
 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Enterprise JavaBeans, 4th Edition

By Bill Burke, Sacha Labourey, Richard Monson-Haefel

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00530-X

Pages: 788

This authoritative guide includes everything that made previous editions of Enterprise JavaBeans the single must-have
book for EJB developers: the author's solid grasp on the complexities of EJBs; hundreds of clear, practical examples;
adept coverage the key concepts EJBs ; and diagrams to illustrate the concepts presented. The fourth edition also
includes everything you need to get up to speed quickly on the changes in EJB version 2.1 as well as a JBoss
implementation guide.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Enterprise JavaBeans, 4th Edition

By Bill Burke, Sacha Labourey, Richard Monson-Haefel

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00530-X

Pages: 788

 Copyright

 Preface

 Author's Note

 What Is Enterprise JavaBeans?

 Who Should Read This Book?

 Organization

 Software and Versions

 Conventions

 Comments and Questions

 Acknowledgments

 Part I: Lay of the Land

 Chapter 1. Introduction

 Section 1.1. Server-Side Components

 Section 1.2. Distributed Object Architectures

 Section 1.3. Component Models

 Section 1.4. Asynchronous Messaging

 Section 1.5. Titan Cruises: An Imaginary Business

 Section 1.6. What's Next?

 Chapter 2. Architectural Overview

 Section 2.1. The Enterprise Bean Component

 Section 2.2. Using Enterprise Beans

 Section 2.3. The Bean-Container Contract

 Section 2.4. Summary

 Chapter 3. Resource Management and the Primary Services

 Section 3.1. Resource Management

 Section 3.2. Primary Services

 Section 3.3. What's Next?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 4. Developing Your First Enterprise Beans

 Section 4.1. Choosing and Setting Up an EJB Server

 Section 4.2. Developing an Entity Bean

 Section 4.3. Developing a Session Bean

 Chapter 5. The Remote and Local Client View

 Section 5.1. Locating Beans with JNDI

 Section 5.2. The Remote Client API

 Section 5.3. The Local Client API

 Chapter 6. CMP: Basic Persistence

 Section 6.1. The Abstract Programming Model

 Section 6.2. The Customer EJB

 Section 6.3. Persistence Fields

 Section 6.4. Dependent Value Classes

 Section 6.5. Relationship Fields

 Chapter 7. CMP: Entity Relationships

 Section 7.1. The Seven Relationship Types

 Chapter 8. CMP: EJB QL

 Section 8.1. Declaring EJB QL

 Section 8.2. The Query Methods

 Section 8.3. EJB QL Examples

 Section 8.4. Problems with EJB QL

 Chapter 9. Bean-Managed Persistence

 Section 9.1. The Remote Interface

 Section 9.2. The Remote Home Interface

 Section 9.3. The Primary Key

 Section 9.4. The ShipBean

 Section 9.5. Obtaining a Resource Connection

 Section 9.6. Exception Handling

 Section 9.7. The ejbCreate() Method

 Section 9.8. The ejbLoad() and ejbStore() Methods

 Section 9.9. The ejbRemove() Method

 Section 9.10. The ejbFind() Methods

 Section 9.11. The Deployment Descriptor

 Chapter 10. The Entity-Container Contract

 Section 10.1. The Primary Key

 Section 10.2. The Callback Methods

 Section 10.3. ejbHome()

 Section 10.4. EntityContext

 Section 10.5. The Life Cycle of an Entity Bean

 Chapter 11. Session Beans

 Section 11.1. The Stateless Session Bean

 Section 11.2. The Life Cycle of a Stateless Session Bean

 Section 11.3. The Stateful Session Bean

 Section 11.4. The Life Cycle of a Stateful Session Bean

 Chapter 12. Message-Driven Beans

 Section 12.1. JMS and Message-Driven Beans

 Section 12.2. JMS-Based Message-Driven Beans

 Section 12.3. The Life Cycle of a Message-Driven Bean

 Section 12.4. Connector-Based Message-Driven Beans

 Section 12.5. EJB 2.1: Message Linking

 Chapter 13. Timer Service

 Section 13.1. Titan's Maintenance Timer

 Section 13.2. Timer Service API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 13.2. Timer Service API

 Section 13.3. Transactions

 Section 13.4. Entity Bean Timers

 Section 13.5. Stateless Session Bean Timers

 Section 13.6. Message-Driven Bean Timers

 Section 13.7. Final Words

 Chapter 14. EJB 2.1: Web Service Standards

 Section 14.1. Web Services Overview

 Section 14.2. XML Schema and XML Namespaces

 Section 14.3. SOAP 1.1

 Section 14.4. WSDL 1.1

 Section 14.5. UDDI 2.0

 Section 14.6. From Standards to Implementation

 Chapter 15. EJB 2.1 and Web Services

 Section 15.1. Accessing Web Services with JAX-RPC

 Section 15.2. EJB Endpoints

 Chapter 16. Transactions

 Section 16.1. ACID Transactions

 Section 16.2. Declarative Transaction Management

 Section 16.3. Isolation and Database Locking

 Section 16.4. Nontransactional Beans

 Section 16.5. Explicit Transaction Management

 Section 16.6. Exceptions and Transactions

 Section 16.7. Transactional Stateful Session Beans

 Chapter 17. J2EE

 Section 17.1. Servlets

 Section 17.2. JavaServer Pages

 Section 17.3. Web Components and EJB

 Section 17.4. Filling in the Gaps

 Section 17.5. Fitting the Pieces Together

 Chapter 18. XML Deployment Descriptors

 Section 18.1. The ejb-jar File

 Section 18.2. The Contents of a Deployment Descriptor

 Section 18.3. The Document Headerand Schema Declarations

 Section 18.4. The Descriptor's Body

 Section 18.5. Describing Enterprise Beans

 Section 18.6. Describing Relationships

 Section 18.7. Describing Bean Assembly

 Chapter 19. EJB Design in the Real World

 Section 19.1. Pre-Design: Containers and Databases

 Section 19.2. Design

 Section 19.3. Should You Use EJBs?

 Section 19.4. Wrapping Up

 Part II: JBoss Workbook

 Chapter 20. Introduction

 Section 20.1. Contents of the JBoss Workbook

 Chapter 21. JBoss Installation and Configuration

 Section 21.1. About JBoss

 Section 21.2. Installing JBoss Application Server

 Section 21.3. A Quick Look at JBoss Internals

 Section 21.4. Exercise Code Setup and Configuration

 Chapter 22. Exercises for Chapter 4

 Section 22.1. Exercise 4.1: A Simple Entity Bean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 22.2. Exercise 4.2: A Simple Session Bean

 Chapter 23. Exercises for Chapter 5

 Section 23.1. Exercise 5.1: The Remote Component Interfaces

 Section 23.2. Exercise 5.2: The EJBObject, Handle, and Primary Key

 Section 23.3. Exercise 5.3: The Local Component Interfaces

 Chapter 24. Exercises for Chapter 6

 Section 24.1. Exercise 6.1: Basic Persistence in CMP 2.0

 Section 24.2. Exercise 6.2: Dependent Value Classes in CMP 2.0

 Section 24.3. Exercise 6.3: A Simple Relationship in CMP 2.0

 Chapter 25. Exercises for Chapter 7

 Section 25.1. Exercise 7.1: Entity Relationships in CMP 2.0, Part 1

 Section 25.2. Exercise 7.2:Entity Relationships in CMP 2.0, Part 2

 Section 25.3. Exercise 7.3: Cascade Deletes in CMP 2.0

 Chapter 26. Exercises for Chapter 8

 Section 26.1. Exercise 8.1: Simple EJB QL Statements

 Section 26.2. Exercise 8.2: Complex EJB QL Statements

 Chapter 27. Exercises for Chapter 9

 Section 27.1. Exercise 9.1: A BMP Entity Bean

 Chapter 28. Exercises for Chapter 11

 Section 28.1. Exercise 11.1: A Stateless Session Bean

 Section 28.2. Exercise 11.2: A Stateful Session Bean

 Chapter 29. Exercises for Chapter 12

 Section 29.1. Exercise 12.1: JMS as a Resource

 Section 29.2. Exercise 12.2: The Message-Driven Bean

 Chapter 30. Exercises for Chapter 13

 Section 30.1. Exercise 13.1: EJB Timer Service

 Chapter 31. Exercises for Chapter 15

 Section 31.1. Exercise 15.1: Web Services and EJB 2.1

 Appendix A. Database Configuration

 Section A.1. Set Up the Database

 Section A.2. Examine the JBoss-Specific Files

 Section A.3. Start Up JBoss

 Section A.4. Build and Deploy the Example Programs

 Section A.5. Examine and Run the Client Applications

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004, 2003, 2001, 2000, 1999 O'Reilly Media, Inc.

Printed in the United States of America.

The JBoss Workbook section of the book was previously published as JBoss 3.2 Workbook for Enterprise JavaBeans,
Third Edition.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Enterprise JavaBeans?, Fourth Edition, the image of a wallaby and joey, and related trade dress are trademarks of
O'Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in
the United States and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems. Microsoft, Windows,
Windows NT, and the Windows logo are trademarks or registered trademarks of Microsoft Corporation in the United
States and other countries. JBoss is fully owned and operated by JBoss, Inc. in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Author's Note

What Is Enterprise JavaBeans?

Who Should Read This Book?

Organization

Software and Versions

Conventions

Comments and Questions

Acknowledgments

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Author's Note
In the winter of 1997, I was consulting on an e-commerce project that was using Java RMI. Not surprisingly, the project
failed because Java RMI didn't address performance, scalability, failover, security, or transactions, all of which are vital
in a production environment. Although the outcome of that project is not unique to Java RMI—I have seen the same
thing happen with CORBA—the timing of the project was especially interesting. Enterprise JavaBeans™ was first
introduced by Sun Microsystems at around that time, and had Enterprise JavaBeans (EJB) been available earlier, that
same project probably would have succeeded.

At the time I was working on that ill-fated Java RMI project, I was also writing a column for JavaReport Online called
"The Cutting Edge." The column covered what were then new Java technologies such as the Java Naming and Directory
Interface™ (JNDI) and the JavaMail™ API. I was actually looking for a new topic for the third installment of "The Cutting
Edge" when I discovered the first public draft of Enterprise JavaBeans, Version 0.8. I had originally heard about this
technology in 1996, but this was the first time that public documentation had been made available. Having worked on
CORBA, Java RMI, and other distributed object technologies, I knew a good thing when I saw it and immediately began
writing an article about this new technology.

That seems like eons ago. Since I published that article in March 1998, literally thousands of articles on EJB have been
written, and several books on the subject have come and gone. This book, now in its fourth edition, has kept pace with
four versions of the EJB specification in last five years. As the newest version of the specification takes flight, and a slew
of new books on the subject debut, I can't help but remember the days when the words "Enterprise JavaBeans" drew
blank looks from just about everyone. I'm glad those days are over.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What Is Enterprise JavaBeans?
When Java™ was first introduced in the summer of 1995, most of the IT industry focused on its graphical user interface
characteristics and the competitive advantage it offered in terms of distribution and platform independence. Those were
interesting times. The applet was king, and only a few of us were attempting to use Java on the server side. In reality,
we spent about half of our time coding and the other half trying to convince management that Java was not a fad.

Today, the focus has broadened considerably: Java has been recognized as an excellent platform for creating enterprise
solutions, specifically for developing distributed server-side applications. This shift has much to do with Java's emerging
role as a universal language for producing implementation-independent abstractions for common enterprise
technologies. The JDBC™ API is the first and most familiar example. JDBC (Java Database Connectivity) provides a
vendor-independent Java interface for accessing SQL relational databases. This abstraction has been so successful that
it's difficult to find a relational database vendor that doesn't support JDBC. Java abstractions for enterprise technologies
have expanded considerably to include JNDI for abstracting directory services, JTA (Java Transaction API) for
abstracting access to transaction managers, JMS (Java Message Service) for abstracting access to different message-
oriented middleware products, and more.

Enterprise JavaBeans, first introduced as a draft specification in late 1997, has since established itself as one of the
most important Java enterprise technologies provided by Sun Microsystems. EJB provides an abstraction for component
transaction monitors (CTMs), which represent the convergence of two technologies: traditional transaction-processing
(TP) monitors (such as CICS, TUXEDO, and Encina), and distributed object services (such as CORBA, DCOM, and native
Java RMI). Combining the best of both technologies, component transaction monitors provide a robust, component-
based environment that simplifies distributed development while automatically managing the most complex aspects of
enterprise computing, such as object brokering, transaction management, security, persistence, and concurrency.

Enterprise JavaBeans defines a server-side component model that allows business objects to be developed and moved
from one brand of EJB container to another. A component (i.e., an enterprise bean) presents a programming model that
allows the developer to focus on its business purpose. An EJB server is responsible for making the component a
distributed object and for managing services such as transactions, persistence, concurrency, and security. In addition to
defining the bean's business logic, the developer defines the bean's runtime attributes in a way that is similar to
choosing the display properties of visual widgets. The transactional, persistence, and security behaviors of a component
can be defined by choosing from a list of properties. The end result is that EJB makes developing distributed-component
systems that are managed in a robust transactional environment much easier. For developers and corporate IT shops
that have struggled with the complexities of delivering mission-critical, high-performance distributed systems using
CORBA, DCOM, or Java RMI, EJB provides a far simpler and more productive platform on which to base development
efforts.

When Enterprise JavaBeans 1.0 was finalized in 1998, it quickly became a de facto industry standard. Many vendors
announced their support even before the specification was finalized. Since that time, EJB has been enhanced three
times. The specification was updated in 1999, to Version 1.1, and again in 2001, to Version 2.0, which was covered in
the second and third editions of this book. The most recent revision to the specification, Version 2.1, is covered by this,
the fourth edition of Enterprise JavaBeans. This edition also covers EJB 2.0, which is for the most part a subset of the
functionality offered by EJB 2.1.

Products that conform to the EJB standard have come from every sector of the IT industry, including the TP monitor,
CORBA ORB, application server, relational database, object database, and web server industries. Some of these
products are based on proprietary models that have been adapted to EJB; many more wouldn't even exist without EJB.

In short, Enterprise JavaBeans 2.1 and 2.0 provide a standard distributed-component model that greatly simplifies the
development process and allows beans developed and deployed on one vendor's EJB server to be easily deployed on a
different vendor's EJB server. This book will provide you with the foundation you need to develop vendor-independent
EJB solutions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Read This Book?
This book explains and demonstrates the fundamentals of the Enterprise JavaBeans 2.1 and 2.0 programming models.
Although EJB makes distributed computing much simpler, it is still a complex technology that requires a great deal of
time and study to master. This book provides a straightforward, no-nonsense explanation of the underlying technology,
Java classes and interfaces, component model, and runtime behavior of Enterprise JavaBeans. It includes material that
is backward-compatible with EJB 2.0 and provides special notes and chapters when there are significant differences
between 2.1 and 2.0.

Although this book focuses on the fundamentals, it's not a "dummies" book. Enterprise JavaBeans is an extremely
complex and ambitious enterprise technology. While using EJB may be fairly simple, the amount of work required to
understand and master EJB is significant. Before reading this book, you should be fluent in the Java language and have
some practical experience developing business solutions. Experience with distributed object systems is not a must, but
you will need some experience with JDBC (or at least an understanding of the basics) to follow the examples in this
book. If you are unfamiliar with the Java language, I recommend Learning Java by Patrick Niemeyer and Jonathan
Knudsen; this book was formerly Exploring Java (O'Reilly). If you are unfamiliar with JDBC, I recommend Database
Programming with JDBC and Java by George Reese (O'Reilly). If you need a stronger background in distributed
computing, I recommend Java Distributed Computing by Jim Farley (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Organization
This book is organized into two parts: the technical manuscript followed by the JBoss workbook. The technical
manuscript explains what EJB is, how it works, and when to use it. The JBoss workbook provides step-by-step
instructions for installing, configuring, and running the examples from the manuscript on the JBoss 3.0 Application
Server.

Part I: The Technical Manuscript

The technical manuscript is covered in Chapters 1-19 and is about 90% of the content for this book. Chapter 1-Chapter
18 were written by yours truly, Richard Monson-Haefel, while Chapter 19 was written by Keyton Weissenger and Shy
Aberman. Here is a summary of these chapters and their content.

Chapter 1

This chapter defines component transaction monitors and explains how they form the underlying technology of
the Enterprise JavaBeans component model.

Chapter 2

This chapter defines the architecture of the Enterprise JavaBeans component model and examines the
difference between the three basic types of enterprise beans: entity beans, session beans, and message-driven
beans.

Chapter 3

This chapter explains how the EJB-compliant server manages an enterprise bean at runtime.

Chapter 4

This chapter walks the reader through the development of some simple enterprise beans.

Chapter 5

This chapter explains in detail how enterprise beans are accessed and used by remote, local, and web service
client applications.

Chapter 6

This chapter provides an explanation of how to develop basic container-managed entity beans.

Chapter 7

This chapter picks up where Chapter 6 left off, expanding your understanding of container-managed persistence
to complex bean-to-bean relationships.

Chapter 8

This chapter addresses the Enterprise JavaBeans Query Language (EJB QL), which is used to query EJBs and to
locate specific entity beans in EJB 2.1 and 2.0 container-managed persistence.

Chapter 9

This chapter covers the development of bean-managed persistence beans including when to store, load, and
remove data from the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10

This chapter covers the general protocol between an entity bean and its container at runtime and applies to
both container-managed persistence and bean-managed persistence.

Chapter 11

This chapter shows how to develop stateless and stateful session beans.

Chapter 12

This chapter shows how to develop message-driven beans in EJB 2.1 and 2.0.

Chapter 13

This chapter shows how to use the Timer service in EJB 2.1

Chapter 14

This chapter explains Web services standards, XML, SOAP, WSLD, and UDDI.

Chapter 15

This chapter discusses how Web services are supported in EJB using the JAX-RPC API.

Chapter 16

This chapter provides an in-depth explanation of transactions and describes the transactional model defined by
Enterprise JavaBeans.

Chapter 17

This chapter provides an overview of J2EE v1.4 and explains how EJB 2.1 fits into this new platform.

Chapter 18

This chapter provides an in-depth explanation of the XML deployment descriptors used in EJB 2.0 and 2.1.

Chapter 19

This chapter provides some basic design strategies that can simplify your EJB development efforts and make
your EJB system more efficient.

Part II: The JBoss Workbook

The JBoss workbook is an update of the JBoss workbook that was published as a supplement to the third edition of this
book. The JBoss workbook shows how to execute the examples from this book on the JBoss 4.0 Application Server. It's
indispensible to readers who want to code while learning and see the examples from the book run on a real application
server.

The previous edition of this book published the JBoss Workbook as a separate title along with three other workbooks for
J2EE 1.3 SDK, IBM WebSphere and BEA WebLogic. All of the workbooks were critical successes and popular with
readers, but they were not a very big commercial success—you could download them for free—and were difficult to
manage. For this edition, we decided to develop one workbook to reduce expenses. We also decided to bind it with the
rest of the book to make your life easier—you don't have to buy it separately or download it off the Web.

The JBoss workbook is really excellent and I'm proud to include it in this book. It was written by Bill Burke and Sacha
Labourey, two of the people behind JBoss and acknowledged experts in their fields. That said, I want to make it clear to
readers that I'm not endorsing JBoss over other J2EE application servers. The JBoss workbook is included in this edition
for pragmatic reasons:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for pragmatic reasons:

JBoss supported most, if not all, EJB 2.1 features when this book was in the final weeks of development—most
of the other vendors did not.

Bill Burke and Sacha Labourey were willing to commit the time and effort to update their workbook and have it
ready for in time for printing. They are also willing to keep it updated as new JBoss versions come out.

JBoss is free, and in a time when application servers cost tens, if not hundreds of thousands of dollars to
deploy, it's a better choice for developers who are learning how to develop EJB for the first time.

The JBoss workbook shows how to execute examples from most of the chapters in this book—basically any chapter with
at least one significant example is covered by the workbook. You'll want to read the introduction to the workbook to set
up JBoss and configure it for the examples. After that, just go to the workbook chapter that matches the chapter you're
reading. For example, if you are reading Chapter 6 on basic container-managed persistence, use the "Chapter 6
Exercises" section of the workbook to develop and run the examples on JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Software and Versions
This book covers Enterprise JavaBeans Versions 2.1 and 2.0. It uses Java language features from the Java 1.2 platform
including JDBC. Because the focus of this book is on developing vendor-independent Enterprise JavaBeans components
and solutions, I have stayed away from proprietary extensions and vendor-dependent idioms. Any EJB-compliant server
can be used with this book, but you should be familiar with your server's specific installation, deployment, and runtime-
management procedures to work with the examples. A workbook for the JBoss Application Server is included at the end
of this book to help you get started.

EJB 2.1 and 2.0 have a lot in common, but when they differ, chapters or sections within a chapter that are specific to
each version are clearly marked. Feel free to skip version-specific sections that do not concern you. Unless indicated,
the source code in this book has been written for both EJB 2.1 and 2.0.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions
The following typographical conventions are used in this book:

Italic

Used for filenames and pathnames, hostnames, domain names, URLs, and email addresses. Italic is also used
for new terms where they are defined.

Constant width

Used for code examples and fragments, XML elements and tags, and SQL commands, table names, and column
names. Constant width is also used for class, variable, and method names and for Java keywords used within the
text.

Constant width bold

Used for emphasis in some code examples.

Constant width italic

Used to indicate text that is replaceable. For example, in BeanNamePK, you would replace BeanName with a
specific bean name.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

An Enterprise JavaBean consists of many parts; it's not a single object, but a collection of objects and interfaces. To
refer to an enterprise bean as a whole, we use its business name in Roman type, followed by the acronym EJB. For
example, we will refer to the Customer EJB when we want to talk about the enterprise bean in general. If we put the
name in a constant-width font, we are referring explicitly to the bean's remote interface; thus, CustomerRemote is the
remote interface that defines the business methods of the Customer EJB.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional information. You can access this
page at:

http://www.oreilly.com/catalog/entjbeans4/

To comment on or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly Network, see the O'Reilly
web site at:

http://www.oreilly.com

The author maintains a web site for the discussion of EJB and related distributed computing technologies at
http://www.jmiddleware.com. jMiddleware.com provides news about this book as well as code tips, articles, and an
extensive list of links to EJB resources.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
The credit for this book's development and delivery is shared by many individuals. Michael Loukides, my editor, was
pivotal to the success of every edition of this book. Without his experience, craft, and guidance, this book would not
have been possible. I'm also greatful to the co-authors who contributed greatly to the success of this fourth edition. The
JBoss workbook was written by Bill Burke and Sacha Labourey. It's a significant contribution and I'm proud to have
their names on the cover of this book. Keyton Weissenger and Shy Aberman collaborated to produce Chapter 19, which
is an excellent overview of real-world EJB design and performance issues—that chapter is based on hard-earned
experience deploying several EJB production systems.

Many expert technical reviewers helped ensure that the material was technically accurate and true to the spirit of
Enterprise JavaBeans. Of special note are Lance Anderson, Bill Burke, Dave Cronin, James Pinpin, Tom Mars, and Ricky
Yim. They contributed greatly to the technical accuracy of this book and brought a combination of industry and real-
world experience to bear, helping to make this one of the best books on Enterprise JavaBeans published today.

I would also like to thank the folks at TheServerSide.com and everyone in the community who provided valuable
feedback, including (in alphabetical order) Michael Boyd, Ravi Brewster, Patrick De Clercq, Peter Durcansky, Sudheer
Fernades, Vick Fisher, Thomas Foersch, John Guthrie, George Jiang, Markus Knauss, Madhusudhan Konda, Ravi
Kyamala, Lee Yeow Leong, David McCann, Olav Nybo, Sunil Patil, Zheng Ping, Manfred Rosenboom, Viviane Costa Silva,
Simon Spruzen, Bob Stine, Dave Tuke, Ray Yan, Chunshui Yu, and Ping Zheng.

Special thanks also go to Greg Nyberg, Hemant Khandelwal, Kyle Brown, Robert Castaneda, Joe Fialli, Anil Sharma,
Seth White, Evan Ireland, David Chappell (the .NET guy), Jim Farley, Prasad Muppirala, Sriram Srinivasan, Anne
Thomas, Ian McCallion, Tim Rohaly, James D. Frentress, Andrzej Jan Taramina, Marc Loy, Don Weiss, Mike Slinn, and
Kevin Dick. The contributions of these technical experts were critical to the technical and conceptual accuracy of earlier
editions of this book. Others I would like to thank include Maggie Mezquita, Greg Hartzel, John Klug, and Jon Jamsa of
BORN Information, all of whom suffered though the first draft of the first edition so long ago to provide valuable
feedback.

Thanks also to Vlad Matena and Mark Hapner of Sun Microsystems, the primary architects of Enterprise JavaBeans;
Linda DeMichiel, EJB 2.1/2.0 specification lead; and all the other EJB 2.1 expert group members.

Finally, I extend the most sincere gratitude to my wife, Hollie, for supporting and assisting me through the five years of
painstaking research and writing that were required to produce four editions of this book. Without her unfailing support
and love, this book would not have been completed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Part I: Lay of the Land
Chapter 1: Introduction

Chapter 2: Architectural Overview

Chapter 3: Resource Management and the Primary Services

Chapter 4: Developing Your First Enterprise Beans

Chapter 5: The Remote and Local Client View

Chapter 6: CMP: Basic Persistence

Chapter 7: CMP: Entity Relationships

Chapter 8: CMP: EJB QL

Chapter 9: Bean-Managed Persistence

Chapter 10: The Entity-Container Contract

Chapter 11: Session Beans

Chapter 12: Message-Driven Beans

Chapter 13: Timer Service

Chapter 14: EJB 2.1: Web Service Standards

Chapter 15: EJB 2.1 and Web Services

Chapter 16: Transactions

Chapter 17: J2EE

Chapter 18: XML Deployment Descriptors

Chapter 19: EJB Design in the Real World

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introduction
This book is about Enterprise JavaBeans 2.1, the latest version of the Enterprise JavaBeans specification. It also covers
Enterprise JavaBeans 2.0, which is still in widespread use. Just as the Java platform has revolutionized the way we
think about software development, the Enterprise JavaBeans (EJB) specification has revolutionized the way we think
about developing mission-critical enterprise software. It combines server-side components with distributed object
technologies, asynchronous messaging, and web services to greatly simplify the task of application development. It
automatically takes into account many of the requirements of business systems, including security, resource pooling,
persistence, concurrency, and transactional integrity.

This book shows you how to use Enterprise JavaBeans to develop scalable, portable business systems. But before we
can start talking about EJB itself, we'll need a brief introduction to the technologies addressed by EJB, such as
component models, distributed objects, asynchronous messaging, and web services. It's particularly important to have
a basic understanding of component transaction monitors, the technology that lies beneath EJB. In Chapter 2 and
Chapter 3, we'll look at EJB itself and see how enterprise beans are put together. The rest of the book is devoted to
developing enterprise beans for an imaginary business and discussing advanced issues.

It is assumed that you're already familiar with Java; if you're not, Learning Java, by Patrick Niemeyer and Josh Peck
(O'Reilly), is an excellent introduction. This book also assumes that you're conversant in the JDBC API, or at least in
SQL. If you're not familiar with JDBC, see Database Programming with JDBC and Java by George Reese (O'Reilly).

One of Java's most important features is platform independence. Since it was first released, Java has been marketed as
"write once, run anywhere." While the hype has gotten a little heavy-handed at times, code written with Sun's Java
programming language is remarkably platform-independent. Enterprise JavaBeans isn't just platform-independent—it's
also implementation-independent. If you've worked with JDBC, you know a little about what this means. Not only can
the JDBC API run on a Windows machine or on a Unix machine, it can also access relational databases of many different
vendors (DB2, Oracle, MySQL, SQLServer, etc.) by using different JDBC drivers. You don't have to code to a particular
database implementation—just change JDBC drivers, and you change databases.[1] It's the same with EJB. Ideally, an
EJB component—an enterprise bean—can run in any application server that implements the EJB specification.[2] This
means that you can develop and deploy your EJB business system in one server, such as BEA's WebLogic, and later
move it to a different EJB server, such as Pramati, Sybase EAServer, IBM's WebSphere, or an open source project such
as Apache Geronimo, OpenEJB, JOnAS, or JBoss. Implementation independence means that your business components
are not dependent on the brand of server, which gives you many more options before, during, and after development
and deployment.

[1] In some cases, differences in database vendor's support for SQL may require customization of SQL statements
used in development.

[2] Provided that the bean components and EJB servers comply with the specification, and no proprietary
functionality is used in development.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Server-Side Components
Object-oriented languages such as Java, C++, and C# are used to write software that is flexible, extensible, and
reusable—the three axioms of object-oriented development. In business systems, object-oriented languages are used
to improve development of GUIs, to simplify access to data, and to encapsulate the business logic. The encapsulation of
business logic into business objects is a fairly recent focus in the information-technology industry. Business is fluid,
which means that a business's products, processes, and objectives evolve over time. If the software that models the
business can be encapsulated into business objects, it becomes flexible, extensible, and reusable, and therefore evolves
as the business evolves.

A server-side component model may define an architecture for developing distributed business objects that combines
the accessibility of distributed object systems with the fluidity of objectified business logic. Server-side component
models are used on the middle-tier application servers, which manage the components at runtime and make them
available to remote clients. They provide a baseline of functionality that makes it easy to develop distributed business
objects and assemble them into business solutions.

Server-side components can also be used to model other aspects of a business system, such as presentation and
routing. The Java servlet, for example, is a server-side component that is used to generate HTML and XML data for the
presentation layer of a three-tier architecture. EJB 2.1 message-driven beans, which are discussed later in this book,
are server-side components that can be used to consume and process asynchronous messages.

Server-side components, like other components, can be bought and sold as independent pieces of executable software.
They conform to a standard component model and can be executed without direct modification in a server that supports
that component model. Server-side component models often support attribute-based programming, which allows the
runtime behavior of the component to be modified when it is deployed, without having to change the programming code
in the component. Depending on the component model, the server administrator can declare a server-side component's
transactional, security, and even persistence behavior by setting these attributes to specific values.

As an organization's services, products, and operating procedures evolve, server-side components can be reassembled,
modified, and extended so that the business system reflects those changes. Imagine a business system as a collection
of server-side components that model concepts such as customers, products, reservations, and warehouses. Each
component is like a Lego(™) block that can be combined with other components to build a business solution. Products
can be stored in the warehouse or delivered to a customer; a customer can make a reservation or purchase a product.
You can assemble components, take them apart, use them in different combinations, and change their definitions. A
business system based on server-side components is fluid because it is objectified, and it is accessible because the
components can be distributed.

1.1.1 Enterprise JavaBeans Defined

Sun Microsystems' definition of the Enterprise JavaBeans architecture is:

The Enterprise JavaBeans architecture is a component architecture for the development and deployment
of component-based distributed business applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional, and multi-user secure. These applications may be
written once, and then deployed on any server platform that supports the Enterprise JavaBeans
specification.[3]

[3] Sun Microsystems' Enterprise JavaBeans Specification, v2.1, Copyright 2002 by Sun
Microsystems, Inc.

That's a mouthful, but it's not atypical of how Sun defines many of its Java technologies—have you ever read the
definition of the Java language itself? It's about twice as long. This book offers a shorter definition of EJB:

Enterprise JavaBeans is a standard server-side component model for distributed business applications.

This means the EJB offers a standard model for building server-side components that represent both business objects
(customers, items in inventory, and the like) and business processes (purchasing, stocking, and so on). Once you have
built a set of components that fit the requirements of your business, you can combine them to create business
applications. On top of that, as "distributed" components, they don't all have to reside on the same server. Components
can reside wherever it's most convenient: a Customer component can "live" near the Customer database, a Part
component can live near the inventory database, and a Purchase business-process component can live near the user
interface. You can do whatever's necessary for minimizing latency, sharing the processing load, or maximizing
reliability.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 Distributed Object Architectures
To understand EJB, you need to understand how distributed objects work. Distributed object systems are the foundation
for modern three-tier architectures. In a three-tier architecture, as shown in Figure 1-1, the presentation logic resides
on the client (first tier), the business logic resides on the middle tier (second tier), and other resources, such as the
database, reside on the backend (third tier).

Figure 1-1. Three-tier architecture

All distributed object protocols are built on the same basic architecture, which is designed to make an object on one
computer look like it's residing on a different computer. Distributed object architectures are based on a network
communication layer that is really very simple. Essentially, there are three parts to this architecture: the business
object, the skeleton, and the stub.

The business object resides on the middle tier. It's an instance of an object that models the state and business logic of
some real-world concept, such as a person, order, or account. Every business object class has matching stub and
skeleton classes built specifically for that type of business object. For example, a distributed business object called
Person would have matching Person_Stub and Person_Skeleton classes. As shown in Figure 1-2, the business object and
skeleton reside on the middle tier, and the stub resides on the client.

The stub and the skeleton are responsible for making the business object on the middle tier look as if it is running
locally on the client machine. This is accomplished through some kind of remote method invocation (RMI) protocol. An
RMI protocol is used to communicate method invocations over a network. CORBA, Java RMI, and Microsoft .NET all use
their own RMI protocols.[4] Every instance of the business object on the middle tier is wrapped by an instance of its
matching skeleton class. The skeleton is set up on a port and IP address and listens for requests from the stub, which
resides on the client machine and is connected via the network to the skeleton. The stub acts as the business object's
surrogate on the client and is responsible for communicating requests from the client to the business object through the
skeleton. Figure 1-2 illustrates the process of communicating a method invocation from the client to the server object
and back. The stub and the skeleton hide the communication specifics of the RMI protocol from the client and the
implementation class, respectively.

[4] The acronym "RMI" isn't specific to Java RMI. This section uses the term RMI to describe distributed object
protocols in general. Java RMI is the Java language version of a distributed object protocol.

Figure 1-2. RMI loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2. RMI loop

The business object implements a public interface that declares its business methods. The stub implements the same
interface as the business object, but the stub's methods do not contain business logic. Instead, the business methods
on the stub implement whatever networking operations are required to forward the request to the business object and
receive the results. When a client invokes a business method on the stub, the request is communicated over the
network by streaming the name of the method invoked, and the values passed in as parameters, to the skeleton. When
the skeleton receives the incoming stream, it parses the stream to discover which method is requested, then invokes
the corresponding business method on the business object. Any value that is returned from the method invoked on the
business object is streamed back to the stub by the skeleton. The stub then returns the value to the client application
as if it had processed the business logic locally.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Component Models
The term "component model" has many different interpretations. Enterprise JavaBeans specifies a server-side
component model. Using a set of classes and interfaces from the javax.ejb package, developers can create, assemble,
and deploy components that conform to the EJB specification.

The original JavaBeans is also a component model, but it's not a server-side component model like EJB. Other than
sharing the name "JavaBeans," these two component models are completely unrelated. In the past, a lot of the
literature referred to EJB as an extension of the original JavaBeans, but this is a misrepresentation. The two APIs serve
very different purposes, and EJB does not extend or use the original JavaBeans component model.

JavaBeans is intended to be used for intraprocess purposes, while EJB is designed for interprocess components. In
other words, the original JavaBeans was not intended for distributed components. JavaBeans can be used to solve a
variety of problems, but it is primarily used to build clients by assembling visual (GUI) and nonvisual widgets. It's an
excellent component model, possibly the best one ever devised for intraprocess development, but it's not a server-side
component model. EJB, on the other hand, is explicitly designed to address issues involved with managing distributed
business objects in a three-tier architecture.

Given that JavaBeans and Enterprise JavaBeans are completely different, why are they both called component models?
In this context, a component model defines a set of contracts between the component developer and the system that
hosts the component. The contracts express how a component should be developed and packaged. Once a component
is defined, it becomes an independent piece of software that can be distributed and used in other applications. A
component is developed for a specific purpose but not a specific application. In the original JavaBeans, a component
might be a push button or a spreadsheet that can be used in any GUI application according to the rules specified in the
original JavaBeans component model. In EJB, there are several different types of components: components that
represent entities in a database (entity beans) have a slightly different contract with their container than components
that represent business processes (session beans). For example, a component might be a Customer business object,
represented by an entity bean, that can be deployed in any EJB server and used to develop any business application
that needs a customer business object. Another type of component might be a MakePurchase object, represented by a
session bean, that models what happens when a customer buys a particular product. (Although the act of making a
purchase isn't itself represented in a database, a purchase involves a complex interaction between a customer, a sales
person, inventory, accounts receivable, and possibly other entities.) The MakePurchase object has a different contract
with its container than the Customer object, but it too can still be deployed in any EJB server and used in any business
application that needs to support purchases. A third type of EJB, the MessageDrivenBean, has a slightly different
contract with its container—but it, too, can be deployed in any EJB server.

1.3.1 Competing Component Models: Microsoft's .NET Framework

Enterprise JavaBeans did not appear out of nowhere; it is one of a number of component transaction monitors (CTMs),
which in turn have their origin in older transaction processing monitors (like Tuxedo) and Object Request Brokers.
However, the most important competition for EJB is Microsoft's .NET framework. .NET has its origins in the Microsoft
Transaction Server (MTS), which was arguably the first commercially available CTM. MTS was later renamed COM+.
Microsoft's COM+ is based on the Component Object Model (COM), originally designed for use on the desktop but
eventually pressed into service as a server-side component model. For distributed access, COM+ clients use the
Distributed Component Object Model (DCOM).

When MTS was introduced in 1996, it was an exciting development because it provided a comprehensive environment
for business objects. With MTS, application developers could write COM components without worrying about system-
level concerns. Once a business object was designed to conform to the COM model, MTS (and now COM+) took care of
everything else, including transaction management, concurrency, and resource management.

Since then, COM+ has become part of Microsoft's .NET Framework. The core functionality provided by COM+ services
remains essentially the same in .NET, but the way it appears to a developer has changed significantly. Rather than
writing components as COM objects, .NET Framework developers build applications as managed objects. All managed
objects, and in fact all code written for the .NET Framework, depends on a Common Language Runtime (CLR). For Java-
oriented developers, the CLR is much like a Java virtual machine (VM), and a managed object is analogous to an
instance of a Java class; i.e., to a Java object.

The .NET Framework provides first-class support for web services via the SOAP (Simple Object Access Protocol)
protocol, which enables business components in the .NET world to communicate with applications on any other platform
written in any language. This can potentially make business components in .NET universally accessible, a feature that is
not easily dismissed. In fact, .NET was the impetus that motivated Sun Microsystems to extend EJB and the rest of the
J2EE platform to support web services. Microsoft's .NET platform represents the greatest threat to the dominance of the
Java platform since the Java programming language was introduced in 1995.

Although the .NET Framework provides many interesting features, it falls short as an open standard. The COM+
services in the .NET Framework are Microsoft's proprietary CTM, which means that using this technology binds you to
the Microsoft platform. If your company plans to deploy server-side components on a non-Microsoft platform, .NET is
not a viable solution. In addition, the COM+ services in the .NET Framework are focused on stateless components;
there's no built-in support for persistent transactional objects. Although stateless components can offer higher
performance, business systems need the kind of flexibility offered by CTMs, which include stateful and persistent
components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

components.

1.3.2 Benefits of a Standard Server-Side Component Model

What does it mean to be a standard server-side component model? Quite simply, it means that you can develop
business objects using the Enterprise JavaBeans component model and expect them to work in any application server
that supports the complete EJB specification. This is a pretty powerful statement, because it largely eliminates the
biggest problem faced by potential customers of Microsoft .NET products: fear of vendor "lock-in." With a standard
server-side component model, customers can commit to using an EJB-compliant application server with the knowledge
that they can migrate to a better server if one becomes available. Obviously, care must be taken when using
proprietary extensions developed by vendors, but this is nothing new. Even in the relational database industry—which
has been using the SQL standard for a couple of decades—optional proprietary extensions abound.

Having a standard server-side component model has benefits beyond implementation independence. A standard
component model provides a vehicle for growth in the third-party products. If numerous vendors support EJB, creating
add-on products and component libraries is more attractive to software vendors. The IT industry has seen this type of
cottage industry grow up around other standards, such as SQL; hundreds of add-on products can now be purchased to
enhance business systems with data that is stored in SQL-compliant relational databases. Report-generating tools and
data-warehouse products are typical examples. The GUI component industry has also seen the growth of its own third-
party products. A healthy market for component libraries already exists for GUI component models such as Sun's
original JavaBeans component model.

Many third-party products for Enterprise JavaBeans exist today. Add-on products for credit-card processing, legacy
database access, and other business services have been introduced for various EJB-compliant systems. These types of
products make development of EJB systems simpler and faster than the alternatives, making the EJB component model
attractive to corporate IT and server vendors alike. The market for prepackaged EJB components is growing in several
domains, including sales, finance, education, web-content management, collaboration, and other areas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Asynchronous Messaging
In addition to supporting RMI-based distributed business objects, Enterprise JavaBeans supports asynchronous
messaging. An asynchronous messaging system allows two or more applications to exchange information in the form of
messages. A message, in this case, is a self-contained package of business data and network routing headers. The
business data contained in a message can be anything—depending on the business scenario—and usually contains
information about some business transaction. In enterprise systems, messages inform an application of some event or
occurrence in another system.

Asynchronous messages may be transmitted from one application to another on a network using message-oriented
middleware (MOM). MOM products ensure that messages are properly distributed among applications. In addition, MOM
usually provides fault-tolerance, load-balancing, scalability, and transactional support for enterprises that need to
reliably exchange large quantities of messages. MOM vendors use different message formats and network protocols for
exchanging messages, but the basic semantics are the same. An API is used to create a message, give it a payload
(application data), assign it routing information, and then send the message. The same API is used to receive messages
produced by other applications.

In modern enterprise-messaging systems, applications exchange messages through virtual channels called destinations.
When you send a message, it's addressed to a destination, not to a specific application. Any application that subscribes
or registers an interest in that destination may receive that message. In this way, the applications that receive
messages and those that send messages are decoupled. Senders and receivers are not bound to each other in any way
and may send and receive messages as they see fit.

Enterprise JavaBeans integrates the functionality of MOM into its component model. This integration extends the EJB
platform so that it supports both RMI and asynchronous messaging. EJB 2.0 and 2.1 support asynchronous messaging
through the Java Message Service (JMS) and a new component called the message-driven bean. In addition to JMS,
message-driven beans in EJB 2.1 can support other synchronous and asynchronous messaging systems.

1.4.1 Java Message Service

Each MOM vendor implements its own networking protocols, routing, and administration facilities, but the basic
semantics of the developer API provided by different MOMs are the same. It's this similarity in APIs that makes the Java
Message Service (JMS) possible.

JMS is a vendor-agnostic Java API that can be used with many different MOM vendors. JMS is very similar to JDBC in
that an application developer can reuse the same API to access many different systems. If a vendor provides a
compliant service provider for JMS, the JMS API can be used to send messages to and receive messages from that
vendor. For example, you can use the same JMS API to send messages with Progress's SonicMQ as with IBM's
MQSeries.

1.4.2 Message-Driven Beans and J2eeCA 1.5

Enterprise JavaBeans 2.0 introduced a new kind of component, called a message-driven bean, which is a kind of
standard JMS bean. It can receive and send asynchronous JMS messages, and can easily interact with other EJBs.

EJB 2.1 extends the programming model of the message-driven bean beyond JMS to any messaging system. While
vendors must continue to support JMS-based message-driven beans (JMS-MDBs), other types of messaging systems
are also allowed. It's likely that vendors will develop new message-driven bean types to support all kinds of protocols,
including SMTP for email, SNMP for device control, peer-to-peer protocols (e.g., BEEP and Jabber) and many other open
and proprietary messaging systems. In addition, the message-driven bean has become an elegant option for serving
connections to legacy transaction processing systems like CICS, IMS, openUTM, and others.

The expansion of message-driven beans in EJB 2.1 to other protocols is made possible by the new J2EE Connector
Architecture (J2eeCA 1.5), which defines a portable programming model for interfacing with enterprise information
systems. The use of J2eeCA in J2EE is analogous to the use of USB in computer hardware. A computer that supports
USB can interface with just about any USB-compliant device. Similarly, an EJB 2.1 container that supports J2eeCA 1.5
can interface with any J2eeCA 1.5-compliant resource. For example, if XYZ Vendor creates a new message-driven bean
component for their proprietary messaging system based on J2eeCA 1.5, that component will be portable across all EJB
2.1-compliant servers. Figure 1-3 illustrates how a J2eeCA for a messaging system integrates with EJB 2.1.

Figure 1-3. EJB 2.1 message-driven beans and J2eeCA 1.5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. EJB 2.1 message-driven beans and J2eeCA 1.5

Message-driven beans in EJB 2.1 and 2.0 allow other applications to send messages that can be captured and
processed by the EJB application. This feature allows EJB applications to better integrate with legacy and other
proprietary systems.

1.4.3 Web Services

Web services represent the latest wave in distributed computing, and perhaps the most important innovation since the
introduction of Java in 1995 and XML in 1998. Although the term "web services" is bandied about quite a bit, arriving at
a concrete definition is difficult because web services is, at the highest level, not specific to any particular technology or
platform. It's often defined in fairly abstract terms like "a substrate for building distributed applications using software
running on different operating systems and devices"[5] or "self-contained, self-describing, modular applications that can
be published, located, and invoked across the Web."[6] Of course, these quotes are taken out of context, but that's the
essential point: you need some kind of context to define web services. Here's my definition of web services that has
meaning in the context of J2EE, EJB, .NET, and most other web services platforms:

[5] Tim Ewald, "The Web Services Idea," July 12, 2002, Microsoft.com
(http://msdn.microsoft.com/webservices/understanding/readme/default.asp).

[6] Doug Tidwell, "Web services—the Web's next revolution," November 29, 2000, IBM.com (http://www-
105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-
bytitle/BA84142372686CFB862569A400601C18?OpenDocument).

Web services are network applications that use SOAP and WSDL to exchange information in the form of
XML documents.

To understand this definition, you need to understand SOAP and WSDL. Here are brief definitions of these terms.

SOAP 1.1

SOAP (Simple Object Access Protocol) is an XML grammar developed by Microsoft, IBM, and others, that is
currently under the auspices of the W3C. It's an application protocol used in both RPC and asynchronous
messaging. SOAP is very flexible and extensible and, unlike its predecessors (DCE RPC, CORBA IIOP, Java RMI-
JRMP, and DCOM), it's been endorsed and adopted by just about every major vendor. (If you're not familiar
with XML, see Java and XML by Brett McLaughlin (O'Reilly) or XML in a Nutshell by Elliotte Rusty Harold
(O'Reilly).

WSDL 1.1

The Web Service Description Language (WSDL) is another XML grammar, developed by Microsoft and IBM
under the auspices of the W3C. It is an XML-based IDL (Interface Definition Language) that can be used to
describe web services, including the kind of message format expected, the Internet protocol used, and the
Internet address of the web service.

Web services are truly platform-independent. Although Java RMI and CORBA IIOP also claim to be platform-
independent, in fact these older technologies require their own platforms. To use Java RMI, you need a Java virtual
machine and the Java programming language; a program written in Visual Basic or C++ can't interact with a Java
program using RMI. CORBA IIOP is also restrictive, because the IIOP protocol usually requires an elaborate
infrastructure like a CORBA ORB, which limits developers to those few vendors that support CORBA, or to the Java
environment (which includes built-in support for CORBA IIOP).

Web services, on the other hand, are not tied to a specific platform like the JVM or to a technology infrastructure like
CORBA because they focus on the protocols used to exchange messages—SOAP and WSDL—not the implementation
that supports those protocols. In other words, you can build web services on any platform, using any programming
language any way you please.

EJB 2.1 allows enterprise beans to be exposed as web services, so that their methods can be invoked by other J2EE
applications as well as applications written in other programming languages on a variety of platforms. Web services in
EJB 2.1 supports both RPC-style and document-style messaging. Support for web services is based on a new web
service API: JAX-RPC. Web services and the use of JAX-RPC is covered in detail in Chapter 14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

service API: JAX-RPC. Web services and the use of JAX-RPC is covered in detail in Chapter 14.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 Titan Cruises: An Imaginary Business
To make things a easier and more fun, we discuss all the concepts in this book in the context of an imaginary business,
a cruise line called Titan. A cruise line makes a particularly interesting example because it incorporates several different
businesses: it has ship cabins that are similar to hotel rooms; it serves meals like a restaurant; it offers various
recreational opportunities; and it needs to interact with other travel businesses.

This type of business is a good candidate for a distributed object system because many of the system's users are
geographically dispersed. Commercial travel agents, for example, who need to book passage on Titan ships need to
access the reservation system. Supporting many—possibly hundreds—of travel agents requires a robust transactional
system to ensure agents have access and reservations are completed properly.

Throughout this book, we will build a fairly simple slice of Titan's EJB system that focuses on the process of making a
reservation for a cruise. This exercise will give us an opportunity to develop Ship, Cabin, TravelAgent, ProcessPayment,
and other enterprise beans. In the process, you will need to create relational database tables for persisting data used in
the example. It is assumed that you are familiar with relational database management systems and that you can create
tables according to the SQL statements provided. EJB can be used with any kind of database or legacy application, but
the relational database is most commonly understood database technology, so I have chosen this as the persistence
layer.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6 What's Next?
To develop business objects using EJB, you have to understand the life cycles and architecture of EJB components. This
means understanding the concepts of how EJB's components are managed and made available as distributed objects.
Developing an understanding of the EJB architecture is the focus of the next two chapters.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Architectural Overview
In order to use Enterprise JavaBeans effectively, you need to understand the EJB architecture. This chapter explores
the core of the EJB architecture: how enterprise beans are distributed as business objects. Chapter 3 explores the
services and resource-management techniques supported by EJB.

In order to be truly versatile, the EJB component design had to be smart. For application developers, assembling
enterprise beans requires little or no expertise in the complex system-level issues that often plague three-tier
development efforts. While EJB makes the process easier for application developers, it also provides EJB server
developers with a great deal of flexibility in how they support the EJB specification.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 The Enterprise Bean Component
Enterprise JavaBeans server-side components come in three fundamentally different types: entity, session, and
message-driven beans. Both session and entity beans are RMI-based server-side components that are accessed using
distributed object protocols. Message-driven beans process messages from non-RMI systems like Java Message Service,
legacy systems, and web services. All EJB servers must at least support a JMS-based message driven bean, but they
may also support other types of message-driven bean.

A good rule of thumb is that entity beans model business concepts that can be expressed as nouns. For example, an
entity bean might represent a customer, a piece of equipment, an item in inventory, or even a place. In other words,
entity beans model real-world objects; these objects are usually persistent records in some kind of database. Our
hypothetical cruise line will need entity beans that represent cabins, customers, ships, etc.

Session beans are extensions of the client application that manage processes or tasks. A Ship bean provides methods
for doing things directly to a ship, but doesn't say anything about the context under which those actions are taken.
Booking passengers on the ship requires that we use a Ship bean, but it also requires a lot of things that have nothing
to do with the ship itself: we'll need to know about passengers, ticket rates, schedules, and so on. A session bean is
responsible for this kind of coordination. Session beans tend to manage particular kinds of activities, such as the act of
making a reservation. They have a lot to do with the relationships between different entity beans. A TravelAgent
session bean, for example, might make use of a Cruise, a Cabin, and a Customer—all entity beans—to make a
reservation.

Similarly, message-driven beans coordinate tasks involving other session and entity beans. Message-driven beans and
session beans differ primarily in how they are accessed. While a session bean provides a remote interface that defines
which methods can be invoked, a message-driven bean subscribes to or listens for messages. It responds by processing
the message and managing the actions that other beans take. For example, a ReservationProcessor message-driven
bean would receive asynchronous messages—perhaps from a legacy reservation system—from which it would
coordinate the interactions of the Cruise, Cabin, and Customer beans to make a reservation.

The activity that a session or message-driven bean represents is fundamentally transient: you start making a
reservation, you do a bunch of work, and then it's finished. The session and message-driven beans do not represent
things in the database. Obviously, session and message-driven beans have lots of side effects on the database; in the
process of making a reservation, you might create a new Reservation by assigning a Customer to a particular Cabin on
a particular Ship. All of these changes would be reflected in the database by actions on the respective entity beans.
Session and message-driven beans like TravelAgent and ReservationProcessor, which are responsible for making a
reservation on a cruise, can even access a database directly and perform reads, updates, and deletes to data. But
there's no TravelAgent or ReservationProcessor record in the database—once the bean has made the reservation, it
waits to process another.

What makes the distinction between the different types of beans difficult to understand is that it's extremely flexible.
The relevant distinction for Enterprise JavaBeans is that an entity bean has persistent state; session and message-
driven beans model interactions but do not have persistent state.

2.1.1 Classes and Interfaces

A good way to understand the design of enterprise beans is to look at how you'd go about implementing one. To
implement entity and session enterprise beans, you need to define the component interfaces,[1] a bean class, and a
primary key:

[1] There are basically three kinds of component interfaces: remote, local, and endpoint. The remote and local
interfaces are supported by both EJB 2.1 and 2.0, while the endpoint component interface is new in EJB 2.1 and is
not supported by EJB 2.0.

Remote interface

The remote interface defines the bean's business methods which can be accessed from applications outside the
EJB container: the business methods a bean presents to the outside world to do its work. The remote interface
extends javax.ejb.EJBObject, which in turn extends java.rmi.Remote. It is used by session and entity beans in
conjunction with the remote home interface.

Remote home interface

The home interface defines the bean's life-cycle methods which can be accessed from applications outside the
EJB container: the life-cycle methods for creating new beans, removing beans, and finding beans. The home
interface extends javax.ejb.EJBHome, which in turn extends java.rmi.Remote. It is used by session and entity beans
in conjunction with the remote interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in conjunction with the remote interface.

Local interface

The local interface for an enterprise bean defines business methods that can be used by other beans in the
same EJB container: the business methods a bean presents to other beans running in the same JVM. It allows
beans to interact without the overhead of a distributed object protocol, which improves their performance. The
local interface extends javax.ejb.EJBLocalObject. It is used by session and entity beans in conjunction with the
local home interface.

Local home interface

The local home interface defines life-cycle methods that can be used by other beans in the same EJB container;
that is, the life-cycle methods a bean presents to other beans running in the same JVM. It allows beans to
interact without the overhead of a distributed object protocol, which improves their performance. The local
home interface extends javax.ejb.EJBLocalHome. It is used by session and entity beans in conjunction with the
local interface.

Endpoint interface

The endpoint interface defines business methods that can be accessed from applications outside the EJB
container via SOAP. The endpoint interface is based on JAX-RPC (Java API for XML-RPC) and is designed to
adhere to the SOAP and WSDL standards. The endpoint interface extends java.rmi.Remote. It can be used only by
stateless session beans. There is no home interface associated with the endpoint interface.

Message interface

Message-driven beans implement the message interface, which defines the methods by which messaging
systems, such as Java Message Service, can deliver messages to the bean.

Bean class

The session and entity bean classes implement the bean's business and life-cycle methods. Note that the bean
class usually does not implement the remote or local component interfaces, but it may implement the endpoint
interface. However, the bean class must have methods matching the signatures of the methods defined in the
remote, local, and endpoint interfaces, and must have methods corresponding to some of the methods in both
the remote and local home interfaces. If this sounds perfectly confusing, it is. In addition, an entity bean must
implement javax.ejb.EntityBean; a session bean must implement javax.ejb.SessionBean. The EntityBean and
SessionBean extend javax.ejb.EnterpriseBean.

A message-driven bean implements one or more message delivery methods (e.g., onMessage()) defined in a
message interface. The container calls these methods when a new messages arrives. The message-driven bean
class must also implement javax.ejb.MessageDrivenBean. EJB 2.1 and 2.0 containers must support JMS-based
message-driven beans, which implement the javax.jms.MessageListener interface. EJB 2.1 also supports message-
driven beans that process messages from other types of messaging systems with their own message interfaces.
The MessageDrivenBean, like the EntityBean and the SessionBean, extends the javax.ejb.EnterpriseBean interface.

Primary key

The primary key is a class that provides a pointer into the database. Only entity beans need a primary key. The
principal requirement for this class is that it implements java.io.Serializable.

Local interfaces provide a way for beans in the same container to interact efficiently. Calls to methods in the local
interface don't involve RMI; the methods in the local interfaces don't need to declare that they throw RemoteException,
and so on. An enterprise bean isn't required to provide a local interface if you know when you're developing the bean
that it will interact only with remote or Web service clients. Likewise, an enterprise bean doesn't need to provide a
remote or an endpoint interface if you know it will be called only by enterprise beans in the same container. You can
provide any combination of local, remote, and endpoint interfaces.

