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Preface

Over the last two or three decades, elliptic curves have been playing an in-
creasingly important role both in number theory and in related fields such as
cryptography. For example, in the 1980s, elliptic curves started being used
in cryptography and elliptic curve techniques were developed for factorization
and primality testing. In the 1980s and 1990s, elliptic curves played an impor-
tant role in the proof of Fermat’s Last Theorem. The goal of the present book
is to develop the theory of elliptic curves assuming only modest backgrounds
in elementary number theory and in groups and fields, approximately what
would be covered in a strong undergraduate or beginning graduate abstract
algebra course. In particular, we do not assume the reader has seen any al-
gebraic geometry. Except for a few isolated sections, which can be omitted
if desired, we do not assume the reader knows Galois theory. We implicitly
use Galois theory for finite fields, but in this case everything can be done
explicitly in terms of the Frobenius map so the general theory is not needed.
The relevant facts are explained in an appendix.

The book provides an introduction to both the cryptographic side and the
number theoretic side of elliptic curves. For this reason, we treat elliptic curves
over finite fields early in the book, namely in Chapter 4. This immediately
leads into the discrete logarithm problem and cryptography in Chapters 5, 6,
and 7. The reader only interested in cryptography can subsequently skip to
Chapters 11 and 13, where the Weil and Tate-Lichtenbaum pairings and hy-
perelliptic curves are discussed. But surely anyone who becomes an expert in
cryptographic applications will have a little curiosity as to how elliptic curves
are used in number theory. Similarly, a non-applications oriented reader could
skip Chapters 5, 6, and 7 and jump straight into the number theory in Chap-
ters 8 and beyond. But the cryptographic applications are interesting and
provide examples for how the theory can be used.

There are several fine books on elliptic curves already in the literature. This
book in no way is intended to replace Silverman’s excellent two volumes [109],
[111], which are the standard references for the number theoretic aspects of
elliptic curves. Instead, the present book covers some of the same material,
plus applications to cryptography, from a more elementary viewpoint. It is
hoped that readers of this book will subsequently find Silverman’s books more
accessible and will appreciate their slightly more advanced approach. The
books by Knapp [61] and Koblitz [64] should be consulted for an approach to
the arithmetic of elliptic curves that is more analytic than either this book or
[109]. For the cryptographic aspects of elliptic curves, there is the recent book
of Blake et al. [12], which gives more details on several algorithms than the

ix
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X

present book, but contains few proofs. It should be consulted by serious stu-
dents of elliptic curve cryptography. We hope that the present book provides
a good introduction to and explanation of the mathematics used in that book.
The books by Enge [38], Koblitz [66], [65], and Menezes [82] also treat elliptic
curves from a cryptographic viewpoint and can be profitably consulted.
Notation. The symbols Z, F,, Q, R, C denote the integers, the finite
field with ¢ elements, the rationals, the reals, and the complex numbers,
respectively. We have used Z,, (rather than Z/nZ) to denote the integers
mod n. However, when p is a prime and we are working with Z, as a field,
rather than as a group or ring, we use F,, in order to remain consistent with
the notation F,. Note that Z, does not denote the p-adic integers. This
choice was made for typographic reasons since the integers mod p are used
frequently, while a symbol for the p-adic integers is used only in a few examples
in Chapter 13 (where we use O,). The p-adic rationals are denoted by Q,.
If K is a field, then K denotes an algebraic closure of K. If R is a ring, then
R* denotes the invertible elements of R. When K is a field, K* is therefore
the multiplicative group of nonzero elements of K. Throughout the book,
the letters K and E are generally used to denote a field and an elliptic curve
(except in Chapter 9, where K is used a few times for an elliptic integral).
Acknowledgments. The author thanks Bob Stern of CRC Press for
suggesting that this book be written and for his encouragement, and the
editorial staff at CRC Press for their help during the preparation of the book.
Ed Eikenberg, Jim Owings, Susan Schmoyer, Brian Conrad, and Sam Wagstaff
made many suggestions that greatly improved the manuscript. Of course,
there is always room for more improvement. Please send suggestions and
corrections to the author (lew@math.umd.edu). Corrections will be listed on
the web site for the book (www.math.umd.edu/~lcw/ellipticcurves.html).
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Preface to the Second Edition

The main question asked by the reader of a preface to a second edition is
“What is new?” The main additions are the following:

1.

2.

8.

A chapter on isogenies.

A chapter on hyperelliptic curves, which are becoming prominent in
many situations, especially in cryptography.

A discussion of alternative coordinate systems (projective coordinates,
Jacobian coordinates, Edwards coordinates) and related computational
issues.

A more complete treatment of the Weil and Tate-Lichtenbaum pairings,
including an elementary definition of the Tate-Lichtenbaum pairing, a
proof of its nondegeneracy, and a proof of the equality of two common
definitions of the Weil pairing.

Doud’s analytic method for computing torsion on elliptic curves over Q.

Some additional techniques for determining the group of points for an
elliptic curve over a finite field.

A discussion of how to do computations with elliptic curves in some
popular computer algebra systems.

Several more exercises.

Thanks are due to many people, especially Susan Schmoyer, Juliana Belding,
Tsz Wo Nicholas Sze, Enver Ozdemir, Qiao Zhang,and Koichiro Harada for
helpful suggestions. Several people sent comments and corrections for the first
edition, and we are very thankful for their input. We have incorporated most
of these into the present edition. Of course, we welcome comments and correc-
tions for the present edition (lew@math.umd.edu). Corrections will be listed
on the web site for the book (www.math.umd.edu/~lcw /ellipticcurves.html).

X
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Suggestions to the Reader

This book is intended for at least two audiences. One is computer scientists
and cryptographers who want to learn about elliptic curves. The other is for
mathematicians who want to learn about the number theory and geometry of
elliptic curves. Of course, there is some overlap between the two groups. The
author of course hopes the reader wants to read the whole book. However, for
those who want to start with only some of the chapters, we make the following
suggestions.

Everyone: A basic introduction to the subject is contained in Chapters 1,
2, 3, 4. Everyone should read these.

I. Cryptographic Track: Continue with Chapters 5, 6, 7. Then go to
Chapters 11 and 13.

II. Number Theory Track: Read Chapters 8, 9, 10, 11, 12, 14, 15. Then
go back and read the chapters you skipped since you should know how the
subject is being used in applications.

I1I. Complex Track: Read Chapters 9 and 10, plus Section 12.1.

xiii
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Chapter 1

Introduction

Suppose a collection of cannonballs is piled in a square pyramid with one ball
on the top layer, four on the second layer, nine on the third layer, etc. If the
pile collapses, is it possible to rearrange the balls into a square array?

Figure 1.1
A Pyramid of Cannonballs

If the pyramid has three layers, then this cannot be done since there are
1+ 4 + 9 = 14 balls, which is not a perfect square. Of course, if there is only
one ball, it forms a height one pyramid and also a one-by-one square. If there
are no cannonballs, we have a height zero pyramid and a zero-by-zero square.
Besides theses trivial cases, are there any others? We propose to find another
example, using a method that goes back to Diophantus (around 250 A.D.).

If the pyramid has height x, then there are

1)(2z + 1
12492 4 g2 4.y g2 = TEF )6(x+ )

balls (see Exercise 1.1). We want this to be a perfect square, which means

that we want to find a solution to

s w(x+1)(2x+1)
o 6
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2 CHAPTER 1 INTRODUCTION

0

Figure 1.2
y*=x(z+1)(2r+1)/6

in positive integers x, y. An equation of this type represents an elliptic curve.
The graph is given in Figure 1.2.

The method of Diophantus uses the points we already know to produce new
points. Let’s start with the points (0,0) and (1,1). The line through these two
points is y = x. Intersecting with the curve gives the equation

1)(2 1 1 1 1

Rearranging yields
3 1
3_Y,..2 I
x 57T + 5% 0.

Fortunately, we already know two roots of this equation: x = 0 and x = 1.
This is because the roots are the z-coordinates of the intersections between
the line and the curve. We could factor the polynomial to find the third root,
but there is a better way. Note that for any numbers a, b, ¢, we have

(z —a)(x—b)(x—c) =2 - (a+ b+ c)ax? + (ab + ac + be)x — abe.

Therefore, when the coefficient of 2 is 1, the negative of the coefficient of z?
is the sum of the roots.
In our case, we have roots 0,1, and x, so

3

0+1 = —.

+1+x 5
Therefore, x = 1/2. Since the line was y = z, we have y = 1/2, too. It’s hard
to say what this means in terms of piles of cannonballs, but at least we have

found another point on the curve. In fact, we automatically have even one
more point, namely (1/2,—1/2), because of the symmetry of the curve.
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INTRODUCTION 3

Let’s repeat the above procedure using the points (1/2,—1/2) and (1,1).
Why do we use these points? We are looking for a point of intersection
somewhere in the first quadrant, and the line through these two points seems
to be the best choice. The line is easily seen to be y = 3z — 2. Intersecting
with the curve yields

2 _ ac(:c+1)(2:r;—|—1)'

3r — 2
(32— 2) :
This can be rearranged to obtain
51
$3—7$2+:0

(By the above trick, we will not need the lower terms.) We already know the
roots 1/2 and 1, so we obtain

! + 1+ ol

—_ Tr = —

2 2’

or x = 24. Since y = 3z — 2, we find that y = 70. This means that
12+ 2% 432+ -+ + 247 = 707

If we have 4900 cannonballs, we can arrange them in a pyramid of height 24,
or put them in a 70-by-70 square. If we keep repeating the above procedure,
for example, using the point just found as one of our points, we’ll obtain
infinitely many rational solutions to our equation. However, it can be shown
that (24, 70) is the only solution to our problem in positive integers other than
the trivial solution with = 1. This requires more sophisticated techniques
and we omit the details. See [5].

Here is another example of Diophantus’s method. Is there a right triangle
with rational sides with area equal to 57 The smallest Pythagorean triple
(3,4,5) yields a triangle with area 6, so we see that we cannot restrict our
attention to integers. Now look at the triangle with sides (8, 15, 17). This
yields a triangle with area 60. If we divide the sides by 2, we end up with
a triangle with sides (4, 15/2, 17/2) and area 15. So it is possible to have
nonintegral sides but integral area.

Let the triangle we are looking for have sides a, b, ¢, as in Figure 1.3. Since
the area is ab/2 = 5, we are looking for rational numbers a, b, ¢ such that

a2+ 0% =2, ab = 10.

A little manipulation yields

a-+b 2 a? + 2ab + b2 2+ 20 (C)2+5
2 4 4 ’

a—b 2_a2—2ab+b2_02—20_(g)2_5
2 n 4 4 '
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4 CHAPTER 1 INTRODUCTION

Figure 1.3

Let x = (¢/2)2. Then we have
r—5=(a—-10)/2)?* and z+5=((a+b)/2)>
We are therefore looking for a rational number x such that
r—9o, x, T+95

are simultaneously squares of rational numbers. Another way to say this
is that we want three squares of rational numbers to be in an arithmetical
progression with difference 5.

Suppose we have such a number x. Then the product (z — 5)(z)(z + 5) =
23 — 252 must also be a square, so we need a rational solution to

y? =23 — 25z

As above, this is the equation of an elliptic curve. Of course, if we have such
a rational solution, we are not guaranteed that there will be a corresponding
rational triangle (see Exercise 1.2). However, once we have a rational solution
with y # 0, we can use it to obtain another solution that does correspond to
a rational triangle (see Exercise 1.2). This is what we’ll do below.
For future use, we record that
(a—b)(c)(a+b) (a®—b%)c

0= (3) " v=(@-5)a)+a)"? = T

There are three “obvious” points on the curve: (—5,0),(0,0), (5,0). These
do not help us much. They do not yield triangles and the line through any
two of them intersects the curve in the remaining point. A small search yields
the point (—4,6). The line through this point and any one of the three other
points yields nothing useful. The only remaining possibility is to take the
line through (—4,6) and itself, namely, the tangent line to the curve at the
(—4,6). Implicit differentiation yields

,  3x?—25 23

2yy’ = 3% — 25, =,
vy T Yy 5 B
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INTRODUCTION 53

The tangent line is therefore

23 41

V=t t g

Intersecting with the curve yields

23 41\?
- ) =43 -9
(12$+ 3> T o,

23\ 2
3_ —_ 2 o« s e —
x (12> r“ 4+ 0.

