Color, KnownColor, Pens

LightGreen

Brushes, Color, KnownColor, Pens

LightHorizontal

HatchStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HatchStyle

LightLight()

ControlPaint

LightPink

Brushes, Color, KnownColor, Pens

LightSalmon

Brushes, Color, KnownColor, Pens

LightSeaGreen

Brushes, Color, KnownColor, Pens

LightSkyBlue

Brushes, Color, KnownColor, Pens

LightSlateGray

Brushes, Color, KnownColor, Pens

LightSteelBlue

Brushes, Color, KnownColor, Pens

LightUpwardDiagonal

HatchStyle

LightVertical

HatchStyle

LightYellow

Brushes, Color, KnownColor, Pens

Lime

Brushes, Color, KnownColor, Pens

LimeGreen

Brushes, Color, KnownColor, Pens

Line

PathPointType

LineAlignment

StringFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StringFormat

LinearColors

LinearGradientBrush

LinearGradient

PenType

LinearGradientBrush

System.Drawing.Drawing2D

LinearGradientMode

System.Drawing.Drawing2D

LineCap

System.Drawing.Drawing2D

LineColor

PropertyGrid

LineFeed

Keys

LineJoin

Pen, System.Drawing.Drawing2D

LineLimit

StringFormatFlags

Linen

Brushes, Color, KnownColor, Pens

Lines

TextBoxBase

Link

AccessibleRole, DragDropEffects, LinkLabelLinkClickedEventArgs, System.Windows.Forms

LinkArea

LinkLabel, System.Windows.Forms

LinkAreaConverter

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

LinkBehavior

LinkLabel, System.Windows.Forms

LinkClicked

LinkLabel, RichTextBox

LinkClickedEventArgs

System.Windows.Forms

LinkClickedEventHandler

System.Windows.Forms

LinkCollection

System.Windows.Forms

LinkColor

DataGrid, DataGridTableStyle, LinkLabel

LinkColorChanged

DataGridTableStyle

LinkData

Link

Linked

AccessibleStates

LinkHoverColor

DataGrid, DataGridTableStyle

LinkHoverColorChanged

DataGridTableStyle

LinkLabel

System.Windows.Forms

LinkLabelLinkClickedEventArgs

System.Windows.Forms

LinkLabelLinkClickedEventHandler

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

Links

LinkLabel

LinkState

System.Windows.Forms

LinkText

LinkClickedEventArgs

LinkVisited

LinkLabel

List

AccessibleRole, CurrencyManager, View

ListBindable

ListBindableAttribute

ListBindableAttribute

System.ComponentModel

ListBindingConverter

System.Windows.Forms

ListBox

System.Windows.Forms

ListChanged

IBindingList

ListChangedEventArgs

System.ComponentModel

ListChangedEventHandler

System.ComponentModel

ListChangedType

ListChangedEventArgs, System.ComponentModel

ListControl

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

ListItem

AccessibleRole

listposition

CurrencyManager

ListSortDirection

System.ComponentModel

ListView

ColumnHeader, ListViewItem, System.Windows.Forms

ListViewAlignment

System.Windows.Forms

ListViewItem

System.Windows.Forms

ListViewItemCollection

System.Windows.Forms

ListViewItemConverter

System.Windows.Forms

ListViewItemSorter

ListView

ListViewSubItem

System.Windows.Forms

ListViewSubItemCollection

System.Windows.Forms

LMenu

Keys

Load

Form, UserControl

LoadComponent()

ComponentEditorPage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage

LoadFile()

RichTextBox

LoadFromStream()

BitmapEditor, IconEditor, ImageEditor, MetafileEditor

Locale

DataFormats

LocalizableAttribute

System.ComponentModel

LocalUserAppDataPath

Application

Location

BoundsSpecified, Control, PrintPreviewDialog, Rectangle, RectangleF

LocationChange

AccessibleEvents

LocationChanged

Control

Lock()

ToolboxItem

LockBits()

Bitmap

LockContext()

LicenseManager

Locked

SelectionRules

LogicalDpiX

MetafileHeader

LogicalDpiY

MetafileHeader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MetafileHeader

Long

DateTimePickerFormat

LostFocus

Control

Low

InterpolationMode, PrinterResolutionKind, QualityMode

Lower

CharacterCasing, PaperSourceKind

LParam

Message

LShiftKey

Keys

LuminanceTable

Encoder

LWin

Keys

M

Keys

Magenta

Brushes, Color, KnownColor, Pens

MainForm

ApplicationContext

MainMenu

System.Windows.Forms

MakeDirty()

AxHost

MakeEmpty()

Region

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Region

MakeInfinite()

Region

MakeTransparent()

Bitmap

Manual

FormStartPosition, PaperSourceKind

ManualFeed

PaperSourceKind

MappingName

DataGridColumnStyle, DataGridTableStyle

MappingNameChanged

DataGridColumnStyle, DataGridTableStyle

MarginBounds

PrintPageEventArgs

Margins

PageSettings, System.Drawing.Printing

MarginsConverter

System.Drawing.Printing

Maroon

Brushes, Color, KnownColor, Pens

Marqueed

AccessibleStates

MarshalByValueComponent

System.ComponentModel

Match()

ToolboxItemFilterAttribute

MatchCase

RichTextBoxFinds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichTextBoxFinds

Matches()

AttributeCollection

Matrix

System.Drawing.Drawing2D

Matrix00

ColorMatrix

Matrix01

ColorMatrix

Matrix02

ColorMatrix

Matrix03

ColorMatrix

Matrix04

ColorMatrix

Matrix10

ColorMatrix

Matrix11

ColorMatrix

Matrix12

ColorMatrix

Matrix13

ColorMatrix

Matrix14

ColorMatrix

Matrix20

ColorMatrix

Matrix21

ColorMatrix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ColorMatrix

Matrix22

ColorMatrix

Matrix23

ColorMatrix

Matrix24

ColorMatrix

Matrix30

ColorMatrix

Matrix31

ColorMatrix

Matrix32

ColorMatrix

Matrix33

ColorMatrix

Matrix34

ColorMatrix

Matrix40

ColorMatrix

Matrix41

ColorMatrix

Matrix42

ColorMatrix

Matrix43

ColorMatrix

Matrix44

ColorMatrix

MatrixOrder

System.Drawing.Drawing2D

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Drawing2D

Max

EmfPlusRecordType, HatchStyle, MenuGlyph, PixelFormat, ScrollButton

MaxDate

DateTimePicker, MonthCalendar

MaxDateTime

DateTimePicker

MaxDropDownItems

ComboBox

Maximize

CaptionButton

MaximizeBox

Form, PrintPreviewDialog

Maximized

FormWindowState

MaximizedBoundsChanged

Form

Maximum

NumericUpDown, ProgressBar, ScrollBar, TrackBar

MaximumCopies

PrinterSettings

MaximumPage

PrinterSettings

MaximumSize

Form, PrintPreviewDialog

MaximumSizeChanged

Form

MaxLength

ComboBox, RichTextBox, TextBoxBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComboBox, RichTextBox, TextBoxBase

MaxRecord

MetaHeader

MaxSelectionCount

MonthCalendar

MaxSize

FontDialog

MaxWindowTrackSize

SystemInformation

MButton

Keys

MdiChildActivate

Form

MdiChildren

Form, MdiClient

MdiClient

System.Windows.Forms

MdiLayout

System.Windows.Forms

MdiList

MenuItem

MdiListItem

Menu

MdiParent

Form

MeasureCharacterRanges()

Graphics

MeasureItem

CheckedListBox, ComboBox, ListBox, MenuItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CheckedListBox, ComboBox, ListBox, MenuItem

MeasureItemEventArgs

System.Windows.Forms

MeasureItemEventHandler

System.Windows.Forms

MeasureString()

Graphics

MeasureTrailingSpaces

StringFormatFlags

MediaNextTrack

Keys

MediaPlayPause

Keys

MediaPreviousTrack

Keys

MediaStop

Keys

Medium

PrinterResolutionKind

MediumAquamarine

Brushes, Color, KnownColor, Pens

MediumBlue

Brushes, Color, KnownColor, Pens

MediumOrchid

Brushes, Color, KnownColor, Pens

MediumPurple

Brushes, Color, KnownColor, Pens

MediumSeaGreen

Brushes, Color, KnownColor, Pens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brushes, Color, KnownColor, Pens

MediumSlateBlue

Brushes, Color, KnownColor, Pens

MediumSpringGreen

Brushes, Color, KnownColor, Pens

MediumTurquoise

Brushes, Color, KnownColor, Pens

MediumVioletRed

Brushes, Color, KnownColor, Pens

MemberDescriptor

System.ComponentModel

MemoryBmp

ImageFormat

Menu

Form, Keys, KnownColor, PrintPreviewDialog, System.Windows.Forms, SystemBrushes, SystemColors

MenuBar

AccessibleRole

MenuButtonSize

SystemInformation

MenuCheckSize

SystemInformation

MenuCommands

System.Windows.Forms.Design

MenuComplete

Form

menuEditorService

DocumentDesigner

MenuFont

SystemInformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemInformation

MenuGlyph

System.Windows.Forms

MenuHeight

SystemInformation

MenuItem

AccessibleRole, System.Windows.Forms

MenuItemCollection

System.Windows.Forms

MenuItems

Menu

MenuMerge

System.Windows.Forms

MenuPopup

AccessibleRole

MenuStart

Form

MenuText

KnownColor, SystemColors, SystemPens

MergablePropertyAttribute

System.ComponentModel

MergedMenu

Form

MergeItems

MenuMerge

MergeMenu()

Menu, MenuItem

MergeOrder

MenuItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MenuItem

MergeType

MenuItem

Message

System.Windows.Forms

MessageBox

System.Windows.Forms

MessageBoxButtons

System.Windows.Forms

MessageBoxDefaultButton

System.Windows.Forms

MessageBoxIcon

System.Windows.Forms

MessageBoxOptions

System.Windows.Forms

MessageFilter()

IMenuEditorService

MessageLoop

Application

Metafile

System.Drawing.Imaging

MetafileEditor

System.Drawing.Design

MetafileFrameUnit

System.Drawing.Imaging

MetafileHeader

System.Drawing.Imaging

MetafilePict

DataFormats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataFormats

MetafileSize

MetafileHeader

MetafileType

System.Drawing.Imaging

MetaHeader

System.Drawing.Imaging

MethodInvoke

ActiveXInvokeKind

MethodInvoker

System.Windows.Forms

Middle

Border3DSide, MouseButtons, PaperSourceKind

MiddleCenter

ContentAlignment

MiddleInset

AdjustableArrowCap

MiddleLeft

ContentAlignment, ErrorIconAlignment

MiddleRight

ContentAlignment, ErrorIconAlignment

MidEastEnabled

SystemInformation

MidnightBlue

Brushes, Color, KnownColor, Pens

Millimeter

GraphicsUnit, MetafileFrameUnit, StringUnit

MimeType

ImageCodecInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageCodecInfo

Min

EmfPlusRecordType, HatchStyle, MenuGlyph, ScrollButton

MinDate

DateTimePicker, MonthCalendar

MinDateTime

DateTimePicker

MinExtra

Splitter

Minimize

CaptionButton

MinimizeBox

Form, PrintPreviewDialog

Minimized

FormWindowState

MinimizedWindowSize

SystemInformation

MinimizedWindowSpacingSize

SystemInformation

Minimum

NumericUpDown, ProgressBar, ScrollBar, TrackBar

MinimumPage

PrinterSettings

MinimumSize

Form, PrintPreviewDialog

MinimumSizeChanged

Form

MinimumWindowSize

SystemInformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemInformation

MinMargins

PageSetupDialog

MinSize

FontDialog, Splitter

MintCream

Brushes, Color, KnownColor, Pens

MinWidth

StatusBarPanel

MinWindowTrackSize

SystemInformation

MistyRose

Brushes, Color, KnownColor, Pens

Miter

LineJoin

MiterClipped

LineJoin

MiterLimit

Pen

Mixed

AccessibleStates, RichTextBoxSelectionAttribute

Mnemonic

MenuItem

Moccasin

Brushes, Color, KnownColor, Pens

Modal

Form, UITypeEditorEditStyle

Modified

TextBoxBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextBoxBase

ModifiedChanged

TextBoxBase

ModifierKeys

Control

Modifiers

KeyEventArgs, Keys

MonarchEnvelope

PaperKind

Monday

Day

MonitorCount

SystemInformation

MonitorsSameDisplayFormat

SystemInformation

Monospace

GenericFontFamilies

MonthCalendar

System.Windows.Forms

MonthlyBoldedDates

MonthCalendar

Mouse

CategoryAttribute

MouseButtons

Control, System.Windows.Forms, SystemInformation

MouseButtonsSwapped

SystemInformation

MouseDown

AxHost, Control, GroupBox, NotifyIcon, ScrollBar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AxHost, Control, GroupBox, NotifyIcon, ScrollBar

MouseEnter

AxHost, Control, GroupBox

MouseEventArgs

System.Windows.Forms

MouseEventHandler

System.Windows.Forms

MouseHover

AxHost, Control

MouseLeave

AxHost, Control, GroupBox

MouseMove

AxHost, Control, GroupBox, NotifyIcon, ScrollBar

MousePos

HelpEventArgs

MousePosition

Control

MousePresent

SystemInformation

MouseUp

AxHost, Control, GroupBox, NotifyIcon, ScrollBar

MouseWheel

AxHost, Control

MouseWheelPresent

SystemInformation

MouseWheelScrollLines

SystemInformation

Move

Control, DragDropEffects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control, DragDropEffects

Moveable

AccessibleStates, SelectionRules

Msg

Message

MultiChar

RichTextBoxSelectionTypes

MultiColumn

ListBox

MultiExtended

SelectionMode

MultiFormatEnd

EmfPlusRecordType

MultiFormatSection

EmfPlusRecordType

MultiFormatStart

EmfPlusRecordType

MultiFrame

EncoderValue

Multiline

RichTextBox, TabControl, TextBoxBase

MultilineChanged

TextBoxBase

MultiObject

RichTextBoxSelectionTypes

Multiply

Keys

Multiply()

Matrix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Matrix

MultiplyTransform()

Graphics, LinearGradientBrush, PathGradientBrush, Pen, TextureBrush

MultiplyWorldTransform

EmfPlusRecordType

Multiselect

OpenFileDialog

MultiSelect

ListView

MultiSelectable

AccessibleStates

MultiSimple

SelectionMode

N

Keys

Name

AccessibleObject, AxParameterData, ChildAccessibleObject, Color, Control, ControlAccessibleObject,
ControlDesignerAccessibleObject, DefaultEventAttribute, DefaultPropertyAttribute, DomainItemAccessibleObject,
Font, FontFamily, Format, ISite, MemberDescriptor

NameChange

AccessibleEvents

NarrowHorizontal

HatchStyle

NarrowVertical

HatchStyle

National

StringDigitSubstitute

NativeErrorCode

Win32Exception

NativeMouseWheelSupport

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemInformation

NativeWindow

System.Windows.Forms

NavajoWhite

Brushes, Color, KnownColor, Pens

Navigate

DataGrid

Navigate()

AccessibleObject

NavigateBack()

DataGrid

NavigateEventArgs

System.Windows.Forms

NavigateEventHandler

System.Windows.Forms

NavigateTo()

DataGrid

Navy

Brushes, Color, KnownColor, Pens

Near

StringAlignment

NearestNeighbor

InterpolationMode

NeedParenthesis

ParenthesizePropertyNameAttribute

Network

SystemInformation

Never

EditorBrowsableState

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EditorBrowsableState

NeverBlink

ErrorBlinkStyle

NeverUnderline

LinkBehavior

NewColor

ColorMap

NewIndex

ListChangedEventArgs

NewRectangle

ContentsResizedEventArgs

NewSelection

SelectedGridItemChangedEventArgs

NewTab

PropertyTabChangedEventArgs

NewValue

ItemCheckEventArgs, ScrollEventArgs

Next

AccessibleNavigation, Keys

NextMarker()

GraphicsPathIterator

NextMonthButton

HitArea

NextMonthDate

HitArea

NextNode

TreeNode

NextPathType()

GraphicsPathIterator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GraphicsPathIterator

NextSubpath()

GraphicsPathIterator

NextVisibleNode

TreeNode

No

BindableAttribute, BindableSupport, BrowsableAttribute, Cursors, DesignOnlyAttribute,
DesignTimeVisibleAttribute, DialogResult, ImmutableObjectAttribute, ListBindableAttribute, LocalizableAttribute,
MergablePropertyAttribute, NotifyParentPropertyAttribute, ReadOnlyAttribute,
RecommendedAsConfigurableAttribute, RightToLeft, RunInstallerAttribute

NoAccelerator

DrawItemState

NoAnchor

LineCap

NoClip

StringFormatFlags

NoControl

ImeMode

Node

NodeLabelEditEventArgs, TreeViewCancelEventArgs, TreeViewEventArgs

NodeClick

DataGrid

NodeFont

TreeNode

NodeLabelEditEventArgs

System.Windows.Forms

NodeLabelEditEventHandler

System.Windows.Forms

Nodes

TreeNode, TreeView

NoFocusRect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NoFocusRect

DrawItemState

NoFontFallback

StringFormatFlags

NoHighlight

RichTextBoxFinds

noLogo

Options

NoMatches

ListBox

NoMove2D

Cursors

NoMoveHoriz

Cursors

NoMoveVert

Cursors

NoName

Keys

Nonclickable

ColumnHeaderStyle

None

AccessibleRole, AccessibleSelection, AccessibleStates, AnchorStyles, BorderStyle, BoundsSpecified,
ButtonBorderStyle, ColumnHeaderStyle, DataGridLineStyle, DataGridParentRowsLabelStyle, DialogResult,
DockStyle, DragDropEffects, DrawItemState, FormBorderStyle, HitTestType, HotkeyPrefix, ImageFlags, Keys,
MessageBoxIcon, MouseButtons, PixelOffsetMode, RefreshProperties, RichTextBoxFinds, RichTextBoxScrollBars,
RichTextBoxSelectionAttribute, ScrollBars, SelectionMode, SelectionRules, Shortcut, SmoothingMode, SortOrder,
StatusBarPanelAutoSize, StatusBarPanelBorderStyle, StringDigitSubstitute, StringTrimming, TickStyle,
ToolboxItemAttribute, UICues, UITypeEditorEditStyle

NoObjects

MetaHeader

NoParameters

MetaHeader

NoPrinting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintingPermissionLevel

Normal

Appearance, BootMode, ButtonState, CharacterCasing, DrawMode, FormWindowState, LinkState,
PictureBoxSizeMode, TabAppearance, TabDrawMode, TabSizeMode, ToolBarAppearance

NoSort

PropertySort

Note

PaperKind

NotifyClients()

ControlAccessibleObject

NotifyDefault()

Button, IButtonControl

NotifyIcon

System.Windows.Forms

NotifyInvalidate()

Control

NotifyParent

NotifyParentPropertyAttribute

NotifyParentPropertyAttribute

System.ComponentModel

NotifyPropertyValueUIItemsChanged()

IPropertyValueUIService

NotInherited

InheritanceAttribute, InheritanceLevel

Nowhere

HitArea, HitTestInfo

NoWrap

StringFormatFlags

NullText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridColumnStyle

NullTextChanged

DataGridColumnStyle

NullValue

DataGridBoolColumn

Number10Envelope

PaperKind

Number11Envelope

PaperKind

Number12Envelope

PaperKind

Number14Envelope

PaperKind

Number9Envelope

PaperKind

NumberOfValues

EncoderParameter

NumericUpDown

System.Windows.Forms

NumLock

Keys

NumPad0

Keys

NumPad1

Keys

NumPad2

Keys

NumPad3

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

NumPad4

Keys

NumPad5

Keys

NumPad6

Keys

NumPad7

Keys

NumPad8

Keys

NumPad9

Keys

O

Keys

Object

EmfPlusRecordType, RichTextBoxSelectionTypes

ObjectCollection

System.Windows.Forms

OcxState

AxHost

Oem8

Keys

OemBackslash

Keys

OemClear

Keys

OemCloseBrackets

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

Oemcomma

Keys

OemMinus

Keys

OemOpenBrackets

Keys

OemPeriod

Keys

OemPipe

Keys

Oemplus

Keys

OemQuestion

Keys

OemQuotes

Keys

OemSemicolon

Keys

OemText

DataFormats

Oemtilde

Keys

Off

ImeMode

Offscreen

AccessibleStates

Offset()