The complexity comes about because enterprise beans exist in the middle—between some kind of client software and
some kind of database. The client never interacts with a bean class directly; it always uses the methods of the entity or
session bean's component interfaces to do its work, interacting with stubs that are generated automatically. (For that
matter, a bean that needs the services of another bean is just another client: it uses the same stubs, rather than
interacting with the bean class directly.) Although the local and local home interfaces do not involve RMI, they still
represent a stub or a proxy to the bean class. While there is no network, the stubs allow the container to monitor the
interactions between beans and to apply security and transactions as appropriate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interactions between beans and to apply security and transactions as appropriate.

It's important to note that message-driven beans don't support remote, local, or endpoint component interfaces, but
they may become the client of other session or entity beans and interact with those beans through their component
interfaces. The entity and session beans with which the message-driven bean interact may be located in the same
container, in which case the message-driven bean uses their local component interfaces, or they may be located in a
different address space and EJB container, in which case the remote or endpoint component interfaces are used.

There are also many interactions between an enterprise bean and its container (Many people use the terms "container"
and "server" interchangeably, which is understandable because the difference between the terms isn't clearly defined.)
The container is responsible for creating new instances of beans, making sure they are stored properly by the server,
and so on. Tools provided by the container's vendor do a tremendous amount of work behind the scenes. At least one
tool takes care of creating the mapping between entity beans and records in the database. Other tools generate code
based on the component interfaces and the bean class itself. The code generated does things like create the bean, store
it in the database, and so on.

2.1.1.1 Naming conventions

Before going on, let's establish some conventions. When we speak about an enterprise bean as a whole—its component
interfaces, bean class, and so forth—we will call it by its common business name, followed by EJB. For example, an
enterprise bean that is developed to model a cabin on a ship will be called the Cabin EJB. Notice that we don't use a
constant-width font for "Cabin," because we are referring to all the parts of the bean (the component interfaces, bean
class, etc.) as a whole, not just to one particular part, such as the remote interface or bean class. The term enterprise
bean or bean denotes any kind of bean, including entity, session, and message-driven beans. Entity bean denotes an
entity-type enterprise bean; session bean denotes a session-type enterprise bean; and message-driven bean denotes a
message driven-type enterprise bean. The acronym MDB is frequently used in place of the term "message-driven
bean."

We also use suffixes to distinguish between local, remote, and endpoint component interfaces. When we are talking
about the remote interface of the Cabin EJB, we will combine the common business name with the word Remote. For
example, the remote interface for the Cabin EJB is called the CabinRemote interface. The local interface of the Cabin EJB
would be the CabinLocal interface. The endpoint interface for the Cabin EJB-based web service would be CabinWS (WS
stands for Web Service). The home interfaces add the word Home to the mix. The remote and local home interfaces for
the Cabin EJB would be CabinHomeRemote and CabinHomeLocal, respectively.[2] The bean class is always the common
business name, followed by the word Bean. For example, the Cabin EJB's bean class would be named CabinBean.

[2] The endpoint interface does not have a corresponding home interface.

These naming conventions are used for clarity; they are not prescriptive or even recommended for use in production.
Once you understand the differences between the component interfaces and the different types of beans, you can use
any naming strategy you wish.

2.1.1.2 The remote interface

Having introduced the machinery, let's look at how to build an entity bean with remote component interfaces. In this
section, we examine the Cabin EJB, an entity bean that models a cabin on a cruise ship. Let's start with its remote
interface.

We'll define the remote interface for a Cabin bean using the CabinRemote interface, which defines business methods for
working with cabins. All remote interface types extend the javax.ejb.EJBObject interface:

import java.rmi.RemoteException;

public interface CabinRemote extends javax.ejb.EJBObject {

 public String getName() throws RemoteException;

 public void setName(String str) throws RemoteException;

 public int getDeckLevel() throws RemoteException;

 public void setDeckLevel(int level) throws RemoteException;

}

These are methods for naming the cabin and setting the cabin's deck level; you can probably imagine lots of other
methods that you'd need, but this is enough to get started. All of these methods declare that they throw
RemoteException, which is required of all methods on remote component interfaces. EJB requires the use of Java RMI-
IIOP conventions with remote component interfaces, although the underlying protocol can be CORBA IIOP, Java Remote
Method Protocol (JRMP), or some other protocol. Java RMI-IIOP will be discussed in more detail in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method Protocol (JRMP), or some other protocol. Java RMI-IIOP will be discussed in more detail in the next chapter.

2.1.1.3 The remote home interface

The remote home interface defines life-cycle methods used by clients of entity and session beans for locating enterprise
beans. The remote home interface extends javax.ejb.EJBHome. We'll call the home interface for the Cabin bean
CabinHomeRemote, and define it like this:

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer pk)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

}

The create() method is responsible for initializing an instance of our bean. If your application needs them, you can
provide other create() methods with different arguments. For example, you could provide a create() method that
initializes the cabin's deck and name.

The findByPrimaryKey() method, with a single argument, is required, and allows you to look up a particular Cabin given
its primary key. You are free to define other methods that provide convenient ways to look up Cabin beans—for
example, you might want to define a method called findByShip() that returns all the cabins on a particular ship. Find
methods like these are used in entity beans but not in session or message-driven beans.

2.1.1.4 The bean class

Now let's look at an actual entity bean. Here's the code for the CabinBean; it's a sparse implementation, but it shows
how the pieces fit together:

import javax.ejb.EntityContext;

public abstract class CabinBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer pk){

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer pk){

 // do nothing

 }

 public abstract String getName();

 public abstract void setName(String str);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract void setName(String str);

 public abstract int getDeckLevel();

 public abstract void setDeckLevel(int level);

 public abstract Integer getId();

 public abstract void setId(Integer pk);

 public void setEntityContext(EntityContext ctx){

 // empty implementation

 }

 public void unsetEntityContext(){

 // empty implementation

 }

 public void ejbActivate(){

 // empty implementation

 }

 public void ejbPassivate(){

 // empty implementation

 }

 public void ejbLoad(){

 // empty implementation

 }

 public void ejbStore(){

 // empty implementation

 }

 public void ejbRemove(){

 // empty implementation

 }

}

Notice that the CabinBean class is abstract, as are several of the methods that access or update the bean's persistent
state. Also notice that there are no instance fields to hold the state information these methods access. The abstract
methods (and the missing fields) are implemented by the container system automatically. Container-managed entity
beans are the only beans that are declared as abstract with abstract accessor methods. You won't see abstract classes
and methods in session or message-driven beans.

The set and get methods for the cabin's name and deck level are the CabinBean's business methods; they match the
business methods defined by the EJB's remote interface, CabinRemote. The business methods are the only methods
visible to the client application; the other methods are visible only to the EJB container or the bean class itself. For
example, the setId()and getId() methods are defined in the bean class but not in the remote interface, which means
they cannot be called by the entity bean's client. The other methods are required by the EJB component model and are
not part of the bean class's public business definition.

The ejbCreate() and ejbPostCreate() methods initialize the instance of the bean class when a new cabin record is ready to
be added to the database. The last seven methods in the CabinBean are defined in the javax.ejb.EntityBean interface.
These methods are life-cycle callback methods. The EJB container invokes these callback methods on the bean class
when important life-cycle events occur. The ejbRemove() method, for example, notifies an entity bean that its data is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when important life-cycle events occur. The ejbRemove() method, for example, notifies an entity bean that its data is
about to be deleted from the database. The ejbLoad() and ejbStore() methods notify the bean instance that its state is
being read or written to the database. The ejbActivate() and ejbPassivate() methods notify the bean instance that it is
about to be activated or deactivated, a process that conserves memory and other resources. setEntityContext() enables
the EJB container to give the bean information about itself and its surroundings. unsetEntityContext() is called by the EJB
container to notify the bean instance that it is about to be dereferenced for garbage collection.

All these callback methods provide the bean class with notifications when an action is about to be taken, or was just
taken, on the bean's behalf by the EJB server. These notifications simply inform the bean of an event; the bean doesn't
have to do anything about it. The callback notifications tell the bean where it is during its lifecycle, when it is about to
be loaded, removed, deactivated, and so on. Because the callback methods are defined in the javax.ejb.EntityBean
interface, the entity bean class must implement them, but it isn't required to do anything meaningful with the methods
if it doesn't need to. Our bean, the CabinBean, won't need to do anything when these callback methods are invoked, so
these methods are empty implementations. Details about these callback methods, when they are called, and how a
bean should react to them are covered in Chapter 10.

2.1.1.5 The primary key

The primary key is a pointer that helps locate data that describes a unique record or entity in the database; it is used in
the findByPrimaryKey() method of the home interface to locate a specific entity. Primary keys are defined by the bean
developer and must be some type of serializable object. The Cabin EJB uses a simple java.lang.Integer type as its primary
key. It's also possible to define custom primary keys, called compound primary keys, which represent complex primary
keys consisting of several different fields. Primary keys are covered in detail in Chapter 10.

2.1.1.6 What about session beans?

CabinBean is an entity bean, but a session bean wouldn't be all that different. It would extend SessionBean instead of
EntityBean and would have an ejbCreate() method that would initialize the bean's state, but no ejbPostCreate(). Session
beans do not have ejbLoad() or ejbStore() methods, because session beans are not persistent. While session beans have
a setSessionContext() method, they do not have an unsetSessionContext() method. Session beans have ejbActivate() and
ejbPassivate() methods, which are used by stateful session beans to manage conversational state. Finally, session beans
provide an ejbRemove() method, which notifies the bean that the client no longer needs it. However, this method
doesn't tell the bean that its data is about to be removed from the database, because a session bean doesn't represent
data.

Session beans don't have a primary key. That's because session beans are not persistent themselves, so there is no
need for a key that maps to the database. Session beans are covered in detail in Chapter 11.

2.1.1.7 What about message-driven beans?

Message-driven beans (MDBs) implement a message interface; they don't implement remote, local, endpoint, or home
interfaces. The message-driven bean defines a few callback methods and one or more message delivery methods. The
callback methods include the ejbCreate() method, which is called when the bean class is first created; the ejbRemove()
method, called when the bean instance is about to be discarded from the system (usually when the container doesn't
need it any longer); and the setMessageDrivenContext() method. The kind of message delivery methods implemented by
the MDB depend on the type of messaging service it supports. For example, a JMS-based MDB, which all EJB containers
must support, must implement the onMessage() method, which is called every time a new asynchronous JMS message is
delivered. The message-driven bean doesn't define the ejbPassivate(), ejbActivate(), ejbLoad(), or ejbStore() methods
because it doesn't need them.

Message-driven beans don't have a primary key, for the same reason that session beans don't. They are not persistent,
so there is no need for a key to the database. Message-driven beans are covered in detail in Chapter 12.

2.1.2 Deployment Descriptors and JAR Files

The interfaces and classes we have discussed don't address how beans are managed at runtime. We didn't talk about
how beans interact with security, transactions, naming, and other services common to distributed object systems.
These types of primary services are handled automatically by the EJB container, but that prompts the question, "How
does the EJB container know how to handle security, transactions, and so on?" The EJB container gets this kind of
runtime information from deployment descriptors.

Deployment descriptors allow us to customize an EJB's runtime behavior without having to change the software itself.
Deployment descriptors are also similar to the property sheets used in Visual Basic and PowerBuilder. Where property
sheets allow us to describe the runtime attributes of visual widgets (background color, font size, etc.), deployment
descriptors allow us to describe runtime attributes of server-side components (security, transactional context, etc.).

When a bean class and its interfaces have been defined, a deployment descriptor for the bean is created and populated
with data about the bean. Integrated development environments (IDEs) that support development of Enterprise
JavaBeans often allow developers to set up the deployment descriptors they need using visual utilities like property
sheets. After the developer has set all of the bean's properties, the deployment descriptor is saved to a file. Once the
deployment descriptor is completed and saved to a file, the bean can be packaged in a JAR file for deployment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAR (Java Archive) files are ZIP files that package Java classes and other resources that are ready to be used in some
type of application. JARs are used for packaging applets, Java applications, JavaBeans, web applications (servlets and
JSPs), and Enterprise JavaBeans. A JAR file containing one or more enterprise beans includes the bean classes,
component interfaces, and supporting classes for each bean. It also contains one deployment descriptor, which is used
for all the beans in the JAR file. When a bean is deployed, the JAR file's location is given to the container's deployment
tools.

When the container opens the JAR file, it reads the deployment descriptor to learn about the bean and how it should be
managed at runtime. The deployment descriptor tells the deployment tools what kind of beans are in the JAR file
(session, entity, or message-driven), how they should be managed in transactions, who has access to the beans at
runtime, and other information. The person deploying the bean can alter some of these settings, such as transactional
and security access attributes, to customize the bean for a particular application. Most container tools provide user-
friendly property sheets for reading and altering the deployment descriptor when the bean is deployed.

When Enterprise JavaBeans 1.0 was released, serializable classes were used for the deployment descriptor. Starting
with Enterprise JavaBeans 1.1, the serializable deployment descriptor classes used in EJB 1.0 were dropped in favor of
a more flexible file format based on the Extensible Markup Language (XML). The XML deployment descriptors are text
files structured according to a standard schema (XML Schema in EJB 2.1 and Document Type Definition (DTD) in EJB
2.0) that can be extended so the type of deployment information stored evolves as the specification evolves. Chapter
17 provides a detailed description of XML deployment descriptors. The following sections provide a brief overview of
XML deployment descriptors.

2.1.2.1 EJB 2.1: Deployment descriptor

The following descriptor might be used to describe the Cabin bean in EJB 2.1:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.CabinHomeRemote</home>

 <remote>com.titan.CabinRemote</remote>

 <ejb-class>com.titan.CabinBean </ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 </entity>

 </enterprise-beans>

</ejb-jar>

The first element in an EJB 2.1 deployment descriptor declares the document to be an XML document conformant with
XML Version 1.0, and the character encoding, normally UTF-8.

The root element is the ejb-jar element. It declares the namespace of the EJB 2.1 XML Schema as well as the schema's
location. In addition, the ejb-jar element declares the version of EJB supported, which in the case of EJB 2.1 is version
"2.1".

2.1.2.2 EJB 2.0: Deployment descriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1.2.2 EJB 2.0: Deployment descriptor

The following descriptor might be used to describe the Cabin bean in EJB 2.0:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD EnterpriseJavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.CabinHomeRemote</home>

 <remote>com.titan.CabinRemote</remote>

 <ejb-class>com.titan.CabinBean </ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 </entity>

 </enterprise-beans>

</ejb-jar>

The first element in an EJB 2.0 deployment descriptor is <!DOCTYPE>. This element describes the organization that
defined the DTD for the XML document, supplies the DTD's version, and provides a URL for the DTD. The DTD describes
how a particular XML document is structured.

2.1.2.3 EJB 2.1 and 2.0: Elements of the XML deployment descriptor

Now, let's look more closely at the information in the deployment descriptor. Note that the deployment descriptor for a
real bean would have a lot more information; this example simply illustrates the type of information you'll find in a
deployment descriptor. Here's what the individual elements mean:

<ejb-jar>

The root of the XML deployment descriptor. All other elements must be nested below this one. It must contain
one <enterprise-beans> element and may contain other optional elements.

<enterprise-beans>

Contains declarations for all the enterprise beans described by this XML document. It may contain <entity>,
<session>, or <message-driven> (EJB 2.0) elements, which describe entity, session, and message-driven
enterprise beans, respectively.

<entity>

Describes an entity bean and its deployment information. There must be one of these elements for every entity
bean described by the XML deployment descriptor. While this deployment descriptor describes a single entity
bean, the <session> element is used in the same way to describe a session bean. The <message-driven> element
is different, as it does not define any component interfaces.

<ejb-name>

The descriptive name of the enterprise bean. It is the name used for the enterprise bean in conversation, when
talking about the bean component as a whole.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

talking about the bean component as a whole.

<home>

The fully qualified class name of the remote home interface. This interface defines the life-cycle behaviors
(create, find, remove) of the enterprise bean to its clients outside the container system.

<remote>

The fully qualified class name of the remote interface. This interface defines the enterprise bean's business
methods to its clients outside the container system.

<ejb-class>

The fully qualified class name of the bean class. This class implements the business methods of the bean.

<prim-key-class>

The fully qualified class name of the enterprise bean's primary key. The primary key is used to find the bean
data in the database.

The <persistence-type> and <reentrant> elements express the persistence strategy and concurrency policies of the entity
bean. These elements are explained in more detail later in the book.

As you progress through this book, you will be introduced to the elements that describe concepts that have not been
covered yet, so don't worry about knowing all of the elements you might find in a deployment descriptor.

2.1.3 EJB Objects and EJB Home

The entity and session beans both declare the component interfaces that their clients use to access them. (Message-
driven beans are a very different kind of animal). In EJB 2.0, clients outside the container system always use the
enterprise bean's remote component interfaces. In EJB 2.1, clients outside the container system have the option of
accessing stateless session beans as Web services. For both EJB 2.1 and 2.0, clients within the same J2EE system (i.e.,
enterprise beans, Servlets, and JSPs) can use local component interfaces to interact. This section explains how the
component interfaces are connected to instances of the bean class at runtime.

Now that you have a basic understanding of some of an enterprise bean's parts (component interfaces, bean class, and
deployment descriptor), it's time to talk more precisely about how these parts come together inside an EJB container
system. Unfortunately, we can't talk as precisely as we'd like. There are a number of ways for an EJB container to
implement these relationships; we'll show some of the possibilities. Specifically, we'll talk about how the container
implements the component interface of entity and session beans, so that clients—either applications outside the
container or other co-located enterprise beans—can interact with and invoke methods on the bean class.

The two missing pieces are the EJB object itself and the EJB home. You will probably never see the EJB home and EJB
object classes because their class definitions are proprietary to the vendor's EJB implementation and are generally not
made public. This practice is useful because it represents a separation of responsibilities along areas of expertise. As an
application developer, you are intimately familiar with how your business environment works and needs to be modeled,
so you will focus on creating the applications and beans that describe your business. System-level developers, the
people who write EJB servers, don't understand your business, but they do understand how to develop CTMs and
support distributed objects. It makes sense for system-level developers to apply their skills to the mechanics of
managing distributed objects, but leave the business logic to you, the application developer. Let's talk briefly about the
EJB object and the EJB home so the missing pieces in the big picture are understandable.

2.1.3.1 The EJB object

This chapter has said a lot about a bean's remote and local interfaces, which extend the EJBObject and the EJBLocalObject
interfaces, respectively. Who implements these interfaces? Clearly, the stub does: we understand that much. But what
about the server side?

On the server side, an EJB object is an object that implements the remote and/or local interfaces of the enterprise
bean. The EJB object is generated by your EJB container and wraps the enterprise bean instance—that is, an instance of
the enterprise bean class you've created (in our example, the CabinBean) on the server—and expands its functionality to
include javax.ejb.EJBObject and/or javax.ejb.EJBLocalObject behavior. This object works with the container to apply
transactions, security, and other system-level operations to the bean at runtime.

We're forced to use "and/or" a lot when talking about which interface the EJB object implements. That's because
enterprise beans in EJB can declare the local interface, the remote interface, or both! In EJB 2.1, stateless session
beans can also implement an endpoint interface, which turns it into a Web service. (The endpoint interface and Web
services are addressed separately in Chapter 14.) Regardless of which interfaces the bean implements, we can think of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

services are addressed separately in Chapter 14.) Regardless of which interfaces the bean implements, we can think of
the EJB object as implementing both. In reality, there may be a special EJB object for the remote interface and another
special EJB object for the local interface of each enterprise bean; that depends on how the vendor chooses to
implement it. But that distinction, while it matters to EJB vendors, isn't visible to EJB developers.

A vendor can use a number of strategies to implement the EJB object. Figure 2-1 illustrates two possibilities using the
CabinRemote interface. The same implementation strategies apply to the CabinLocal and javax.ejb.EJBLocalObject interfaces.

Figure 2-1. Two ways to implement the EJB object

In Figure 2-1(a), the EJB object class actually extends the bean class, adding functionality specific to the EJB container.
In Figure 2-1(b), the bean class is no longer included in the model. In this case, the EJB object has both the proprietary
implementation required by the EJB container and bean class method implementations that were copied from the bean
class's definition.

The EJB object design shown in Figure 2-1(a) is perhaps the most common. But other implementations are used; it
shouldn't make a difference which one your vendor has chosen. The bottom line is that you never really know much
about the EJB object: its implementation is up to the vendor. Knowing that the EJB object exists answers a lot of
questions about how enterprise beans are structured. But everything a client (including other enterprise beans) needs
to know about an enterprise bean is described by the remote and home interfaces.

2.1.3.2 The EJB home

The EJB home is a lot like the EJB object. It's another class that's generated automatically when you install an
enterprise bean in a container. It implements all the methods defined by the home interfaces (local and/or remote) and
is responsible for helping the container manage the bean's life cycle. The EJB home is responsible for locating, creating,
and removing enterprise beans. These tasks may involve working with the EJB server's resource managers, instance
pooling, and persistence mechanisms, the details of which are hidden from the developer.

For example, when a create method is invoked on a home interface, the EJB home creates an instance of the EJB object
that references a bean instance of the appropriate type. Once the bean instance is associated with the EJB object, the
instance's matching ejbCreate() method is called. In the case of an entity bean, a new record is inserted into the
database. With session beans, the instance is simply initialized. Once the ejbCreate() method has completed, the EJB
home returns a remote or local reference (i.e., a stub) for the EJB object to the client. The client can then work with the
EJB object by invoking business methods. The stub relays the methods to the EJB object; in turn, the EJB object
delegates those method calls to the bean instance.

How does the EJB home know which type of EJB object reference (local or remote) to return? It depends on which
home interface is being used. If the client invokes a create() method on the remote home interface, the EJB home
returns a remote interface reference. If the client is working with a local home interface, the EJB home returns a
reference implementing the local interface. EJB requires that the return type of remote home interface methods be
remote interfaces and that the return type of local home interface methods be local interfaces:

// The Cabin EJB's remote home interface

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer pk)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws FinderException, RemoteException;

}

// The Cabin EJB's local home interface

public interface CabinHomeLocal extends javax.ejb.EJBLocalHome {

 public CabinLocal create(Integer pk)

 throws CreateException;

 public CabinLocal findByPrimaryKey(Integer id)

 throws FinderException;

}

Figure 2-2 illustrates the architecture of EJB with the EJB home and EJB object implementing the home interface and
remote or local interface. The bean class is wrapped by the EJB object. Remember, though, that this is only an
illustration. "EJB object" and "EJB home" are simply terms to describe the EJB container's responsibilities for supporting
the component interfaces. In reality, we have no idea how the vendor chose to implement the EJB object and EJB
home, since they are only logical constructs and may not have equivalent software counterparts.

Figure 2-2. EJB architecture

2.1.3.3 Deploying a bean

After the files that define the bean (the component interfaces and the bean classes) have been packaged into a JAR file,
the bean is ready to be deployed; that is, it can be added to an EJB container so it can be accessed as a distributed
component. During the deployment process, tools provided by the EJB container vendor generate the EJB object and
EJB home classes by examining the deployment descriptor and the other interfaces and classes in the JAR file.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Using Enterprise Beans
Let's look at how a client would use an enterprise bean to do something useful. We'll start with the Cabin EJB defined
earlier. A cabin is a thing or place with a description that is stored in a database. To make the example a little more
real, assume that there are other entity beans: Ship, Cruise, Ticket, Customer, Employee, and so on.

2.2.1 Getting Information from an Entity Bean

Imagine that a GUI client needs to display information about a particular cruise: the cruise name, the ship name, and a
list of cabins. Using the cruise ID obtained from a text field, we can use our beans to look up data about the cruise.
Here's the code:

CruiseHomeRemote cruiseHome = ... ; // use JNDI to get the home

// Get the cruise ID text field 1.

String cruiseID = textField1.getText();

// Create an EJB primary key from the cruise ID.

Integer pk = new Integer(cruiseID);

// Use the primary key to find the cruise.

CruiseRemote cruise = cruiseHome.findByPrimaryKey(pk);

// Set text field 2 to show the cruise name.

textField2.setText(cruise.getName());

// Get a remote reference to the ship that will be used

// for the cruise from the cruise bean.

ShipRemote ship = cruise.getShip();

// Set text field 3 to show the ship's name.

textField3.setText(ship.getName());

// Get all the cabins on the ship.

Collection cabins = ship.getCabins();

Iterator cabinItr = cabins.iterator();

// Iterate through the enumeration, adding the name of each cabin

// to a list box.

while(cabinItr.hasNext())

 CabinRemote cabin = (CabinRemote)cabinItr.next();

 listBox1.addItem(cabin.getName());

}

We start by getting a remote reference to the EJB home for an entity bean that represents a cruise. We need a remote
reference rather than a local one because the client is an application located outside the EJB container. It's not shown in
the example, but references to the EJB home are obtained using JNDI. JNDI is a powerful API for locating resources,
such as remote objects, on networks. JNDI lookups are covered in subsequent chapters.

We read a cruise ID from a text field, use it to create a primary key, and use that primary key together with the EJB
home to get a CruiseRemote reference. This reference implements the bean's business methods. Once we have the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

home to get a CruiseRemote reference. This reference implements the bean's business methods. Once we have the
appropriate Cruise EJB, we can ask the bean to give us a remote reference to a Ship EJB that represents the ship used
for the cruise. We can then call the ship.getCabins() method to get a Collection of remote Cabin EJB references from the
Ship EJB, and, with the Cabin EJBs in hand, we can retrieve and display the names of the Cabin EJBs.

2.2.2 Modeling Taskflow with Session Beans

Entity beans are useful for representing data and describing business concepts that can be expressed as nouns, but
they're not very good at representing a process or a task. A Ship bean provides methods and behavior for doing things
directly to a ship, but it does not define the context under which these actions are taken. The previous example
retrieved data about cruises and ships; we could also have modified this data. With enough effort, we could have
figured out how to book a passenger—perhaps by adding a Customer EJB to a Cruise EJB, or adding a customer to a list
of passengers maintained by the ship. We could try to shove methods for accepting payment and other tasks related to
booking into our GUI client application, or even into the Ship or Cabin EJBs, but that's a contrived and inappropriate
solution. We don't want business logic in the client application—that's why we went to a multitier architecture in the first
place. Similarly, we don't want this kind of logic in our entity beans that represent ships and cabins. Booking
passengers on a ship or scheduling a ship for a cruise are the types of activities or functions of the business, not the
Ship or the Cabin bean, and are therefore expressed in terms of a process or task.

Session beans act as agents that manage business processes or tasks for the client; they're the appropriate place for
business logic. A session bean is not persistent; nothing in a session bean maps directly into a database or is stored
between sessions. Session beans work with entity beans, data, and other resources to control taskflow. Taskflow is the
essence of any business system, because it expresses how entities interact to model the actual business. Session beans
control tasks and resources but do not themselves represent data.

The term "taskflow" was coined specifically for this book. It's derived from the term
"workflow," which is frequently used to describe the management of business processes
that may span several days with lots of human intervention. In contrast to workflow, the
term taskflow is used in this book to describe the interactions of beans within a single
transaction that takes only a few seconds to execute.

The following code demonstrates how a session bean designed to make cruise-line reservations might control the
taskflow of other entity and session beans. Imagine that a piece of client software, in this case a user interface, obtains
a remote reference to a TravelAgent session bean. Using the information entered into text fields by the user, the client
application books a passenger on a cruise:

// Get the credit card number from the text field.

String creditCard = textField1.getText();

int cabinID = Integer.parseInt(textField2.getText());

int cruiseID = Integer.parseInt(textField3.getText());

// Create a new Reservation session passing in a reference to a

// customer entity bean.

TravelAgent travelAgent = travelAgentHome.create(customer);

// Set cabin and cruise IDs.

travelAgent.setCabinID(cabinID);

travelAgent.setCruiseID(cruiseID);

// Using the card number and price, book passage.

// This method returns a Ticket object.

TicketDO ticket = travelAgent.bookPassage(creditCard, price);

This is a fairly coarse-grained abstraction of the process of booking a passenger: most of the details are hidden from
the client. Hiding the fine-grained details of taskflow is important because it provides the system with flexibility as it
evolves: we know that we will always want to book passengers, but the process for booking a passenger may change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

evolves: we know that we will always want to book passengers, but the process for booking a passenger may change.

Course-grained and fine-grained are terms that are sometimes used to describe the level
of detail exposed by the public interface of a component. A component whose public
interfaces exposes a lot of detail about how the component funtions is called fine-grained.
Components that provide a public interface but do not expose the details of its operation
are called coarse-grained. When dealing with remote clients, coarse-grained interfaces are
usally prefered because they are more flexible—the client doesn't have to be aware of all
the nitty-gritty details of how the component works.

The following listing shows some of the code for the TravelAgentBean. The bookPassage() method works with three entity
beans, the Customer, Cabin, and Cruise EJBs, and another session bean, the ProcessPayment EJB. The ProcessPayment
EJB provides several methods for making a payment, including check, cash, and credit card. In this case, we use the
ProcessPayment bean to make a credit card payment. Once payment has been made, a serializable TicketDO object is
returned to the client.

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 public CruiseRemote cruise;

 public CabinRemote cabin;

 public void ejbCreate(CustomerRemote cust){

 customer =cust;

 }

 public TicketDO bookPassage(CreditCardDO card,double price)

 throws IncompleteConversationalState {

 if (customer == null ||cruise == null ||cabin == null){

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeRemote resHome = (ReservationHomeRemote)

 getHome("ReservationHome",ReservationHomeRemote.class);

 ReservationRemote reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 getHome("ProcessPaymentHome",ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 }catch(Exception e){

 throw new EJBException(e);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 }

// More business methods and callback methods follow

}

This example leaves out some details, but it demonstrates the difference in purpose between a session bean and an
entity bean. Entity beans represent the behavior and data of a business object, while session beans model the taskflow.
The client application uses the TravelAgent EJB to perform a task using other beans. For example, the TravelAgent EJB
uses a ProcessPayment EJB and a Reservation EJB in the process of booking passage. The ProcessPayment EJB
processes the credit card, and the Reservation EJB records the actual reservation in the system. Session beans can also
be used to read, update, and delete data that can't be adequately captured in an entity bean. Session beans don't
represent records or data in the database, but they can access data.

All of the work performed by the TravelAgent session bean could have been coded in the client application. Having the
client interact directly with entity beans is a common but troublesome design approach because it ties the client directly
to the details of the business tasks. As a result, any changes in the way entity beans interact requires changes to the
client, and it's very difficult to reuse the code that models the taskflow.

Session beans allow clients to perform tasks without being concerned with the details that make up the task. A
developer can update the session bean, possibly changing the taskflow, without affecting the client code. In addition, if
the session bean is properly defined, other clients that perform the same tasks can reuse it. The ProcessPayment
session bean, for example, can be used in many areas besides reservations, including retail and wholesale sales. For
example, the ship's gift shop could use the ProcessPayment EJB to process purchases. As a client of the
ProcessPayment EJB, the TravelAgent EJB doesn't care how ProcessPayment works; it's only interested in the
ProcessPayment EJB's coarse-grained interface, which validates and records charges.

Moving taskflow logic into a session bean also simplifies the client application and reduces network traffic. Excessive
network traffic is a common problem for distributed object systems: it can overwhelm the server and clog the network,
hurting response time and performance. Session beans, if used properly, can reduce network traffic by limiting the
number of requests needed to perform a task. The user of session beans keeps the interaction between the beans
involved in a taskflow on the server. One method invocation on the client application results in many method
invocations on the server, but the network sees only the traffic produced by the client's call to the session bean. In the
TravelAgent EJB, the client invokes bookPassage(); in turn, bookPassage() makes several method invocations on other
enterprise beans. Furthermore, the TravelAgent bean may be in the same container as the other beans, and therefore
can use the local interfaces, further reducing network traffic. For the network cost of one method invocation, the client
gets several method invocations.

In addition, session beans reduce the number of network connections that the client needs. The cost of maintaining
many network connections can be high, so reducing the number of connections each client needs improves the
performance of the system as a whole. Figure 2-3 compares the network traffic and connections generated by a client
that uses only entity beans to those generated by a client that uses session beans.

Figure 2-3. Session beans reduce network traffic and thin down clients

Session beans also limit the number of stubs used on the client, which saves the client memory and processing cycles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Session beans also limit the number of stubs used on the client, which saves the client memory and processing cycles.
This may not seem like a big deal, but without the use of session beans, a client might be expected to manage
hundreds or even thousands of remote references at one time. In the TravelAgent EJB, for example, the bookPassage()
method works with several remote references, but the client is exposed only to the TravelAgent's remote reference.

2.2.2.1 Stateless and stateful session beans

Session beans can be either stateful or stateless. Stateful session beans maintain conversational state when used by a
client. Conversational state is not written to a database; it's information that is kept in memory while a client carries on
a conversation with an enterprise bean, and is lost when the conversation ends or if the EJB container crashes. For
example, a client making a reservation through the TravelAgent bean may call the methods that set cabin and cruise
IDs. These IDs are part of the session's conversational state, and affect the behavior of subsequent method calls, such
as the call to bookPassage() that makes the actual reservation. Conversational state is kept for only as long as the client
application is actively using the bean. Once the client shuts down or releases the TravelAgent EJB, the conversational
state is lost forever. Stateful session beans are not shared among clients; they are dedicated to the same client for the
life of the enterprise bean.

Stateless session beans do not maintain any conversational state. Each method is completely independent and uses
only data passed in its parameters. The ProcessPayment EJB is a perfect example of a stateless session bean: it doesn't
need to maintain any conversational state from one method invocation to the next. All the information needed to make
a payment is passed into the byCreditCard() method. Stateless session beans provide better performance and consume
fewer resources than entity and stateful session beans because a few stateless session bean instances can serve
hundreds and possibly thousands of clients. Chapter 11 talks more about stateless session beans.

2.2.3 Message-Driven Beans

Message-driven beans are integration points for other applications interested in working with EJB applications. Java
applications or legacy systems that need to access EJB applications can send messages to message-driven beans via
JMS. This bean processes those messages and performs the required tasks using other entity and session beans. EJB
2.1 is not limited to JMS-based message-driven beans: message-driven beans can support any messaging system that
implements the correct J2eeCA 1.5 (J2EE Connector Architecture Version 1.5) contracts. However, support for JMS-
based message-driven beans (JMS-MDBs) in EJB 2.1 is mandatory, so JMS-MDBs are the type of message-driven bean
addressed in this section.

In many ways, JMS-MDBs fulfill the same role as stateless session beans: they manage the taskflow of entity and
session beans. The task is initiated by an asynchronous message sent by an application using JMS. Unlike session
beans, which respond to business methods invoked on their component interfaces, a JMS-MDB responds to messages
delivered through its onMessage() method. Since the messages are asynchronous, the client that sends them doesn't
expect a reply. The messaging client simply sends the message and forgets about it.

As an example, we can recast the TravelAgent EJB developed earlier as the ReservationProcessor JMS message-driven
bean:

public class ReservationProcessorBean implements javax.ejb.MessageDrivenBean,

 javax.jms.MessageListener {

 public void onMessage(Message message) {

 try {

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 CreditCardDO card = getCreditCard(reservationMsg);

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 Object ref = jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 // More helper methods and callback methods follow

}

All the information about the reservation is obtained from the message delivered to the MDB. JMS messages can take
many forms; the javax.jms.MapMessage used in this example carries name-value pairs. Once the information is gathered
from the message and the enterprise bean references are obtained, the reservation is processed in the same way as it
was in the session bean. The only difference is that a TicketDO object isn't created and returned to the caller; message-
driven beans don't have to respond to the caller.

Regardless of the messaging system, message-driven beans do not maintain any conversational state. Each new
message is independent of the previous messages. The message-driven bean is explained in detail in Chapter 12.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 The Bean-Container Contract
The environment that surrounds the beans on the EJB server is often called the container. The container is more a
concept than a physical construct. It acts as an intermediary between the bean and the EJB server. It manages the EJB
objects and EJB homes and helps these constructs to manage bean resources and provide services such as
transactions, security, concurrency, and naming at runtime. The distinction between the container and the server is not
clearly defined, but the EJB specification defines the component model in terms of the container's responsibilities, so we
will follow that convention here.

Enterprise bean components interact with the EJB container through a well-defined component model. The EntityBean,
SessionBean, and MessageDrivenBean interfaces provide callback methods that notify the bean class of life-cycle events. At
runtime, the container invokes these methods on the bean instance when relevant events occur. For example, when the
container is about to write an entity bean instance's state to the database, it first calls the bean instance's ejbStore()
method. This call gives the bean instance an opportunity to do cleanup on its state before it's written to the database.
The ejbLoad() method is called just after the bean's fields are populated from the database, providing the bean
developer with an opportunity to manage the bean's state before the first business method is called.[3] Other callback
methods can be used by the bean class in a similar fashion. EJB defines when these various callback methods are
invoked and what can be done within their contexts.

[3] The ejbLoad() and ejbStore() behavior illustrated here is for container-managed persistence. With bean-
managed persistence, the behavior is slightly different. This distinction is examined in detail in Chapter 10.

While the bean interfaces require implementations of all the callback methods, those implementations don't have to be
meaningful. The method body of any or all of the callback methods can be left empty, and often is. Beans that
implement callback methods usually access resources that aren't managed by the EJB system. Enterprise beans that
wrap legacy systems often fall into this category.

javax.ejb.EJBContext is an interface implemented by the container and is also part of the bean-container contract. Entity
beans use a subclass of javax.ejb.EJBContext called javax.ejb.EntityContext. Session beans use a subclass called
javax.ejb.SessionContext. Message-driven beans use the subclass javax.ejb.MessageDrivenContext. These EJBContext types
provide the bean with information about its environment: its container, the client using the enterprise bean, and the
bean itself. The bean can use this information while processing requests from clients and callback methods from the
container.

An enterprise bean's interface with the container also includes a JNDI namespace, called the environment naming
context, which the bean can use to look up the resources it needs (including other beans). The JNDI environment
naming context and the EJBContext (and its subclasses) are described in more detail in Chapter 10, Chapter 11, and
Chapter 12.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Summary
This chapter covered a lot of ground describing the basic architecture of an EJB system. At this point, you should
understand that beans are business object components. The home interfaces define life-cycle methods for creating,
finding, and destroying beans, and the remote and local interfaces define the public business methods of the bean.
Message-driven beans do not have component interfaces. The bean class is where the state and behavior of the bean
are implemented.

There are three basic kinds of beans: entity, session, and message-driven. Entity beans are persistent and represent a
person, place, or thing. Session beans are extensions of the client and embody a process or a taskflow that defines how
other beans interact. Session beans are not persistent: they receive their state from the client, and they live only as
long as the client needs them. Message-driven beans are integration points that allow other applications to interact with
EJB applications using JMS or, in EJB 2.1, some other J2eeCA 1.5-compliant resource. Message-driven beans, like
stateless session beans, are not persistent and do not maintain conversational state.

The EJB object and EJB home are conceptual constructs that delegate method invocations to session and entity beans
from the client and help the container to manage the enterprise bean at runtime. The clients of entity and session
beans do not interact with the instances of the bean class directly. Instead, the client software interacts with stubs,
which are connected to the EJB object and EJB home. The EJB object implements the remote and/or local interface and
expands the bean class's functionality. The EJB home implements the home interface and works closely with the
container to create, locate, and remove beans.

Beans interact with their containers through the well-defined bean-container contract. This contract provides callback
methods, the EJBContext, and the JNDI environment-naming context. The callback methods notify the bean class that it
is involved in a life-cycle event. The EJBContext and JNDI environment-naming context provide the bean instance with
information about its environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Resource Management and the Primary
Services
Chapter 2 discussed the basic architecture of Enterprise JavaBeans, including the relationship between the bean class,
the component interfaces, the EJB object and EJB home, and the EJB container. These artifacts define a common model
for distributed server-side components. But the common model for distributed objects isn't enough to make EJB
interesting or even particularly useful. EJB servers also manage the resources used by beans, and can manage
thousands, even millions of distributed objects simultaneously. They must manage how distributed objects use memory,
threads, database connections, processing power, and more. Furthermore, the EJB specification defines interfaces that
help developers take advantage of these common practices.

In particular, EJB servers support six primary services: concurrency, transaction management, persistence, object
distribution, naming, and security. These services provide the kind of infrastructure that is necessary for a successful
three-tier system. Enterprise JavaBeans also supports two additional services: asynchronous messaging and a timer
service.

This chapter discusses the resource-management facilities and the primary services that are available to Enterprise
JavaBeans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Resource Management
A large business system with many users can easily require thousands of objects—even millions of objects—to be in use
simultaneously. As the number of interactions among these objects increases, concurrency and transactional concerns
can degrade the system's response time and frustrate users. EJB servers increase performance by synchronizing object
interactions and sharing resources.

There is a relationship between the number of clients and the number of distributed objects that are required to service
them. Not surprisingly, the larger the client population, the more distributed objects are needed. At some point, the
increase in clients affects performance and diminishes throughput. EJB explicitly supports two mechanisms that make it
easier to manage large numbers of beans at runtime: instance pooling and activation. In addition, EJB supports the use
of the J2EE Connector Architecture (J2EE Connectors) for managing resource connections. As the number of distributed
objects and clients increase, the number of resource connections also increases. J2EE Connectors work with the EJB
container to manage connections to databases, enterprise messaging, ERP, legacy systems, and other types of
resources.

3.1.1 Instance Pooling

The concept of pooling resources is nothing new. It's common to pool database connections so that the business objects
in the system can share database access. This trick reduces the number of database connections needed, which reduces
resource consumption and increases throughput. The J2EE Connector Architecture (J2eeCA) is frequently the
mechanism employed by EJB containers when pooling connections to databases and other resources, and is covered a
little later. Most EJB containers also apply resource pooling to server-side components; this technique is called instance
pooling. Instance pooling reduces the number of component instances—and therefore resources—needed to service
client requests. In general, it is also less expensive to reuse pooled instances than to create and destroy instances.

As you already know, clients of session and entity beans interact with the beans through the remote and local interfaces
implemented by EJB objects. Client applications never have direct access to the actual bean. Similarly, JMS clients
never interact with JMS-based message-driven beans (JMS-MDBs) directly. They send messages that are routed to the
EJB container system. The EJB container then delivers these messages to the proper message-driven instance.

Instance pooling is possible because clients never access beans directly. Therefore, there's no fundamental reason to
keep a separate copy of each enterprise bean for each client. The server can keep a much smaller number of enterprise
beans around to do the work, reusing each enterprise bean instance to service different requests. Although this sounds
like a resource drain, when done correctly, it greatly reduces the resources required to service all the client requests.

3.1.1.1 The entity bean life cycle

To understand how instance pooling works, let's examine the life cycle of an entity bean. Entity beans exist in one of
three states:

No state

When a bean instance is in this state, it has not yet been instantiated. We identify this state to provide a
beginning and an end for the life cycle of a bean instance.

Pooled state

When an instance is in this state, it has been instantiated by the container but has not yet been associated with
an EJB object.

Ready state

When a bean instance is in this state, it has been associated with an EJB object and is ready to respond to
business method invocations.

Each EJB vendor implements instance pooling differently, but all instance-pooling strategies attempt to manage
collections of bean instances so that they are quickly accessible at runtime. To set up an instance pool, the EJB
container creates several instances of a bean class and holds them until needed. As clients make business-method
requests, bean instances from the pool are assigned to the EJB objects associated with the clients. When the EJB object
doesn't need the instance, it's returned to the instance pool. An EJB server maintains instance pools for every type of
bean deployed. Every instance in an instance pool is equivalent—they are treated equally. Instances are selected
arbitrarily from the instance pool and assigned to EJB objects as needed.

After the bean instance is placed in the pool, it gets a reference to a javax.ejb.EJBContext. The EJBContext provides an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After the bean instance is placed in the pool, it gets a reference to a javax.ejb.EJBContext. The EJBContext provides an
interface that the bean can use to communicate with the EJB environment. This EJBContext becomes more useful when
the bean instance moves to the Ready state. When a client uses an EJB home to obtain a remote or local reference to a
bean, the container responds by creating an EJB object. Once created, the EJB object is assigned a bean instance from
the instance pool. When a bean instance is assigned to an EJB object, it officially enters the Ready state. From the
Ready state, a bean instance can receive requests from the client and callbacks from the container. Figure 3-1 shows
the sequence of events that results in an EJB object wrapping a bean instance and servicing a client.

Figure 3-1. A bean moves from the instance pool to the Ready state

When a bean instance moves into the Ready state, the EJBContext takes on new meaning. The EJBContext provides
information about the client that is using the bean. It also provides the instance with access to its own EJB home and
EJB object, which is useful when the bean needs to pass references to itself or to other enterprise beans, or when it
needs to create, locate, or remove beans of its own class. So the EJBContext is not a static class; it is an interface to the
container, and its state changes as the instance is assigned to different EJB objects.

When the client is finished with a bean's remote reference, either the remote reference passes out of scope or one of
the bean's remove methods is called.[1] At this point, the bean instance is disassociated from the EJB object and
returned to the instance pool. Bean instances can also be returned to the pool during lulls between client requests. If a
client request is received and no bean instance is associated with the EJB object, an instance is retrieved from the pool
and assigned to the EJB object. This is called instance swapping. After the bean instance returns to the instance pool, it
is again available to service a new client request. Figure 3-2 illustrates the life cycle of a bean instance.

[1] The EJBHome, EJBLocalHome, EJBObject, and EJBLocalObject interfaces all define methods that can be used to
remove a bean.

Figure 3-2. Life cycle of a bean instance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The number of instances in the pool fluctuates as instances are assigned to EJB objects and returned to the pool. The
container can also manage the number of instances in the pool, increasing the count when client activity increases and
lowering the count during less active periods.

3.1.1.2 Instance swapping

Stateless session beans offer a particularly powerful opportunity to leverage instance pooling. Because a stateless
session bean does not maintain any state between method invocations, every method invocation operates
independently, performing its task without relying on instance variables. This means that any stateless session instance
can service requests for any EJB object of the proper type. The container can therefore swap bean instances in and out
between method invocations.

Figure 3-3 illustrates instance swapping between stateless session bean method invocations. In Figure 3-3 (a), instance
A is servicing a business method invocation delegated by EJB object 1. Once instance A has serviced the request, it
moves back to the instance pool (Figure 3-3 (b)). When a business method invocation on EJB object 2 is received,
instance A is associated with that EJB object for the duration of the operation (Figure 3-3 (c)). While instance A is
servicing EJB object 2, another method invocation is received by EJB object 1 from the client and is serviced by instance
B (Figure 3-3 (d)).

Figure 3-3. Stateless session beans in a swapping strategy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using this swapping strategy allows a few stateless session bean instances to serve hundreds of clients, because the
amount of time it takes to perform most method invocations is typically much shorter than the pauses between method
invocations. When a bean instance is finished servicing a request for an EJB object, it is immediately made available to
any other EJB object that needs it. This allows fewer stateless session instances to service more requests, which
decreases resource consumption and improves performance.

Stateless session beans are declared "stateless" in the deployment descriptor. Nothing in the class definition marks a
session bean as being stateless or stateful. Once a bean class is deployed as stateless, the container assumes that no
conversational state is maintained between method invocations. So a stateless bean can have instance variables, but
because bean instances can be servicing several different EJB objects, they should not be used to maintain
conversational state.

3.1.1.3 Message-driven beans and instance pooling

Message-driven beans, like stateless session beans, do not maintain state specific to a client request, which makes
them excellent candidates for instance pooling.

In most EJB containers, each type of message-driven bean has its own instance pool that services incoming messages.
JMS-MDBs subscribe to a specific message destination, which is a kind of address used when sending and receiving
messages. When a JMS client sends an asynchronous message to a destination, the message is delivered to the EJB
containers of the beans that subscribe to the destination. The EJB container determines which JMS-MDB subscribes to
that destination, then chooses an instance of that type from the instance pool to process the message. Once the JMS-
MDB instance has finished processing the message (when the onMessage() method returns), the EJB container returns
the instance to its instance pool. Figure 3-4 illustrates how client requests are processed by an EJB container.

Figure 3-4. JMS-MDB instance pooling

In Figure 3-4 (a), the top JMS client delivers a message to Destination A and the bottom JMS client delivers a message
to Destination B. The EJB container chooses an instance of MessageDrivenBean_1 to process the message intended for
Destination A and an instance of MessageDrivenBean_2 to process the message intended for Destination B. The bean
instances are removed from the pool and used to process the messages.

A moment later in Figure 3-4 (b), the middle JMS client sends a message to Destination B. At this point, the first two
messages have already been processed and the container is returning the instances to their respective pools. As the
new message comes in, the container chooses a new instance of MessageDrivenBean_2 to process the message.

JMS-MDBs are always deployed to process messages from a specific destination. In the above example, instances of
MessageDrivenBean_1 process messages only for Destination A, while instances of MessageDrivenBean_2 process
messages only for Destination B. Several messages for the same destination can be processed at the same time. If, for
example, a hundred messages for Destination A arrive at the same time, the EJB container simply chooses a hundred
instances of MessageDrivenBean_1 to process the incoming messages; each instance is assigned a message.

EJB 2.1 has expanded the role of message-driven beans beyond JMS so that they can support other messaging services
and APIs. This opens the message-driven bean up to just about any kind of resource, including messaging systems
other than JMS, ERP systems like SAP, and legacy systems like IMS. Regardless of the type of resource represented by
the message-driven bean, the instances of the bean type will be pooled in the same way as the JMS-MDBs.

3.1.2 The Activation Mechanism

Unlike other enterprise beans, stateful session beans maintain state between method invocations. Conversational state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike other enterprise beans, stateful session beans maintain state between method invocations. Conversational state
represents the continuing conversation with the stateful session bean's client. The integrity of this conversational state
needs to be maintained for the life of the bean's service to the client. Stateful session beans, unlike stateless session,
entity, and message-driven beans, do not participate in instance pooling. Instead, stateful session beans use activation
to conserve resources. When an EJB server needs to conserve resources, it can evict stateful session beans from
memory. When a bean is evicted, its conversational state is serialized to a secondary storage. When a client invokes a
method on the EJB object, a new stateful instance is instantiated and populated with the state from the initial bean.

Passivation is the act of disassociating a stateful bean instance from its EJB object and saving its state. Passivation
requires that the bean instance's state be held relative to its EJB object. After the bean has been passivated, it is safe
to remove the bean instance from the EJB object and evict it from memory. Clients are unaware of the deactivation
process. Remember that the client uses the bean's remote reference, which is implemented by an EJB object, and
therefore does not directly communicate with the bean instance. As a result, the client's connection to the EJB object
can be maintained while the bean is passivated.

Activating a bean is the act of restoring a stateful bean instance's state relative to its EJB object. When a method on the
passivated EJB object is invoked, the container automatically creates a new instance and sets its fields equal to the data
stored during passivation. The EJB object can then delegate the method invocation to the bean as normal. Figure 3-5
shows activation and passivation of a stateful bean. In Figure 3-5 (a), the bean is being passivated. The state of
instance B is read and held relative to the EJB object it was serving. In Figure 3-5 (b), the bean has been passivated
and its state preserved. Here, the EJB object is not associated with a bean instance. In Figure 3-5 (c), the bean is being
activated. A new instance, instance C, has been instantiated and associated with the EJB object and is in the process of
having its state populated with the state held relative to the EJB object.

Figure 3-5. The passivation and activation processes

The exact mechanism for activating and passivating stateful beans is up to the vendor. Each stateful bean is serializable
and thus provides at least one way of preserving its state, but vendors are free to choose other serialization techniques.
Note that the transient property is not treated as you might expect when activating a passivated bean. In Java
serialization, transient fields are always set to the initial value for that field type when the object is deserialized. Integers
are set to 0, Booleans to false, object references to null, and so on. In EJB, transient fields are not necessarily set back to
their initial values but can maintain their original values, or any arbitrary value, after being activated. Take care when
using transient fields, since their state following activation is implementation-specific.

The activation process is supported by the life-cycle callback methods discussed in Chapter 2. The ejbActivate() method i
activation callback methodss called immediately following the successful activation of a bean instance, and can be used
to reset transient fields to an initial value. ejbPassivate() is called immediately prior to passivation of the bean instance.
These two methods are especially helpful if the bean instance maintains connections to resources that need to be closed
or freed prior to passivation and reobtained following activation. Because the stateful bean instance is evicted from
memory, open connections to resources are not maintained. The exceptions are remote references to other beans and
the SessionContext, which must be maintained with the serialized state of the bean and reconstructed when the bean is
activated. EJB also requires that the references to the JNDI environment context, component interfaces, and the
UserTransaction object be maintained through passivation.

Unlike stateful beans, entity beans do not have conversational state; instead, the state of each entity bean instance is
saved in the database. However, the activation callback methods (ejbActivate() and ejbPassivate()) are used to notify the
instance when it's about to be swapped in or out of the instance pool. The ejbActivate() method is invoked immediately
after the bean instance is swapped into the EJB object, and the ejbPassivate() method is invoked just before the instance
is swapped out.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is swapped out.

3.1.3 J2EE Connector Architecture

The J2EE Connector Architecture defines an interface between Enterprise Information Systems (EISs) and J2EE
container systems (i.e., EJB and Servlet containers). EIS is a generic term for any information system, including
relational database servers, message-oriented middleware (e.g., MQSeries and SonicMQ), CORBA, ERP systems (e.g.,
SAP, PeopleSoft, and JD Edwards), and legacy systems (e.g., IMS and CICS).

J2EE defines a number of standard enterprise APIs, including JDBC, JMS, JNDI, Java IDL, and JavaMail, in addition to
EJB. Each of these APIs provides a vendor-neutral API for a specific kind of enterprise information system. JDBC is used
to exchange information with relational databases; JMS is for message-oriented middleware; JNDI is for naming and
directory services; JavaMail is for electronic mail systems; and Java IDL is for CORBA. Requiring support for these APIs
ensures that the enterprise beans that use them are portable across EJB vendors.

Although the enterprise APIs are vendor-agnostic, the products behind the APIs are always proprietary. When an
enterprise bean uses the enterprise APIs, it's the responsibility of the EJB container to pool and maintain the EIS
connections, enroll the EIS in transactions, propagate security credentials, etc. These tasks often require the EJB
container to interact with the underlying EIS in ways not addressed by the generic APIs. In effect, each J2EE vendor
had to write proprietary code to manage each brand of EIS. Faced with this situation, J2EE vendors chose which EISs
they would support for each standard API. This situation had a significant impact on the brands of EIS an EJB vendor
could be expected to support: for example, vendor A might support JDBC connectivity to Oracle, while vendor B
supports only DB2.

3.1.3.1 J2EE Connectors 1.0 for EJB 2.0 and 2.1

EJB 2.0 required support for the new J2EE Connector Architecture, which went a long way to solving this problem. The
J2eeCA defines an interface between enterprise information systems and EJB containers. It establishes a set of Java
interfaces that the EIS must implement in order to be J2EE Connector-compliant. These interfaces define a very general
and portable Service Provider Interface (SPI) for creating EIS connections, managing connections in a pool, enrolling
connections into transactions, and exchanging security information. The J2eeCA essentially hides the differences
between proprietary infrastructures so that EJB container vendors can develop one set of code to manage all J2eeCA-
compliant EISs.

While the J2eeCA standardizes the SPI, it has little or no impact on the APIs that you, the developer, use. A JDBC
provider (a.k.a. driver) that is J2eeCA-compliant has the same API as one that's not. From the perspective of the
application developer, nothing's changed, but under the hood of the EJB container, a single set of code can be used to
manage all EISs. The benefit is that you can plug any J2eeCA-compliant EIS into your EJB container system. You don't
have to worry about the EIS vendor you choose: as long as its API is J2EE Connector-compliant, it will work with any
EJB 2.0 or 2.1 vendor.

While Version 1.0 of the J2EE Connector Architecture solved some important problems, it didn't support the push model
for messaging. Several EISs push data to clients, without the clients explicitly making a request—for example, JMS. JMS
allows clients to receive messages by subscribing to a destination. In this case, the EIS, the message-oriented
middleware, is pushing messages to the clients.