Since the line is tangent to the curve at (—4,6), the root © = —4 is a double
root. Therefore the sum of the roots is

23\ 2
—d—d4z= (2 .
+x (12)

We obtain # = 1681/144 = (41/12)%2. The equation of the line yields y =
62279/1728.
Since = = (¢/2)?, we obtain ¢ = 41/6. Therefore,

which implies

62279  (a®* —Db*)c  41(a® - b?)
e T
This yields
1519
2 2
_p2 = 27
@ 36

Since
a® +b* = c* = (41/6)?,

we solve to obtain a? = 400/9 and b*> = 9/4. We obtain a triangle (see
Figure 1.4) with

20 41
a=—, b=—-, c=—,
3 2 6
which has area 5. This is, of course, the (40,9, 41) triangle rescaled by a factor

of 6.

There are infinitely many other solutions. These can be obtained by suc-
cessively repeating the above procedure, for example, starting with the point
just found (see Exercise 1.4).

The question of which integers n can occur as areas of right triangles with
rational sides is known as the congruent number problem. Another for-
mulation, as we saw above, is whether there are three rational squares in
arithmetic progression with difference n. It appears in Arab manuscripts
around 900 A.D. A conjectural answer to the problem was proved by Tunnell
in the 1980s [122]. Recall that an integer n is called squarefree if n is not

© 2008 by Taylor & Francis Group, LLC



6 CHAPTER 1 INTRODUCTION

41
6 3
2

20

3

Figure 1.4

a multiple of any perfect square other than 1. For example, 5 and 15 are
squarefree, while 24 and 75 are not.

CONJECTURE 1.1
Letn be an odd, squarefree, positive nteger. Then n can e expressad as the
area of a right triangk w ith rational sides if and only if the num ber of nteger
solutions to

202 + 1?2 + 822 =n

with 2 even equals the num ber of solutions with z odd.

Letn = 2m with m odd, squarefree, and positive. Then n can be expressed
as the area of a right trianglk with rational sides if and only if the num ber of
Integer solutions to

42 + 2 + 822 =m

with z even equals the num ber of Integer solutions with z odd.

Tunnell [122] proved that if there is a triangle with area n, then the number
of odd solutions equals the number of even solutions. However, the proof of
the converse, namely that the condition on the number of solutions implies the
existence of a triangle of area n, uses the Conjecture of Birch and Swinnerton-
Dyer, which is not yet proved (see Chapter 14).

For example, consider n = 5. There are no solutions to 2z2 + y? + 822 = 5.
Since 0 = 0, the condition is trivially satisfied and the existence of a triangle
of area 5 is predicted. Now consider n = 1. The solutions to 2z%+y?+82% = 1
are (z,y,2) = (0,1,0) and (0, —1,0), and both have z even. Since 2 # 0, there
is no rational right triangle of area 1. This was first proved by Fermat by his
method of descent (see Chapter 8).

For a nontrivial example, consider n = 41. The solutions to 2z2 43?4 82% =
41 are

(£4, £3,0), (£4, 1, £1), (£2, £5, +1), (£2, +1, £2), (0, +3, £2)
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(all possible combinations of plus and minus signs are allowed). There are
32 solutions in all. There are 16 solutions with z even and 16 with z odd.
Therefore, we expect a triangle with area 41. The same method as above,
using the tangent line at the point (—9,120) to the curve y? = 23 — 412z,
yields the triangle with sides (40/3, 123/20, 881/60) and area 41.

For much more on the congruent number problem, see [64].

Finally, let’s consider the quartic Fermat equation. We want to show that

a* + bt =t (1.1)

has no solutions in nonzero integers a, b, c. This equation represents the easiest
case of Fermat’s Last Theorem, which asserts that the sum of two nonzero
nth powers of integers cannot be a nonzero nth power when n > 3. This
general result was proved by Wiles (using work of Frey, Ribet, Serre, Mazur,
Taylor, ...) in 1994 using properties of elliptic curves. We'll discuss some of
these ideas in Chapter 15, but, for the moment, we restrict our attention to
the much easier case of n = 4. The first proof in this case was due to Fermat.
Suppose a* + b* = ¢* with a # 0. Let

b + 2 b(b? + c?)

r=2—735—, y=4

a a3

(see Example 2.2). A straightforward calculation shows that

y? = a° — 4z,

In Chapter 8 we’ll show that the only rational solutions to this equation are

(:ﬂ,y) = (070)7 (270)7 (_270)'

These all correspond to b = 0, so there are no nontrivial integer solutions of
(1.1).

The cubic Fermat equation also can be changed to an elliptic curve. Suppose
that a® + b% = ¢ and abc # 0. Since a® + b> = (a + b)(a® — ab + b?), we must
have a + b # 0. Let

Then
y? = a3 — 432.

(Where did this change of variables come from? See Section 2.5.2.) It can be
shown (but this is not easy) that the only rational solutions to this equation
are (x,y) = (12,£36). The case y = 36 yields a—b = a+b, so b = 0. Similarly,
y = —36 yields a = 0. Therefore, there are no solutions to a® 4+ b = ¢ when
abc # 0.
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Exercises

1.1

1.2

1.3

1.4

1.5

Use induction to show that

1249224324 ... 4 22 =

for all integers x > 0.

(a) Show that if z, y are rational numbers satisfying y? = 23 — 252 and
x is a square of a rational number, then this does not imply that
x4+ 5 and x — 5 are squares. (Hint: Let x = 25/4.)

(b) Let n be an integer. Show that if z,y are rational numbers sat-
isfying y? = 23 — n%z, and = # 0, £n, then the tangent line to
this curve at (z,y) intersects the curve in a point (z1,y;) such that
x1, 1 — n, 1 + n are squares of rational numbers. (For a more
general statement, see Theorem 8.14.) This shows that the method
used in the text is guaranteed to produce a triangle of area n if we
can find a starting point with = # 0, £+n.

Diophantus did not work with analytic geometry and certainly did not
know how to use implicit differentiation to find the slope of the tangent
line. Here is how he could find the tangent to y?> = 23 — 25z at the
point (—4,6). It appears that Diophantus regarded this simply as an
algebraic trick. Newton seems to have been the first to recognize the
connection with finding tangent lines.

(a) Let x = —4 +t, y = 6 + mt. Substitute into y? = 2% — 25x. This
yields a cubic equation in ¢ that has t = 0 as a root.

(b) Show that choosing m = 23/12 makes t = 0 a double root.

(¢) Find the nonzero root ¢ of the cubic and use this to produce =z =

1681/144 and y = 62279/1728.

Use the tangent line at (x,y) = (1681/144, 62279/1728) to find another
right triangle with area 5.

Show that the change of variables z; = 12z + 6, y; = 72y changes the
curve y? = x5 — 36x1 to y? = z(z + 1)(2z + 1) /6.
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Chapter 2

The Basic Theory

2.1 Weierstrass Equations

For most situations in this book, an elliptic curve E is the graph of an

equation of the form
y? = 2% + Az + B,

where A and B are constants. This will be referred to as the Weierstrass
equation for an elliptic curve. We will need to specify what set A, B, z, and
y belong to. Usually, they will be taken to be elements of a field, for example,
the real numbers R, the complex numbers C, the rational numbers Q, one of
the finite fields F,, (= Z,) for a prime p, or one of the finite fields F,, where
g = p* with k > 1. In fact, for almost all of this book, the reader who is
not familiar with fields may assume that a field means one of the fields just
listed. If K is a field with A, B € K, then we say that F is defined over
K. Throughout this book, E and K will implicitly be assumed to denote an
elliptic curve and a field over which F is defined.

If we want to consider points with coordinates in some field L O K, we
write E(L). By definition, this set always contains the point co defined later
in this section:

E(L) ={oc}U{(z,y) € L x L|y* = 2° + Az + B}.

It is not possible to draw meaningful pictures of elliptic curves over most
fields. However, for intuition, it is useful to think in terms of graphs over the
real numbers. These have two basic forms, depicted in Figure 2.1.

The cubic y? = 23 — z in the first case has three distinct real roots. In the
second case, the cubic y? = 23 4+ z has only one real root.

What happens if there is a multiple root? We don’t allow this. Namely, we
assume that

4A% +27B% #£0.

If the roots of the cubic are r1, 72, r3, then it can be shown that the discrimi-
nant of the cubic is

((7“1 - 7“2)(7“1 - 7“3)(7“2 — T3))2 = —(4A3 + 2732)
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10 CHAPTER 2 THE BASIC THEORY

(a) y?=a3—2x b) y¥*=23+z

Figure 2.1

Therefore, the roots of the cubic must be distinct. However, the case where the
roots are not distinct is still interesting and will be discussed in Section 2.10.

In order to have a little more flexibility, we also allow somewhat more
general equations of the form

Y2+ arzy + asy = 23 + ax® + agx + ag, (2.1)

where a1, ..., ag are constants. This more general form (we’ll call it the gen-
eralized Weierstrass equation) is useful when working with fields of char-
acteristic 2 and characteristic 3. If the characteristic of the field is not 2, then
we can divide by 2 and complete the square:

a1r  as\2 a2 ai1a a2
(y+%+§) :x3+<a2+j)x2+(a4+%)x+(Z‘o’—ka(;),

which can be written as
2 3 ! 2 / /
Yi =7+ ax” + ayx + ag,

with y1 =y + a12/2 + a3/2 and with some constants a), alj, ag. If the charac-
teristic is also not 3, then we can let 27 = = + a//3 and obtain

y%:a:i’-l—A:cl—i—B,

for some constants A, B.
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SECTION 2.1 WEIERSTRASS EQUATIONS 11

In most of this book, we will develop the theory using the Weierstrass
equation, occasionally pointing out what modifications need to be made in
characteristics 2 and 3. In Section 2.8, we discuss the case of characteristic 2 in
more detail, since the formulas for the (nongeneralized) Weierstrass equation
do not apply. In contrast, these formulas are correct in characteristic 3 for
curves of the form y? = 23 + Ax + B, but there are curves that are not of
this form. The general case for characteristic 3 can be obtained by using the
present methods to treat curves of the form y? = z® + Cx? + Az + B.

Finally, suppose we start with an equation

cy’ =da® +ax+b
with ¢, d # 0. Multiply both sides of the equation by c¢3d? to obtain
(Pdy)? = (cdx)® + (ac’d)(cdx) + (bc*d?).
The change of variables
y1 = Ady, x1 = cdx

yields an equation in Weierstrass form.

Later in this chapter, we will meet other types of equations that can be
transformed into Weierstrass equations for elliptic curves. These will be useful
in certain contexts.

For technical reasons, it is useful to add a point at infinity to an elliptic
curve. In Section 2.3, this concept will be made rigorous. However, it is
easiest to regard it as a point (0o, 00), usually denoted simply by oo, sitting
at the top of the y-axis. For computational purposes, it will be a formal
symbol satisfying certain computational rules. For example, a line is said to
pass through oo exactly when this line is vertical (i.e., x =constant). The
point oo might seem a little unnatural, but we will see that including it has
very useful consequences.

We now make one more convention regarding co. It not only is at the top of
the y-axis, it is also at the bottom of the y-axis. Namely, we think of the ends
of the y-axis as wrapping around and meeting (perhaps somewhere in the back
behind the page) in the point co. This might seem a little strange. However,
if we are working with a field other than the real numbers, for example, a
finite field, then there might not be any meaningful ordering of the elements
and therefore distinguishing a top and a bottom of the y-axis might not make
sense. In fact, in this situation, the ends of the y-axis do not have meaning
until we introduce projective coordinates in Section 2.3. This is why it is best
to regard oo as a formal symbol satisfying certain properties. Also, we have
arranged that two vertical lines meet at co. By symmetry, if they meet at the
top of the y-axis, they should also meet at the bottom. But two lines should
intersect in only one point, so the “top oo” and the “bottom co” need to be
the same. In any case, this will be a useful property of oo.
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12 CHAPTER 2 THE BASIC THEORY

2.2 The Group Law

As we saw in Chapter 1, we could start with two points, or even one point,
on an elliptic curve, and produce another point. We now examine this process
in more detail.

|

|

I

A

P3I

|

|

:

F B,
|

|

|

/& :
|

Pl |
:

|

:

|

b3}

|

|

|

|

Figure 2.2
Adding Points on an Elliptic Curve

Start with two points

Py = (z1,y1), Po»=(22,y2)

on an elliptic curve E given by the equation y? = 23 + Az + B. Define a new
point Pj3 as follows. Draw the line L through P; and P,. We’ll see below that
L intersects E in a third point P;. Reflect Pj across the z-axis (i.e., change
the sign of the y-coordinate) to obtain P;. We define

P+ P, = P;.