Point, Rectangle, RectangleF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Point, Rectangle, RectangleF

OffsetClip

EmfPlusRecordType

OffsetX

Matrix

OffsetY

Matrix

OK

DialogResult, MessageBoxButtons

OKCancel

MessageBoxButtons

OldColor

ColorMap

OldIndex

ListChangedEventArgs

OldLace

Brushes, Color, KnownColor, Pens

OldSelection

SelectedGridItemChangedEventArgs

OldTab

PropertyTabChangedEventArgs

OldValue

PropertyValueChangedEventArgs

OleRequired()

Application

Olive

Brushes, Color, KnownColor, Pens

OliveDrab

Brushes, Color, KnownColor, Pens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brushes, Color, KnownColor, Pens

On

ImeMode

OnAcceptsTabChanged()

TextBoxBase

OnActivated()

ComponentEditorForm, Form

OnAfterCheck()

TreeView

OnAfterCollapse()

TreeView

OnAfterExpand()

TreeView

OnAfterLabelEdit()

ListView, TreeView

OnAfterSelect()

TreeView

OnAllowNavigationChanged()

DataGrid

OnAllowSortingChanged()

DataGridTableStyle

OnAlternatingBackColorChanged()

DataGridTableStyle

OnAppearanceChanged()

CheckBox

OnApply()

FontDialog

OnApplyComplete()

ComponentEditorPage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage

OnAutoSizeChanged()

Label, TextBoxBase

OnBackButtonClicked()

DataGrid

OnBackColorChanged()

AxHost, CheckedListBox, ComboBox, Control, DataGrid, DataGridTableStyle, MonthCalendar, RichTextBox,
TrackBar

OnBackgroundColorChanged()

DataGrid

OnBackgroundImageChanged()

Control

OnBeforeCheck()

TreeView

OnBeforeCollapse()

TreeView

OnBeforeExpand()

TreeView

OnBeforeLabelEdit()

ListView, TreeView

OnBeforeSelect()

TreeView

OnBeginPrint()

PrintDocument

OnBindingContextChanged()

Control, DataGrid, ListControl

OnBorderStyleChanged()

DataGrid, TextBoxBase

OnButtonClick()

ToolBar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolBar

OnButtonDropDown()

ToolBar

OnCaptionVisibleChanged()

DataGrid

OnCausesValidationChanged()

Control

OnChanged()

DomainUpDown, UpDownBase

OnChangeUICues()

Control, ListBox

OnCheckedChanged()

CheckBox, RadioButton

OnCheckStateChanged()

CheckBox

OnClick()

Button, CheckBox, CheckedListBox, Control, MenuItem, RadioButton

OnClosed()

Form

OnCloseUp()

DateTimePicker

OnClosing()

Form, PrintPreviewDialog

OnCollectionChanged()

BindingContext, BindingsCollection, GridColumnStylesCollection, GridTableStylesCollection

OnColumnClick()

ListView

OnColumnHeadersVisibleChanged()

DataGridTableStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridTableStyle

OnComComponentNameChanged()

PropertyGrid

OnComponentChanged()

ITypeDescriptorContext

OnComponentChanging()

ITypeDescriptorContext

OnComponentsCreated()

ToolboxItem

OnComponentsCreating()

ToolboxItem

OnContentsResized()

RichTextBox

OnContextMenu()

ControlDesigner, DocumentDesigner

OnContextMenuChanged()

Control, RichTextBox

OnControlAdded()

Control

OnControlRemoved()

ContainerControl, Control

OnCreateControl()

ContainerControl, Control, Form, UserControl

OnCreateHandle()

ControlDesigner, DocumentDesigner

OnCurrentCellChanged()

DataGrid

onCurrentChangedHandler

BindingManagerBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BindingManagerBase

OnCursorChanged()

Control

OnDataSourceChanged()

ComboBox, DataGrid, ListBox, ListControl

OnDateChanged()

MonthCalendar

OnDateSelected()

MonthCalendar

OnDeactivate()

Form

OnDisplayMemberChanged()

ComboBox, ListBox, ListControl

OnDockChanged()

Control

OnDoubleClick()

ComponentTray, Control

OnDragDrop()

ComponentTray, Control, ControlDesigner, ParentControlDesigner

OnDragEnter()

ComponentTray, Control, ControlDesigner, ParentControlDesigner

OnDragLeave()

ComponentTray, Control, ControlDesigner, ParentControlDesigner

OnDragOver()

ComponentTray, Control, ControlDesigner, ParentControlDesigner

OnDrawItem()

CheckedListBox, ComboBox, ListBox, MenuItem, StatusBar, TabControl

OnDropDown()

ComboBox, DateTimePicker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComboBox, DateTimePicker

OnDropDownStyleChanged()

ComboBox

One

SelectionMode

OneClick

ItemActivation

OnEnabledChanged()

ButtonBase, Control, Label, LinkLabel, ListView, PictureBox, ScrollBar

OnEndPage()

PreviewPrintController, PrintController, PrintControllerWithStatusDialog, StandardPrintController

OnEndPrint()

PreviewPrintController, PrintController, PrintControllerWithStatusDialog, PrintDocument, StandardPrintController

OnEnter()

Control, DataGrid, RadioButton

OnFileOk()

FileDialog

OnFlatModeChanged()

DataGrid

OnFontChanged()

AxHost, CheckedListBox, ComboBox, Control, DataGrid, DateTimePicker, Form, GroupBox, Label, LinkLabel,
ListBox, ListView, MonthCalendar, PropertyGrid, TabControl, TextBoxBase, ToolBar, UpDownBase

OnForeColorChanged()

AxHost, ComboBox, Control, DataGrid, DataGridTableStyle, MonthCalendar

OnFormat()

Binding

OnFormatChanged()

DateTimePicker

OnGiveFeedback()

ComponentTray, Control, ControlDesigner, ParentControlDesigner

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentTray, Control, ControlDesigner, ParentControlDesigner

OnGotFocus()

ButtonBase, Control, LinkLabel, PropertyGrid, TextBox

OnGridLineColorChanged()

DataGridTableStyle

OnGridLineStyleChanged()

DataGridTableStyle

OnHandleChange()

IWindowTarget, NativeWindow

OnHandleCreated()

AxHost, CheckBox, CheckedListBox, ComboBox, Control, DataGrid, Form, ListBox, ListView, MonthCalendar,
ProgressBar, PropertyGrid, RadioButton, RichTextBox, ScrollBar, StatusBar, TabControl, TextBox, TextBoxBase,
ToolBar, TrackBar, TreeView, UpDownBase

OnHandleDestroyed()

ComboBox, Control, DataGrid, Form, ListBox, ListView, PropertyGrid, RichTextBox, StatusBar, TabControl,
TextBoxBase, TreeView

OnHeaderBackColorChanged()

DataGridTableStyle

OnHeaderFontChanged()

DataGridTableStyle

OnHeaderForeColorChanged()

DataGridTableStyle

OnHelpRequest()

CommonDialog

OnHelpRequested()

ComponentEditorForm, Control

OnHideSelectionChanged()

TextBoxBase

OnHScroll()

RichTextBox

OnImeChange()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnImeChange()

RichTextBox

OnImeModeChanged()

Control

OnInitMenuPopup()

MenuItem

OnInPlaceActive()

AxHost

OnInputLanguageChanged()

Form

OnInputLanguageChanging()

Form

OnInvalidated()

Control

OnItemActivate()

ListView

OnItemChanged()

CurrencyManager

OnItemCheck()

CheckedListBox, ListView

OnItemDrag()

ListView, TreeView

OnKeyDown()

ButtonBase, Control, DataGrid, LinkLabel, Splitter, TabControl, TreeView

OnKeyPress()

CheckedListBox, ComboBox, Control, DataGrid, DataGridTextBox, TreeView

OnKeyUp()

ButtonBase, Control, TreeView

OnLayout()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentTray, Control, DataGrid, ScrollableControl, StatusBar, UpDownBase

OnLeave()

Control, DataGrid

OnLinkClicked()

LinkLabel, RichTextBox

OnLinkColorChanged()

DataGridTableStyle

OnLinkHoverColorChanged()

DataGridTableStyle

OnLoad()

Form, UserControl

OnLocationChanged()

Control

OnLostCapture()

ComponentTray

OnLostFocus()

AxHost, ButtonBase, Control, LinkLabel

OnMainFormClosed()

ApplicationContext

OnMappingNameChanged()

DataGridTableStyle

OnMaximizedBoundsChanged()

Form

OnMaximumSizeChanged()

Form

OnMdiChildActivate()

Form

OnMeasureItem()

CheckedListBox, ComboBox, ListBox, MenuItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CheckedListBox, ComboBox, ListBox, MenuItem

OnMenuComplete()

Form

OnMenuStart()

Form

OnMessage()

IWindowTarget

OnMinimumSizeChanged()

Form

OnModifiedChanged()

TextBoxBase

OnMouseDown()

ButtonBase, ComponentTray, Control, DataGrid, LinkLabel, PropertyGrid, Splitter, StatusBar, UserControl

OnMouseDragBegin()

ControlDesigner, ParentControlDesigner

OnMouseDragEnd()

ControlDesigner, ParentControlDesigner

OnMouseDragMove()

ControlDesigner, ParentControlDesigner

OnMouseEnter()

ButtonBase, Control, ControlDesigner, ParentControlDesigner

OnMouseHover()

Control, ControlDesigner, ParentControlDesigner

OnMouseLeave()

ButtonBase, Control, ControlDesigner, DataGrid, LinkLabel, ParentControlDesigner

OnMouseMove()

ButtonBase, ComponentTray, Control, DataGrid, LinkLabel, PropertyGrid, Splitter

OnMouseUp()

Button, ButtonBase, CheckBox, ComponentTray, Control, DataGrid, LinkLabel, PropertyGrid, RadioButton,
Splitter, TextBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Splitter, TextBox

OnMouseWheel()

Control, DataGrid, DataGridTextBox, ScrollableControl, UpDownBase

OnMove()

Control

OnMultilineChanged()

TextBoxBase

OnNavigate()

DataGrid

OnNotifyMessage()

Control

OnNotifyPropertyValueUIItemsChanged()

PropertyGrid

OnPaint()

ButtonBase, ComponentTray, Control, DataGrid, Form, GroupBox, Label, LinkLabel, PictureBox,
PrintPreviewControl, PropertyGrid

OnPaintAdornments()

ControlDesigner, ParentControlDesigner

OnPaintBackground()

Control, DataGrid, LinkLabel

OnPanelClick()

StatusBar

OnParentBackColorChanged()

ComboBox, Control

OnParentBackgroundImageChanged()

Control

OnParentBindingContextChanged()

Control

OnParentChanged()

ButtonBase, Control, Label, ListBox, PictureBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ButtonBase, Control, Label, ListBox, PictureBox

OnParentEnabledChanged()

Control

OnParentFontChanged()

Control

OnParentForeColorChanged()

Control

OnParentRightToLeftChanged()

Control

OnParentRowsLabelStyleChanged()

DataGrid

OnParentRowsVisibleChanged()

DataGrid

OnParentVisibleChanged()

Control

OnParse()

Binding

OnPopup()

MenuItem

OnPositionChanged()

CurrencyManager

onPositionChangedHandler

BindingManagerBase

OnPreferredColumnWidthChanged()

DataGridTableStyle

OnPreferredRowHeightChanged()

DataGridTableStyle

OnPrintPage()

PrintDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintDocument

OnPropertyTabChanged()

PropertyGrid

OnPropertyValueChanged()

PropertyGrid

OnProtected()

RichTextBox

OnQueryContinueDrag()

Control

OnQueryPageSettings()

PrintDocument

OnReadOnlyChanged()

DataGrid, DataGridTableStyle, TextBoxBase

OnResize()

ComboBox, Control, DataGrid, Form, ListBox, MdiClient, Panel, PictureBox, PrintPreviewControl, PropertyGrid,
StatusBar, TabControl, ToolBar

OnRightToLeftChanged()

Control, RichTextBox

OnRowHeaderClick()

DataGrid

OnRowHeadersVisibleChanged()

DataGridTableStyle

OnRowHeaderWidthChanged()

DataGridTableStyle

OnScroll()

DataGrid, ScrollBar, TrackBar

OnSelChangeSelector()

ComponentEditorForm

OnSelect()

MenuItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MenuItem

OnSelectedGridItemChanged()

PropertyGrid

OnSelectedIndexChanged()

CheckedListBox, ComboBox, ListBox, ListControl, ListView, TabControl

OnSelectedItemChanged()

ComboBox, DomainUpDown

OnSelectedObjectsChanged()

PropertyGrid

OnSelectedValueChanged()

ListControl

OnSelectionBackColorChanged()

DataGridTableStyle

OnSelectionChangeCommitted()

ComboBox

OnSelectionChanged()

RichTextBox

OnSelectionForeColorChanged()

DataGridTableStyle

OnSetComponentDefaults()

ControlDesigner

OnSetCursor()

ComponentTray, ControlDesigner, ParentControlDesigner

OnShowParentDetailsButtonClicked()

DataGrid

OnSizeChanged()

Control

OnSizeModeChanged()

PictureBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PictureBox

OnSplitterMoved()

Splitter

OnSplitterMoving()

Splitter

OnStartPage()

PreviewPrintController, PrintController, PrintControllerWithStatusDialog, StandardPrintController

OnStartPageChanged()

PrintPreviewControl

OnStartPrint()

PreviewPrintController, PrintController, PrintControllerWithStatusDialog, StandardPrintController

OnStyleChanged()

Control, Form, TabControl

OnSystemColorsChanged()

Control, DateTimePicker, ListView, PropertyGrid, RichTextBox

OnTabIndexChanged()

Control

OnTabStopChanged()

Control

OnTextAlignChanged()

Label, LinkLabel, TextBox

OnTextBoxKeyDown()

DomainUpDown, UpDownBase

OnTextBoxKeyPress()

NumericUpDown, UpDownBase

OnTextBoxLostFocus()

UpDownBase

OnTextBoxResize()

UpDownBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UpDownBase

OnTextBoxTextChanged()

UpDownBase

OnTextChanged()

ButtonBase, Control, Form, Label, LinkLabel, RichTextBox

OnThreadException()

Application, NativeWindow

OnTick()

Timer

OnValidated()

Control

OnValidating()

Control

OnValueChanged()

DateTimePicker, NumericUpDown, PropertyDescriptor, ScrollBar, TrackBar

OnValueMemberChanged()

ListControl

OnVisibleChanged()

ButtonBase, Control, Form, Label, PictureBox, PropertyGrid, ScrollableControl

OnVScroll()

RichTextBox

Opacity

Form, PrintPreviewDialog

OpacityConverter

System.Windows.Forms

Opaque

ControlStyles

OpenFile()

OpenFileDialog, SaveFileDialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenFileDialog, SaveFileDialog

OpenFileDialog

System.Windows.Forms

OpenFileFromSource()

IFileReaderService

Options

System.Windows.Forms.Design

Orange

Brushes, Color, KnownColor, Pens

OrangeRed

Brushes, Color, KnownColor, Pens

Orchid

Brushes, Color, KnownColor, Pens

Orientation

System.Windows.Forms, TrackBar

OSFeature

System.Windows.Forms

Outline

AccessibleRole

OutlinedDiamond

HatchStyle

OutlineItem

AccessibleRole

outputDirectory

Options

outputName

Options

Outset

ButtonBorderStyle, PenAlignment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ButtonBorderStyle, PenAlignment

OverwritePrompt

SaveFileDialog

overwriteRCW

Options

OwnedForms

Form

Owner

ControlAccessibleObject, Form

OwnerDraw

MenuItem, StatusBarPanelStyle

OwnerDrawFixed

DrawMode, TabDrawMode

OwnerDrawPropertyBag

System.Windows.Forms

OwnerDrawVariable

DrawMode

OwnerWndProc()

CommonDialog

P

Keys

Pa1

Keys

Padding

TabControl

Page

CoordinateSpace, FrameDimension

PageBounds

PrintPageEventArgs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintPageEventArgs

PageDown

Keys

PageScale

Graphics

PageSettings

PageSetupDialog, PrintPageEventArgs, QueryPageSettingsEventArgs, System.Drawing.Printing

PageSetupDialog

System.Windows.Forms

PageTab

AccessibleRole

PageTabList

AccessibleRole

PageUnit

Graphics

PageUp

Keys

Paint

AxHost, ComboBox, Control, DateTimePicker, ListBox, ListView, MonthCalendar, ProgressBar, ScrollBar,
StatusBar, TabControl, TextBoxBase, ToolBar, TrackBar, TreeView

PaintEventArgs

System.Windows.Forms

PaintEventHandler

System.Windows.Forms

PaintText()

DataGridTextBoxColumn

PaintValue()

ColorEditor, FontNameEditor, IconEditor, ImageEditor, UITypeEditor

PaintValueEventArgs

System.Drawing.Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Design

PaleGoldenrod

Brushes, Color, KnownColor, Pens

PaleGreen

Brushes, Color, KnownColor, Pens

Palette

DataFormats, Image

PaletteFlags

System.Drawing.Imaging

PaleTurquoise

Brushes, Color, KnownColor, Pens

PaleVioletRed

Brushes, Color, KnownColor, Pens

PAlpha

PixelFormat

Pane

AccessibleRole

PanEast

Cursors

Panel

StatusBarDrawItemEventArgs, System.Windows.Forms

PanelClick

StatusBar

Panels

StatusBar

PanNE

Cursors

PanNorth

Cursors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cursors

PanNW

Cursors

PanSE

Cursors

PanSouth

Cursors

PanSW

Cursors

PanWest

Cursors

PapayaWhip

Brushes, Color, KnownColor, Pens

PaperKind

System.Drawing.Printing

PaperName

PaperSize

PaperSize

PageSettings, System.Drawing.Printing

PaperSizeCollection

System.Drawing.Printing

PaperSizes

PrinterSettings

PaperSource

PageSettings, System.Drawing.Printing

PaperSourceCollection

System.Drawing.Printing

PaperSourceKind

System.Drawing.Printing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Printing

PaperSources

PrinterSettings

Param

CreateParams, EncoderParameters

ParameterType

AxParameterData

Parent

AccessibleObject, Control, ControlDesignerAccessibleObject, CreateParams, DomainItemAccessibleObject,
GridItem, MenuItem, StatusBarPanel, ToolBarButton, TreeNode

ParentChange

AccessibleEvents

ParentChanged

Control

ParentControlDesigner

System.Windows.Forms.Design

ParentForm

ContainerControl

ParenthesizePropertyNameAttribute

System.ComponentModel

ParentRows

HitTestType

ParentRowsBackColor

DataGrid

ParentRowsForeColor

DataGrid

ParentRowsLabelStyle

DataGrid

ParentRowsLabelStyleChanged

DataGrid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGrid

ParentRowsVisible

DataGrid

ParentRowsVisibleChanged

DataGrid

Parse

Binding

ParseEditText()

NumericUpDown

PartiallyScalable

ImageFlags

PartialPush

ToolBarButton

PasswordChar

TextBox

Paste()