3.1.3.2 J2EE Connectors 1.5 for EJB 2.1

EJB 2.1 requires support for J2EE Connector Architecture 1.5, which also supports the push model. To support the push
model, J2eeCA 1.5 uses the message-driven bean programming model. Specifically, it defines a container-connector
interface that allows incoming messages, sent asynchronously from the EIS, to be processed by message-driven beans.
For example, vendor X could develop a J2EE Connector for a Mail Delivery Agent (MDA), which is software that delivers
Internet email. Vendor X defines a message-listening interface, the EmailListener, that can be implemented to create an
Email Message-Driven Bean (Email-MDB) for processing email. As the MDA receives email from the Internet, it pushes
them to the EJB container, which delegates each message to an instance of the Email-MDB. The application developer
then writes an Email-MDB that implements the javax.ejb.MessageDrivenBean interface as well as the
com.xvendor.EmailListener interface. Once the Email-MDB is created and deployed, it can process incoming messages.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Primary Services
Many value-added services are available for distributed applications. This book looks at eight value-added services
called the primary services because they are required to complete the Enterprise JavaBeans platform. The primary
services include concurrency, transactions, persistence, distributed objects, asynchronous messaging, timer, naming,
and security. EJB servers automatically manage all the primary services. This capability relieves the application
developers from the task of mastering these complicated services. Instead, developers can focus on defining the
business logic that describes the system and leave the system-level concerns to the EJB server. The following sections
describe each of the primary services and explain how they are supported by EJB.

3.2.1 Concurrency

Concurrency is important to all the bean types, but it has different meanings for each type.

3.2.1.1 Concurrency with session and entity beans

Session beans do not support concurrent access. This limitation makes sense if you consider the nature of stateful and
stateless session beans. A stateful bean is an extension of one client and serves only that client. It doesn't make sense
to make stateful beans concurrent if they are used only by the clients that created them. Stateless session beans don't
need to be concurrent because they don't maintain state that needs to be shared. The scope of the operations
performed by a stateless bean is limited to the scope of each method invocation. Because neither stateful nor stateless
session beans represent shared data, there is no need for concurrency.

Entity beans represent data that is shared and may be accessed concurrently. Entity beans are shared components. In
Titan's EJB system, for example, there are three ships: Paradise, Utopia, and Valhalla. At any given moment the Ship
entity bean that represents the Utopia might be accessed by hundreds of clients. To make concurrent access to entity
beans possible, the EJB container needs to protect the data represented by the shared bean, while allowing many
clients to access the bean simultaneously.

In a distributed object system, problems arise when you attempt to share distributed objects among clients. If two
clients are both using the same EJB object, how do you keep one client from writing over the changes of the other? If,
for example, one client reads the state of an instance just before a different client makes a change to the same
instance, the data the first client read becomes invalid. Figure 3-6 shows two clients sharing the same EJB object.

Figure 3-6. Clients sharing access to an EJB object

EJB addresses the dangers associated with concurrency in entity beans by prohibiting concurrent access to bean
instances. In other words, several clients can be connected to one EJB object, but only one client thread can access the
bean instance at a time. If, for example, one of the clients invokes a method on the EJB object, no other client can
access that bean instance until the method invocation is complete. In fact, if the method is part of a larger transaction,
the bean instance cannot be accessed at all, except within the same transactional context, until the entire transaction is
complete.

Since EJB servers handle concurrency, a bean's methods do not have to be made thread-safe. In fact, the EJB
specification prohibits use of the synchronized keyword. Prohibiting the use of the thread synchronization primitives
prevents developers from thinking that they control synchronization and enhances the performance of bean instances at
runtime. In addition, the EJB specification explicitly prohibits beans from creating their own threads. In other words, as
a bean developer, you cannot create a thread within a bean. The EJB container has to maintain complete control over
the bean in order to properly manage concurrency, transactions, and persistence. Allowing the bean developer to create
arbitrary threads would compromise the container's ability to track what the bean is doing and make it impossible for
the container to manage the primary services.

3.2.1.2 Reentrance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.1.2 Reentrance

When talking about concurrency in entity beans, we need to discuss the related concept of reentrance. Reentrance is
when a thread of control attempts to reenter a bean instance; for example, bean A calls bean B, which in turn calls
bean A. In EJB, entity-bean instances are nonreentrant by default, which means that loopbacks like the one just
described are not allowed.

Remember that entity and session beans interact using objects that implement each other's remote and local interfaces,
and do not interact directly. In other words, when bean A operates on bean B, it does so the same way an application
client would: by using B's remote or local interface as implemented by an EJB object. This allows the EJB container to
interpose between method invocations from one bean to the next in order to apply security and transaction services.

While most bean-to-bean interactions take place using local reference of enterprise beans that are in the same
container, occasionally beans interact using remote references. When interactions between beans take place using
remote references, the beans can be relocated—possibly to a different server—with little or no impact on the rest of the
application. Regardless of whether remote or local interfaces are used, from the perspective of the bean servicing the
call, all clients are created equal. Figure 3-7 shows that, from a bean's point of view, only clients perform business
method invocations. When a business method is invoked on a bean instance, it cannot tell the difference between a
remote application client and a bean client.

Figure 3-7. Beans access each other through EJB objects

A loopback occurs when bean A invokes a method on bean B that then attempts to make a call back to bean A. In
Figure 3-8, client 1 invokes a method on bean A. In response to the method invocation, bean A invokes a method on
bean B. At this point, there is no problem because client 1 controls access to bean A, and bean A is the client of bean B.
If, however, bean B attempts to call a method on bean A, it is blocked because the thread has already entered bean A.
By calling its caller, bean B is performing a loopback. This is illegal by default, because EJB doesn't allow a thread of
control to reenter a bean instance.

Figure 3-8. A loopback scenario

Session beans can never be reentrant, and throw an exception if a loopback is attempted. Entity beans can be
configured to allow reentrance, although it is discouraged by the specification.

Reentrance is not relevant to message-driven beans because they do not respond to RMI calls, as session and entity
beans do. Furthermore, EJB 2.1 endpoint interfaces may only be implemented by stateless session beans, which may
not be reentrant.

The problem with reentrance is that client access to a bean is synchronized so that only one client can access any given
bean at a time. Reentrance addresses a thread of control—initiated by a client request—that attempts to reaccess a
bean instance. The problem with reentrant code is that the EJB object, which intercepts and delegates method
invocations, cannot differentiate between reentrant code and multithreaded access within the same transactional
context. (You'll read more about transactional context in Chapter 14.) If you permit reentrance, you also permit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

context. (You'll read more about transactional context in Chapter 14.) If you permit reentrance, you also permit
multithreaded access to the bean instance. Multithreaded access to a bean instance can result in corrupted data
because threads affect each other's work when they try to accomplish their separate tasks.

It's important to remember that reentrant code is different from a bean instance that simply invokes its own methods at
an instance level. In other words, method foo() on a bean instance can invoke its own public, protected, default, or
private methods directly as much as it wants. Here is an example of intra-instance method invocation that is perfectly
legal:

public HypotheticalBean extends EntityBean {

 public int x;

 public double foo() {

 int i = this.getX();

 return this.boo(i);

 }

 public int getX() {

 return x;

 }

 private double boo(int i) {

 double value = i * Math.PI;

 return value;

 }

}

The business method foo() invokes getX() and then a private method, boo(). The method invocations within the body of
foo() are intra-instance invocations and are not considered reentrant.

3.2.1.3 Concurrency with message-driven beans

In message-driven beans, concurrency refers to the processing of more than one message at a time. If message-driven
beans could process only a single message at time, they would be practically useless in a real-world application because
they couldn't handle heavy message loads. As Figure 3-9 illustrates, if three messages are delivered to a specific
destination from three different clients at the same time, three instances of a single JMS-MDB that subscribes or listens
to that destination can be used to process the messages simultaneously.

Figure 3-9. Concurrent processing with message-driven beans

Message-driven beans that implement APIs other than JMS benefit from the same concurrency controls as JMS-MDBs.
Message-driven beans of all kinds are pooled and used to process incoming messages concurrently so that hundreds,
possibly thousands, of messages can be handled simultaneously.[2]

[2] In reality, it's very difficult to process anything simultaneously without multiple processors, but conceptually this
statement is true. Multiple threads in the same VM or multiple VMs on the same processor (computer chip) imitate
simultaneous processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.2 Transactions

A transaction is a unit-of-work or a set of tasks executed together. Transactions are atomic; in other words, all the
tasks in a transaction must be completed together for the transaction to be considered a success. In the previous
chapter, we used the TravelAgent bean to describe how a session bean controls the interactions of other beans. Here is
a code snippet showing the bookPassage() method described in Chapter 2:

public TicketDO bookPassage(CreditCardDO card,double price)

 throws IncompleteConversationalState {

 if (customer == null ||cruise == null ||cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeRemote resHome = (ReservationHomeRemote)

 getHome("ReservationHome",ReservationHomeRemote.class);

 ReservationRemote reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 getHome("ProcessPaymentHome",ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

The bookPassage() method consists of two tasks that must be completed together: the creation of a new Reservation
EJB and the processing of the payment. When the TravelAgent EJB is used to book a passenger, the charges to the
passenger's credit card and the creation of the reservation must both be successful. It would be inappropriate for the
ProcessPayment EJB to charge the customer's credit card if the creation of a new Reservation EJB fails. Likewise, you
can't make a reservation if the customer credit card is not charged. An EJB server monitors the transaction to ensure
that all the tasks are completed successfully.

Transactions are managed automatically; as a bean developer, you don't need to use any APIs to manage a bean's
involvement in a transaction. Simply declaring the transactional attribute at deployment time tells the EJB server how to
manage the bean at runtime. EJB does provide a mechanism that allows beans to manage transactions explicitly, if
necessary. Setting the transactional attributes during deployment is discussed in Chapter 14, as is explicit management
of transactions and other transactional topics.

3.2.3 Persistence

Entity beans represent the behavior and data associated with real-world people, places, or things. Unlike session and
message-driven beans, entity beans are persistent, which means that the state of an entity is saved in a database.
Persistence allows entities to be durable, so that both their behavior and their data can be accessed at any time without
concern that the information will be lost because of a system failure.

When a bean's state is automatically managed by a persistence service, the container is responsible for synchronizing
the entity bean's instance fields with the data in the database. This automatic persistence is called container-managed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the entity bean's instance fields with the data in the database. This automatic persistence is called container-managed
persistence. When a bean is designed to manage its own state, as is often the case when dealing with legacy systems,
it is called bean-managed persistence.

Each vendor gets to choose its own mechanism for implementing container-managed persistence, but the vendor's
implementation must support the EJB callback methods and transactions. The most common mechanisms used in
persistence by EJB vendors are object-to-relational persistence and object database persistence.

3.2.3.1 Object-to-relational persistence

Object-to-relational persistence is the most common persistence mechanism used in EJB servers today. Object-to-
relational persistence involves mapping an entity bean's state to relational database tables and columns.

In Titan's system, the CabinBean models the concept of a ship's cabin. The CabinBean defines three fields: name, deckLevel,
and id. The abbreviated definition of the CabinBean looks like this:

public abstract class CabinBean implements javax.ejb.EntityBean {

 public abstract String getName();

 public abstract void setName(String str);

 public abstract int getDeckLevel();

 public abstract void setDeckLevel(int level);

 public abstract Integer getId();

 public abstract void setId(Integer id);

}

The abstract accessor methods represent the entity bean's container-managed fields. When an entity bean is deployed,
the container implements these "virtual" fields for the bean, so it is convenient to think of the abstract accessor
methods as describing persistent fields. For example, when talking about the state represented by the setName(
)/getName() abstract accessor method, we refer to it as the name field. Similarly, getId()/setId() represents the id field,
and getDeckLevel()/setDeckLevel() represents the deckLevel field.

With object-to-relational database mapping, the fields of an entity bean correspond to columns in a relational database.
The Cabin's name field, for example, maps to the column labeled NAME in a table called CABIN in Titan's relational
database. Figure 3-10 shows a graphical depiction of this type of mapping.

Figure 3-10. Object-to-relational mapping of entity beans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many EJB systems provide wizards or administrative interfaces for mapping relational database tables to the fields of
entity-bean classes. Using these wizards, mapping entities to tables is fairly straightforward and usually takes place at
deployment time. Figure 3-11 shows Pramati Application Server's object-to-relational mapping wizard.

Figure 3-11. Pramati object-to-relational mapping wizard

Once a bean's fields are mapped to the relational database, the container takes over the responsibility of keeping the
state of an entity-bean instance consistent with the corresponding tables in the database. This process is called
synchronizing the state of the bean instance. In the case of CabinBean, bean instances map one-to-one to rows in the
CABIN table of the relational database. When a change is made to a Cabin EJB, it is written to the appropriate row in the
database. Sometimes, bean types map to more than one table. These are more complicated mappings, often requiring
a SQL join and multiple updates.

In addition, container-managed persistence defines entity-bean relationship fields, which allow entity beans to have
one-to-one, one-to-many, and many-to-many relationships with other beans. Entity beans can maintain collections of
other entity beans or single references. The container-managed persistence model is covered in Chapter 6, Chapter 7,
and Chapter 8.

In addition to synchronizing the state of an entity, EJB provides mechanisms for creating and removing entities. Calls to
the EJB home to create and remove entities result in the insertion or deletion of records in the database. Because each
entity stores its state in a database table, new records (and therefore bean identities) can be added to tables from
outside the EJB system. In other words, inserting a record into the CABIN table—whether done by EJB or by direct
access to the database—creates a new Cabin entity. It's not created in the sense of instantiating a Java object, but
rather in the sense that the data that describes a Cabin entity has been added to the system.

3.2.3.2 Object database persistence

Object-oriented databases are designed to preserve object types and object graphs, and therefore are a good match for
components written in an object-oriented language such as Java. They offer a cleaner mapping between entity beans
and the database than a traditional relational database. However, container-managed persistence provides a
programming model that can accommodate both object-to-relational mapping and object databases.

While object databases perform well when it comes to very complex object graphs, they are still not as standardized as
relational databases, making it more difficult to migrate from one database to another. In addition, fewer third-party
products (such as products for reporting and data warehousing) exist that support object databases.

3.2.3.3 Legacy persistence

EJB can be used to put an object wrapper on legacy systems, systems that are based on mainframe applications, or
nonrelational databases. Container-managed persistence in such an environment requires an EJB container designed
specifically for legacy data access. Vendors might, for example, provide mapping tools that allow beans to be mapped
to IMS, CICS, b-trieve, or some other legacy application.

3.2.3.4 Container-managed versus bean-managed persistence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.3.4 Container-managed versus bean-managed persistence

Regardless of the type of legacy system, container-managed persistence is preferable to bean-managed persistence.
With container-managed persistence, the bean's state is managed automatically, a process that is more efficient at
runtime and more productive during bean development. Many projects, however, require that beans obtain their states
from legacy systems that are not supported by the EJB vendor. In these cases, developers must use bean-managed
persistence, which means the developer doesn't use the automatic persistence service of the EJB server. BMP is also
used by third-party persistence providers that support nontraditional database systems. These third-party products will
generate BMPs automatically and use J2eeCA to obtain transactionally safe access to a database not normally supported
by the EJB vendor. Chapter 6 through Chapter 9 describe container-managed and bean-managed persistence in detail.

3.2.4 Distributed Objects

When we discuss the component interfaces and other EJB interfaces and classes used on the client, we are talking
about the client's view of the EJB system. The EJB client view doesn't include the EJB objects, the EJB container,
instance swapping, or any of the other implementation specifics. As far as a remote client is concerned, a bean is
defined by its remote interface and home interface or endpoint interface. Everything else is invisible, including the
mechanism used to support distributed objects. As long as the EJB server supports the EJB client view, any distributed
object protocol can be used. EJB 2.0 requires that every EJB server support Java RMI-IIOP, but it doesn't limit the
protocols an EJB server can support to just Java RMI-IIOP (the Java RMI API using the CORBA IIOP protocol). EJB 2.1
also requires support for SOAP 1.1 via the JAX-RPC API.

Regardless of the protocol, the server must support Java clients using the Java EJB client API, which means that the
protocol must map to the Java RMI-IIOP or the JAX-RPC programming model. Figure 3-12 illustrates the Java language
EJB API supported by different distributed object protocols.

Figure 3-12. Java EJB client view supported by various protocols

EJB also allows servers to support access to beans by clients written in languages other than Java. An example of this
capability is the EJB-to-CORBA mapping defined by Sun.[3] This document describes the CORBA Interface Definition
Language (IDL) that can be used to access enterprise beans from CORBA clients. A CORBA client can be written in any
language, including C++, Smalltalk, Ada, and even COBOL. The mapping also includes details about supporting the Java
EJB client view, as well as details on mapping the CORBA naming system to EJB servers and distributed transactions
across CORBA objects and beans. Another example is the EJB-to-SOAP mapping based on JAX-RPC. It allows SOAP
client applications written in languages such as VisualBasic.NET, C#, and Perl to access stateless session beans. Figure
3-13 illustrates the possibilities for accessing an EJB server from different distributed object clients.

[3] Sun Microsystems' Enterprise JavaBeans to CORBA Mapping, Version 1.1, by Sanjeev Krishnan..

Figure 3-13. EJB accessed from different distributed clients

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.5 Asynchronous Enterprise Messaging

Prior to EJB 2.0, support for asynchronous enterprise messaging was not considered a primary service because it wasn't
necessary in order to have a complete EJB platform. However, with the introduction of message-driven beans in EJB
2.0, asynchronous enterprise messaging with JMS has become so important that it has been elevated to the status of a
primary service.

Support for enterprise messaging requires that the EJB container reliably route messages from JMS clients to JMS-
MDBs. This involves more than the simple delivery semantics associated with email or even the JMS API. With
enterprise messaging, messages must be reliably delivered, which means that a failure while delivering the message
may require the JMS provider to attempt redelivery.[4] What's more, enterprise messages may be persistent, which
means they are stored to disk or to a database until they can be properly delivered to their intended clients. Persistent
messages also must survive system failures; if the EJB server crashes, these messages must still be available for
delivery when the server comes back up. Most importantly, enterprise messaging is transactional. That means if a JMS-
MDB fails while processing a message, that failure will abort the transaction and force the EJB container to redeliver the
message to another message-driven bean instance.

[4] Most EJB vendors will place a limit on the number of times a message can be redelivered. If redelivery is
attemped too many times, the message might be placed in a "dead message" repository, where it can be reviewed
by an administrator.

In addition message-driven beans, stateless session beans and entity beans can also send JMS messages. Sending
messages can be as important to Enterprise JavaBeans as delivery of messages to JMS-MDB—support for both facilities
tends to go hand in hand.

In EJB 2.0, supporting JMS-MDBs required tight coupling between the EJB container and the JMS message router; as a
result, many EJB container systems could only support a limited number of JMS providers. This changed in EJB 2.1,
which requires support for Java Connector API Version 1.5. J2EE Connectors provides better support for asynchronous
communication systems such as JMS, which means that JMS-MDBs have become more of a pluggable service in the EJB
platform. Any JMS provider that supports the J2eeCA can send messages to a JMS message-driven bean.

3.2.6 EJB 2.1 : Timer Service

Enterprise JavaBeans 2.1 introduced a new primary service, the Timer Service. The Timer Service can be used to
schedule notifications that are sent to enterprise beans at specific times. Timers are useful in many different
applications. For example, a banking system may set timers on mortgage accounts to check for past-due payments. A
stock-trading system might allow timers to be set on "buy limit orders." A medical claims system may set timers for
automatic fraud audits of individual medical records. Timers can also be used in applications like self-auditing systems
and batch processing.

Timers can be set on entity, stateless session, and message-driven beans. With session and entity beans, the bean sets
the timers itself. For example, when a mortgage loan is created, the entity bean that represents the loan might set a
past-due timer when the loan is created, and reset the timer whenever a payment is made. Some EJB container
systems may support message-driven bean timers, which are configured at deployment time and perform batch
processing at regular intervals. The Timer Service is covered in detail in Chapter 13.

3.2.7 Naming

All naming services do essentially the same thing: they provide clients with a mechanism for locating distributed objects
or resources. To accomplish this, a naming service must provide two things: object binding and a lookup API. Object
binding is the association of a distributed object with a natural language name or identifier. The CabinHomeRemote
object, for example, might be bound to the name "CabinHomeRemote" or "room." A binding is really a pointer or an
index to a specific distributed object. A lookup API provides the client with an interface to the naming system. Simply
put, lookup APIs allow clients to connect to a distributed service and request a remote reference to a specific object.

Enterprise JavaBeans mandates the use of JNDI as a lookup API on Java clients. JNDI (Java Naming and Directory
Interface) supports just about any kind of naming and directory service. Although JNDI can become extraordinarily
complex, the way it's used in J2EE applications is usually fairly simple. Java client applications can use JNDI to initiate a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

complex, the way it's used in J2EE applications is usually fairly simple. Java client applications can use JNDI to initiate a
connection to an EJB server and to locate a specific EJB home. The following code shows how the JNDI API might be
used to locate and obtain a reference to the EJB home CabinHomeRemote:

javax.naming.Context jndiContext = new javax.naming.InitialContext();

Object ref = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

CabinHomeRemote cabinHome = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Cabin cabin = cabinHome.create(382, "Cabin 333",3);

cabin.setName("Cabin 444");

cabin.setDeckLevel(4);

The properties passed into the constructor of InitialContext tell the JNDI API where to find the EJB server and what JNDI
service provider (driver) to load. The Context.lookup() method tells the JNDI service provider the name of the object to
return from the EJB server. In this case, we are looking for the home interface to the Cabin EJB. Once we have the
Cabin EJB's home interface, we can use it to create new cabins and access existing cabins.

There are many different kinds of directory and naming services; EJB vendors can choose the one that best meets their
needs, but all vendors must support the CORBA naming service in addition to any other directory services they choose
to support.

3.2.8 Security

Enterprise JavaBeans servers can support as many as three kinds of security:

Authentication

Simply put, authentication validates the identity of the user. The most common kind of authentication is a
simple login screen that requires a username and a password. Once users have successfully passed through the
authentication system, they are free to use the system. Authentication can also be based on secure ID cards,
swipe cards, security certificates, and other forms of identification. While authentication is the primary
safeguard against unauthorized access to a system, it is fairly crude because it doesn't police an authorized
user's access to resources within the system.

Access control

Access control (a.k.a. authorization) applies security policies that regulate what a specific user can and cannot
do. Access control ensures that users access only those resources for which they have been given permission.
Access control can police a user's access to subsystems, data, and business objects, or it can monitor more
general behavior. Certain users, for example, may be allowed to update information while others are allowed
only to view the data.

Secure communication

Communication channels between a client and a server are frequently the focus of security concerns. A channel
of communication can be secured by encrypting the communication between the client and the server. When
communication is secured by encryption, the messages passed are encoded so that they cannot be read or
manipulated by unauthorized individuals. This normally involves the exchange of cryptographic keys between
the client and the server. The keys allow the receiver of the message to decode the message and read it.

Most EJB servers support secure communication—usually through the Secure Sockets Layer (SSL) protocol—and some
mechanism for authentication, but Enterprise JavaBeans specifies only access control in its server-side component
models. Authentication may be specified in subsequent versions, but secure communication will probably never be
specified because it is independent of the EJB specification and the distributed object protocol.

Although authentication is not specified in EJB, it is often accomplished using the JNDI API. For example, a client using
JNDI can provide authenticating information using the JNDI API to access a server or resources in the server. This
information is frequently passed when the client attempts to initiate a JNDI connection to the EJB server. The following
code shows how the client's password and username are added to the connection properties used to obtain a JNDI
connection to the EJB server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection to the EJB server:

properties.put(Context.SECURITY_PRINCIPAL, userName);

properties.put(Context.SECURITY_CREDENTIALS, userPassword);

javax.naming.Context jndiContext = new javax.naming.InitialContext(properties);

Object ref= jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote cabinHome = (CabinHome)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

EJB specifies that every client application accessing an EJB system must be associated with a security identity. The
security identity represents the client as either a user or a role. A user might be a person, security credential,
computer, or even a smart card. Normally, the user is a person whose identity is assigned when she logs in. A role
represents a grouping of identities and might be something like "manager," which is a group of user identities that are
considered managers at a company.

When a remote client logs on to the EJB system, it is associated with a security identity for the duration of that session.
The identity is found in a database or directory specific to the platform or EJB server. This database or directory is
responsible for storing individual security identities and their memberships to groups. Once a remote client application
has been associated with a security identity, it is ready to use beans to accomplish some task. When a client invokes a
method on a bean, the EJB server implicitly passes the client's identity with the method invocation. When the EJB object
or EJB home receives the method invocation, it checks the identity to ensure that the client is allowed to invoke that
method.

3.2.8.1 Role-driven access control

In Enterprise JavaBeans, the security identity is represented by a java.security.Principal object. The Principal acts as a
representative for users, groups, organizations, smart cards, and so on to the EJB access-control architecture.
Deployment descriptors include tags that declare which logical roles are allowed to access which bean methods at
runtime. The security roles are considered logical roles because they do not directly reflect users, groups, or any other
security identities in a specific operational environment. Instead, security roles are mapped to real-world user groups
and users when the bean is deployed. This mapping allows a bean to be portable; every time the bean is deployed in a
new system, the roles can be mapped to the users and groups specific to that operational environment.

Here is a portion of the Cabin EJB's deployment descriptor that defines two security roles, ReadOnly and Administrator:

<security-role>

 <description>

 This role is allowed to execute any method on the bean

 and to read and change any cabin bean data.

 </description>

 <role-name>

 Administrator

 </role-name>

</security-role>

<security-role>

 <description>

 This role is allowed to locate and read cabin info.

 This role is not allowed to change cabin bean data.

 </description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <role-name>

 ReadOnly

 </role-name>

</security-role>

The role names in this descriptor are not reserved or special names with predefined meanings; they are simply logical
names chosen by the bean assembler. In other words, the role names can be anything you want.[5] Once the <security-
role> tags are declared, they can be associated with methods in the bean using <method-permission> tags. Each <method-
permission> tag contains one or more <method> tags, which identify the bean methods associated with one or more
logical roles identified by the <role-name> tags. The <role-name> tags must match the names defined by the <security-
role> tags:

[5] For a complete understanding of XML, including specific rules for tag names and data, see Learning XML by Erik
Ray (O'Reilly).

<method-permission>

 <role-name>Administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>ReadOnly</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getName</method-name>

 </method>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

 </method>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

In the first <method-permission>, the Administrator role is associated with all methods on the Cabin EJB, which is denoted
by specifying the wildcard character (*) in the <method-name> of the <method> tag. In the second <method-permission>,
the ReadOnly role is limited to accessing only three methods: getName(), getDeckLevel(), and findByPrimaryKey(). Any
attempt by a ReadOnly role to access a method that is not listed in the <method-permission> results in an exception. This
kind of access control makes for a fairly fine-grained authorization system.

Since a single deployment descriptor can describe more than one enterprise bean, the tags used to declare method
permissions and security roles are defined in a special section of the deployment descriptor. This allows several beans
to share the same security roles. The location of these tags and their relationship to other sections of the deployment
descriptor is covered in more detail in Chapter 17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

descriptor is covered in more detail in Chapter 17.

The person who deploys the bean must examine the <security-role> information and map each logical role to a user
group. The deployer need not be concerned with what roles go to which methods; rely on the descriptions given in the
<security-role> tags to determine matches based on the description of the logical role. This relieves the deployer, who
may not be a developer, from having to understand how the bean works in order to deploy it. Figure 3-14 shows the
same enterprise bean deployed in two different environments (labeled X and Z). In each environment, the user groups
are mapped to their logical roles in the XML deployment descriptor so that specific user groups have access privileges to
specific methods on specific enterprise beans. The ReadOnly role is mapped to those groups that should be limited to the
get accessor methods and the find method. The Administrator role is mapped to those user groups that should have
privileges to invoke any method on the Cabin EJB.

Figure 3-14. Mapping roles in the operational environment to logical roles in the
deployment descriptor

The access control described here is implicit; once the bean is deployed, the container takes care of checking that users
access only those methods for which they have permission. When a client invokes a method on a bean, the client's
Principal is checked to see if it is a member of a role mapped to that method. If it's not, an exception is thrown and the
client is denied permission to invoke the method. If the client is a member of a privileged role, the method is invoked.

A client's Principal is propagated from one bean invocation to the next, ensuring that its access is controlled whether or
not it invokes a bean method directly. For example, propagation prevents a user in a ReadOnly role from legitimately
invoking a method on some bean, which in turn invokes a method that is prohibited to a ReadOnly user. This
propagation can be overridden by specifying that the enterprise bean executes under a different security identity, called
the runAs security identity (discussed later in this chapter).

3.2.8.2 Unchecked methods

In EJB, a set of methods can be designated as unchecked, which means that the security permissions are not checked
before the method is invoked. An unchecked method can be invoked by any client, no matter what role it is using. To
designate a method or methods as unchecked, use the <method-permission> element and replace the <role-name>
element with an empty <unchecked> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element with an empty <unchecked> element:

<method-permission>

 <unchecked/>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

This declaration tells us that all the methods of the Cabin EJB, as well as the Customer EJB's findByPrimaryKey() method,
are unchecked. Although the second <method-permission> element gives the administrator permission to access all the
Cabin EJB's methods, this declaration is overridden by the unchecked method permission. Unchecked method
permissions always override all other method permissions.

3.2.8.3 The runAs security identity

In addition to specifying the Principals that have access to an enterprise bean's methods, the deployer can also specify
the runAs Principal for the entire enterprise bean. The runAs security identity was originally specified in EJB 1.0,
abandoned in EJB 1.1, and then reintroduced in EJB 2.0 and modified so that it is easier for vendors to implement.

While the <method-permission> elements specify which Principals have access to the bean's methods, the <security-identity>
element specifies under which Principal the method will run. In other words, the runAs Principal is used as the enterprise
bean's identity when it tries to invoke methods on other beans—however, this identity isn't necessarily the same as the
identity that's currently accessing the bean. For example, the following deployment descriptor elements declare that the
create() method can be accessed only by JimSmith but that the Cabin EJB always runs under the Administrator security
identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 ...

 <security-identity>

 <run-as>

 <role-name>Administrator</role-name>

 </run-as>

 </security-identity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

<assembly-descriptor>

<security-role>

 <role-name>Administrator</role-name>

</security-role>

<security-role>

 <role-name>JimSmith</role-name>

</security-role>

...

<method-permission>

 <role-name>JimSmith</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 </method>

</method-permission>

...

</assembly-descriptor>

This kind of configuration is useful when the enterprise beans or resources accessed in the body of the method require
a Principal that is different from the one used to gain access to the method. For example, the create() method might call
a method in enterprise bean X that requires the Administrator security identity. If we want to use enterprise bean X in
the create() method, but we want only Jim Smith to create new cabins, we would use the <security-identity> and
<method-permission> elements together to give us this kind of flexibility: the <method-permission> for create() would
specify that only Jim Smith can invoke the method, and the <security-identity> element would specify that the enterprise
bean always runs under the Administrator security identity. To specify that an enterprise bean will execute under the
caller's identity, the <security-identity> role contains a single empty element, the <use-caller-identity> element. For
example, the following declarations specify that the Cabin EJB always executes under the caller's identity, so if Jim
Smith invokes the create() method, the bean will run under the JimSmith security identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 ...

 <security-identity>

 <use-caller-identity/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <use-caller-identity/>

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

Figure 3-15 illustrates how the runAs Principal can change in a chain of method invocations. Notice that the runAs
Principal is the Principal used to test for access in subsequent method invocations.

Figure 3-15. runAs identity

Here's what's going on in Figure 3-15:

1. The client, who is identified as BillJones, invokes the method foo() on enterprise bean A.

2. Before servicing the method, enterprise bean A checks to see if BillJones is included in the <method-permission>
elements for foo(). It is.

3. The <security-identity> of enterprise bean A is declared as <use-caller-identity>, so the foo() method executes
under the caller's Principal; in this case, it's BillJones.

4. While foo() is executing, it invokes method bar() on enterprise bean B using the BillJones security identity.

5. Enterprise bean B checks the foo() method's Principal (BillJones) against the allowed identities for method bar().
BillJones is included in the <method-permission> elements, so the method bar()is allowed to execute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Enterprise bean B specifies the <security-identity> to be the runAs Principal of Administrator.

7. While bar() is executing, enterprise bean B invokes the method boo() on enterprise bean C.

8. Enterprise bean C checks whether bar()'s runAs Principal (Administrator) is included in the <method-permission>
elements for method boo(). It is.

9. The <security-identity> for enterprise bean C specifies a runAs Principal of System, the identity under which the boo(
) method executes.

This protocol applies to entity and stateless session beans equally. Message-driven beans have only a runAs identity;
they will never execute under the caller identity, because there is no "caller." Message-driven beans process messages,
and incoming messages don't have a meaningful identity. These messages are not considered RMI calls, and the JMS
clients that send them are not directly associated with the messages. With no caller security identity to propagate,
message-driven beans must always have a runAs security identity specified, and always execute under that runAs
Principal.

3.2.9 Primary Services and Interoperability

Interoperability is a vital part of EJB. The specification includes the required support for Java RMI-IIOP for remote
method invocation, and provides for transaction, naming, and security interoperability. EJB 2.1 also requires support for
JAX-RPC, which itself requires support for SOAP 1.1 and WSDL 1.1; these are the standards of the web services
industry.

3.2.9.1 IIOP

EJB requires vendors to provide an implementation of Java RMI that uses the CORBA 2.3.1 IIOP protocol. The goal of
this requirement is that J2EE servers will be able to interoperate, so that J2EE components (enterprise beans,
applications, servlets, and JSPs) in one J2EE server can access enterprise beans in a different J2EE server. The Java
RMI-IIOP specification standardizes the transfer of parameters, return values, and exceptions, as well as the mapping
of interfaces and value objects to the CORBA IDL.

Vendors may support protocols other than Java RMI-IIOP, as long as the semantics of the RMI interfaces adhere to the
types allowed in RMI-IIOP. This constraint ensures that a client's view of EJB is consistent, regardless of the protocol
used in remote invocations.

Transaction interoperability between containers for two-phase commits is an optional but important feature of EJB. It
ensures that transactions started by a J2EE web component propagate to enterprise beans in other containers. The EJB
specifications detail how two-phase commits are handed across EJB containers as well as how transactional containers
interact with nontransactional containers.

EJB also addresses the need for an interoperable naming service for looking up enterprise beans. It specifies CORBA
CosNaming as the interoperable naming service, defining how the service must implement the IDL interfaces of beans
in the CosNaming module and how EJB clients use the service over IIOP.

EJB provides security interoperability by specifying how EJB containers establish trust relationships and how containers
exchange security credentials when J2EE components access enterprise beans across containers. EJB containers are
required to support the Secure Sockets Layer (SSL 3.0) protocol and the related IETF-standard Transport Layer
Security (TLS 1.0) protocol for secure connections between clients and enterprise beans.

While IIOP has been around for a long time and offers interoperability in a number of areas, the truth is it hasn't been
very successful. There are a variety of reasons why IIOP has not been the silver bullet it was intended to be, but
perhaps the biggest reason is complexity. Although IIOP is platform-independent, it's not trivial for vendors to
implement. In addition, there appear to be numerous gaps in the IIOP and other CORBA protocols, which cause
interoperability problems when actually deployed in a production environment. It's rare to hear of real-world systems
that have successfully deployed interoperating EJB systems based on IIOP. The solution the industry seems to have
latched onto is web services, which depend on SOAP and WSDL as the bases for interoperability.

3.2.9.2 SOAP and WSDL

SOAP (Simple Object Access Protocol) is the primary protocol used by web services today. It's based on XML and can be
used for both RPC and document (asynchronous) style messaging. The fact that SOAP is based on XML means that it's
fairly easy to support. Any platform (operating system, programming language, software application, etc.) that can
create HTTP network connections and parse XML can handle the SOAP protocol. This is why SOAP has gained
widespread acceptance in a short period of time. There are over 70 SOAP toolkits (code libraries) available today for
just about every modern programming environment, including Java, .NET, JavaScript, C, C++, VisualBasic, Delphi, Perl,
Python, Ruby, SmallTalk, and others.

WSDL (Web Service Description Language) is the IDL of the web services. A WSDL document is an XML file that
describes what web services a company supports, as well as the protocols, message formats, and network addresses of
those web services. WSDL documents are highly structured, so that they can be used to autogenerate RPC stubs and
other software interfaces for communicating with web services. Although WSDL documents are open enough to describe
any type of service, they are typically used to describe web services that use the SOAP protocol.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any type of service, they are typically used to describe web services that use the SOAP protocol.

WSDL and SOAP are normally used in combination. They form the building blocks for other interoperability standards
covering security, transaction, orchestration, enterprise messaging, and a cornucopia of other topics. There is a lot of
overlap among different groups that are developing infrastructure protocols based on SOAP and WSDL, and as a result,
there are a lot of conflicting and immature standards. SOAP and WSDL have a lot of promise, but it's still too soon to
say whether web services will solve the interoperability problems that have plagued enterprise computing since the
beginning. It's likely that SOAP, WSDL, and the infrastructure protocols based on these standards will go further than
IIOP, DCOM, and other predecessors, but they won't be a silver bullet. Web services are covered in more detail in
Chapter 14.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 What's Next?
The first three chapters of this book gave you a foundation on which to develop Enterprise JavaBeans components and
applications. While we haven't gone into detail, we've shown you most of the topics that you'll be dealing with.
Beginning with Chapter 4, you will develop your own beans and learn how to apply them in EJB applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Developing Your First Enterprise Beans
One of the most important features of EJB is that enterprise beans have the ability to work with containers from
different vendors. However, that doesn't mean that selecting a server and installing your enterprise beans on that
server are trivial processes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Choosing and Setting Up an EJB Server
The EJB server you choose should provide a utility for deploying enterprise beans. It doesn't matter whether the utility
is command-line oriented or graphical, as long as it does the job. The deployment utility should allow you to work with
prepackaged enterprise beans, i.e., enterprise beans that have already been developed and archived in a JAR file.
Finally, the EJB server must support an SQL-standard relational database that is accessible using JDBC. For the
database, you should have privileges sufficient for creating and modifying a few simple tables in addition to normal
read, update, and delete capabilities. If you have chosen an EJB server that does not support a SQL-standard relational
database, you may need to modify the examples to work with the product you are using.

This book does not say very much about how to install and deploy enterprise beans. That task is largely server-
dependent. We'll provide some general ideas about how to organize JAR files and create deployment descriptors, but for
a complete description of the deployment process, you'll have to refer to your vendor's documentation.

4.1.1 Setting Up Your Java IDE

To get the most from this chapter, it helps to have an IDE that has a debugger and allows you to add Java files to its
environment. Several Java IDEs—such as BEA's Weblogic Workshop, IBM's Eclipse, Borland's JBuilder, and Sun's Forte—
fulfill this requirement. Some EJB products, such as IBM's WebSphere and BEA's Weblogic, are tightly coupled with an
IDE that makes life a lot easier when it comes to writing, deploying, and debugging your applications.

Once you have an IDE set up, you need to include the Enterprise JavaBeans and other J2EE packages which will be
provided by your application server vendor—usually in a single JAR file (e.g., j2ee.jar).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Developing an Entity Bean
There's no better place to start than the Cabin EJB, which we have been examining throughout the previous chapters.
The Cabin EJB is an entity bean that encapsulates the data and behavior associated with a cruise ship cabin in Titan's
business domain.

4.2.1 Cabin: The Remote Interface

When developing an entity bean, we first want to define its remote interface. The remote interface defines the bean's
business purpose; the methods of this interface must capture the concept of the entity. We defined the remote
interface for the Cabin EJB in Chapter 2; here, we add two new methods for setting and getting the ship ID and the bed
count. The ship ID identifies the ship to which the cabin belongs, and the bed count tells how many people the cabin
can accommodate:

package com.titan.cabin;

import java.rmi.RemoteException;

public interface CabinRemote extends javax.ejb.EJBObject {

 public String getName() throws RemoteException;

 public void setName(String str) throws RemoteException;

 public int getDeckLevel() throws RemoteException;

 public void setDeckLevel(int level) throws RemoteException;

 public int getShipId() throws RemoteException;

 public void setShipId(int sp) throws RemoteException;

 public int getBedCount() throws RemoteException;

 public void setBedCount(int bc) throws RemoteException;

}

The CabinRemote interface defines four properties: name, deckLevel, shipId, and bedCount. Properties are attributes of an
enterprise bean that can be accessed by public set and get methods.

Notice that we have made the CabinRemote interface a part of a new package named com.titan.cabin. Place all the classes
and interfaces associated with each type of bean in a package specific to the bean. Because our beans are for the use of
the Titan cruise line, we placed these packages in the com.titan package hierarchy. We also created directory structures
that match package structures. If you are using an IDE that works directly with Java files, create a new directory called
dev (for development) and create the directory structure shown in Figure 4-1. Copy the CabinRemote interface into your
IDE and save its definition to the cabin directory. Compile the CabinRemote interface to ensure that its definition is
correct. The CabinRemote.class file, generated by the IDE's compiler, should be written to the cabin directory, the same
directory as the CabinRemote.java file. The rest of the Cabin bean's classes will be placed in this same directory.

Figure 4-1. Directory structure for the Cabin bean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.2 CabinHome: The Remote Home Interface

Once we have defined the remote interface of the Cabin EJB, we have defined the remote view of this simple entity
bean. Next, we need to define the Cabin EJB's remote home interface, which specifies how the enterprise bean can be
created, located, and destroyed by remote clients; in other words, the Cabin EJB's life-cycle behavior. Here is a
complete definition of the CabinHomeRemote home interface:

package com.titan.cabin;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

}

The CabinHomeRemote interface extends javax.ejb.EJBHome and defines two life-cycle methods: create() and
findByPrimaryKey(). These methods create and locate remote references to Cabin EJBs. Remove methods (for deleting
enterprise beans) are defined in the javax.ejb.EJBHome interface, so the CabinHomeRemote interface inherits them.

4.2.3 CabinBean: The Bean Class

We have now defined the remote client-side API for creating, locating, using, and removing the Cabin EJB. Now we
need to define CabinBean, the class that provides the implementation on the server for the Cabin EJB. The CabinBean
class is an entity bean that uses container-managed persistence, so its definition will be fairly simple.

In addition to the callback methods discussed in Chapter 2 and Chapter 3, we must also define accessor methods for
the CabinRemote interface and an implementation of the create method defined in the CabinHomeRemote interface. Here is
the complete definition of the CabinBean class:

package com.titan.cabin;

import javax.ejb.EntityContext;

public abstract class CabinBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public Integer ejbCreate(Integer id){

 this.setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id){

 }

 public abstract void setId(Integer id);

 public abstract Integer getId();

 public abstract void setShipId(int ship);

 public abstract int getShipId();

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setBedCount(int count);

 public abstract int getBedCount();

 public abstract void setDeckLevel(int level);

 public abstract int getDeckLevel();

 public void setEntityContext(EntityContext ctx) {

 // Empty implementation.

 }

 public void unsetEntityContext() {

 // Empty implementation.

 }

 public void ejbActivate() {

 // Empty implementation.

 }

 public void ejbPassivate() {

 // Empty implementation.

 }

 public void ejbLoad() {

 // Empty implementation.

 }

 public void ejbStore() {

 // Empty implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Empty implementation.

 }

 public void ejbRemove() {

 // Empty implementation.

 }

}

The CabinBean class can be divided into two sections for discussion: declarations for the container-managed fields and
the callback methods.

4.2.3.1 Container-managed fields

The CabinBean defines several pairs of abstract accessor methods. For example, setName() and getName() are a pair of
abstract accessor methods. These methods are responsible for setting and getting the entity bean's name field. When
the bean is deployed, the EJB container automatically implements all the abstract accessor methods so that the bean
state can be synchronized with the database. These implementations map the abstract accessor methods to fields in the
database. Although all the abstract accessor methods have corresponding methods in the remote interface,
CabinRemote, it's not necessary that they do so. Some accessor methods are for the entity bean's use only and are never
exposed to the client through the remote or local interfaces. Note that, unlike the matching methods in the remote
interface, the abstract accessor methods do not throw RemoteExceptions.

It's customary to consider the abstract accessor methods as providing access to virtual fields and to refer to those fields
by their method names, less the get or set prefix. For example, the getName()/setName() abstract accessor methods
define a virtual container-managed persistence (CMP) field called name (the first letter is always changed to lowercase).
The getDeckLevel()/setDeckLevel() abstract accessor methods define a virtual CMP field called deckLevel, and so on.

The name, deckLevel, shipId, and bedCount fields represent the Cabin EJB's persistent state. They will be mapped to the
database at deployment time. These fields are also publicly available through the entity bean's remote interface.
Invoking the getBedCount() method on a CabinRemote EJB object causes the container to delegate that call to the
corresponding getBedCount() method on the CabinBean instance.

There is no requirement that CMP fields must be exposed. The id field is another container-managed field, but its
abstract accessor methods are not exposed to the client through the CabinRemote interface. This field is the primary key
of the Cabin EJB; it's the entity bean's index to its data in the database. It's bad practice to expose the primary key of
an entity bean—you don't want client applications to be able to change that key.

4.2.3.2 The callback methods

The CabinHomeRemote interface defines one create() method, so there is only one corresponding ejbCreate() method and
one ejbPostCreate() method defined by the CabinBean class. When a client invokes the create() method on the remote
home interface, it is delegated to a matching ejbCreate() method on the entity bean instance. The ejbCreate() method
initializes the fields; in the case of the CabinBean, it sets the id field.

Although it's not required by the EJB specification, some J2EE application vendors insist
that ejbCreate() throw a javax.ejb.CreateException—this is true of the J2EE 1.4 SDK. This has
never been a requirement, but it's an issue that continues to crop up every time there is a
new edition of this book.

The ejbCreate() method always returns the primary key type; with container-managed persistence, this method returns
the null value. It's the container's responsibility to create the primary key. Why does it return null? This convention
makes it easier for EJB vendors that support container-managed persistence using bean-managed persistence—it's a
technique that is more common in EJB 1.1. Bean-managed persistence beans, which are covered in Chapter 10, always
return the primary key type.

Once the ejbCreate() method has executed, the ejbPostCreate() method is called to perform any follow-up operations.
The ejbCreate() and ejbPostCreate() methods must have signatures that match the parameters and (optionally) the
exceptions of the home interface's create() method. The ejbPostCreate() method is used to perform any postprocessing
on the bean after it is created, but before it can be used by the client. Both methods will execute, one right after the
other, when the client invokes the create() method on the remote home interface.

The findByPrimaryKey() method is not defined in container-managed bean classes. Instead, find methods are generated
at deployment and implemented by the container. With bean-managed entity beans, find methods must be defined in
the bean class. In Chapter 10, when you develop bean-managed entity beans, you will define the find methods in the
bean classes you develop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bean classes you develop.

The CabinBean class implements javax.ejb.EntityBean, which defines seven callback methods: setEntityContext(),
unsetEntityContext(), ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), and ejbRemove(). The container uses these callback
methods to notify the CabinBean of certain events in its life cycle. Although the callback methods are implemented, the
implementations are empty. The CabinBean is simple enough that it doesn't need to do any special processing during its
life cycle. When we study entity beans in more detail in Chapter 6 through Chapter 11, we will take advantage of these
callback methods.

4.2.4 The Deployment Descriptor

You are now ready to create a deployment descriptor for the Cabin EJB. The deployment descriptor performs a function
similar to a properties file. It describes which classes make up an enterprise bean and how the enterprise bean should
be managed at runtime. During deployment, the deployment descriptor is read and its properties are displayed for
editing. The deployer can then modify and add settings as appropriate for the application's operational environment.
Once the deployer is satisfied with the deployment information, she uses it to generate the entire supporting
infrastructure needed to deploy the enterprise bean in the EJB server. This may include resolving enterprise bean
references, adding the enterprise bean to the naming system, and generating the enterprise bean's EJB object and EJB
home, persistence infrastructure, transactional support, and so forth.

Although most EJB server products provide a wizard for creating and editing deployment descriptors, we will create ours
directly so that the enterprise bean is defined in a vendor-independent manner. This requires some manual labor, but it
gives you a much better understanding of how deployment descriptors are created. Once the deployment descriptor is
finished, the enterprise bean can be placed in a JAR file and deployed on any EJB-compliant server of the appropriate
version. An XML deployment descriptor has been created for every example in this book; they are available from the
download site.

Vendors often require that you include vendor-specific deployment files along with the
standard ones. This is an unfortunate situation that impacts portability, but something you
need to be aware of. Consult your vendor's documentation to discover what additional
configuration files they require.

Throughout this book, we show both the EJB 2.1 and EJB 2.0 code when they are different. In many cases, the
component interfaces are the same; however, XML deployment descriptors will be different because EJB 2.1 uses XML
Schema, while EJB 2.0 uses an XML DTD. This is the case with the Cabin EJB.

4.2.4.1 EJB 2.1: The Cabin EJB's deployment descriptor

Here's the deployment descriptor for the Cabin bean in EJB 2.1:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <reentrant>False</reentrant>

 <abstract-schema-name>Cabin</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>shipId</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

The ejb-jar element declares its namespace, the XSI namespace, and the location of the XML Schema that is used to
validate it. The meaning of namespaces and XML schemas are described in more detail in Chapter 16.

4.2.4.2 EJB 2.0: The Cabin EJB's deployment descriptor

In EJB 2.0, the deployment descriptor is based on an XML DTD and looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <abstract-schema-name>Cabin</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>shipId</field-name></cmp-field>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cmp-field><field-name>shipId</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

The <!DOCTYPE> element describes the purpose of the XML file, its root element, and the location of its DTD. The DTD is
used to verify that the document is structured correctly. This element is discussed in detail in Chapter 16. EJB 2.0
specifies the ejb-jar_2_0.dtd as its DTD.

4.2.4.3 EJB 2.1 and 2.0: Defining the XML elements

One important difference between EJB 2.1 and EJB 2.0 is that they use different types of validation for deployment
descriptors. EJB 2.0 uses XML DTDs, which have been employed for the past few years to validate the structure of the
XML deployment descriptor. XML Schema is a new mechanism for validating deployment descriptors. XML Schema can
validate not only the structure but also the values used in the deployment descriptor—something DTDs couldn't do well.
On the other hand, XML Schema is complex and takes time to master, so there is a price to be paid for the added
precision it offers.

The rest of the XML elements are nested one within another and delimited by beginning and ending tags. The structure
is not complicated. If you have done any HTML coding, you already understand the format. An element always starts
with a <name_of_tag> tag and ends with a </name_of_tag> tag. Everything in between—even other elements—is part of
the enclosing element.

The first major element is the <ejb-jar> element, which is the root of the document. All the other elements must lie
within this element. Next is the <enterprise-beans> element. Every bean declared in an XML file must be included in this
section. This file describes only the Cabin EJB, but we could define several beans in one deployment descriptor.

The <entity> element shows that the beans defined within this tag are entity beans. Similarly, a <session> element
describes session beans; since the Cabin EJB is an entity bean, we don't need a <session> element. In addition to a
description, the <entity> element provides the fully qualified class names of the remote interface, home interface, bean
class, and primary key. The <cmp-field> elements list all the container-managed fields in the entity bean class. These
are the fields that will persist in the database and be managed by the container at runtime. The <entity> element also
includes a <reentrant> element that can be set as True or False depending on whether the bean allows reentrant
loopbacks or not.

The deployment descriptor also specifies the <security-identity> as <use-caller-identity/>, which simply means the bean
propagates the calling client's security identity when it accesses resources or other beans. Security identities are
covered in Chapter 3.

The section of the XML file after the <enterprise-beans> element is enclosed by the <assembly-descriptor> element, which
describes the security roles and transaction attributes of the bean. In this example, this section of the XML file is the
same for both EJB 2.1 and EJB 2.0:

<ejb-jar ...>

 <enterprise-beans>

 ...

 </enterprise-beans>

<assembly-descriptor>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the Cabin EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

</assembly-descriptor>

</ejb-jar>

It may seem odd to separate the <assembly-descriptor> information from the <enterprise-beans> information, since it
clearly applies to the Cabin EJB, but in the scheme of things, it's perfectly natural. A single XML deployment descriptor
can describe several beans, which might all rely on the same security roles and transaction attributes. To make it easier
to deploy several beans together, this common information is grouped in the <assembly-descriptor> element.

There is another (perhaps more important) reason for separating information about the bean itself from the security
roles and transaction attributes. Enterprise JavaBeans defines the responsibilities of different participants in the
development and deployment of beans. We don't address these development roles in this book because they are not
critical to learning the fundamentals of EJB. For now, it's enough to know that the person who develops the beans and
the person who assembles the beans into an application have separate responsibilities and therefore deal with separate
parts of the XML deployment descriptor. The bean developer is responsible for everything within the <enterprise-beans>
element; the bean assembler is responsible for everything within the <assembly-descriptor>. Throughout this book you
will play both roles, developing the beans and assembling them. Other roles you will fill are that of the deployer, who
actually loads the enterprise beans into the EJB container, and the administrator, who is responsible for tuning the EJB
server and managing it at runtime. In real projects, these roles may be filled by an individual, several different
individuals, or even teams.

The <assembly-descriptor> contains the <security-role> elements and their corresponding <method-permission> elements. In
this example, there is one security role, everyone, which is mapped to all the methods in the Cabin EJB using the
<method-permission> element. (The * in the <method-name> element means "all methods.")

The <container-transaction> element declares that all the methods of the Cabin EJB have a Required transaction attribute,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <container-transaction> element declares that all the methods of the Cabin EJB have a Required transaction attribute,
which means that all the methods must be executed within a transaction. Transaction attributes are explained in more
detail in Chapter 14. The deployment descriptor ends with the closing tag of the <ejb-jar> element.

Copy the Cabin EJB's deployment descriptor into the META-INF directory and save it as ejb-jar.xml. You have now
created all the files you need to package your Cabin EJB. Figure 4-2 shows all the files that should be in the dev
directory.

Figure 4-2. The Cabin EJB files

4.2.5 cabin.jar: The JAR File

The JAR file is a platform-independent file format for compressing, packaging, and delivering several files together.
Based on the ZIP file format and the ZLIB compression standards, the JAR (Java archive) tool and packages were
originally developed to make downloads of Java applets more efficient. As a packaging mechanism, however, the JAR
file format is a very convenient way to "shrink-wrap" components and other software for delivery to third parties. In
EJB development, a JAR file packages all the classes and interfaces associated with a bean, including the deployment
descriptor, into one file.

Creating the JAR file for deployment is easy. Position yourself in the dev directory that is just above the com/titan/cabin
directory tree, and execute the following command:

\dev % jar cf cabin.jar com/titan/cabin/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\cabin*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first and copy ejb-jar.xml into that directory. The c option tells the jar
utility to create a new JAR file that contains the files indicated in subsequent parameters. It also tells the jar utility to
stream the resulting JAR file to standard output. The f option tells jar to redirect the standard output to a new file
named in the second parameter (cabin.jar). It's important to get the order of the option letters and the command-line
parameters to match. You can learn more about the jar utility and the java.util.zip package in Java in a Nutshell by David
Flanagan, or Learning Java by Pat Niemeyer and Jonathan Knudsen (both published by O'Reilly).

The jar utility creates the file cabin.jar in the dev directory. If you're interested in looking at the contents of the JAR file,
you can use any standard ZIP application (WinZip, PKZIP, etc.), or you can use the command jar tvf cabin.jar.

4.2.6 Creating a CABIN Table in the Database

One of the primary jobs of a deployment tool is mapping entity beans to databases. In the case of the Cabin EJB, we
must map its id, name, deckLevel, shipId, and bedCount container-managed fields to some data source. Before proceeding
with deployment, you need to set up a database and create a CABIN table. You can use the following standard SQL
statement to create a CABIN table that will be consistent with the examples provided in this chapter:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement to create a CABIN table that will be consistent with the examples provided in this chapter:

create table CABIN

(

 ID int primary key NOT NULL,

 SHIP_ID int,

 BED_COUNT int,

 NAME char(30),

 DECK_LEVEL int

)

This statement creates a CABIN table that has five columns corresponding to the container-managed fields in the
CabinBean class. Once the table is created and connectivity to the database is confirmed, you can proceed with the
deployment process.

4.2.7 Deploying the Cabin EJB

Deployment is the process of reading the bean's JAR file, changing or adding properties to the deployment descriptor,
mapping the bean to the database, defining access control in the security domain, and generating any vendor-specific
classes needed to support the bean in the EJB environment. Every EJB server product has its own deployment tools,
which may provide a graphical user interface, a set of command-line programs, or both. Graphical deployment wizards
are the easiest deployment tools to use.

A deployment tool reads the JAR file and looks for ejb-jar.xml. In a graphical deployment wizard, the deployment
descriptor elements are presented using a set of property sheets similar to those used in environments such as
VisualBasic.NET, PowerBuilder, and JBuilder. Figure 4-3 shows the deployment wizard for the J2EE 1.3 SDK (Reference
Implementation) server.