Examples below will show that this is not the same as adding coordinates of
the points. It might be better to denote this operation by P; +g P», but we
opt for the simpler notation since we will never be adding points by adding
coordinates.

Assume first that P, # P, and that neither point is co. Draw the line L
through P; and P». Its slope is

_ Y2 — 1

m .
To — X1
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SECTION 2.2 THE GROUP LAW 13

If 1 = zo, then L is vertical. We’ll treat this case later, so let’s assume that
x1 # x2. The equation of L is then

y=m(x —z1)+y1.
To find the intersection with F, substitute to get
(m(z — x1) +11)° = 2° + Az + B.
This can be rearranged to the form
0=a3—m?z%+.-..

The three roots of this cubic correspond to the three points of intersection of
L with E. Generally, solving a cubic is not easy, but in the present case we
already know two of the roots, namely x; and x5, since P; and P, are points
on both L and E. Therefore, we could factor the cubic to obtain the third
value of x. But there is an easier way. As in Chapter 1, if we have a cubic
polynomial 23 + ax? + bx + ¢ with roots r, s, ¢, then

P 4ar +br+ce=(x—r)(z—s)(zr—t)=2>—(r+s+t)z*+---

Therefore,
r+s+t=—a.

If we know two roots r, s, then we can recover the third as t = —a — r — s.
In our case, we obtain
Tr = m2 — 1 — T2
and
y=m(x —z1)+y1.

Now, reflect across the x-axis to obtain the point P3 = (z3,y3):
— 2 _
r3 =m- — I — T2, Y3 = m(ry — x3) — Y1

In the case that 1 = x5 but y; # y9, the line through P; and P is a vertical
line, which therefore intersects E in oco. Reflecting oo across the x-axis yields
the same point oo (this is why we put oo at both the top and the bottom of
the y-axis). Therefore, in this case P + P, = 00.

Now consider the case where P; = P, = (x1,y1). When two points on
a curve are very close to each other, the line through them approximates a
tangent line. Therefore, when the two points coincide, we take the line L
through them to be the tangent line. Implicit differentiation allows us to find
the slope m of L:

@_Bxf—l—A

dy 2
20— =3 A =
Yo T+4, soom dx 21
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14 CHAPTER 2 THE BASIC THEORY

If y1 = 0 then the line is vertical and we set P; + P> = 00, as before. (Technical
point: if y; = 0, then the numerator 323+ A # 0. See Exercise 2.5.) Therefore,
assume that y; # 0. The equation of L is

y=m(r — 1)+ y1,

as before. We obtain the cubic equation

0=2a—m?z*+---.
This time, we know only one root, namely x1, but it is a double root since L
is tangent to E' at P;. Therefore, proceeding as before, we obtain

r3 =m? — 2z, ys = m(x1 — T3) — Y1.

Finally, suppose P, = oo. The line through P; and oo is a vertical line
that intersects F in the point P; that is the reflection of P; across the z-axis.
When we reflect P] across the z-axis to get P; = P, + P», we are back at P;.
Therefore

P 1+ 00 = P1

for all points P; on E. Of course, we extend this to include oo 4+ oo = oo.
Let’s summarize the above discussion:

GROUP LAW

Let F ke an elliptic curve defined by 42 = 23 + Ar+ B. Let P; = (z1,y1) and
Py, = (:l?g,yg) ke pointson F with P, P» # o0.Define P+ Py, = P3 = (:l?g,yg)
as folbws:

1. Ifxy # a9, then

2 _ Y2
T3 =m° —x1 — To, ys = m(xr; —x3) —y1, wherem = "—"".
To — I
2.Ifa:lzxgbutyl#yg,ﬂﬂ.enPl—kszoo.
3.IfP1:P2andy17é0,then
3x2 4+ A
zs = m? — 2z, y3 = m(x1 — x3) — Y1, wherem:;—+.
W

4. P, =Py, andy; =0, then P, + P> = .

M oreover, define
P+oco=P

forallpoints P on E'.
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SECTION 2.2 THE GROUP LAW 15

Note that when P; and P> have coordinates in a field L that contains A and
B, then P; + P, also has coordinates in L. Therefore E(L) is closed under
the above addition of points.

This addition of points might seem a little unnatural. Later (in Chapters 9
and 11), we’ll interpret it as corresponding to some very natural operations,
but, for the present, let’s show that it has some nice properties.

THEOREM 2.1
T he addition of points on an elliptic curve E satidfies the follow Ing properties:

1. (commuativity) P + Po =P, + P, orall P, P, on E.
2. (existence of identity) P+ o0 = P forallpoints P on F.

3. (existence of inverses) G iven P on F, there exists P’ on F with P+ P’ =
00 . This point P’ willusually be denoted — P

4. (aSSOCJatE\EIty) (P1+P2)+P3:P1—|—(P2—|—P3> bra]lPl,Pg,Pg on F.

In other words, the points on F form an additive abelian group with co as the
identity elem ent.

PROOF The commutativity is obvious, either from the formulas or from
the fact that the line through P; and P, is the same as the line through P»
and P;. The identity property of oo holds by definition. For inverses, let P’
be the reflection of P across the z-axis. Then P + P’ = cc.

Finally, we need to prove associativity. This is by far the most subtle and
nonobvious property of the addition of points on E. It is possible to define
many laws of composition satisfying (1), (2), (3) for points on E, either simpler
or more complicated than the one being considered. But it is very unlikely
that such a law will be associative. In fact, it is rather surprising that the
law of composition that we have defined is associative. After all, we start
with two points P; and P, and perform a certain procedure to obtain a third
point P, + P». Then we repeat the procedure with P; + P> and P3 to obtain
(P + P,) + P3. If we instead start by adding P, and Pj, then computing
Py + (P3 + P3), there seems to be no obvious reason that this should give the
same point as the other computation.

The associative law can be verified by calculation with the formulas. There
are several cases, depending on whether or not P, = P,, and whether or not
P; = (P, + P,), etc., and this makes the proof rather messy. However, we

prefer a different approach, which we give in Section 2.4. |

Warning: For the Weierstrass equation, if P = (z,y), then —P = (z, —y).
For the generalized Weierstrass equation (2.1), this is no longer the case. If
P = (x,y) is on the curve described by (2.1), then (see Exercise 2.9)

—P = (z, —a1x — a3z — y).
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16 CHAPTER 2 THE BASIC THEORY

Example 2.1
The calculations of Chapter 1 can now be interpreted as adding points on
elliptic curves. On the curve

5o z(x+1)2x+1)

we have
(0,0)+ (1,1) = (5, —=), (=,—=)+(1,1) = (24,-70).

On the curve
y? = 2% — 25z,

we have

2(—4,6) = (—4,6) + (—4,6) = ( 144 1728

We also have

(0,0) + (=5,0) = (5,0), 2(0,0) = 2(=5,0) = 2(5,0) = cc.

1681 62279)

[

The fact that the points on an elliptic curve form an abelian group is be-
hind most of the interesting properties and applications. The question arises:
what can we say about the groups of points that we obtain? Here are some
examples.

1. An elliptic curve over a finite field has only finitely many points with
coordinates in that finite field. Therefore, we obtain a finite abelian
group in this case. Properties of such groups, and applications to cryp-
tography, will be discussed in later chapters.

2. If E is an elliptic curve defined over Q, then F(Q) is a finitely generated
abelian group. This is the Mordell-Weil theorem, which we prove in
Chapter 8. Such a group is isomorphic to Z" & F for some r > 0
and some finite group F. The integer r is called the rank of E(Q).
Determining r is fairly difficult in general. It is not known whether r
can be arbitrarily large. At present, there are elliptic curves known with
rank at least 28. The finite group F' is easy to compute using the Lutz-
Nagell theorem of Chapter 8. Moreover, a deep theorem of Mazur says
that there are only finitely many possibilities for F', as E ranges over all
elliptic curves defined over Q.

3. An elliptic curve over the complex numbers C is isomorphic to a torus.
This will be proved in Chapter 9. The usual way to obtain a torus is as
C/L, where L is a lattice in C. The usual addition of complex numbers
induces a group law on C/L that corresponds to the group law on the
elliptic curve under the isomorphism between the torus and the elliptic
curve.
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SECTION 2.2 THE GROUP LAW 17

Figure 2.3
An Elliptic Curve over C

4. If E is defined over R, then E(R) is isomorphic to the unit circle S?
or to S' @ Z,. The first case corresponds to the case where the cubic
polynomial 23 + Az + B has only one real root (think of the ends of the
graph in Figure 2.1(b) as being hitched together at the point oo to get a
loop). The second case corresponds to the case where the cubic has three
real roots. The closed loop in Figure 2.1(a) is the set S' & {1}, while the
open-ended loop can be closed up using co to obtain the set S* @ {0}.
If we have an elliptic curve F defined over R, then we can consider its
complex points E(C). These form a torus, as in (3) above. The real
points E(R) are obtained by intersecting the torus with a plane. If the
plane passes through the hole in the middle, we obtain a curve as in

Figure 2.1(a). If it does not pass through the hole, we obtain a curve as
in Figure 2.1(b) (see Section 9.3).

If P is a point on an elliptic curve and k is a positive integer, then kP
denotes P + P + --- 4+ P (with k& summands). If £ < 0, then kP = (—P) +
(=P)+---(—P), with |k| summands. To compute kP for a large integer k, it
is inefficient to add P to itself repeatedly. It is much faster to use successive
doubling. For example, to compute 19P, we compute

9P, 4P =2P+2P, 8P =A4P+4P, 16P =8P+8P, 19P = 16P+2P+P.

This method allows us to compute kP for very large k, say of several hundred
digits, very quickly. The only difficulty is that the size of the coordinates of
the points increases very rapidly if we are working over the rational numbers
(see Theorem 8.18). However, when we are working over a finite field, for
example F,, this is not a problem because we can continually reduce mod p
and thus keep the numbers involved relatively small. Note that the associative
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18 CHAPTER 2 THE BASIC THEORY

law allows us to make these computations without worrying about what order
we use to combine the summands.
The method of successive doubling can be stated in general as follows:

INTEGER TIMES A POINT
Let k be a positive integer and ket P ke a point on an elliptic curve. The
follow ing procedure com putes kP .

1. Sartwitha=4k, B=o0,C =P.

2. Ifa iseven, ta=a/2,and et B= B, C =2C'.

3. Ifa iscdd, kta=a—1,and et B=B+C,C =C.
4. Ifa#0, 9o to step 2.

5. Output B.

The output B is kP (see Exercise 2 8).

On the other hand, if we are working over a large finite field and are given
points P and kP, it is very difficult to determine the value of k. This is called
the discrete logarithm problem for elliptic curves and is the basis for the
cryptographic applications that will be discussed in Chapter 6.

2.3 Projective Space and the Point at Infinity

We all know that parallel lines meet at infinity. Projective space allows us
to make sense out of this statement and also to interpret the point at infinity
on an elliptic curve.

Let K be a field. Two-dimensional projective space P2 over K is given by
equivalence classes of triples (z,y, z) with z,y, z € K and at least one of z,y, z
nonzero. Two triples (x1,¥y1,21) and (z2,ys2, 22) are said to be equivalent if
there exists a nonzero element A\ € K such that

(331791,2’1) = (>\l’2, AY2, >\22)-

We write (z1,y1,21) ~ (22,y2,22). The equivalence class of a triple only
depends on the ratios of = to y to z. Therefore, the equivalence class of
(z,y,2) is denoted (x : y : 2).