RichTextBox, TextBoxBase

PathData

GraphicsPath, System.Drawing.Drawing2D

PathGradient

PenType

PathGradientBrush

System.Drawing.Drawing2D

PathMarker

PathPointType

PathPoints

GraphicsPath

PathPointType

System.Drawing.Drawing2D

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Drawing2D

PathSeparator

TreeView

PathTypeMask

PathPointType

PathTypes

GraphicsPath

Pause

Keys

PeachPuff

Brushes, Color, KnownColor, Pens

Pen

ColorAdjustType, System.Drawing

PenAlignment

System.Drawing.Drawing2D

PenData

DataFormats

Pens

System.Drawing

PenType

Pen, System.Drawing.Drawing2D

PenWindows

SystemInformation

Percent05

HatchStyle

Percent10

HatchStyle

Percent20

HatchStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HatchStyle

Percent25

HatchStyle

Percent30

HatchStyle

Percent40

HatchStyle

Percent50

HatchStyle

Percent60

HatchStyle

Percent70

HatchStyle

Percent75

HatchStyle

Percent80

HatchStyle

Percent90

HatchStyle

PerformClick()

Button, IButtonControl, MenuItem, RadioButton

PerformLayout()

Control

PerformSelect()

MenuItem

PerformStep()

ProgressBar

PersonalEnvelope

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

Perspective

WarpMode

Peru

Brushes, Color, KnownColor, Pens

PhysicalDimension

Image

PhysicalSize

PreviewPageInfo

PictureBox

System.Windows.Forms

PictureBoxSizeMode

System.Windows.Forms

Pink

Brushes, Color, KnownColor, Pens

Pixel

GraphicsUnit, MetafileFrameUnit, StringUnit

PixelFormat

BitmapData, Image, System.Drawing.Imaging

PixelOffsetMode

Graphics, System.Drawing.Drawing2D

Plaid

HatchStyle

PlainText

RichTextBoxStreamType

Play

Keys

PlayRecord()

Metafile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metafile

PlayRecordCallback

System.Drawing.Imaging

Plum

Brushes, Color, KnownColor, Pens

Png

ImageFormat

Point

GraphicsUnit, HitTestInfo, MetafileFrameUnit, StringUnit, System.Drawing

PointConverter

System.Drawing

PointCount

GraphicsPath

PointF

System.Drawing

PointInLink()

LinkLabel

Points

PathData

PointToClient()

Control

PointToScreen()

Control

PopHandler()

EventHandlerService

Popup

ContextMenu, FlatStyle, MenuItem

Position

BindingManagerBase, CurrencyManager, Cursor, PropertyManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BindingManagerBase, CurrencyManager, Cursor, PropertyManager

PositionChanged

BindingManagerBase

Positions

Blend, ColorBlend

PowderBlue

Brushes, Color, KnownColor, Pens

Prc16K

PaperKind

Prc16KRotated

PaperKind

Prc32K

PaperKind

Prc32KBig

PaperKind

Prc32KBigRotated

PaperKind

Prc32KRotated

PaperKind

PrcEnvelopeNumber1

PaperKind

PrcEnvelopeNumber10

PaperKind

PrcEnvelopeNumber10Rotated

PaperKind

PrcEnvelopeNumber1Rotated

PaperKind

PrcEnvelopeNumber2

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

PrcEnvelopeNumber2Rotated

PaperKind

PrcEnvelopeNumber3

PaperKind

PrcEnvelopeNumber3Rotated

PaperKind

PrcEnvelopeNumber4

PaperKind

PrcEnvelopeNumber4Rotated

PaperKind

PrcEnvelopeNumber5

PaperKind

PrcEnvelopeNumber5Rotated

PaperKind

PrcEnvelopeNumber6

PaperKind

PrcEnvelopeNumber6Rotated

PaperKind

PrcEnvelopeNumber7

PaperKind

PrcEnvelopeNumber7Rotated

PaperKind

PrcEnvelopeNumber8

PaperKind

PrcEnvelopeNumber8Rotated

PaperKind

PrcEnvelopeNumber9

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

PrcEnvelopeNumber9Rotated

PaperKind

PreferredColumnWidth

DataGrid, DataGridTableStyle

PreferredColumnWidthChanged

DataGridTableStyle

PreferredHeight

ComboBox, DateTimePicker, Label, ListBox, TextBoxBase, UpDownBase

PreferredRowHeight

DataGrid, DataGridTableStyle

PreferredRowHeightChanged

DataGridTableStyle

PreferredWidth

Label

PreFilterMessage()

IMessageFilter, Splitter

PreFilterProperties()

ComponentDocumentDesigner, ControlDesigner, DocumentDesigner, ParentControlDesigner

Prepend

MatrixOrder

PreProcessMessage()

AxHost, ComponentEditorForm, Control

Pressed

AccessibleStates

Prevent

ToolboxItemFilterType

PreviewPageInfo

System.Drawing.Printing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Printing

PreviewPrintController

System.Drawing.Printing

Previous

AccessibleNavigation

PrevMonthButton

HitArea

PrevMonthDate

HitArea

PrevNode

TreeNode

PrevVisibleNode

TreeNode

Primary

Screen

PrimaryMonitorMaximizedWindowSize

SystemInformation

PrimaryMonitorSize

SystemInformation

PrimaryScreen

Screen

Print

Keys

Print()

PrintDocument

PrintController

PrintDocument, System.Drawing.Printing

PrintControllerWithStatusDialog

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

PrintDialog

System.Windows.Forms

PrintDocument

System.Drawing.Printing

PrinterName

PrinterSettings

PrinterResolution

PageSettings, System.Drawing.Printing

PrinterResolutionCollection

System.Drawing.Printing

PrinterResolutionKind

System.Drawing.Printing

PrinterResolutions

PrinterSettings

PrinterSettings

PageSettings, PageSetupDialog, PrintDialog, PrintDocument, System.Drawing.Printing

PrinterUnit

System.Drawing.Printing

PrinterUnitConvert

System.Drawing.Printing

PrintEventArgs

System.Drawing.Printing

PrintEventHandler

System.Drawing.Printing

PrintingPermission

System.Drawing.Printing

PrintingPermissionAttribute

System.Drawing.Printing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Printing

PrintingPermissionLevel

System.Drawing.Printing

PrintPage

PrintDocument

PrintPageEventArgs

System.Drawing.Printing

PrintPageEventHandler

System.Drawing.Printing

PrintPreviewControl

PrintPreviewDialog, System.Windows.Forms

PrintPreviewDialog

System.Windows.Forms

PrintRange

PrinterSettings, System.Drawing.Printing

PrintScreen

Keys

PrintToFile

PrintDialog, PrinterSettings

Prior

Keys

PrivateFontCollection

System.Drawing.Text

ProcessCmdKey()

Control, Form

ProcessDialogChar()

ContainerControl, Control

ProcessDialogKey()

ContainerControl, Control, DataGrid, Form, LinkLabel, PropertyGrid, TextBoxBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContainerControl, Control, DataGrid, Form, LinkLabel, PropertyGrid, TextBoxBase

ProcessGridKey()

DataGrid

ProcessKey

Keys

ProcessKeyEventArgs()

Control

ProcessKeyPreview()

Control, DataGrid, Form, TabControl

ProcessMnemonic()

AxHost, Button, CheckBox, ContainerControl, Control, GroupBox, Label, RadioButton

ProcessTabKey()

ContainerControl, DataGrid, Form

ProductName

Application, Control

ProductVersion

Application, Control

ProgressBar

AccessibleRole, System.Windows.Forms

Property

GridItemType

PropertyChangedEventArgs

System.ComponentModel

PropertyChangedEventHandler

System.ComponentModel

PropertyDescriptor

DataGridColumnStyle, DataGridTextBoxColumn, GridItem, ITypeDescriptorContext, System.ComponentModel

PropertyDescriptorAdded

ListChangedType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListChangedType

PropertyDescriptorChanged

DataGridColumnStyle, ListChangedType

PropertyDescriptorCollection

System.ComponentModel

PropertyDescriptorDeleted

ListChangedType

PropertyGet

ActiveXInvokeKind

PropertyGrid

System.Windows.Forms

PropertyIdList

Image

PropertyItem

System.Drawing.Imaging

PropertyItems

Image

PropertyManager

System.Windows.Forms

PropertyName

Binding, PropertyChangedEventArgs, ProvidePropertyAttribute

PropertyPage

AccessibleRole

PropertySet

ActiveXInvokeKind

PropertySort

PropertyGrid, System.Windows.Forms

PropertySortChanged

PropertyGrid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PropertyGrid

PropertyTab

System.Windows.Forms.Design

PropertyTabAttribute

System.ComponentModel

PropertyTabChanged

PropertyGrid

PropertyTabChangedEventArgs

System.Windows.Forms

PropertyTabChangedEventHandler

System.Windows.Forms

PropertyTabCollection

System.Windows.Forms

PropertyTabs

PropertyGrid

PropertyTabScope

System.ComponentModel

PropertyType

PropertyDescriptor

PropertyUIValueItemsChanged

IPropertyValueUIService

PropertyValueChanged

PropertyGrid

PropertyValueChangedEventArgs

System.Windows.Forms

PropertyValueChangedEventHandler

System.Windows.Forms

PropertyValueUIHandler

System.Drawing.Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Design

PropertyValueUIItem

System.Drawing.Design

PropertyValueUIItemInvokeHandler

System.Drawing.Design

PropsValid()

AxHost

Protected

AccessibleStates, RichTextBox

ProvidePropertyAttribute

System.ComponentModel

Provider

ExtenderProvidedPropertyAttribute

publicKey

Options

PullData()

BindingManagerBase

Purple

Brushes, Color, KnownColor, Pens

PushButton

AccessibleRole, ToolBarButtonStyle

PushData()

BindingManagerBase

Pushed

ButtonState, ToolBarButton

PushHandler()

EventHandlerService

Q

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

Quality

Encoder

QualityMode

System.Drawing.Drawing2D

Quarto

PaperKind

QueryAccessibilityHelp

AxHost, Control

QueryAccessibilityHelpEventArgs

System.Windows.Forms

QueryAccessibilityHelpEventHandler

System.Windows.Forms

QueryContinueDrag

AxHost, Control, RichTextBox

QueryContinueDragEventArgs

System.Windows.Forms

QueryContinueDragEventHandler

System.Windows.Forms

QueryPageSettings

PrintDocument

QueryPageSettingsEventArgs

System.Drawing.Printing

QueryPageSettingsEventHandler

System.Drawing.Printing

Question

MessageBoxIcon, SystemIcons

R

Color, Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Color, Keys

RadioButton

AccessibleRole, System.Windows.Forms

RadioButtonAccessibleObject

System.Windows.Forms

RadioCheck

MenuItem

Raised

Border3DStyle, StatusBarPanelBorderStyle

RaisedInner

Border3DStyle

RaisedOuter

Border3DStyle

RaiseDragEvent()

Control

RaiseKeyEvent()

Control

RaiseMouseEvent()

Control

RaiseOnMouseDown()

AxHost

RaiseOnMouseMove()

AxHost

RaiseOnMouseUp()

AxHost

RaisePaintEvent()

Control

RawFormat

Image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image

RButton

Keys

RControlKey

Keys

ReadOnly

AccessibleStates, DataGrid, DataGridColumnStyle, DataGridTableStyle, DataGridTextBoxColumn, ImageFlags,
ImageLockMode, TextBoxBase, UpDownBase

ReadOnlyAttribute

System.ComponentModel

ReadOnlyChanged

DataGrid, DataGridColumnStyle, DataGridTableStyle, TextBoxBase

ReadOnlyChecked

OpenFileDialog

ReadWrite

ImageLockMode

RealizeProperties()

ListView

ReceiverType

ExtenderProvidedPropertyAttribute

ReceiverTypeName

ProvidePropertyAttribute

RecommendedAsConfigurable

RecommendedAsConfigurableAttribute

RecommendedAsConfigurableAttribute

System.ComponentModel

RecreateHandle

ImageList

RecreateHandle()

Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control

RecreatingHandle

Control

Rectangle

LinearGradientBrush, PathGradientBrush, System.Drawing, ToolBarButton

RectangleConverter

System.Drawing

RectangleF

System.Drawing

RectangleToClient()

Control

RectangleToScreen()

Control

Red

Brushes, Color, KnownColor, Pens

Redo()

RichTextBox

RedoActionName

RichTextBox

ReferenceConverter

System.ComponentModel

references

Options

ReflectMessage()

Control

Refresh

CollectionChangeAction

Refresh()

Control, CurrencyManager, IToolboxService, PropertyGrid, TypeDescriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control, CurrencyManager, IToolboxService, PropertyGrid, TypeDescriptor

Refreshed

TypeDescriptor

RefreshEventArgs

System.ComponentModel

RefreshEventHandler

System.ComponentModel

RefreshItem()

ComboBox, ListBox, ListControl

RefreshProperties

RefreshPropertiesAttribute, System.ComponentModel

RefreshPropertiesAttribute

System.ComponentModel

RefreshTabs()

PropertyGrid

Region

Control, System.Drawing

RegionData

System.Drawing.Drawing2D

Regular

FontStyle

ReleaseHandle()

NativeWindow

ReleaseHdc()

Graphics

ReleaseHdcInternal()

Graphics

ReloadComponent()

ComponentEditorPage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage

Remove

CollectionChangeAction, MenuMerge

Remove()

ColumnHeaderCollection, Container, ControlBindingsCollection, ControlCollection,
DomainUpDownItemCollection, EventDescriptorCollection, GridColumnStylesCollection,
GridTableStylesCollection, IContainer, ImageCollection, LinkCollection, ListViewItem, ListViewItemCollection,
ListViewSubItemCollection, MenuItemCollection, ObjectCollection, PropertyDescriptorCollection,
StatusBarPanelCollection, TabPageCollection, ToolBarButtonCollection, TreeNode, TreeNodeCollection

RemoveAll()

TabControl, ToolTip

RemoveAllAnnuallyBoldedDates()

MonthCalendar

RemoveAllBoldedDates()

MonthCalendar

RemoveAllMonthlyBoldedDates()

MonthCalendar

RemoveAnnuallyBoldedDate()

MonthCalendar

RemoveAt()

BindingManagerBase, ColumnHeaderCollection, ControlBindingsCollection, ControlCollection, CurrencyManager,
DomainUpDownItemCollection, EventDescriptorCollection, GridColumnStylesCollection,
GridTableStylesCollection, ImageCollection, LinkCollection, ListViewItemCollection, ListViewSubItemCollection,
MenuItemCollection, ObjectCollection, PropertyDescriptorCollection, PropertyManager, StatusBarPanelCollection,
TabPageCollection, ToolBarButtonCollection, TreeNodeCollection

RemoveBoldedDate()

MonthCalendar

RemoveComponent()

ComponentTray

RemoveCore()

BindingContext, BindingsCollection, ControlBindingsCollection

RemoveCreator()

IToolboxService

RemoveEventHandler()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventDescriptor

RemoveHandler()

EventHandlerList

RemoveIndex()

IBindingList

RemoveMessageFilter()

Application

RemoveMonthlyBoldedDate()

MonthCalendar

RemoveOwnedForm()

Form

RemovePropertyItem()

Image

RemovePropertyValueUIHandler()

IPropertyValueUIService

RemoveSelection

AccessibleSelection

RemoveSort()

IBindingList

RemoveTabType()

PropertyTabCollection

RemoveToolboxItem()

IToolboxService

RemoveValueChanged()

PropertyDescriptor

RenderingOrigin

Graphics

RenderMethod

Encoder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Encoder

RenderNonProgressive

EncoderValue

RenderProgressive

EncoderValue

Reorder

AccessibleEvents

Repaint

RefreshProperties, RefreshPropertiesAttribute

Replace

CombineMode, MenuMerge

Require

ToolboxItemFilterType

Reserved

BitmapData, WmfPlaceableFileHeader

Reset

ListChangedType

Reset()

ColorDialog, CommonDialog, FileDialog, FontDialog, GraphicsPath, Matrix, OpenFileDialog, PageSetupDialog,
PrintDialog, PropertyValueUIItem, SaveFileDialog

ResetAlternatingBackColor()

DataGrid, DataGridTableStyle

ResetBackColor()

Control, DataGrid, DataGridTableStyle, PrintPreviewControl

ResetBindings()

Control

ResetClip

EmfPlusRecordType

ResetClip()

Graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphics

ResetCursor()

Control

ResetFlagsandPaint()

ButtonBase

ResetFont()

Control

ResetForeColor()

Control, DataGrid, DataGridTableStyle, PrintPreviewControl

ResetGridLineColor()

DataGrid, DataGridTableStyle

ResetHeaderBackColor()

DataGrid, DataGridTableStyle

ResetHeaderFont()

DataGrid, DataGridTableStyle

ResetHeaderForeColor()

DataGrid, DataGridTableStyle

ResetHeaderText()

DataGridColumnStyle

ResetImeMode()

Control

ResetLinkColor()

DataGrid, DataGridTableStyle

ResetLinkHoverColor()

DataGrid, DataGridTableStyle

ResetMouseEventArgs()

Control

ResetPropertyDescriptors()

GridColumnStylesCollection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GridColumnStylesCollection

ResetRightToLeft()

Control

ResetSelectedProperty()

PropertyGrid

ResetSelection()

DataGrid

ResetSelectionBackColor()

DataGrid, DataGridTableStyle

ResetSelectionForeColor()

DataGrid, DataGridTableStyle

ResetShowHelp()

HelpProvider

ResetStyle()

ListViewSubItem

ResetText()

Control

ResetTransform()

Graphics, LinearGradientBrush, PathGradientBrush, Pen, TextureBrush

ResetValue()

PropertyDescriptor

ResetWorldTransform

EmfPlusRecordType

ReshowDelay

ToolTip

Resize

Control

ResizeRedraw

ControlStyles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ControlStyles

Resolution

FrameDimension

ResolveActiveXReference()

IReferenceResolver

ResolveComReference()

IReferenceResolver

ResolveManagedReference()

IReferenceResolver

Restore

CaptionButton, EmfPlusRecordType

Restore()

Graphics

RestoreDirectory

FileDialog

Result

Message

ResumeBinding()

BindingManagerBase, CurrencyManager, PropertyManager

ResumeLayout()

Control

Retry

DialogResult

RetryCancel

MessageBoxButtons

Return

Keys

Reverse

RichTextBoxFinds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichTextBoxFinds

Reverse()

GraphicsPath

Rewind()

GraphicsPathIterator

RichNoOleObjs

RichTextBoxStreamType

RichText

RichTextBoxStreamType

RichTextBox

System.Windows.Forms

RichTextBoxFinds

System.Windows.Forms

RichTextBoxScrollBars

System.Windows.Forms

RichTextBoxSelectionAttribute

System.Windows.Forms

RichTextBoxSelectionTypes

System.Windows.Forms

RichTextBoxStreamType

System.Windows.Forms

RichTextBoxWordPunctuations

System.Windows.Forms

Riff

DataFormats

Right

AccessibleNavigation, AnchorStyles, ArrangeDirection, Border3DSide, Control, DockPaddingEdges, DockStyle,
HorizontalAlignment, Keys, LeftRightAlignment, Margins, MouseButtons, PenAlignment, Rectangle, RectangleF,
ScrollButton, TabAlignment, ToolBarTextAlign

RightAlign

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MessageBoxOptions

RightAlignedMenus

SystemInformation

RightMargin

RichTextBox

RightSizeable

SelectionRules

RightToLeft

AxHost, ContextMenu, Control, ListBox, MainMenu, PictureBox, PrintPreviewDialog, ProgressBar,
System.Windows.Forms, ToolBar, VScrollBar

RightToLeftChanged

AxHost, Control

RMenu

Keys

Role

AccessibleObject, CheckBoxAccessibleObject, ControlAccessibleObject, ControlDesignerAccessibleObject,
DomainItemAccessibleObject, DomainUpDownAccessibleObject, RadioButtonAccessibleObject

Root

GridItemType

RosyBrown

Brushes, Color, KnownColor, Pens

Rotate()

Matrix

Rotate180FlipNone

RotateFlipType

Rotate180FlipX

RotateFlipType

Rotate180FlipXY

RotateFlipType

Rotate180FlipY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rotate180FlipY

RotateFlipType

Rotate270FlipNone

RotateFlipType

Rotate270FlipX

RotateFlipType

Rotate270FlipXY

RotateFlipType

Rotate270FlipY

RotateFlipType

Rotate90FlipNone

RotateFlipType

Rotate90FlipX

RotateFlipType

Rotate90FlipXY

RotateFlipType

Rotate90FlipY

RotateFlipType

RotateAt()