Figure 4-3. J2EE 1.3 SDK Reference Implementation's deployment wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The J2EE Reference Implementation's deployment wizard has fields and panels that match the XML deployment
descriptor. You can map security roles to user groups, set the JNDI lookup name, map the container-managed fields to
the database, etc. EJB deployment tools provide varying degrees of support for mapping container-managed fields to a
data source. Some provide sophisticated graphical user interfaces, while others are simpler and less flexible.
Fortunately, mapping the CabinBean's container-managed fields to the CABIN table is a fairly straightforward process. The
documentation for your vendor's deployment tool will show you how to create this mapping. Once you have finished the
mapping, you can complete the deployment of the Cabin EJB and prepare to access it from the EJB server.

4.2.8 Creating a Client Application

Now that the Cabin EJB has been deployed, we want to access it from a remote client. In this section, we create a
remote client that connects to the EJB server, locates the EJB remote home for the Cabin EJB, and creates and interacts
with several Cabin EJBs. The following code shows a Java application that creates a new Cabin EJB, sets its name,
deckLevel, shipId, and bedCount properties, and then locates it again using its primary key:

package com.titan.cabin;

import com.titan.cabin.CabinHomeRemote;

import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class Client_1 {

 public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin_1 = home.create(new Integer(1));

 cabin_1.setName("Master Suite");

 cabin_1.setDeckLevel(1);

 cabin_1.setShipId(1);

 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);

 CabinRemote cabin_2 = home.findByPrimaryKey(pk);

 System.out.println(cabin_2.getName());

 System.out.println(cabin_2.getDeckLevel());

 System.out.println(cabin_2.getShipId());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.println(cabin_2.getShipId());

 System.out.println(cabin_2.getBedCount());

 } catch (java.rmi.RemoteException re){re.printStackTrace();}

 catch (javax.naming.NamingException ne){ne.printStackTrace();}

 catch (javax.ejb.CreateException ce){ce.printStackTrace();}

 catch (javax.ejb.FinderException fe){fe.printStackTrace();}

 }

 public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

 }

}

To access an enterprise bean, a client starts by using JNDI to obtain a directory connection to a bean's container. JNDI
is an implementation-independent API for directory and naming systems. Every EJB vendor must provide a directory
service that is JNDI-compliant. This means that they must provide a JNDI service provider, which is a piece of software
analogous to a driver in JDBC. Different service providers connect to different directory services—not unlike JDBC,
where different drivers connect to different relational databases. The getInitialContext() method uses JNDI to obtain a
network connection to the EJB server.

The code used to obtain the JNDI Context depends on which EJB vendor you use. Consult your vendor's documentation
to find out how to obtain a JNDI Context appropriate to your product. For example, the code used to obtain a JNDI
Context in WebSphere might look something like the following:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 java.util.Properties properties = new java.util.Properties();

 properties.put(javax.naming.Context.PROVIDER_URL, "iiop:///");

 properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");

 return new InitialContext(properties);

}

The same method developed for BEA's WebLogic Server would be different:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Properties p = new Properties();

 p.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 p.put(Context.PROVIDER_URL, "t3://localhost:7001");

 return new javax.naming.InitialContext(p);

}

Once a JNDI connection is established and a context is obtained from the getInitialContext() method, the context can be
used to look up the EJB home of the Cabin EJB.

Object ref = jndiContext.lookup("CabinHomeRemote");

Throughout this book, we'll use lookup names like "CabinHomeRemote" for remote client applications. The actual name
you use to do a lookup may be different, depending on the requirements of your vendor. You will need to bind a lookup
name to the EJB server's naming service, and some vendors may require a special directory path.

If you are using a standard J2EE component (Servlet, JSP, EJB, or J2EE Application Client), you will not need to set the
properties explicitly when creating a JNDI InitialContext, no matter which EJB vendor you are using. That's because the
JNDI properties can be configured at deployment time and are applied automatically. A J2EE component would obtain
its InitialContext as follows:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 return new javax.naming.InitialContext();

}

This is simpler and more portable than configuring JNDI properties for simple Java clients. All J2EE components use the
same JNDI naming system that enterprise beans use to lookup any service. Specifically, they require that EJB
references be bound to the java:comp/env/ejb/ namespace. For example, for a J2EE component, here's all we need to
look up the Cabin EJB:

Object ref = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

At deployment time you would use the vendor's deployment tools to map that JNDI name to the Cabin EJB's home. In
this book, Java client applictions will need to use explicit parameters for JNDI lookups. As an alternative you could use a
special J2EE component called a J2EE Application Client, but this type of component is outside the scope of this book.
For more information about J2EE Application Client components consult the J2EE 1.3 (for EJB 2.0) or the J2EE 1.4
specifications.

The Client_1 application uses the PortableRemoteObject.narrow() method to narrow the Object ref to a CabinHomeRemote
reference:

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

The PortableRemoteObject.narrow() method was first introduced in EJB 1.1 and continues to be used on remote clients in
EJB 2.1 and 2.0. It is needed to support the requirements of RMI over IIOP. Because CORBA supports many different
languages, casting is not native to CORBA (some languages don't have casting). Therefore, to get a remote reference to
CabinHomeRemote, we must explicitly narrow the object returned from lookup(). This has the same effect as casting and
is explained in more detail in Chapter 5.

The name used to find the Cabin EJB's EJB home is set by the deployer using a deployment wizard like the one pictured
earlier. The JNDI name is entirely up to the person deploying the bean; it can be the same as the bean name set in the
XML deployment descriptor, or something completely different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.8.1 Creating a new Cabin EJB

Once we have a remote reference to the EJB home, we can use it to create a new Cabin entity:

CabinRemote cabin_1 = home.create(new Integer(1));

We create a new Cabin entity using the create(Integer id) method defined in the remote home interface of the Cabin EJB.
When this method is invoked, the EJB home works with the EJB server to create a Cabin EJB, adding its data to the
database. The EJB server creates an EJB object to wrap the Cabin EJB instance and returns a remote reference to the
EJB object. The cabin_1 variable then contains a remote reference to the Cabin EJB we just created. We don't need to
use the PortableRemoteObject.narrow() method to get the EJB object from the home reference, because it was declared as
returning the CabinRemote type; no casting was required. We don't need to explicitly narrow remote references returned
by findByPrimaryKey() for the same reason.

With the remote reference to the EJB object, we can update the name, deckLevel, shipId, and bedCount of the Cabin EJB:

CabinRemote cabin_1 = home.create(new Integer(1));

cabin_1.setName("Master Suite");

cabin_1.setDeckLevel(1);

cabin_1.setShipId(1);

cabin_1.setBedCount(3);

Figure 4-4 shows how the relational database table we created should look after this code has been executed. It should
contain one record.

Figure 4-4. CABIN table with one cabin record

A client locates entity beans using the findByPrimaryKey() method in the home interface. To look up the Cabin bean we
just created, we create a primary key of the correct type—in this case, Integer. When we invoke the finder method on
the home interface using the primary key, we get back a remote reference to the EJB object. We can now interrogate
the remote reference returned by findByPrimaryKey() to get the Cabin EJB's name, deckLevel, shipId, and bedCount:

Integer pk = new Integer(1);

CabinRemote cabin_2 = home.findByPrimaryKey(pk);

System.out.println(cabin_2.getName());

System.out.println(cabin_2.getDeckLevel());

System.out.println(cabin_2.getShipId());

System.out.println(cabin_2.getBedCount());

We are ready to create and run the Client_1 application. Compile the client application and deploy the Cabin EJB into the
container system (see the JBoss Workbook section of this book, Exercise 4.1). Then run the Client_1 application. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container system (see the JBoss Workbook section of this book, Exercise 4.1). Then run the Client_1 application. The
output should look something like this:

Master Suite

1

1

3

Congratulations! You just created and used your first entity bean. Of course, the client application doesn't do much.
Before going on to create session beans, create another client that adds some test data to the database. Here we'll
create Client_2, which is a modification of Client_1 that populates the database with a large number of cabins for three
different ships:

package com.titan.cabin;

import com.titan.cabin.CabinHomeRemote;

import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.ejb.CreateException;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class Client_2 {

 public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 // Add 9 cabins to deck 1 of ship 1.

 makeCabins(home, 2, 10, 1, 1);

 // Add 10 cabins to deck 2 of ship 1.

 makeCabins(home, 11, 20, 2, 1);

 // Add 10 cabins to deck 3 of ship 1.

 makeCabins(home, 21, 30, 3, 1);

 // Add 10 cabins to deck 1 of ship 2.

 makeCabins(home, 31, 40, 1, 2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 makeCabins(home, 31, 40, 1, 2);

 // Add 10 cabins to deck 2 of ship 2.

 makeCabins(home, 41, 50, 2, 2);

 // Add 10 cabins to deck 3 of ship 2.

 makeCabins(home, 51, 60, 3, 2);

 // Add 10 cabins to deck 1 of ship 3.

 makeCabins(home, 61, 70, 1, 3);

 // Add 10 cabins to deck 2 of ship 3.

 makeCabins(home, 71, 80, 2, 3);

 // Add 10 cabins to deck 3 of ship 3.

 makeCabins(home, 81, 90, 3, 3);

 // Add 10 cabins to deck 4 of ship 3.

 makeCabins(home, 91, 100, 4, 3);

 for (int i = 1; i <= 100; i++){

 Integer pk = new Integer(i);

 CabinRemote cabin = home.findByPrimaryKey(pk);

 System.out.println("PK = "+i+", Ship = "+cabin.getShipId()

 + ", Deck = "+cabin.getDeckLevel()

 + ", BedCount = "+cabin.getBedCount()

 + ", Name = "+cabin.getName());

 }

 } catch (java.rmi.RemoteException re) {re.printStackTrace();}

 catch (javax.naming.NamingException ne) {ne.printStackTrace();}

 catch (javax.ejb.CreateException ce) {ce.printStackTrace();}

 catch (javax.ejb.FinderException fe) {fe.printStackTrace();}

 }

 public static javax.naming.Context getInitialContext()

 throws javax.naming.NamingException{

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

 }

 public static void makeCabins(CabinHomeRemote home, int fromId,

 int toId, int deckLevel, int shipNumber)

 throws RemoteException, CreateException {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws RemoteException, CreateException {

 int bc = 3;

 for (int i = fromId; i <= toId; i++) {

 CabinRemote cabin = home.create(new Integer(i));

 int suiteNumber = deckLevel*100+(i-fromId);

 cabin.setName("Suite "+suiteNumber);

 cabin.setDeckLevel(deckLevel);

 bc = (bc==3)?2:3;

 cabin.setBedCount(bc);

 cabin.setShipId(shipNumber);

 }

 }

}

Create and run the Client_2 application against the Cabin EJB we deployed earlier. Client_2 lists all the Cabin EJBs it
added to the database:

PK = 1, Ship = 1, Deck = 1, BedCount = 3, Name = Master Suite

PK = 2, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 100

PK = 3, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 101

PK = 4, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 102

PK = 5, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 103

PK = 6, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 104

PK = 7, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 105

...

We now have 100 cabin records in our CABIN table, representing 100 cabin entities in our EJB system. This amount
provides a good set of test data for the session bean we will create in the next section, and for subsequent examples
throughout the book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Developing a Session Bean
Session beans act as agents to the client, controlling taskflow (the business process) and filling the gaps between the
representation of data by entity beans and the business logic. Session beans are often used to manage interactions
between entity beans and can perform complex manipulations of beans. Since we have defined only one entity bean so
far, we will start by manipulating this bean. The interactions of entity beans within session beans is explored in greater
detail in Chapter 11.

Client applications and other beans use the Cabin EJB in a variety of ways. Some of these uses were predictable when
the Cabin EJB was defined, but many were not. After all, an entity bean represents data—in this case, data describing a
cabin. The uses to which we put that data change over time—hence the importance of separating the data itself from
the taskflow. In Titan's business system, for example, we may need to list and report on cabins in ways that were not
predictable when the Cabin EJB was defined. Rather than change the Cabin EJB every time we need to look at it
differently, we will obtain the information we need using a session bean. The definition of an entity bean should only be
changed within the context of a larger process—for example, a major redesign of the business system.

We'll start developing a TravelAgent EJB that is responsible for the taskflow of booking a passage on a cruise. This
session bean will be used in client applications accessed by travel agents throughout the world. In addition to booking
tickets, the TravelAgent EJB provides information about which cabins are available on the cruise. In this chapter, we
develop the first implementation of this listing behavior. The "list cabins" behavior will be used to provide customers
with a list of cabins that can accommodate their needs. The Cabin EJB does not directly support this kind of list, nor
should it. The list we need is specific to the TravelAgent EJB, so it's the TravelAgent EJB's responsibility to query the
Cabin EJB and produce the list.

Start by creating a development directory for the TravelAgent EJB, as we did for the Cabin EJB. Name this directory
travelagent and nest it below the /dev/com/titan directory, which also contains the cabin directory (see Figure 4-5).
Place all the Java files and the XML deployment descriptor for the TravelAgent EJB into the travelagent directory.

Figure 4-5. Directory structure for the TravelAgent EJB

4.3.1 TravelAgentRemote: The Remote Interface

As before, we start by defining the remote interface so that our focus is on the business purpose of the bean, rather
than its implementation. Starting small, we know that the TravelAgent EJB will need to provide a method for listing all
the cabins available with a specified bed count for a specific ship. We'll call that method listCabins(). Since we need only
a list of cabin names and deck levels, we'll define listCabins() to return an array of Strings. Here's the remote interface
for TravelAgentRemote:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // String elements follow the format "id, name, deck level"

 public String [] listCabins(int shipID, int bedCount)

 throws RemoteException;

}

4.3.2 TravelAgentHomeRemote: The Remote Home Interface

The second step in the development of the TravelAgent EJB bean is to create the remote home interface. The remote
home interface for a session bean defines the create methods that initialize a new session bean for use by a client.

Find methods are not used in session beans; session beans do not represent data in the database, so a find method
would not be meaningful. A session bean is dedicated to a client for the life of that client (or less). For the same reason,
we don't need to worry about primary keys—since session beans don't represent persistent data, we don't need a key
to access that data.

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgentRemote create()

 throws RemoteException, CreateException;

}

In the case of the TravelAgent EJB, we need only a simple create() method to get a reference to the bean. Invoking this
create() method returns the TravelAgent EJB's remote reference, which the client can use for the reservation process.

4.3.3 TravelAgentBean: The Bean Class

Using the remote interface as a guide, we can define the TravelAgentBean class that implements the listCabins() method.
Here's the definition of TravelAgentBean for this example:

package com.titan.travelagent;

import com.titan.cabin.CabinRemote;

import com.titan.cabin.CabinHomeRemote;

import java.rmi.RemoteException;

import javax.naming.InitialContext;

import javax.naming.Context;

import java.util.Properties;

import java.util.Vector;

import javax.rmi.PortableRemoteObject;

import javax.ejb.EJBException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class TravelAgentBean implements javax.ejb.SessionBean {

 public void ejbCreate() {

 // Do nothing.

 }

 public String [] listCabins(int shipID, int bedCount) {

 try {

 javax.naming.Context jndiContext = new InitialContext();

 Object obj = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(obj,CabinHomeRemote.class);

 Vector vect = new Vector();

 for (int i = 1; ; i++) {

 Integer pk = new Integer(i);

 CabinRemote cabin;

 try {

 cabin = home.findByPrimaryKey(pk);

 } catch(javax.ejb.FinderException fe) {

 break;

 }

 // Check to see if the bed count and ship ID match.

 if (cabin.getShipId() == shipID &&

 cabin.getBedCount() == bedCount) {

 String details = i+","+cabin.getName()+

 ","+cabin.getDeckLevel();

 vect.addElement(details);

 }

 }

 String [] list = new String[vect.size()];

 vect.copyInto(list);

 return list;

 } catch(Exception e) {throw new EJBException(e);}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(Exception e) {throw new EJBException(e);}

 }

 public void ejbRemove(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void setSessionContext(javax.ejb.SessionContext cntx){}

}

In order to examine the listCabins() method in detail, let's address the implementation in pieces, starting with the use of
JNDI to locate the CabinHomeRemote:

javax.naming.Context jndiContext = new InitialContext();

Object obj = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj, CabinHomeRemote.class);

Beans are clients to other beans, just like client applications. This means that they must interact with other beans in the
same way that J2EE application clients interact with beans. For one bean to locate and use another bean, it must first
locate and obtain a reference to the bean's EJB home. This is accomplished using the JNDI default context, which is the
JNDI context that the container provides automatically when you create a new instance of the InitialContext. You don't
need to set any properties on the InitialContext when using a standard J2EE component (EJB, Servlet/JSP, or J2EE
Application Client).

All beans have their own default JNDI context called the environment naming context, which was discussed briefly in
Chapter 3. The default context exists in the name space (directory) called "java:comp/env" and its subdirectories. When
the bean is deployed, any beans it uses are mapped into the subdirectory "java:comp/env/ejb", so that bean references
can be obtained at runtime through a simple and consistent use of the JNDI default context. We'll come back to this
when we look at the deployment descriptor for the TravelAgent EJB.

Once the remote EJB home of the Cabin EJB has been obtained, we can use it to produce a list of cabins that match the
parameters passed into the method. The following code loops through all the Cabin EJBs and produces a list that
includes only those cabins in which the ship and bed count are specified:

Vector vect = new Vector();

for (int i = 1; ; i++) {

 Integer pk = new Integer(i);

 CabinRemote cabin;

 try {

 cabin = home.findByPrimaryKey(pk);

 } catch(javax.ejb.FinderException fe){

 break;

 }

 // Check to see if the bed count and ship ID match.

 if (cabin.getShipId() == shipID && cabin.getBedCount() == bedCount) {

 String details = i+","+cabin.getName()+","+cabin.getDeckLevel();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 vect.addElement(details);

 }

}

This method iterates through all the primary keys, obtaining a remote reference to each Cabin EJB in the system and
checking whether its shipId and bedCount match the parameters passed. The for loop continues until a FinderException is
thrown, which will probably occur when a primary key that isn't associated with a bean is used. (This isn't the most
robust code possible, but it will do for now.) Following this block of code, we simply copy the Vector's contents into an
array and return it to the client.

While this is a very crude approach to locating the right Cabin EJBs—we will define a better method in Chapter 11—it is
adequate for our current purposes. The purpose of this example is to illustrate that the taskflow associated with this
listing behavior is not included in the Cabin EJB, nor is it embedded in a client application. Taskflow logic, whether it's a
process like booking a reservation or like obtaining a list, is placed in a session bean.

4.3.4 The TravelAgent EJB's Deployment Descriptor

The TravelAgent EJB uses an XML deployment descriptor similar to the one used for the Cabin entity bean. The
following sections contain the ejb-jar.xml file used to deploy the TravelAgent bean in EJB. Chapter 11 describes how to
deploy several beans in one deployment descriptor, but for now the TravelAgent and Cabin EJBs are deployed
separately.

4.3.4.1 EJB 2.1: Deployment descriptor

In EJB 2.1, the deployment descriptor for the TravelAgent EJB looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 </ejb-ref>

 <security-identity><use-caller-identity/></security-identity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <security-identity><use-caller-identity/></security-identity>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

4.3.4.2 EJB 2.0: Deployment descriptor

In EJB 2.0, the deployment descriptor for the TravelAgent EJB looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 </ejb-ref>

 <security-identity><use-caller-identity/></security-identity>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

4.3.4.3 EJB 2.0 and 1.1: Defining the XML elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The only significant difference between the 2.1 and 2.0 deployment descriptors is that EJB 2.1 declares the use of an
XML Schema for validation while EJB 2.0 uses a DTD.

Other than the <session-type> and <ejb-ref> elements, the TravelAgent EJB's XML deployment descriptor should be
familiar: it uses many of the same elements as the Cabin EJB's. The <session-type> element can be Stateful or Stateless,
to indicate which type of session bean is used. In this case, we are defining a stateless session bean.

The <ejb-ref> element is used at deployment time to map the bean references used within the TravelAgent EJB. In this
case, the <ejb-ref> element describes the Cabin EJB, which we already deployed. The <ejb-ref-name> element specifies
the name that must be used by the TravelAgent EJB to obtain a reference to the Cabin EJB's home. The <ejb-ref-type>
tells the container what kind of bean it is, Entity or Session. The <home> and <remote> elements specify the fully qualified
interface names of the Cabin's home and remote bean interfaces.

When the bean is deployed, the <ejb-ref> will be mapped to the Cabin EJB in the EJB server. This is a vendor-specific
process, but the outcome should always be the same. When the TravelAgent EJB does a JNDI lookup using the context
name "java:comp/env/ejb/CabinHomeRemote", it obtains a remote reference to the Cabin EJB's home. The purpose of the
<ejb-ref> element is to eliminate network-specific and implementation-specific use of JNDI to obtain remote bean
references. This makes a bean more portable, because the network location and JNDI service provider can change
without affecting the bean code or even the XML deployment descriptor.

While we haven't yet created a local interface for our beans, it's always preferable to use local references instead of
remote references when beans access each other within the same server. Local references are specified using the <ejb-
local-ref> element, which looks just like the <ejb-ref> element.

The <assembly-descriptor> section of the deployment descriptor is the same for EJB 2.1 and EJB 2.0:

<assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the TravelAgent EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

</assembly-descriptor>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.5 Deploying the TravelAgent EJB

Once you've defined the XML deployment descriptor, you are ready to place the TravelAgent EJB in its own JAR file and
deploy it into the EJB server. Use the same process to JAR the TravelAgent EJB as you used for the Cabin EJB. Shrink-
wrap the TravelAgent EJB class and its deployment descriptor into a JAR file and save the file to the
com/titan/travelagent directory:

\dev % jar cf travelagent.jar com/titan/travelagent/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf travelagent.jar com\titan\travelagent*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first, and copy ejb-jar.xml into that directory. The TravelAgent EJB is
now complete and ready to be deployed.

To make your TravelAgent EJB available to a client application, you need to use the deployment utility or wizard of your
EJB server. The deployment utility reads the JAR file to add the TravelAgent EJB to the EJB server environment. Unless
your EJB server has special requirements, it is unlikely that you will need to change or add any new attributes to the
bean. You will not need to create a database table, since the TravelAgent EJB is using the Cabin EJB and is not itself
persistent. However, you will need to map the <ejb-ref> element in the TravelAgent EJB's deployment descriptor to the
Cabin EJB. Your EJB server's deployment facilities provides a mechanism for accomplishing this task (see Exercise 4.2 in
the Workbook).

4.3.6 Creating a Client Application

To show that our session bean works, we'll create a simple client application that uses it. This client produces a list of
cabins assigned to ship 1 with a bed count of 3. Its logic is similar to the client we created earlier to test the Cabin EJB:
it creates a context for looking up TravelAgentHomeRemote, creates a TravelAgent EJB, and invokes listCabins() to
generate a list of the cabins available. Here's the code:

import com.titan.travelagent.TravelAgentRemote;

import com.titan.travelagent.TravelAgentHomeRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.ejb.CreateException;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class Client_3 {

 public static int SHIP_ID = 1;

 public static int BED_COUNT = 3;

 public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("TravelAgentHomeRemote");

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 TravelAgentRemote travelAgent = home.create();

 // Get a list of all cabins on ship 1 with a bed count of 3.

 String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

 for(int i = 0; i < list.length; i++){

 System.out.println(list[i]);

 }

 } catch(java.rmi.RemoteException re){re.printStackTrace();}

 catch(Throwable t){t.printStackTrace();}

 }

 static public Context getInitialContext() throws Exception {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new InitialContext(p);

 }

}

When you have successfully run Client_3, the output should look like this:

1,Master Suite ,1

3,Suite 101 ,1

5,Suite 103 ,1

7,Suite 105 ,1

9,Suite 107 ,1

12,Suite 201 ,2

14,Suite 203 ,2

16,Suite 205 ,2

18,Suite 207 ,2

20,Suite 209 ,2

22,Suite 301 ,3

24,Suite 303 ,3

26,Suite 305 ,3

28,Suite 307 ,3

30,Suite 309 ,3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have now successfully created the first piece of the TravelAgent session bean—a method that obtains a list of
cabins by manipulating the Cabin EJB entity.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. The Remote and Local Client View
Developing the Cabin EJB and the TravelAgent EJB may have raised your confidence, but it also may have raised a lot
of questions. We have glossed over most of the details involved in developing, deploying, and accessing the enterprise
beans. In this chapter and the ones that follow, we will peel away the layers of the Enterprise JavaBeans onion to
expose the details of EJB application development.

This chapter focuses specifically on the client's remote and local view of entity and session beans. The endpoint view,
which is used by Web service clients to access stateless session beans, is significantly different and is addressed
separately in the Web services chapter, Chapter 14. Message-driven beans are not covered in this chapter either—they
are covered in detail in Chapter 12.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Locating Beans with JNDI
In Chapter 4, the client application started by creating an InitialContext, which it then used to get a remote reference to
the homes of the Cabin and TravelAgent EJBs. The InitialContext is part of a larger API called the Java Naming and
Directory Interface (JNDI). We use JNDI to look up an EJB home in an EJB server just like we might use a phone book
to find the home number of a friend or business associate.

JNDI is a standard Java package that provides a uniform API for accessing a wide range of services. It is somewhat
similar to JDBC, which provides uniform access to different relational databases. Just as JDBC lets us write code that
doesn't care whether it's talking to an Oracle database or a DB2 database, JNDI lets us write code that can access
different directory and naming services, including the naming services provided by EJB servers. EJB servers are
required to support JNDI by organizing beans into a directory structure and providing a JNDI driver, called a service
provider, for accessing that directory structure. Using JNDI, an enterprise can organize its beans, services, data, and
other resources in a unified directory.

Two of JNDI's greatest features are that it is virtual and dynamic. JNDI is virtual because it allows one directory service
to be linked to another through simple URLs. The URLs in JNDI are analogous to HTML links. Just as an HTML link allows
you to download a new page without worrying about the server on which that page is located, JNDI lets us drill down
through directories to files, printers, and EJB home objects without knowing where the resources—or even the directory
servers holding information about the resources—are located. The directories and subdirectories can be located in the
same host or physically hosted at different locations. As developers or administrators, we can create virtual directories
that span a variety of services over many different physical locations.

JNDI is dynamic because it allows the JNDI drivers (a.k.a. service providers) for specific types of directory services to
be loaded at runtime. A driver maps a specific kind of directory service into the standard JNDI class interfaces. When a
link to a different directory service is chosen, the driver for that type of directory service is automatically loaded from
the directory's host, if it is not already resident on the user's machine. Automatically downloading JNDI drivers makes it
possible for a client to navigate across arbitrary directory services without knowing in advance what kinds of services it
is likely to find.

After the client application locates and obtains a remote reference to the EJB home using JNDI, the client can use the
EJB home to obtain an EJB object reference to an enterprise bean. In Chapter 4 the client applications used the method
getInitialContext() to get a JNDI InitialContext object, which looked like this:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

}

An initial context is the starting point for any JNDI lookup—it's similar in concept to the root of a filesystem. The way an
initial context is created is peculiar, but not fundamentally difficult. We start with a properties table of type Properties.
This is essentially a hash table to which we add various values that determine the kind of initial context you get. Of
course, as mentioned in Chapter 4, this code depends on how our EJB vendor has implemented JNDI. For example, with
the Pramati Application Server, getInitialContext() might look something like this:

public static Context getInitialContext() throws Exception {

 Hashtable p = new Hashtable();

 p.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.pramati.naming.client.PramatiClientContextFactory");

 p.put(Context.PROVIDER_URL, "rmi://127.0.0.1:9191");

 return new InitialContext(p);

}

For a more detailed explanation of JNDI, see O'Reilly's Java Enterprise in a Nutshell by David Flanagan, Jim Farley,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a more detailed explanation of JNDI, see O'Reilly's Java Enterprise in a Nutshell by David Flanagan, Jim Farley,
William Crawford, and Kris Magnusson.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 The Remote Client API
Enterprise bean developers are required to provide a bean class, component interfaces, and, for entity beans, a primary
key. The component interfaces and primary key class are visible to the client; the bean class itself is not. The
component interfaces and primary key contribute to the client-side API in EJB.

Any client, whether it is in the same container system or not, may use the Remote Client API, which means that it may
use the remote interface, the remote home interface, and Java RMI to access entity and session beans. Enterprise
beans that are located in the same EJB container have the option of using the Local Client API. The Local Client API
provides local component interfaces and avoids the restrictions and overhead of the Remote Client API. This section
examines the remote component interfaces and the primary key, as well as other Java types that make up EJB's remote
client-side API.

5.2.1 Java RMI-IIOP

Enterprise JavaBeans defines an enterprise bean's remote client API in terms of Java RMI-IIOP, which enforces
compliance with CORBA. This means that the underlying protocol used by remote clients to access enterprise beans can
be anything the vendor wants as long as it supports the types of interfaces and arguments that are compatible with
Java RMI-IIOP. However, in addition to any proprietary protocols, vendors must also support the CORBA IIOP 1.2
protocol as defined in the CORBA 2.3.1 specification.

To use the Remote Client API, define your component interfaces and argument types so that they comply with Java
RMI-IIOP types. It's not all that difficult to comply with this restriction. The next few sections discuss the Java RMI-IIOP
programming model for EJB.

5.2.1.1 Java RMI return types, parameters, and exceptions

As an implementation of Java RMI, Java RMI-IIOP must first comply with the basic restrictions of Java RMI. We'll first
take a look at Java RMI restrictions and then proceed to examine addition restrictions imposed by Java RMI-IIOP.

The supertypes of the remote home interface and remote interface, javax.ejb.EJBHome and javax.ejb.EJBObject, both
extend java.rmi.Remote. As Remote interface subtypes, they are expected to adhere to the Java RMI specification for
Remote interfaces.

5.2.1.2 Return types and parameters

The remote component interfaces must follow several guidelines, some of which apply to the return types and
parameters that are allowed. There are two kinds of return and parameter types: declared types, which are checked by
the compiler, and actual types, which are checked by the runtime. Java RMI requires the use of actual types. The actual
types used in the java.rmi.Remote interfaces must be primitives, java.rmi.Remote types, or serializable types (including the
String type). java.rmi.Remote types and serializable types do not have to implement java.rmi.Remote and java.io.Serializable
explicitly. For example, the java.util.Collection type, which does not explicitly extend java.io.Serializable, is a perfectly valid
return type for a remote finder method, provided that the concrete class implementing Collection, the actual type, does
implement java.io.Serializable.

Java RMI has no special rules regarding declared return types or parameter types. At runtime, a type that is not a
java.rmi.Remote type is assumed to be serializable; if it is not, an exception is thrown. The actual type that is passed
cannot be checked by the compiler; it must be checked at runtime.

Here is a list of the types that can be passed as parameters or returned in Java RMI:

Primitives

These include byte, boolean, char, short, int, long, double, and float.

Java serializable types

Any class that implements or any interface that extends java.io.Serializable.

Java RMI remote types

Any class that implements or any interface that extends java.rmi.Remote.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serializable objects are passed by copy (a.k.a. passed by value), not by reference, which means that changes in a
serialized object on one tier are not automatically reflected on the others. Objects that implement Remote, like
TravelAgentRemote or CabinRemote, are passed as remote references, which are a little different. A remote reference is a
Remote interface implemented by a distributed object stub. When a remote reference is passed as a parameter or
returned from a method, the stub is serialized and passed by value, not the object referenced by the stub. In Chapter
11, the home interface for the TravelAgent EJB is modified so that the create() method takes a reference to a Customer
EJB as its only argument:

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgentRemote create(CustomerRemote customer)

 throws RemoteException, CreateException;

}

The customer argument is a remote reference to a Customer EJB that is passed into the create() method. When a remote
reference is passed or returned in Enterprise JavaBeans, the EJB object stub is passed by copy. The copy of the EJB
object stub points to the same EJB object as the original stub. Therefore, both the enterprise bean instance and the
client have remote references to the same EJB object. Changes made on the client using the remote reference will be
reflected when the enterprise bean instance uses the same remote reference. Figures Figure 5-1 and Figure 5-2 show
the difference between a serializable object and a remote reference argument.

Figure 5-1. Serializable arguments

Figure 5-2. Remote reference arguments in RMIExceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The RMI specification states that every method defined in a Remote interface must throw the java.rmi.RemoteException.
The RemoteException is used when problems occur with distributed object communications, such as a network failure or
inability to locate the object server. Remote interfaces can also throw application-specific exceptions (exceptions defined
by the application developer). The following code shows the remote interface to the TravelAgent EJB discussed in
Chapter 2. The bookPassage() method in the TravelAgentRemote interface throws the RemoteException (as required) in
addition to an application exception, IncompleteConversationalState:

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(int cruise)

 throws RemoteException, FinderException;

 public int getCruiseID() throws RemoteException;

 public void setCabinID(int cabin)

 throws RemoteException, FinderException;

 public int getCabinID() throws RemoteException;

 public int getCustomerID() throws RemoteException;

 public Ticket bookPassage(CreditCardRemote card, double price)

 throws RemoteException,IncompleteConversationalState;

 public String [] listAvailableCabins(int bedCount)

 throws RemoteException;

}

5.2.1.3 Java RMI-IIOP type restrictions

Along with the Java RMI programming model, Java RMI-IIOP imposes restrictions on the remote interfaces and value
types used in the Remote Client API. The restrictions are born of limitations in the Interface Definition Language (IDL)
upon which CORBA IIOP 1.2 is based. The exact nature of these limitations is outside the scope of this book. Here are
two; the others, like IDL name collisions, are rarely encountered:[1]

[1] To learn more about CORBA IDL and its mapping to the Java language, consult "The Common Object Request
Broker: Architecture and Specification" and "The Java Language to IDL Mapping," both available at the OMG web
site (http://www.omg.org).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

site (http://www.omg.org).

Method overloading is restricted; a remote interface may not directly extend two or more interfaces that have
methods with the same name (even if their arguments are different). A remote interface may, however,
overload its own methods and extend a remote interface with overloaded method names. Overloading is
viewed, here, as including overriding. Figure 5-3 illustrates both of these situations.

Serializable types must not directly or indirectly implement the java.rmi.Remote interface.

Figure 5-3. Overloading rules for remote interface inheritance

5.2.1.4 Explicit narrowing using PortableRemoteObject

In Java RMI-IIOP, remote references must be explicitly narrowed using the javax.rmi.PortableRemoteObject.narrow()
method. The typical practice in Java is to cast the reference to the more specific type:

javax.naming.Context jndiContext;

...

CabinHomeRemote home =

 (CabinHomeRemote)jndiContext.lookup("CabinHomeRemote");

The javax.naming.Context.lookup() method returns an Object. In EJB's Local Client API, we can assume that it is legal to
cast the return argument. However, the Remote Client API must be compatible with Java RMI-IIOP, which means that
clients must adhere to limitations imposed by the IIOP 1.2 protocol. To accommodate all languages, many of which
have no concept of casting, IIOP 1.2 does not support stubs that implement multiple interfaces. The stub returned in
IIOP implements only the interface specified by the return type of the remote method that was invoked. If the return
type is Object, as is the remote reference returned by the lookup() method, the stub will implement only methods
specific to the Object type.

Of course, some means for converting a remote reference from a more general type to a more specific type is essential
in an object-oriented environment. In Java RMI-IIOP, the mechanism is javax.rmi.PortableRemoteObject.narrow().
Remember that while the Remote Client API requires that we use Java RMI-IIOP reference and argument types, the
wire protocol need not be IIOP 1.2. Other protocols besides IIOP may also require explicit narrowing.

To narrow the return value of the Context.lookup() method to the appropriate type, we must explicitly ask for a remote
reference that implements the interface we want:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reference that implements the interface we want:

import javax.rmi.PortableRemoteObject;

...

javax.naming.Context jndiContext;

...

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

The narrow() method takes two arguments: the remote reference that is to be narrowed and the type to which it should
be narrowed. When it has executed, it returns a stub that implements the specified Remote interface. Because the stub
is known to implement the correct type, we can then use Java's native casting to narrow the stub to the correct Remote
interface.

The narrow() method is used only when a remote reference to an EJB home or EJB object is returned without a specific
Remote interface type. This occurs in six circumstances:

1. When a remote EJB home reference is obtained using the javax.naming.Context.lookup() method:

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

2. When a remote EJB object reference is obtained from a Collection or Enumeration returned by a remote home
interface finder method:

ShipHomeRemote shipHome = ... // get ship home

Enumeration enum = shipHome.findByCapacity(2000);

while(enum.hasMoreElements()){

 Object ref = enum.nextElement();

 ShipRemote ship = (ShipRemote)

 PortableRemoteObject.narrow(ref, ShipRemote.class);

 // do something with Ship reference

}

3. When a remote EJB object reference is obtained using the javax.ejb.Handle.getEJBObject() method:

Handle handle = // get Handle

Object ref = handle.getEJBObject();

CabinRemote cabin = (CabinRemote)

PortableRemoteObject.narrow(ref,CabinRemote.class);

4. When a remote EJB home reference is obtained using the javax.ejb.HomeHandle.getEJBHome() method:

HomeHandle homeHdle = ... // get home Handle

EJBHome ref = homeHdle.getEJBHome();

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. When a remote EJB home reference is obtained using the javax.ejb.EJBMetaData.getEJBHome() method:

EJBMetaData metaData = homeHdle.getEJBMetaData();

EJBHome ref = metaData.getEJBHome();

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

6. When a wide remote EJB object type is returned from any business method; here is a hypothetical example:

// Officer extends Crewman

ShipRemote ship = // get Ship remote reference

CrewmanRemote crew = ship.getCrewman("Burns", "John", "1st Lieutenant");

OfficerRemote burns = (OfficerRemote)

 PortableRemoteObject.narrow(crew, OfficerRemote.class);

PortableRemoteObject.narrow() is not required when the remote type is specified in the method signature. This is true of
the create and find methods (see Creating and finding beans later in this chapter) in remote home interfaces that return
a single bean. For example, the create() and findByPrimaryKey() methods defined in the CabinHomeRemote interface
(Chapter 4) do not require the use of the narrow() method because these methods already return the correct EJB object
type. Business methods that return the correct type do not need to use the narrow() method either, as the following
code illustrates:

/* The CabinHomeRemote.create() method specifies

 * the CabinRemote interface as the return type,

 * so explicit narrowing is not needed.*/

CabinRemote cabin = cabinHome.create(new Integer(12345));

/* The CabinHomeRemote.findByPrimaryKey() method specifies

 * the CabinRemote interface as the return type,

 * so explicit narrowing is not needed.*/

CabinRemote cabin = cabinHome.findByPrimaryKey(new Integer(12345));

/* The ShipRemote.getCrewman() business method specifies

 * the CrewmanRemote interface as the return type,

 * so explicit narrowing is not needed.*/

CrewmanRemote crew = ship.getCrewman("Burns", "John",

 "1st Lieutenant");

5.2.2 The Remote Home Interface

The remote home interface provides life-cycle operations and metadata. When we use JNDI to access a bean, we obtain
a remote reference, or stub, to the bean's EJB home, which implements the remote home interface. Every bean type
may have one home interface, which extends the javax.ejb.EJBHome interface:

public interface javax.ejb.EJBHome extends java.rmi.Remote {

 public abstract EJBMetaData getEJBMetaData()

 throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws RemoteException;

 public HomeHandle getHomeHandle()

 throws RemoteException;

 public abstract void remove(Handle handle)

 throws RemoteException, RemoveException;

 public abstract void remove(Object primaryKey)

 throws RemoteException, RemoveException;

}

5.2.2.1 Removing beans

The EJBHome.remove() methods are responsible for deleting an enterprise bean. The argument is either the
javax.ejb.Handle of the enterprise bean or, if it's an entity bean, its primary key. The Handle is discussed in more detail
later, but it is essentially a serializable pointer to a specific enterprise bean. When either of the EJBHome.remove()
methods is invoked, the remote reference to the enterprise bean on the client becomes invalid: the stub to the
enterprise bean that was removed no longer works. If for some reason the enterprise bean can't be removed, a
RemoveException is thrown.

The impact of the EJBHome.remove() on the enterprise bean itself depends on the type of bean. For session beans, the
EJBHome.remove() methods end the session's service to the client. When EJBHome.remove() is invoked, the remote
reference to the session bean becomes invalid, and any conversational state maintained by the session bean is lost. The
TravelAgent EJB you created in Chapter 4 is stateless, so no conversational state exists.

When a remove() method is invoked on an entity bean, the remote reference becomes invalid, and any data it
represents is deleted from the database. This operation is destructive because once an entity bean has been removed,
the data it represents no longer exists. The difference between using a remove() method on a session bean and using
remove() on an entity bean is similar to the difference between hanging up on a telephone conversation and actually
killing the caller on the other end.

The following code fragment is taken from the main() method of a client application similar to the clients we created to
exercise the Cabin and TravelAgent EJBs. It shows that we can remove enterprise beans using a primary key (for entity
beans only) or a Handle. Removing an entity bean deletes the entity from the database; removing a session bean results
in the remote reference becoming invalid. Here's the code:

Context jndiContext = getInitialContext();

// Obtain a list of all the cabins for ship 1 with bed count of 3.

Object ref = jndiContext.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote agentHome = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote agent = agentHome.create();

String list [] = agent.listCabins(1,3);

System.out.println("1st List: Before deleting cabin number 30");

for(int i = 0; i < list.length; i++){

 System.out.println(list[i]);

}

// Obtain the home and remove cabin 30. Rerun the same cabin list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Obtain the home and remove cabin 30. Rerun the same cabin list.

ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk = new Integer(30);

c_home.remove(pk);

list = agent.listCabins(1,3);

System.out.println("2nd List: After deleting cabin number 30");

for (int i = 0; i < list.length; i++) {

 System.out.println(list[i]);

}

First, the application creates a list of cabins, including the cabin with the primary key 30. Then it removes the Cabin EJB
with this primary key and creates the list again. The second time the iteration is performed, cabin 30 is not listed; the
listCabin() method will be unable to find a cabin with a primary key equal to 30 because the bean and its data are no
longer in the database. The output should look something like this:

1st List: Before deleting cabin number 30

1,Master Suite ,1

3,Suite 101 ,1

5,Suite 103 ,1

7,Suite 105 ,1

9,Suite 107 ,1

12,Suite 201 ,2

14,Suite 203 ,2

16,Suite 205 ,2

18,Suite 207 ,2

20,Suite 209 ,2

22,Suite 301 ,3

24,Suite 303 ,3

26,Suite 305 ,3

28,Suite 307 ,3

29,Suite 309 ,3

30,Suite 309 ,3

2nd List: After deleting cabin number 30

1,Master Suite ,1

3,Suite 101 ,1

5,Suite 103 ,1

7,Suite 105 ,1

9,Suite 107 ,1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9,Suite 107 ,1

12,Suite 201 ,2

14,Suite 203 ,2

16,Suite 205 ,2

18,Suite 207 ,2

20,Suite 209 ,2

22,Suite 301 ,3

24,Suite 303 ,3

26,Suite 305 ,3

28,Suite 307 ,3

29,Suite 308 ,3

5.2.2.2 Bean metadata

EJBHome.getEJBMetaData() returns an instance of javax.ejb.EJBMetaData that describes the remote home interface, remote
interface, and primary key classes and indicates whether the enterprise bean is a session or entity bean.[2] This type of
metadata is valuable to Java tools such as IDEs that have wizards or other mechanisms for interacting with an
enterprise bean from a client's perspective. A tool could, for example, use the class definitions provided by the
EJBMetaData with Java reflection to create an environment in which deployed enterprise beans can be "wired" together
by developers. Of course, information such as the JNDI names and URLs of the enterprise beans is also needed.

[2] Message-driven beans don't have component interfaces and can't be accessed by Java RMI-IIOP.

Most application developers rarely use the EJBMetaData. Knowing that it's there, however, is valuable when we need to
create code generators or some other automatic facility. In those cases, familiarity with the Reflection API is
necessary.[3] The following code shows the interface definition for EJBMetaData. Any class that implements the
EJBMetaData interface must be serializable; it cannot be a stub to a distributed object. This allows IDEs and other tools
to save the EJBMetaData for later use:

[3] The Reflection API is outside the scope of this book, but it is covered in Java in a Nutshell, by David Flanagan
(O'Reilly).

public interface javax.ejb.EJBMetaData {

 public abstract EJBHome getEJBHome();

 public abstract Class getHomeInterfaceClass();

 public abstract Class getPrimaryKeyClass();

 public abstract Class getRemoteInterfaceClass();

 public abstract boolean isSession();

 public abstract boolean isStatelessSession()

}

The following code shows how the EJBMetaData for the Cabin EJB could be used to get more information about the
enterprise bean. Notice that there is no way to get the bean class using the EJBMetaData; the bean class is not part of
the client API and therefore doesn't belong to the metadata. Here's the code:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

EJBMetaData meta = c_home.getEJBMetaData();

System.out.println(meta.getHomeInterfaceClass().getName());

System.out.println(meta.getRemoteInterfaceClass().getName());

System.out.println(meta.getPrimaryKeyClass().getName());

System.out.println(meta.isSession());

This application creates output like the following:

com.titan.cabin.CabinHomeRemote

com.titan.cabin.CabinRemote

java.lang.Integer

false

In addition to providing the class types of the enterprise bean, the EJBMetaData makes the remote EJB home available
for the bean. Once we get the remote EJB home from the EJBMetaData, we can obtain references to the remote EJB
object and perform other functions. In the following code, we use the EJBMetaData to get the primary key class, create a
key instance, obtain the remote EJB home, and get a remote reference to the EJB object for a specific cabin entity from
the EJB home:

Object primKeyType = meta.getPrimaryKeyClass();

if(primKeyType instanceof java.lang.Integer){

 Integer pk = new Integer(1);

 Object ref = meta.getEJBHome();

 CabinHomeRemote c_home2 = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin = c_home2.findByPrimaryKey(pk);

 System.out.println(cabin.getName());

}

5.2.2.3 The HomeHandle

The HomeHandle is accessed by calling EJBHome.getHomeHandle(). This method returns a javax.ejb.HomeHandle object that
provides a serializable reference to an enterprise bean's remote home. The HomeHandle allows a remote home reference
to be stored and used in the future. It is similar to the javax.ejb.Handle and is discussed in more detail a little later.

5.2.2.4 Creating and finding beans

In addition to the standard javax.ejb.EJBHome methods that all remote home interfaces inherit, the remote home
interfaces also include special create and find methods—find methods are used with entity beans only. The following
code shows the remote home interface defined for the Cabin EJB:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code shows the remote home interface defined for the Cabin EJB:

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

}

Create methods throw a CreateException if something goes wrong during the creation process; find methods throw a
FinderException if there is an error. Since these methods are defined in an interface that subclasses Remote, they must
also declare that they throw the RemoteException.

It is up to the bean developer to define the appropriate create and find methods in the remote home interface.
CabinHomeRemote currently has only one create method, which creates a cabin with a specified ID, and one find method,
which looks up an enterprise bean, given its primary key. However, it is easy to imagine methods that would create and
find a cabin with particular properties—for example, a cabin with three beds, or a deluxe cabin with blue wallpaper.

Beginning with EJB 2.0, the create method names can have suffixes. In other words, all create methods can take the
form create<SUFFIX>(). For example, the Customer EJB might define a remote home interface with several create
methods, each of which takes a different Integer type parameter and has a different method name:

public interface CustomerHome extends javax.ejb.EJBHome {

 public CustomerRemote createWithSSN(Integer id, String socialSecurityNumber)

 throws CreateException, RemoteException;

 public CustomerRemote createWithPIN(Integer personalIdNumber)

 throws CreateException, RemoteException;

 public CustomerRemote createWithBLN(Integer id, String businessLicenseNumber)

 throws CreateException, RemoteException;

 public Customer findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

}

While the use of a suffix in the create method names is allowed, it is not required. You can name all your create
methods create(...) and differentiate them by their parameters (method overloading).

The create and find methods defined in the remote home interfaces are straightforward and easy for the client to use.
The create methods must match the ejbCreate() and ejbPostCreate() methods of the bean class. The create(), ejbCreate(),
and ejbPostCreate() methods match when they have the same parameters, when the arguments are of the same type
and in the same order, and when their method names are the same. This way, when a client calls the create method on
the home interface, the call can be delegated to the corresponding ejbCreate() and ejbPostCreate() methods on the bean
instance.

For bean-managed entities, every find<SUFFIX>() method in the home interface must correspond to an ejbFind<SUFFIX>(
) method in the bean itself. Container-managed entities do not implement ejbFind() methods in the bean class; the EJB
container supports find methods automatically. You will discover more about how to implement the ejbCreate(),
ejbPostCreate(), and ejbFind() methods in the bean in Chapter 6 through Chapter 10.

5.2.2.5 Home methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.2.5 Home methods

In addition to find and create methods, the home interface of entity beans may also define home methods. A home
method is a business method that can be invoked on the home interface (local or remote) and is not specific to one
bean instance. For example, the Cabin EJB could define a home method, getDeckCount(), which returns the number of
cabins on a specific deck level:

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

 public int getDeckCount(int level) throws RemoteException;

}

Any method in the home interface that is not a create or find method is assumed to be a home method and should have
a corresponding ejbHome() method in the bean class, as shown here:

public class CabinBean implements javax.ejb.EntityBean{

 public int ejbHomeGetDeckCount(int level){

 // implement logic to determine deck count

 }

 ...

}

Clients can use home methods from the enterprise bean's home interface. The client does not need a reference to a
specific EJB object:

Object ref = jndiContext.lookup("CabinHome");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

int count = home.getDeckCount(2);

Home methods are only available to entity beans. They can be used for generic business logic that applies changes
across a group of entity beans or obtains information that is not specific to any single entity bean. Home methods are
discussed in more detail in Chapter 10.

5.2.3 The Remote Interface

The business methods of an enterprise bean can be defined by the bean's remote interface. The javax.ejb.EJBObject
interface, which extends the java.rmi.Remote interface, is the base class for all remote interfaces. Here is the remote
interface for the TravelAgent bean we developed in Chapter 4:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface for the TravelAgent bean we developed in Chapter 4:

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public String [] listCabins(int shipID, int bedCount)

 throws RemoteException;

}

Figure 5-4 shows the TravelAgentRemote interface's inheritance hierarchy.

Figure 5-4. Enterprise bean interface inheritance hierarchy

Remote interfaces are focused on the business problem and do not include methods for system-level operations such as
persistence, security, concurrency, or transactions. System-level operations are handled by the EJB server, which
relieves the client developer of many responsibilities. All remote interface methods for beans must throw a
java.rmi.RemoteException, which identifies problems with distributed communications. In addition, methods in the remote
interface can throw custom exceptions to indicate abnormal business-related conditions or errors in executing the
business method. You will learn more about defining custom exceptions in Chapter 11 and Chapter 15. To deploy the
example discussed in this section, see Exercise 5.1 in the Workbook.

5.2.4 EJBObject, Handle, and Primary Key

All remote interfaces extend the javax.ejb.EJBObject interface, which provides a set of utility methods and return types.
These methods and return types are valuable in managing the client's interactions with beans. Here is the definition of
EJBObject:

public interface javax.ejb.EJBObject extends java.rmi.Remote {

 public abstract EJBHome getEJBHome()

 throws RemoteException;

 public abstract Handle getHandle()

 throws RemoteException;

 public abstract Object getPrimaryKey()

 throws RemoteException;

 public abstract boolean isIdentical(EJBObject obj)

 throws RemoteException;

 public abstract void remove()

 throws RemoteException, RemoveException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

When the client obtains a reference to the remote interface, it is actually obtaining a remote reference to an EJB object.
The EJB object implements the remote interface by delegating business method calls to the bean class; it provides its
own implementations for the EJBObject methods, which return information about the corresponding bean instance on the
server. The server automatically generates the EJB object, so the bean developer doesn't need to write an EJBObject
implementation.

5.2.4.1 Getting the EJBHome

The EJBObject.getEJBHome() method returns a remote reference to the bean's EJB home. The remote reference is
returned as a javax.ejb.EJBHome object, which can be narrowed to the specific enterprise bean's remote home interface.
This method is useful when an EJB object has left the scope of the remote EJB home that manufactured it. Because
remote references can be passed as references and returned from methods, like any other Java object, a remote
reference can quickly find itself in a completely different part of the application from its remote home. The following
code is contrived, but it illustrates how a remote reference can move out of the scope of its home, and how getEJBHome(
) can be used to get a new reference to the EJB home at any time:

public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("TravelAgentHomeRemote");

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 // Get a remote reference to the bean (EJB object).

 TravelAgentRemote agent = home.create();

 // Pass the remote reference to some method.

 getTheEJBHome(agent);

 } catch (java.rmi.RemoteException re){re.printStackTrace();}

 catch (Throwable t){t.printStackTrace();}

}

public static void getTheEJBHome(TravelAgentRemote agent)

 throws RemoteException {

 // The home interface is out of scope in this method,

 // so it must be obtained from the EJB object.

 Object ref = agent.getEJBHome();

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 // Do something useful with the home interface.

}

5.2.4.2 Primary key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.4.2 Primary key

EJBObject.getPrimaryKey() returns the primary key for an entity bean, and isn't supported by EJB objects that represent
other types of beans. To better understand the nature of a primary key, we need to look beyond the boundaries of the
client's view into the EJB container's layer.

The EJB container is responsible for the persistence of entity beans, but the exact mechanism for persistence is up to
the vendor. To locate an instance of a bean in a persistent store, the data that makes up the entity must be mapped to
some kind of unique key. In relational databases, data is uniquely identified by one or more column values that can be
combined to form a primary key. In an object-oriented database, the key wraps an object ID (OID) or some kind of
database pointer. Regardless of the mechanism—which isn't really relevant from the client's perspective—the unique
key for an entity bean's data is represented by the primary key, which is returned by the EJBObject.getPrimaryKey()
method.

The primary key can be used to obtain remote references to entity beans using the findByPrimaryKey() method:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

CabinRemote cabin_1 = home.create(new Integer(101));

Integer pk = (Integer)cabin_1.getPrimaryKey();

CabinRemote cabin_2 = home.findByPrimaryKey(pk);

In this code, the client creates a Cabin EJB, retrieves its primary key, and then uses the key to get a new reference to
the same Cabin EJB. Thus, we have two variables, cabin_1 and cabin_2, that are remote references to EJB objects. The
variables both reference the same Cabin bean, with the same underlying data, because they have the same primary
key.

A primary key is only valid for the correct bean in the correct container. For example, imagine that a third-party vendor
sells the Cabin EJB as a product. The vendor sells the Cabin EJB to both Titan and a competitor. Both companies deploy
the entity bean using their own relational databases with their own data. As you would expect, both cruise companies
have a Cabin bean with a primary key equal to 20, but they represent different cabins for different ships. The Cabin
EJBs come from different EJB containers, so their primary keys are not equivalent.[4] Every entity EJB object has a
unique identity within its EJB home. If two EJB objects have the same home and same primary key, they are considered
identical.

[4] This is, of course, not true if both Cabin EJBs use the same database, which is common in a clustered scenario.

A primary key must implement the java.io.Serializable interface. This means that a primary key can always be obtained
from an EJB object, stored on the client using the Java serialization mechanism, and deserialized when needed. When a
primary key is deserialized, it can be used to obtain a remote reference to the same entity bean using findByPrimaryKey(
), provided that the key is used on the correct remote home interface and container. Preserving the primary key using
serialization might be useful if the client application needs to access specific entity beans at a later date.

The following code shows a primary key that is serialized and then deserialized:

// Obtain cabin 101 and set its name.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk_1 = new Integer(101);

CabinRemote cabin_1 = home.findByPrimaryKey(pk_1);

cabin_1.setName("Presidential Suite");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cabin_1.setName("Presidential Suite");

// Serialize the primary key for cabin 101 to a file.

FileOutputStream fos = new FileOutputStream("pk101.ser");

ObjectOutputStream outStream = new ObjectOutputStream(fos);

outStream.writeObject(pk_1);

outStream.flush();

outStream.close();

pk_1 = null;

// Deserialize the primary key for cabin 101.

FileInputStream fis = new FileInputStream("pk101.ser");

ObjectInputStream inStream = new ObjectInputStream(fis);

Integer pk_2 = (Integer)inStream.readObject();

inStream.close();

// Reobtain a remote reference to cabin 101 and read its name.