If (v :y:2)is apoint with z # 0, then (z :y: 2) = (z/z : y/z : 1). These
are the “finite” points in P%. However, if 2 = 0 then dividing by z should
be thought of as giving oo in either the x or y coordinate, and therefore the
points (z : y : 0) are called the “points at infinity” in P%. The point at
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infinity on an elliptic curve will soon be identified with one of these points at
infinity in P%.
The two-dimensional affine plane over K is often denoted

A ={(z,y) € K x K}.

We have an inclusion
Ak — Pk
given by
(x,y) — (z:y:1).

In this way, the affine plane is identified with the finite points in P%. Adding
the points at infinity to obtain P% can be viewed as a way of “compactifying”
the plane (see Exercise 2.10).

A polynomial is homogeneous of degree n if it is a sum of terms of the
form ax'y’z* with @ € K and i + j + k = n. For example, F(x,y,z) =
223 — bryz + Tyz? is homogeneous of degree 3. If a polynomial F' is homoge-
neous of degree n then F(Ax, Ay, \z) = \"F(z,y,z) for all A € K. It follows
that if F' is homogeneous of some degree, and (x1,y1,21) ~ (22,2, 22), then
F(z1,91,21) = 0 if and only if F(x2,y2, 22) = 0. Therefore, a zero of F in P%
does not depend on the choice of representative for the equivalence class, so
the set of zeros of F' in P% is well defined.

If F(x,y, z) is an arbitrary polynomial in x, y, z, then we cannot talk about
a point in P% where F(z,y,z) = 0 since this depends on the representative
(x,v,2) of the equivalence class. For example, let F(z,y,z) = 22 + 2y — 3z.
Then F(1,1,1) = 0, so we might be tempted to say that F' vanishes at (1: 1 :
1). But F(2,2,2) =2and (1:1:1)=(2:2:2). To avoid this problem, we
need to work with homogeneous polynomials.

If f(x,y) is a polynomial in x and y, then we can make it homogeneous by
inserting appropriate powers of z. For example, if f(x,y) = y*> — 2% — Az — B,
then we obtain the homogeneous polynomial F(z,vy,2) = y?z — 2% — Axz? —
Bz3. If F is homogeneous of degree n then

Flz,y.2) = 2" (5, 2)

z

and
f(z,y) = F(z,y,1).

We can now see what it means for two parallel lines to meet at infinity. Let
y =mx + by, Yy =mzx + by

be two nonvertical parallel lines with b; # by. They have the homogeneous
forms

y=mx + bz, y=mzx + byz.
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(The preceding discussion considered only equations of the form f(x,y) = 0
and F(x,y,z) = 0; however, there is nothing wrong with rearranging these
equations to the form “homogeneous of degree n = homogeneous of degree
n.”) When we solve the simultaneous equations to find their intersection, we
obtain

z=0 and y=mx.

Since we cannot have all of x, y, z being 0, we must have x # 0. Therefore, we
can rescale by dividing by x and find that the intersection of the two lines is

(x:mx:0)=(1:m:0).

Similarly, if x = ¢; and * = co are two vertical lines, they intersect in the
point (0 :1:0). This is one of the points at infinity in P%.

Now let’s look at the elliptic curve E given by y? = 23 + Az + B. Its
homogeneous form is y?z = 23 + Azz? + Bz3. The points (z,y) on the
original curve correspond to the points (z : y : 1) in the projective version. To
see what points on E lie at infinity, set z = 0 and obtain 0 = z3. Therefore
x = 0, and y can be any nonzero number (recall that (0 : 0 : 0) is not allowed).
Rescale by y to find that (0:y:0) = (0:1:0) is the only point at infinity on
E. As we saw above, (0: 1 :0) lies on every vertical line, so every vertical line
intersects E at this point at infinity. Moreover, since (0:1:0) = (0: —1:0),
the “top” and the “bottom” of the y-axis are the same.

There are situations where using projective coordinates speeds up compu-
tations on elliptic curves (see Section 2.6). However, in this book we almost
always work in affine (nonprojective) coordinates and treat the point at infin-
ity as a special case when needed. An exception is the proof of associativity
of the group law given in Section 2.4, where it will be convenient to have the
point at infinity treated like any other point (z : y : 2).

2.4 Proof of Associativity

In this section, we prove the associativity of addition of points on an elliptic
curve. The reader who is willing to believe this result may skip this section
without missing anything that is needed in the rest of the book. However,
as corollaries of the proof, we will obtain two results, namely the theorems of
Pappus and Pascal, that are not about elliptic curves but which are interesting
in their own right.

The basic idea is the following. Start with an elliptic curve F and points
P,Q,R on E. To compute — ((P + Q) + R) we need to form the lines ¢; =
PQ, my = 00, P+ Q, and /3 = R, P+ @, and see where they intersect E.
To compute — ((P + (Q + R)) we need to form the lines m; = QR, fy =
00, + R, and m3 = P,Q + R. It is easy to see that the points P;; = £; N'm;
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lie on FE, except possibly for P33. We show in Theorem 2.6 that having the
eight points P;; # P33 on E forces P33 to be on E. Since {3 intersects E at
the points R, P + @, — ((P + Q) + R), we must have — ((P + Q) + R) = Ps3.
Similarly, — (P + (Q + R)) = Ps3, so

—(P+Q)+R)=—-(P+(Q+R)),

which implies the desired associativity.

There are three main technicalities that must be treated. First, some of
the points P;; could be at infinity, so we need to use projective coordinates.
Second, a line could be tangent to E, which means that two P;; could be
equal. Therefore, we need a careful definition of the order to which a line
intersects a curve. Third, two of the lines could be equal. Dealing with these
technicalities takes up most of our attention during the proof.

First, we need to discuss lines in P%. The standard way to describe a line
is by a linear equation: ax + by 4+ cz = 0. Sometimes it is useful to give a
parametric description:

T =au+ bv
Yy = asu ~+ byv (2.2)

z = asu + bgv

where u, v run through K, and at least one of u, v is nonzero. For example, if
a # 0, the line
ar +by+cz=0

can be described by
x=—(b/a)u— (c/a)v,y =u,z=.

Suppose all the vectors (a;,b;) are multiples of each other, say (a;,b;) =
Ai(a1,b1). Then (x,y, z) = x(1, A2, A3) for all u,v such that x # 0. So we get
a point, rather than a line, in projective space. Therefore, we need a condition
on the coefficients a1, ..., b3 that ensure that we actually get a line. It is not
hard to see that we must require the matrix

aq b1
az b
as b3

to have rank 2 (cf. Exercise 2.12).

If (u1,v1) = M usg,vs) for some A € K*, then (uy,v1) and (usg,vs) yield
equivalent triples (z,y, z). Therefore, we can regard (u,v) as running through
points (u : v) in 1-dimensional projective space PL.. Consequently, a line
corresponds to a copy of the projective line P} embedded in the projective
plane.
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We need to quantify the order to which a line intersects a curve at a point.
The following gets us started.

LEMMA 2.2
Let G(u,v) ke a nonzero hom ogeneous polynom izl and ket (ug : vg) € Pk .
Then there exists an nteger k£ > 0 and a polynom a2l H (u, v) with H (ug, vg) #
0 such that
G (u,v) = (vou — uev)* H (u,v).

PROOF  Suppose vg # 0. Let m be the degree of G. Let g(u) = G(u,vp).
By factoring out as large a power of u — ug as possible, we can write g(u) =
(u — ug)*h(u) for some k and for some polynomial h of degree m — k with
h(ug) # 0. Let H(u,v) = (v /vi)h(uvy/v), so H(u,v) is homogeneous of
degree m — k. Then

o = (20 ("2) = 7 s (")

Vo

=(vou — ugv)kH(u, v),

as desired.
If vg = 0, then ug # 0. Reversing the roles of v and v yields the proof in
this case.

Let f(x,y) = 0 (where f is a polynomial) describe a curve C in the affine
plane and let
Tr = a1t+b1,y = a2t~|—b2

be a line L written in terms of the parameter ¢. Let
F(t) = fait + by, ast + by).

Then L intersects C when t = to if f(to) = 0. If (t — to)? divides f(¢),
then L is tangent to C (if the point corresponding to ty is nonsingular. See
Lemma 2.5). More generally, we say that L intersects C' to order n at the
point (x,y) corresponding to t = tq if (t —to)" is the highest power of (¢ —to)
that divides f(¢).

The homogeneous version of the above is the following. Let F(z,y, z) be a
homogeneous polynomial, so F' = 0 describes a curve C in P%. Let L be a
line given parametrically by (2.2) and let

F(u,v) = F(aju + byv, asu + bav, azu + bzv).

We say that L intersects C to order n at the point P = (z¢ : yo : 20)
corresponding to (u : v) = (ug : vo) if (vou — upv)" is the highest power of
(vou — ugv) dividing F'(u,v). We denote this by

OI'dLyp(F) =nN.
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If F is identically 0, then we let ordy, p(F) = co. It is not hard to show that
ordy, p(F') is independent of the choice of parameterization of the line L. Note
that v = vy = 1 corresponds to the nonhomogeneous situation above, and the
definitions coincide (at least when z # 0). The advantage of the homogeneous
formulation is that it allows us to treat the points at infinity along with the
finite points in a uniform manner.

LEMMA 2.3

Let L; and L, ke lineg intersecting n a point P, and, fort = 1,2, kt
L;(z,y,2) be a Iinear polynom ial defining L; . Then ordr, p(L2) = 1 unlkss
Li(z,y,z) = aLs(z,y, z) for some constant «, In which case ordy, p(Ls) =
0.

PROOF When we substitute the parameterization for Ly into Ls(z,y, z),
we obtain I~12, which is a linear expression in u,v. Let P correspond to (ug :
vo). Since Lo(ug,vo) = 0, it follows that Lo(u,v) = B(vou — ugv) for some
constant 5. If 8 # 0, then ordy, p(L2) = 1. If B = 0, then all points on
L, lie on Ly. Since two points in P%( determine a line, and L, has at least
three points (Pl always contains the points (1:0),(0: 1),(1: 1)), it follows
that Ly and Lo are the same line. Therefore L;(z,y,z) is proportional to

LQ(xayvz)' I

Usually, a line that intersects a curve to order at least 2 is tangent to the
curve. However, consider the curve C defined by

F(z,y,2) =y?z —2° = 0.

Let

r=au, y=bu, z=wv

be a line through the point P = (0 : 0 : 1). Note that P corresponds to
(u:v) = (0:1). We have F(u,v) = u?(b*v — a®u), so every line through P
intersects C to order at least 2. The line with b = 0, which is the best choice
for the tangent at P, intersects C' to order 3. The affine part of C' is the curve
y? = 3, which is pictured in Figure 2.7. The point (0,0) is a singularity of
the curve, which is why the intersections at P have higher orders than might
be expected. This is a situation we usually want to avoid.

DEFINITION 2.4 A curveC in P% definedby F(z,y,2) =0 issid to ke
nonsingular at a point P if at Jeast one of the partal derivatives F,, Iy, I,
isnonzero at P.

For example, consider an elliptic curve defined by F(x,y,2) = y?z — 23 —

Azz? — B2z3 = 0, and assume the characteristic of our field K is not 2 or 3.
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We have
F, = =322 — A2?, Fy,=2yz, F,= y? — 2Axz — 3B

Suppose P = (x : y : z) is a singular point. If z = 0, then F, = 0 implies
x =0and F, = 0 implies y = 0, so P = (0 : 0 : 0), which is impossible.
Therefore z # 0, so we may take z = 1 (and therefore ignore it). If F,, = 0,
then y = 0. Since (z : y : 1) lies on the curve,  must satisfy 2%+ Az + B = 0.
If F, = —(322 + A) = 0, then z is a root of a polynomial and a root of its
derivative, hence a double root. Since we assumed that the cubic polynomial
has no multiple roots, we have a contradiction. Therefore an elliptic curve has
no singular points. Note that this is true even if we are considering points with
coordinates in K (= algebraic closure of K). In general, by a nonsingular
curve we mean a curve with no singular points in K.

If we allow the cubic polynomial to have a multiple root z, then it is easy to
see that the curve has a singularity at (x : 0 : 1). This case will be discussed
in Section 2.10.

If P is a nonsingular point of a curve F'(z,y,z) = 0, then the tangent line
at P is

F,(P)x+ Fy(P)y + F.(P)z = 0.