Matrix

RotateFlip()

Image

RotateFlipType

System.Drawing

RotateNoneFlipNone

RotateFlipType

RotateNoneFlipX

RotateFlipType

RotateNoneFlipXY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RotateFlipType

RotateNoneFlipY

RotateFlipType

RotateTransform()

Graphics, LinearGradientBrush, PathGradientBrush, Pen, TextureBrush

RotateWorldTransform

EmfPlusRecordType

Round

DashCap, LineCap, LineJoin

Round()

Point, Rectangle, Size

RoundAnchor

LineCap

Row

AccessibleRole, HitTestInfo

RowCount

TabControl

RowHeader

AccessibleRole, HitTestType

RowHeaderClick

DataGrid

RowHeadersVisible

DataGrid, DataGridTableStyle

RowHeadersVisibleChanged

DataGridTableStyle

RowHeaderWidth

DataGrid, DataGridTableStyle

RowHeaderWidthChanged

DataGridTableStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridTableStyle

RowNumber

DataGridCell

RowResize

HitTestType

Rows

PrintPreviewControl

RoyalBlue

Brushes, Color, KnownColor, Pens

RShiftKey

Keys

Rtf

DataFormats, RichTextBox

RtlReading

MessageBoxOptions

RtlTranslateAlignment()

Control

RtlTranslateContent()

Control

RtlTranslateHorizontal()

Control

RtlTranslateLeftRight()

Control

Run()

Application

RunDialog()

ColorDialog, CommonDialog, FileDialog, FontDialog, PageSetupDialog, PrintDialog

RunInstaller

RunInstallerAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RunInstallerAttribute

RunInstallerAttribute

System.ComponentModel

Runtime

LicenseUsageMode

RWin

Keys

S

Keys

SaddleBrown

Brushes, Color, KnownColor, Pens

SafePrinting

PrintingPermissionLevel

SafeTopLevelCaptionFormat

Application

Salmon

Brushes, Color, KnownColor, Pens

SandyBrown

Brushes, Color, KnownColor, Pens

SansSerif

GenericFontFamilies

Saturday

Day

Save

EmfPlusRecordType

Save()

Graphics, Icon, Image

SaveAdd()

Image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image

SaveComponent()

ComponentEditorPage

SaveFile()

RichTextBox

SaveFileDialog

System.Windows.Forms

SaveFlag

Encoder

SByteConverter

System.ComponentModel

Scalable

ImageFlags

Scale()

Control, Matrix

ScaleCore()

Control, Form, MdiClient, PropertyGrid, ScrollableControl

ScaleTransform()

Graphics, LinearGradientBrush, PathGradientBrush, Pen, TextureBrush

ScaleWorldTransform

EmfPlusRecordType

Scan0

BitmapData

ScanMethod

Encoder

ScanMethodInterlaced

EncoderValue

ScanMethodNonInterlaced

EncoderValue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EncoderValue

Screen

System.Windows.Forms

ScriptsOnly

FontDialog

Scroll

DataGrid, DragDropEffects, Keys, ScrollBar, TrackBar

Scrollable

ListView, TreeView

ScrollableControl

System.Windows.Forms

ScrollableControlDesigner

System.Windows.Forms.Design

ScrollAlwaysVisible

ListBox

ScrollBar

AccessibleRole, KnownColor, System.Windows.Forms, SystemBrushes, SystemColors

ScrollBars

RichTextBox, System.Windows.Forms, TextBox

ScrollButton

System.Windows.Forms

ScrollChange

MonthCalendar

ScrollControlIntoView()

ScrollableControl

ScrollEventArgs

System.Windows.Forms

ScrollEventHandler

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

ScrollEventType

System.Windows.Forms

ScrollStateAutoScrolling

ScrollableControl

ScrollStateFullDrag

ScrollableControl

ScrollStateHScrollVisible

ScrollableControl

ScrollStateUserHasScrolled

ScrollableControl

ScrollStateVScrollVisible

ScrollableControl

ScrollToCaret()

TextBoxBase

SeaGreen

Brushes, Color, KnownColor, Pens

SeaShell

Brushes, Color, KnownColor, Pens

Secure

SystemInformation

SecurityIDType

System.Windows.Forms

SeekableEncode

ImageCodecFlags

Select

Keys, MenuItem

Select()

AccessibleObject, ComboBox, ContainerControl, Control, DataGrid, Form, GridItem, LinkLabel, TextBoxBase,
UpDownBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UpDownBase

Selectable

AccessibleStates, ControlStyles

SelectActiveFrame()

Image

SelectAll()

ComboBox, TextBoxBase

Selected

AccessibleStates, DrawItemState, ListViewItem

SelectedCategory

IToolboxService

SelectedGridItem

PropertyGrid

SelectedGridItemChanged

PropertyGrid

SelectedGridItemChangedEventArgs

System.Windows.Forms

SelectedGridItemChangedEventHandler

System.Windows.Forms

SelectedImageIndex

TreeNode, TreeView

SelectedIndex

ComboBox, DomainUpDown, ListBox, ListControl, TabControl

SelectedIndexChanged

ComboBox, ListBox, ListView, TabControl

SelectedIndexCollection

System.Windows.Forms

SelectedIndices

ListBox, ListView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListBox, ListView

SelectedItem

ComboBox, DomainUpDown, ListBox

SelectedItemChanged

DomainUpDown

SelectedItems

ListBox, ListView

SelectedListViewItemCollection

System.Windows.Forms

SelectedNode

TreeView

SelectedObject

PropertyGrid

SelectedObjectCollection

System.Windows.Forms

SelectedObjects

PropertyGrid

SelectedObjectsChanged

PropertyGrid

SelectedRtf

RichTextBox

SelectedTab

PropertyGrid, TabControl

SelectedText

ComboBox, RichTextBox, TextBoxBase

SelectedToolboxItemUsed()

IToolboxService

SelectedValue

ListControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListControl

SelectedValueChanged

ListControl

Selection

AccessibleEvents, PrintRange

SelectionAdd

AccessibleEvents

SelectionAlignment

RichTextBox

SelectionBackColor

DataGrid, DataGridTableStyle

SelectionBackColorChanged

DataGridTableStyle

SelectionBullet

RichTextBox

SelectionChangeCommitted

ComboBox

SelectionChanged

RichTextBox

SelectionCharOffset

RichTextBox

SelectionColor

RichTextBox

SelectionEnd

MonthCalendar

SelectionFont

RichTextBox

SelectionForeColor

DataGrid, DataGridTableStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGrid, DataGridTableStyle

SelectionForeColorChanged

DataGridTableStyle

SelectionHangingIndent

RichTextBox

SelectionIndent

RichTextBox

SelectionLength

ComboBox, RichTextBox, TextBoxBase

SelectionMenu

MenuCommands

SelectionMode

CheckedListBox, ListBox, System.Windows.Forms

SelectionProtected

RichTextBox

SelectionRange

MonthCalendar, System.Windows.Forms

SelectionRangeConverter

System.Windows.Forms

SelectionRemove

AccessibleEvents

SelectionRightIndent

RichTextBox

SelectionRules

ControlDesigner, DocumentDesigner, System.Windows.Forms.Design

SelectionStart

ComboBox, MonthCalendar, TextBoxBase

SelectionTabs

RichTextBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichTextBox

SelectionType

RichTextBox

SelectionWithin

AccessibleEvents

SelectMedia

Keys

SelectNextControl()

Control

SelfVoicing

AccessibleStates

Send()

SendKeys

SendKeys

System.Windows.Forms

SendToBack()

Control

SendWait()

SendKeys

Separator

AccessibleRole, Keys, ToolBarButtonStyle

Serializable

DataFormats

SerializationVisibility

PropertyDescriptor

Serialize()

ListViewItem, ToolboxItem

SerializeToolboxItem()

IToolboxService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IToolboxService

Serif

GenericFontFamilies

ServiceNotification

MessageBoxOptions

SetAboutBoxDelegate()

AxHost

SetAntiAliasMode

EmfPlusRecordType

SetAutoScrollMargin()

ScrollableControl

SetBlendTriangularShape()

LinearGradientBrush, PathGradientBrush

SetBounds()

Control

SetBoundsCore()

AxHost, ComboBox, Control, DateTimePicker, Form, Label, LinkLabel, ListBox, MdiClient, MonthCalendar,
PictureBox, Splitter, TabPage, TextBoxBase, ToolBar, TrackBar, UpDownBase

SetBrushRemapTable()

ImageAttributes

SetCalendarDimensions()

MonthCalendar

SetChildIndex()

ControlCollection

SetClientSizeCore()

Control, Form

SetClip()

Graphics

SetClipPath

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

SetClipRect

EmfPlusRecordType

SetClipRegion

EmfPlusRecordType

SetColorKey()

ImageAttributes

SetColorMatrices()

ImageAttributes

SetColorMatrix()

ImageAttributes

SetComponent()

ComponentEditorPage

SetCompositingMode

EmfPlusRecordType

SetCompositingQuality

EmfPlusRecordType

SetCursor()

IToolboxService

SetData()

DataObject, IDataObject

SetDataBinding()

DataGrid

SetDataGrid()

DataGridColumnStyle, DataGridTextBox

SetDataGridInColumn()

DataGridColumnStyle, DataGridTextBoxColumn

SetDataObject()

Clipboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard

SetDate()

MonthCalendar

SetDesktopBounds()

Form

SetDesktopLocation()

Form

SetDigitSubstitution()

StringFormat

SetDirty()

ComponentEditorPage, IComponentEditorPageSite

SetDisplayRectLocation()

ScrollableControl

SetError()

ErrorProvider

SetGamma()

ImageAttributes

SetHdevmode()

PageSettings, PrinterSettings

SetHdevnames()

PrinterSettings

SetHelpKeyword()

HelpProvider

SetHelpNavigator()

HelpProvider

SetHelpString()

HelpProvider

SetIconAlignment()

ErrorProvider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ErrorProvider

SetIconPadding()

ErrorProvider

SetInterpolationMode

EmfPlusRecordType

SetItemChecked()

CheckedListBox

SetItemCheckState()

CheckedListBox

SetItemCore()

ComboBox, ListBox, ListControl

SetItemsCore()

ComboBox, ListBox, ListControl

SetLineCap()

Pen

SetLocation()

ComponentTray

SetMarkers()

GraphicsPath

SetMeasurableCharacterRanges()

StringFormat

SetMenu()

IMenuEditorService

SetNoOp()

ImageAttributes

SetOutputChannel()

ImageAttributes

SetOutputChannelColorProfile()

ImageAttributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageAttributes

SetPageTransform

EmfPlusRecordType

SetPixel()

Bitmap

SetPixelOffsetMode

EmfPlusRecordType

SetPropertyItem()

Image

SetRange()

TrackBar

SetRemapTable()

ImageAttributes

SetRenderingOrigin

EmfPlusRecordType

SetResolution()

Bitmap

SetSavedLicenseKey()

LicenseContext

SetScrollState()

ScrollableControl

SetSelected()

ListBox

SetSelectedToolboxItem()

IToolboxService

SetSelection()

IMenuEditorService

SetSelectionRange()

MonthCalendar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MonthCalendar

SetShowHelp()

HelpProvider

SetSigmaBellShape()

LinearGradientBrush, PathGradientBrush

SetSite()

ComponentEditorPage

SetStrokeCaps()

CustomLineCap

SetStyle()

Control

SetTabStops()

StringFormat

SetTextContrast

EmfPlusRecordType

SetTextRenderingHint

EmfPlusRecordType

SetThreshold()

ImageAttributes

SetToolTip()

ToolTip

SetTopLevel()

Control

SetUIDirty()

IUIService

SetValue()

PropertyDescriptor

SetVisibleCore()

AxHost, Control, Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AxHost, Control, Form

SetWorldTransform

EmfPlusRecordType

SetWrapMode()

ImageAttributes

Shear()

Matrix

Shift

KeyEventArgs, Keys

ShiftDel

Shortcut

ShiftF1

Shortcut

ShiftF10

Shortcut

ShiftF11

Shortcut

ShiftF12

Shortcut

ShiftF2

Shortcut

ShiftF3

Shortcut

ShiftF4

Shortcut

ShiftF5

Shortcut

ShiftF6

Shortcut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shortcut

ShiftF7

Shortcut

ShiftF8

Shortcut

ShiftF9

Shortcut

ShiftIns

Shortcut

ShiftKey

Keys

Shingle

HatchStyle

Short

DateTimePickerFormat

Shortcut

MenuItem, System.Windows.Forms

ShouldSerializeAlternatingBackColor()

DataGrid, DataGridTableStyle

ShouldSerializeBackColor()

DataGridTableStyle

ShouldSerializeBackgroundColor()

DataGrid

ShouldSerializeCaptionBackColor()

DataGrid

ShouldSerializeCaptionForeColor()

DataGrid

ShouldSerializeForeColor()

DataGridTableStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataGridTableStyle

ShouldSerializeGridLineColor()

DataGrid, DataGridTableStyle

ShouldSerializeHeaderBackColor()

DataGrid, DataGridTableStyle

ShouldSerializeHeaderFont()

DataGrid

ShouldSerializeHeaderForeColor()

DataGrid, DataGridTableStyle

ShouldSerializeLinkColor()

DataGridTableStyle

ShouldSerializeLinkHoverColor()

DataGrid, DataGridTableStyle

ShouldSerializeParentRowsBackColor()

DataGrid

ShouldSerializeParentRowsForeColor()

DataGrid

ShouldSerializePreferredRowHeight()

DataGrid, DataGridTableStyle

ShouldSerializeSelectionBackColor()

DataGrid, DataGridTableStyle

ShouldSerializeSelectionForeColor()

DataGrid, DataGridTableStyle

ShouldSerializeValue()

PropertyDescriptor

Show

AccessibleEvents, HotkeyPrefix, SizeGripStyle

Show()

ContextMenu, Control, Cursor, MessageBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContextMenu, Control, Cursor, MessageBox

ShowAboutBox()

AxHost

ShowAlways

ToolTip

ShowApply

FontDialog

ShowCheckBox

DateTimePicker

ShowColor

FontDialog

ShowComponentEditor()

IUIService

ShowDialog()

CommonDialog, Form, IUIService, IWindowsFormsEditorService

ShowEffects

FontDialog

ShowError()

IUIService

ShowEventsButton()

PropertyGrid

ShowFocus

UICues, UICuesEventArgs

ShowForm()

ComponentEditorForm

ShowHelp

ColorDialog, FileDialog, FontDialog, PageSetupDialog, PrintDialog

ShowHelp()

ComponentEditorPage, Help

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ComponentEditorPage, Help

ShowHelpIndex()

Help

ShowInTaskbar

Form, PrintPreviewDialog

ShowKeyboard

UICues, UICuesEventArgs

ShowLargeIcons

ComponentTray

ShowLines

TreeView

ShowMessage()

IUIService

Shown

UICues

ShowNetwork

PageSetupDialog, PrintDialog

ShowPanels

StatusBar

ShowParentDetailsButtonClick

DataGrid

ShowPlusMinus

TreeView

ShowPopup()

Help

ShowPropertyPages()

AxHost

ShowReadOnly

OpenFileDialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenFileDialog

ShowRootLines

TreeView

ShowSelectionMargin

RichTextBox

ShowShortcut

MenuItem

ShowSounds

SystemInformation

ShowToday

MonthCalendar

ShowTodayCircle

MonthCalendar

ShowToolTips

TabControl, ToolBar

ShowToolWindow()

IUIService

ShowUpDown

DateTimePicker

ShowWeekNumbers

MonthCalendar

Sienna

Brushes, Color, KnownColor, Pens

SignatureMasks

ImageCodecInfo

SignaturePatterns

ImageCodecInfo

silentMode

Options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Options

Silver

Brushes, Color, KnownColor, Pens

Simple

ComboBoxStyle

Simplex

Duplex

SingleBitPerPixel

TextRenderingHint

SingleBitPerPixelGridFit

TextRenderingHint

SingleConverter

System.ComponentModel

SingleMonthSize

MonthCalendar

Site

AxHost, Component, Control, DataGrid, ErrorProvider, IComponent, MarshalByValueComponent, PropertyGrid

Sizable

FormBorderStyle

SizableToolWindow

FormBorderStyle

Size

BoundsSpecified, Control, Cursor, DateBoldEventArgs, Font, Form, Icon, Image, MetaHeader,
PrintPreviewDialog, Rectangle, RectangleF, System.Drawing

Sizeable

AccessibleStates

SizeAll

Cursors

SizeChanged

Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control

SizeConverter

System.Drawing

SizeF

System.Drawing

SizeGripStyle

Form, PrintPreviewDialog, System.Windows.Forms

SizeInPoints

Font

SizeMode

PictureBox, TabControl

SizeModeChanged

PictureBox

SizeNESW

Cursors

SizeNS

Cursors

SizeNWSE

Cursors

SizeWE

Cursors

SizingGrip

StatusBar

SkipGrays

ColorMatrixFlag

SkyBlue

Brushes, Color, KnownColor, Pens

SlateBlue

Brushes, Color, KnownColor, Pens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brushes, Color, KnownColor, Pens

SlateGray

Brushes, Color, KnownColor, Pens

Slider

AccessibleRole

SmallChange

ScrollBar, TrackBar

SmallCheckerBoard

HatchStyle

SmallConfetti

HatchStyle

SmallDecrement

ScrollEventType

SmallFormat

PaperSourceKind

SmallGrid

HatchStyle

SmallIcon

View

SmallIconSize

SystemInformation

SmallImageList

ListView

SmallIncrement

ScrollEventType

SmoothingMode

Graphics, System.Drawing.Drawing2D

Snapshot

Keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys

SnapToGrid

ListViewAlignment

Snow

Brushes, Color, KnownColor, Pens

Solid

ButtonBorderStyle, DashStyle, DataGridLineStyle

SolidBrush

System.Drawing

SolidColor

PenType

SolidColorOnly

ColorDialog

SolidDiamond

HatchStyle

SomePages

PrintRange

Sort()

EventDescriptorCollection, ListBox, ListView, PropertyDescriptorCollection

SortDescriptorArray()

TypeDescriptor

SortDirection

IBindingList

Sorted

ComboBox, DomainUpDown, ListBox, TreeView

Sorting

ListView

SortOrder

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

SortProperties()

TypeConverter

SortProperty

IBindingList

Sound

AccessibleRole

SourceControl

ContextMenu

SourceCopy

CompositingMode

SourceName

PaperSource

SourceOver

CompositingMode

Space

Keys

Sphere

HatchStyle

SpinButton

AccessibleRole

SplitPosition

Splitter

Splitter

System.Windows.Forms

SplitterEventArgs

System.Windows.Forms

SplitterEventHandler

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

SplitterMoved

Splitter

SplitterMoving

Splitter

SplitX

SplitterEventArgs

SplitY

SplitterEventArgs

Spring

StatusBarPanelAutoSize

SpringGreen

Brushes, Color, KnownColor, Pens

Square

LineCap

SquareAnchor

LineCap

Standard

FlatStyle, ItemActivation

Standard10x11

PaperKind

Standard10x14

PaperKind

Standard11x17

PaperKind

Standard12x11

PaperKind

Standard15x11

PaperKind

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PaperKind

Standard9x11

PaperKind

StandardClick

ControlStyles

StandardDoubleClick

ControlStyles

StandardPrintController

System.Drawing.Printing

StandardValuesCollection

System.ComponentModel

Start

DateRangeEventArgs, Link, LinkArea, PathPointType, SelectionRange

Start()

Timer

StartCap

Pen

StartDate

DateBoldEventArgs

StartFigure()

GraphicsPath

StartPage

PrintPreviewControl

StartPageChanged

PrintPreviewControl

StartPosition

Form, PrintPreviewDialog

StartupPath

Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application

State

AccessibleObject, CheckBoxAccessibleObject, ControlDesignerAccessibleObject,
DateTimePickerAccessibleObject, DomainItemAccessibleObject, DrawItemEventArgs, EditorBrowsableAttribute,
RadioButtonAccessibleObject, System.Windows.Forms