CabinRemote cabin_2 = home.findByPrimaryKey(pk_2);

System.out.println(cabin_2.getName());

5.2.4.3 Comparing beans for identity

The EJBObject.isIdentical() method compares two EJB object remote references. It's worth considering why Object.equals()
isn't sufficient for comparing EJB objects. An EJB object is a distributed object stub and therefore contains a lot of
networking and other state. As a result, references to two EJB objects may be unequal, even if they both represent the
same unique bean. The EJBObject.isIdentical() method returns true if two EJB object references represent the same bean,
even if the EJB object stubs are different object instances.

The following code starts by creating two remote references to the TravelAgent EJB. These remote EJB objects both
refer to the same type of enterprise bean; comparing them with isIdentical() returns true. The two TravelAgent EJBs
were created separately, but because they are stateless, they are equivalent. If TravelAgent EJB had been a stateful
bean, the outcome would have been different. Comparing two stateful beans results in false because stateful beans have
conversational state, which makes them unique. When we use CabinHomeRemote.findByPrimaryKey() to locate two EJB
objects that refer to the same Cabin entity bean, we know the entity beans are identical, because we used the same
primary key. In this case, isIdentical() also returns true:

Context ctx = getInitialContext();

Object ref = ctx.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote agentHome =(TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref, TravelAgentHomeRemote.class);

TravelAgentRemote agent_1 = agentHome.create();

TravelAgentRemote agent_2 = agentHome.create();

boolean x = agent_1.isIdentical(agent_2);

// x will equal true; the two EJB objects are equal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// x will equal true; the two EJB objects are equal.

ref = ctx.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk_1 = new Integer(101);

Integer pk_2 = new Integer(101);

CabinRemote cabin_1 = c_home.findByPrimaryKey(pk_1);

CabinRemote cabin_2 = c_home.findByPrimaryKey(pk_2);

x = cabin_1.isIdentical(cabin_2);

// x will equal true; the two EJB objects are equal.

The Integer primary key used in the Cabin bean is simple. More complex, custom-defined primary keys require us to
override Object.equals() and Object.hashCode() for the EJBObject.isIdentical() method to work. Chapter 10 discusses the
development of more complex custom primary keys, which are called compound primary keys.

5.2.4.4 Removing beans

The EJBObject.remove() method removes session and entity beans. The impact of this method is the same as the
EJBHome.remove() method. For session beans, remove() releases the session and invalidates the remote EJB object
reference. For entity beans, the data that the bean represents is deleted from the database and the remote reference
becomes invalid. The following code shows the EJBObject.remove() method in use:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Integer pk = new Integer(101);

CabinRemote cabin = c_home.findByPrimaryKey(pk);

cabin.remove();

The remove() method throws a RemoveException if for some reason the reference can't be deleted.

5.2.4.5 The enterprise bean Handle

The EJBObject.getHandle() method returns a javax.ejb.Handle object. The Handle is a serializable reference to the remote
EJB object. A Handle allows us to recreate a remote EJB object reference that points to the same type of session bean or
the same unique entity bean from which the Handle originated. The client can save the Handle using Java serialization
and then deserialize it to obtain a reference to the original EJB object.

Here is the interface definition of the Handle:

public interface javax.ejb.Handle {

 public abstract EJBObject getEJBObject()

 throws RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The Handle interface specifies only one method, getEJBObject(). Calling this method returns the remote EJB object from
which the Handle was created. Once we've gotten the object back, we can narrow it to the appropriate remote interface
type. The following code shows how to serialize and deserialize an EJB Handle on a client:

// Obtain cabin 100.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Integer pk_1 = new Integer(100);

CabinRemote cabin_1 = home.findByPrimaryKey(pk_1);

// Serialize the Handle for cabin 100 to a file.

Handle handle = cabin_1.getHandle();

FileOutputStream fos = new FileOutputStream("handle100.ser");

ObjectOutputStream outStream = new ObjectOutputStream(fos);

outStream.writeObject(handle);

outStream.flush();

fos.close();

handle = null;

// Deserialize the Handle for cabin 100.

FileInputStream fis = new FileInputStream("handle100.ser");

ObjectInputStream inStream = new ObjectInputStream(fis);

handle = (Handle)inStream.readObject();

fis.close();

// Reobtain a remote reference to cabin 100 and read its name.

ref = handle.getEJBObject();

CabinRemote cabin_2 = (CabinRemote)

 PortableRemoteObject.narrow(ref, CabinRemote.class);

if(cabin_1.isIdentical(cabin_2))

 // This will always be true.

At first glance, the Handle and the primary key appear to do the same thing, but in truth they are very different. Using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At first glance, the Handle and the primary key appear to do the same thing, but in truth they are very different. Using
the primary key requires us to have the correct remote EJB home—if we no longer have a reference to the EJB remote
home, we must look up the container using JNDI and get a new home. Only then can we call findByPrimaryKey() to locate
the actual enterprise bean. Here's how this might work:

// Obtain the primary key from an input stream.

Integer primaryKey = (Integer)inStream.readObject();

// The JNDI API is used to get a root directory or initial context.

javax.naming.Context ctx = new getInitialContext();

// Using the initial context, obtain the EJBHome for the Cabin bean.

Object ref = ctx.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

// Obtain a reference to an EJB object that represents the entity instance.

CabinRemote cabin_2 = home.findByPrimaryKey(primaryKey);

The Handle object is easier to use because it encapsulates the details of doing a JNDI lookup on the container. With a
Handle, the correct EJB object can be obtained in one method call, Handle.getEJBObject(), rather than the three method
calls needed to look up the context, get the home, and find the actual bean. Furthermore, while the primary key can
obtain remote references to unique entity beans, it is not available for session beans; Handle, on the other hand, can be
used with either type of enterprise bean. This makes using a Handle more consistent across bean types.

Consistency is good in its own right, but it isn't the whole story. Normally, we think of session beans as not having
identifiable instances because they exist for only the life of the client session, but this is not exactly true. We have
mentioned (but not yet shown) stateful session beans, which retain state information between method invocations. Two
instances of a stateful session beans are not equivalent. A Handle allows us to work with a stateful session bean,
deactivate the bean, and then reactivate it at a later time. A client could, for example, be using a stateful session bean
to process an order when the process is interrupted for some reason. Instead of losing all the work performed in the
session, a Handle can be obtained from the EJB object and the client application can be closed down. When the user is
ready to continue the order, the Handle can be used to obtain a reference to the stateful session EJB object. Note that
this process is not necessarily fault-tolerant. If the EJB server goes down or crashes, the stateful session bean is lost
and the Handle is useless. It's also possible for the session bean to time out, which would cause the container to remove
it from service. If this happens, the session bean is no longer available to the client.

5.2.4.6 HomeHandle

The javax.ejb.HomeHandle is similar to javax.ejb.Handle. Just as the Handle is used to store and retrieve references to
remote EJB objects, the HomeHandle is used to store and retrieve references to remote EJB homes. In other words, the
HomeHandle can be stored and later used to access an EJB home's remote reference the same way that a Handle can be
serialized and later used to access an EJB object's remote reference. Here's how the HomeHandle can be obtained,
serialized, and used:

// Obtain cabin 100.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

// Serialize the HomeHandle for the Cabin bean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Serialize the HomeHandle for the Cabin bean.

HomeHandle homeHandle = home.getHomeHandle();

FileOutputStream fos = new FileOutputStream("handle.ser");

ObjectOutputStream outStream = new ObjectOutputStream(fos);

outStream.writeObject(homeHandle);

outStream.flush();

fos.close();

homeHandle = null;

// Deserialize the HomeHandle for the Cabin bean.

FileInputStream fis = new FileInputStream("handle.ser");

ObjectInputStream inStream = new ObjectInputStream(fis);

homeHandle = (HomeHandle)inStream.readObject();

fis.close();

EJBHome homeRef = homeHandle.getEJBHome();

CabinHomeRemote home2 = (CabinHomeRemote)

 PortableRemoteObject.narrow(homeRef,CabinHomeRemote.class);

5.2.4.7 Inside the Handle

Thinking about how Handles might be implemented gives us a better understanding of how they work. (Just remember
that each vendor has its own implementation, which may be completely different from the implemenation we'll discuss.)
Here's an implementation of a Handle for an entity bean:

package com.titan.cabin;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.ejb.EJBObject;

import javax.ejb.Handle;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class VendorX_CabinHandle

 implements javax.ejb.Handle, java.io.Serializable {

 private Integer primary_key;

 private String home_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Properties jndi_properties;

 public VendorX_CabinHandle(Integer pk, String hn, Properties p) {

 primary_key = pk;

 home_name = hn;

 jndi_properties = p;

 }

 public EJBObject getEJBObject() throws RemoteException {

 try {

 Context ctx = new InitialContext(jndi_properties);

 Object ref = ctx.lookup(home_name);

 CabinHomeRemote home =(CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 return home.findByPrimaryKey(primary_key);

 } catch (javax.ejb.FinderException fe) {

 throw new RemoteException("Cannot locate EJB object",fe);

 } catch (javax.naming.NamingException ne) {

 throw new RemoteException("Cannot locate EJB object",ne);

 }

 }

}

Our implementation encapsulates the JNDI lookup and the use of the home's findByPrimaryKey() method, so any change
that invalidates the key also invalidates preserved Handle objects that depend on that key. Additionally, the Handle
assumes that the networking configuration and naming—the IP address of the EJB server and the JNDI name of the
bean's home—remain stable. If the EJB server's network address changes or the name used to identify the home
changes, the Handle becomes useless.

In addition, some vendors choose to implement a security mechanism in the Handle that prevents its use outside the
scope of the client application that originally requested it. How this mechanism would work is unclear, but the security
limitation it implies should be considered before attempting to use a Handle outside the client's scope. To deploy the
example in this section, see Exercise 5.2 in the Workbook.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 The Local Client API
Enterprise JavaBeans were originally defined in terms of remote interfaces, such as the ones we've been discussing.
The use of remote interfaces gave a nice, clean design: beans and bean clients did not need to worry about where other
beans were located, because all bean references were treated as remote references. Beans always communicated with
each other using Java RMI.

But in the real world, when two or more enterprise beans interact, they are usually co-located; that is, they are
deployed in the same EJB container system and execute within the same Java Virtual Machine. In this case, RMI really
isn't necessary, and imposes overhead that we'd rather do without. Why treat all beans as remote objects if, in fact,
they are often local? EJB 2.0 introduced the Local Client API to give developers control over whether beans should be
accessed as remote objects, using RMI, or as local objects.

In EJB 2.0 and 2.1, session and entity beans can implement either remote or local component interfaces, or both. Any
type of enterprise bean (entity, session, or message-driven) can become a co-located client of a session or entity bean;
for example, a message-driven bean can call methods on co-located entity beans using its local component interfaces.
The Local Client API is similar to the Remote Client API, but it is less complicated. The Local Client API is composed of
two interfaces, the local and local home interfaces, which are similar to the remote and remote home interfaces.

5.3.1 The Local Interface

The local interface, like the remote interface, defines business methods that can be invoked by other co-located beans
(co-located clients). These business methods must match the signatures of business methods defined in the bean class.
For example, the CabinLocal interface is the local interface defined for the Cabin EJB:

package com.titan.cabin;

import javax.ejb.EJBException;

public interface CabinLocal extends javax.ejb.EJBLocalObject {

 public String getName() throws EJBException;

 public void setName(String str) throws EJBException;

 public int getDeckLevel() throws EJBException;

 public void setDeckLevel(int level) throws EJBException;

 public int getShipId() throws EJBException;

 public void setShipId(int sp) throws EJBException;

 public int getBedCount() throws EJBException;

 public void setBedCount(int bc) throws EJBException;

}

The CabinLocal interface is basically the same as the CabinRemote interface we developed in Chapter 4, with a couple of
key differences. Most importantly, the CabinLocal interface extends the javax.ejb.EJBLocalObject interface, rather than
EJBObject, and its methods do not throw the java.rmi.RemoteException. Here's the definition of the EJBLocalObject interface:

package javax.ejb;

import javax.ejb.EJBException;

import javax.ejb.RemoteException;

public interface EJBLocalObject {

 public EJBLocalHome getEJBLocalHome() throws EJBException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public EJBLocalHome getEJBLocalHome() throws EJBException;

 public Object getPrimaryKey() throws EJBException;

 public boolean isIdentical(EJBLocalObject obj) throws EJBException;

 public void remove() throws RemoveException, throws EJBException;

}

The methods in the EJBLocalObject interface should be familiar to you already. The getEJBLocalHome() method returns a
local home object; getPrimaryKey() returns the primary key (entity beans only); isIdentical() compares two local EJB
objects; and remove() removes the enterprise bean. These methods work just like their corresponding methods in the
javax.ejb.EJBObject interface.

It's also important to notice the differences between EJBLocalObject and EJBObject. EJBLocalObject does not extend the
java.rmi.Remote interface, because it is not a remote object. Nor does EJBLocalObject define a getHandle() method; handles
are not relevant when the client and the enterprise bean are located in the same EJB container system. The Handle is a
serializable reference that makes it easier for a remote client to obtain a reference to an enterprise bean from a remote
node. Since co-located beans are located in the same container system, not across a network, the Handle object is not
necessary.

The EJBLocalObject and the local interfaces that extend it do not throw a java.rmi.RemoteException, which is no longer
needed. Instead, the local interfaces and EJBLocalObject throw EJBException. This exception is thrown by the container
when some kind of system error occurs or when transaction errors cause the bean instance to be discarded.
EJBException is a subtype of the java.lang.RuntimeException and is therefore an unchecked exception. Unchecked
exceptions do not have to be declared in the throws clause of the local component interfaces and do not require the
client to explicitly handle them using try/catch blocks. However, we choose to declare the EJBException in the method
signatures of the CabinLocal interface in order to communicate to the client application that this type of exception is
possible.

5.3.2 The Local Home Interface

The local home interface, like the remote home interface, defines life-cycle methods that can be invoked by other beans
located in the same container. The life-cycle methods of the local home interface include find, create, and remove
methods similar to those of the remote home interface. Here's the definition of CabinHomeLocal, the local home interface
of the Cabin EJB:

package com.titan.cabin;

import javax.ejb.EJBException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CabinHomeLocal extends javax.ejb.EJBLocalHome {

 public CabinLocal create(Integer id)

 throws CreateException, EJBException;

 public CabinLocal findByPrimaryKey(Integer pk)

 throws FinderException, EJBException;

}

The CabinHomeLocal interface is similar to its counterpart, CabinHomeRemote, which we developed in Chapter 4. However,
CabinHomeLocal extends javax.ejb.EJBLocalHome and does not throw the RemoteException from its create and find methods.
You may also have noticed that the create() and findByPrimaryKey() methods return an instance of the CabinLocal
interface, not the remote interface of the Cabin EJB. The create and find methods of local home interfaces always return
EJB objects that implement the enterprise bean's local interface.

Local interfaces must always extend the EJBLocalHome interface, which is much simpler than its remote counterpart,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local interfaces must always extend the EJBLocalHome interface, which is much simpler than its remote counterpart,
EJBHome:

package javax.ejb;

import javax.ejb.RemoveException;

import javax.ejb.EJBException;

public interface EJBLocalHome {

 public void remove(Object primaryKey)

 throws RemoveException, EJBException;

}

Unlike the EJBHome, the EJBLocalHome does not provide EJBMetaData and HomeHandle accessors. The EJBMetaData object,
which is primarily used by visual development tools, is not needed for co-located beans. In addition, the HomeHandle is
not relevant to co-located client beans any more than the Handle was, because co-located beans do not need special
network references. The EJBLocalHome does define a remove() method that takes the primary key as its argument; this
method works the same as its corresponding method in the remote EJBObject interface.

5.3.3 Deployment Descriptor

When an enterprise bean uses local component interfaces, the interfaces must be declared in the XML deployment
descriptor. Here are the changes we need to make to the deployment descriptor for the Cabin bean:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

In addition to adding the <local-home> and <local> elements, the <ejb-ref> element is changed to an <ejb-local-ref>
element, indicating that a local EJB object is being used instead of a remote one:

<ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

</ejb-local-ref>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3.4 Using the Local Client API

We can easily redesign the TravelAgent EJB developed in Chapter 4 so that it uses the Cabin EJB's local component
interfaces instead of the remote component interfaces:

public String [] listCabins(int shipID, int bedCount) {

 try {

 javax.naming.Context jndiContext = new InitialContext();

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 Vector vect = new Vector();

 for (int i = 1; ; i++) {

 Integer pk = new Integer(i);

 CabinLocal cabin;

 try {

 cabin = home.findByPrimaryKey(pk);

 } catch(javax.ejb.FinderException fe) {

 break;

 }

 // Check to see if the bed count and ship ID match.

 if (cabin.getShipId() == shipID &&

 cabin.getBedCount() == bedCount) {

 String details =

 i+","+cabin.getName()+","+cabin.getDeckLevel();

 vect.addElement(details);

 }

 }

 String [] list = new String[vect.size()];

 vect.copyInto(list);

 return list;

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Three small changes are needed. The most important change is using local component interfaces for the Cabin EJB
instead of remote interfaces. We do not need to use the PortableRemoteObject.narrow() method when obtaining the Cabin
EJB's home object because we are not accessing the home across the network; we are accessing the home object from
the same JVM, so there's no problem with a regular Java cast. Eliminating this method call makes the code much easier
to read. We also changed the try/catch block to catch the javax.naming.NamingException rather than the EJBException thrown
by the local component interface methods. It is easier to allow those exceptions to propagate directly to the container,
where they can be handled better. Chapter 15 covers exception handling in detail. To deploy the examples in this
section, see Exercise 5.3 in the Workbook.

5.3.5 When to Use Local Component Interfaces

Entity and session beans can provide either local or remote component interfaces, or they may use both so that the
bean is accessible from remote and local clients. Whenever we have enterprise beans accessing each other from within
the same container system, we must seriously consider using local component interfaces, as their performance is likely
to be better than that of remote component interfaces.

However, relying on the Local Client API eliminates the location transparency of enterprise bean references. In other
words, if we provide only a local client API, we cannot move the bean to a different server. The Remote Client API
allows us to move enterprise beans from one server to another without impacting the bean code.

The Local Client API also passes object arguments by reference from one bean to another, as illustrated in Figure 5-5.
This means that an object passed from enterprise bean A to enterprise bean B is referenced by both beans, so if B
changes its values, A will see those changes.

Figure 5-5. Passing by reference with the Local Client API

With the Remote Client API, objects' arguments (parameters or return values) are always copied, so changes made to
one copy are not reflected in the other (see Figure 5-1).

Passing by reference can create some pretty dangerous situations if the enterprise beans that share the object
reference are not coded carefully. In most cases, it is best to pass immutable objects without copying them first.

5.3.6 Are Local Component Interfaces Necessary?

Why is the Local Client API needed at all? Wouldn't it have been possible to amend the specification of the Remote
Client API to account for co-located container optimizations, making those optimizations standard, configurable
attributes in the deployment descriptor? The only problem with that solution is semantics. The remote interfaces extend
java.rmi.Remote, and all subtypes of the java.rmi.Remote interface are required to throw java.rmi.RemoteException types from
methods. It may have been difficult for developers to distinguish between a co-located EJB object and a remote EJB
object, which is an important distinction if one is passing objects by reference while the other passes them by copy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object, which is an important distinction if one is passing objects by reference while the other passes them by copy.

However, it can also be difficult for some EJB developers to use both the Remote and Local Client APIs correctly and
effectively. With local component interfaces, we are locked into a single JVM, and we cannot move beans from one
container to the next at will. The arguments for and against the local component interfaces both have their merits.
Whether we agree with the need for the Local Client API or not, local interfaces are here to stay, and we must learn to
use them appropriately.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. CMP: Basic Persistence
In this chapter, we'll take a thorough look at the process of developing entity beans. A good rule of thumb is that entity
beans model business concepts that can be expressed as nouns. Although this is a guideline rather than a requirement,
it helps determine when a business concept is a candidate for implementation as an entity bean. In grammar school,
you learned that nouns are words that describe a person, place, or thing. The concepts of "person" and "place" are
fairly obvious: a person EJB might represent a customer or passenger, and a place EJB might represent a city or port-
of-call. Similarly, entity beans often represent "things": real-world objects like ships, credit cards, and abstractions such
as reservations. Entity beans describe both the state and behavior of real-world objects and allow developers to
encapsulate the data and business rules associated with specific concepts; a Customer EJB encapsulates the data and
business rules associated with a customer, for example. This makes it possible for data associated with a concept to be
manipulated consistently and safely.

In Titan's cruise ship business, we can identify hundreds of business concepts that are nouns and, therefore, could
conceivably be modeled by entity beans. We've already seen a simple Cabin EJB in Chapter 4, and we'll develop
Customer and Address EJBs in this chapter. Titan could clearly make use of a Cruise EJB, a Reservation EJB, and many
others. Each of these business concepts represents data that needs to be tracked and possibly manipulated.

Entities represent data in the database, so changes to an entity bean result in changes to the database. That's
ultimately the purpose of an entity bean: to provide programmers with a simpler mechanism for accessing and
changing data. It is much easier to change a customer's name by calling Customer.setName() than by executing an SQL
command against the database. In addition, using entity beans provides opportunities for software reuse. Once an
entity bean has been defined, its definition can be used throughout Titan's system in a consistent manner. The concept
of a customer, for example, is used in many areas of Titan's business, including booking, accounts receivable, and
marketing. A Customer EJB provides Titan with one complete way of accessing customer information, and thus it
ensures that access to the information is consistent and simple. Representing data as entity beans can make
development easier and more cost-effective.

When a new entity EJB is created, a new record must be inserted into the database and a bean instance must be
associated with that data. As the EJB is used and its state changes, these changes must be synchronized with the data
in the database: entries must be inserted, updated, and removed. The process of coordinating the data represented by
a bean instance with the database is called persistence.

There are two basic types of entity beans, distinguished by how they manage persistence: container-managed
persistence beans and bean-managed persistence beans. For container-managed persistence beans (frequently called
CMP beans), the container knows how a bean instance's persistence and relationship fields map to the database and
automatically takes care of inserting, updating, and deleting the data associated with entities in the database. Entity
beans using bean-managed persistence do all this work manually: the bean developer must write the code to
manipulate the database. The EJB container tells the bean instance when it is safe to insert, update, and delete its data
from the database, but it provides no other help.

This chapter and the two that follow focus on entity beans that use container-managed persistence. In EJB 2.1 and EJB
2.0, the data associated with an entity bean can be much more complex than in earlier versions. Container-managed
beans can have relationships with other entity beans, a function that was not well supported in the older version—as a
result, vendors sometimes offered proprietary solutions that were not portable. In addition, container-managed beans
can be finer in granularity so that they can easily model things such as the address, line item, or cabin. The Customer
EJB that we'll define in this chapter has relationships with several other entities, including the Address, Phone,
CreditCard, Cruise, Ship, Cabin, and Reservation EJBs. In the next few chapters, you'll learn how to use EJB's support
for bean-to-bean relationships, and will also come to understand their limitations. In addition, in Chapter 8, you will
learn about the Enterprise JavaBeans Query Language (EJB QL), which is used to define how the find methods and
select methods should behave at runtime.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 The Abstract Programming Model
In CMP, the container automatically manages the entity beans' state. The container takes care of enrolling the entity
bean in transactions and persisting its state to the database. The developer describes the attributes and relationships of
an entity bean using virtual persistence fields and relationship fields. They are called virtual fields because the bean
developer does not declare these fields explicitly; instead, abstract accessor (get and set) methods are declared in the
entity bean class. The implementations of these methods are generated at deployment time by the EJB vendor's
container tools. It's important to remember that the terms relationship field and persistence field refer to the abstract
accessor methods and not to actual fields declared in the classes.

In Figure 6-1, the Customer EJB has six accessor methods. The first four read and update the last and first names of
the customer. These are examples of persistence fields: simple direct attributes of the entity bean. The last two
accessor methods obtain and set references to the Address EJB through its local interface, AddressLocal. This is an
example of a relationship field called the homeAddress field.

Figure 6-1. Class diagram of Customer and Address EJBs

6.1.1 Abstract Persistence Schema

The CMP entity bean classes are defined using abstract accessor methods that represent virtual persistence and
relationship fields. As already mentioned, the actual fields themselves are not declared in the entity classes. Instead,
the characteristics of these fields are described in the XML deployment descriptor used by the entity bean. The abstract
persistence schema is the set of XML elements in the deployment descriptor that describe the relationship fields and the
persistence fields. Together with the abstract accessor methods and some help from the deployer, the container tool
will have enough information to map the entity and its relationships to other entity beans to the database.

6.1.2 Container Tools and Persistence

One of the responsibilities of the vendor's container-deployment tool is generating concrete implementations of the
abstract entity beans. The concrete classes generated by the container tool are called persistence classes. Instances of
the persistence classes are responsible for working with the container to read and write data between the entity bean
and the database at runtime. Once the persistence classes are generated, they can be deployed into the EJB container.
The container informs the persistence instances (instances of persistence classes) when it's a good time to read and
write data to the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

write data to the database.

The persistence classes may include database access logic optimized for a particular database, database schema, or
database configuration. Persistence classes may employ optimizations such as lazy loading and optimistic locking to
further improve performance. Because the EJB container generates the persistence classes at deployment time,
including the database access logic, bean developers do not have to write the database access code themselves. As an
EJB developer, you will never have to deal with database access code when working with CMP entities. In fact, you
probably won't have access to the persistence classes that contain that logic, because they are generated by the
container tool automatically and aren't available to the bean developer.

Figures Figure 6-2 and Figure 6-3 show different container tools, both of which are being used to map the Customer
entity bean to a relational database.

Figure 6-2. Borland AppServer deployment tool

Figure 6-3. J2EE 1.3 SDK deployment tool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 The Customer EJB
The Customer EJB is a simple CMP entity bean that models the concept of a cruise customer or passenger, but its
design and use are applicable across many commercial domains. This section introduces the Customer bean's
development, packaging, and deployment. We greatly expand the bean's features as we progress through the chapter.

6.2.1 The Customer Table

Although CMP is database-independent, the examples throughout this book assume that you are using a relational
database. This means that we will need a CUSTOMER table from which to get our customer data. The relational database
table definition in SQL is as follows:

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY NOT NULL,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20)

)

6.2.2 The CustomerBean

The CustomerBean class is an abstract class that the container uses for generating a concrete implementation, the
persistence entity class. The mechanism used by the container for generating a persistence entity class varies, but most
vendors generate a subclass of the abstract class provided by the bean developer (see Figure 6-4).

Figure 6-4. The container tool typically extends the bean class

The bean class must declare accessor (set and get) methods for each persistence field and relationship field defined in
the deployment descriptor. The container needs both the abstract accessor methods (defined in the entity bean class)
and the XML elements of the deployment descriptor to fully describe the bean's persistence schema. In this book, the
entity bean class is always defined before the XML elements, because it's a more natural approach for most Java
developers. Here is a very simple definition of the CustomerBean class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

developers. Here is a very simple definition of the CustomerBean class:

package com.titan.customer;

import javax.ejb.EntityContext;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id){

 }

 // abstract accessor methods

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract String getLastName();

 public abstract void setLastName(String lname);

 public abstract String getFirstName();

 public abstract void setFirstName(String fname);

 // standard callback methods

 public void setEntityContext(EntityContext ec){}

 public void unsetEntityContext(){}

 public void ejbLoad(){}

 public void ejbStore(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbRemove(){}

}

The CustomerBean class is required to be abstract in order to reinforce the idea that the CustomerBean is not deployed
directly. Since abstract classes cannot be instantiated, this class must be subclassed by a persistence class generated
by the deployment tool. When generating the persistence class, the deployment tool must generate the accessor
methods, which are themselves declared as abstract.

The CustomerBean extends the javax.ejb.EntityBean interface, which defines several callback methods, including
setEntityContext(), unsetEntityContext(), ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), and ejbRemove(). These methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setEntityContext(), unsetEntityContext(), ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), and ejbRemove(). These methods
are important for notifying the bean instance about events in its life cycle, but we do not need to worry about them yet.
We will discuss these methods in detail in Chapter 10.

The first method in the entity bean class is ejbCreate(), which takes a reference to an Integer object as its only
argument. The ejbCreate() method is called when the remote client invokes the create() method on the entity bean's
home interface. This concept should be familiar, since it's the same way ejbCreate() worked in the Cabin bean developed
in Chapter 4. The ejbCreate() method is responsible for initializing any persistence fields before the entity bean is
created. In this first example, the ejbCreate() method is used to initialize the id persistence field, which is represented by
the setId()/getId() accessor methods.

The return type of ejbCreate() is an Integer, which is the primary key of the entity bean. The primary key is a unique
identifier that can take a variety of forms. In this case, the primary key (the Integer) is mapped to the ID field in the
CUSTOMER table. This will become evident when we define the XML deployment descriptor. However, although the
return type of the ejbCreate() method is the primary key, the value actually returned by the ejbCreate() method is null.
The EJB container and persistence class will extract the primary key from the bean when it is needed. See the sidebar
"Why ejbCreate() Returns Null" for an explanation of ejbCreate()'s return type.

Why ejbCreate() Returns Null
In EJB 1.0, the first release of EJB, the ejbCreate() method in container-managed persistence was
declared as returning void, while the ejbCreate() method in bean-managed persistence returns the
primary key type. However, in EJB 1.1 it was changed to the primary key type, with an actual return
value of null.

EJB 1.1 changed the return value of ejbCreate() from void to the primary key type to facilitate
subclassing; i.e., to make it easier for a bean-managed entity bean to extend a container-managed
entity bean. In EJB 1.0, this was not possible because Java doesn't allow you to overload methods with
different return values. Changing this definition allowed a bean-managed entity bean to extend a
container-managed bean, which in turn allowed vendors to support CMP by extending a container-
managed bean with an automatically generated bean-managed bean—a fairly simple solution to a
difficult problem.

With the changes made to CMP starting in EJB 2.0, this little trick has become less useful. The abstract
persistence schema of EJB CMP beans is, in many cases, too complex for a simple BMP container.
However, it remains in the specification for backward compatibility and to facilitate bean-managed
persistence subclassing, if needed.

The ejbPostCreate() method performs initialization after the entity bean is created but before it services any requests
from the client. Usually, this method is used to perform work on the entity bean's relationship fields, which can occur
only after the bean's ejbCreate() method has been invoked and added to the database. For each ejbCreate() method,
there must be a matching ejbPostCreate() method that has the same method name and arguments but returns void. This
pairing of ejbCreate() and ejbPostCreate() ensures that the container calls the correct methods together. We'll explore the
use of the ejbPostCreate() later; for now, it's not needed, so its implementation is left empty.

The abstract accessor methods (setLastName(), getLastName(), setFirstName(), getFirstName()) represent the persistence
fields in the CustomerBean class. When the bean is processed by a container, these methods will be implemented by a
persistence class based on the abstract persistence schema (XML deployment descriptor elements), the particular EJB
container, and the database used. Basically, these methods fetch and update values in the database and are not
implemented by the bean developer.

6.2.3 The Remote Interface

We need a CustomerRemote interface for the Customer EJB, because the bean will be accessed by clients outside the
container system. The remote interface defines the business methods that clients use to interact with the entity bean.
The remote interface should define methods that model the public aspects of the business concept being modeled; that
is, those behaviors and data that should be exposed to client applications. Here is the remote interface for
CustomerRemote:

package com.titan.customer;

import java.rmi.RemoteException;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public String getLastName() throws RemoteException;

 public void setLastName(String lname) throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setLastName(String lname) throws RemoteException;

 public String getFirstName() throws RemoteException;

 public void setFirstName(String fname) throws RemoteException;

}

Any methods defined in the remote interface must match methods defined in the bean class. In this case, the accessor
methods in the CustomerRemote interface match persistence field accessor methods in the CustomerBean class—with a few
exceptions, methods in the remote interface can match any business method in the bean class

While remote methods can match persistence fields and other business methods in the bean class, the specification
prohibits the remote methods from matching callback methods (ejbRemove(), ejbActivate(), ejbLoad(), etc.) or
relationship fields—relationship fields are used to access other entity beans. In addition, remote methods may not
modify any container-managed persistence fields that are part of the primary key of an entity bean. Notice that the
remote interface does not define a setId() method, which would allow it to modify the primary key.

6.2.4 The Remote Home Interface

The remote home interface of any entity bean is used to create, locate, and remove entities from the EJB container.
Each entity bean type may have its own remote home interface, local home interface, or both. As explained in Chapter
5, the remote and local home interfaces perform essentially the same function. The home interfaces define three basic
kinds of methods: home business methods, zero or more create methods, and one or more find methods. The create()
methods act like remote constructors and define how new entity beans are created. In our remote home interface, we
provide only a single create() method, which matches the corresponding ejbCreate() method in the bean class. The find
method is used to locate a specific Customer EJB using the primary key as a unique identifier.

Here is the complete definition of the CustomerHomeRemote interface:

package com.titan.customer;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public CustomerRemote create(Integer id)

 throws CreateException, RemoteException;

 public CustomerRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

}

A create() method may be suffixed with a name in order to further qualify it when overloading method arguments. This
is useful if we have two different create() methods that take arguments of the same type. For example, we could
declare two create() methods for Customer that both declare an Integer and a String argument. The String argument
might be a Social Security number (SSN) in one case and a tax identification number (TIN) in another—individuals have
Social Security numbers while corporations have tax identification numbers. Here's how these methods might look:

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public CustomerRemote createWithSSN(Integer id, String socialSecurityNumber)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public CustomerRemote createWithSSN(Integer id, String socialSecurityNumber)

 throws CreateException, RemoteException;

 public CustomerRemote createWithTIN(Integer id, String taxIdentificationNumber)

 throws CreateException, RemoteException;

 public CustomerRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

 }

Each create<SUFFIX>() method must have a corresponding ejbCreate<SUFFIX>() in the bean class. For example, the
CustomerBean class needs to define ejbCreateWithSSN() and ejbCreateWithTIN() methods as well as matching
ejbPostCreateWithSSN() and ejbPostCreateWithTIN() methods. We are keeping this example simple, so we need only one
create() method and, therefore, no suffix.

Enterprise JavaBeans specifies that create() methods in the remote home interface must throw the
javax.ejb.CreateException. In the case of container-managed persistence, the container needs a common exception for
communicating problems that may occur during the create process.

Entity remote home interfaces must define a findByPrimaryKey() method that takes the entity bean's primary key type as
its only argument. No matching method needs to be defined in the entity bean class. The implementation of
findByPrimaryKey() is generated automatically. At runtime, the findByPrimaryKey() method automatically locates and
returns a remote reference to the entity bean with the matching primary key.

The bean developer can also declare other find methods. For example, the CustomerHomeRemote interface could define a
findByLastName(String lname) method that locates all the Customer entities with the specified last name. These types of
find methods are automatically implemented by the deployment tool based on the method signature and an EJB QL
statement. EJB QL is similar to SQL but is specific to EJB. Custom finder methods and EJB QL are discussed in detail in
Chapter 8.

6.2.5 The XML Deployment Descriptor

CMP entity beans must be packaged with an XML deployment descriptor that describes the bean and its abstract
persistence schema. With many commercial containers, the bean developer is not directly exposed to the deployment
descriptor, but instead uses the container's deployment tools to package beans. In this book, however, I describe the
deployment descriptor in detail so you have a full understanding of its content and organization.

Here is the complete XML deployment descriptor for the Customer EJB in EJB 2.1. Many of the elements in this
descriptor should be familiar from Chapter 4; we will focus on the new elements:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <role-name>Employees</role-name>

 </security-role>

 <method-permission>

 <role-name>Employees</role-name>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 <container-transaction>

 </assembly-descriptor>

</ejb-jar>

The deployment descriptor for EJB 2.0 is exactly the same, except that it uses XML DTD instead of XML Schema, so the
first tag in the EJB 2.0 deployment descriptor is the document declaration followed by the <ejb-jar> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 ...

</ejb-jar>

The first few elements in the Customer EJB's deployment descriptor should be familiar; they declare the Customer EJB
name, (CustomerEJB) as well as its home, remote, and bean class. The <security-identity> element should also be familiar,
as well as the <assembly-descriptor> elements, which declare the security and transaction attributes of the bean. In this
case, they state that all employees can access any CustomerEJB method and that all methods use the Required
transaction attribute.

Container-managed persistence entities also need to declare a persistence type, version, and whether they are
reentrant. These elements are declared under the <entity> element.

The <persistence-type> element tells the container system whether the bean will be a container-managed persistence
entity or a bean-managed persistence entity. In this case it's container-managed, so we use Container. Had it been
bean-managed, the value would have been Bean.

The <cmp-version> element is optional; it tells the container system which version of container-managed persistence is
being used. The value of the <cmp-version> element can be either 2.x or 1.x. The 2.x designator is used for EJB 2.1 and
2.0, while 1.x is used for EJB 1.1. EJB 2.1 and 2.0 containers are required to support EJB 1.1 CMP for backward
compatibility. If it is not declared, the default value is 2.x. It's not really needed here, but it's specified as an aid to
other developers who might read the deployment descriptor.

The <reentrant> element indicates whether reentrant behavior is allowed. In this case the value is False, which indicates
that the CustomerEJB is not reentrant (i.e., loopbacks are not allowed). A value of True would indicate that the
CustomerEJB is reentrant and that loopbacks are permitted.

The entity bean must also declare its container-managed persistence fields and its primary key:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <primkey-field>id</primkey-field>

</entity>

The container-managed persistence fields are the id, lastName, and firstName, as indicated by the <cmp-field> elements.
The <cmp-field> elements must have matching accessor methods in the CustomerBean class. As you can see in Table 6-1,
the values declared in the <field-name> element match the names of abstract accessor methods we declared in the
CustomerBean class.

Table 6-1. Field names for abstract accessor methods
CMP field Abstract accessor method

id
public abstract Integer getId()

public abstract void setId(Integer id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract void setId(Integer id)

lastName
public abstract String getLastName()

public abstract void setLastName(String lname)

firstName
public abstract String getFirstName()

public abstract void setFirstName(String lname)

CMP requires that the <field-name> values start with a lowercase letter. The names of the matching accessor methods
take the form get<field-name>(), set<field-name >() (the first letter of the field name is capitalized). The return type of
the get method and the parameter of the set method determine the type of the <cmp-field>. It's the convention of this
book, but not a requirement of CMP, that field names with multiple words are declared using "camel case," in which
each new word starts with a capital letter (e.g., lastName).

Finally, we declare the primary key using two fields, <prim-key-class> and <primkey-field>. <prim-key-class> indicates the
type of the primary key, and <primkey-field> indicates which of the <cmp-field> elements designates the primary key. The
Customer EJB uses a single-field primary key, in which the bean's identifier is composed of a single container-managed
field. The <primkey-field> must be declared if the entity bean uses a single-field primary key. Compound primary keys,
which use more than one of the persistence fields as a key, are often used instead. In this case, the bean developer
creates a custom primary key. The <prim-key-class> element is always required, whether it's a single-field, compound, or
unknown primary key. Unknown keys use a field that may not be declared in the bean at all. The different types of
primary keys are covered in more detail in Chapter 10.

6.2.6 The EJB JAR File

Now that you have created the interfaces, bean class, and deployment descriptor, you're ready to package the bean for
deployment. As you learned in Chapter 4, the JAR file provides a way to "shrink-wrap" a component so it can be
deployed in an EJB container. The command for creating a new EJB JAR file is:

\dev % jar cf customer.jar com/titan/customer/*.class

com/titan/customer/META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\customer*.class com\titan\customer

\META-INF\ejb-jar.xml

There are a number of tools that create the XML deployment descriptor and package the enterprise bean into a JAR file
automatically. Some of these tools even create the home and remote interfaces automatically, based on input from the
developer.

6.2.7 Deployment

Once the CustomerEJB is packaged in a JAR file, it's ready to be deployed in an EJB container. The point is to map the
container-managed persistence fields of the bean to fields or data objects in the database. (Earlier in this chapter,
Figure 6-2 and Figure 6-3 showed two visual tools used to map the Customer EJB's persistence fields.) In addition, the
security roles need to be mapped to the subjects in the security realm of the target environment and the bean needs to
be added to the naming service and given a JNDI lookup name (name binding).

6.2.8 The Client Application

The Client application is a remote client to the CustomerEJB that creates several customers, finds them, and then removes
them. Here is the complete definition of the Client application:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them. Here is the complete definition of the Client application:

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import java.util.Properties;

public class Client {

 public static void main(String [] args)) throws Exception {

 //obtain CustomerHome

 Context jndiContext = getInitialContext();

 Object obj=jndiContext.lookup("CustomerHomeRemote");

 CustomerHomeRemote home = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,CustomerHomeRemote.class);

 //create Customers

 for(int i =0;i <args.length;i++){

 Integer primaryKey =new Integer(i);

 String firstName = args [i];

 String lastName = args [i];

 CustomerRemote customer = home.create(primaryKey);

 customer.setFirstName(firstName);

 customer.setLastName(lastName);

 }

 //find and remove Customers

 for(int i = 0;i < args.length;i++){

 Integer primaryKey = new Integer(i);

 CustomerRemote customer = home.findByPrimaryKey(primaryKey);

 String lastName = customer.getLastName();

 String firstName = customer.getFirstName();

 System.out.print(primaryKey+"=");

 System.out.println(firstName+""+lastName);

 //remove Customer

 customer.remove();

 }

 }

 public static Context getInitialContext(

 throws javax.naming.NamingException {

 Properties p =new Properties();

 //...Specify the JNDI properties specific to the vendor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //...Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

 }

}

The Client application creates several Customer EJBs, sets their first and last names, prints out the persistence field
values, and then removes the entities from the container system and, effectively, the database. To deploy the examples
in this section, see Exercise 6.1 in the Workbook.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Persistence Fields
Container-managed persistence (CMP) fields are virtual fields whose values map directly to the database. Persistence
fields can be Java serializable types and Java primitive types. Java serializable types implement the java.io.Serializable
interface. Most deployment tools easily handle java.lang.String, java.util.Date, and the primitive wrappers (Byte, Boolean,
Short, Integer, Long, Double, and Float), because these types of objects are part of the Java core and map naturally to
database fields.

The CustomerEJB declares three serializable fields, id, lastName, and firstName, which map naturally to the INT and CHAR
fields of the CUSTOMER table in the database.

You can also define your own serializable types, called dependent value classes, and declare them as CMP fields.
However, I recommend that you do not use custom serializable objects as persistence field types unless it is absolutely
necessary—they are usually recommended for unstructured types, such as multimedia data (images, blobs, etc.).
Arbitrary dependent value classes usually will not map naturally to database types, so they must be stored in their
serializable forms in some type of binary database field.

Serializable objects are always returned as copies and not references, so modifying a serializable object will not impact
its database value. The value of a serializable object must be updated using the set<field-name> method.

The primitive types (byte, short, int, long, double, float, and boolean) are also allowed to be CMP fields. These types are
easily mapped to the database and are supported by all deployment tools. As an example, the CustomerEJB might
declare a boolean that represents a customer's credit worthiness:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

 setId(id);

 return null;

 }

 // abstract accessor methods

 public abstract boolean getHasGoodCredit();

 public abstract void setHasGoodCredit(boolean creditRating);

 ...

}

You must add a database field, HAS_GOOD_CREDIT, to the CUSTOMER table for the hasGoodCredit persistent field.
Depending on the kind of database you are using, this field may be a BIT, INT, BOOLEAN, or something else. For
example, Oracle and DB2 use an INT field:

CREATE TABLE CUSTOMER

{

 ID INT PRIMARY KEY,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 HAS_GOOD_CREDIT INT

}

Other databases use different data types for the HAS_GOOD_CREDIT field:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other databases use different data types for the HAS_GOOD_CREDIT field:

In Oracle, it should be INT.

In DB2 UDB, it should be INT.

In SQL*Server, it should be BIT.

In Sybase ASE, it should be BIT.

In Cloudscape, it should be BOOLEAN.

In PointBase, it should be BOOLEAN.

This is an unfortunate SQL portability problem that occurs when you're using different database technologies, but it's
the only inconsistency I discovered while testing the code for this book. Before adding the HAS_GOOD_CREDIT field to the
CUSTOMER table, check your vendor's documentation to determine the field type.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Dependent Value Classes
Dependent value classes are custom serializable objects that can be used as persistence fields (although this use is not
recommended). They are useful for packaging data and moving it between an entity bean and its remote clients. They
separate the client's view of the entity bean from its abstract persistence model, which makes it easier for the entity
bean class to change without affecting existing clients.

The remote interface methods of an entity bean should be defined independently of the abstract persistence schema. In
other words, you should design the remote interfaces to model the business concepts, not the underlying persistence
programming model. Dependent value classes can help separate a remote client's view from the persistence model by
providing objects that fill the gaps in these perspectives.

For example, the CustomerEJB could be modified so that its lastName and firstName fields are not exposed to remote
clients through their accessor methods. This is a reasonable design approach, since most clients access the entire name
of the customer at once. The remote interface might be modified to look like:

import java.rmi.RemoteException;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public Name getName() throws RemoteException;

 public void setName(Name name) throws RemoteException;

}

This remote interface is simpler than the one we saw earlier. It allows the remote client to get all the name information
in one method call instead of two, reducing network traffic and improving performance for remote clients. The use of
the Name object is also more consistent with how the client interacts with the Customer EJB.

To implement this interface, the CustomerBean class adds a business method that matches the remote interface
methods. The setName() method updates the lastName and firstName fields, while the getName() method constructs a
Name object from these fields:

import javax.ejb.EntityContext;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id) {

 }

 // business methods

 public Name getName() {

 Name name = new Name(getLastName(),getFirstName());

 return name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return name;

 }

 public void setName(Name name) {

 setLastName(name.getLastName());

 setFirstName(name.getFirstName());

 }

 // abstract accessor methods

 public abstract String getLastName();

 public abstract void setLastName(String lname);

 public abstract String getFirstName();

 public abstract void setFirstName(String fname);

The getName() and setName() methods are business methods, not abstract persistence methods. Entity beans can have
as many business methods as needed. Business methods introduce business logic to the Customer EJB; otherwise, the
bean would be only a data wrapper. For example, validation logic could be added to the setName() method to ensure
that the data is correct before applying the update. In addition, the entity bean class can use other methods that help
with processing data—these are just instance methods and may not be exposed as business methods in the remote
interface.

How dependent value classes are defined is important to understanding how they should be used. The Name dependent
value class is defined as:

public class Name implements java.io.Serializable {

 private String lastName;

 private String firstName;

 public Name(String lname, String fname){

 lastName = lname;

 firstName = fname;

 }

 public String getLastName() {

 return lastName;

 }

 public String getFirstName() {

 return firstName;

 }

}

You'll notice that the Name dependent value class has get accessor methods but not set methods. It's immutable. This is
a design strategy used in this book, not a requirement of the EJB specification. By making dependent values immutable,
we ensure that remote clients cannot change the Name object's fields. The reason for this design is simple: the Name
object is a copy, not a remote reference. Changes to Name objects are not reflected in the database. Making the Name
immutable helps to ensure that clients do not mistake this dependent value for a remote object reference, thinking that
a change to the Name object is automatically reflected in the database. To change the customer's name, the client is
required to create a new Name object and use the setName() method to update the Customer EJB.

The following listing illustrates how a client would modify the name of a customer using the Name dependent value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following listing illustrates how a client would modify the name of a customer using the Name dependent value
class:

// find Customer

customer = home.findByPrimaryKey(primaryKey);

name = customer.getName();

System.out.print(primaryKey+" = ");

System.out.println(name.getFirstName()+" "+name.getLastName());

// change Customer's name

name = new Name("Monson-Haefel", "Richard");

customer.setName(name);

name = customer.getName();

System.out.print(primaryKey+" = ");

System.out.println(name.getFirstName()+" "+name.getLastName());

The output will look like this:

1 = Richard Monson

1 = Richard Monson-Haefel

Defining the bean's interfaces according to business concepts and not the underlying data is not always reasonable, but
you should try to employ this strategy when the underlying data model doesn't clearly map to the business purpose or
concept being modeled by the entity bean. The bean's interfaces may be used by developers who know the business
but not the abstract programming model. It is important to them that the entity beans reflect the business concept. In
addition, defining the interfaces independently of the persistence model enables the component interfaces and
persistence model to evolve separately. This allows the abstract persistence programming model to change over time,
and allows for new behavior to be added to the entity bean as needed.

Dependent value classes should not be used indiscriminately. Generally speaking, it is foolish to use dependent value
classes when a CMP field will do just fine. For example, checking a client's creditworthiness before processing an order
can be accomplished easily using the getHasGoodCredit() method directly. In this case, a dependent value class would
serve no purpose. Exercise 6.2 in the Workbook shows how to deploy these examples on the JBoss server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Relationship Fields
Entity beans can form relationships with other entity beans. In Figure 6-1, at the beginning of this chapter, the
Customer EJB has a one-to-one relationship with the Address EJB. The Address EJB is a fine-grained business object
that should always be accessed in the context of another entity bean, which means it should have only local interfaces
and not remote interfaces. An entity bean can have relationships with many different entity beans at the same time. For
example, we could easily add relationship fields for Phone, CreditCard, and other entity beans to the Customer EJB. At
this point, we're choosing to keep the Customer EJB simple.

Using Figure 6-1 as a guide, we define the Address EJB as follows:

package com.titan.address;

import javax.ejb.EntityContext;

public abstract class AddressBean implements javax.ejb.EntityBean {

 public Integer ejbCreateAddress(String street, String city,

 String state, String zip)

 {

 setStreet(street);

 setCity(city);

 setState(state);

 setZip(zip);

 return null;

 }

 public void ejbPostCreateAddress(String street, String city,

 String state, String zip) {

 }

 // persistence fields

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract String getStreet();

 public abstract void setStreet(String street);

 public abstract String getCity();

 public abstract void setCity(String city);

 public abstract String getState();

 public abstract void setState(String state);

 public abstract String getZip();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract void setZip(String zip);

 // standard callback methods

 public void setEntityContext(EntityContext ec){}

 public void unsetEntityContext(){}

 public void ejbLoad(){}

 public void ejbStore(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbRemove(){}

}

The AddressBean class defines several persistence fields (street, city, state, and zip) and an ejbCreateAddress() method,
which is called when a new Address EJB is created. The persistence fields are represented by abstract accessor
methods. These abstract methods are matched with XML deployment descriptor elements. At deployment time, the
container maps the Customer and Address EJB's persistence fields to the database. This means there must be a table in
our relational database that contains columns matching the persistence fields in the Address EJB. In this example, we
will use a separate ADDRESS table for storing address information:

CREATE TABLE ADDRESS

(

 ID INT PRIMARY KEY NOT NULL,

 STREET CHAR(40),

 CITY CHAR(20),

 STATE CHAR(2),

 ZIP CHAR(10)

)

The ID column in this table is an auto-increment field, created automatically by the database or container system. It is
the primary key of the Address EJB. Once the bean is created, its primary key must never again be modified. When
primary keys are autogenerated values, such as the ID column in the ADDRESS table, the EJB container obtains the
primary key value from the database.

The other columns in this table correspond to the Address bean's persistence fields. Entity beans do not have to define
all the columns in the corresponding table as persistence fields. In fact, there's no requirement that an entity bean
correspond to a single table; it may be persisted to columns in several different tables. The bottom line is that the
container allows the abstract persistence schema of an entity bean to be mapped to a database in a variety of ways,
allowing a clean separation between the persistence classes and the database.

In addition to the bean class, we must define the local interface for the Address EJB. This interface allows the EJB to be
accessed by other entity beans (namely, the Customer EJB) within the same address space or process:

// Address EJB's local interface

public interface AddressLocal extends javax.ejb.EJBLocalObject {

 public String getStreet();

 public void setStreet(String street);

 public String getCity();

 public void setCity(String city);

 public String getState();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String getState();

 public void setState(String state);

 public String getZip();

 public void setZip(String zip);

}

// Address EJB's local home interface

public interface AddressHomeLocal extends javax.ejb.EJBLocalHome {

 public AddressLocal createAddress(String street,String city,

 String state,String zip) throws javax.ejb.CreateException;

 public AddressLocal findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FinderException;

}

You may have noticed that the ejbCreate() method of the AddressBean class and the findByPrimaryKey() method of the
home interface both define the primary key type as java.lang.Integer. The primary key is generated automatically. Most
EJB vendors allow entity beans' primary keys to be mapped to autogenerated fields. If your vendor does not support
autogenerated primary keys, you must set the primary key's value in the ejbCreate() method.

The relationship field for the Address EJB is defined in the CustomerBean class using an abstract accessor method, the
same way that persistence fields are declared. In the following code, the CustomerBean has been modified to include the
Address EJB as a relationship field:

import javax.ejb.EntityContext;

import javax.ejb.CreateException;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // persistence relationship

 public abstract AddressLocal getHomeAddress();

 public abstract void setHomeAddress(AddressLocal address);

 // persistence fields

 public abstract boolean getHasGoodCredit();

 public abstract void setHasGoodCredit(boolean creditRating);

 ...

The getHomeAddress() and setHomeAddress() accessor methods are self-explanatory; they allow the bean to access and
modify its homeAddress relationship. The name of the accessor method is determined by the name of the relationship
field, as declared in the deployment descriptor. In this case, we have named the customer's address homeAddress, so
the corresponding accessor method names will be getHomeAddress() and setHomeAddress().

To accommodate the relationship between the Customer EJB and the home address, a foreign key, ADDRESS_ID, is
needed in the CUSTOMER table. The foreign key points to the ADDRESS record. In practice, it would be more common to
give the ADDRESS table a foreign key to the CUSTOMER table. However, the schema used here demonstrates alternative
database mappings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database mappings:

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY NOT NULL,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 ADDRESS_ID INT

)

When a new Address EJB is created and set as the Customer EJB's homeAddress relationship, the Address EJB's primary
key is placed in the ADDRESS_ID column of the CUSTOMER table:

// get local reference

AddressLocal address = ...

// establish the relationship

customer.setHomeAddress(address);

To give the Customer a home address, we need to deliver the address information to the Customer. This appears to be
a simple matter of declaring matching setHomeAddress()/getHomeAddress() accessors in the remote interface, but it's not!
While it's valid to make persistence fields available to remote clients, persistence relationships are more complicated.
The remote interface of a bean is not allowed to expose its relationship fields. In the case of the homeAddress field, we
have declared the type to be AddressLocal, which is a local interface, so the setHomeAddress()/getHomeAddress() accessors
cannot be declared in the remote interface of the Customer EJB. The reason for this restriction on remote interfaces is
fairly simple: the EJBLocalObject, which implements the local interface, is optimized for use within the same address
space or process as the bean instance and is not capable of being used across the network. In other words, references
that implement the local interface of a bean cannot be passed across the network, so a local interface cannot be
declared as a return type of a parameter of a remote interface.

Local interfaces (interfaces that extend javax.ejb.EJBLocalObject), on the other hand, can expose any kind of relationship
field. With local interfaces, the caller and the enterprise bean being called are located in the same address space, so
they can pass around local references without a problem. For example, if we had defined a local interface for the
Customer EJB, it could include a method that allows local clients to access its Address relationship directly:

public interface CustomerLocal extends javax.ejb.EJBLocalObject {

 public AddressLocal getHomeAddress();

 public void setHomeAddress(AddressLocal address);

}

When it comes to the Address EJB, it's better to define a local interface only because it's such a fine-grained bean. To
get around remote-interface restrictions, the business methods in the bean class exchange address data instead of
Address references. For example, we can declare a method in the Customer bean that allows the client to send address
information:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id) {

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 // business method

 public void setAddress(String street,String city,String state,String zip) {

 try {

 AddressLocal addr = this.getHomeAddress();

 if(addr == null) {

 // Customer doesn't have an address yet. Create a new one.

 InitialContext cntx = new InitialContext();

 AddressHomeLocal addrHome = (AddressHomeLocal)

 cntx.lookup("java:comp/env/ejb/AddressHomeLocal");

 addr = addrHome.createAddress(street,city,state,zip);

 this.setHomeAddress(addr);

 } else {

 // Customer already has an address. Change its fields.

 addr.setStreet(street);

 addr.setCity(city);

 addr.setState(state);

 addr.setZip(zip);

 }

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

The setAddress() business method in the CustomerBean class is also declared in the remote interface of the Customer EJB,
so it can be called by remote clients:

public interface CustomerRemote extends javax.ejb.EJBObject {

 public void setAddress(String street,String city,String state,String zip)

 throws RemoteException;

 public Name getName() throws RemoteException;

 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean getHasGoodCredit() throws RemoteException;

 public void setHasGoodCredit(boolean creditRating) throws RemoteException;

}

When the CustomerRemote.setAddress() method is invoked on the CustomerBean, the method's arguments are used to
create a new Address EJB and set it as the homeAddress relationship field, if one doesn't already exist. If the Customer
EJB already has a homeAddress relationship, that Address EJB is modified to reflect the new address information.