For example, if F(z,y,2) = y*z — 23 — Axz?> — Bz® = 0, then the tangent
line at (xg : yo : 20) is
(—=3z3 — Azd)x + 2y020y + (y§ — 2Ax020 — 3B2z5)z = 0.
If we set zp = z = 1, then we obtain
(=323 — A)x + 2yoy + (y5 — 2Axo — 3B) = 0.
Using the fact that y2 = 23 + Azg + B, we can rewrite this as
(=322 — A)(x — z0) + 2y0(y — o) = 0.

This is the tangent line in affine coordinates that we used in obtaining the
formulas for adding a point to itself on an elliptic curve. Now let’s look at
the point at infinity on this curve. We have (xo : yo : 20) = (0 : 1 : 0). The
tangent line is given by Ox + Oy + 2z = 0, which is the “line at infinity” in P%..
It intersects the elliptic curve only in the point (0 : 1 : 0). This corresponds
to the fact that oo + oo = oo on an elliptic curve.

LEMMA 2.5

Let F(z,y,z) = 0 define a curve C'. If P is a nonsingular point of C', then
there is exactly one line in P?- that intersects C to order at kast 2, and it is
the tangent to C' at P.

PROOF  Let L be a line intersecting C' to order k¥ > 1. Parameterize L
by (2.2) and substitute into F'. This yields F'(u,v). Let (ug : vg) correspond
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to P. Then F = (vou — uov)*H (u,v) for some H(u,v) with H(ug,vo) # 0.
Therefore,

Fou(u,v) = kvo(vou — uov)* Y H(u,v) + (vou — ugv)* Hy, (u, v)
and
Fy(u,v) = —kug(vou — uov)* 1 H (u,v) + (vou — ugv)* H, (u, v).

It follows that k > 2 if and only if Fu(uo,vo) = F’U(uo,vo) =0.
Suppose k > 2. The chain rule yields

Fu :alFx—l—ang—f—ang =0, Fv :blFx-l-bQFy-l-bng =0 (23)

at P. Recall that since the parameterization (2.2) yields a line, the vectors
(a1,a2,a3) and (b1, be, b3) must be linearly independent.

Suppose L’ is another line that intersects C' to order at least 2. Then we
obtain another set of equations

a\Fy + ayFy + a5 F, =0, b F, +b,F, +V0,F, =0

at P.
If the vectors a’ = (a},a},a%) and b’ = (b)), b}, b5) span the same plane in
K3 as a = (a1,as,a3) and b = (by, by, b3), then

a=ca+pBb, b=~a+db

for some invertible matrix (: g) Therefore,

ua’ +vb’ = (ua + vy)a+ (uf +vé)b = uja+v1b

for a new choice of parameters u, v;. This means that L and L’ are the same
line.

If L and L' are different lines, then a, b and a’, b’ span different planes, so
the vectors a, b, a’, b’ must span all of K. Since (Fj, Fy;, F,) has dot product
0 with these vectors, it must be the 0 vector. This means that P is a singular
point, contrary to our assumption.

Finally, we need to show that the tangent line intersects the curve to order
at least 2. Suppose, for example, that F, # 0 at P. The cases where F, # 0
and F, # 0 are similar. The tangent line can be given the parameterization

x:_(Fy/Fm)u_(FZ/Fw)Ua Yy =u, Z =0,

SO
a1 = —Fy/FI, bl = _Fz/F:ca as = 1, b2 = 0, as = 0, b3 =1

in the notation of (2.2). Substitute into (2.3) to obtain

F,=(-F,/F,)F,+F,=0, F,=(—F./F,)F,+F,=0.
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By the discussion at the beginning of the proof, this means that the tangent
line intersects the curve to order k£ > 2.

The associativity of elliptic curve addition will follow easily from the next
result. The proof can be simplified if the points F;; are assumed to be distinct.
The cases where points are equal correspond to situations where tangent lines
are used in the definition of the group law. Correspondingly, this is where
it is more difficult to verify the associativity by direct calculation with the
formulas for the group law.

THEOREM 2.6

Let C(x,y, z) be a hom ageneous cubic polynom ial, and ket C' ke the curve in
P2 descrived by C(z,y,2) = 0. Let {1, {2, {3 and mq, ma, m3 ke lines in P%
such that ¢; # m; for alli,j. Let P;; ke the point of intersection of /; and
m; . Suppose P;; is a nonsingular point on the curve C' for all (4, j) # (3,3).
In addition, we require that if, for some 7, there are k > 2 of the points
P;1, Pio, P;3 equal to the sam e point, then ¢; ntersects C' to order at kast k
at this point. Also, if, for some j, there are k > 2 of the points Py j, Paj, Ps;
equalto the sam e point, then m; Intersects C to order at kast k at this point.
Then P33 also lies on the curve C'.

PROOF Express /1 in the parametric form (2.2). Then C(z,y, z) becomes
C’(u,v). The line ¢ passes through Pyq, Pio, Pi3. Let (ug : vy), (us @ v2), (us :
v3) be the parameters on ¢; for these points. Since these points lie on C, we
have C(u;,v;) =0 for i = 1,2, 3.

Let m; have equation m;(z,y,2) = ajz + bjy + ¢jz = 0. Substituting
the parameterization for ¢; yields m;(u,v). Since P;; lies on m;j, we have
mj(uj,v;) = 0for j =1,2,3. Since ¢; # m; and since the zeros of m; yield the
intersections of ¢; and m;, the function m;(u,v) vanishes only at P;;, so the
linear form m; is nonzero. Therefore, the product m(u, v)me(u,v)ms(u,v)
is a nonzero cubic homogeneous polynomial. We need to relate this product

to C.

LEMMA 2.7

Let R(u,v) and S(u,v) e hom cgeneous polynom ials of degree 3, with S(u, v)
not dentically 0, and suppose there are three points (u; : v;), ¢ = 1,2,3, at
which R and S vanish. M oreover, if k of these points are equal to the sam e
point, we require that R and S vanish to order at kast k at this point (that
is, (viu — uiv)k divides R and S). Then there is a constant o« € K such that
R=aS.

PROOF  First, observe that a nonzero cubic homogeneous polynomial
S(u,v) can have at most 3 zeros (u : v) in P} (counting multiplicities).

© 2008 by Taylor & Francis Group, LLC



SECTION 2.4 PROOF OF ASSOCIATIVITY 27

This can be proved as follows. Factor off the highest possible power of v, say
v*. Then S(u,v) vanishes to order k at (1:0), and S(u,v) = v¥Sy(u,v) with
So(1,0) # 0. Since Sp(u,1) is a polynomial of degree 3 — k, the polynomial
So(u, 1) can have at most 3 — k zeros, counting multiplicities (it has exactly
3 — k if K is algebraically closed). All points (u : v) # (1 : 0) can be written
in the form (u : 1), so So(u, v) has at most 3 — k zeros. Therefore, S(u,v) has
at most k + (3 — k) = 3 zeros in PL..

It follows easily that the condition that S(u,v) vanish to order at least k
could be replaced by the condition that S(u,v) vanish to order exactly k.
However, it is easier to check “at least” than “exactly.” Since we are allowing
the possibility that R(u,v) is identically 0, this remark does not apply to R.

Let (ug,: vg) be any point in P}, not equal to any of the (u; : v;). (Technical
point If K has only two elements, then P} has only three elements. In this
case, enlarge K to GF'(4). The o we obtain is forced to be in K since it is the
ratio of a coefficient of R and a coefficient of S, both of which are in K.) Since
S can have at most three zeros, S(ug,vp) # 0. Let a = R(ugp,vo)/S (uo,vo).
Then R(u,v) — aS(u,v) is a cubic homogeneous polynomial that vanishes at
the four points (u; : v;), ¢ = 0,1,2,3. Therefore R — S must be identically

Zero.

Returning to the proof of the theorem, we note that C and 11 mMemms vanish
at the points (u; : v;), ¢ = 1,2,3. Moreover, if k of the points P;; are the
same point, then k of the linear functions vanish at this point, so the product
11 (u, v)mg (u, v)ms(u, v) vanishes to order at least k. By assumption, C
vanishes to order at least £ in this situation. By the lemma, there exists a
constant « such that

C= Oé’fhlfflgﬁlg.

Let
Cl(x7y7 Z) = C(IL’,y, Z) - Oéml(xvya Z)m2('ray7 z)m3(x,y, Z)

The line ¢; can be described by a linear equation ¢1(x,y, z) = ax+by+cz =
0. At least one coefficient is nonzero, so let’s assume a # 0. The other cases
are similar. The parameterization of the line /1 can be taken to be

x=—(b/a)u — (c/a)v, y=u, z=no. (2.4)

Then C (u,v) = C1(—(b/a)u—(c/a)v,u,v). Write Cy(z,y, z) as a polynomial
in & with polynomials in y, 2z as coefficients. Writing

" = (1/a") ((ax 4 by + cz) — (by +¢2))" = (1/a") ((ax + by +c2)" +---),

we can rearrange C1(z,y, z) to be a polynomial in ax + by + cz whose coeffi-
cients are polynomials in y, z:

Cl(x7y7 Z) = a3(y7 Z)(CZ.Z’ + by =+ CZ)B + et aO(yv Z)' (25)
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Substituting (2.4) into (2.5) yields
0= C’l(u,v) = ap(u,v),

since ax + by 4 cz vanishes identically when x, y, z are written in terms of u, v.
Therefore ag(y, z) = ap(u, v) is the zero polynomial. It follows from (2.5) that
C1(x,y, z) is a multiple of ¢1(x,y, z) = ax + by + cz.

Similarly, there exists a constant 3 such that C'(x,y, z) — B€1€2{3 is a mul-
tiple of m;.

Let

D(z,y,z) = C — amimamg — Bl10503.

Then D(z,y, z) is a multiple of ¢; and a multiple of m;.

LEMMA 2.8
D(x,y,z) isamuldpk of 1 (z,y, z)m1(z,y, 2) .

PROOF Write D = m1D;. We need to show that ¢; divides D;. We
could quote some result about unique factorization, but instead we proceed
as follows. Parameterize the line ¢; via (2.4) (again, we are considering the
case a # 0). Substituting this into the relation D = myD; yields D= ﬁ@lf)l.
Since ¢ divides D, we have D = 0. Since my # {1, we have my # 0. Therefore
Dy (u,v) is the zero polynomial. As above, this implies that Dy (z,y, z) is a
multiple of /1, as desired.

By the lemma,
D(zx,y,z) = lymq,

where {(z,y, z) is linear. By assumption, C' = 0 at Paa, Pa3, P32. Also, {10203
and mimemg vanish at these points. Therefore, D(z,y, z) vanishes at these
points. Our goal is to show that D is identically 0.

LEMMA 2.9
{(Pas) = £(Py3) = €(P32) = 0.

PROOF First suppose that Pj3 # Pa3. If 1(P3) = 0, then Pa3 is on
the line ¢; and also on /5 and mg by definition. Therefore, Ps3 equals the
intersection P;3 of /1 and m3. Since P»3 and P;3 are for the moment assumed
to be distinct, this is a contradiction. Therefore ¢1(Pa3) # 0. Since D(Pa3) =
0, it follows that ma (P23)£(P23) =0.

Suppose now that Pj3 = Ps3. Then, by the assumption in the theo-
rem, mg is tangent to C at Pa3, so ordy,, p,,(C) > 2. Since Pj3 = Pa3
and Pog lies on mg, we have ord,,, p,;(f1) = ordm, p,;(f2) = 1. There-
fore, ord,,, p,,(al1f2l3) > 2. Also, ord,,, p,,(Bmimaems) = oco. Therefore,
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Ordy,, Py (D) > 2, since D is a sum of terms, each of which vanishes to order
at least 2. But ord,,, p,,(¢1) = 1, so we have

Ordy,y pys (M1 ) = 0rdyy pys (D) — 0rdimy pyy (£1) > 1.

Therefore mq(Pa3)l(Pas) = 0.

In both cases, we have mj(Pa3)¢(Pa3) = 0.

If mq(Pa3) # 0, then ¢(Ps3) = 0, as desired.