StateChange

AccessibleEvents

StateConverter

System.Windows.Forms

StateImageIndex

ListViewItem

StateImageList

ListView

Statement

PaperKind

Static

PropertyTabScope

StaticText

AccessibleRole

StatusBar

AccessibleRole, System.Windows.Forms

StatusBarDrawItemEventArgs

System.Windows.Forms

StatusBarDrawItemEventHandler

System.Windows.Forms

StatusBarPanel

StatusBarPanelClickEventArgs, System.Windows.Forms

StatusBarPanelAutoSize

System.Windows.Forms

StatusBarPanelBorderStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

StatusBarPanelClickEventArgs

System.Windows.Forms

StatusBarPanelClickEventHandler

System.Windows.Forms

StatusBarPanelCollection

System.Windows.Forms

StatusBarPanelStyle

System.Windows.Forms

SteelBlue

Brushes, Color, KnownColor, Pens

Step

ProgressBar

Stop

MessageBoxIcon

Stop()

Timer

StopAnimate()

ImageAnimator

StretchImage

PictureBoxSizeMode

Stride

BitmapData

Strikeout

Font, FontStyle

StringAlignment

System.Drawing

StringCollection

System.Drawing.Printing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Printing

StringConverter

System.ComponentModel

StringDigitSubstitute

System.Drawing

StringFormat

DataFormats, System.Drawing

StringFormatFlags

System.Drawing

StringTrimming

System.Drawing

StringUnit

System.Drawing

StrokeJoin

CustomLineCap

StructFormat

System.Windows.Forms

Style

CreateParams, Font, StatusBarPanel, ToolBarButton

StyleChanged

AxHost, Control

Styles

IUIService

SubItems

ListViewItem

SubObjectsSiteChange()

DataGrid

SubpathCount

GraphicsPathIterator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GraphicsPathIterator

Subtract

Keys

Sunday

Day

Sunken

Border3DStyle, StatusBarPanelBorderStyle

SunkenInner

Border3DStyle

SunkenOuter

Border3DStyle

SupportBitmap

ImageCodecFlags

SupportsChangeNotification

IBindingList

SupportsColor

PrinterSettings

SupportsHelp()

ComponentEditorPage

SupportsSearching

IBindingList

SupportsSorting

IBindingList

SupportsTransparentBackColor

ControlStyles

SupportVector

ImageCodecFlags

SurroundColors

PathGradientBrush

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PathGradientBrush

SuspendBinding()

BindingManagerBase, CurrencyManager, PropertyManager

SuspendLayout()

Control

SymbolicLink

DataFormats

Sync

FlushIntention

SyncRoot

BaseCollection

SyntaxCheck

System.ComponentModel

SysCharSet

InputLanguageChangingEventArgs

System

FlatStyle, ImageCodecFlags

SystemAlert

AccessibleEvents

SystemBrushes

System.Drawing

SystemCaptureEnd

AccessibleEvents

SystemCaptureStart

AccessibleEvents

SystemColors

System.Drawing

SystemColorsChanged

Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control

SystemContextHelpEnd

AccessibleEvents

SystemContextHelpStart

AccessibleEvents

SystemDefault

LinkBehavior, TextRenderingHint

SystemDialogEnd

AccessibleEvents

SystemDialogStart

AccessibleEvents

SystemDragDropEnd

AccessibleEvents

SystemDragDropStart

AccessibleEvents

SystemForeground

AccessibleEvents

SystemIcons

System.Drawing

SystemInformation

System.Windows.Forms

SystemMenuEnd

AccessibleEvents

SystemMenuPopupEnd

AccessibleEvents

SystemMenuPopupStart

AccessibleEvents

SystemMenuStart

AccessibleEvents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessibleEvents

SystemMinimizeEnd

AccessibleEvents

SystemMinimizeStart

AccessibleEvents

SystemMoveSizeEnd

AccessibleEvents

SystemMoveSizeStart

AccessibleEvents

SystemPens

System.Drawing

SystemScrollingEnd

AccessibleEvents

SystemScrollingStart

AccessibleEvents

SystemSound

AccessibleEvents

SystemSwitchEnd

AccessibleEvents

SystemSwitchStart

AccessibleEvents

T

Keys

Tab

Keys

TabAlignment

System.Windows.Forms

TabAppearance

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

TabClasses

PropertyTabAttribute

TabControl

System.Windows.Forms

TabCount

TabControl

TabDrawMode

System.Windows.Forms

TabIndex

Control, Form, PictureBox, TabPage

TabIndexChanged

AxHost, Control

Table

AccessibleRole

TableName

DataGridParentRowsLabelStyle

TableOfContents

HelpNavigator

TableStyles

DataGrid

Tabloid

PaperKind

TabloidExtra

PaperKind

TabName

EventsTab, PropertyTab

TabPage

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

TabPageCollection

System.Windows.Forms

TabPageControlCollection

System.Windows.Forms

TabPages

TabControl

TabScopes

PropertyTabAttribute

TabSizeMode

System.Windows.Forms

TabStop

Control, GroupBox, Label, Panel, PictureBox, PrintPreviewDialog, ProgressBar, RadioButton, ScrollBar, Splitter,
StatusBar, TabPage, ToolBar

TabStopChanged

AxHost, Control

Tag

Control, ListViewItem, PrintPreviewDialog, ToolBarButton, TreeNode

TakeFocus

AccessibleSelection

TakeSelection

AccessibleSelection

Tan

Brushes, Color, KnownColor, Pens

Teal

Brushes, Color, KnownColor, Pens

TenthsOfAMillimeter

PrinterUnit

Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessibleRole, AxHost, ColorAdjustType, ColumnHeader, ComboBox, Control, DataFormats, DataGrid,
DateTimePicker, GroupBox, LinkLabel, ListBox, ListView, ListViewItem, ListViewSubItem, MenuItem,
MonthCalendar, NotifyIcon, NumericUpDown, Panel, PictureBox, PrintPreviewControl, PrintPreviewDialog,
ProgressBar, RichTextBox, RichTextBoxSelectionTypes, ScrollBar, Splitter, StatusBar, StatusBarPanel,
StatusBarPanelStyle, TabControl, TabPage, TextBox, TextBoxBase, ToolBar, ToolBarButton, TrackBar,
TreeNode, TreeView, UpDownBase, UserControl

TextAlign

ButtonBase, CheckBox, ColumnHeader, Label, RadioButton, TextBox, ToolBar, UpDownBase

TextAlignChanged

Label, TextBox

TextBox

DataGridTextBoxColumn, System.Windows.Forms

TextBoxBase

System.Windows.Forms

TextChanged

AxHost, Control

TextContrast

Graphics

TextLength

RichTextBox, TextBoxBase

TextRenderingHint

Graphics, System.Drawing.Text

TextTextOleObjs

RichTextBoxStreamType

TextureBrush

System.Drawing

TextureFill

PenType

Themes

OSFeature

Thick

FrameStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FrameStyle

Thistle

Brushes, Color, KnownColor, Pens

ThousandsSeparator

NumericUpDown

ThousandthsOfAnInch

PrinterUnit

ThreadException

Application

ThreadExceptionDialog

System.Windows.Forms

ThreadExit

Application, ApplicationContext

ThreeDCheckBoxes

CheckedListBox

ThreeState

CheckBox

ThumbPosition

ScrollEventType

ThumbTrack

ScrollEventType

Thursday

Day

Tick

Timer

TickFrequency

TrackBar

TickStyle

System.Windows.Forms, TrackBar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms, TrackBar

Tiff

DataFormats, ImageFormat

Tile

WrapMode

TileFlipX

WrapMode

TileFlipXY

WrapMode

TileFlipY

WrapMode

TileHorizontal

MdiLayout

TileVertical

MdiLayout

Time

DateTimePickerFormat, FrameDimension, HitTestInfo

Timer

System.Windows.Forms

TimeSpanConverter

System.ComponentModel

Title

ComponentEditorPage, FileDialog

TitleBackColor

MonthCalendar

TitleBackground

HitArea

TitleBar

AccessibleRole

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessibleRole

TitleForeColor

MonthCalendar

TitleMonth

HitArea

TitleYear

HitArea

ToArgb()

Color

ToBitmap()

Icon

TodayDate

MonthCalendar

TodayDateSet

MonthCalendar

TodayLink

HitArea

Toggle()

TreeNode

ToggleButton

ToolBarButtonStyle

ToHfont()

Font

ToHtml()

ColorTranslator

ToKnownColor()

Color

ToLogFont()

Font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Font

Tomato

Brushes, Color, KnownColor, Pens

ToolBar

AccessibleRole, System.Windows.Forms

ToolBarAppearance

System.Windows.Forms

ToolBarButton

System.Windows.Forms

ToolBarButtonClickEventArgs

System.Windows.Forms

ToolBarButtonClickEventHandler

System.Windows.Forms

ToolBarButtonCollection

System.Windows.Forms

ToolBarButtonStyle

System.Windows.Forms

ToolBarTextAlign

System.Windows.Forms

ToolbarVisible

PropertyGrid

ToolboxBitmapAttribute

System.Drawing

ToolboxComponentsCreatedEventArgs

System.Drawing.Design

ToolboxComponentsCreatedEventHandler

System.Drawing.Design

ToolboxComponentsCreatingEventArgs

System.Drawing.Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Design

ToolboxComponentsCreatingEventHandler

System.Drawing.Design

ToolboxItem

System.Drawing.Design

ToolboxItemAttribute

System.ComponentModel

ToolboxItemCollection

System.Drawing.Design

ToolboxItemCreatorCallback

System.Drawing.Design

ToolboxItemFilterAttribute

System.ComponentModel

ToolboxItemFilterType

System.ComponentModel

ToolboxItemType

ToolboxItemAttribute

ToolboxItemTypeName

ToolboxItemAttribute

ToOle()

ColorTranslator

ToolPicked()

DocumentDesigner, IToolboxUser

ToolTip

AccessibleRole, PropertyValueUIItem, System.Windows.Forms

ToolTipText

StatusBarPanel, TabPage, ToolBarButton

ToolWindowCaptionButtonSize

SystemInformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemInformation

ToolWindowCaptionHeight

SystemInformation

Top

AnchorStyles, Border3DSide, Control, DockPaddingEdges, DockStyle, ListViewAlignment, Margins, Rectangle,
RectangleF, TabAlignment

ToPage

PrinterSettings

TopCenter

ContentAlignment

Topic

HelpNavigator

TopIndex

ListBox

TopItem

ListView

TopLeft

ArrangeStartingPosition, ContentAlignment, ErrorIconAlignment, TickStyle

TopLevel

Form

TopLevelControl

Control

TopMost

Form, PrintPreviewDialog

TopNode

TreeView

ToPointF()

SizeF

TopRight

ArrangeStartingPosition, ContentAlignment, ErrorIconAlignment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ArrangeStartingPosition, ContentAlignment, ErrorIconAlignment

TopSizeable

SelectionRules

ToSize()

SizeF

ToString()

Button, CheckBox, Color, ColorDialog, ColumnHeader, ComboBox, Component, ControlAccessibleObject,
CreateParams, Cursor, DataGridCell, DateTimePicker, DockPaddingEdges, DomainUpDown, FileDialog, Font,
FontDialog, FontFamily, Form, FrameDimension, GroupBox, HelpProvider, HitTestInfo, Icon, ImageFormat,
ImageList, InheritanceAttribute, InvalidActiveXStateException, Label, ListBox, ListView, ListViewItem,
ListViewSubItem, MainMenu, Margins, MarshalByValueComponent, Menu, MenuItem, Message, MonthCalendar,
NumericUpDown, PageSettings, Panel, PaperSize, PaperSource, PictureBox, Point, PointF, PrintDocument,
PrinterResolution, PrinterSettings, ProgressBar, RadioButton, Rectangle, RectangleF, Screen, ScrollBar,
SelectionRange, Size, SizeF, Splitter, StatusBar, StatusBarPanel, StringFormat, TabControl, TabPage,
TextBoxBase, Timer, ToolBar, ToolBarButton, ToolboxItem, ToolTip, TrackBar, TreeNode, TreeView

Total

EmfPlusRecordType

ToWin32()

ColorTranslator

ToXml()

PrintingPermission

TrackBar

System.Windows.Forms

TractorFeed

PaperSourceKind

Traditional

StringDigitSubstitute

TrailingForeColor

MonthCalendar

Transform

Graphics, LinearGradientBrush, PathGradientBrush, Pen, TextureBrush

Transform()

GraphicsPath, Region

Transformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Encoder

TransformFlipHorizontal

EncoderValue

TransformFlipVertical

EncoderValue

TransformPoints()

Graphics, Matrix

TransformRotate180

EncoderValue

TransformRotate270

EncoderValue

TransformRotate90

EncoderValue

TransformVectors()

Matrix

Translate()

Matrix, Region

TranslateClip()

Graphics

TranslateTransform()

Graphics, LinearGradientBrush, PathGradientBrush, Pen, TextureBrush

TranslateWorldTransform

EmfPlusRecordType

TransparencyKey

Form, PrintPreviewDialog

Transparent

Brushes, Color, KnownColor, Pens

TransparentColor

ImageList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageList

Traversed

AccessibleStates

TrayAutoArrange

ComponentDocumentDesigner

TrayLargeIcon

ComponentDocumentDesigner

TraySelectionMenu

MenuCommands

TreeNode

System.Windows.Forms

TreeNodeCollection

System.Windows.Forms

TreeNodeConverter

System.Windows.Forms

TreeView

System.Windows.Forms, TreeNode

TreeViewAction

System.Windows.Forms

TreeViewCancelEventArgs

System.Windows.Forms

TreeViewCancelEventHandler

System.Windows.Forms

TreeViewEventArgs

System.Windows.Forms

TreeViewEventHandler

System.Windows.Forms

TreeViewImageIndexConverter

System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Windows.Forms

Trellis

HatchStyle

Triangle

DashCap, LineCap

Trimming

StringFormat

TrueValue

DataGridBoolColumn

TrueValueChanged

DataGridBoolColumn

Truncate()

Point, Rectangle, Size

Tuesday

Day

Turquoise

Brushes, Color, KnownColor, Pens

TwoClick

ItemActivation

Type

EncoderParameter, HitTestInfo, MetafileHeader, MetaHeader, PropertyItem, ScrollEventArgs

TypeChanged

RefreshEventArgs

TypeConverter

System.ComponentModel

TypeConverterAttribute

System.ComponentModel

TypeDescriptor

System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.ComponentModel

TypeId

DesignerAttribute, DesignerCategoryAttribute, EditorAttribute, LicenseProviderAttribute,
ProvidePropertyAttribute, ToolboxItemFilterAttribute

TypeLibraryTimeStampAttribute

System.Windows.Forms

TypeListConverter

System.ComponentModel

TypeName

AxParameterData, ToolboxItem

Types

PathData

U

Keys

UICues

System.Windows.Forms

UICuesEventArgs

System.Windows.Forms

UICuesEventHandler

System.Windows.Forms

UInt16Converter

System.ComponentModel

UInt32Converter

System.ComponentModel

UInt64Converter

System.ComponentModel

UITypeEditor

System.Drawing.Design

UITypeEditorEditStyle

System.Drawing.Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Drawing.Design

Unavailable

AccessibleStates

Unchecked

CheckState

Undefined

PixelFormat

Underline

Font, FontStyle

Underneath

ToolBarTextAlign

Undo()

TextBoxBase

UndoActionName

RichTextBox

UnhookChildControls()

ControlDesigner

Unicode

StructFormat

UnicodePlainText

RichTextBoxStreamType

UnicodeText

DataFormats

Union

CombineMode

Union()

PrintingPermission, Rectangle, RectangleF, Region

Unit

Font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Font

Unknown

SecurityIDType, TreeViewAction

UnlockBits()

Bitmap

UnlockContext()

LicenseManager

UnSelect()

DataGrid

Up

AccessibleNavigation, ArrangeDirection, Keys, ScrollButton

UpArrow

Cursors

UpButton()

DomainUpDown, NumericUpDown, UpDownBase

Update()

Control

UpdateBinding()

ErrorProvider

UpdateBoldedDates()

MonthCalendar

UpdateBounds()

Control

UpdateDefaultButton()

ContainerControl, Form

UpdateEditText()

DomainUpDown, NumericUpDown, UpDownBase

UpdateExtendedStyles()

ListView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListView

UpdateFrames()

ImageAnimator

UpdateIsBinding()

BindingManagerBase, CurrencyManager, PropertyManager

UpdateScrollInfo()

ScrollBar

UpdateStyles()

Control

UpdateTabSelection()

TabControl

UpdateZOrder()

Control

UpDownAlign

UpDownBase

UpDownBase

System.Windows.Forms

UpDownEventArgs

System.Windows.Forms

UpDownEventHandler

System.Windows.Forms

Upper

CharacterCasing, PaperSourceKind

UsageMode

LicenseContext, LicenseManager

UseAntiAlias

PreviewPrintController, PrintPreviewControl, PrintPreviewDialog

UseDefaultCursors

GiveFeedbackEventArgs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GiveFeedbackEventArgs

UseItemStyleForSubItems

ListViewItem

UseMnemonic

Label

User

ImageCodecFlags, SecurityIDType, StringDigitSubstitute

UserAppDataPath

Application

UserAppDataRegistry

Application

UserControl

System.Windows.Forms

UserDomainName

SystemInformation

UserInputBuffer

ImageLockMode

UserInteractive

SystemInformation

UserMouse

ControlStyles

UserName

SystemInformation

UserPaint

ControlStyles

UseStdAccessibleObjects()

AccessibleObject

UseTabStops

ListBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListBox

USStandardFanfold

PaperKind

V

Keys

Valid

AccessibleStates

Validate()

ContainerControl, LicenseManager

Validated

Control

ValidateEditText()

NumericUpDown, UpDownBase

ValidateNames

FileDialog

Validating

Control

Value

AccessibleObject, AmbientValueAttribute, ClsidAttribute, ControlDesignerAccessibleObject, ConvertEventArgs,
DateTimePicker, DateTimePickerAccessibleObject, DefaultValueAttribute, DomainItemAccessibleObject,
GridItem, NumericUpDown, PaintValueEventArgs, ProgressBar, PropertyItem, ScrollBar, TrackBar,
TypeLibraryTimeStampAttribute

value__

AccessibleEvents, AccessibleNavigation, AccessibleRole, AccessibleSelection, AccessibleStates,
ActiveXInvokeKind, AnchorStyles, Appearance, ArrangeDirection, ArrangeStartingPosition, BindableSupport,
BootMode, Border3DSide, Border3DStyle, BorderStyle, BoundsSpecified, ButtonBorderStyle, ButtonState,
CaptionButton, CharacterCasing, CheckState, CollectionChangeAction, ColorAdjustType, ColorChannelFlag,
ColorDepth, ColorMapType, ColorMatrixFlag, ColorMode, ColumnHeaderStyle, CombineMode, ComboBoxStyle,
CompositingMode, CompositingQuality, ContentAlignment, ControlStyles, CoordinateSpace, DashCap,
DashStyle, DataGridLineStyle, DataGridParentRowsLabelStyle, DateTimePickerFormat, Day,
DesignerSerializationVisibility, DialogResult, DockStyle, DragAction, DragDropEffects, DrawItemState,
DrawMode, Duplex, EditorBrowsableState, EmfPlusRecordType, EmfType, EncoderParameterValueType,
EncoderValue, ErrorBlinkStyle, ErrorIconAlignment, FillMode, FlatStyle, FlushIntention, FontStyle,
FormBorderStyle, FormStartPosition, FormWindowState, FrameStyle, GenericFontFamilies, GraphicsUnit,
GridItemType, HatchStyle, HelpNavigator, HitArea, HitTestType, HorizontalAlignment, HotkeyPrefix,
ImageCodecFlags, ImageFlags, ImageLockMode, ImeMode, InheritanceLevel, InterpolationMode,
ItemActivation, ItemBoundsPortion, Keys, KnownColor, LeftRightAlignment, LicenseUsageMode,
LinearGradientMode, LineCap, LineJoin, LinkBehavior, LinkState, ListChangedType, ListSortDirection,
ListViewAlignment, MatrixOrder, MdiLayout, MenuGlyph, MenuMerge, MessageBoxButtons,
MessageBoxDefaultButton, MessageBoxIcon, MessageBoxOptions, MetafileFrameUnit, MetafileType,
MouseButtons, Orientation, PaletteFlags, PaperKind, PaperSourceKind, PathPointType, PenAlignment, PenType,
PictureBoxSizeMode, PixelFormat, PixelOffsetMode, PrinterResolutionKind, PrinterUnit, PrintingPermissionLevel,
PrintRange, PropertySort, PropertyTabScope, QualityMode, RefreshProperties, RichTextBoxFinds,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintRange, PropertySort, PropertyTabScope, QualityMode, RefreshProperties, RichTextBoxFinds,
RichTextBoxScrollBars, RichTextBoxSelectionAttribute, RichTextBoxSelectionTypes, RichTextBoxStreamType,
RichTextBoxWordPunctuations, RightToLeft, RotateFlipType, ScrollBars, ScrollButton, ScrollEventType,
SecurityIDType, SelectionMode, SelectionRules, Shortcut, SizeGripStyle, SmoothingMode, SortOrder,
StatusBarPanelAutoSize, StatusBarPanelBorderStyle, StatusBarPanelStyle, StringAlignment,
StringDigitSubstitute, StringFormatFlags, StringTrimming, StringUnit, StructFormat, TabAlignment,
TabAppearance, TabDrawMode, TabSizeMode, TextRenderingHint, TickStyle, ToolBarAppearance,
ToolBarButtonStyle, ToolBarTextAlign, ToolboxItemFilterType, TreeViewAction, UICues, UITypeEditorEditStyle,
View, WarpMode, WrapMode