When creating a new Address EJB, the home object is obtained from the JNDI ENC (environment naming context) and
its createAddress() method is called. This results in the creation of a new Address EJB and the insertion of a
corresponding ADDRESS record into the database. After the Address EJB is created, it's used in the setHomeAddress()
method. The CustomerBean class must explicitly call the setHomeAddress() method, or the new address will not be
assigned to the customer. Creating an Address EJB without assigning it to the customer results in a disconnected
Address EJB. More precisely, it results in an ADDRESS record in the database that is not referenced by any CUSTOMER
records. Disconnected entity beans are fairly normal and even desirable in many cases. In this case, however, we want
the new Address EJB to be assigned to the homeAddress relationship field of the Customer EJB.

The viability of disconnected entities depends, in part, on the referential integrity of the
database. For example, if the referential integrity allows only non-null values for the
foreign key column, creating a disconnected entity may result in a database error.

When the setHomeAddress() method is invoked, the container links the ADDRESS record to the CUSTOMER record
automatically. In this case, it places the ADDRESS primary key in the CUSTOMER record's ADDRESS_ID field and creates a
reference from the CUSTOMER record to the ADDRESS record.

If the Customer EJB already has a homeAddress, we want to change its values instead of creating a new Address EJB. We
don't need to use setHomeAddress() if we are simply updating the values of an existing Address EJB, because the
Address EJB we modified already has a relationship with the entity bean.

We also want to provide clients with a business method for obtaining a Customer EJB's home address information. Since
we are prohibited from sending an instance of the Address EJB directly to the client (because it's a local interface), we
must package the address data in some other form and send that to the client. There are two solutions to this problem:
acquire the remote interface of the Address EJB and return that; or return the data as a dependent value object.

We can obtain the remote interface for the Address EJB only if one is defined. The Address EJB is too fine-grained to
justify creating a remote interface, but in many other circumstances, a bean may indeed want to have a remote
interface. If, for example, the Customer EJB referenced a SalesPerson EJB, the CustomerBean could convert the local
reference into a remote reference. This would be done by accessing the local EJB object, getting its primary key
(EJBLocalObject.getPrimaryKey()), obtaining the SalesPerson EJB's remote home from the JNDI ENC, and then using the
primary key and remote home reference to find a remote interface reference:

public SalesRemote getSalesRep(){

 SalesLocal local = getSalesPerson();

 Integer primKey = local.getPrimaryKey();

 InitialContext cntx = new InitialContext();

 Object ref = cntx.lookup("java:comp/env/ejb/SalesHomeRemote");

 SalesHomeRemote home = (SalesHomeRemote)

 PortableRemoteObject.narrow(ref, SalesHomeRemote.class);

 SalesRemote remote = home.findByPrimaryKey(primKey);

 return remote;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other option is to use a dependent value to pass the Address EJB's data between remote clients and the Customer
EJB. This is the approach recommended for fine-grained beans like the Address EJB—we don't want to expose these
beans directly to remote clients. The following code shows how the AddressDO dependent value class is used in
conjunction with the local component interfaces of the Address EJB (the DO in AddressDO is a convention used in this
book—it's a qualifier that stands for "dependent object"):

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id) {

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id) {

 }

 // business method

 public AddressDO getAddress() {

 AddressLocal addrLocal = getHomeAddress();

 if(addrLocal == null) return null;

 String street = addrLocal.getStreet();

 String city = addrLocal.getCity();

 String state = addrLocal.getState();

 String zip = addrLocal.getZip();

 AddressDO addrValue = new AddressDO(street,city,state,zip);

 return addrValue;

 }

 public void setAddress(AddressDO addrValue)

 throws EJBException {

 String street = addrValue.getStreet();

 String city = addrValue.getCity();

 String state = addrValue.getState();

 String zip = addrValue.getZip();

 AddressLocal addr = getHomeAddress();

 try {

 if(addr == null) {

 // Customer doesn't have an address yet. Create a new one.

 InitialContext cntx = new InitialContext();

 AddressHomeLocal addrHome = (AddressHomeLocal)

 cntx.lookup("java:comp/env/ejb/AddressHomeLocal");

 addr = addrHome.createAddress(street, city, state, zip);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 addr = addrHome.createAddress(street, city, state, zip);

 this.setHomeAddress(addr);

 } else {

 // Customer already has an address. Change its fields.

 addr.setStreet(street);

 addr.setCity(city);

 addr.setState(state);

 addr.setZip(zip);

 }

 } catch(NamingException ne) {

 throw new EJBException(ne);

 } catch(CreateException ce) {

 throw new EJBException(ce);

 }

 }

 ...

Here is the definition for an AddressDO dependent value class, which is used by the enterprise bean to send address
information to the client:

public class AddressDO implements java.io.Serializable {

 private String street;

 private String city;

 private String state;

 private String zip;

 public AddressDO(String street, String city, String state, String zip) {

 this.street = street;

 this.city = city;

 this.state = state;

 this.zip = zip;

 }

 public String getStreet() {

 return street;

 }

 public String getCity() {

 return city;

 }

 public String getState() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String getState() {

 return state;

 }

 public String getZip() {

 return zip;

 }

}

The AddressDO dependent value is immutable: it cannot be altered once it is created. As stated earlier, immutability
helps to reinforce the fact that the dependent value class is a copy, not a remote reference. To use the AddressDO, we
add accessor methods to the CustomerRemote interface:

public interface CustomerRemote extends javax.ejb.EJBObject {

 public void setAddress(AddressDO address) throws RemoteException;

 public AddressDO getAddress() throws RemoteException;

 public void setAddress(String street,String city,String state,String zip)

 throws RemoteException;

 public Name getName() throws RemoteException;

 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;

 public void setHasGoodCredit(boolean creditRating) throws RemoteException;

}

You can now use a client application to test the Customer EJB's relationship with the Address EJB. Here is the client
code that creates a new Customer, gives it an address, and then changes the address:

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

import javax.naming.Context;

import javax.naming.NamingException;

import java.util.Properties;

public class Client {

 public static void main(String [] args) throws Exception {

 // obtain CustomerHomeRemote

 Context jndiContext = getInitialContext();

 Object obj=jndiContext.lookup("CustomerHomeRemote");

 CustomerHomeRemote home = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 javax.rmi.PortableRemoteObject.narrow(obj,

 CustomerHomeRemote.class);

 // create a Customer

 Integer primaryKey = new Integer(1);

 CustomerRemote customer = home.create(primaryKey);

 // create an address

 AddressDO address = new AddressDO("1010 Colorado",

 "Austin", "TX", "78701");

 // set address

 customer.setAddress(address);

 address = customer.getAddress();

 System.out.print(primaryKey+" = ");

 System.out.println(address.getStreet());

 System.out.println(address.getCity()+","+

 address.getState()+" "+

 address.getZip());

 // create a new address

 address = new AddressDO("1600 Pennsylvania Avenue NW",

 "DC", "WA", "20500");

 // change Customer's address

 customer.setAddress(address);

 address = customer.getAddress();

 System.out.print(primaryKey+" = ");

 System.out.println(address.getStreet());

 System.out.println(address.getCity()+","+

 address.getState()+" "+

 address.getZip());

 // remove Customer

 customer.remove();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 //return new javax.naming.InitialContext(p);

 return null;

 }

}

The following listing shows the EJB 2.1 deployment descriptor for the Customer and Address EJBs. You don't need to
worry about the details of the deployment descriptor yet; it will be covered in depth in Chapter 7.

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 <entity>

 <ejb-name>AddressEJB</ejb-name>

 <local-home>com.titan.address.AddressHomeLocal</local-home>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <local-home>com.titan.address.AddressHomeLocal</local-home>

 <local>com.titan.address.AddressLocal</local>

 <ejb-class>com.titan.address.AddressBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Address</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>street</field-name></cmp-field>

 <cmp-field><field-name>city</field-name></cmp-field>

 <cmp-field><field-name>state</field-name></cmp-field>

 <cmp-field><field-name>zip</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

 <assembly-descriptor>

 <security-role>

 <role-name>Employees</role-name>

 </security-role>

 <method-permission>

 <role-name>Employees</role-name>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>AddressEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>AddressEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The EJB 2.0 deployment descriptor looks the same, except it uses a document declaration that points to a DTD instead
referencing an XML Schema. Here's the difference:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 ...

</ejb-jar>

Exercise 6.3 in the Workbook shows how to deploy this example on the JBoss server.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. CMP: Entity Relationships
Chapter 6 covered basic container-managed persistence (CMP), including container-managed persistence fields and an
introduction to a basic container-managed relationship field. This chapter develops the Customer EJB and discusses the
seven relationships that entity beans can have with each other.

In order to model real-world business concepts, entity beans must be capable of forming complex relationships. Chapter
6 demonstrated a one-to-one relationship between the Customer and Address EJBs. This relationship was
unidirectional: the Customer had a reference to the Address, but the Address did not have a reference back to the
Customer. This is a perfectly legitimate relationship, but other relationships are possible. For example, each Address
could also reference its Customer, a bidirectional, one-to-one relationship in which both participants maintain references
to each other. Entity beans can also have one-to-many, many-to-one, and many-to-many relationships. For example,
the Customer EJB may have many phone numbers, but each phone number belongs to only one Customer (a one-to-
many relationship). A Customer may have been on many Cruises, and each Cruise has many Customers (a many-to-
many relationship).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 The Seven Relationship Types
Seven types of relationships can exist between EJBs. There are four types of cardinality: one-to-one, one-to-many,
many-to-one, and many-to-many. In addition, each relationship can be either unidirectional or bidirectional. These
options seem to yield eight possibilities, but if you think about it, you'll realize that one-to-many and many-to-one
bidirectional relationships are actually the same thing. Thus, there are only seven distinct relationship types. To
understand relationships, it helps to think about some simple examples:

One-to-one, unidirectional

The relationship between a customer and an address. You clearly want to be able to look up a customer's
address, but you probably don't care about looking up an address's customer.

One-to-one, bidirectional

The relationship between a customer and a credit card number. Given a customer, you obviously want to be
able to look up his credit card number. Given a credit card number, it is also conceivable that you would want to
look up the customer who owns the credit card.

One-to-many, unidirectional

The relationship between a customer and a phone number. A customer can have many phone numbers
(business, home, cell, etc.). You might need to look up a customer's phone number, but you probably wouldn't
use one of those numbers to look up the customer.

One-to-many, bidirectional

The relationship between a cruise and a reservation. Given a reservation, you want to be able to look up the
cruise for which the reservation was made. And given a particular cruise, you want to be able to look up all
reservations. (Note that a many-to-one bidirectional relationship is just another perspective on the same
concept.)

Many-to-one, unidirectional

The relationship between a cruise and a ship. You want to be able to look up the ship that will be used for a
particular cruise, and many cruises share the same ship, though at different times. It's less useful to look up the
ship to see which cruises are associated with it, although if you want this capability, you can implement a
many-to-one bidirectional relationship.

Many-to-many, unidirectional

The relationship between a reservation and a cabin. It's possible to make a reservation for multiple cabins, and
you clearly want to be able to look up the cabin assigned to a reservation. However, you're not likely to want to
look up the reservation associated with a particular cabin. (If you think you need to do so, implement it as a
bidirectional relationship.)

Many-to-many, bidirectional

The relationship between a cruise and a customer. A customer can make reservations on many cruises, and
each cruise has many customers. You want to be able to look up both the cruises on which a customer has a
booking, and the customers that will be going on any given cruise.

7.1.1 Abstract Persistence Schema

In Chapter 6, you learned how to form a basic relationship between the Customer and Address entity beans using the
abstract programming model. In reality, the abstract programming model is only half of the equation. In addition to
declaring abstract accessor methods, a bean developer must describe the cardinality and direction of the entity-to-
entity relationships in the bean's deployment descriptor. This step is handled in the <relationships> section of the XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entity relationships in the bean's deployment descriptor. This step is handled in the <relationships> section of the XML
deployment descriptor. As we discuss each type of relationship, we will examine both the abstract programming model
and the XML elements. The purpose of this section is to introduce you to the basic elements used in the XML
deployment descriptor, to better prepare you for subsequent sections on specific relationship types.

In this book we always refer to the Java programming idioms used to describe relationships—specifically, the abstract
accessor methods—as the abstract programming model. When referring to the XML deployment descriptor elements,
we use the term abstract persistence schema. In the EJB specification, the term "abstract persistence schema" actually
refers to both the Java idioms and the XML elements, but this book separates these concepts so we can discuss them
more easily.

An entity bean's abstract persistence schema is defined in the <relationships> section of the XML deployment descriptor
for that bean. The <relationships> section falls between the <enterprise-beans> section and the <assembly-descriptor>
section.

<ejb-jar>

 <enterprise-beans>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 ...

 </ejb-relation>

 <ejb-relation>

 ...

 </ejb-relation>

 </relationships>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

Defining relationship fields requires an <ejb-relation> element for each entity-to-entity relationship. For each set of
abstract accessor methods that define a relationship field, there must be an <ejb-relation> element in the deployment
descriptor. EJB requires the entity beans that participate in a relationship to be defined in the same XML deployment
descriptor.

Here is a partial listing of the deployment descriptor for the Customer and Address EJBs, with emphasis on the elements
that define the relationship:

<ejb-jar ...>

 ...

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <local-home>com.titan.customer.CusomterHomeLocal</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>AddressEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>AddressEJB</ejb-name>

 <local-home>com.titan.address.AddressHomeLocal</local-home>

 <local>com.titan.address.AddressLocal</local>

 ...

 </entity>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

</ejb-jar>

Every relationship may have a relationship name, which is declared in the <ejb-relation-name> element. This serves to
identify the relationship for individuals reading the deployment descriptor or for deployment tools, but it's not required.

Every <ejb-relation> element has exactly two <ejb-relationship-role> elements, one for each participant in the relationship.
In the previous example, the first <ejb-relationship-role> declares the Customer EJB's role in the relationship. We know
this because the <relationship-role-source> element specifies the <ejb-name> as CustomerEJB. CustomerEJB is the <ejb-name>
used in the Customer EJB's original declaration in the <enterprise-beans> section. The <relationship-role-source> element's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used in the Customer EJB's original declaration in the <enterprise-beans> section. The <relationship-role-source> element's
<ejb-name> must always match an <ejb-name> element in the <enterprise-beans> section.

The <ejb-relationship-role> element also declares the cardinality, or multiplicity, of the role. The <multiplicity> element can
either be One or Many. In this case, the Customer EJB's <multiplicity> element has a value of One, which means that
every Address EJB has a relationship with exactly one Customer EJB. The Address EJB's <multiplicity> element also
specifies One, which means that every Customer EJB has a relationship with exactly one Address EJB. If the Customer
EJB had a relationship with many Address EJBs, the Address EJB's <multiplicity> element would be set to Many.

In Chapter 6, the Customer EJB had abstract accessor methods for getting and setting the Address EJB in the
homeAddress field, but the Address EJB did not have abstract accessor methods for the Customer EJB. In this case, the
Customer EJB maintains a reference to the Address EJB, but the Address EJB doesn't maintain a reference back to the
Customer EJB. This is a unidirectional relationship, which means that only one of the entity beans in the relationship
maintains a container-managed relationship field.

If the bean described by the <ejb-relationship-role> element maintains a reference to the other bean in the relationship,
that reference must be declared as a container-managed relationship field in the <cmr-field> element. The <cmr-field>
element is declared under the <ejb-relationship-role> element:

<ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

</ejb-relationship-role>

EJB requires that the <cmr-field-name> begin with a lowercase letter. For every relationship field defined by a <cmr-field>
element, there must be a pair of matching abstract accessor methods in the bean class. One method in this pair must
be defined with the method name set<cmr-field-name>(), with the first letter of the <cmr-field-name> value changed to
uppercase. The other method is defined as get<cmr-field-name>(), also with the first letter of the <cmr-field-name> value
in uppercase. In the previous example, the <cmr-field-name> is homeAddress, which corresponds to the getHomeAddress()
and setHomeAddress() abstract accessor methods defined in the CustomerBean class:

// bean class code

public abstract void setHomeAddress(AddressLocal address);

public abstract AddressLocal getHomeAddress();

// XML deployment descriptor declaration

<cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

</cmr-field>

The return type of the get<cmr-field-name>() method and the parameter type of the set<cmr-field-name>() must be the
same. The type must be the local interface of the entity bean that is referenced or one of two java.util.Collection types. In
the case of the homeAddress relationship field, we are using the Address EJB's local interface, AddressLocal. Returning a
collection is discussed later in this chapter.

Now that we have established a basic understanding of how elements are declared, we are ready to discuss each of the
seven types of relationships. In the process, we will introduce additional entity beans that have relationships with the
Customer EJB, including the CreditCard, Phone, Ship, and Reservation EJBs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Customer EJB, including the CreditCard, Phone, Ship, and Reservation EJBs.

It's important to understand that although entity beans may have both local and remote interfaces, a container-
managed relationship field can use only the entity bean's local interface when persisting a relationship. So, for example,
it is illegal to define an abstract accessor method that has an argument type of javax.ejb.EJBObject (a remote interface
type). All container-managed relationships are based on javax.ejb.EJBLocalObject (local interface) types.

7.1.2 Database Modeling

This chapter discusses several different database table schemas. These schemas demonstrate possible relationships
between entities in the database; they don't represent the only way to implement these relationships, or even the best
way. For example, the Address-Customer relationship is implemented by having the CUSTOMER table maintain a foreign
key to the ADDRESS table. This is not how most databases will be organized—instead, they will probably use a link table
or have the ADDRESS table maintain a foreign key to the CUSTOMER. The difference really isn't important for the
purposes of this book, as EJB's container-managed persistence can support different database organizations. If you
have the luxury of defining your own database schema, organize your database in whatever way makes the most sense
for your application. If you've inherited a database schema, container-managed persistence should be flexible enough
to support the database organization you already have.

Throughout this chapter, we assume that the database tables are created before the EJB application—in other words,
that the EJB application is mapped to a legacy database. Some vendors offer tools that generate tables automatically
according to the relationships defined between the entity beans. These tools may create schemas that are very different
from the ones explored here. In other cases, vendors that support established database schemas may not have the
flexibility to support the schemas illustrated in this chapter. As an EJB developer, you must be flexible enough to adapt
to the facilities provided by your EJB vendor.

7.1.3 One-to-One, Unidirectional Relationship

An example of a one-to-one, unidirectional relationship is the one between the Customer EJB and the Address EJB
defined in Chapter 6. In this example, each Customer has exactly one Address, and each Address has exactly one
Customer. Which bean references which determines the direction of navigation. While the Customer has a reference to
the Address, the Address doesn't reference the Customer. The relationship is therefore unidirectional—you can only go
from the Customer to the Address, not the other way around. In other words, an Address EJB has no idea who owns it.
Figure 7-1 shows this relationship.

Figure 7-1. One-to-one, unidirectional relationship

7.1.3.1 Relational database schema

As shown in Figure 7-2, one-to-one, unidirectional relationships normally use a fairly typical relational database schema
in which one table contains a foreign key (pointer) to another table. In this case, the CUSTOMER table contains a foreign
key to the ADDRESS table, but the ADDRESS table doesn't contain a foreign key to the CUSTOMER table. This allows
records in the ADDRESS table to be shared by other tables, a scenario explored in the "Many-to-Many, Unidirectional
Relationship" section.

Figure 7-2. One-to-one, unidirectional relationship in RDBMS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.3.2 Abstract programming model

In unidirectional relationships (navigated only one way), only one of the enterprise beans defines abstract accessor
methods that let it get or set the other bean in the relationship. Thus, inside the CustomerBean class, you can call the
getHomeAddress()/setHomeAddress() methods to access the Address EJBs, but there are no methods inside the
AddressBean class to access the Customer EJB.

The Address EJB can be shared between relationship fields of the same enterprise bean, but it cannot be shared
between Customer EJBs. If, for example, the Customer EJB defines two relationship fields, billingAddress and
homeAddress, as one-to-one, unidirectional relationships with the Address EJB, these two fields can reference the same
Address EJB:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public void setAddress(String street,String city,String state,String zip) {

 ...

 address = addressHome.createAddress(street, city, state, zip);

 this.setHomeAddress(address);

 this.setBillingAddress(address);

 AddressLocal billAddr = this.getBillingAddress();

 AddressLocal homeAddr = this.getHomeAddress();

 if(billAddr.isIdentical(homeAddr))

 // always true

 ...

 }

 ...

}

If at any time you want to make the billingAddress different from the homeAddress, you can simply set it equal to a
different Address EJB. Sharing a reference to another bean between two relationship fields in the same entity is
sometimes very convenient, though. In order to support this type of relationship, a new billing address field might be
added to the CUSTOMER table:

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 HAS_GOOD_CREDIT INT,

 HOME_ADDRESS_ID INT,

 BILLING_ADDRESS_ID INT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BILLING_ADDRESS_ID INT

)

As the earlier example shows, it is possible for two fields in a bean (in this case, the homeAddress and billingAddress fields
in the Customer EJB) to reference the same relationship (i.e., a single Address EJB) if the relationship type is the same.
However, it is not possible to share a single Address EJB between two different Customer EJBs. If, for example, the
home Address of Customer A were assigned as the home Address of Customer B, the Address would be moved, not
shared, so that Customer A wouldn't have a home Address any longer. As you can see in Figure 7-3, Address 2 is
initially assigned to Customer B, but becomes disconnected when Address 1 is reassigned to Customer B.

Figure 7-3. Exchanging references in a one-to-one, unidirectional relationship

This seemingly strange side effect is a result of how the relationship is defined. The Customer-to-Address EJB
relationship was defined as one-to-one, so the Address EJB can be referenced by only one Customer EJB.

If the Customer EJB does not have an Address EJB associated with its homeAddress field, the getHomeAddress() method
will return null. This is true of all container-managed relationship fields that reference a single entity bean.

7.1.3.3 Abstract persistence schema

We defined the XML elements for the Customer-Address relationship earlier in this chapter, so we won't go over them
again. The <ejb-relation> element used in that section declared a one-to-one, unidirectional relationship. If, however, the
Customer EJB maintained two relationship fields with the Address EJB—homeAddress and billingAddress—each of these
relationships would have to be described in its own <ejb-relation> element:

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-HomeAddress</ejb-relation-name>

 <ejb-relationship-role>

 ...

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

 </ejb-relationship-role>

 </ejb-relation>

 <ejb-relation>

 <ejb-relation-name>Customer-BillingAddress</ejb-relation-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-relation-name>Customer-BillingAddress</ejb-relation-name>

 <ejb-relationship-role>

 ...

 <cmr-field>

 <cmr-field-name>billingAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

7.1.4 One-to-One, Bidirectional Relationship

We can expand our Customer EJB to include a reference to a CreditCard EJB, which maintains credit card information.
The Customer EJB will maintain a reference to its CreditCard EJB, and the CreditCard EJB will maintain a reference back
to the Customer—this makes good sense, since a CreditCard should be aware of who owns it. Since each CreditCard
has a reference back to one Customer and each Customer references one CreditCard, we have a one-to-one
bidirectional relationship.

7.1.4.1 Relational database schema

The CreditCard EJB has a corresponding CREDIT_CARD table, so we need to add a CREDIT_CARD foreign key to the
CUSTOMER table:

CREATE TABLE CREDIT_CARD

(

 ID INT PRIMARY KEY NOT NULL,

 EXP_DATE DATE,

 NUMBER CHAR(20),

 NAME CHAR(40),

 ORGANIZATION CHAR(20),

 CUSTOMER_ID INT

)

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 HAS_GOOD_CREDIT INT,

 HOME_ADDRESS_ID INT,

 BILLING_ADDRESS_ID INT,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREDIT_CARD_ID INT

)

One-to-one, bidirectional relationships may model relational database schemas in which the two tables hold foreign
keys for one another (specifically, two rows in different tables point to each other). Figure 7-4 illustrates how this
schema would be implemented for rows in the CUSTOMER and CREDIT_CARD tables.

Figure 7-4. One-to-one, bidirectional relationship in RDBMS

It is also possible for a one-to-one, bidirectional relationship to be established through a linking table, in which each
foreign key column must be unique. Using a linking table is convenient when you do not want to impose relationships
on the original tables. We will use linking tables in one-to-many and many-to-many relationships later in this chapter.
The abstract persistence schema of an entity bean may map to a variety of database schemas; the database schemas
used in these examples are only a few possiblities.

7.1.4.2 Abstract programming model

To model the relationship between the Customer and CreditCard EJBs, we need to declare a relationship field named
customer in the CreditCardBean class:

public abstract class CreditCardBean extends javax.ejb.EntityBean {

 ...

 // relationship fields

 public abstract CustomerLocal getCustomer();

 public abstract void setCustomer(CustomerLocal local);

 // persistence fields

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract Date getExpirationDate();

 public abstract void setExpirationDate(Date date);

 public abstract String getNumber();

 public abstract void setNumber(String number);

 public abstract String getNameOnCard();

 public abstract void setNameOnCard(String name);

 public abstract String getCreditOrganization();

 public abstract void setCreditOrganization(String org);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // standard callback methods

 ...

}

We use the Customer EJB's local interface (assume one has been created), because relationship fields require local
interface types. All the relationships explored in the rest of this chapter assume local interfaces. Of course, the
limitation of using local interfaces instead of remote interfaces is that you don't have location transparency. All the
entity beans must be located in the same process or Java Virtual Machine (JVM).

We can also add a set of abstract accessor methods in the CustomerBean class for the creditCard relationship field:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public abstract void setCreditCard(CreditCardLocal card);

 public abstract CreditCardLocal getCreditCard();

 ...

}

Although a setCustomer() method is available in the CreditCardBean, we do not have to set the Customer reference on the
CreditCard EJB explicitly. When a CreditCard EJB reference is passed into the setCreditCard() method on the
CustomerBean class, the EJB container automatically establishes the customer relationship on the CreditCard EJB to point
back to the Customer EJB:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // The setCreditCard() business method uses the setCreditCard() abstract accessor

 public void setCreditCard(Date exp, String numb, String name, String org)

 throws CreateException {

 ...

 card = creditCardHome.create(exp,numb,name,org);

 // the CreditCard EJB's customer field will be set automatically

 this.setCreditCard(card);

 CustomerLocal customer = card.getCustomer();

 if(customer.isIdentical(ejbContext.getEJBLocalObject())

 // always true

 ...

 }

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The rules for sharing a single bean in a one-to-one, bidirectional relationship are the same as those for one-to-one,
unidirectional relationships. While the CreditCard EJB may be shared between relationship fields of the same Customer
EJB, it can't be shared between different Customer EJBs. As Figure 7-5 shows, assigning Customer A's CreditCard to
Customer B disassociates that CreditCard from Customer A and moves it to Customer B.

Figure 7-5. Exchanging references in a one-to-one, bidirectional relationship

7.1.4.3 Abstract persistence schema

The <ejb-relation> element that defines the Customer-to-CreditCard relationship is similar to the one used for the
Customer-to-Address relationship, with one important difference—both <ejb-relationship-role> elements have a <cmr-
field>:

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-CreditCard</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-a-CreditCard

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>creditCard</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 CreditCard-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CreditCardEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>customer</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

The fact that both participants in the relationship define <cmr-field> elements (relationship fields) tells us that the
relationship is bidirectional.

7.1.5 One-to-Many, Unidirectional Relationship

Entity beans can also maintain relationships with multiplicity. This means one entity bean can aggregate or contain
many other entity beans. For example, the Customer EJB may have relationships with many Phone EJBs, each of which
represents a phone number. This is very different from simple one-to-one relationships—or, for that matter, from
multiple one-to-one relationships with the same type of bean. One-to-many and many-to-many relationships require
the developer to work with a collection of references when accessing the relationship field, instead of a single reference.

7.1.5.1 Relational database schema

To illustrate a one-to-many, unidirectional relationship, we will use a new entity bean, the Phone EJB, for which we
must define a table, the PHONE table:

CREATE TABLE PHONE

(

 ID INT PRIMARY KEY NOT NULL,

 NUMBER CHAR(20),

 TYPE INT,

 CUSTOMER_ID INT

)

One-to-many, unidirectional relationships between the CUSTOMER and PHONE tables could be implemented in a variety
of ways. For this example, we chose to have the PHONE table include a foreign key to the CUSTOMER table.

The table of aggregated data can maintain a column of nonunique foreign keys to the aggregating table. In the case of
the Customer and Phone EJBs, the PHONE table maintains a foreign key to the CUSTOMER table, and one or more PHONE
records may contain foreign keys to the same CUSTOMER record. In other words, in the database, the PHONE records
point to the CUSTOMER records. In the abstract programming model, however, it is the Customer EJB that points to the
Phone EJBs—two schemas are reversed. How does this work? The container system hides the reverse pointer so that it
appears as if the Customer is aware of the Phone EJB, and not the other way around. When you ask the container to
return a Collection of Phone EJBs (invoking the getPhoneNumbers() method), it queries the PHONE table for all the records
with a foreign key matching the Customer EJB's primary key. The use of reverse pointers in this type of relationship is
illustrated in Figure 7-6.

Figure 7-6. One-to-many, unidirectional relationship in RDBMS using reverse
pointers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pointers

This database schema illustrates that the structure and relationships of the actual database can differ from the
relationships as defined in the abstract programming model. In this case, the tables are set up in reverse, but the EJB
container system will manage the beans to meet the specification of the bean developer. When you are dealing with
legacy databases (i.e., databases that were established before the EJB application), reverse-pointer scenarios like the
one illustrated here are common, so supporting this kind of relationship mapping is important.

A simpler implementation of the Customer-Phone relationship could use a link table that maintains two columns with
foreign keys pointing to both the CUSTOMER and PHONE records. We could then place a constraint on the PHONE foreign
key column in the link table to ensure that it contains only unique entries (i.e., that every phone has only one
customer), while allowing the CUSTOMER foreign key column to contain duplicates. The advantage of the link table is
that it doesn't impose the relationship between the CUSTOMER and PHONE records onto either of the tables.

7.1.5.2 Abstract programming model

In the abstract programming model, we represent multiplicity by defining a relationship field that can point to many
entity beans. To do this, we employ the same abstract accessor methods we used for one-to-one relationships, but this
time we set the field type to either java.util.Collection or java.util.Set. The Collection maintains a homogeneous group of local
EJB object references, which means it contains many references to one kind of entity bean. The Collection type may
contain duplicate references to the same entity bean, while the Set type may not.

For example, a Customer EJB may have relationships with several phone numbers (e.g., a home phone, work phone,
cell phone, fax, etc.), each represented by a Phone EJB. Instead of having a different relationship field for each of these
Phone EJBs, the Customer EJB keeps all the Phone EJBs in a collection-based relationship field, which can be accessed
through abstract accessor methods:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // relationship fields

 public abstract Collection getPhoneNumbers();

 public abstract void setPhoneNumbers(Collection phones);

 public abstract AddressLocal getHomeAddress();()

 public abstract void setHomeAddress(AddressLocal local);

 ...

The Phone EJB, like other entity beans, has a bean class and local interface, as shown in the next listing. Notice that the
PhoneBean doesn't provide a relationship field for the Customer EJB. It's a unidirectional relationship; the Customer
maintains a relationship with many Phone EJBs, but the Phone EJBs do not maintain a relationship field back to the
Customer. Only the Customer EJB is aware of the relationship:

// the local interface for the Phone EJB

public interface PhoneLocal extends javax.ejb.EJBLocalObject {

 final public static byte HOME_PHONE = (byte)1;

 final public static byte WORK_PHONE = (byte)2;

 final public static byte CELL_PHONE = (byte)3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 final public static byte CELL_PHONE = (byte)3;

 public String getNumber();

 public void setNumber(String number);

 public byte getType();

 public void setType(byte type);

}

// the bean class for the Phone EJB

public abstract class PhoneBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(String number, byte type) {

 setNumber(number);

 setType(type);

 return null;

 }

 public void ejbPostCreate(String number,byte type) {

 }

 // persistence fields

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract String getNumber();

 public abstract void setNumber(String number);

 public abstract byte getType();

 public abstract void setType(byte type);

 // standard callback methods

 ...

}

To illustrate how an entity bean uses a collection-based relationship field, we define a method in the CustomerBean class
that allows remote clients to add new phone numbers. The method, addPhoneNumber(), uses the phone number
arguments to create a new Phone EJB and then add that Phone EJB to a collection-based relationship field named
phoneNumbers:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 // business methods

 public void addPhoneNumber(String number, byte type) {

 InitialContext jndiEnc = new InitialContext();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InitialContext jndiEnc = new InitialContext();

 PhoneHomeLocal phoneHome = (PhoneHomeLocal)

 jndiEnc.lookup("java:comp/env/ejb/PhoneHomeLocal");

 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = this.getPhoneNumbers();

 phoneNumbers.add(phone);

 }

 ...

 // relationship fields

 public abstract java.util.Collection getPhoneNumbers();

 public abstract void setPhoneNumbers(java.util.Collection phones);

 ...

Note that we created the Phone EJB first, then added it to the phoneNumbers collection-based relationship. We obtained
the phoneNumbers Collection object from the getPhoneNumbers() accessor method, then added the new Phone EJB to the
Collection just as we would add any object to a Collection. Adding the Phone EJB to the Collection causes the EJB container
to set the foreign key on the new PHONE record so that it points back to the Customer EJB's CUSTOMER record. If we had
used a link table, a new link record would have been created. From this point forward, the new Phone EJB will be
available from the phoneNumbers collection-based relationship.

You can also update or remove references using the accessor methods. The following code defines two methods in the
CustomerBean class that allow clients to remove or update phone numbers in the bean's phoneNumbers relationship field:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 // business methods

 public void removePhoneNumber(byte typeToRemove) {

 Collection phoneNumbers = this.getPhoneNumbers();

 Iterator iterator = phoneNumbers.iterator();

 while(iterator.hasNext()) {

 PhoneLocal phone = (PhoneLocal)iterator.next();

 if(phone.getType() == typeToRemove) {

 iterator.remove(phone);

 break;

 }

 }

 }

 public void updatePhoneNumber(String number,byte typeToUpdate) {

 Collection phoneNumbers = this.getPhoneNumbers();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Collection phoneNumbers = this.getPhoneNumbers();

 Iterator iterator = phoneNumbers.iterator();

 while(iterator.hasNext()) {

 PhoneLocal phone = (PhoneLocal)iterator.next();

 if(phone.getType() == typeToUpdate) {

 phone.setNumber(number);

 break;

 }

 }

 }

 ...

 // relationship fields

 public abstract Collection getPhoneNumbers();

 public abstract void setPhoneNumbers(Collection phones);

In the removePhoneNumber() business method, a Phone EJB with the matching type was found and then removed from
the collection-based relationship. The phone number is not deleted from the database; it's just disassociated from the
Customer EJB (i.e., it is no longer referenced by a Customer). Figure 7-7 shows what happens when a Phone EJB
reference is removed from the collection-based relationship.

Figure 7-7. Removing a bean reference from a relationship-field collection

The updatePhoneNumber() method actually modifies an existing Phone EJB, changing its state in the database. The Phone
EJB is still referenced by the collection-based relationship, but its data has changed.

The removePhoneNumber() and updatePhoneNumber() methods illustrate that a collection-based relationship can be
accessed and updated just like any other Collection object. In addition, a java.util.Iterator can be obtained from the
Collection object for looping operations. However, you should exercise caution when using an Iterator over a collection-
based relationship. You must not add elements to or remove elements from the Collection object while you are using its
Iterator. The only exception to this rule is that the Iterator.remove() method may be called to remove an entry. Although
the Collection.add() and Collection.remove() methods can be used in other circumstances, calling these methods while an
Iterator is in use results in a java.util.IllegalStateException exception.

If no beans have been added to the phoneNumbers relationship field, the getPhoneNumbers() method returns an empty
Collection object. The Collection object used with the relationship field is implemented by the container system,
proprietary to the vendor, and tightly coupled with the inner workings of the container. This allows the EJB container to
implement performance enhancements such as lazy loading or optimistic concurrency without exposing those
mechanisms to the bean developer.[1] Application-defined Collection objects may be used with container-manager
relationship fields only if the elements are of the proper type. For example, it is legal to create a new Collection object
and then add that Collection object to the Customer EJB using the setPhoneNumbers() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and then add that Collection object to the Customer EJB using the setPhoneNumbers() method:

[1] A Collection from a collection-based relationship that is materialized in a transaction cannot be modified outside
the scope of that transaction. See Chapter 14 for more details.

public void addPhoneNumber(String number, String type) {

 ...

 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = java.util.Vector();

 phoneNumbers.add(phone);

 // This is allowed

 this.setPhoneNumbers(phoneNumbers);

}

// relationship fields

public abstract Collection getPhoneNumbers();

public abstract void setPhoneNumbers(Collection phones);

We have used the getPhoneNumbers() method extensively, but have not yet used the setPhoneNumbers() method. In most
cases, this method will not be used, because it updates an entire collection of phone numbers. However, it can be
useful for exchanging like relationships between entity beans.

If two Customer EJBs want to exchange phone numbers, they can do so in a variety of ways. The most important thing
to keep in mind is that a Phone EJB, as the subject of a one-to-many, unidirectional relationship, may reference only
one Customer EJB. It can be copied, so that both Customers have Phone EJBs with similar data, but the Phone EJB itself
cannot be shared.

Imagine that Customer A wants to transfer all of its phone numbers to Customer B. It can accomplish this using
Customer B's setPhoneNumbers() method, as shown in the following listing (we assume the Customer EJBs are
interacting through their local interfaces):

CustomerLocal customerA = ... get Customer A

CustomerLocal customerB = ... get Customer B

Collection phonesA = customerA.getPhoneNumbers();

customerB.setPhoneNumbers(phonesA);

if(customerA.getPhoneNumbers().isEmpty())

 // this will be true

if(phonesA.isEmpty()))

 // this will be true

As Figure 7-8 illustrates, passing one collection-based relationship to another disassociates those relationships from the
first bean and associates them with the second. In addition, if the second bean already has a Collection of Phone EJBs in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

first bean and associates them with the second. In addition, if the second bean already has a Collection of Phone EJBs in
its phoneNumbers relationship field, those beans are bumped out of the relationship and disassociated from the bean.

Figure 7-8. Exchanging a relationship collection in a one-to-many, unidirectional
relationship

The result of this exchange may be counterintuitive, but it is necessary to uphold the multiplicity of the relationship,
which says that the Phone EJB may have only one Customer EJB. This explains why Phone EJBs 1, 2, and 3 don't
reference both Customers A and B, but it doesn't explain why Phone EJBs 4, 5, and 6 are disassociated from Customer
B. Why isn't Customer B associated with all the Phone EJBs? The reason is purely a matter of semantics, since the
relational database schema wouldn't technically prevent this from occurring. The act of replacing one Collection with
another by calling setPhoneNumbers(Collection collection) implies that Customer B's initial Collection object is no longer
referenced.

In addition to moving whole collection-based relationships between beans, it is possible to move individual Phone EJBs
between Customers. These cannot be shared either. For example, if a Phone EJB aggregated by Customer A is added to
the relationship collection of Customer B, that Phone EJB changes so that it's now referenced by Customer B instead of
Customer A, as Figure 7-9 illustrates.

Figure 7-9. Exchanging a bean in a one-to-many, unidirectional relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once again, it's the multiplicity of the relationship that prevents Phone 1 from referencing both Customer A and
Customer B.

7.1.5.3 Abstract persistence schema

The abstract persistence schema for one-to-many, unidirectional relationships has a few significant differences from the
<ejb-relation> elements seen so far:

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Phones</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-many-Phone-numbers

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>phoneNumbers</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Phone-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>PhoneEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

In the <ejb-relation> element, the multiplicity for the Customer EJB is declared as One, while the multiplicity for the
Phone EJB is Many. These keywords establish the relationship as one-to-many. The fact that the <ejb-relationship-role> for
the Phone EJB doesn't specify a <cmr-field> element indicates that the one-to-many relationship is unidirectional; the
Phone EJB doesn't contain a reciprocating reference to the Customer EJB.

The most interesting change is the addition of the <cmr-field-type> element in the Customer EJB's <cmr-field>
declaration. The <cmr-field-type> must be specified for a bean that has a collection-based relationship field (in this case,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

declaration. The <cmr-field-type> must be specified for a bean that has a collection-based relationship field (in this case,
the phoneNumbers field maintained by the Customer EJB). The <cmr-field-type> can have one of two values,
java.util.Collection or java.util.Set, which are the allowed collection-based relationship types. In a future specification, the
allowed types for collection-based relationships may be expanded to include java.util.List and java.util.Map, but these are
not yet supported. Exercise 7.1 in the Workbook shows how to deploy this example on the JBoss server.

7.1.6 The Cruise, Ship, and Reservation EJBs

By now, I imagine that you're bored by all these phone numbers, credit cards, and addresses. To make things more
interesting, we are going to introduce some more entity beans so that we can model the remaining four relationships:
many-to-one unidirectional, one-to-many bidirectional, many-to-many bidirectional, and many-to-many unidirectional.

In Titan's reservation system, every customer (a.k.a. passenger) can be booked on one or more cruises. Each booking
requires a reservation. A reservation may be for one or more (usually two) passengers. Each cruise requires exactly
one ship, but each ship may be used for many cruises throughout the year. Figure 7-10 illustrates these relationships.

Figure 7-10. Cruise, Ship, Reservation, Cabin, and Customer class diagram

7.1.7 Many-to-One, Unidirectional Relationship

Many-to-one unidirectional relationships result when many entity beans reference a single entity bean, but the
referenced entity bean is unaware of the relationship. In the Titan Cruise business, for example, the concept of a cruise
can be captured by a Cruise EJB. As shown in Figure 7-10, each Cruise has a many-to-one relationship with a Ship. This
relationship is unidirectional; the Cruise EJB maintains a relationship with the Ship EJB, but the Ship EJB does not keep
track of the Cruises for which it is used.

7.1.7.1 Relational database schema

The relational database schema for the Cruise-to-Ship relationship is fairly simple; it requires that the CRUISE table
maintain a foreign key column for the SHIP table, with each row in the CRUISE table pointing to a row in the SHIP table.
The CRUISE and SHIP tables are defined below; Figure 7-11 shows the relationship between these tables in the database.

Figure 7-11. Many-to-one, unidirectional relationship in RDBMS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An enormous amount of data would be required to adequately describe an ocean liner, but we'll use a simple definition
of the SHIP table here:

CREATE TABLE SHIP

(

 ID INT PRIMARY KEY NOT NULL,

 NAME CHAR(30),

 TONNAGE DECIMAL (8,2)

)

The CRUISE table maintains data on each cruise's name, ship, and other information that is not germane to this
discussion. (Other tables, such as RESERVATIONS, SCHEDULES, and CREW, would have relationships with the CRUISE table
through linking tables.) We'll keep it simple and focus on a definition that is useful for the examples in this book:

CREATE TABLE CRUISE

(

 ID INT PRIMARY KEY NOT NULL,

 NAME CHAR(30),

 SHIP_ID INT

)

7.1.7.2 Abstract programming model

In the abstract programming model, the relationship field is of type ShipLocal and is maintained by the Cruise EJB. The
abstract accessor methods are similar to those defined in the previous examples:

public abstract class CruiseBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(String name, ShipLocal ship) {

 setName(name);

 return null;

 }

 public void ejbPostCreate(String name, ShipLocal ship) {

 setShip(ship);

 }

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setShip(ShipLocal ship);

 public abstract ShipLocal getShip();

 // EJB callback methods

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Notice that the Cruise EJB requires that a ShipLocal reference be passed as an argument when the Cruise is created; this
is perfectly natural, since a cruise cannot exist without a ship. According to the EJB specification, relationship fields
cannot be modified or set in the ejbCreate() method. They must be modified in the ejbPostCreate(), a constraint that is
followed in the CruiseBean class.

The reason relationships are set in ejbPostCreate() and not ejbCreate() is simple: the primary key for the entity bean may
not be available until after ejbCreate() executes. The primary key is needed if the mapping for the relationship uses the
key as a foreign key, so assignment of relationships is postponed until the ejbCreate() method completes and the
primary key becomes available. This is also true with autogenerated primary keys, which usually require that the insert
be done before a primary key can be generated. In addition, referential integrity may specify non-null foreign keys in
referencing tables, so the insert must take place first. In reality, the transaction does not complete until both the
ejbCreate() and ejbPostCreate() methods have executed, so the vendors are free to choose the best time for database
inserts and linking of relationships.

The relationship between the Cruise and Ship EJBs is unidirectional, so the Ship EJB doesn't define any relationship
fields, just persistence fields:

public abstract class ShipBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer primaryKey,String name,double tonnage) {

 setId(primaryKey);

 setName(name);

 setTonnage(tonnage);

 return null;

 }

 public void ejbPostCreate(Integer primaryKey,String name,double tonnage) {

 }

 public abstract void setId(Integer id);

 public abstract Integer getId();

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setTonnage(double tonnage);

 public abstract double getTonnage();

 // EJB callback methods

 ...

}

This should all be fairly mundane for you now. The impact of exchanging Ship references between Cruise EJBs should
be equally obvious. As shown previously in Figure 7-10, each Cruise may reference only a single Ship, but each Ship
may reference many Cruise EJBs. If you take Ship A, which is referenced by Cruises 1, 2, and 3, and pass it to Cruise 4,
Cruises 1 through 4 will all reference Ship A, as shown in Figure 7-12.

Figure 7-12. Sharing a bean reference in a many-to-one, unidirectional
relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relationship

7.1.7.3 Abstract persistence schema

The abstract persistence schema is simple in a many-to-one, unidirectional relationship. It uses everything you have
already learned, and shouldn't contain any surprises:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 <local-home>com.titan.ship.ShipHomeLocal</local-home>

 <local>com.titan.ship.ShipLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

 <ejb-relation>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-relation>

 <ejb-relation-name>Cruise-Ship</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Cruise-has-a-Ship

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>CruiseEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>ship</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Ship-has-many-Cruises

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>ShipEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

The <ejb-relationship-role> of the Cruise EJB defines its multiplicity as Many and declares ship as its relationship field. The
<ejb-relationship-role> of the Ship EJB defines its multiplicity as One and contains no <cmr-field> declaration, because it's a
unidirectional relationship.

7.1.8 One-to-Many, Bidirectional Relationship

One-to-many and many-to-one bidirectional relationships sound like they're different, but they're not. A one-to-many,
bidirectional relationship occurs when one entity bean maintains a collection-based relationship field with another entity
bean, and each entity bean referenced in the collection maintains a single reference back to its aggregating bean. For
example, in the Titan Cruise system, each Cruise EJB maintains a collection of references to all the passenger
reservations made for that Cruise, and each Reservation EJB maintains a single reference to its Cruise. The relationship
is a one-to-many, bidirectional relationship from the perspective of the Cruise EJB, and a many-to-one, bidirectional
relationship from the perspective of the Reservation EJB.

7.1.8.1 Relational database schema

The first table we need is the RESERVATION table, which is defined in the following listing. Notice that the RESERVATION
table contains, among other things, a column that serves as a foreign key to the CRUISE table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table contains, among other things, a column that serves as a foreign key to the CRUISE table:

CREATE TABLE RESERVATION

(

 ID INT PRIMARY KEY NOT NULL,

 AMOUNT_PAID DECIMAL (8,2),

 DATE_RESERVED DATE,

 CRUISE_ID INT

)

While the RESERVATION table contains a foreign key to the CRUISE table, the CRUISE table doesn't maintain a foreign key
back to the RESERVATION table. The EJB container system can determine the relationship between the Cruise and
Reservations EJBs by querying the RESERVATION table, so explicit pointers from the CRUISE table to the RESERVATION
table are not required. This illustrates the separation between the entity bean's view of its persistence relationships and
the database's actual implementation of those relationships.

The relationship between the RESERVATION and CRUISE tables is shown in Figure 7-13.

Figure 7-13. One-to-many/many-to-one, bidirectional relationship in RDBMS

As an alternative, we could have used a link table that would declare foreign keys to both the CRUISE and RESERVATION
tables. This link table would probably impose a uniqueness constraint on the RESERVATION foreign key to ensure that
each RESERVATION record had only one corresponding CRUISE record.

7.1.8.2 Abstract programming model

To model the relationship between Cruises and Reservations, we first define the Reservation EJB, which maintains a
relationship field to the Cruise EJB:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(CruiseLocal cruise) {

 return null;

 }

 public void ejbPostCreate(CruiseLocal cruise) {

 setCruise(cruise);

 }

 public abstract void setCruise(CruiseLocal cruise);

 public abstract CruiseLocal getCruise();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract CruiseLocal getCruise();

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setAmountPaid(float amount);

 public abstract float getAmountPaid();

 public abstract void setDate(Date date);

 public abstract Date getDate();

 // EJB callback methods

 ...

}

When a Reservation EJB is created, a reference to the Cruise for which it is created must be passed to the create()
method. Notice that the CruiseLocal reference is set in the ejbPostCreate() method, not the ejbCreate() method. As stated
previously, the ejbCreate() method is not allowed to update relationship fields; that is the job of ejbPostCreate().

We need to add a collection-based relationship field to the Cruise EJB so that it can reference all the Reservation EJBs
that were created for it:

public abstract class CruiseBean implements javax.ejb.EntityBean {

 ...

 public abstract void setReservations(Collection res);

 public abstract Collection getReservations();

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setShip(ShipLocal ship);

 public abstract ShipLocal getShip();

 // EJB callback methods

 ...

}

The interdependency between the Cruise and Reservation EJBs produces some interesting results. For example, the act
of creating a Reservation EJB automatically adds that entity bean to the collection-based relationship of the Cruise EJB:

CruiseLocal cruise = ... get CruiseLocal reference

ReservationLocal reservation = reservationHomeLocal.create(cruise);

Collection collection = cruise.getReservations();

if(collection.contains(reservation))

 // always returns true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // always returns true

This is a side effect of the bidirectional relationship. Any Cruise referenced by a specific Reservation has a reciprocal
reference back to that Reservation. If Reservation X references Cruise A, Cruise A must have a reference to Reservation
X. When you create a new Reservation EJB and set the Cruise reference on that bean, the Reservation is automatically
added to the Cruise EJB's reservation field.[2]

[2] This actually depends in large part on the sequence of operations, the transaction context, and even the
isolation levels used in the database. Chapter 14 provides more information on these topics.

Sharing references between beans has some of the ugly consequences we learned about earlier. For example, passing a
collection of Reservations referenced by Cruise A to Cruise B actually moves those relationships to Cruise B, so Cruise A
has no more Reservations (see Figure 7-14).

Figure 7-14. Sharing an entire collection in a one-to-many, bidirectional
relationship

As with the Customer and Phone EJBs, this effect is usually undesirable and should be avoided; it displaces the set of
Reservation EJBs formerly associated with Cruise B.

You can move an entire collection from one bean to another and combine it with the second bean's collection by using
the Collection.addAll() method, as shown in Figure 7-15.[3] If you move Cruise A's collection of references to Cruise B,
Cruise A will no longer reference any Reservation EJBs, while Cruise B will reference those it referenced before the
exchange as well as those it acquired from Cruise A.

[3] The addAll() method must be supported by collection-based relationship fields.

Figure 7-15. Using Collection.addAll() in a one-to-many, bidirectional relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moving an individual Reservation EJB from one Cruise to another is similar to moving an individual bean in a one-to-
many relationship: the result is shown in Figure 7-9, when a Phone was moved from one Customer to another. The net
effect of using Collection.addAll() in this situation is the same as using Collection.add() on the target collection for every
element in the source collection. In both cases, you move every element from the source collection to the target
collection.

Once again, container-managed relationship fields, collection-based or otherwise, must always use the
javax.ejb.EJBLocalObject (local) interface of a bean and never the javax.ejb.EJBObject (remote) interface. It would be illegal
to try to add the remote interface of the Reservation EJB (if it has one) to the Cruise EJB's Reservation Collection. Any
attempt to add a remote interface type to a collection-based relationship field results in a
java.lang.IllegalArgumentException.

7.1.8.3 Abstract persistence schema

The abstract persistence schema for the Cruise-Reservation relationship doesn't introduce any new concepts. The
Cruise and Reservation <ejb-relationship-role> elements both have <cmr-field> elements. The Cruise specifies One as its
multiplicity, while Reservation specifies Many. Here's the code:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home>

 com.titan.reservations.ReservationHomeLocal

 </local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<relationships>

 <ejb-relation>

 <ejb-relation-name>Cruise-Reservation

 </ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Cruise-has-many-Reservations

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CruiseEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>reservations</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Reservation-has-a-Cruise

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>ReservationEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>cruise</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

7.1.9 Many-to-Many, Bidirectional Relationship

Many-to-many, bidirectional relationships occur when many beans maintain a collection-based relationship field with
another bean, and each bean referenced in the Collection maintains a collection-based relationship field back to the
aggregating beans. For example, in Titan Cruises, every Reservation EJB may reference many Customers (a family can
make a single reservation) and each Customer can have many reservations (a person may make more than one
reservation). In this many-to-many, bidirectional relationship, the customer keeps track of all of its reservations, and
each reservation may be for many customers.

7.1.9.1 Relational database schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.9.1 Relational database schema

The RESERVATION and CUSTOMER tables have already been established. To establish a many-to-many, bidirectional
relationship, we create the RESERVATION_CUSTOMER_LINK table. This table maintains two foreign key columns: one for
the RESERVATION table and another for the CUSTOMER table:

CREATE TABLE RESERVATION_CUSTOMER_LINK

(

 RESERVATION_ID INT,

 CUSTOMER_ID INT

)

The relationship between the CUSTOMER, RESERVATION, and CUSTOMER_RESERVATION_LINK tables is illustrated in Figure
7-16.

Figure 7-16. Many-to-many, bidirectional relationship in RDBMS

Many-to-many, bidirectional relationships always require a link table in a normalized relational database.

7.1.9.2 Abstract programming model

To model the many-to-many, bidirectional relationship between the Customer and Reservation EJBs, we need to include
collection-based relationship fields in both bean classes:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(CruiseLocal cruise,Collection customers) {

 return null;

 }

 public void ejbPostCreate(CruiseLocal cruise,Collection customers) {

 setCruise(cruise);

 Collection myCustomers = this.getCustomers();

 myCustomers.addAll(customers);

 }

 public abstract void setCustomers(Set customers);

 public abstract Set getCustomers();

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The abstract accessor methods defined for the customers relationship field declare the Collection type as java.util.Set. The
Set type should contain only unique Customer EJBs and no duplicates. Duplicate Customers would introduce some
interesting but undesirable side effects in Titan's reservation system. To maintain a valid passenger count, and to avoid
overcharging customers, Titan requires that a Customer be booked only once in the same Reservation. The Set
collection type expresses this restriction. The effectiveness of the Set collection type depends largely on referential-
integrity constraints established in the underlying database.

In addition to adding the getCustomers()/setCustomers() abstract accessors, we have modified the ejbCreate(
)/ejbPostCreate() methods to take a Collection of Customer EJBs. When a Reservation EJB is created, it must be provided
with a list of Customer EJBs that it will add to its own Customer EJB collection. Container-managed relationship fields
cannot be modified in the ejbCreate() method. It's the ejbPostCreate() method's job to modify container-managed
relationships fields when a bean is created.

We have also modified the Customer EJB to allow it to maintain a collection-based relationship with all of its
Reservations. The Customer EJB now includes a reservations relationship field:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // relationship fields

 public abstract void setReservations(Collection reservations);

 public abstract Collection getReservations();

 ...

When a Reservation EJB is created, it is passed references to its Cruise and to a collection of Customers. Because the
relationship is bidirectional, the EJB container automatically adds the Reservation EJB to the reservations relationship
field of the Customer EJB. The following code illustrates this:

Collection customers = ... get local Customer EJBs

CruiseLocal cruise = ... get a local Cruise EJB

ReservationHomeLocal resHome = ... get local Reservation home

ReservationLocal myReservation = resHome.create(cruise, customers);

Iterator iterator = customers.iterator();

while(iterator.hasNext()) {

 CustomerLocal customer = (CustomerLocal)iterator.next();

 Collection reservations = customer.getReservations();

 if(reservations.contains(myReservation))

 // this will always be true

}

Exchanging bean references in many-to-many, bidirectional relationships results in true sharing, where each
relationship maintains a reference to the transferred collection. This type of relationship is illustrated in Figure 7-17.