If mq(Pe3) = 0, then Pa3 lies on my, and also on /5 and mg, by definition.
Therefore, Po3 = P51, since £5 and my intersect in a unique point. By as-
sumption, ¢y is therefore tangent to C' at P,3. Therefore, ordy, p,,(C) > 2.
As above, ordy, p,, (D) > 2, so

Ordg27p23 ((16) Z 1.

If in this case we have (1(P3) = 0, then Pz lies on #1,f5, m3. Therefore
P13 = P»3. By assumption, the line mg is tangent to C at P,3. Since Ps3 is a
nonsingular point of C', Lemma 2.5 says that /o = mg, contrary to hypothesis.
Therefore, ¢1(Pa3) # 0, so £(Pa3) = 0.

Similarly, E(PQQ) = E(ng) = 0. I

If ¢(z,y, 2) is identically 0, then D is identically 0. Therefore, assume that
¢(z,y, z) is not zero and hence it defines a line /.

First suppose that Pa3, Pso, P3o are distinct. Then £ and /5 are lines through
Ps3 and Psy. Therefore ¢ = f¢5. Similarly, £ = msy. Therefore {5 = mso,
contradiction.

Now suppose that P35 = Pa5. Then mo is tangent to C' at Pyy. As before,

ordyy,, py, (L1mal) > 2.

We want to show that this forces ¢ to be the same line as ms.

If mq(Pag) = 0, then Psy lies on mq, ma,lo. Therefore, Poy = Psy. This
means that /5 is tangent to C' at Pa3. By Lemma 2.5, /5 = mo, contradiction.
Therefore, my(Pas) # 0.

If 41 (P22) # 0, then ord,,, p,,(¢) > 2. This means that ¢ is the same line as
mao.

If El(PQQ) = 0, then P22 = P32 lies on El,ﬁg,ég,mg, SO P12 = P22 =
Psy. Therefore ord,,, p,,(C) > 3. By the reasoning above, we now have
ordy,, p,, (¢1mif) > 3. Since we have proved that mq(Pa2) # 0, we have
ordsm,, p,, (¢) > 2. This means that £ is the same line as ma.

So now we have proved, under the assumption that P3o = Pso, that £ is the
same line as my. By Lemma 2.9, Ps3 lies on ¢, and therefore on mo. It also
lies on /5 and ms3. Therefore, Poo = Ps3. This means that ¢, is tangent to C
at Pyo. Since P35 = Py means that mo is also tangent to C at Pso, we have
l5 = mo, contradiction. Therefore, P3o # Pso (under the assumption that

0+ 0).
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Similarly, P23 7é P22.

Finally, suppose Po3 = P3o. Then Psg lies on fo, /035, mo, m3. This forces
Py5 = P35, which we have just shown is impossible.

Therefore, all possibilities lead to contradictions. It follows that ¢(z,y, z)
must be identically 0. Therefore D = 0, so

C = aflégfg + ﬂmlmgmg.

Since ¢35 and mg vanish at Ps3, we have C'(Ps3) = 0, as desired. This completes
the proof of Theorem 2.6.

REMARK 2.10 Note that we proved the stronger result that
C = &515253 + ﬁm1m2m3

for some constants «, (3. Since there are 10 coefficients in an arbitrary ho-
mogeneous cubic polynomial in three variables and we have required that C
vanish at eight points (when the P;; are distinct), it is not surprising that the
set of possible polynomials is a two-parameter family. When the P;; are not
distinct, the tangency conditions add enough restrictions that we still obtain
a two-parameter family.

We can now prove the associativity of addition for an elliptic curve. Let
P,Q, R be points on E. Define the lines

51:P_Q, EQZOO,Q‘I_R, KgZR,P—{—Q

mlzm, me =00,P+Q, m3=PQ+R.

We have the following intersections:

2 0y {3
my Q —(Q+R) R
my | —(P+ Q) 00 P+Q
ms P Q+R X

Assume for the moment that the hypotheses of the theorem are satisfied.
Then all the points in the table, including X, lie on E. The line £3 has three
points of intersection with E, namely R, P + ), and X. By the definition of
addition, X = —((P + Q) + R). Similarly, ms intersects C' in 3 points, which
means that X = —(P+(Q+ R)). Therefore, after reflecting across the z-axis,
we obtain (P+ Q)+ R= P+ (Q + R), as desired.

It remains to verify the hypotheses of the theorem, namely that the orders
of intersection are correct and that the lines ¢; are distinct from the lines m;.

First we want to dispense with cases where oo occurs. The problem is that
we treated oo as a special case in the definition of the group law. However,
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as pointed out earlier, the tangent line at oo intersects the curve only at oo
(and intersects to order 3 at co). It follows that if two of the entries in a row
or column of the above table of intersections are equal to oo, then so is the
third, and the line intersects the curve to order 3. Therefore, this hypothesis
is satisfied.

It is also possible to treat directly the cases where some of the intersection
points P,Q, R,+(P + Q),£(Q + R) are co. In the cases where at least one of
P,Q, R is oo, associativity is trivial.

If P+Q = oo, then (P+ Q)+ R = oo+ R = R. On the other hand,
the sum @) + R is computed by first drawing the line L through @ and R,
which intersects E in —(Q + R). Since P + Q) = 0o, the reflection of @) across
the x-axis is P. Therefore, the reflection L’ of L passes through P, —R, and
@ + R. The sum P + (Q + R) is found by drawing the line through P and
Q + R, which is L'. We have just observed that the third point of intersection
of L' with FE is —R. Reflecting yields P+ (Q + R) = R, so associativity holds
in this case.

Similarly, associativity holds when Q) + R = oo.

Finally, we need to consider what happens if some line ¢; equals some line
m;, since then Theorem 2.6 does not apply.

First, observe that if P, @), R are collinear, then associativity is easily verified
directly.

Second, suppose that P,Q,Q + R are collinear. Then P 4+ (Q + R) = —Q.
Also, P+ Q = —(Q+ R),s0 (P+ Q)+ R = —(Q + R) + R. The second
equation of the following shows that associativity holds in this case.

LEMMA 2.11
Let P, P, e points on an elliptic curve. Then (P, + P,) — P, = P; and
—(PL+P)+P=—-P.

PROOF The two relations are reflections of each other, so it suffices to
prove the second one. The line L through P; and P, intersects the elliptic
curve in —(P; + P3). Regarding L as the line through —(P; + P») and Py
yields —(Py + P») + P, = — P, as claimed. |

Suppose that ¢; = m; for some %, j. We consider the various cases. By the
above discussion, we may assume that all points in the table of intersections
are finite, except for oo and possibly X. Note that each ¢; and each m; meets
E in three points (counting multiplicity), one of which is P;;. If the two lines
coincide, then the other two points must coincide in some order.

1. /1 =mq: Then P, (@, R are collinear, and associativity follows.

2. 1 = moy: In this case, P, Q, 0o are collinear, so P+ () = o0o; associativity
follows by the direct calculation made above.
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3. {5 = my: Similar to the previous case.
4. ¢4 = mg: Then P, Q, Q+ R are collinear; associativity was proved above.

5. £3 = mq: Similar to the previous case.

6. lo = my: Then P+ @Q must be +=(Q + R). If P+ Q = @ + R, then
commutativity plus the above lemma yields

P=(P+Q)-Q=(Q+R) -Q=R
Therefore,
(P+Q)+R=R+(P+Q)=P+(P+Q)=P+(R+Q) =P+ (Q+R).
If P+Q=—(Q+ R), then
(P+Q)+R=—-(Q+R)+R=-Q

and
P+(Q+R)=P—(P+Q)=-0Q,

so associativity holds.

7. {5 = mg: In this case, the line m3 through P and (Q + R) intersects E
in 0o, so P = —(Q + R). Since —(Q + R), @, R are collinear, we have
that P, Q, R are collinear and associativity holds.

8. I3 = msy: Similar to the previous case.

9. 3 = mg3: Since /3 cannot intersect F in 4 points (counting multiplici-
ties), it is easy to see that P=Ror P=P+Qor Q+ R=P+ Q or
@@ + R = R. The case P = R was treated in the case f5 = my. Assume
P =P+ Q. Adding —P and applying Lemma 2.11 yields co = @), in
which case associativity immediately follows. The case Q + R = R is
similar. If Q + R = P + @, then adding —(Q and applying Lemma 2.11
yields P = R, which we have already treated.

If ¢; # m; for all 4, j, then the hypotheses of the theorem are satisfied, so
the addition is associative, as proved above. This completes the proof of the
associativity of elliptic curve addition.

REMARK 2.12 Note that for most of the proof, we did not use the
Weierstrass equation for the elliptic curve. In fact, any nonsingular cubic
curve would suffice. The identity O for the group law needs to be a point
whose tangent line intersects to order 3. Three points sum to 0 if they lie
on a straight line. Negation of a point P is accomplished by taking the line
through O and P. The third point of intersection is then —P. Associativity
of this group law follows just as in the Weierstrass case.
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2.4.1 The Theorems of Pappus and Pascal

Theorem 2.6 has two other nice applications outside the realm of elliptic
curves.

THEOREM 2.13 (Pascal’s Theorem)

Let ABCDEF ke a hexagon fnscribed In a conic section (ellipse, paralol,
or hypertol), where A, B,C, D, E, F are distinct points In the a ne phne.
Let X be the intersection of AB and DE, ktY be the intersection of BC' and
EF, and ¥t Z be the mtersecton of CD and FA. Then X, Y, Z are collinear
(see Figure 2 4).

Figure 2.4

Pascal’s Theorem

REMARK 2.14 (1) A conic is given by an equation ¢(x,y) = ax? + bxy +
cy? +dx+ey+ f = 0 with at least one of a, b, ¢ nonzero. Usually, it is assumed
that b? —4ac # 0; otherwise, the conic degenerates into a product of two linear
factors, and the graph is the union of two lines. The present theorem holds
even in this case, as long as the points A, C, E lie on one of the lines, B, D, I
lie on the other, and none is the intersection of the two lines.

(2) Possibly AB and DE are parallel, for example. Then X is an infinite
point in PZ%.

(3) Note that X, Y, Z will always be distinct. This is easily seen as follows:
First observe that X,Y,Z cannot lie on the conic since a line can intersect
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the conic in at most two points; the points A, B,C, D, E, F' are assumed to
be distinct and therefore exhaust all possible intersections. If X =Y, then
AB and BC meet in both B and Y, and therefore the lines are equal. But
this means that A = C, contradiction. Similarly, X # Z and Y # Z.

PROOF  Define the following lines:

{1 =FEF, ly =AB, {5 =CD, m; = BC, my = DE, m3 = FA.

We have the following table of intersections:

0y by U3
ma Y B C
mo | E X D
ms F A 7

Let g(x,y) = 0 be the affine equation of the conic. In order to apply The-
orem 2.6, we change ¢(z,y) to its homogeneous form Q(z,y, z). Let {(x,y, 2)
be a linear form giving the line through X and Y. Then

Clz,y,2) = Q(z,y, 2)l(z,y, 2)

is a homogeneous cubic polynomial. The curve C = 0 contains all of the
points in the table, with the possible exception of Z. It is easily checked that
the only singular points of C are the points of intersection of ) = 0 and
¢ = 0, and the intersection of the two lines comprising () = 0 in the case
of a degenerate conic. Since none of these points occur among the points
we are considering, the hypotheses of Theorem 2.6 are satisfied. Therefore,
C(Z) = 0. Since Q(Z) # 0, we must have ¢{(Z) = 0, so Z lies on the line
through X and Y. Therefore, X, Y, Z are collinear. This completes the proof
of Pascal’s theorem.

COROLLARY 2.15 (Pappus’s Theorem)

Let / and m be two distinct lines in the plhne. Let A, B, C' e distinct points
of / and ket A’, B’,C’ e distinct points of m. Assume that none of these
points is the mtersection of ¢ and m. Let X be the Mntersection of AB’ and
A'B, etY be the intersection of B’C' and BC’, and ket Z ke the intersection
of CA’ and C'A. Then XY, Z are collinear (see Figure 2 .5).

PROOF This is the case of a degenerate conic in Theorem 2.13. The
“hexagon” is AB'CA’BC".
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Figure 2.5
Pappus’s Theorem

2.5 Other Equations for Elliptic Curves

In this book, we are mainly using the Weierstrass equation for an elliptic
curve. However, elliptic curves arise in various other guises, and it is worth-
while to discuss these briefly.