ValueChange

AccessibleEvents

ValueChanged

DateTimePicker, NumericUpDown, ScrollBar, TrackBar

ValueMember

ListControl

ValueMemberChanged

ListControl

ValueType

EncoderParameter

ValueTypeAscii

EncoderParameterValueType

ValueTypeByte

EncoderParameterValueType

ValueTypeLong

EncoderParameterValueType

ValueTypeLongRange

EncoderParameterValueType

ValueTypeRational

EncoderParameterValueType

ValueTypeRationalRange

EncoderParameterValueType

ValueTypeShort

EncoderParameterValueType

ValueTypeUndefined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EncoderParameterValueType

VectorTransformPoints()

Matrix

verboseMode

Options

Version

Encoder, ImageCodecInfo, MetafileHeader, MetaHeader

VersionGif87

EncoderValue

VersionGif89

EncoderValue

Vertical

Duplex, HatchStyle, LinearGradientMode, Orientation, RichTextBoxScrollBars, ScrollBars

VerticalResolution

Image

VerticalScrollBarArrowHeight

SystemInformation

VerticalScrollBarThumbHeight

SystemInformation

VerticalScrollBarWidth

SystemInformation

View

ListView, System.Windows.Forms

ViewBackColor

PropertyGrid

ViewForeColor

PropertyGrid

Violet

Brushes, Color, KnownColor, Pens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brushes, Color, KnownColor, Pens

VirtualScreen

SystemInformation

Visibility

DesignerSerializationVisibilityAttribute

Visible

Control, DesignerSerializationVisibility, DesignerSerializationVisibilityAttribute, DesignTimeVisibleAttribute,
MenuItem, NotifyIcon, PrintPreviewDialog, SelectionRules, TabPage, ToolBarButton

VisibleChanged

Control

VisibleClipBounds

Graphics

VisibleColumnCount

DataGrid

VisibleCount

TreeView

VisibleRowCount

DataGrid

Visited

Link, LinkState

VisitedLinkColor

LinkLabel

VolumeDown

Keys

VolumeMute

Keys

VolumeUp

Keys

VScroll

RichTextBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichTextBox

VScrollBar

System.Windows.Forms

VSplit

Cursors

W

Keys

WaitCursor

Cursors

Warning

MessageBoxIcon, SystemIcons

WarningException

System.ComponentModel

Warp()

GraphicsPath

WarpMode

System.Drawing.Drawing2D

Wave

HatchStyle

WaveAudio

DataFormats

Weave

HatchStyle

Wednesday

Day

WeekNumbers

HitArea

WellKnownGroup

SecurityIDType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SecurityIDType

Wheat

Brushes, Color, KnownColor, Pens

White

Brushes, Color, KnownColor, Pens

WhiteSmoke

Brushes, Color, KnownColor, Pens

WhiteSpace

AccessibleRole

WholeWord

RichTextBoxFinds

WideDownwardDiagonal

HatchStyle

Widen()

GraphicsPath

WideUpwardDiagonal

HatchStyle

Width

AdjustableArrowCap, BitmapData, BoundsSpecified, ColumnHeader, Control, CreateParams,
DataGridColumnStyle, Icon, Image, PaperSize, Pen, Rectangle, RectangleF, Size, SizeF, StatusBarPanel

WidthChanged

DataGridColumnStyle

WidthScale

CustomLineCap

Win32Exception

System.ComponentModel

Winding

FillMode

Window

AccessibleRole, KnownColor, SystemBrushes, SystemColors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessibleRole, KnownColor, SystemBrushes, SystemColors

WindowFrame

KnownColor, SystemColors, SystemPens

WindowsDefaultBounds

FormStartPosition

WindowsDefaultLocation

FormStartPosition

WindowsFormsComponentEditor

System.Windows.Forms.Design

WindowState

Form, PrintPreviewDialog

WindowStyle

CategoryAttribute

WindowTarget

Control

WindowText

KnownColor, SystemBrushes, SystemColors, SystemPens

WinLogo

SystemIcons

Wmf

ImageFormat, MetafileType

WmfAnimatePalette

EmfPlusRecordType

WmfArc

EmfPlusRecordType

WmfBitBlt

EmfPlusRecordType

WmfChord

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

WmfCreateBrushIndirect

EmfPlusRecordType

WmfCreateFontIndirect

EmfPlusRecordType

WmfCreatePalette

EmfPlusRecordType

WmfCreatePatternBrush

EmfPlusRecordType

WmfCreatePenIndirect

EmfPlusRecordType

WmfCreateRegion

EmfPlusRecordType

WmfDeleteObject

EmfPlusRecordType

WmfDibBitBlt

EmfPlusRecordType

WmfDibCreatePatternBrush

EmfPlusRecordType

WmfDibStretchBlt

EmfPlusRecordType

WmfEllipse

EmfPlusRecordType

WmfEscape

EmfPlusRecordType

WmfExcludeClipRect

EmfPlusRecordType

WmfExtFloodFill

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

WmfExtTextOut

EmfPlusRecordType

WmfFillRegion

EmfPlusRecordType

WmfFloodFill

EmfPlusRecordType

WmfFrameRegion

EmfPlusRecordType

WmfHeader

MetafileHeader

WmfIntersectClipRect

EmfPlusRecordType

WmfInvertRegion

EmfPlusRecordType

WmfLineTo

EmfPlusRecordType

WmfMoveTo

EmfPlusRecordType

WmfOffsetCilpRgn

EmfPlusRecordType

WmfOffsetViewportOrg

EmfPlusRecordType

WmfOffsetWindowOrg

EmfPlusRecordType

WmfPaintRegion

EmfPlusRecordType

WmfPatBlt

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

WmfPie

EmfPlusRecordType

WmfPlaceable

MetafileType

WmfPlaceableFileHeader

System.Drawing.Imaging

WmfPolygon

EmfPlusRecordType

WmfPolyline

EmfPlusRecordType

WmfPolyPolygon

EmfPlusRecordType

WmfRealizePalette

EmfPlusRecordType

WmfRecordBase

EmfPlusRecordType

WmfRectangle

EmfPlusRecordType

WmfResizePalette

EmfPlusRecordType

WmfRestoreDC

EmfPlusRecordType

WmfRoundRect

EmfPlusRecordType

WmfSaveDC

EmfPlusRecordType

WmfScaleViewportExt

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

WmfScaleWindowExt

EmfPlusRecordType

WmfSelectClipRegion

EmfPlusRecordType

WmfSelectObject

EmfPlusRecordType

WmfSelectPalette

EmfPlusRecordType

WmfSetBkColor

EmfPlusRecordType

WmfSetBkMode

EmfPlusRecordType

WmfSetDibToDev

EmfPlusRecordType

WmfSetLayout

EmfPlusRecordType

WmfSetMapMode

EmfPlusRecordType

WmfSetMapperFlags

EmfPlusRecordType

WmfSetPalEntries

EmfPlusRecordType

WmfSetPixel

EmfPlusRecordType

WmfSetPolyFillMode

EmfPlusRecordType

WmfSetRelAbs

EmfPlusRecordType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmfPlusRecordType

WmfSetROP2

EmfPlusRecordType

WmfSetStretchBltMode

EmfPlusRecordType

WmfSetTextAlign

EmfPlusRecordType

WmfSetTextCharExtra

EmfPlusRecordType

WmfSetTextColor

EmfPlusRecordType

WmfSetTextJustification

EmfPlusRecordType

WmfSetViewportExt

EmfPlusRecordType

WmfSetViewportOrg

EmfPlusRecordType

WmfSetWindowExt

EmfPlusRecordType

WmfSetWindowOrg

EmfPlusRecordType

WmfStretchBlt

EmfPlusRecordType

WmfStretchDib

EmfPlusRecordType

WmfTextOut

EmfPlusRecordType

WmReflectCommand()

CheckedListBox, ListBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CheckedListBox, ListBox

WndProc()

AxHost, Button, ButtonBase, CheckedListBox, ComboBox, ComponentTray, ContainerControl, Control,
ControlDesigner, DataGridTextBox, DateTimePicker, DocumentDesigner, DomainUpDown, Form, GroupBox,
Label, LinkLabel, ListBox, ListView, MdiClient, MonthCalendar, NativeWindow, ParentControlDesigner,
PrintPreviewControl, PropertyGrid, RichTextBox, ScrollableControl, ScrollableControlDesigner, ScrollBar,
StatusBar, TabControl, TextBox, TextBoxBase, ToolBar, TrackBar, TreeView, UserControl

Word

StringTrimming

WordWrap

TextBoxBase

WorkingArea

Screen, SystemInformation

World

CoordinateSpace, GraphicsUnit, StringUnit

WParam

Message

Wrap

DomainUpDown

WrapMode

LinearGradientBrush, PathGradientBrush, System.Drawing.Drawing2D, TextureBrush

Wrappable

ToolBar

WriteOnly

ImageLockMode

X

BoundsSpecified, CreateParams, DragEventArgs, Keys, MouseEventArgs, Point, PointF, PrinterResolution,
Rectangle, RectangleF, SplitterEventArgs

XButton1

Keys, MouseButtons

XButton2

Keys, MouseButtons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keys, MouseButtons

Xor

CombineMode

Xor()

Region

Y

BoundsSpecified, CreateParams, DragEventArgs, Keys, MouseEventArgs, Point, PointF, PrinterResolution,
Rectangle, RectangleF, SplitterEventArgs

Yellow

Brushes, Color, KnownColor, Pens

YellowGreen

Brushes, Color, KnownColor, Pens

Yes

BindableAttribute, BindableSupport, BrowsableAttribute, DesignOnlyAttribute, DesignTimeVisibleAttribute,
DialogResult, ImmutableObjectAttribute, ListBindableAttribute, LocalizableAttribute, MergablePropertyAttribute,
NotifyParentPropertyAttribute, ReadOnlyAttribute, RecommendedAsConfigurableAttribute, RightToLeft,
RunInstallerAttribute

YesNo

MessageBoxButtons

YesNoCancel

MessageBoxButtons

Z

Keys

ZigZag

HatchStyle

Zoom

Keys, PrintPreviewControl

ZoomFactor

RichTextBox

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of .NET Windows Forms in a Nutshell is a darter. The darter, or anhinga, is a slender bird
closely related to the cormorant. Darters can be found near inland waters, such as rivers and lakes, in warm climates all
over the world. These birds subsist mostly on fish, which they catch by diving into the water and piercing their prey
with their dagger-like beaks.

Like cormorants, darters' feathers become heavily saturated with water when they dive, decreasing their buoyancy and
enabling them to stay under water for long periods of time. They may also swim around with their entire bodies
submerged and only their snake-like necks and heads visible. Because of this, they are sometimes referred to as 'snake
birds.' After swimming, darters perch with their wings spread to dry. Their black skin aids in heat absorption from the
sun, helping the birds warm up.

In addition to being strong swimmers, darters are skilled fliers, allowing them to migrate annually. They nest in small
colonies, sometimes with herons. Darters feed their young by regurgitating food directly into their beaks.

Linley Dolby was the production editor and copyeditor for .NET Windows Forms in a Nutshell . Brian Sawyer and Claire
Cloutier provided quality control. Genevieve d'Entremont and Sue Willing provided production assistance. Angela
Howard wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

David Futato designed the interior layout. He also designed the CD label with QuarkXPress 4.1 using Adobe's ITC
Garamond font. This book was converted to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

abstract classes
accelerator keys
access modifiers/specifiers [See protection levels]
accessibility aids
accessibility clients
AccessibleEvents enumeration
AccessibleName property, Control class 2nd
AccessibleNavigation enumeration
AccessibleNotifyClients method, Control class
AccessibleObject class
AccessibleObject property, Control class
AccessibleRole enumeration
AccessibleRole property, Control class 2nd
AccessibleSelection enumeration
AccessibleStates enumeration
accessor functions 2nd
ActiveX controls
 STATThread attribute required for
ActiveXInvokeKind enumeration, AxHost class
Add method, DataTable class
Add... methods, GraphicsPath class
AddOwnedForm method, Form class
AdjustableArrowCap class
ADO.NET
adornments
AllowDrop property, Control class 2nd
Alt key, for menu accelerators
ambient properties, Control class
AmbientProperties class 2nd
AmbientValueAttribute class
& (ampersand), accelerator key
ampersand, for menu accelerator
Anchor property, Control class
AnchorEditor class
AnchorStyles enumeration 2nd
Appearance enumeration
Appearance property, ToolBar class
Application class 2nd
ApplicationContext class
applications
 multithreaded 2nd
 shutdown 2nd
 startup 2nd
ArrangeDirection enumeration
ArrangeStartingPosition enumeration
ArrayConverter class
assemblies
 list of, for specific namespaces
 resource files in 2nd 3rd
 satellite 2nd 3rd
AttributeCollection class
attributes
 adding at design time
 annotating properties with 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 localizing
 modifying or removing at design time
AutoScroll property, ScrollableControl class
AutoScrollMargin property, ScrollableControl class
AutoScrollMinSize property, ScrollableControl class
AxComponentEditor class, AxHost class
AxHost class
AxHost.ActiveXInvokeKind enumeration
AxHost.AxComponentEditor class
AxHost.ClsidAttribute class
AxHost.ConnectionPointCookie class
AxHost.InvalidActiveXStateException class
AxHost.State class
AxHost.StateConverter class
AxHost.TypeLibraryTimeStampAttribute class
AxImporter class
AxParameterData class
AxWrapperGen class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

BackColor property, Control class
BackgroundImage property, Control class
base class [See inheritance]
BaseCollection class
BaseNumberConverter class
BeginInvoke method, Control class 2nd
Bézier curves, drawing
BindableAttribute class
BindableSupport enumeration
binding [See data binding]
Binding class 2nd
binding managers
 for complex binding
 multiple
BindingContext class
BindingContext property, Control class
BindingContext property, Form class
BindingManagerBase class 2nd
BindingMemberInfo structure
BindingsCollection class
Bitmap class 2nd
BitmapData class
Blend class
BMP files 2nd
BooleanConverter class
BootMode enumeration
Border3DSide enumeration
Border3DStyle enumeration
BorderStyle enumeration
Bottom property, Control class
BoundsSpecified enumeration
boxing of value types
BrowsableAttribute class
BrowsableAttributes property, PropertyGrid class
Brush class 2nd
brushes
 Brush class
 Brushes class
 HatchBrush class
 LinearGradientBrush class
 PathGradientBrush class
 Pen class using 2nd
 SolidBrush class
 SystemBrushes class
 TextureBrush class
Brushes class 2nd
built-in controls
 complex binding supported by
 drawing over
Button class 2nd
ButtonBase class
ButtonBase.ButtonBaseAccessibleObject class
ButtonBaseAccessibleObject class, ButtonBase class
ButtonBorderStyle enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ButtonClick event, ToolBar class 2nd
Buttons property, ToolBar class
Buttons.IndexOf method, ToolBar class
ButtonState enumeration
ByteConverter class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C# language
 access modifiers for
 case sensitivity of
 class definitions
 converting to Visual Basic
 delegate definitions
 enumeration definitions
 event definitions
 field definitions
 interface definitions
 method definitions
 method qualifiers
 property definitions
 semicolon as statement terminator
 structure definitions
C++ language
 compared to .NET
 compared to CLR
 switching to C#
CancelButton property, Form class
CancelCurrentEdit method, BindingManagerBase class
CancelEventArgs class 2nd
CancelEventHandler delegate
CanConvertFrom method, TypeConverter class
CanConvertTo method, TypeConverter class
CanExtend method, IExtenderProvider interface
CanParent method, ControlDesigner class
CaptionButton enumeration
cardinal splines, drawing
case sensitivity
Category attribute
 annotating properties with 2nd
 localization of
CategoryAttribute class
CausesValidation property, Control class 2nd
Changed events
CharacterCasing enumeration
CharacterRange structure
CharConverter class
CheckBox class 2nd
CheckBox.CheckBoxAccessibleObject class
CheckBoxAccessibleObject class, CheckBox class
Checked property, DesignerVerb class
Checked property, MenuItem class
CheckedIndexCollection class, CheckedListBox class
CheckedIndexCollection class, ListView class
CheckedItemCollection, CheckedListBox class
CheckedListBox class
CheckedListBox.CheckedIndexCollection class
CheckedListBox.CheckedItemCollection class
CheckedListBox.ObjectCollection class
CheckedListViewItemCollection class, ListView class
CheckState enumeration
child windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChildAccessibleObject class, ComboBox class
circles, drawing 2nd
classes 2nd [See also specific class names]
Click event, Control class
Click event, MenuItem class
Clipboard class
clipping
 paths
 regions
ClipRectangle property, PaintEventArgs class 2nd
Close method, Form class
Closed event, Form class
CloseFigure method, GraphicsPath class 2nd
Closing event, Form class 2nd
CLR (Common Language Runtime) 2nd
ClsidAttribute class, AxHost class
CollectionChangeAction enumeration
CollectionChangeEventArgs class
CollectionChangeEventHandler delegate
CollectionConverter class
color
 of controls
 of drawings
 of images, transforming
 of pens
Color structure 2nd
ColorAdjustType enumeration
ColorBlend class
ColorChannelFlag enumeration
ColorConverter class
ColorDepth enumeration
ColorDialog class
ColorMap class
ColorMapType enumeration
ColorMatrix class
ColorMatrixFlag enumeration
ColorMode enumeration
ColorPalette class
ColorTranslator class
ColumnClickEventArgs class
ColumnClickEventHandler delegate
ColumnHeader class
ColumnHeaderCollection class, ListView class
ColumnHeaderStyle enumeration
COM (Component Object Model) 2nd
CombineMode enumeration
ComboBox class 2nd 3rd
ComboBox.ChildAccessibleObject class
ComboBox.ObjectCollection class
ComboBoxStyle enumeration
command line
 compiling from
 reading parameters from
Common Language Runtime [See CLR]
CommonDialog class
compilation
Complement method, Region class
complex binding 2nd
Component class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Component Object Model [See COM]
ComponentCollection class
ComponentConverter class
ComponentDesigner class
ComponentDocumentDesigner class
ComponentEditor class
ComponentEditorForm class
ComponentEditorPage class
components 2nd [See also assemblies]
 collection of
 custom designers for
 disposal of
 encapsulation and
 requesting services from container
ComponentTray class
composite controls
 inheritance and 2nd
 reusing
 UserControl class for
CompositingMode enumeration
CompositingQuality enumeration
concurrency [See multithreaded programming]
ConnectionPointCookie class, AxHost class
constructors
 for custom controls
 defining
 DesignMode property, not using in
 for Font class
 for new forms
 order executed by CLR
 required to add components to form
 size of control set in
contact information for O'Reilly & Associates, Inc.
Container class
ContainerControl class 2nd
containment
 ambient properties and
 custom control designers for
 MDI applications and
 ownership between forms
 parent/child relationship between controls 2nd 3rd
 reuse and
ContentAlignment enumeration
ContentsResizedEventArgs class
ContentsResizedEventHandler delegate
ContextMenu class 2nd
 attaching to a control
 shortcut keys for
ContextMenu property, Control class 2nd
Control class 2nd
 accessibility support in
 ambient properties of
 appearance of 2nd 3rd
 automatic layout for
 color of
 configuring features of 2nd
 containment features of
 drag-and-drop operations with
 extending