Figure 7-17. Using Collection.addAll() in a many-to-many, bidirectional
relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relationship

Of course, using the setCustomers() or setReservations() method changes the references between the entity bean and the
elements in the original collection, but the other relationships held by those elements are unaffected. Figure 7-18
illustrates what happens when an entire collection is shared in a many-to-many bidirectional relationship.

Figure 7-18. Sharing an entire collection in a many-to-many, bidirectional
relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After the setCustomers() method is invoked on Reservation D, Reservation D's Customers change to Customers 1, 2, and
3. Customers 1, 2, and 3 were also referenced by Reservation A before the sharing operation and remain referenced by
Reservation A after it's complete. In fact, only the relationships between Reservation D and Customers 4, 5, and 6 are
impacted. The relationship between Customers 4, 5, and 6 and other Reservation EJBs are not affected by the sharing
operation. This is a unique property of many-to-many relationships (both bidirectional and unidirectional): operations
on the relationship fields affect only those specific relationships; they do not impact either party's relationships with
other beans of the same relationship type.

7.1.9.3 Abstract persistence schema

The abstract persistence schema of a many-to-many, bidirectional relationship introduces nothing new and should
contain no surprises. Each <ejb-relationship-role> specifies Many as its multiplicity and declares a <cmr-field> of a specific
Collection type:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <local-home>com.titan.customer.CustomerHomeLocal</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home> com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Reservation</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-many-Reservations

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>reservations</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Reservation-has-many-Customers

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>ReservationEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>customers</cmr-field-name>

 <cmr-field-type>java.util.Set</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

7.1.10 Many-to-Many, Unidirectional Relationship

Many-to-many, unidirectional relationships occur when many beans maintain a collection-based relationship with
another bean, but the bean referenced in the Collection does not maintain a collection-based relationship back to the
aggregating beans. In Titan's reservation system, every Reservation is assigned a Cabin on the Ship. This allows a
Customer to reserve a specific Cabin (e.g., a deluxe suite or a cabin with sentimental significance) on the Ship. In this
case, each Reservation may be for more than one Cabin, since each Reservation can be for more than one Customer.
For example, a family might make a Reservation for five people for two adjacent Cabins (one for the kids and the other
for the parents).

While the Reservation must keep track of the Cabins it reserves, it's not necessary for the Cabins to track all the
Reservations made by all the Cruises. The Reservation EJBs reference a collection of Cabin beans, but the Cabin beans
do not maintain references back to the Reservations.

7.1.10.1 Relational database schema

Our first order of business is to declare a CABIN table:

CREATE TABLE CABIN

(

 ID INT PRIMARY KEY NOT NULL,

 SHIP_ID INT,

 NAME CHAR(10),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NAME CHAR(10),

 DECK_LEVEL INT,

 BED_COUNT INT

)

Notice the CABIN table maintains a foreign key to the SHIP table. While this relationship is important, we don't discuss it
because we covered the one-to-many, bidirectional relationship in this chapter. To accommodate the many-to-many,
unidirectional relationship between the RESERVATION and CABIN table, we need a RESERVATION_CABIN_LINK table:

CREATE TABLE RESERVATION_CABIN_LINK

(

 RESERVATION_ID INT,

 CABIN_ID INT

)

The relationship between the CABIN records and the RESERVATION records through the RESERVATION_CABIN_LINK table is
illustrated in Figure 7-19.

Figure 7-19. Many-to-many, unidirectional relationship in RDBMS

7.1.10.2 Abstract programming model

To model this relationship, we need to add a collection-based relationship field for Cabin beans to the Reservation EJB:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 ...

 public abstract void setCabins(Set cabins);

 public abstract Set getCabins();

 ...

}

In addition, we need to define a Cabin bean. Notice that the Cabin bean doesn't maintain a relationship back to the
Reservation EJB. The lack of a container-managed relationship field for the Reservation EJB tells us the relationship is
unidirectional:

public abstract class CabinBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(ShipLocal ship, String name) {

 this.setName(name);

 return null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return null;

 }

 public void ejbPostCreate(ShipLocal ship, String name) {

 this.setShip(ship);

 }

 public abstract void setShip(ShipLocal ship);

 public abstract ShipLocal getShip();

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setBedCount(int count);

 public abstract int getBedCount();

 public abstract void setDeckLevel(int level);

 public abstract int getDeckLevel();

 // EJB callback methods

}

Although the Cabin bean doesn't define a relationship field for the Reservation EJB, it does define a one-to-many,
bidirectional relationship for the Ship EJB. The effect of exchanging relationship fields in a many-to-many, unidirectional
relationship is basically the same as in a many-to-many, bidirectional relationship. Use of the Collection.addAll() operation
to share entire collections has the same net effect; the only difference is that the arrows point only one way, instead of
both ways.

If a Reservation removes a Cabin bean from its collection-based relationship field, it doesn't affect other Reservation
EJBs that reference the Cabin bean (Figure 7-20).

Figure 7-20. Removing beans in a many-to-many, unidirectional relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.10.3 Abstract persistence schema

The abstract persistence schema for the Reservation-Cabin relationship holds no surprises. The multiplicity of both <ejb-
relationship-role> elements is Many, but only the Reservation EJB's <ejb-relationship-role> defines a <cmr-field>:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home> com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

 <ejb-relation>

 <ejb-relation-name>Cabin-Reservation</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Cabin-has-many-Reservations

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>CabinEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CabinEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Reservation-has-many-Customers

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>ReservationEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>cabins</cmr-field-name>

 <cmr-field-type>java.util.Set</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

Exercise 7.2 in the Workbook shows how to deploy this example on the JBoss server.

7.1.11 Co-Location and the Deployment Descriptor

If two entity beans are to have a relationship, they must be deployed by the same deployment descriptor. When
deployed together, the entity beans are seen as a single deployment unit or application, in which all the entities are
using the same database and are co-located in the same JVM. This restriction makes it possible for the EJB container
system to use lazy loading, optimistic concurrency, and other performance optimizations. While it would technically be
possible to support relationships across deployments or even across container systems, the difficulty of doing so,
combined with the expected degradation in performance, was reason enough to limit relationship fields to entity beans
that are deployed together. In the future, entity relationships may be expanded to include remote references to entities
deployed in other containers or other JAR files in the same container.

7.1.12 Cascade Delete and Remove

As you learned in Chapter 5, invoking the remove() operation on the EJB home or EJB object of an entity bean deletes
that entity bean's data from the database. Deleting the bean's data, of course, has an impact on the relationships that
entity bean has with other entity beans.

When an entity bean is deleted, the EJB container first removes it from any relationships it maintains with other entity
beans. Consider, for example, the relationship between the entity beans we have created in this chapter (shown in
Figure 7-21).

Figure 7-21. Titan Cruises class diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If an EJB application invokes remove() on a CreditCard EJB, the Customer EJB that referenced that bean would have a
value of null for its creditCard relationship field, as the following code fragment illustrates:

CustomerLocal customer = ... get Customer EJB

CreditCardLocal creditCard = customer.getCreditCard();

creditCard.remove();

if(customer.getCreditCard() == null)

 // this will always be true

The moment the remove() operation is invoked on the CreditCard EJB's local reference, the bean is disassociated from
the Customer bean and deleted. The impact of removing a bean is even more interesting when that bean participates in
several relationships. For example, invoking remove() on a Customer EJB will affect the relationship fields of the
Reservation, Address, Phone, and CreditCard EJBs. With single EJB object relationship fields, such as the CreditCard
EJB's reference to the Customer EJB, the field for the bean that is removed is set to null. With collection-based
relationship fields, the entity that is deleted is removed from the collection. In some cases, you want the removal of an
entity bean to cause a cascade of deletions. For example, if a Customer EJB is removed, we also want the Address EJBs
referenced in its billingAddress and homeAddress relationship field to be deleted, in order to avoid leaving disconnected
Address EJBs in the database. The <cascade-delete> element requests cascade delete; it can be used with one-to-one or
one-to-many relationships. It does not make sense in many-to-many and many-to-one relationships. For example, in
the many-to-one relationship between the Reservation and Cruise EJBs, cancellation of a reservation by one passenger
should not cancel the cruise itself! In other words, we would not want the deletion of a Reservation EJB to cause the
deletion of its Cruise EJB.

Here's how to modify the relationship declaration for the Customer and Address EJBs in order to obtain a cascade
delete:

<relationships>

 <ejb-relation>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <multiplicity>One</multiplicity>

 <cascade-delete/>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

If you do not specify a cascade delete, the ADDRESS record associated with the Address EJB is not be removed when the
CUSTOMER record is deleted. This can result in a disconnected entity: rows in the database that are not linked to
anything. In some cases, we want to specify a cascading delete to ensure that no detached entities remain after a bean
is removed. However, it's important to use a cascading delete with care. If, for example, the ADDRESS record associated
with an entity bean is shared by other CUSTOMER records (i.e., if two different customers reside at the same residence),
we probably do not want it to be deleted when the CUSTOMER record is deleted. A cascade delete can be specified only
on an entity bean that has a single reference to the entity being deleted. For example, you can specify a cascade delete
in the <ejb-relationship-role> for the Phone EJB in the Customer-Phone relationship if the Customer is deleted, because
each Phone EJB is referenced by only one Customer. However, you cannot specify a cascade delete for the Customer
EJB in this relationship, because a Customer may be referenced by many Phone EJBs. The entity bean that causes the
cascade delete must have a multiplicity of One in the relationship.

A cascade delete affects only the relationship for which it is specified. So, for example, if you specify a cascade delete
for the Customer-Phone relationship but not the Customer-HomeAddress relationship, deleting a Customer causes all
the Phone EJBs to be deleted, but not the Address EJBs. You must also specify a cascade delete for the Address EJBs if
you want them to be deleted.

Cascade delete can propagate through relationships in a chain reaction. For example, if the Ship-Cruise relationship
specifies a cascade delete on the Cruise relationship field and the Cruise-Reservation relationship specifies a cascade
delete on the Reservation relationship field, when a Ship is removed all of its Cruises and the Reservations for those
Cruises will be removed.

Cascade delete is a powerful tool, but it's also dangerous and should be handled with care. The effectiveness of a
cascade delete depends in large part on the referential integrity of the database. For example, if the database is set up
so that a foreign key must point to an existing record, deleting an entity's data could violate that restriction and cause a
transaction rollback.

Exercise 7.3 in the Workbook shows how to deploy the examples in this section.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. CMP: EJB QL
Find methods have been a part of the Enterprise JavaBeans specification since EJB 1.0. These methods are defined on
the entity bean's home interfaces and are used for locating entity beans. All home interfaces must have a
findByPrimaryKey() method, which takes the primary key of the entity bean as an argument and returns a remote or local
reference to that entity bean. For example, the Cruise EJB defines this find method in its home interface as:

public CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public Integer create(String name,ShipLocal ship)

 throws CreateException;

 public CruiseLocal findByPrimaryKey(Integer key)

 throws FinderException;

}

In addition to the mandatory findByPrimaryKey() method, home interfaces can define as many custom find methods as
needed. For example, the Cruise EJB might define a method called findByName() for locating a Cruise with a specific
name:

public CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public Integer create(String name,ShipLocal ship)

 throws CreateException;

 public CruiseLocal findByPrimaryKey(Integer key)

 throws FinderException;

 public CruiseLocal findByName(String cruiseName)

 throws FinderException;

}

It's not obvious to the container how a custom find method should behave. In EJB 1.0 and 1.1, vendors came up with
their own query languages and methods to specify the behavior of these other solutions. Consequently, the custom
methods generally were not portable, and guesswork was required on the part of the deployer to determine how to
properly execute queries against them. EJB 2.0 introduced the Enterprise JavaBeans Query Language (EJB QL)—a
standard query language for declaring the behavior of custom find methods—and the new select methods. Select
methods are similar to find methods, but they are more flexible and are visible to the bean class only. Find and select
methods are collectively referred to as query methods. EJB 2.1 enhances EJB QL by adding aggregate functions, the
ORDER BY clause, and other new features. The differences in EJB QL between EJB 2.1 and EJB 2.0 are clearly stated
throughout this chapter.

EJB QL is a declarative query language similar to the Structured Query Language (SQL) used in relational databases,
but it is tailored to work with the abstract persistence schema of entity beans. EJB QL queries are defined in terms of
the abstract persistence schema of entity beans and not the underlying data store, so they are portable across
databases and data schemas. When an entity bean's abstract bean class is deployed, the EJB QL statements are
translated into data access code optimized for a specific data store. At runtime, query methods defined in EJB QL
usually execute in the native language of the underlying data store. For example, a container that uses a relational
database for persistence might translate EJB QL statements into standard SQL 92, while an object-database container
might translate the same EJB QL statements into an object query language.

EJB QL makes it possible to define queries that are portable across databases and EJB vendors. The EJB QL language is
easy for developers to learn, yet precise enough to be interpreted into native database code. It is a rich and flexible
query language that empowers developers, while executing in fast native code at runtime. However, EJB QL is not a
silver bullet and is not without its problems, as we'll see later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

silver bullet and is not without its problems, as we'll see later in this chapter.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Declaring EJB QL
EJB QL statements are declared in <query> elements in an entity bean's deployment descriptor. In the following listing,
the findByName() method defined in the Cruise bean's local home interface has its own query element and EJB QL
statement:

<ejb-jar ...>

 <enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 ...

 <reentrant>False</reentrant>

 <abstract-schema-name>Cruise</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <primkey-field>id</primkey-field>

 <query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Cruise AS c

 WHERE c.name = ?1

 </ejb-ql>

 </query>

 </entity>

 </enterprise-beans>

</ejb-jar>

The <query> element contains two primary elements. The <query-method> element identifies a particular find method,
and the <ejb-ql> element declares the EJB QL statement. The <query> element binds the EJB QL statement to the
proper find method. Don't worry too much about the EJB QL statement just yet; we'll cover that in detail starting in the
next section.

Every entity bean that is referenced in an EJB QL statement must have a special designator called an abstract schema
name, which is declared by the <abstract-schema-name> element. Each element must declare a unique name. These
names must be unique: no two entity beans may have the same abstract schema name. In the entity element that
describes the Cruise EJB, the abstract schema name is declared as Cruise. The <ejb-ql> element contains an EJB QL
statement that uses this identifier in its FROM clause.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 The Query Methods
There are two main types of query methods: find methods and select methods. These are discussed in the following
sections.

8.2.1 Find Methods

Find methods are invoked by EJB clients (applications or beans) to obtain EJB object references to specific entity beans.
For example, you might call the findByPrimaryKey() method on the Customer EJB's home interface to obtain a reference
to a specific Customer bean.

Find methods are always declared in the local and remote home interfaces of an entity bean. Specifying a single remote
or local return type for a find method indicates that the method locates only one bean. findByPrimaryKey() obviously
returns a single remote reference, because there is a one-to-one correspondence between a primary key's value and an
entity. Other single-entity find methods can also be declared. For example, in the following code segment the Customer
EJB declares several single-entity find methods, each of which supports a different query:

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public CustomerRemote findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FinderException, java.rmi.RemoteException;

 public CustomerRemote findByName(String lastName, String firstName)

 throws javax.ejb.FinderException, java.rmi.RemoteException;

 public CustomerRemote findBySSN(String socialSecurityNumber)

 throws javax.ejb.FinderException, java.rmi.RemoteException;

}

Bean developers can also define multi-entity find methods, which return a collection of EJB objects. The following listing
shows a couple of multi-entity find methods:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome {

 public CustomerLocal findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FinderException;

 public Collection findByCity(String city,String state)

 throws javax.ejb.FinderException;

 public Collection findByGoodCredit()

 throws javax.ejb.FinderException;

}

To return several references from a find method, you must use a java.util.Collection type.[1] A find method that uses this
return type may have duplicates. To avoid duplicates, use the keyword DISTINCT in the EJB QL statement associated
with the find method. Multi-entity finds return an empty Collection if no matching beans are found.

[1] In The java.util.Collection is the only collection type supported for multi-entity find methods in CMP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] In The java.util.Collection is the only collection type supported for multi-entity find methods in CMP.

All query methods (find or select) must be declared as throwing the javax.ejb.FinderException. Find methods that return a
single remote reference throw a FinderException if an application error occurs and a javax.ejb.ObjectNotFoundException if a
matching bean cannot be found. The ObjectNotFoundException is a subtype of FinderException that is thrown only by single-
entity find methods.

With the exception of findByPrimaryKey() methods, all find methods must be declared in <query> elements in the bean's
deployment descriptor. Query declarations for findByPrimaryKey() methods are not necessary and, in fact, are forbidden.
It's obvious what this method should do, and you may not try to change its behavior. The following snippet from the
Customer EJB's deployment descriptor shows declarations of two find methods, findByName() and findByGoodCredit():

<query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer AS c

 WHERE c.lastName = ?1 AND c.firstName = ?2

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>findByGoodCredit</method-name>

 <method-params/>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer AS c

 WHERE c.hasGoodCredit = TRUE

 </ejb-ql>

</query>

The <query> elements allow the bean developer to associate EJB QL statements with specific find methods. When the
bean is deployed, the container attempts to match the find method declared in each of the query elements with find
methods in the entity bean's home interfaces. To do so, it matches the values of the <method-name> and <method-
params> elements with method names and parameter types (ordering is important) in the home interfaces.

When two find methods have the same method name and parameters, the query declaration applies to both methods.
(This situation occurs when similar find methods are in the local home and remote home interfaces.) The container
returns the proper type for each query method: the remote home returns remote EJB objects, and the local home
returns local EJB objects. You can therefore define the behavior of both the local and remote home find methods using
a single <query> element, which is convenient if you want local clients to have access to the same find methods as
remote clients.

The <ejb-ql> element specifies the EJB QL statement for a specific find method. EJB QL statements can use input
parameters (e.g., ?1, ?2, ... ?n), which are mapped to the <method-param> elements of the find method, as well as
literals (e.g., TRUE).

8.2.2 Select Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select methods are similar to find methods, but they are more versatile and can be used only internally, by the bean
class. In other words, select methods are private query methods; they are not exposed to an entity bean's interfaces.

Select and find methods also execute in different transaction contexts. The select method executes in the transaction
context of the business or callback method that is using it, while the find methods execute according to their own
transaction attributes, as specified by the bean provider.

Select methods are declared as abstract methods using the naming convention ejbSelect<METHOD-NAME>. Here are four
select methods declared in the AddressBean class:

public class AddressBean implements javax.ejb.EntityBean {

 ...

 public abstract String ejbSelectMostPopularCity()

 throws FinderException;

 public abstract Set ejbSelectZipCodes(String state)

 throws FinderException;

 public abstract Collection ejbSelectAll()

 throws FinderException;

 public abstract CustomerLocal ejbSelectCustomer(AddressLocal addr)

 throws FinderException;

 ...

}

Select methods can return the values of CMP fields. The ejbSelectMostPopularCity() method, for example, returns a single
String value, the name of the city referenced by the most Address EJBs.

To return several references from a select method, you must declare the return type to be either a Collection or a Set.[2]

Which type to return depends on whether you want to allow duplicate values. By definition, a Set never contains
duplicates, while a Collection may have duplicates. Multi-entity selects return an empty Collection or Set if no matching
beans are found. For example, the ejbSelectZipCodes() method returns a java.util.Set of String values: a unique collection
of all the Zip codes declared for the Address EJBs for a specific state.

[2] Other collection types, such as java.util.List and java.util.Map, may be added in future versions.

Like find methods, select methods can declare arguments that limit the scope of the query. For example, the
ejbSelectZipCodes() and ejbSelectCustomer() methods declare arguments that limit the scope of the results. These
arguments are used as input parameters in the EJB QL statements assigned to the select methods.

Select methods can return local or remote EJB objects. Whether a single-entity select method returns a local or a
remote object is determined by the return type of the ejbSelect() method. The ejbSelectCustomer() method, for example,
returns a local EJB object, the CustomerLocal. This method could easily have been defined to return a remote object by
changing the return type to the Customer bean's remote interface (CustomerRemote). Multi-entity select methods, which
return a collection of EJB objects, return local EJB objects by default. However, you can override this behavior by using
the <result-type-mapping> element in the select method's <query> element.

The following snippet from an XML deployment descriptor declares two select methods. Notice that they are exactly the
same as the find method declarations:

<query>

 <query-method>

 <method-name>ejbSelectZipCodes</method-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <method-name>ejbSelectZipCodes</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT a.homeAddress.zip FROM Address AS a

 WHERE a.homeAddress.state = ?1

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectAll</method-name>

 <method-params/>

 </query-method>

 <result-type-mapping>Remote</result-type-mapping>

 <ejb-ql>

 SELECT OBJECT(a) FROM Address AS a

 </ejb-ql>

</query>

The name given in each <method-name> element must match one of the ejbSelect<METHOD-NAME>() methods defined in
the bean class. This is different from find methods in CMP, which use the names of select methods defined by the bean
class.

By default, the <result-type-mapping> element in the value of <result-type-mapping> can be either Remote or Local. Local
indicates that the select method should return local EJB objects; Remote indicates remote EJB objects. For a single-
entity select, the actual return type of the ejbSelect() method must match the <result-type-mapping>. In the previous
example, the <result-type-mapping> element for the ejbSelectAll() method is declared as Remote, which means the query
should return remote EJB object types (i.e., remote references to the Address EJB).[3]

[3] This is illustrative. As a developer, it is unlikely (although possible) that you would define a remote interface for
the Address EJB, because it is too fine-grained for use by remote clients.

Select methods can be used to query all the entity beans declared in the same deployment descriptor. Select methods
may be called by a bean's ejbHome() methods, by any business methods, or by the ejbLoad() and ejbStore() methods. In
most cases, select methods will be called by ejbHome() or by business methods in the bean class.

The most important thing to remember about select methods is that while they can do anything find methods can and
more, they can be used only by the entity bean class that declares them, not by the entity bean's clients.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 EJB QL Examples
EJB QL is expressed in terms of the abstract persistence schema of an entity bean: its abstract schema name, CMP
fields, and CMR fields. EJB QL uses the abstract schema names to identify beans, the CMP fields to specify values, and
the CMR fields to navigate across relationships.

To discuss EJB QL, we will make use of the relationships among the Customer, Address, CreditCard, Cruise, Ship,
Reservation, and Cabin EJBs defined in Chapter 7. Figure 8-1 is a class diagram that shows the direction and cardinality
(multiplicity) of the relationships among these beans.

Figure 8-1. Titan Cruises class diagram

8.3.1 Simple Queries

The simplest EJB QL statement has no WHERE clause and only one abstract schema type. For example, you could define
a query method to select all Customer beans:

SELECT OBJECT(c) FROM Customer AS c

The FROM clause determines which entity bean types will be included in the select statement (i.e., provides the scope of
the select). In this case, the FROM clause declares the type to be Customer, which is the abstract schema name of the
Customer EJB. The AS c part of the clause assigns c as the identifier of the Customer EJB. This is similar to SQL, which
allows an identifier to be associated with a table. Identifiers can be any length and follow the same rules that are
applied to field names in the Java programming language. However, identifiers cannot be the same as existing <ejb-
name> or <abstract-schema-name> values. In addition, identification variable names are not case-sensitive, so an
identifier of customer would be in conflict with an abstract schema name of Customer. For example, the following
statement is illegal because Customer is the abstract schema name of the Customer EJB:

SELECT OBJECT(customer) FROM Customer AS customer

The AS operator is optional, but it is used in this book to help make the EJB QL statements more clear. The following
two statements are equivalent:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

two statements are equivalent:

SELECT OBJECT(c) FROM Customer AS c

SELECT OBJECT(c) FROM Customer c

The SELECT clause determines the type of any values that are returned. In this case, the statement returns the
Customer entity bean, as indicated by the c identifier.

The OBJECT() operator is required when the SELECT type is a solitary identifier for an entity bean. The reason for this
requirement is pretty vague (and in the author's opinion, the specification would have been better off without it), but it
is required whenever the SELECT type is an entity bean identifier. The OBJECT() operator is not used if the SELECT type is
expressed using a path, which is discussed below.

Identifiers cannot be EJB QL reserved words. In EJB 2.0, the following words are reserved: SELECT, FROM, WHERE,
DISTINCT, OBJECT, NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN, EMPTY, MEMBER, OF and IS. EJB
2.1 adds 10 new reserved words to this list, which include AVG, MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, and MOD.
You shouldn't use these reserved words with EJB 2.0 either, because the queries that use them as identifiers won't be
forward compatible with EJB 2.1. It's a good practice to avoid all SQL reserved words, because you never know which
ones will be used by future versions of EJB QL. You can find more information in the Appendix ("SQL99 and Vendor-
Specific Keywords") of SQL in a Nutshell by Kevin E. Kline with David Kline (O'Reilly).

8.3.2 Simple Queries with Paths

EJB QL allows SELECT clauses to return any CMP or single CMR field. For example, we can define a simple select
statement to return the last names of all of Titan's customers:

SELECT c.lastName FROM Customer AS c

The SELECT clause uses a simple path to select the Customer EJB's lastName field as the return type. EJB QL uses the
CMP and CMR field names declared in <cmp-field> and <cmr-field> elements of the deployment descriptor. To navigate
between fields, use the familiar Java dot (.) operator. The previous EJB QL statement is based on the Customer EJB's
deployment descriptor:

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

You can also use CMR field types in simple select statements. The following EJB QL statement selects all the CreditCard
EJBs from all the Customer EJBs:

SELECT c.creditCard FROM Customer AS c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, the EJB QL statement uses a path to navigate from the Customer EJBs to their creditCard relationship fields.
The creditCard identifier is obtained from the <cmr-field> name used in the relationship element that describes the
Customer-CreditCard relationship:

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 ...

 <abstract-schema-name>Customer</abstract-schema-name>

 </entity>

</enterprise-beans>

...

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-CreditCard</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-a-CreditCard

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>creditCard</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

Paths can be as long as required. It's common to use paths that navigate over one or more CMR fields to end at either
a CMR or CMP field. For example, the following EJB QL statement selects all the city CMP fields of all the Address EJBs in
each Customer EJB:

SELECT c.homeAddress.city FROM Customer AS c

In this case, the path uses the abstract schema name of the Customer EJB, the Customer EJB's homeAddress CMR field,
and the Address EJB's city CMP field.

To illustrate more complex paths, we'll need to expand the class diagram. Figure 8-2 shows that the CreditCard EJB is
related to a CreditCompany EJB that has its own Address EJB.

Figure 8-2. Expanded class diagram for CreditCard EJB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-2. Expanded class diagram for CreditCard EJB

Using these relationships, we can specify a more complex path that navigates from the Customer EJB to the
CreditCompany EJB to the Address EJB. Here's an EJB QL statement that selects the addresses of all the credit card
companies used by Titan's customers:

SELECT c.creditCard.creditCompany.address FROM Customer AS c

The EJB QL statement could also navigate all the way to the Address bean's CMP fields. The following statement selects
all the cities in which the credit card companies that distribute credit cards used by Titan's customers are based:

SELECT c.creditCard.creditCompany.address.city FROM Customer AS c

Note that these EJB QL statements return address CMR fields or city CMP fields only for those credit card companies
responsible for cards owned by Titan's customers. The address information of any credit card companies whose cards
are not currently used by Titan's customers won't be included in the results.

Paths cannot navigate beyond CMP fields. For example, imagine that the Address EJB uses a ZipCode class as its zip CMP
field:

public class ZipCode implements java.io.Serializable {

 public int mainCode;

 public int codeSuffix;

 ...

}

You can't navigate to one of the ZipCode class's instance fields:

// this is illegal

SELECT c.homeAddress.zip.mainCode FROM Customer AS c

The paths used in SELECT clauses of EJB QL statements must always end with a single type. They may not end with a
collection-based relationship field. For example, the following is not legal because reservations is a collection-based
relationship field:

// this is illegal

SELECT c.reservations FROM Customer AS c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT c.reservations FROM Customer AS c

In fact, it's illegal to navigate across a collection-based relationship field. The following EJB QL statement is also illegal,
even though the path ends in a single-type relationship field:

// this is illegal

SELECT c.reservations.cruise FROM Customer AS c

If you think about it, this limitation makes sense. You can't use a navigation operator (.) in Java to access elements of a
java.util.Collection object. For example, if getReservations() returns a java.util.Collection type, this statement is illegal:

// this is illegal in the Java programming language

customer.getReservations().getCruise();

Referencing the elements of a collection-based relationship field is possible, but it requires the use of an IN operator
and an identification assignment in the FROM clause.

8.3.3 The IN Operator

Many relationships between entity beans are collection-based, and being able to access and select beans from these
relationships is important. We've seen that it is illegal to select elements directly from a collection-based relationship.
To overcome this limitation, EJB QL introduces the IN operator, which allows an identifier to represent individual
elements in a collection-based relationship field.

The following query uses the IN operator to select the elements from a collection-based relationship. It returns all the
reservations of all the customers:

SELECT OBJECT(r)

FROM Customer AS c, IN(c.reservations) AS r

The IN operator assigns the individual elements in the reservations CMR field to the identifier r. Once we have an
identifier to represent the individual elements of the collection, we can reference them directly and even select them in
the EJB QL statement. We can also use the element identifier in path expressions. For example, the following statement
selects every cruise for which Titan's customers have made reservations:

SELECT r.cruise

FROM Customer AS c, IN(c.reservations) AS r

The identifiers assigned in the FROM clause are evaluated from left to right. Once you declare an identifier, you can use
it in subsequent declarations in the FROM clause. The identifier c, which was declared first, was subsequently used in the
IN operator to define the identifier r.

The OBJECT() operator is used for single identifiers in the select statement and not for path
expressions. While this convention makes little sense, it is required by the EJB
specifications. As a rule of thumb, if the select type is a solitary identifier of an entity bean,
it must be wrapped in an OBJECT() operator. If the select type is a path expression,
OBJECT() is not necessary.

Identification chains can become very long. The following statement uses two IN operators to navigate two collection-
based relationships and a single CMR relationship. While not necessarily useful, this statement demonstrates how a
query can use IN operators across many relationships:

SELECT cbn.ship

FROM Customer AS c, IN (c.reservations) AS r,

IN(r.cabins) AS cbn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IN(r.cabins) AS cbn

To put the examples in this section into action, see Exercise 8.1 in the Workbook.

8.3.4 Using DISTINCT

The DISTINCT keyword ensures that the query does not return duplicates. It is especially valuable when applied to EJB
QL statements used by multivalued find methods. Find methods in CMP have only one return type, java.util.Collection,
which may include duplicates. For example, the following find method and its associated query will return duplicates:

// the find method declared in the remote or local home interface

public java.util.Collection findAllCustomersWithReservations()

// the EJB QL statement associated with the find method

SELECT OBJECT(cust) FROM Reservation AS res, IN (res.customers) AS cust

If a customer has more than one reservation, there will be duplicate references to that Customer EJB in the result
Collection. Using the DISTINCT keyword ensures that each Customer EJB is represented only once in the result:

SELECT DISTINCT OBJECT(cust) FROM Reservation AS res,

IN (res.customers) cust

The DISTINCT keyword can also be used with select methods. It works the same way for select methods that have a
return type of Collection. If the select method's return type is java.util.Set, the DISTINCT keyword has no effect; the Set
object eliminates duplicates by definition.

8.3.5 The WHERE Clause and Literals

You can use literal values to narrow the scope of the elements selected. This is accomplished through the WHERE clause,
which behaves in much the same way as the WHERE clause in SQL.

For example, you can define an EJB QL statement that selects all the Customer EJBs that use a specific brand of credit
card. The literal in this case is a String literal. Literal strings are enclosed by single quotes. Literal values that include a
single quote, like the restaurant name "Wendy's," use two single quotes to escape the quote: 'Wendy''s'. The following
statement returns customers that use American Express:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.creditCard.organization = 'American Express'

Path expressions in the WHERE clause are used in the same way as in the SELECT clause. When making comparisons
with a literal, the path expression must evaluate to a CMP field; you can't compare a CMR field with a literal.

In addition to literal strings, literals can be exact numeric values (long types) and approximate numeric values (double
types). Exact numeric literal values are expressed using the Java integer literal syntax (321, -8932, +22). Approximate
numeric literal values are expressed using Java floating point literal syntax in scientific (5E3, -8.932E5) or decimal (5.234,
38282.2) notation. For example, the following EJB QL statement selects all the ships that weigh 100,000.00 metric tons:

SELECT OBJECT(s)

FROM Ship AS s

WHERE s.tonnage = 100000.00

Boolean literal values use TRUE and FALSE. Here's an EJB QL statement that selects all the customers who have good
credit:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.hasGoodCredit = TRUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE c.hasGoodCredit = TRUE

8.3.6 The WHERE Clause and Input Parameters

Query methods (find and select methods) that use EJB QL statements may specify method arguments. Input
parameters allow those method arguments to be mapped to EJB QL statements and are used to narrow the scope of
the query. For example, the ejbSelectByCity() method selects all the customers who reside in a particular city and state:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public abstract Collection ejbSelectByCity(String city,String state)

 throws FinderException;

 ...

}

The EJB QL statement for this method uses the city and state arguments as input parameters:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state = ?2

AND c.homeAddress.city = ?1

Input parameters use a ? prefix followed by the argument's position, in order of the query method's parameters. In this
case, city is the first argument listed in the ejbSelectByCity() method and state is the second. When a query method
declares one or more arguments, the associated EJB QL statement may use some or all of the arguments as input
parameters.

Input parameters are not limited to simple CMP field types; they can also be EJB object references. For example, the
following find method, findByShip(), is declared in the Cruise bean's local home interface:

public interface CruiseLocalHome extends javax.ejb.EJBLocalHome {

 ...

 public Collection findByShip(ShipLocal ship)

 throws FinderException;

}

The EJB QL statement associated with this method would use the ship argument to locate all the cruises scheduled for
the specified Ship bean:

SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.ship = ?1

When an EJB object is used as an input parameter, the container bases the comparison on the primary key of the EJB
object. In this case, it searches through all the Cruise EJBs looking for references to a Ship EJB with the same primary
key value as the one the Ship EJB passed to the query method.

8.3.7 The WHERE Clause and Operator Precedence

The WHERE clause is composed of conditional expressions that reduce the scope of the query and limit the number of
items selected. Several conditional and logical operators can be used in expressions; they are listed below in order of
precedence:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

precedence:

Navigation operator (.)

Arithmetic operators: +, - unary; *, / multiplication and division; +, - addition and subtraction

Comparison operators: =, >, > =, <, <=, <> (not equal), LIKE, BETWEEN, IN, IS NULL, IS EMPTY, MEMBER OF

Logical operators: NOT, AND, OR

8.3.8 The WHERE Clause and CDATA Sections

EJB QL statements are declared in XML deployment descriptors. XML uses the greater than (>) and less than (<)
characters as delimiters for tags; using these symbols in the EJB QL statements causes parsing errors unless CDATA
sections are used. For example, the following EJB QL statement causes a parsing error, because the XML parser
interprets the > symbol as an incorrectly placed XML tag delimiter:

<query>

 <query-method>

 <method-name>findWithPaymentGreaterThan</method-name>

 <method-params>

 <method-param>java.lang.Double</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(r) FROM Reservation AS r

 WHERE r.amountPaid > ?1

 </ejb-ql>

</query>

To avoid this problem, place the EJB QL statement in a CDATA section, which takes the form <![CDATA[literal-text]]>:

<query>

 <query-method>

 <method-name>findWithPaymentGreaterThan</method-name>

 <method-params>

 <method-param>java.lang.Double</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 <![CDATA[

 SELECT OBJECT(r) FROM Reservation AS r

 WHERE r.amountPaid > 300.00

]]>

 </ejb-ql>

</query>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</query>

When an XML processor encounters a CDATA section, it doesn't attempt to parse the contents enclosed by the CDATA
section; instead, the parser treats the contents as literal text.[4]

[4] To learn more about XML and the use of CDATA sections, see XML in a Nutshell by Elliotte Rusty Harold and W.
Scott Means (O'Reilly).

8.3.9 The WHERE Clause and Arithmetic Operators

The arithmetic operators allow a query to perform arithmetic in the process of doing a comparison. Arithmetic operators
can be used only in the WHERE clause, not in the SELECT clause.

The following EJB QL statement returns references to all the Reservation EJBs that will be charged a port tax of more
than $300.00:

SELECT OBJECT(r) FROM Reservation AS r

WHERE (r.amountPaid * .01) > 300.00

The rules applied to arithmetic operations are the same as those used in the Java programming language, where
numbers are widened or promoted in the process of performing a calculation. For example, multiplying a double and an
int value requires that the int first be promoted to a double value. (The result will always be that of the widest type used
in the calculation, so multiplying an int and a double results in a double value.)

String, boolean, and EJB object types cannot be used in arithmetic operations. For example, using the addition operator
with two String values is considered an illegal operation. There is a special function for concatenating String values,
covered later in the section titled "The WHERE Clause and Functional Expressions."

8.3.10 The WHERE Clause and Logical Operators

Logical operators such as AND, OR, and NOT operate the same way in EJB QL as their corresponding logical operators in
SQL.

Logical operators evaluate only Boolean expressions, so each operand (i.e., each side of the expression) must evaluate
to true or false. Logical operators have the lowest precedence so that all the expressions can be evaluated before they
are applied.

The AND and OR operators don't behave like their Java language counterparts, && and ||. EJB QL does not specify
whether the right-hand operands are evaluated conditionally. For example, the && operator in Java evaluates its right-
hand operand only if the left-hand operand is true. Similarly, the || logical operator evaluates the right-hand operand
only if the left-hand operand is false. We can't make the same assumption for the AND and OR operators in EJB QL.
Whether these operators evaluate right-hand operands depends on the native query language into which the
statements are translated. It's best to assume that both operands are evaluated on all logical operators.

NOT simply reverses the Boolean result of its operand; expressions that evaluate to the Boolean value of true become
false, and vice versa.

8.3.11 The WHERE Clause and Comparison Symbols

Comparison operators, which use the symbols =, >, >=, <, <=, and <>, should be familiar to you. The following
statement selects all the Ship EJBs whose tonnage CMP field is greater than or equal to 80,000 tons but less than or
equal to 130,000 tons:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage >= 80000.00 AND s.tonnage <= 130000.00

Only the = and <> (not equal) operators may be used on boolean and EJB object identifiers. In EJB 2.0, the greater-
than and less-than symbols (>, >=, <, <=) can be used only on numeric values. In EJB 2.0, it's illegal to use the
greater-than or less-than symbols to compare two Strings. In EJB 2.1, the greater-than and less-than symbols can also
be used with String values. However, the semantics of these operations are not defined by the EJB 2.1 specification. Is
character case (upper or lower) important? Does leading and trailing whitespace matter? Issues like these affect the
ordering of String values. In order for EJB QL to maintain its status as an abstraction of native query languages (e.g.,
SQL-92, JDOQL, OQL, etc.) it cannot dictate String ordering, because native query languages may have very different
ordering rules. In fact, even different relational database vendors vary on the question of String ordering, which makes
it all but impossible to standardize ordering even for SQL "compliant" databases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it all but impossible to standardize ordering even for SQL "compliant" databases.

Of course, this is all academic if you plan on using the same database well into the future. In such a case, the best thing
to do is to examine the documentation for the database you are using to find out how it orders strings in comparisons.
This tells you exactly how your EJB QL comparisons will work.

8.3.12 The WHERE Clause and Equality Semantics

While it is legal to compare an exact numeric value (short, int, long) to an approximate numeric value (double, float), all
other equality comparisons must compare the same types. You cannot, for example, compare a String value of 123 to
the Integer literal 123. However, you can compare two String types for equality.

In EJB 2.1, you can compare numeric values for which the rules of numeric promotion apply. For example, a short may
be compared to an int, an int to a long, etc. EJB 2.1 also states that primitives may be compared to primitive wrappers
primitives—the rules of numeric promotion apply.

Where EJB 2.0 was very specific about String type comparisons, saying that they must match exactly, character-for-
character, EJB 2.1 drops this requirement, making the evaluation of equality between String types more ambiguous.
Again, this ambiguity arises from the differences between kinds of databases (relational versus object- oriented versus
file), as well as differences between vendors of relational databases. Consult your vendor's documentation to determine
exactly how String equality comparisons are evaluated.

You can also compare EJB objects for equality, but these too must be of the same type. To be more specific, they must
both be EJB object references to beans from the same deployment. As an example, the following method finds all the
Reservation EJBs made by a specific Customer EJB:

public interface ReservationHomeLocal extends EJBLocalHome {

 public Collection findByCustomer(CustomerLocal customer)

 throws FinderException;

 ...

}

The matching EJB QL statement uses the customer argument as a parameter:

SELECT OBJECT(r)

FROM Reservation r, IN (r.customers) AS cust

WHERE cust = ?1

It's not enough for the EJB object used in the comparison to implement the CustomerLocal interface; it must be of the
same bean type as the Customer EJB used in the Reservation's customers CMR field. In other words, they must be from
the same deployment. Once it's determined that the bean is the correct type, the actual comparison is performed on
the beans' primary keys. If they have the same primary key, they are considered equal.

You cannot use java.util.Date objects in equality comparisons. To compare dates, you must use the long millisecond value
of the date, which means that the date must be persisted in a long CMP field, not a DateCMP field. The input value or
literal must also be a long value. Use the java.util.Calandar class to obtain the long millisecond value of a Date object.

8.3.13 The WHERE Clause and BETWEEN

The BETWEEN clause is an inclusive operator specifying a range of values. In this example, we use it to select all ships
weighing between 80,000 and 130,000 tons:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage BETWEEN 80000.00 AND 130000.00

The BETWEEN clause may be used only on numeric primitives (byte, short, int, long, double, float) and their corresponding
java.lang.Number types (Byte, Short, Integer, etc.). It cannot be used on String, boolean, or EJB object references.

Using the NOT logical operator in conjunction with BETWEEN excludes the range specified. For example, the following EJB
QL statement selects all the ships that weigh less than 80,000 tons or greater than 130,000 tons but excludes
everything in between:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

everything in between:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage NOT BETWEEN 80000.00 AND 130000.00

The net effect of this query is the same as if it had been executed with comparison symbols:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage < 80000.00 OR s.tonnage > 130000.00

8.3.14 The WHERE Clause and IN

The IN conditional operator used in the WHERE clause is not the same as the IN operator used in the FROM clause. In the
WHERE clause, IN tests for membership in a list of literal values. For example, the following EJB QL statement uses the
IN operator to select all the customers who reside in a specific set of states:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state IN ('FL', 'TX', 'MI', 'WI', 'MN')

Applying the NOT operator to this expression reverses the selection, excluding all customers who reside in the list of
states:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state NOT IN ('FL', 'TX', 'MI', 'WI', 'MN')

If the field tested is null, the value of the expression is "unknown", which means it cannot be predicted.

In EJB 2.0, the IN operator is limited to evaluating string values. In EJB 2.1, this operator can be used with operands
that evaluate to either string or numeric values. For example, the following EJB QL statement uses the IN operator to
select all cabins on deck levels 1, 3, 5, and 7:

SELECT OBJECT(cab) FROM Cabin AS cab

WHERE cab.deckLevel IN (1,3,5,7)

EJB 2.1 also allows you to use the IN operator with input parameters; EJB 2.0 does not. For example, the following
select method returns all the customers who live is the designated states:

public Collection ejbSelectCustomersByStates(String state1, String state2, String state3)

The EJB QL assigned to this select method would use the input parameters with the IN operator, as shown in the
following listing:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state IN (?1, ?2, ?3, 'WI', 'MN')

In this case, the input parameters (?1, ?2, and ?3) are combined with string literals ('WI' and 'MN') to show that mixing
literal and input parameters is allowed, providing they are "like" types.

8.3.15 The WHERE Clause and IS NULL

The IS NULL comparison operator allows you to test whether a path expression is null. For example, the following EJB QL
statement selects all the customers who do not have home addresses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement selects all the customers who do not have home addresses:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress IS NULL

Using the NOT logical operator, we can reverse the results of this query, selecting all the customers who do have home
addresses:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress IS NOT NULL

In EJB 2.0, null fields in comparison operations (e.g., IN and BETWEEN) can cause bizarre side effects. In most cases,
evaluating a null field in a comparison operation (other than IS NULL) produces an UNKNOWN result. Unknown
evaluations throw the entire EJB QL result set into question. One way to avoid this situation is to require that fields used
in the expressions have values. This requires careful programming. To ensure that an entity bean field is never null, you
must initialize the field when the entity is created. For primitive values, this not a problem; they have default values, so
they cannot be null. Other fields, such as single CMR fields and object-based CMP fields such as String, must be
initialized in the ejbCreate() and ejbPostCreate() methods.

In EJB 2.1, path expressions are composed using "inner join" semantics. If an entity has a null CMR field, any query that
uses that field as part of a path expression eliminates that entity from consideration. For example, if the Customer EJB
representing "John Smith" has a null value for its address CMR field, then the "John Smith" Customer EJB won't be
included in the result set for the following query:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state = 'TX'

AND c.lastName = 'Smith' AND c.firstName = 'John'

This seems obvious at first, but stating it explicitly helps eliminate much of the ambiguity associated with null CMR
fields. In EJB 2.0, it was unclear what would happen, which is why it was recommended that all CMR fields have values.
This is not necessary in EJB 2.1.

In EJB 2.1, the NULL comparison operator can also be used to test input parameters. In this case, NULL is usually
combined with the NOT operator to ensure that an input parameter is not a null value. For example, the query used in
conjunction with the ejbSelectByCity() method can be modified to test for null input parameters.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public abstract Collection ejbSelectByCity(String city, String state)

 throws FinderException;

 ...

}

The EJB QL statement for this method first checks that the city and state input parameters are not null, and then uses
them in comparison operations.

SELECT OBJECT(c) FROM Customer AS c

WHERE ?1 IS NOT NULL AND ?2 IS NOT NULL

AND c.homeAddress.state = ?2

AND c.homeAddress.city = ?1

In this case, if either of the input parameters are null values, the query returns an empty Collection, avoiding the
possibility of UNKNOWN results from null input parameters.

In EJB 2.1, if the results of a query include a null CMR or CMP field, the results must include null values. For example,
the following query selects the Address EJBs customers with the last name "Smith":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the following query selects the Address EJBs customers with the last name "Smith":

SELECT c.address FROM Customer AS c

WHERE c.lastName = 'Smith'

If the Customer EJB representing "John Smith" has a null value for its address CMR field, the previous query returns a
Collection that includes a null value—the null represents the address CMR field of "John Smith"—in addition to a bunch of
Address EJB references. EJB 2.0 was not clear on whether null values were returned or not, but EJB 2.1 says they are.
You can eliminate null values by including the NOT NULL operator in the query, as shown here:

SELECT c.address.city FROM Customer AS c

WHERE c.address.city NOT NULL AND c.address.state = 'FL'

8.3.16 The WHERE Clause and IS EMPTY

The IS EMPTY operator allows the query to test whether a collection-based relationship is empty. Remember from
Chapter 7 that a collection-based relationship will never be null. If a collection-based relationship field has no elements,
it returns an empty Collection or Set.

Testing whether a collection-based relationship is empty has the same purpose as testing whether a single CMR field or
CMP field is null: it can be used to limit the scope of the query and items selected. For example, the following query
selects all the cruises that have not booked any reservations:

SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.reservations IS EMPTY

The NOT operator reverses the result of IS EMPTY. The following query selects all the cruises that have at least one
reservation:

SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.reservations IS NOT EMPTY

It is illegal to use IS EMPTY against collection-based relationships that have been assigned an identifier in the FROM
clause:

// illegal query

SELECT OBJECT(r)

FROM Reservation AS r, IN(r.customers) AS c

WHERE

r.customers IS NOT EMPTY AND

c.address.city = 'Boston'

While this query appears to be good insurance against UNKNOWN results, it's not. It's illegal because the IS EMPTY
operator cannot be used on a collection-based relationship identified in an IN operator in the FROM clause. Because the
relationship is specified in the IN clause, only those Reservation EJBs that have a nonempty customers field will be
included in the query; any Reservation EJB that has an empty CMR field is already excluded because its customers
elements cannot be assigned the c identifier.

8.3.17 The WHERE Clause and MEMBER OF

The MEMBER OF operator is a powerful tool for determining whether an EJB object is a member of a specific collection-
based relationship. The following query determines whether a particular Customer (specified by the input parameter) is
a member of any of the Reservation-Customer relationships:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a member of any of the Reservation-Customer relationships:

SELECT OBJECT(crs)

FROM Cruise AS crs, IN (crs.reservations) AS res, Customer AS cust

WHERE

cust = ?1

 AND

cust MEMBER OF res.customers

Applying the NOT operator to MEMBER OF has the reverse effect, selecting all the cruises on which the specified customer
does not have a reservation:

SELECT OBJECT(crs)

FROM Cruise AS crs, IN (crs.reservations) AS res, Customer AS cust

WHERE

cust = ?1

 AND

cust NOT MEMBER OF res.customers

Checking whether an EJB object is a member of an empty collection always returns false.

8.3.18 The WHERE Clause and LIKE

The LIKE comparison operator allows the query to select String type CMP fields that match a specified pattern. For
example, the following EJB QL statement selects all the customers with hyphenated names, like "Monson-Haefel" and
"Berners-Lee":

SELECT OBJECT(c) FROM Customer AS c

WHERE c.lastName LIKE '%-%'

You can use two special characters when establishing a comparison pattern: % (percent) stands for any sequence of
characters, and _ (underscore) stands for any single character. You can use these characters at any location within a
string pattern. If a % or _ actually occurs in the string, you can escape it with the \ character. The NOT logical operator
reverses the evaluation so that matching patterns are excluded. The following examples show how the LIKE clause
evaluates String type CMP fields:

phone.number LIKE '617%'

True for "617-322-4151"
False for "415-222-3523"

cabin.name LIKE 'Suite _100'

True for "Suite A100"
False for "Suite A233"

phone.number NOT LIKE '608%'

True for "415-222-3523"
False for "608-233-8484"

someField.underscored LIKE '_%'

True for "_xyz"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True for "_xyz"
False for "abc"

someField.percentage LIKE '\%%'

True for "% XYZ"
False for "ABC"

The LIKE operator cannot be used with input parameters. This is an important point that is confusing to many new EJB
developers. The LIKE operator compares a String type CMP field to a String literal. As it is currently defined, it cannot be
used in a comparison with an input parameter, because an input parameter is, by definition, unknown until the method
is invoked. The comparison pattern must be known at deployment time in order to generate the native query code.

8.3.19 Functional Expressions

In the previous edition of this book, I complained about the limited support for functions in EJB QL. EJB 2.1 has started
to address this problem by adding five new aggregate functions for the SELECT clause as well as the MOD function for
the WHERE clause.

8.3.19.1 Functional expressions in the WHERE clause

EJB QL has four functional expressions that allow for simple String manipulation and three functional expressions for
basic numeric operations. The String functions are:

CONCAT(String1, String2)

Returns the String that results from concatenating String1 and String2.

LENGTH(String)

Returns an int indicating the length of the string.

LOCATE(String1, String2 [, start])

Returns an int indicating the position at which String1 is found within String2. If it's present, start indicates the
character position in String2 at which the search should start. Support for the start parameter is optional; some
containers will support it, it while others will not. Don't use it if you want to ensure the query is portable.

SUBSTRING(String1, start, length)

Returns the String consisting of length characters taken from String1, starting at the position given by start.

The start and length parameters indicate positions in a String as integer values. You can use these expressions in the
WHERE clause to refine the scope of the items selected. Here's how the LOCATE and LENGTH functions might be used:

SELECT OBJECT(c)

FROM Customer AS c

WHERE

LENGTH(c.lastName) > 6

 AND

LOCATE(c.lastName, 'Monson') > -1

This statement selects all the customers with Monson somewhere in their last name, but specifies that the name must be
longer than six characters. Therefore, "Monson-Haefel" and "Monson-Ares" evaluate to true, but "Monson" returns false
because it has only six characters.

The arithmetic functions in EJB QL may be applied to primitive as well as corresponding primitive wrapper types:

ABS(number)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ABS(number)

Returns the absolute value of a number (int, float, or double).

SQRT(double)

Returns the square root of a double.

MOD(int, int)

EJB 2.1 only. Returns the remainder for the first parameter divided by the second (i.e., MOD(7, 5) is equal to
2).

8.3.19.2 EJB 2.1: Aggregate functions in the SELECT clause

Aggregate functions are used with queries that return a collection of values. They are fairly simple to understand and
can be handy, especially the COUNT() function. It's important to understand that aggregate functions can only be used
with select methods, not find methods. The find methods may only return EJB object references (local or remote).

8.3.19.2.1 COUNT (identifier or path expression)

This function returns the number of items in the query's final result set. The return type is a long or java.util.Long,
depending on whether it is the return type of the query method. For example, the following query provides a count of
all the customers who live in Wisconsin:

SELECT COUNT(c)

FROM Customers AS c

WHERE c.address.state = 'WI'

The COUNT() function can be used with an identifier, in which case it always counting entities, or with path expressions,
in which case it counts either CMR fields or CMP fields. For example, the following statement provides a count of all the
Zip codes that start with the characters "554":

SELECT COUNT(c.address.zip)

FROM Customers AS c

WHERE c.address.zip LIKE '554%'

In some cases, queries that count a path expression have a corresponding query that can be used to count an
identifier. For example, the result of the following query, which counts Customers instead of the zip CMP field, is
equivalent to the previous query:

SELECT COUNT(c)

FROM Customers AS c

WHERE c.address.zip LIKE '554%'

8.3.19.2.2 MAX(path expression), MIN(path expression)

These functions can be used to find the largest or smallest value from a collection of any type of CMP field. They cannot
be used with identifiers or paths that terminate in a CMR field. The result type will be the type of CMP field that is being
evaluated. For example, the following query returns the highest price paid for a reservation:

SELECT MAX(r.amountPaid)

FROM Reservation AS r

The MAX() and MIN() functions can be applied to any valid CMP value, including primitive types, Strings, and even

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MAX() and MIN() functions can be applied to any valid CMP value, including primitive types, Strings, and even
serializable objects. The result of applying the MAX() and MIN() functions to serializable objects is not specified, because
there is no standard way to determine which serializable object is greater or lesser than another.

The result of applying the MAX() and MIN() functions to a String CMP field depends on the underlying data store. This
has to do with the inherent problems associated with String type comparisons.

8.3.19.2.3 AVG(numeric), SUM(numeric)

The AVG() and SUM() functions can only be applied to path expressions that terminate in a numeric primitive field (byte,
long, float, etc.) or one their corresponding numeric wrappers (Byte, Long, Float, etc.). The result of a query that uses the
SUM() function has the same type as the numeric type it's evaluating. The result type of the AVG() function is a double
or java.util.Double, depending on whether it is used in the return type of the select method.

For example, the following query uses the SUM() function to get the total amount paid by all customers for a specific
Cruise (specified by input parameter):

SELECT SUM(r.amountPaid)

FROM Cruise c, IN(c.reservations) AS r

WHERE c = ?1

8.3.19.2.4 DISTINCT, nulls, and empty arguments

The DISTINCT operator can be used with any of the aggregate functions to eliminate duplicate values. The following
query uses the DISTINCT operator to count the number of different Zip codes that match the pattern:

SELECT DISTINCT COUNT(c.address.zip)

FROM Customers AS c

WHERE c.address.zip LIKE '554%'

The DISTINCT operator first eliminates duplicate Zip codes; if 100 customers live in the same area with the same Zip
code, their Zip code is only counted once. After the duplicates have been eliminated, the COUNT() function counts the
number of items left.

Any CMP field with a null value is automatically eliminated from the result set operated on by the aggregate functions.
The COUNT() function also ignores CMP values with null values. The aggregate functions AVG(), SUM(), MAX(), and MIN(
) return null when evaluating an empty collection. For example, the following query attempts to obtain the average price
paid by customers for a specific Cruise:

SELECT AVG(r.amountPaid)

FROM Cruise As c, IN(c.reservations) AS r

WHERE c = ?1

If the Cruise specified by the input parameter has no reservations, the collection on which the AVG() function operates
is empty (there are no reservations and therefore no amounts paid). In this case, the select method returns null if it
specified a java.lang.Double or java.lang.Float return type. If, however, it returns the select method specified primitive type
return value (e.g., double or float), a javax.ejb.ObjectNotFoundException will be thrown.