2.5.1 Legendre Equation

This is a variant on the Weierstrass equation. Its advantage is that it
allows us to express all elliptic curves over an algebraically closed field (of
characteristic not 2) in terms of one parameter.

PROPOSITION 2.16
Let K ke a field of characteristic not 2 and ket

v =2 +ax? +bx+c=(z—e1)lz —e)(x —e3)

ke an elliptic curve I over K with e1,e0,e3 € K. Let

—3/2 €3 — €1

T = (62 - 61)_1(50 - 61), Y1 = (62 - 61) Yy, A=

62—61'

Then A # 0,1 and
y% =x1(z1 — 1)(x1 — A).

PROOF This is a straightforward calculation. 1
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The parameter \ for F is not unique. In fact, each of

1 1 AoA-1
S SR way U v L e

yields a Legendre equation for E. They correspond to the six permutations
of the roots eq,es,e3. It can be shown that these are the only values of
A corresponding to F, so the map A — FE is six-to-one, except where A =
—1,1/2, 2, or A2 — XA+ 1 =0 (in these situations, the above set collapses; see
Exercise 2.13).

2.5.2 Cubic Equations

It is possible to start with a cubic equation C(x,y) = 0, over a field K of
characteristic not 2 or 3, that has a point with x,y € K and find an invertible
change of variables that transforms the equation to Weierstrass form (although
possibly 443 +27B?% = 0). The procedure is fairly complicated (see [25], [28],
or [84]), so we restrict our attention to a specific example.

Consider the cubic Fermat equation

23 P+ 2% =0.

The fact that this equation has no rational solutions with xyz # 0 was conjec-
tured by the Arabs in the 900s and represents a special case of Fermat’s Last
Theorem, which asserts that the sum of two nonzero nth powers of integers
cannot be a nonzero nth power when n > 3. The first proof in the case n = 3
was probably due to Fermat. We’ll discuss some of the ideas for the proof in
the general case in Chapter 15.

Suppose that 23 + 3% + 23 = 0 and xyz # 0. Since 23 + y> = (z + y)(2? —
ry + y?), we must have z +y # 0. Write

L Y
—=u-+v, —=u-—0.
z z

Then (u+v)% + (u—v)3+1 =0, so 2u® + 6uv? + 1 = 0. Divide by u? (since
x4y # 0, we have u # 0) and rearrange to obtain

6(v/u)? = —(1/u)® — 2.

Let
. L vt )
U Tr+y U r+y
Then
Y7 = x5 — 432,

It can be shown (this is somewhat nontrivial) that the only rational solutions
to this equation are (x1,y1) = (12,436), and oco. The case y; = 36 yields
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r—y=ux+y,soy = 0. Similarly, y; = —36 yields x = 0. The point with
(z1,y1) = oo corresponds to x = —y, which means that z = 0. Therefore,
there are no solutions to 2 + ¢ + 2® = 0 when zyz # 0.

2.5.3 Quartic Equations

Occasionally, we will meet curves defined by equations of the form
v? = au + bud + cu® + du + e, (2.6)

with a # 0. If we have a point (p, ¢q) lying on the curve with p,q € K, then
the equation (when it is nonsingular) can be transformed into a Weierstrass
equation by an invertible change of variables that uses rational functions with
coefficients in the field K. Note that an elliptic curve F defined over a field K
always has a point in E(K), namely co (whose projective coordinates (0 : 1 : 0)
certainly lie in K). Therefore, if we are going to transform a curve C' into
Weierstrass form in such a way that all coefficients of the rational functions
describing the transformation lie in K, then we need to start with a point on
C that has coordinates in K.

There are curves of the form (2.6) that do not have points with coordinates
in K. This phenomenon will be discussed in more detail in Chapter 8.

Suppose we have a curve defined by an equation (2.6) and suppose we have
a point (p,q) lying on the curve. By changing u to u 4+ p, we may assume
p = 0, so the point has the form (0, q).

First, suppose ¢ = 0. If d = 0, then the curve has a singularity at (u,v) =
(0,0). Therefore, assume d # 0. Then

(

— ) =d(— — b(— .

SR = A e b +a

This can be easily transformed into a Weierstrass equation in d/u and dv/u?.
The harder case is when ¢ # 0. We have the following result.

THEOREM 2.17
Let K e a field of characteristic not 2. C onsider the equation

v? = aut + bud + cu® + du + ¢?

with a,b,c,d,q € K. Let

o 24w +q) +du 4@ (v + q) + 2q(du + cu?) — (d*u?/2q)

; =

u? u3

D efine

a1 =d/q, as=c—(d*/4¢*), a3=2gb, ays=—4¢%a, as = azay.
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T hen
y2 +ai1xy + aszy = x> + a2$2 + a4 + ag.

T he mverse transform ation is

— (d? —
"y 2q(z +c¢)— (d /2q)’ o= gt u(ux d).
y 2q

The pont (u,v) = (0,q) corresponds to the point (z,y) = oo and (u,v) =
(0, —q) corresponds o (x,y) = (—az, aras — az) .

PROOF Most of the proof is a “straightforward” calculation that we omit.
For the image of the point (0, —q), see [28].

Example 2.2
Consider the equation

v =t 4 1. (2.7)
Thena=1,b=c=d=0,and ¢ =1. If
2(v+1) 4w +1)

u?2

then we obtain the elliptic curve F given by

y2 = 2% — 4z

The inverse transformation is
u=2x/y, v=—1+(22%/y?).

The point (u,v) = (0,1) corresponds to co on E, and (u,v) = (0, —1) corre-
sponds to (0,0). We will show in Chapter 8 that

E(Q) = {007 (07 O)v (27 O)a (_27 O)}

These correspond to (u,v) = (0,1),(0,—1), and points at infinity. Therefore,
the only finite rational points on the quartic curve are (u,v) = (0,£1). It is
easy to deduce from this that the only integer solutions to

at + vt =2

satisfy ab = 0. This yields Fermat’s Last Theorem for exponent 4. We will
discuss this in more detail in Chapter 8.

It is worth considering briefly the situation at infinity in u,v. If we make
the equation (2.7) homogeneous, we obtain

F(u,v,w) = v*w? —u* —w? = 0.
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The points at infinity have w = 0. To find them, we set w = 0 and get 0 = u?,
which means v = 0. We thus find only the point (u:v:w)=(0:1:0). But
we have two points, namely (2,0) and (—2,0) in the corresponding Weierstrass
model. The problem is that (u: v :w) = (0:1:0) is a singular point in the
quartic model. At this point we have

F,=F,=F,=0.

What is happening is that the curve intersects itself at the point (u : v :
w) = (0 : 1:0). One branch of the curve is v = +u?y/1 + (1/u)* and the
other is v = —u?y/1 + (1/u)*. For simplicity, let’s work with real or complex
numbers. If we substitute the second of these expressions into z = 2(v+1) /u?
and take the limit as u — oo, we obtain

20 +1)  2(1 —u?y/1+ (1/u)?) Y

€r = =
u? u?

If we use the other branch, we find x — +2. So the transformation that
changes the quartic equation into the Weierstrass equation has pulled apart
the two branches (the technical term is “resolved the singularities”) at the
singular point. I

2.5.4 Intersection of Two Quadratic Surfaces

The intersection of two quadratic surfaces in three-dimensional space, along
with a point on this intersection, is usually an elliptic curve. Rather than work
in full generality, we’ll consider pairs of equations of the form

av? + b’ =e, cu+duw® =",

where a, b, c,d, e, f are nonzero elements of a field K of characteristic not 2.
Each separate equation may be regarded as a surface in uvw-space, and they
intersect in a curve. We’ll show that if we have a point P in the intersection,
then we can transform this curve into an elliptic curve in Weierstrass form.

Before analyzing the intersection of these two surfaces, let’s consider the
first equation by itself. It can be regarded as giving a curve C in the uv-
plane. Let P = (ug,vp) be a point on C. Let L be the line through P with
slope m:

u=1ug+t, v=uvy+ mt.

We want to find the other point where L intersects C. See Figure 2.6.
Substitute into the equation for C' and use the fact that aud + bv = e to
obtain

a(2ugt + %) + b(2ugmt + m?t?) = 0.

© 2008 by Taylor & Francis Group, LLC



40 CHAPTER 2 THE BASIC THEORY

(u, v)

Figure 2.6

Since t = 0 corresponds to (ug,vg), we factor out ¢ and obtain

B 2aug + 2bvgm

t =
a + bm?
Therefore,
2aug + 2bvgm 2amugy + 2bvgm?
U= uy — v =1 —
0 a+bm2 0 a + bm?

We make the convention that m = oo yields (ug, —vg), which is what we get
if we are working with real numbers and let m — oo. Also, possibly the
denominator a +bm? vanishes, in which case we get points “at infinity” in the
uv-projective plane (see Exercise 2.14).

Note that if (u,v) is any point on C with coordinates in K, then the slope
m of the line through (u,v) and P is in K (or is infinite). We have there-
fore obtained a bijection, modulo a few technicalities, between values of m
(including co) and points on C' (including points at infinity). The main point
is that we have obtained a parameterization of the points on C'. A similar
procedure works for any conic section containing a point with coordinates in
K.

Which value of m corresponds to the original point (ug,vg)? Let m be the
slope of the tangent line at (ug,vg). The second point of intersection of the
tangent line with the curve is again the point (ug,vp), so this slope is the
desired value of m. The value m = 0 yields the point (—ug,vg). This can be
seen from the formulas, or from the fact that the line through (—ug,vg) and
(up, vo) has slope 0.

We now want to intersect C', regarded as a “cylinder” in uvw-space, with
the surface cu? 4+ dw? = f. Substitute the expression just obtained for u to
obtain

2aug + 2bvgm 2
a+ bm?2

de:f—c(uo—
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This may be rewritten as

d(w(a +bm?))? = (a +bm?*)?f — c(bugm? — 2bvgm — aug)?
= (b*f — cb*ud)m* + - - - .

This may now be changed to Weierstrass form by the procedure given ear-
lier. Note that the leading coefficient b f — cb*u? equals b*dw3. If wy = 0,
then fourth degree polynomial becomes a cubic polynomial, so the equation
just obtained is easily put into Weierstrass form. The leading term of this
cubic polynomial vanishes if and only if vo = 0. But in this case, the point
(ug, vo, wo) = (ug,0,0) is a singular point of the uvw curve — a situation that
we should avoid (see Exercise 2.15).

The procedure for changing “square = degree four polynomial” into Weier-
strass form requires a point satisfying this equation. We could let m be the
slope of the tangent line at (ug,vg), which corresponds to the point (ug, vg).
The formula of Theorem 2.17 then requires that we shift the value of m to
obtain m = 0. Instead, it’s easier to use m = 0 directly, since this value
corresponds to (—ug, vg), as pointed out above.

Example 2.3
Consider the intersection

u?+02 =2, u?+4w? =5.

Let (ug, vo,wp) = (1,1, 1). First, we parameterize the solutions to u?+v? = 2.
Let u=1+t,v =1+ mt. This yields

(141> + (1 +mt)? =2,

which yields #(2 + 2m) + t2(1 + m?) = 0. Discarding the solution ¢ = 0, we
obtain t = —(2 + 2m) /(1 + m?), hence
2+2m  m?—2m—1 2+42m  1—2m—m?

= T 14m? 1+m2 v

T T 2 T T 1+ m2

Note that m = —1 corresponds to (u,v) = (1,1) (this is because the tangent
at this point has slope m = —1). Substituting into u? + 4w? = 5 yields

4wl +m?)? =5(1+m?)? — (m? —2m — 1)* = 4m* + 4m> +8m? —4dm + 4.
Letting r = w(1 + m?) yields
2

P =m*+m2+2m?>—m+1.

In Theorem 2.17, we use ¢ = 1. The formulas then change this curve to the
generalized Weierstrass equation

7
y2—xy—|—2y:x3—|—1x2—4:c—7.
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Completing the square yields
y; = 2° + 22% — 5z — 6,

Whereylzy—l—l—%x. [l

2.6 Other Coordinate Systems

The formulas for adding two points on an elliptic curve in Weierstrass form
require 2 multiplications, 1 squaring, and 1 inversion in the field. Although
finding inverses is fast, it is much slower than multiplication. In [27, p. 282],
it is estimated that inversion takes between 9 and 40 times as long as multi-
plication. Moreover, squaring takes about 0.8 the time of multiplication. In
many situations, this distinction makes no difference. However, if a central
computer needs to verify many signatures in a second, such distinctions can
become relevant. Therefore, it is sometimes advantageous to avoid inversion
in the formulas for point addition. In this section, we discuss a few alternative
formulas where this can be done.