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 images in
 input handling
 input validation
 keyboard input, handling
 mouse cursor in
 mouse input, handling
 overriding methods of 2nd 3rd
 position of
 size of
 text in
Control property, ControlDesigner class
Control.ControlAccessibleObject class
Control.ControlCollection class
ControlAccessibleObject class, Control class
ControlBindingsCollection class 2nd
ControlCollection class, Control class
ControlCollection class, Form class
ControlCollection class, MdiClient class
ControlCollection class, TabControl class
ControlDesigner class 2nd
ControlDesigner.ControlDesignerAccessibleObject class
ControlDesignerAccessibleObject class, ControlDesigner class
ControlEventArgs class
ControlEventHandler delegate
ControlPaint class 2nd 3rd
controls 2nd [See also ContainerControl class; Control class; ScrollableControl class; UserControl class]
 adornments for
 background, painting
 binding data to
 built-in 2nd
 category for PropertyGrid
 category in Forms Designer
 complex binding supported by
 composite 2nd 3rd
 containers, acting as 2nd 3rd
 containers, requesting services from
 custom 2nd
 custom designers for 2nd
 derived classes accessed from
 design time operation of
 designer verbs for
 designing
 docking 2nd
 drawing
 extending properties at design time
 hit testing for
 inheritance from
 initializaing at design time
 layout of 2nd
 moving
 opaque (background completely covered)
 parent/child relationships between 2nd 3rd
 regions setting shape of
 resizing
 runtime operation of
 scrolling 2nd
 splitting
 styles for
Controls property, Control class 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ControlStyles enumeration
ConvertEventArgs class
ConvertEventHandler delegate
ConvertFrom method, TypeConverter class
ConvertTo method, TypeConverter class
coordinate system used by GDI+ API 2nd 3rd
CoordinateSpace enumeration
CreateInstance method, TypeConverter class
CreateParams class
culture 2nd [See also localization]
CultureInfoConverter class
CurrencyManager class 2nd 3rd 4th
Current property, BindingManagerBase class
Cursor class 2nd
Cursor property, Control class
cursor, mouse
CursorConverter class
Cursors class
curves, drawing
custom control/component designers
 adornments for
 containment and
 designer host interfaces for
 designer verbs, adding with
 hit testing
 metadata filtering with
 moving
 resizing
 type conversion as alternative
custom controls
 acting as containers
 designing
 drawing 2nd
 enabling/disabling features in
 keyboard input, handling
 mouse input, handling
 scrollable
custom type editors
CustomLineCap class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

DashCap enumeration
DashStyle enumeration
data binding
 binding managers for
 complex 2nd
 DataGrid class 2nd
 DataSet class
 DataTable class
 DataView class
 list controls and
 multiple binding contexts
 to multiple database tables
 simple
 using database relations
data source
 binding manager for
 bound to multiple properties
 changing values in
 databases as
 lists as
 XML as
DataAdapter class
databases
 binding to
 displaying modified views of tables in
 OLE DB
 relationships between tables in
 returning data from multiple tables 2nd
 returning multiple tables from
 returning tabular data from
 SQL Server
DataBindings property, Control class
DataFormats class
DataFormats.Format class
DataGrid class 2nd 3rd
DataGrid.HitTestInfo class
DataGrid.HitTestType enumeration
DataGridBoolColumn class
DataGridCell structure
DataGridColumnStyle class 2nd 3rd
DataGridLineStyle enumeration
DataGridParentRowsLabelStyle enumeration
DataGridPreferredColumnWidthTypeConverter class
DataGridTableStyle class
DataGridTextBox class
DataGridTextBoxColumn class
DataObject class 2nd
DataRelation class 2nd
DataRow class 2nd
DataSet class 2nd
 DataView used by
 populating
DataSource property
DataTable class 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 binding to
 contained by DataSet class
DataView class
DateBoldEventArgs class
DateBoldEventHandler delegate
DateRangeEventArgs class
DateRangeEventHandler delegate
DateTimeConverter class
DateTimePicker class 2nd
DateTimePicker.DateTimePickerAccessibleObject class
DateTimePickerAccessibleObject class, DateTimePicker class
DatetimePickerFormat enumeration
Day enumeration
Debug class
debugger, sending output to
DecimalConverter class
DefaultEventAttribute class
DefaultPropertyAttribute class
DefaultValueAttribute class
delegates 2nd 3rd [See also specific delegate names]
Delta property, MouseEventArgs class
derived class [See inheritance]
Description attribute
 annotating properties with 2nd
 localization of 2nd
DescriptionAttribute class
design time
 control operation during
 detecting whether controls are operating in
designer [See custom control/component designers Forms Designer]
designer host interfaces
designer verbs
DesignerAttribute class 2nd
DesignerCategoryAttribute class
DesignerSerializationVisibility enumeration
DesignerSerializationVisibilityAttribute class
DesignerVerb class
DesignMode property, Component class
DesignOnlyAttribute class
DesignTimeVisibleAttribute class
DialogResult enumeration
DialogResult property, Button class
dialogs [See forms]
disabilities, aids for [See accessibility aids]
disassembler
DisplayMember property, ListBox class
DisplayName property, PropertyDescriptor class
Dispose method, Form class 2nd 3rd
DLL files [See assemblies]
Dock property, Control class 2nd
DockEditor class
docking 2nd 3rd
DockPaddingEdges class, ScrollableControl class
DockPaddingEdgesConverter class, ScrollableControl class
DockStyle enumeration 2nd
DocumentDesigner class
DoDragDrop method, Control class
DoEvents method, Application class
DomainItemAccessibleObject class, DomainUpDown class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DomainUpDown class 2nd
DomainUpDown.DomainItemAccessibleObject class
DomainUpDown.DomainUpDownAccessibleObject class
DomainUpDown.DomainUpDownItemCollection class
DomainUpDownAccessibleObject class, DomainUpDown class
DomainUpDownItemCollection class, DomainUpDown class
double buffering, for single-step redraw
DoubleClick event, Control class
DoubleConverter class
drag-and-drop
DragAction enumeration
DragDrop event, Control class
DragDropEffects enumeration
DragEnter event, Control class
DragEventArgs class 2nd 3rd
DragEventHandler delegate
DragLeave event, Control class
DragMove event, Control class
DragOver event, Control class
Draw... methods, Graphics class 2nd
DrawArc method, Graphics class
DrawBezier method, Graphics class
DrawBeziers method, Graphics class
DrawClosedCurve method, Graphics class
DrawCurve method, Graphics class
DrawEllipse method, Graphics class
DrawImage method, Graphics class 2nd 3rd 4th
DrawImageAbort delegate, Graphics class
DrawImageDisabled method, ControlPaint class
drawing
 Brush class for
 Brushes class for
 color of objects
 controls 2nd
 curves
 disposing objects created for 2nd 3rd
 ellipses
 flicker-free
 forcing a redraw
 Graphics class for
 HatchBrush class for
 images
 LinearGradientBrush class for
 lines 2nd
 opaque controls
 PathGradientBrush class for
 paths
 Pen class for
 polygons
 position of objects
 rectangles
 rotating objects
 shapes
 shearing objects
 single-step, double buffering for
 size of objects
 SolidBrush class for
 SystemBrushes class for
 text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TextureBrush class for
 translating objects
 when required
DrawItem event, MenuItem class
DrawItemEventArgs class
DrawItemEventHandler delegate
DrawItemState enumeration
DrawLine method, Graphics class
DrawLines method, Graphics class
DrawMode enumeration
DrawPie method, Graphics class
DrawPolygon method, Graphics class
DrawRectangle method, Graphics class
DrawRectangles method, Graphics class
DrawString method, Graphics class 2nd
drop-down editor
Duplex enumeration

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Editor attribute
EditorAttribute class
EditorBrowsableAttribute class
EditorBrowsableState enumeration
editors for PropertyGrid, custom
EditValue method, UITypeEditor class
Effect property, DragEventArgs class
ellipses, drawing 2nd
EmfPlusRecordType enumeration
EmfType enumeration
Enabled property, Control class
Enabled property, DesignerVerb class
Enabled property, MenuItem class
encapsulation 2nd
Encoder class
EncoderParameter class
EncoderParameters class
EncoderParameterValueType enumeration
EncoderValue enumeration
EndInvoke method, Control class
EnumConverter class
EnumerateMetafileProc delegate, Graphics class
enumerations 2nd [See also specific enumeration names]
Environment class
 GetCommandLineArgs method
ErrorBlinkStyle enumeration
ErrorIconAlignment enumeration
ErrorProvider class
event handling
 button clicks, automatic
 custom controls
 delegates for
 inheritance and 2nd 3rd
 layout changes
 long execution time of
 menus 2nd
 methods in base class for
 owner-drawn menus
 property change notifications
 toolbars 2nd
 unified, menus and toolbars
event-driven execution
EventDescriptor class
EventDescriptorCollection class
EventHandlerList class
EventHandlerService class
events [See also specific event names]
 adding at design time
 defining 2nd
 modifying or removing at design time
EventsTab class
exception handling
Exclude method, Region class
EXE files [See assemblies]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exit method, Application class 2nd
ExpandableObjectConverter class 2nd 3rd 4th
extender properties
extender providers 2nd
ExtenderProvidedPropertyAttribute class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

FeatureSupport class
fields 2nd 3rd
file formats, images 2nd
FileDialog class
FileNameEditor class
Fill method, DataAdapter class
Fill... methods, Graphics class 2nd
FillClosedCurve method, Graphics class
FillEllipse method, Drawing class
FillMode enumeration
FillPie method, Graphics class
FillPolygon method, Graphics class
FillRectangle method, Graphics class
FillRectangles method, Graphics class
filtering
 DataGrid class
 DataView class
finalizers
FlatStyle enumeration
FlatStyle property, built-in controls
flicker-free drawing
FlushIntention enumeration
focus management
FolderNameEditor class
Font class 2nd 3rd
Font property, Control class 2nd
FontCollection class
FontConverter class
FontConverter.FontNameConverter class
FontConverter.FontUnitConverter class
FontDialog class
FontFamily class
FontNameConverter class, FontConverter class
fonts used in this book
FontStyle enumeration
FontUnitConverter class, FontConverter class
Forecolor property, Control class
foreign key
Form class 2nd
Form.ControlCollection class
Format class, DataFormats class
FormBorderStyle enumeration
forms 2nd [See also Form class; windows]
 appearance of
 closing 2nd
 designing with Forms Designer
 disposal of 2nd
 inheritance and 2nd
 initialization for
 modal and non-modal
 ownership between
 top-most
Forms Designer 2nd [See also design time]
 composite control inheritance and 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 configuring control features with
 creating menus with
 custom controls in
 designing composite controls in
 designing custom controls in
 disposal of forms
 extender providers and
 forms inheritance and 2nd
 generating localizable code with
 initializing forms
Forms Editor, adding designer verbs to
FormStartPosition enumeration
FormWindowState enumeration
fragile base class
FrameDimension class
FrameStyle enumeration
friend protection level
FromImage method, Graphics class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

garbage collection 2nd
GDI+ API 2nd [See also System.Drawing namespace]3rd
 brushes
 color
 coordinate system used by 2nd 3rd
 custom controls painted with
 Graphics class
 images
 location and size types
 pens
 shapes
 text
 unmanaged resources used by
GenericFontFamilies enumeration
GetBounds method, GraphicsPath
GetChildRows method, DataRow class
GetCommandLineArgs method, Environment class
GetCreateInstanceSupported method, TypeConverter class
GetEditStyle method, UITypeEditor class 2nd
GetHitTest method, ControlDesigner class
GetLocalizedString method, CategoryAttribute class
GetParentRows method, DataRow class
GetProperties method, TypeConverter class 2nd 3rd
GetPropertiesSupported method, TypeConverter class
GetService method, Component Class
GetThumbnailImageAbort delegate, Image class
GIF files 2nd
GiveFeedbackEventArgs class
GiveFeedbackEventHandler delegate
graphics [See drawing images]
Graphics class 2nd
 color of objects
 custom controls and 2nd
 drawing shapes with
 position and size of objects
Graphics property, PaintEventArgs class 2nd
Graphics.DrawImageAbort delegate
Graphics.EnumerateMetafileProc delegate
GraphicsContainer class
GraphicsPath class 2nd
GraphicsPathIterator class
GraphicsState class
GraphicsUnit enumeration
GridColumnStyles property, DataGridTableStyle class
GridColumnStylesCollection class
GridItem class
GridItemCollection class
GridItemType enumeration
GridTablesFactory class
GridTableStylesCollection class
GroupBox class 2nd 3rd
GuidConverter class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

hash table, for object associations
HatchBrush class 2nd
HatchStyle enumeration
HDC type
heap, reference types stored on
Height property, Control class 2nd
Help class
HelpEventArgs class
HelpEventHandler delegate
HelpNavigator enumeration
HelpProvider class
HelpVisible property, PropertyGrid class
hit testing
HitArea enumeration, MonthCalendar class
HitTestInfo class, DataGrid class
HitTestInfo class, MonthCalendar class
HitTestType enumeration, DataGrid class
HorizontalAlignment enumeration
HotkeyPrefix enumeration
HScrollBar class 2nd
HTML, drag-and-drop from
hyphen, for menu separator

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IBindingList interface 2nd
 used by DataTable class
IButtonControl interface
ICO files
ICommandExecutor interface
IComNativeDescriptorHandler interface
IComponent interface
IComponentChangeService interface
IComponentEditorPageSite interface
Icon class
IconConverter class
IContainer interface
IContainerControl interface
ICustomTypeDescriptor interface
IDataErrorInfo interface
IDataGridColumnStyleEditingNotificationService interface
IDataGridEditingService interface
IDataObject interface
IDE [See Visual Studio.NET]
IDesignerEventService interface
IDesignerHost interface
IDesignerOptionService interface
IDictionary
IDictionaryService interface
IDisposable interface 2nd
Idle event, Application class
IEditableObject interface
IEventBindingService interface
IExtenderListService interface
IExtenderProvider interface 2nd
IExtenderProviderService interface
IFeatureSupport interface
IFileReaderService interface
IHelpService interface
IInheritanceService interface
IL (Intermediate Language)
ILDASM
IListSource interface
Image class 2nd
Image property
Image.GetThumbnailImageAbort delegate
ImageAnimator class
ImageAttributes class 2nd
ImageCodecFlags enumeration
ImageCodecInfo class
ImageCollection class, ImageList class
ImageConverter class
ImageFlags enumeration
ImageFormat class
ImageFormatConverter class
ImageIndex property, ToolBarButton class
ImageIndexConverter class
ImageList class 2nd
ImageList property, ToolBar class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageList.ImageCollection class
ImageListStreamer class
ImageLockMode enumeration
images
 bitmaps
 color transformations of
 displaying
 file formats for 2nd
 grayed out
 in Control class
 metafiles 2nd
 rotating
 shearing
ImeMode enumeration
IMenuCommandService interface
IMenuEditorService interface
IMessageFilter interface
ImmutableObjectAttribute class
Index property, MenuItem class
inheritance 2nd [See also reuse]3rd
 appearance changes and
 composite controls 2nd
 controls in base class, accessing
 design issues with
 event handling and 2nd 3rd
 extending programming interface
 forms 2nd
 Lyskov Substitution Principle and
 multithreaded programming and
 non-composite controls
 potential problems with
 protection levels and
 virtual methods and
 when to use
InheritanceAttribute class
InheritanceLevel enumeration
InitializeComponent method, Form class 2nd
input handling
 Control class
 custom controls
input validation 2nd
InputLanguage class
InputLanguageChangedEventArgs class
InputLanguageChangedEventHandler delegate
InputLanguageChangingEventArgs class
InputLanguageChangingEventHandler delegate
InputLanguageCollection class
InstalledFontCollection class
InstallerTypeAttribute class
instance fields
instance members, syntax for
instance methods
Int16Converter class
Int32Converter class
Int64Converter class
interfaces 2nd 3rd [See also specific interface names]
Intermediate Language [See IL]
internal protection level
InterpolationMode enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InterpolationMode property, Graphics class
intrinsic type system [See type system]
intrinsic types 2nd
InvalidActiveXStateException class, AxHost class
Invalidate method, Control class 2nd 3rd
InvalidateEventArgs class
InvalidateEventHandler delegate
InvalidEnumArgumentException class
InvalidPrinterException class
Invoke method, Control class 2nd
InvokeRequired property, Control class 2nd
IReferenceService interface
IResourceService interface
IRootDesigner interface
IsAccessible property, Control class
ISelectionService interface 2nd
ISite interface
IsOutlineVisible method, GraphicsPath class
IsParent property, Menu class
ISupportInitialize interface
IsVisible method, GraphicsPath class
IsVisible method, Region class
ISynchronizeInvoke interface
ItemActivation enumeration
ItemBoundsPortion enumeration
ItemChangedEventArgs class
ItemChangedEventHandler delegate
ItemCheckEventArgs class
ItemCheckEventHandler delegate
ItemDragEventArgs class
ItemDragEventHandler delegate
ITypeDescriptorContext
ITypeDescriptorFilterService interface
ITypedList interface
ITypeResolutionService interface
IUIService interface
IWin32Window interface
IWindowsFormsEditorService interface
IWindowTarget interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JIT (Just In Time) compilation
JPEG files 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keyboard input, handling
 controls
 custom controls
keyboard shortcuts 2nd
KeyDown event, Control class
KeyEventArgs class 2nd
KeyEventHandler delegate 2nd
KeyPress event, Control class
KeyPressArgs class
KeyPressEventArgs class 2nd
KeyPressEventHandler delegate
Keys enumeration
KeysConverter class
KeyUp event, Control class
KnownColor enumeration

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Label class 2nd
LabelEditEventArgs class
LabelEditEventHandler delegate
Language property,
languages [See localization]
languages, programming 2nd [See also specific languages]
Layout event, Control class
layout events
layout of controls
 customizing
 docking 2nd
 layout events for
 scrolling 2nd
 splitters
LayoutEventArgs class
LayoutEventHandler delegate
Left property, Control class
LeftRightAlignment enumeration
License class
LicenseContext class
LicenseException class
LicenseManager class
LicenseProvider class
LicenseProviderAttribute class
LicenseUsageMode enumeration
LicFileLicenseProvider class
LinearGradientBrush class 2nd
LinearGradientMode enumeration
LineCap enumeration
LineJoin enumeration
lines
 characteristics of
 curved, drawing
 straight, drawing
Link class, LinkLabel class
LinkArea structure
LinkArea.LinkAreaConverter class
LinkAreaConverter class, LinkArea structure
LinkBehavior enumeration
LinkClickedEventArgs class
LinkClickedEventHandler delegate
LinkCollection class, LinkLabel class
LinkLabel class 2nd
LinkLabel.Link class
LinkLabel.LinkCollection class
LinkLabelLinkClickedEventArgs class
LinkLabelLinkClickedEventHandler delegate
LinkState enumeration
list data sources
ListBindableAttribute class
ListBindingConverter class
ListBox class 2nd
 data binding with
ListBox.ObjectCollection class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListBox.SelectedIndexCollection class
ListBox.SelectedObjectCollection class
ListChangedEventArgs class
ListChangedEventHandler delegate
ListChangedType enumeration
ListControl class 2nd
ListSortDirection enumeration
ListView class 2nd
ListView.CheckedIndexCollection class
ListView.CheckedListViewItemCollection class
ListView.ColumnHeaderCollection class
ListView.ListViewItemCollection class
ListView.SelectedIndexCollection class
ListView.SelectedListViewItemCollection class
ListViewAlignment enumeration
ListViewItem class
ListViewItem.ListViewSubItem class
ListViewItem.ListViewSubItemCollection class
ListViewItemCollection class, ListView class
ListViewItemConverter class
ListViewSubItem class, ListViewItem class
ListViewSubItemCollection class, ListViewItem class
Localizable property
LocalizableAttribute class
localization
 generating code in Forms Designer
 property attributes
 property names
 resource managers for 2nd 3rd
Location property, Control class 2nd
Locked property
Lyskov Substitution Principle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Main method
MainMenu class 2nd 3rd
managed code in CLR
Margins class
MarginsConverter class
MarshalByValueComponent class
matrix
 color
 transformation
Matrix class 2nd
MatrixOrder enumeration
MDI (Multiple Document Interface) applications
 closing windows in
 menu merging and
 parent/child relationships for
MdiClient class
MdiClient.ControlCollection class
MdiLayout enumeration
MeasureItem event, MenuItem class
MeasureItemEventArgs class
MeasureItemEventHandler delegate
MeasureString method, Graphics class
MemberDescriptor class
members [See fields methods properties]
memory
Menu class 2nd
Menu property, Form class
Menu.MenuItemCollection class
MenuCommands class
MenuComplete event, Form class
MenuGlyph enumeration
MenuItem class 2nd
 accelerator keys for
 creating
 event handling in 2nd
 owner-drawn
 shortcut keys for
 state of
MenuItemCollection class, Menu class
MenuItems property, Menu class 2nd
MenuMerge enumeration
menus
 accelerator keys for
 attaching to form or control
 ContextMenu class
 creating
 event handling 2nd
 MainMenu class
 Menu class
 MenuItem class
 merging
 Microsoft Office style
 owner-drawn
 separators in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 shortcut keys for
 Splitter class
MenuStart event, Form class
MergablePropertyAttribute class
MergeMenu method, Menu class
MergeOrder property, MenuItem class
MergeType property, MenuItem class 2nd
Message structure
MessageBox class
MessageBoxButtons enumeration
MessageBoxDefaultButton enumeration
MessageBoxIcon enumeration
MessageBoxOptions enumeration
metadata filtering
Metafile class 2nd 3rd
MetafileFrameUnit enumeration
MetafileHeader class
MetafileType enumeration
MetaHeader class
MethodInvoker delegate 2nd
methods
 compiled before run the first time
 defining
 instance 2nd
 overloading
 overriding 2nd 3rd
 qualifiers for
 return type of
 signatures of
 static
 virtual 15th [See also specific method names]
MFC, compared to .NET
Microsoft Office, menu and toolbar styles
modal forms
modial dialog editors
MonthCalendar class 2nd
MonthCalendar.HitArea enumeration
MonthCalendar.HitTestInfo class
mouse cursor
mouse input, handling
 button clicks
 controls
 custom controls
MouseButtons enumeration
MouseDown event, Control class
MouseEnter event, Control class
MouseEventArgs class 2nd
MouseEventHandler delegate
MouseHover event, Control class
MouseLeave event, Control class
MouseMove event, Control class
MouseUp event, Control class
MouseWheel event, Control class
MSIL [See IL]
multithreaded programming 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Name property, PropertyDescriptor class
namespaces 2nd [See also specific namespaces]3rd
Native code Generation [See NGEN]
NativeWindow class
NavigateEventArgs class
NavigateEventHandler delegate
nested properties
.NET Compact Framework
.NET Framework Class Library
.NET 2nd [See also CLR; .NET Framework Class Library]
.NET Framework [See GDI+ API Windows Forms API]
.NET
 command line
 components in
 programming languages supported by
NGEN (Native code Generation)
NodeLabelEditEventArgs class
NodeLabelEditEventHandler delegate
non-modal forms
NotifyIcon class
NotifyParentPropertyAttribute class
NumericUpDown class 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

O'Reilly & Associates, Inc.
obfuscation tools
ObjectCollection class, CheckedListBox class
ObjectCollection class, ComboBox class
ObjectCollection class, ListBox class
objects [See also controls; drawing; specific class names]
 associations between
 displaying properties in PropertyGrid
 reference types for
OLE DB database
OleDbDataAdapter class
OnClick method, Control class
OnKeyPress method, Control class
OnMouseDown method, Control class
OnMouseDragBegin method, ControlDesigner class
OnMouseDragEnd method, ControlDesigner class
OnMouseDragMove method, ControlDesigner class
OnMouseUp method, Control class
OnPaint method, Control class
 custom controls and
 forcing redraw with
 overriding for custom controls
 providing Graphics object
OnPaintAdornments method, ControlDesigner class 2nd
OnPaintBackground method, Control class
OnSetCursor method, ControlDesigner class
OpacityConverter class
OpenFileDialog class
Orientation enumeration
OSFeature class
overloading methods
owner-drawn menus
OwnerDraw property, MenuItem class
OwnerDrawPropertyBag class
ownership between forms

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

PageSetupDialog class
Paint event, Control class
PaintEventArgs class 2nd 3rd 4th
PaintEventHandler delegate
PaletteFlags enumeration
Panel class 2nd
PaperKind enumeration
PaperSettings class
PaperSize class
PaperSizeCollection class, PrinterSettings class
PaperSource class
PaperSourceCollection class, PrinterSettings class
PaperSourceKind enumeration
Parent property, Control class
parent/child relationship [See also containment]
 between controls 2nd 3rd
 between database tables
ParentControlDesigner class 2nd
ParenthesizePropertyNameAttribute class
PathData class
PathGradientBrush class 2nd
PathPointType enumeration
paths, drawing 2nd [See also regions]
Pen class 2nd
PenAlignment enumeration
Pens class 2nd
PenType enumeration
PerFormLayout method, Control class
PictureBox class 2nd
PictureBoxSizeMode enumeration
pictures [See images]
PixelFormat enumeration
PixelOffsetMode enumeration
PlayRecordCallback delegate
plus sign, in DataGrid display
PNG files 2nd
Pocket PC
Point structure 2nd 3rd
PointConverter class
PointF structure 2nd
PointToClient method, Control class
polygons, drawing
Popup event, MenuItem class
Position property, BindingManagerBase class
Position property, Cursor class
PostFilterAttributes method
PostFilterEvents method
PostFilterProperties method 2nd
pre-compilation
PreFilterAttributes method
PreFilterEvents method
PreFilterProperties method
PreviewPageInfo class
PreviewPrintController class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

primary key 2nd
PrimaryKey property, DataTable class
PrintController class
PrintControllerWithStatusDialog class
PrintDialog class
PrintDocument class
PrinterResolutionCollection class, PrinterSettings class
PrinterResolutionKind enumeration
PrinterSettings class
PrinterSettings.PaperSizeCollection class
PrinterSettings.PaperSourceCollection class
PrinterSettings.PrinterResolutionCollection class
PrinterSettings.StringCollection class
PrinterUnit enumeration
PrinterUnitConvert class
PrintEventArgs class
PrintEventHandler delegate
PrintingPermission class
PrintingPermissionAttribute class
PrintingPermissionLevel enumeration
PrintPageEventArgs class
PrintPageEventHandler delegate
PrintPreviewControl class
PrintPreviewDialog class
PrintRange enumeration
PrintResolution class
private protection level
PrivateFontCollection class
programming interface
 designing
 extending when inheriting
programming languages 2nd [See also specific languages]
ProgressBar class 2nd
properties 2nd [See also specific property names]
 adding at design time
 ambient
 annotating with attributes 2nd
 binding to data sources
 change notifications for
 defining
 descriptors
 displaying in PropertyGrid
 exposing editable features with
 extending at design time
 localizing attributes of
 localizing names of
 manipulating with custom control designer
 modifying or removing at design time
 nested, type conversion for
 set only during runtime
 shadow
 type conversion for
 TypeConverter attribute for
 visible only at runtime
PropertyChangedEventArgs class
PropertyChangedEventHandler delegate
PropertyDescriptor class 2nd
PropertyDescriptorCollection class
PropertyGrid class 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 adding to toolbox
 custom editors for
 displaying objects in
 localization of property attributes
 localization of property names
 property descriptors for
 type conversion for 2nd
 value types in
PropertyGrid.PropertyTabCollection class
PropertyItem class
PropertyManager class
PropertySort enumeration
PropertySort property, PropertyGrid class
PropertyTab class
PropertyTabAttribute class
PropertyTabChangedEventArgs class
PropertyTabChangedEventHandler delegate
PropertyTabCollection class, PropertyGrid class
PropertyTabScope enumeration
PropertyValueChangedEventArgs class
PropertyValueChangedEventHandler delegate
protected protection level
protection levels
 inheritance and
 specifying in C# and Visual Basic
ProvidePropertyAttribute class 2nd
public protection level 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QualityMode enumeration
QueryAccessibilityHelpEventArgs class
QueryAccessibilityHelpEventHandler delegate
QueryContinueDrag event, Control class
QueryContinueDragEventArgs class
QueryContinueDragEventHandler delegate
QueryPageSettingsEventArgs class
QueryPageSettingsEventHandler delegate

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

RadioButton class 2nd
RadioButton.RadioButtonAccessibleObject class
RadioButtonAccessibleObject class, RadioButton class
ReadOnlyAttribute class
ReadXML method, DataSet class
RecommendedAsConfigurableAttribute class
Rectangle structure 2nd 3rd
RectangleConverter class
RectangleF structure 2nd
rectangles
 drawing
 location and size of
redrawing [See drawing]
reference types
ReferenceConverter class
Refresh method, Control class
 forcing redraw with
Refresh method, CurrencyManager class
RefreshEventArgs class
RefreshEventHandler delegate
RefreshProperties attribute 2nd
RefreshProperties enumeration
RefreshPropertiesAttribute class
Region class 2nd
Region property, Control class
RegionData class
regions 2nd [See also paths]3rd
relation, between database tables 2nd 3rd
 displayed in DataGrid
 retrieving from database
ResetTransform method, Graphics class
resource files
 culture-neutral
 file extensions for
 localization 2nd
 for property attributes
resource managers 2nd 3rd
ResourceManager class 2nd 3rd
 localizing property names
resources
 cursor files
 disposal of
ResumeLayout method, Control class 2nd
return type of a method
reuse [See also inheritance]
 composite controls and
 through containment
 when to use
reverse engineering 2nd
rich client applications
RichTextBox class 2nd
RichTextBoxFinds enumeration
RichTextBoxScrollBars enumeration
RichTextBoxSelectionAttribute enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichTextBoxSelectionTypes enumeration
RichTextBoxStreamType enumeration
RichTextBoxWordPunctuations enumeration
Right property, Control class
RightToLeft enumeration
RotateFlipType enumeration
RowFilter property, DataView class
Rows property, DataTable class
RTF text, drag-and-drop of
Run method, Application class
RunInstallerAttribute class
runtime [See also CLR]
 control operation during
 properties set only during

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

satellite assemblies 2nd
SaveFileDialog class
SByteConverter class
Screen class
ScrollableControl class 2nd 3rd
ScrollableControl.DockPaddingEdges class
ScrollableControl.DockPaddingEdgesConverter class
ScrollableControlDesigner class
ScrollBar class
ScrollBars enumeration
ScrollButton enumeration
ScrollEventArgs class
ScrollEventHandler delegate
ScrollEventType enumeration
scrolling
 controls
 custom controls
 not using with docking
sealed classes
SecurityIDType enumeration
Select event, MenuItem class
SelectedGridItemChangedEventArgs class
SelectedGridItemChangedEventHandler delegate
SelectedIndexCollection class, ListBox class
SelectedIndexCollection class, ListView class
SelectedListViewItemCollection class, ListView class
SelectedObject property, PropertyGrid class
SelectedObjectCollection class, ListBox class
SelectionMode enumeration
SelectionRange class
SelectionRangeConverter class
SelectionRules enumeration
SelectionRules property, ControlDesigner class
semicolon, as statement terminator
SendKeys class
separators in menus
SetBounds method, Control class
SetClip method, Graphics class 2nd
SetStyle method, Control class
shadow properties
ShadowProperties property, ControlDesigner class
shapes, drawing
Shortcut enumeration
shortcut keys
 for context menus
 for menu items
Shortcut property, MenuItem class 2nd
Show method, Form class
ShowDialog method, Form class 2nd
ShowInTaskBar property, Form class
ShowToolTips property, ToolBar class
signature of a method
simple binding
SimplePropertyDescriptor class 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SingleConverter class
Site property, Component class
Size property, Control class
Size structure 2nd 3rd
SizeConverter class
SizeF structure 2nd
SizeGripStyle enumeration
SmoothingMode enumeration
SolidBrush class 2nd
SortOrder enumeration
Splitter class 2nd 3rd
SplitterEventArgs class
SplitterEventHandler delegate
splitters
SQL Server database
SqlDataAdapter class
stack, value types stored on
StandardPrintController class
StandardValuesCollection class, TypeConverter class
State class, AxHost class
StateConverter class, AxHost class
static fields
static members, syntax for
static methods
StatusBar class 2nd
StatusBar.StatusBarPanelCollection
StatusBarDrawItemEventArgs class
StatusBarDrawItemEventHandler delegate
StatusBarPanel class
StatusBarPanelAutoSize enumeration
StatusBarPanelBorderStyle enumeration
StatusBarPanelClickEventArgs class
StatusBarPanelClickEventHandler delegate
StatusBarPanelCollection class, StatusBar class
StatusBarPanelStyle enumeration
stencil, paths used as
String type
StringAlignment enumeration
StringCollection class, PrinterSettings class
StringConverter class
StringDigitSubstitute enumeration
StringFormat class 2nd
StringFormatFlags enumeration
strings [See text]
StringTrimming enumeration
StringUnit enumeration
StructFormat enumeration
structures 2nd [See also specific structure names]
Style property, ToolBarButton class
SuspendLayout method, Control class 2nd
SyntaxCheck class
System.ComponentModel namespace
 assembly for
 reference for, beginning on page
System.Drawing namespace [See also GDI+ API]
 assembly for
 reference for, beginning on page
System.Drawing.Drawing2D namespace
 assembly for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 reference for, beginning on page
System.Drawing.Imaging namespace
 assembly for
 reference for, beginning on page
System.Drawing.Printing namespace
 assembly for
 reference for, beginning on page
System.Drawing.Text namespace
 assembly for
 reference for, beginning on page
System.Windows.Forms namespace [See also Windows Forms API]2nd [See also Windows Forms API]
 assembly for
 reference for, beginning on page
System.Windows.Forms.Design namespace
 assembly for
 reference for, beginning on page
SystemBrushes class 2nd
SystemColors class 2nd
SystemIcons class
SystemInformation class
SystemPens class 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

TabAlignment enumeration
TabAppearance enumeration
TabControl class 2nd
TabControl.ControlCollection class
TabControl.TabPageCollection class
TabDrawMode enumeration
TableMappings property, DataAdapter class
TableStyles property, DataGrid class
TabPage class
TabPage.TabPageControlCollection class
TabPageCollection class, TabControl class
TabPageControlCollection class, TabPage class
TabSizeMode enumeration
text
 displaying
 drag-and-drop of
 fonts for
 formatting for
 in Control class
Text property, Control class
Text property, ToolBarButton class
TextAlign property, ToolBar class
TextBox class 2nd
TextBoxBase class
TextRenderingHint enumeration
TextureBrush class 2nd
thin clients
ThreadException event, Application class
ThreadExceptionDialog class
threads [See multithreaded programming]
TickStyle enumeration
TIFF files 2nd
Timer class
TimeSpanConverter class
ToolBar class 2nd 3rd
ToolBar.ToolBarButtonCollection class
ToolBarAppearance enumeration
ToolBarButton class 2nd
ToolBarButtonClickEventArgs class
ToolBarButtonClickEventHandler delegate
ToolBarButtonCollection class, ToolBar class
ToolBarButtonStyle enumeration
toolbars
 event handling 2nd
 Microsoft Office style
 ToolBar class 2nd
 ToolBarButton class
ToolBarTextAlign enumeration
ToolbarVisible property, PropertyGrid class
ToolboxBitmap attribute
ToolboxBitmapAttribute class
ToolboxItemAttribute class
ToolboxItemFilterAttribute class
ToolboxItemFilterType enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolTip class 2nd
ToolTipText property, ToolBarButton class
Top property, Control class
top-level windows
 UserControl prevented from being
top-most forms
TopMost property, Form class
TrackBar class 2nd
Transform property, Graphics class
transformations
 color, in images
 objects
translation [See localization]
TreeNode class
TreeNodeCollection class
TreeNodeConverter class
TreeView class 2nd
TreeViewAction enumeration
TreeViewCancelEventArgs class
TreeViewCancelEventHandler delegate
TreeViewEventArgs class
TreeViewEventHandler delegate
TreeViewImageIndexConverter class
type conversion
 custom control designer as alternative
 nested properties
 property descriptors and
type editors, custom
type information
 in assemblies
 in compiled code
 reverse engineering and
type safety 2nd
type system 2nd
 event handling
 fields
 in managed code environment
 inheritance
 interfaces
 members of
 methods
 properties
 protection levels
 types
TypeConverter attribute
TypeConverter class 2nd
 controlling property descriptors with
 localizing property names
 nested properties
TypeConverter.StandardValuesCollection class
TypeConverterAttribute class
TypeDescriptor class
TypeLibraryTimeStampAttribute class, AxHost class
TypeListConverter class
types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UI Type Editors
UICues enumeration
UICuesEventArgs class
UICuesEventHandler delegate
UInt16Converter class
UInt32Converter class
UInt64Converter class
UITypeEditor class
Union method, Region class
units of measurement for coordinate system
Update method, Control class
UpDownBase class
UpDownEventArgs class
UpDownEventHandler delegate
user controls [See composite controls]
user interface [See also controls]
 designing
 extending when inheriting
UserControl class 2nd [See also composite controls]3rd
 adding to controls toolbox in Forms Designer
 compared to Form class
 focus management for

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Validate method, ContainerControl class
Validated event, Control class
Validating event, Control class
validation, input 2nd
value types
 boxing
 containing reference type fields
 in PropertyGrid
 intrinsic
 user-defined
Verbs property 2nd
verbs, designer [See designer verbs]
View enumeration
virtual methods, and inheritance
Visible property, Control class 2nd
Visual Basic language
 access modifiers for
 case sensitivity of
 class definitions
 compared to .NET
 compared to CLR
 converting from C# syntax
 delegate definitions
 enumeration definitions
 event definitions
 field definitions
 interface definitions
 line break as statement terminator
 method calls
 method definitions
 method qualifiers
 property definitions
 structure definitions
Visual Basic.NET
Visual Studio.NET [See also custom/control component designers; Forms Designer]2nd
 command prompt in
 cursor file, adding to project
 custom control/component designers, enabling
 custom controls, wizard for
 installations required for
 Main method visibility in
 user controls, wizard for
VScrollBar class 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WarningException class
WarpMode enumeration
Widen method, GraphicsPath class
Width property, Control class 2nd
Width property, DataGridColumnStyle class
Win32, compared to .NET
Win32Exception class
windows [See also forms]
 child
 dividing bar for
 top-level
Windows CE.NET
Windows Forms API 2nd 3rd [See also System.Windows.Forms namespace]
WindowsFormsComponentEditor class
WmfPlaceableFileHeader class
WrapMode enumeration
WTL, compared to .NET

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML documents, returning tablular data from
XML, as data source
Xor method, Region class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Z-order, and owned forms

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