2.6.1 Projective Coordinates

A natural method is to write all the points as points (x : y : z) in projective
space. By clearing denominators in the standard formulas for addition, we
obtain the following:

Let P, = (z; : y;i @ 2i), i = 1,2, be points on the elliptic curve y?z =
23 + Axz? + Bz3. Then

(x1:y1:21) 4+ (w2 1 y2 1 22) = (x3 : Y3 : 23),

where x3,y3, 23 are computed as follows: When P; # + P,

U = Y221 — Y122, V= XT9z1 — L1722, w = u2z122 — US — 2’0233'12’2,

T3 =vw, Y3 = u(v2x1z2 —w) — v3y1ze, 23 =v32120.
When P, = P,
t=A22+32%, w=1y121, v=uxiyy, w=1t>—38uv,
T3 = 2uw, y3=t(4v —w)—8yiu?, z3 = 8u’.

When P, = —P,, we have P, + P, = oc.
Point addition takes 12 multiplications and 2 squarings, while point dou-
bling takes 7 multiplications and 5 squarings. No inversions are needed. Since
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addition and subtraction are much faster than multiplication, we do not con-
sider them in our analysis. Similarly, multiplication by a constant is not
included.

2.6.2 Jacobian Coordinates

A modification of projective coordinates leads to a faster doubling proce-
dure. Let (z : y : 2) represent the affine point (x/22,y/2%). This is somewhat
natural since, as we’ll see in Chapter 11, the function x has a double pole at oo
and the function y has a triple pole at co. The elliptic curve y? = 23+ Az + B
becomes

y? = 2% + Axz* + B2°,

The point at infinity now has the coordinates co = (1:1:0).
Let P, = (z; : y; : 2), i = 1,2, be points on the elliptic curve y?> =
z3 4+ Azxz* + B25. Then

(x1:y1:21) 4+ (T2 1 y2 1 22) = (w3 : Y3 : 23),
where x3,y3, 23 are computed as follows: When P} # +Ps,

r:xlzg, s:xng, t:ylzg, u:ygzi’, v=8—71, w=u-—1t,

g = —v3 — 2rv +w?,  y3 = —tvd + (rv2 — T3)w, 23 = Vz129.
When Pl = PQ,

v =4ry?, w=3x + Az},

g = —20+w?, y3= —8yi1 + (v —z3)w, 23 =2y;21.

When P, = —P,, we have P; + P, = oo.

Addition of points takes 12 multiplications and 4 squarings. Doubling takes
3 multiplications and 6 squarings. There are no inversions.

When A = —3, a further speed-up is possible in doubling: we have w =
3(x? — 21) = 3(x1 + 23) (21 — 23), which can be computed in one squaring and
one multiplication, rather than in 3 squarings. Therefore, doubling takes only
4 multiplications and 4 squarings in this case. The elliptic curves in NIST’s
list of curves over fields F, ([86], [48, p. 262]) have A = —3 for this reason.

There are also situations where a point in one coordinate system can be
efficiently added to a point in another coordinate system. For example, it takes
only 8 multiplications and 3 squarings to add a point in Jacobian coordinates
to one in affine coordinates. For much more on other choices for coordinates
and on efficient point addition, see [48, Sections 3.2, 3.3] and [27, Sections
13.2, 13.3].
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2.6.3 Edwards Coordinates

In [36], Harold Edwards describes a form for elliptic curves that has certain
computational advantages. The case with ¢ = 1,d = —1 occurs in work of
Euler and Gauss. Edwards restricts to the case d = 1. The more general form
has subsequently been discussed by Bernstein and Lange [11].

PROPOSITION 2.18
Let K ke a field of characteristic not 2. Let¢,d € K with ¢,d # 0 and d not
a square in K. The curve

C: u?+0? =21+ duv?)
is isom orphic to the elliptic curve
E: 9?=(z—cd—-1)(a* —4cd)
via the change of variables

—2c(w — ¢) 4P (w =) + 2¢(ctd + 1)u?

r = ——- y_
u? '

u? ’
where w = (c2du® — 1)v.

The point (0, ¢) is the identity for the group Ilaw on C', and the addition law
is

U1V + UV1 V1V2 — U1UY
1+ dujusviva) " (1 — dujusvivs)

(ur,v1) + (ug,v2) = (C(

for all points (u;, v;) € C(K). The negative of a pomt is —(u,v) = (—u,v).

PROOF  Write the equation of the curve as

,w2

2 2 2 2 2
—_— f— d _1 ——.
Uu C —(C U )’U —02 u2 1

This yields the curve
w? = Adu — (ctd + 1)u? + 2.

The formulas in Section 2.5.3 then change this curve to Weierstrass form. The
formula for the addition law can be obtained by a straightforward computa-
tion.

It remains to show that the addition law is defined for all points in C'(K).
In other words, we need to show that the denominators are nonzero. Suppose
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duyviugve = —1. Then wu;,v; # 0 and uyv; = —1/dugve. Substituting into
the formula for C' yields

1 2 2
u%-l—v%:cQ(l-l— >=u2+v2

2,2 2,2
duzvs dusvs

Therefore,

(u1 +v1)° = u? + 03 + 2y

1 (u% +v2 — 21@1}2) 1 (ug — U2)2
d u3v3 d (usz)Q '

Since d is not a square, this must reduce to 0 = 0, so u; + v; = 0.

Similarly,
o 1 (ug+vy)?
U —0) = 53— 3 >
( ) d (U2U2)2
which implies that u; — v; = 0. Therefore, u; = v1 = 0, which is a contradic-
tion.

The case where dujviusve = 1 similarly produces a contradiction. There-
fore, the addition formula is always defined for points in C'(K).

An interesting feature is that there are not separate formulas for 2P and
P+ P whenPlséPQ.

The formula for adding points can be written in projective coordinates. The
resulting computation takes 10 multiplications and 1 squaring for both point
addition and point doubling.

Although any elliptic curve can be put into the form of the proposition over
an algebraically closed field, this often cannot be done over the base field. An
easy way to see this is that there is a point of order 2. In fact, the point (¢, 0)
on C has order 4 (Exercise 2.7), so a curve that can be put into Edwards form
over a field must have a point of order 4 defined over that field.

2.7 The j-invariant

Let E be the elliptic curve given by y? = 2% + Ax + B, where A, B are
elements of a field K of characteristic not 2 or 3. If we let

v = plz, y=ply, (2.8)
with p € FX, then we obtain

y% = .CE? + Alxl + Bl,
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with
Al = ILL4A, Bl = /,L6B

(In the generalized Weierstrass equation y? + a1zy + asy = 22 + asx? + agx +
ag, this change of variables yields new coefficients p‘a;. This explains the
numbering of the coefficients.)

Define the j-invariant of F to be

4A3

= i(F) = 17282
J=J(B) = 1728 s

Note that the denominator is the negative of the discriminant of the cubic,
hence is nonzero by assumption. The change of variables (2.8) leaves j un-
changed. The converse is true, too.

THEOREM 2.19

Lety? = 23+ A1y + By and y3 = a3 + Aswo + Bs e two elliptic curves with
j-Invariants j; and jo, respectively. If j; = jo, then there exists u # 0 In K
(= algebraic clsure of K') such that

Ay =p*Ay, By =By,

T he transform ation
To = pPr1, Y2 = Py

takes one equation to the other.

PROOF First, assume that A; # 0. Since this is equivalent to j; # 0, we
also have A, # 0. Choose p such that Ay = p*A;. Then

443 443 412 43 443

4A3 +2TBZ  4A3 +27TB?  4u~12A3 +27B7  4A3 +27ul2BY’

which implies that
B3 = (u°B1)*.

Therefore By = +u%B,. If By = u%B;, we're done. If By = —uSBy, then
change p to iy (where 2 = —1). This preserves the relation Ay = ptA4; and
also yields By = u8B;.

If A; =0, then Ay = 0. Since 443 +27B2 # 0, we have By, By # 0. Choose
u such that By = ubB;. |

There are two special values of j that arise quite often:
1. j = 0: In this case, the elliptic curve E has the form y? = 23 + B.

2. j = 1728: In this case, the elliptic curve has the form y? = 23 + Ax.
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The first one, with B = —432, was obtained in Section 2.5.2 from the Fermat
equation z2 4+ 43 + 23 = 0. The second curve, once with A = —25 and once
with A = —4, appeared in Chapter 1.

The curves with j = 0 and with j = 1728 have automorphisms (bijective
group homomorphisms from the curve to itself) other than the one defined by
(z,y) — (x,—y), which is an automorphism for any elliptic curve in Weier-
strass form.

1. y*> = 23 + B has the automorphism (z,y) — (Cx, —y), where ( is a
nontrivial cube root of 1.

2. y? = 23 + Ax has the automorphism (z,y) — (—x,iy), where i = —1.

(See Exercise 2.17.)

Note that the j-invariant tells us when two curves are isomorphic over an
algebraically closed field. However, if we are working with a nonalgebraically
closed field K, then it is possible to have two curves with the same j-invariant
that cannot be transformed into each other using rational functions with co-
efficients in K. For example, both y? = 23 — 252 and y?> = 23 — 4z have
j = 1728. The first curve has infinitely points with coordinates in @Q, for
example, all integer multiples of (—4,6) (see Section 8.4). The only rational
points on the second curve are 0o, (2,0), (—2,0), and (0,0) (see Section 8.4).
Therefore, we cannot change one curve into the other using only rational func-
tions defined over Q. Of course, we can use the field Q(1/10) to change one
curve to the other via (z,y) — (u%x, u3y), where p = /10/2.

If two different elliptic curves defined over a field K have the same j-
invariant, then we say that the two curves are twists of each other.

Finally, we note that j is the j-invariant of

3 -T + 2 .

1728 — 5 1728 — 5

when j # 0,1728. Since y? = 23 4+ 1 and y? = 2% + = have j-invariants 0
and 1728, we find the j-invariant gives a bijection between elements of K and
K-isomorphism classes of elliptic curves defined over K (that is, each j € K
corresponds to an elliptic curve defined over K, and any two elliptic curves
defined over K and with the same j-invariant can be transformed into each
other by a change of variables (2.8) defined over K).

If the characteristic of K is 2 or 3, the j-invariant can also be defined, and
results similar to the above one hold. See Section 2.8 and Exercise 2.18.

y2 =2+ (2.9)

2.8 Elliptic Curves in Characteristic 2

Since we have been using the Weierstrass equation rather than the gener-
alized Weierstrass equation in most of the preceding sections, the formulas
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given do not apply when the field K has characteristic 2. In this section, we
sketch what happens in this case.

Note that the Weierstrass equation is singular. Let f(z,y) = y* — 23 —
Az — B. Then f, = 2y = 0, since 2 = 0 in characteristic 2. Let z¢ be a
root (possibly in some extension of K) of f, = —32%> — A = 0 and let yo
be the square root of x§ + Axg + B. Then (z9,yo) lies on the curve and
fz(20,%0) = fy(wo,y0) = 0.

Therefore, we work with the generalized Weierstrass equation for an elliptic
curve E:

y2 +ai1xy + aszy = x> + agng + a4 + ag.

If a1 # 0, then the change of variables
r=a’r, + (as/a1), y=day +a;>(aay + a?)
changes the equation to the form
yi + iy = af + apat + ag.

This curve is nonsingular if and only if af # 0. The j-invariant in this case
is defined to be 1/ag (more precisely, there are formulas for the j-invariant of
the generalized Weierstrass form, and these yield 1/ag in this case).

If ap =0, we let z = x1 + a2, y = y1 to obtain an equation of the form

2 ! 3 / /
Yi +azyn = 27 + ay1 + ag.

This curve is nonsingular if and only if aj # 0. The j-invariant is defined to
be 0.

Let’s return to the generalized Weierstrass equat