The COUNT() function returns 0 (zero) when the argument it evaluates is an empty collection. If the following query is
evaluated on a Cruise with no reservations, the result is 0 (zero) because the argument is an empty collection:

SELECT COUNT(r)

FROM Cruise AS c, IN(c.reservations) AS r

WHERE c = ?1

To deploy these examples in an EJB container, see Exercise 8.2 in the Workbook.

8.3.20 EJB 2.1: The ORDER BY Clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ORDER BY clause allows you to specify the order of the entities in the collection returned by a query. EJB 2.0 didn't
include an ORDER BY clause, and as a result you never knew what order the results would be in. The semantics of the
ORDER BY clause are basically the same as in SQL. For example, we can construct a simple query that uses the ORDER
BY clause to return an alphabetical list of all of Titan's Customers:

SELECT OBJECT(c)

FROM Customers AS c

ORDER BY c.lastName

This might return a Collection of Customer EJBs in the following order (assume their last and first names are printed to
output):

Aares, John

Astro, Linda

Brooks, Hank

.

.

Xerces, Karen

Zastro, William

You can use the ORDER BY clause with or without the WHERE clause. For example, we can refine the previous query by
listing only those customers who reside in Boston, MA:

SELECT OBJECT(c)

FROM Customers AS c

WHERE c.address.city = 'Boston' AND c.address.state = 'MA'

ORDER BY c.lastName

The default order of an item listed in the ORDER BY clause is always ascending, which means that the lesser values are
listed first and the greatest values last. You can explicitly specify the order as ascending or descending by using the key
words ASC or DESC. The default is ASC. Here's a statement that lists customers in reverse (descending) order:

SELECT OBJECT(c)

FROM Customers AS c

ORDER BY c.lastName DESC

The results of this query are:

Zastro, William

Xerces, Karen

.

.

Brooks, Hank

Astro, Linda

Aares, John

You can specify multiple order-by items. For example, you can sort customers by lastName in ascending order and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify multiple order-by items. For example, you can sort customers by lastName in ascending order and
firstName in descending order:

SELECT OBJECT(c)

FROM Customers AS c

ORDER BY c.lastName ASC, c.firstName DESC

If you have five Customer EJBs with the lastName equal to "Brooks", this query sorts the results as follows:

Brooks, William

Brooks, Henry

Brooks, Hank

Brooks, Ben

Brooks, Andy

Although the fields used in the ORDER BY clause must be CMP fields, the value selected can be an entity identifier, a
CMR field, or a CMP field. For example, the following query returns an ordered list of all Zip codes:

SELECT addr.zip

FROM Address AS addr

ORDER BY addr.zip

The following query returns all the Address EJBs for customers named "Smith", ordered by their Zip code.

SELECT c.address

FOR Customer AS c

WHERE c.lastName = 'Smith'

ORDER BY c.address.zip

You must be careful which CMP fields you use in the ORDER BY clause. If the query selects a collection of entities, than
the ORDER BY clause can only be used with CMP fields of the entity type that is selected. The following query is illegal,
because the CMP field used in the ORDER BY clause is not a field of the entity type selected:

// Illegal EJB QL

SELECT OBJECT(c)

FROM Customer AS c

ORDER BY c.address.city

Because the city CMP field is not a direct CMP field of the Customer EJB, you cannot use it in the ORDER BY clause.

A similar restriction applies to CMP results. The CMP field used in the ORDER BY clause must be the same as the CMP
field identified in the SELECT clause. The following query is illegal, because the CMP that identified in the SELECT clause is
not the same as the one used in the ORDER BY clause:

SELECT c.address.city

FROM Customer AS c

ORDER BY c.address.state

In the above query, we wanted a list of all the cities ordered by their state. Unfortunately, this is illegal. You can't order
by the state CMP field if you are selecting the city CMP field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by the state CMP field if you are selecting the city CMP field.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Problems with EJB QL
EJB QL is a powerful new tool that promises to improve performance, flexibility, and portability of entity beans in
container-managed persistence, but it has some design flaws and omissions.

8.4.1 The OBJECT() Operator

The use of the OBJECT() operator is cumbersome and provides little or no value to the bean developer. It's trivial for
EJB vendors to determine when an abstract schema type is the return value, so the OBJECT() operator provides little
real value during query translation. In addition, the OBJECT() operator is applied haphazardly. It's required when the
return type is an abstract schema identifier, but not when a path expression of the SELECT clause ends in a CMR field.
Both return an EJB object reference, so the use of OBJECT() in one scenario and not the other is illogical and confusing.

When questioned about this, Sun replied that several vendors had requested the use of the OBJECT() operator because
it will be included in the next major release of the SQL programming language. EJB QL was designed to be similar to
SQL because SQL is the query language that is most familiar to developers, but this doesn't mean it should include
functions and operations that have no real meaning in Enterprise JavaBeans.

8.4.2 Lack of Support for Date

EJB QL doesn't provide native support for the java.util.Date class. The java.util.Date class should be supported as a natural
type in EJB QL. It should be possible, for example, to do comparisons with Date CMP fields and literal and input
parameters using comparison operators (=, >, >=, <, <=, <>). It should also be possible to introduce common date
functions so that comparisons can be done at different levels, such as comparing the day of the week (DOW()) or month
(MONTH()), etc. In addition, date literals should be supported. For example, a literal like "2004-04-02" for April 2nd,
2004 should be acceptable as a literal. Of course, supporting Date types and literals in EJB QL is not trivial and problems
with interpretation of dates and locales would need to be considered, but the failure to address Date as a supported type
is significant.

8.4.3 Limited Functions

While the aggregate functions and functional expressions provided by EJB QL are valuable to developers, many other
functions should also be added. For example, CAST() (useful for comparing different types) and date functions, such as
DOW(), MONTH(), etc., could be added. The UPPER() and LOWER() functional expressions should also be added—they
make it possible to do caseless comparisons in the LIKE clause.

EJB 2.1 adds some functions to the SELECT clause, including COUNT(), SUM(), AVG(), MAX(
), and MIN().

8.4.4 Multiple SELECT Expressions

In EJB 2.0 and 2.1, EJB QL statements can only declare a single SELECT expression. In other words, it's not possible to
SELECT multiple items. The following query is illegal:

SELECT addr.city, addr.state

FROM Address AS addr

Today, you can only select either the city or the state, but not both.

8.4.5 GROUP BY and HAVING

In SQL, the GROUP BY and HAVING clauses are commonly used to apply stricter organization to a query and narrowing
the results for aggregate functions. The GROUP BY clause is usually used in combination with aggregate functions,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the results for aggregate functions. The GROUP BY clause is usually used in combination with aggregate functions,
because it allows you to cluster data by category. For example, the following query provides a count for all the cities in
each state:

SELECT addr.state, COUNT(addr.city)

FROM Address AS addr

GROUP BY addr.state

The HAVING clause is used with a GROUP BY clause and acts as a filter, restricting the final output. The HAVING clause
employs aggregate functional expressions using only the identifiers used in the SELECT clause. For example, the
following query uses the GROUP BY and HAVING clauses to select and count only the states with more than 200 cities:

SELECT addr.state, COUNT(addr.city)

FROM Address AS addr

GROUP BY addr.state

HAVING COUNT(addr.city) > 200

8.4.6 Subqueries

Subqueries can be useful; they are common to SQL and some other query languages. A subquery is a SELECT statement
inside of another SELECT statement, usually in the WHERE, SELECT, or HAVING clause. For example, the following
subquery finds the average amount paid for a reservation, a value that is subsequently used to find all reservations
where the amount paid is greater than the average.

SELECT OBJECT(res)

FROM Reservations AS res

WHERE res.amountPaid >=

 (SELECT AVG(r.amountPaid) FROM Cruise AS c, IN(c.reservations) AS r

 WHERE c = ?1)

8.4.7 Dynamic Queries

Dynamic queries are supported by most vendors, but not the specification. In EJB 2.0 and 2.1, all EJB QL statements
are statically compiled at deployment time. In other words, you can't make up a query on the fly and submit it to the
EJB container system. This restriction makes it difficult to create reports and do analysis because you always have to
know the queries before the beans are deployed. Most vendors already support dynamic queries—it's a mystery why
EJB QL doesn't.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Bean-Managed Persistence
From the developer's point of view, bean-managed persistence (BMP) requires more effort than container-managed
persistence, because you must explicitly write the persistence logic into the bean class. In order to write the
persistence-handling code into the bean class, you must know what type of database is being used and the how the
bean class's fields map to that database.

Given that container-managed persistence saves a lot of work, why would anyone bother with bean-managed
persistence? The main advantage of BMP is that it gives you more flexibility in how state is managed between the bean
instance and the database. Entity beans that use data from a combination of different databases or other resources
such as Enterprise Resource Planning (ERP) or legacy systems can benefit from BMP. Essentially, bean-managed
persistence is the alternative to container-managed persistence when the container tools are inadequate for mapping
the bean instance's state to the backend databases or resources. In most cases, you won't need to use BMP because
most projects use relational databases which are supported by CMP, but BMP remains an excellent alternative when you
need to represent data as entities from unsupported resources. When you do use BMP is likely that you will create
entity beans that wrapper a J2EE Connector API that is accessing an ERP (e.g., SAP, PeopleSoft, etc.), legacy system
(e.g., CICS, IMS, etc.), or proprietary resource of some type. You may also employ the JDO API (Java Data Object) to
access an object-oriented database or some other resource. Its also possible that you will use more than one API to
present a single view of data from two or more resources.

The primary disadvantage of BMP is obvious: more work is required to define the bean. You have to understand the
structure of the database or resource and the APIs that access them, and you must develop the logic to create, update,
and remove data associated with entities. This requires diligence in using the EJB callback methods (e.g., ejbLoad() and
ejbStore()) appropriately. In addition, you must explicitly develop the find methods defined in the bean's home
interfaces.

The select methods used in container-managed persistence are not supported in bean-
managed persistence.

Another disadvantage of BMP is that it ties the bean to a specific database or resource type and structure. Any changes
in the database or in the structure of data require changes to the bean instance's definition, and these changes may not
be trivial. A bean-managed entity is not as database independent as a container-managed entity, but it can better
accommodate a complex or unusual set of data.

To help you understand how BMP works, we will create a new Ship EJB that is similar to the one used in Chapter 7. For
BMP, we need to implement the ejbCreate(), ejbLoad(), ejbStore(), and ejbRemove() methods to handle synchronizing the
bean's state with the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 The Remote Interface
We will need a remote interface for the Ship EJB. This interface is basically the same as any other remote or local
interface. It defines the business methods used by clients to interact with the bean:

package com.titan.ship;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

public interface ShipRemote extends javax.ejb.EJBObject {

 public String getName() throws RemoteException;

 public void setName(String name) throws RemoteException;

 public void setCapacity(int cap) throws RemoteException;

 public int getCapacity() throws RemoteException;

 public double getTonnage() throws RemoteException;

 public void setTonnage(double tons) throws RemoteException;

}

We will not develop a local interface for the bean-managed Ship bean in this chapter; however, bean-managed entity
beans can have either local or remote component interfaces, just like container-managed entity beans.

9.1.1 Set and Get Methods

The ShipRemote definition uses a series of accessor methods whose names begin with "set" and "get." This is not a
required signature pattern, but it is the naming convention used by most Java developers when obtaining and changing
the values of object attributes or fields. These methods are often referred to as setters and getters. These methods
should be defined independently of the anticipated storage structure of the data. In other words, you should design the
remote interface to model the business concepts, not the underlying data. Just because there's a getCapacity() method
doesn't mean that there has to be a capacity field in the bean or the database; the getCapacity() method could
conceivably compute the capacity from a list of cabins by looking up the ship's model and configuration, or with some
other algorithm.

Defining entity business methods according to the business concept and not the underlying data is not always possible,
but you should try to employ this strategy whenever you can. The reason is twofold. First, the underlying data doesn't
always clearly define the business purpose or concept being modeled by the entity bean. Remote and local interfaces
are often used by developers who know the business but not the database configuration. It is important to them that
the entity bean reflect the business concept. Second, defining the properties of the entity bean independently of the
data allows the bean and data to evolve separately. This is important because it allows a database implementation to
change over time; it also allows for new behavior to be added to the entity bean as needed. If the bean's definition is
independent of the data source, the impact change is limited.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 The Remote Home Interface
Entity beans' home interfaces (local and remote) are used to create, locate, and remove objects from EJB systems.
Each entity bean has its own remote or local home interface. The home interface defines two basic kinds of methods:
zero or more create methods, and one or more find methods. In this example, the create methods act like remote
constructors and define how new Ship EJBs are created. The find methods are used to locate a specific Ship or Ships.
The following code contains the complete definition of the ShipHomeRemote interface:

package com.titan.ship;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

import java.rmi.RemoteException;

import java.util.Collection;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(Integer id, String name, int capacity, double tonnage)

 throws RemoteException,CreateException;

 public ShipRemote create(Integer id, String name)

 throws RemoteException,CreateException;

 public ShipRemote findByPrimaryKey(Integer primaryKey)

 throws FinderException, RemoteException;

 public Collection findByCapacity(int capacity)

 throws FinderException, RemoteException;

}

Enterprise JavaBeans specifies that create methods in the home interface must throw the javax.ejb.CreateException. This
provides the EJB container with a common exception for communicating problems experienced during the create
process.

The RemoteException is thrown by all remote interfaces and is used to report network problems that occurred while
processing invocations between a remote client and the EJB container system.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 The Primary Key
In bean-managed persistence, a primary key can be a serializable object defined specifically for the bean by the bean
developer. The primary key defines attributes we can use to locate a specific bean in the database. For the ShipBean we
need only one attribute, id, but in other cases a primary key may have several attributes, which together uniquely
identify a bean's data.

We will examine primary keys in detail in Chapter 10; for now, we specify that the Ship EJB uses a simple single-value
primary key of type java.lang.Integer. The actual persistence field in the bean class is an Integer named id.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 The ShipBean
The ShipBean defined for this chapter uses JDBC to synchronize the bean's state to the database. In reality, an entity
bean this simple could easily be deployed as a CMP bean. The purpose of this chapter, however, is to illustrate exactly
where the resource-access code goes for BMP and how to implement it. When learning about bean-managed
persistence, you should focus on when and where the resource is accessed in order to synchronize the bean with the
database. The fact that we are using JDBC and synchronizing the bean state against a relational database is not
important. The bean could just as easily be persisted to some legacy system, to an ERP application, or to some other
resource that is not supported by your vendor's version of CMP.

Here is the complete definition of the ShipBean:

package com.titan.ship;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.ejb.EntityContext;

import java.rmi.RemoteException;

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.DriverManager;

import java.sql.ResultSet;

import javax.sql.DataSource;

import javax.ejb.CreateException;

import javax.ejb.EJBException;

import javax.ejb.FinderException;

import javax.ejb.ObjectNotFoundException;

import java.util.Collection;

import java.util.Properties;

import java.util.Vector;

import java.util.Collection;

public class ShipBean implements javax.ejb.EntityBean {

 public Integer id;

 public String name;

 public int capacity;

 public double tonnage;

 public EntityContext context;

 public Integer ejbCreate(Integer id, String name, int capacity, double tonnage)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws CreateException {

 if ((id.intValue() < 1) || (name == null))

 throw new CreateException("Invalid Parameters");

 this.id = id;

 this.name = name;

 this.capacity = capacity;

 this.tonnage = tonnage;

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "insert into Ship (id, name, capacity, tonnage) " +

 "values (?,?,?,?)");

 ps.setInt(1, id.intValue());

 ps.setString(2, name);

 ps.setInt(3, capacity);

 ps.setDouble(4, tonnage);

 if (ps.executeUpdate() != 1) {

 throw new CreateException ("Failed to add Ship to database");

 }

 return id;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbPostCreate(Integer id, String name, int capacity,

 double tonnage) {

 // Do something useful with the primary key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public Integer ejbCreate(Integer id, String name) throws CreateException {

 return ejbCreate(id,name,0,0);

 }

 public void ejbPostCreate(Integer id, String name) {

 // Do something useful with the EJBObject reference.

 }

 public Integer ejbFindByPrimaryKey(Integer primaryKey) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 // Does the ship ID exist in the database?

 if (!result.next()) {

 throw new ObjectNotFoundException("Cannot find Ship with id = "+id);

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se){

 se.printStackTrace();

 }

 }

 return primaryKey;

 }

 public Collection ejbFindByCapacity(int capacity) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where capacity = ?");

 ps.setInt(1,capacity);

 result = ps.executeQuery();

 Vector keys = new Vector();

 while(result.next()) {

 keys.addElement(result.getObject("id"));

 }

 return keys;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void setEntityContext(EntityContext ctx) {

 context = ctx;

 }

 public void unsetEntityContext() {

 context = null;

 }

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbLoad() {

 Integer primaryKey = (Integer)context.getPrimaryKey();

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 con = this.getConnection();

 ps = con.prepareStatement("select name, capacity,

 tonnage from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 if (result.next()){

 id =primaryKey;

 name = result.getString("name");

 capacity = result.getInt("capacity");

 tonnage = result.getDouble("tonnage");

 } else {

 throw new NoSuchEntityException();

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbStore() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "update Ship set name = ?, capacity = ?, " +

 "tonnage = ? where id = ?");

 ps.setString(1,name);

 ps.setInt(2,capacity);

 ps.setDouble(3,tonnage);

 ps.setInt(4,id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new NoSuchEntityException("ejbStore");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new NoSuchEntityException("ejbStore");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbRemove() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("delete from Ship where id = ?");

 ps.setInt(1, id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new EJBException("ejbRemove");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public String getName() {

 return name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return name;

 }

 public void setName(String n) {

 name = n;

 }

 public void setCapacity(int cap) {

 capacity = cap;

 }

 public int getCapacity() {

 return capacity;

 }

 public double getTonnage() {

 return tonnage;

 }

 public void setTonnage(double tons) {

 tonnage = tons;

 }

 private Connection getConnection() throws SQLException {

 // Implementations shown below.

 }

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Obtaining a Resource Connection
In order for a BMP entity bean to work, it must have access to the database or resource to which it will persist itself. To
get access to the database, the bean usually obtains a resource factory from the JNDI ENC. The JNDI ENC is covered in
detail in Chapter 11, but an overview here will be helpful since this is one of the first times it is actually used in this
book. The first step in accessing the database is to request a connection from a DataSource, which we obtain from the
JNDI environment naming context:

private Connection getConnection() throws SQLException {

 try {

 Context jndiCntx = new InitialContext();

 DataSource ds = (DataSource)jndiCntx.lookup("java:comp/env/jdbc/titanDB");

 return ds.getConnection();

 }

 catch (NamingException ne) {

 throw new EJBException(ne);

 }

}

In EJB, every enterprise bean has access to its JNDI environment naming context (ENC), which is part of the bean-
container contract. The bean's deployment descriptor maps resources such as the JDBC DataSource, JavaMail, J2EE
Connector, and Java Message Service to a context (name) in the ENC. This provides a portable model for accessing
these types of resources. Here's the relevant portion of the deployment descriptor that describes the JDBC resource:

<enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 ...

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 ...

 </entity>

 ...

</enterprise-beans>

The <resource-ref> tag is used for any resource (e.g., JDBC, JMS, Connector, JavaMail) that is accessed from the ENC. It
describes the JNDI name of the resource (<res-ref-name>), the factory type (<res-type>), and whether authentication is
performed explicitly by the bean or automatically by the container (<res-auth>). In this example, we are declaring that
the JNDI name jdbc/titanDB refers to a javax.sql.DataSource resource manager and that authentication to the database is
handled automatically by the container. The JNDI name specified in the <res-ref-name> tag is always relative to the
standard JNDI ENC context name, java:comp/env.

When the bean is deployed, the deployer maps the information in the <resource-ref> tag to a live database. This is done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the bean is deployed, the deployer maps the information in the <resource-ref> tag to a live database. This is done
in a vendor-specific manner, but the end result is the same. When a database connection is requested using the JNDI
name java:comp/jdbc/titanDB, a DataSource for the Titan database is returned. Consult your vendor's documentation for
details on how to map the DataSource to the database at deployment time.

The getConnection() method provides us with a simple and consistent mechanism for obtaining a database connection for
our ShipBean class. Now that we have a mechanism for obtaining a database connection, we can use it to insert, update,
delete, and find Ship EJBs in the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Exception Handling
Exception handling is particularly relevant to this discussion because, unlike in container-managed persistence, in bean-
managed persistence the bean developer is responsible for throwing the correct exceptions at the right moments. For
this reason, we'll take a moment to discuss the different types of exceptions in BMP. This discussion will be useful when
we get into the details of database access and implementing the callback methods.

Bean-managed beans throw three types of exceptions:

Application exceptions

Application exceptions include standard EJB application exceptions and custom application exceptions. The
standard EJB application exceptions are CreateException, FinderException, ObjectNotFoundException,
DuplicateKeyException, and RemoveException. These exceptions are thrown from the appropriate methods to
indicate that a business logic error has occurred. Custom exceptions are exceptions developed for specific
business problems. We cover developing custom exceptions in Chapter 11.

Runtime exceptions

Runtime exceptions are thrown from the virtual machine itself and indicate that a fairly serious programming
error has occurred. Examples include the NullPointerException and IndexOutOfBoundsException. These exceptions are
handled by the container automatically and should not be handled inside a bean method.

You will notice that all the callback methods (ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), and ejbRemove())
throw an EJBException when a serious problem occurs. All EJB callback methods declare the EJBException and
RemoteException in their throws clauses. Any exception thrown from one of the callback methods must be an
EJBException or a subclass. The RemoteException type is included in the method signature to support backward
compatibility with EJB 1.0 beans. Its use has been deprecated since EJB 1.1. RemoteExceptions should never be
thrown by callback methods of EJB 2.0 or EJB 2.1 beans.

Subsystem exceptions

Checked exceptions thrown by other subsystems should be wrapped in an EJBException or application exception
and rethrown from the method. Several examples of this can be found in the previous example, in which a
SQLException that was thrown from JDBC was caught and rethrown as an EJBException. Checked exceptions from
other subsystems, such as those thrown from JNDI, JavaMail, and JMS, should be handled in the same fashion.
The EJBException is a subtype of the RuntimeException, so it doesn't need to be declared in the method's throws
clause. If the exception thrown by the subsystem is not serious, you can opt to throw an application exception,
but this is not recommended unless you are sure of the cause and the effects of the exception on the
subsystem. In most cases, throwing an EJBException is preferred.

Exceptions have an impact on transactions and are fundamental to transaction processing. They are examined in
greater detail in Chapter 15.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 The ejbCreate() Method
ejbCreate() methods are called by the container when a client invokes the corresponding create() method on the bean's
home. With bean-managed persistence, the ejbCreate() methods are responsible for adding new entities to the
database. This means that the BMP version of ejbCreate() will be much more complicated than the equivalent methods
in container-managed entities; with container-managed beans, ejbCreate() doesn't have to do much more than initialize
a few fields. Another difference between bean-managed and container-managed persistence is that the EJB specification
states that ejbCreate() methods in bean-managed persistence must return the primary key of the newly created entity.
By contrast, in container-managed beans ejbCreate() is required to return null.

The following code contains the ejbCreate() method of the ShipBean. Its return type is the Ship EJB's primary key, Integer.
The method uses the JDBC API to insert a new record into the database based on the information passed as
parameters:

public Integer ejbCreate(Integer id, String name, int capacity, double tonnage)

 throws CreateException {

 if ((id.intValue() < 1) || (name == null))

 throw new CreateException("Invalid Parameters");

 this.id = id;

 this.name = name;

 this.capacity = capacity;

 this.tonnage = tonnage;

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "insert into Ship (id, name, capacity, tonnage) " +

 "values (?,?,?,?)");

 ps.setInt(1, id.intValue());

 ps.setString(2, name);

 ps.setInt(3, capacity);

 ps.setDouble(4, tonnage);

 if (ps.executeUpdate() != 1) {

 throw new CreateException ("Failed to add Ship to database");

 }

 return id;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

At the beginning of the method, we verify that the parameters are correct and throw a CreateException if the id is less
than 1 or the name is null. This shows how you would typically use a CreateException to report an application-logic error.

The ShipBean instance fields are initialized using the parameters passed to ejbCreate() by setting the instance fields of
the ShipBean. We will use these values to manually insert the data into the SHIP table in our database.

To perform the database insert, we use a JDBC PreparedStatement for SQL requests, which makes it easier to see the
parameters being used (we could also have used a stored procedure through a JDBC CallableStatement or a simple JDBC
Statement object). We insert the new bean into the database using a SQL INSERT statement and the values passed into
ejbCreate() parameters. If the insert is successful (i.e., no exceptions are thrown), we create a primary key and return it
to the container.

If the insert operation is unsuccessful we throw a new CreateException, which illustrates this exception's use in a more
ambiguous situation. Failure to insert the record could be construed as an application error or a system failure. In this
situation, the JDBC subsystem hasn't thrown an exception, so we shouldn't interpret the inability to insert a record as a
failure of the subsystem. Therefore, we throw a CreateException instead of an EJBException. Throwing a CreateException
allows the application to recover from the error, a transactional concept that is covered in more detail in Chapter 15.

When the insert operation is successful, the primary key is returned to the EJB container from the ejbCreate() method.
In this case we simply return the same Integer object passed into the method, but in many cases a new key might be
derived from the method arguments. This is especially true when using compound primary keys, which are discussed in
Chapter 10. Behind the scenes, the container uses the primary key and the ShipBean instance that returned it to provide
the client with a reference to the new Ship entity. Conceptually, this means that the ShipBean instance and primary key
are assigned to a newly constructed EJB object, and the EJB object stub is returned to the client.

Our home interface requires us to provide a second ejbCreate() method with different parameters. We can save work
and write more bulletproof code by making the second method call the first:

public Integer ejbCreate(Integer id, String name) throws CreateException {

 return ejbCreate(id,name,0,0);

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.8 The ejbLoad() and ejbStore() Methods
Throughout the life of an entity, its data will be changed by client applications. In the ShipBean, we provide accessor
methods to change the name, capacity, and tonnage of the Ship EJB after it has been created. Invoking any of these
accessor methods changes the state of the ShipBean instance, and these changes must be reflected in the database.

In container-managed persistence, synchronization between the entity bean and the database takes place
automatically; the container handles it for you. With bean-managed persistence, you are responsible for
synchronization: the entity bean must read from and write to the database directly. The container works closely with
the BMP entities by advising them when to synchronize their state through the use of two callback methods: ejbStore()
and ejbLoad().

The ejbStore() method is called when the container decides that it is a good time to write the entity bean's data to the
database. The container makes these decisions based on all the activities it is managing, including transactions,
concurrency, and resource management. Vendor implementations may differ slightly as to when the ejbStore() method
is called, but this is not the bean developer's concern. In most cases, the ejbStore() method will be called after one or
more business methods have been invoked or at the end of a transaction.

Here is the ejbStore() method for the ShipBean:

public void ejbStore() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "update Ship set name = ?, capacity = ?, " +

 "tonnage = ? where id = ?");

 ps.setString(1,name);

 ps.setInt(2,capacity);

 ps.setDouble(3,tonnage);

 ps.setInt(4,id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new EJBException("ejbStore");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 se.printStackTrace();

 }

 }

}

Except for the fact that we are doing an update instead of an insert, this method is similar to the ejbCreate() method we
examined earlier. We use a JDBC PreparedStatement to execute the SQL UPDATE command, and we use the entity bean's
persistence fields as parameters to the request. This method synchronizes the database with the state of the bean.

EJB also provides an ejbLoad() method that synchronizes the state of the entity with the database. This method is
usually called at the start of a new transaction or business-method invocation. The idea is to make sure that the bean
always represents the most current data in the database, which could be changed by other beans or other non-EJB
applications.

Here is the ejbLoad() method for a bean-managed ShipBean class:

public void ejbLoad() {

 Integer primaryKey = (Integer)context.getPrimaryKey();

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "select name, capacity, tonnage from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 if (result.next()){

 id = primaryKey;

 name = result.getString("name");

 capacity = result.getInt("capacity");

 tonnage = result.getDouble("tonnage");

 } else {

 throw new EJBException();

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

To execute the ejbLoad() method, we need a primary key. To get the primary key, we query the bean's EntityContext.
Note that we don't get the primary key directly from the ShipBean's id field, because we cannot guarantee that this field
is always valid—the ejbLoad() method might be populating the bean instance's state for the first time, in which case the
fields would all be set to their default values. This situation would occur following bean activation. We can guarantee
that the EntityContext for the ShipBean is valid because the EJB specification requires that the bean instance's EntityContext
reference be valid before the ejbLoad() method can be invoked.

At this point you may want to jump to Chapter 10 and read the section called "EntityContext" to get a better
understanding of the EntityContext's purpose and usefulness in entity beans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.9 The ejbRemove() Method
In addition to handling their own inserts and updates, bean-managed entities must handle their own deletions. When a
client application invokes the remove method on the EJB home or EJB object, that method invocation is delegated to
the bean-managed entity by calling ejbRemove(). It is the bean developer's responsibility to implement an ejbRemove()
method that deletes the entity's data from the database. Here's the ejbRemove() method for our bean-managed
ShipBean:

public void ejbRemove() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("delete from Ship where id = ?");

 ps.setInt(1, id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new EJBException("ejbRemove");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.10 The ejbFind() Methods
In bean-managed persistence, the find methods in the remote or local home interface must match the ejbFind()
methods in the actual bean class. In other words, for each method named find<SUFFIX>() in a home interface, there
must be a corresponding ejbFind<SUFFIX>() method in the entity bean class with the same arguments and application
exceptions. When a find method is invoked on an EJB home, the container delegates the find() method to a
corresponding ejbFind() method on the bean instance. The bean-managed entity is responsible for locating records that
match the find requests. There are two find methods in ShipHomeRemote:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote findByPrimaryKey(Integer primaryKey)

 throws FinderException, RemoteException;

 public Collection findByCapacity(int capacity)

 throws FinderException, RemoteException;

}

Here are the signatures of the corresponding ejbFind() methods in the ShipBean:

public class ShipBean implements javax.ejb.EntityBean {

 public Integer ejbFindByPrimaryKey(Integer primaryKey)

 throws FinderException {}

 public Collection ejbFindByCapacity(int capacity)

 throws FinderException {}

}

Aside from the names, there's a significant difference between these two groups of methods. The find methods in the
home interface return either an EJB object implementing the bean's remote interface—in this case, ShipRemote--or a
collection of EJB objects in the form of a java.util.Enumeration or java.util.Collection. The ejbFind() methods in the bean
class, on the other hand, return either a primary key for the appropriate bean—in this case, Integer—or a collection of
primary keys. The methods that return a single value (whether a remote/local interface or a primary key) are used
whenever you need to look up a single reference to a bean. If you are looking up a group of references (for example, all
ships with a certain capacity), you have to use the method that returns either the Collection or Enumeration type. In either
case, the container intercepts the primary keys and converts them into remote references for the client.

The EJB specification recommends that bean-managed persistence beans use the Collection
type instead of the Enumeration type. This recommendation is made so that BMP beans are
more consistent with CMP beans, which use only the Collection type. The Enumeration type is
an artifact of EJB 1.0 and 1.1 and is maintained for backwards compatibility.

It shouldn't come as a surprise that the type returned—whether it's a primary key or a remote (or local) interface—
must be appropriate for the type of bean you're defining. For example, you shouldn't put find methods in a Ship EJB to
look up and return Cabin EJB objects. If you need to return collections of a different bean type, use a business method
in the remote interface, not a find method from one of the home interfaces.

The EJB container takes care of returning the proper (local or remote) interface to the client. For example, the Ship EJB
may define a local and a remote home interface, both of which have a findByPrimaryKey() method. When findByPrimary()
is invoked on the local or remote interface, it will be delegated to the ejbFindByPrimary() key method. After the
ejbFindByPrimaryKey() method executes and returns the primary key, the EJB container takes care of returning a
ShipRemote or ShipLocal reference to the client, depending on which home interface (local or remote) was used. The EJB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShipRemote or ShipLocal reference to the client, depending on which home interface (local or remote) was used. The EJB
container also handles this for multi-entity find methods, returning a collection of remote references for remote home
interfaces or local references for local home interfaces.

Both find methods defined in the ShipBean class throw an EJBException if a failure in the request occurs when an SQL
exception condition is encountered. findByPrimaryKey() throws an ObjectNotFoundException if no records in the database
match the id argument. This is exception should always be thrown by single-entity find methods if no entity is found.

The findByCapacity() method returns an empty collection if no SHIP records with a matching capacity are found; multi-
entity find methods do not throw ObjectNotFoundExceptions if no entities are found.

It is mandatory for all entity remote and local home interfaces to include the findByPrimaryKey() method. This method
returns the remote or local interface type (ShipRemote or ShipLocal). It declares one parameter, the primary key for that
bean type. With local home interfaces, the return type of any single-entity finder method is always the bean's local
interface. With remote home interfaces, the return type of any single-entity find method is the remote interface. You
cannot deploy an entity bean that doesn't include a findByPrimaryKey() method in its home interfaces.

Following the rules outlined earlier, we can define two ejbFind() methods in ShipBean that match the two find() methods
defined in the ShipHomeRemote:

public Integer ejbFindByPrimaryKey(Integer primaryKey) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 // Does the ship ID exist in the database?

 if (!result.next()) {

 throw new ObjectNotFoundException("Cannot find Ship with id = "+id);

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 return primaryKey;

}

public Collection ejbFindByCapacity(int capacity) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where capacity = ?");

 ps.setInt(1,capacity);

 result = ps.executeQuery();

 Vector keys = new Vector();

 while(result.next()) {

 keys.addElement(result.getObject("id"));

 }

 return keys;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

The mandatory findByPrimaryKey() method uses the primary key to locate the corresponding database record. Once it
has verified that the record exists, it simply returns the primary key to the container, which then uses the key to
activate a new instance and associate it with that primary key at the appropriate time. If no record is associated with
the primary key, the method throws an ObjectNotFoundException.

The ejbFindByCapacity() method returns a collection of primary keys that match the criteria passed into the method.
Again, we construct a prepared statement that we use to execute our SQL query. This time, however, we expect
multiple results, so we use the java.sql.ResultSet to iterate through the results, creating a vector of primary keys for each
SHIP_ID returned.

Find methods are not executed on bean instances that are currently supporting a client application. Only bean instances
that are not currently assigned to an EJB object (i.e., instances in the instance pool) are supposed to service find
requests, which means that the ejbFind() methods in the bean instance have somewhat limited use of the EntityContext.
The EntityContext methods getPrimaryKey() and getEJBObject() will throw exceptions because the bean instance is in the
pool and is not associated with a primary key or EJB object when the ejbFind() method is called.

Where do the objects returned by find methods originate? This seems like a simple enough question, but the answer is
surprisingly complex. Remember that find methods aren't executed by bean instances that are actually supporting the
client; rather, the container selects an idle bean instance from the instance pool to execute the method. The container
is responsible for creating the EJB objects and local or remote references for the primary keys returned by the ejbFind()
method in the bean class. As the client accesses these remote references, bean instances are swapped into the
appropriate EJB objects, loaded with data, and made ready to service the client's requests.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.11 The Deployment Descriptor
With a complete definition of the Ship EJB, including the remote interface, remote home interface, and primary key, we
are ready to create a deployment descriptor. XML deployment descriptors for bean-managed entity beans are a little
different from the descriptors we created for the container-managed entity beans in Chapter 6 and Chapter 7. In this
deployment descriptor, the <persistence-type> is Bean and there are no <container-managed> or <relationship-field>
declarations. We also must declare the DataSource resource factory that we use to query and update the database.

Here is the deployment descriptor for EJB 2.1:

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <description>

 This bean represents a cruise ship.

 </description>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ship.ShipHomeRemote</home>

 <remote>com.titan.ship.ShipRemote</remote>

 <ejb-class>com.titan.ship.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <security-identity><use-caller-identity/></security-identity>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the Ship EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The EJB 2.0 deployment descriptor is exactly the same except for one thing. It uses a DTD instead of XML schema so
there is a <!DOCTYPE> element declaration instead of XML Schema attribute declarations.

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

Exercise 9.1 in the Workbook shows how to deploy the examples in this section.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. The Entity-Container Contract
Although CMP and BMP entities are programmed differently, their relationships to the container system at runtime is
very similar. This chapter covers the relationship between EJBs and their containers. It includes discussions of primary
keys, callback methods, and the entity bean life cycle. When differences between CMP and BMP are important, they will
be noted.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 The Primary Key
A primary key is an object that uniquely identifies an entity bean. A primary key can be any serializable type, including
primitive wrappers (Integer, Double, Long, etc.) or custom classes defined by the bean developer. In the Ship EJB
discussed in Chapter 7 and Chapter 9, we used the Integer type as a primary key. Primary keys can be declared by the
bean developer, or the primary key type can be deferred until deployment. We will talk about deferred primary keys
later.

Because the primary key may be used in remote invocations, it must adhere to the restrictions imposed by Java RMI-
IIOP; that is, it must be a valid Java RMI-IIOP value type. These restrictions are discussed in Chapter 5, but for most
cases, you just need to make the primary key serializable. In addition, the primary key must implement equals() and
hashCode() appropriately.

EJB allows two types of primary keys: single-field and compound. Single-field primary keys map to a single persistence
field defined in the bean class. The Customer and Ship EJBs, for example, use a java.lang.Integer primary key that maps
to the container-managed persistence field named id. A compound primary key is a custom-defined class that declares
several instance variables that map to more than one persistence field in the bean class.

10.1.1 Single-Field Primary Keys

The String class and the standard wrapper classes for the primitive data types (java.lang.Integer, java.lang.Double, etc.) can
be used as primary keys. These are referred to as single-field primary keys because they are atomic; they map to one
of the bean's persistence fields. Compound primary keys map to two or more persistence fields.

In the Ship EJB, we specified an Integer type as the primary key:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public Ship findByPrimaryKey(java.lang.Integer primarykey)

 throws FinderException, RemoteException;

 ...

}

In this case, there must be a single persistence field in the bean class with the same type as the primary key. For the
ShipBean, the id persistent field is of type java.lang.Integer, one of the single-field primary key types. The term "persistent
field" means a container-managed persistent field in CMP entities or a instance field in an BMP entity that maps to the
beans state in the database. In container-managed persistence, the primary key type must map to one of the bean's
CMP fields. The abstract accessor methods for the id field in the ShipBean class fit this description:

public class ShipBean implements javax.ejb.EntityBean {

 public abstract Integer getId();

 public abstract void setId(Integer id);

 ...

}

The single-field primary key must also map to a CMP field in bean-managed persistence. For the BMP ShipBean class
defined in Chapter 9, the Integer primary key maps to the id instance field:

public class ShipBean implements javax.ejb.EntityBean {

 public Integer id;

 public String name;

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

In CMP entities, you identify the CMP field that will serve as the single-field primary key using the <primkey-field>
element in the deployment descriptor. In addition, the <prim-key-class> element specifies the type of object used for the
primary key class. The CMP Ship EJB discussed in Chapter 7 uses both of these elements when defining the id CMP field
as the primary key:

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>tonnage</field-name></cmp-field>

 <primkey-field>id</primkey-field>

</entity>

In BMP entities you do not specify a <primkey-field>, because primary keys are created by the bean code, not the
container. However, you are required to identify the <prim-key-class> with BMP entities as shown in the following listing.

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

</entity>

Although primary keys can be primitive wrappers (Integer, Double, Long, etc.), they cannot be primitive types (int, double,
long, etc.) because the semantics of the EJB programming model require the use of Object type primary keys. For
example, the EJBObject.getPrimaryKey() method returns an Object type, thus forcing primary keys to be Objects. Primitives
also cannot be primary keys because primary keys must be managed by Collection objects, which work only with Object
types. Primitives are not Object types and do not have equals() or hashcode() methods.

10.1.2 Compound Primary Keys

A compound primary key is a class that implements java.io.Serializable and contains one or more public fields whose
names and types match a subset of persistence fields in the bean class. They are defined by bean developers for
specific entity beans.

For example, if a Ship EJB didn't have an id field, we might uniquely identify ships by their names and registration
numbers. (We are adding the registration persistent field to the Ship EJB for this example.) In this case, the name and
registration persistent fields would become our primary key fields, which match corresponding fields (NAME and
REGISTRATION) in the SHIP database table. To accommodate multiple fields as a primary key, we need to define a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REGISTRATION) in the SHIP database table. To accommodate multiple fields as a primary key, we need to define a
primary key class.

The convention in this book is to define all compound primary keys as serializable classes with names that match the
pattern BeanNamePK. In this case we can construct a new class called ShipPK, which serves as the compound primary key
for our Ship EJB:

public class ShipPK implements java.io.Serializable {

 public String name;

 public String registration;

 public ShipPK(){

 }

 public ShipPK(String name, String registration) {

 this.name = name;

 this.registration = registration;

 }

 public String getName() {

 return name;

 }

 public String getRegistration() {

 return registration;

 }

 public boolean equals(Object obj) {

 if (obj == null || !(obj instanceof ShipPK))

 return false;

 ShipPK other = (ShipPK)obj;

 if(this.name.equals(other.name) &&

 this.registration.equals(other.registration))

 return true;

 else

 return false;

 }

 public int hashCode() {

 return name.hashCode()^registration.hashCode();

 }

 public String toString() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String toString() {

 return name+" "+registration;

 }

}

To make the ShipPK class work as a compound primary key, we must make its fields public. This allows the container
system to use reflection when synchronizing the values in the primary key class with the persistence fields in the bean
class. We must also define equals() and hashCode() methods to allow the primary key to be easily manipulated within
collections by container systems and application developers. We have also overridden the toString() method to return a
meaningful value. The default implementation defined in Object returns the class name of the object appended to the
object identity for that name space.

With CMP entities, it's important to make sure that the variables declared in the primary key have corresponding CMP
fields in the entity bean with matching identifiers (names) and data types. This is required so that the container, using
reflection, can match the variables declared in the compound key to the correct CMP fields in the bean class. In this
case, the name and registration instance variables declared in the ShipPK class correspond to name and registration CMP
fields in the Ship EJB, so it's a good match.

With BMP entities, the instance fields of the primary key class are not required to map exactly to corresponding
persistent fields in the bean class. The bean class is directly responsible for creating and managing the instance fields of
the primary key, not the container. In most cases, however, the instance fields in the primary key will map to persistent
fields in the bean class.

The ShipPK class defines two constructors: a no-argument constructor and an overloaded constructor that sets the name
and registration variables. The overloaded constructor is a convenience method for developers that reduces the number
of steps required to create a primary key. The no-argument constructor is required for container-managed persistence.
When a new EJB is created in CMP, the container automatically instantiates the primary key using the Class.newInstance(
) method and populates it from the bean's container-managed fields. A no-argument constructor must exist in order for
this process to work.

To accommodate the ShipPK, we change the ejbCreate()/ejbPostCreate() methods on the bean class of both BMP and CMP
entities so that they have name and registration arguments to set the primary key fields in the bean.

Here is how the ShipPK primary key class would be used in the CMP ShipBean class we developed for in Chapter 7:

import javax.ejb.EntityContext;

import javax.ejb.CreateException;

public abstract class ShipBean implements javax.ejb.EntityBean {

 public ShipPK ejbCreate(String name, String registration) {

 setName(name);

 setRegistration(registration);

 return null;

 }

 public void ejbPostCreate(String name, String registration) {

 }

 ...

The deployment descriptor for CMP entities is required to define <cmp-field> entries that match the instance fields of the
compound primary key, but it must not define a <primkey-field> element. The <primkey-field> element is only used with
single-field primary keys. The deployment descriptor for CMP entities must define a <prim-key-class> for compound
primary keys, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

primary keys, however.

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>com.titan.ShipPK</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><filed-name>registration</field-name></cmp-field>

 <cmp-field><field-name>tonnage</field-name></cmp-field>

</entity>

Here is how the ShipPK primary key class might be used in the BMP ShipBean class we developed for in Chapter 9:

public class ShipBean implements javax.ejb.EntityBean {

 public String name;

 public String registration;

 public ShipPK ejbCreate(String name, String registration){

 this.name = name;

 this.registration = registration;

 ...

 // database insert logic goes here

 ...

 return new ShipPK(name, registration);

 }

The deployment descriptor for BMP entities is always required to define the <prim-key-class> for both single-field and
compound primary keys as shown in the following listing:

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>com.titan.ShipPK</prim-key-class>

</entity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ejbCreate() method of both the BMP and CMP entities now declares the ShipPK as the primary key type. The return
type of the ejbCreate() method must match the primary key type if the primary key is defined or the java.lang.Object type
if it is undefined (CMP only).

In container-managed persistence, if the primary key fields are defined—i.e., if they are accessible through abstract
accessor methods—they must be set in the ejbCreate() method. While the return type of the ejbCreate() method is
always the primary key type, the value returned in CMP must always be null. The EJB container itself takes care of
extracting the proper primary key directly. In bean-managed persistence, the bean class is responsible for constructing
the primary key and returning it to the container.

The ShipHomeRemote interface for both CMP and BMP entities is modified so that it uses the name and registration
arguments in the create() method and the ShipPK in the findByPrimaryKey() method (EJB requires that we use the primary
key type in that method):

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(String name, String registration)

 throws CreateException, RemoteException;

 public ShipRemote findByPrimaryKey(ShipPK primaryKey)

 throws FinderException, RemoteException;

}

setName() and setRegistration(), which modify the name and registration fields of the Ship EJB, should not be declared in
the bean's remote or local interfaces. As explained in the next paragraph, the primary key of an entity bean must not
be changed once the bean is created. However, methods that simply read the primary key fields (e.g., getName() and
getRegistration()) may be exposed because they don't change the key's values.

CMP requires that the primary key may be set only once, either in the ejbCreate() method or, if it's undefined,
automatically by the container when the bean is created. Once the bean is created, the primary key fields must never
be modified by the bean or any of its clients. This is a reasonable requirement that should also be applied to bean-
managed persistence beans, because the primary key is the unique identifier of the bean. Changing it could violate
referential integrity in the database, possibly resulting in two beans being mapped to the same identifier or breaking
any relationships with other beans that are based on the value of the primary key.

10.1.3 Undefined Primary Keys in CMP

Undefined primary keys for container-managed persistence were introduced in EJB 1.1. Basically, undefined primary
keys allow the bean developer to defer declaring the primary key to the deployer, which makes it possible to create
more portable entity beans.

One problem with container-managed persistence in EJB 1.0 was that the entity bean developer had to define the
primary key before the entity bean was deployed. This requirement forced the developer to make assumptions about
the environment in which the entity bean would be used, which limited the entity bean's portability across databases.
For example, a relational database uses a set of columns in a table as the primary key, to which an entity bean's fields
map nicely. An object database, however, uses a completely different mechanism for indexing objects, to which a
primary key may not map well. The same is true for legacy systems and Enterprise Resource Planning (ERP) systems.

An undefined primary key allows the deployer to choose a system-specific key at deployment time. An object database
may generate an object ID, while an ERP system may generate some other primary key. These keys may be
automatically generated by the database or backend system. The CMP bean may need to be altered or extended by the
deployment tool to support the key, but this is immaterial to the bean developer; she concentrates on the business
logic of the bean and leaves the indexing to the container.

To facilitate the use of undefined primary keys, the CMP bean class and its interfaces use the Object type to identify the
primary key. The Ship EJB developed in Chapter 7 could use an undefined primary key. As the following code shows,
the Ship EJB's ejbCreate() method returns an Object type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Ship EJB's ejbCreate() method returns an Object type:

public abstract class ShipBean extends javax.ejb.EntityBean {

 public Object ejbCreate(String name, int capacity, double tonnage) {

 ...

 return null;

}

The findByPrimaryKey() method defined in the local and remote home interfaces must also use an Object type:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote findByPrimaryKey(Object primaryKey)

 throws javax.ejb.FinderException;

}

The Ship EJB's deployment descriptor defines its primary key type as java.lang.Object and does not define any <prim-key-
field> elements:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 ...

 <ejb-class>com.titan.ship.ShipBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Object</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>capacity</field-name></cmp-field>

 <cmp-field><field-name>tonnage</field-name></cmp-field>

 </entity>

One drawback of using an undefined primary key is that it requires the bean developer and application developer (client
code) to work with a java.lang.Object type and not a specific primary key type, which can be limiting. For example, it's
not possible to construct an undefined primary key to use in a find method if you don't know its type. This limitation can
be quite daunting if you need to locate an entity bean by its primary key. However, entity beans with undefined primary
keys can be located easily using other query methods that do not depend on the primary key value, so this limitation is
not a serious handicap.

In bean-managed persistence, you can declare an undefined primary key simply by making the primary key type
java.lang.Object. However, this is pure semantics; the primary key value will not be auto-generated by the container
because the bean developer has total control over persistence. In this case the bean developer would still need to use a
valid primary key, but its type would be hidden from the bean clients. This method can be useful if the primary key type
is expected to change over time.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 The Callback Methods
All entity beans (container- and bean-managed) must implement the javax.ejb.EntityBean interface. The EntityBean
interface contains a number of callback methods that the container uses to alert the bean instance of various runtime
events:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {

 public abstract void ejbActivate() throws EJBException, RemoteException;

 public abstract void ejbPassivate() throws EJBException, RemoteException;

 public abstract void ejbLoad() throws EJBException, RemoteException;

 public abstract void ejbStore() throws EJBException, RemoteException;

 public abstract void ejbRemove() throws EJBException, RemoteException,

 RemoveException;

 public abstract void setEntityContext(EntityContext ctx) throws EJBException,

 RemoteException;

 public abstract void unsetEntityContext() throws EJBException,

 RemoteException;

}

Each callback method is invoked on an entity bean instance at a specific time during its life cycle.

As described in Chapter 9, BMP beans must implement most of these callback methods to synchronize the bean's state
with the database. The ejbLoad() method tells the BMP bean when to read its state from the database; ejbStore() tells it
when to write to the database; and ejbRemove() tells the bean when to delete itself from the database.

While BMP beans take full advantage of callback methods, CMP entity beans may not need to use all of them. The
persistence of CMP entity beans is managed automatically, so in most cases the resources and logic that might be
managed by these methods is already handled by the container. However, a CMP entity bean can take advantage of
these callback methods if it needs to perform actions that are not automatically supported by the container.

You may have noticed that each method in the EntityBean interface throws both a javax.ejb.EJBException and a
java.rmi.RemoteException. EJB 1.0 required that a RemoteException be thrown if a system exception occurred while a bean
was executing a callback method. However, since EJB 1.1 the use of RemoteException in these methods has been
deprecated in favor of the javax.ejb.EJBException. EJB 2.0 and EJB 2.1 suggest that the EJBException be thrown if the bean
encounters a system error, such as a SQLException, while executing a method. The EJBException is a subclass of
RuntimeException, so you don't have to declare it in the method signature. Since the use of the RemoteException is
deprecated, you also don't have to declare it when implementing the callback methods either; in fact, it's recommended
that you don't.

10.2.1 setEntityContext() and unsetEntityContext()

The first method called after a bean instance is instantiated is setEntityContext(). As the method signature indicates, this
method passes the bean instance a reference to a javax.ejb.EntityContext, which is the bean instance's interface to the
container. The purpose and functionality of the EntityContext is covered later in this chapter.

The setEntityContext() method is called prior to the bean instance's entry into the instance pool. In Chapter 3, we
discussed the instance pool that EJB containers maintain, where instances of entity and stateless session beans are kept
ready to use. EntityBean instances in the instance pool are not associated with any data in the database; their state is
not unique. When a client requests a specific entity, an instance from the pool is chosen, populated with data from the
database, and assigned to service the client. Any nonmanaged resources needed for the life of the instance should be
obtained when this method is called. This ensures that such resources are obtained only once in the life of a bean
instance. A nonmanaged resource is one that is not automatically managed by the container (e.g., references to CORBA
objects). Only resources that are not specific to the entity bean's identity should be obtained in the setEntityContext()
method. Other managed resources (e.g., Java Message Service factories) and entity bean references are obtained as
needed from the JNDI ENC. Bean references and managed resources obtained through the JNDI ENC are not available
from setEntityContext(). The JNDI ENC is discussed later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from setEntityContext(). The JNDI ENC is discussed later in this chapter.

At the end of the entity bean instance's life, after it is removed permanently from the instance pool and before it is
garbage collected, the unsetEntityContext() method is called, indicating that the bean instance is about to be evicted from
memory by the container. This is a good time to free up any resources obtained in the setEntityContext() method.

10.2.2 ejbCreate()

In a CMP bean, the ejbCreate() method is called before the bean's state is written to the database. Values passed in to
the ejbCreate() method should be used to initialize the CMP fields of the bean instance. Once the ejbCreate() method
completes, a new record, based on the CMP fields, is written to the database.

In bean-managed persistence, the ejbCreate() method is called when it's time for the bean to add itself to the database.
Inside the ejbCreate() method, a BMP bean must use some kind of API to insert its data into the database.

Each ejbCreate() method must have parameters that match a create() method in the home interface. If you look at the
ShipBean class definition and compare it to the Ship EJB's home interfaces (see Chapter 7 and Chapter 9), you can see
how the parameters for the create methods match exactly in type and sequence. This enables the container to delegate
each create() method invoked on an EJB home to the proper ejbCreate() method in the bean instance.

In addition, the ejbCreate() method can take the form ejbCreate<SUFFIX>(), which allows for easier method overloading
when parameters are the same but the methods act differently. For example, ejbCreateByName(String name) and
ejbCreateByRegistration(String registration) would have corresponding create() methods defined in the local or home
interface, in the form createByName(String name) and createByRegistration(String registration).

The EntityContext maintained by the bean instance does not provide an entity bean with the proper identity until
ejbCreate() has completed. This means that while the ejbCreate() method is executing, the bean instance doesn't have
access to its primary key or EJB object. The EntityContext does, however, provide the bean with information about the
caller's identity and access to its EJB home object (local and remote) and properties. The bean can also use the JNDI
naming context to access other beans and resource managers such as javax.sql.DataSource.

However, the CMP entity bean developer must ensure that ejbCreate() sets the CMP fields that correspond to the fields
of the primary key. When a new CMP entity bean is created, the container will use the CMP fields in the bean class to
instantiate and populate a primary key automatically. If the primary key is undefined, the container and database will
work together to generate the primary key for the entity bean.

Once the bean's state has been populated and its ejbCreate() method has executed, the ejbPostCreate() method is
invoked. This method gives the bean an opportunity to perform any postprocessing prior to servicing client requests. In
CMP entity beans, ejbPostCreate() is used to manipulate container-managed relationship (CMR) fields. These CMR fields
must not be modified by ejbCreate(). The reason for this restriction has to do with referential integrity. The primary key
for the entity bean may not be available until after ejbCreate() executes. The primary key is needed if the mapping for
the relationship uses it as a foreign key, so assignment of relationships is postponed until ejbCreate() completes and the
primary key becomes available. This is also true with autogenerated primary keys, which usually require that the insert
be done before a primary key can be generated. In addition, referential integrity may specify non-null foreign keys in
referencing tables, so the insert must take place first. In reality, the transaction does not complete until both ejbCreate()
and ejbPostCreate() have executed, so the vendors are free to choose the best time for database inserts and linking of
relationships.

The bean identity is not available during the call to ejbCreate(), but it is available in ejbPostCreate(). This means that the
bean can access its own primary key and EJB object (local or remote) inside of ejbPostCreate(). This can be useful for
performing postprocessing prior to servicing business-method invocations.

Each ejbPostCreate() method must have the same parameters as the corresponding ejbCreate() method, as well as the
same method name. For example, if the ShipBean class defines an ejbCreateByName(String name) method, it must also
define a matching ejbPostCreateByName(String name) method. The ejbPostCreate() method returns void.

Matching the name and parameter lists of ejbCreate() and ejbPostCreate() methods is important for two reasons. First, it
indicates which ejbPostCreate() method is associated with which ejbCreate() method. This ensures that the container calls
the correct ejbPostCreate() method after ejbCreate() is done. Second, in CMP, it is possible that one of the parameters
passed is not assigned to a CMP field. In this case, you would need to duplicate the parameters of the ejbCreate()
method to have that information available in the ejbPostCreate() method. CMR fields are the primary reason for utilizing
the ejbPostCreate() method in CMP, because of referential integrity.

10.2.3 ejbCreate() and ejbPostCreate() Sequence of Events

To understand how an entity bean instance gets up and running, we have to think of a entity bean in the context of its
life cycle. Figure 10-1 shows the sequence of events during a portion of a CMP bean's life cycle, as defined by the EJB
specification. Every EJB vendor must support this sequence of events.

Figure 10-1. Event sequence for bean-instance creation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-1. Event sequence for bean-instance creation

The process begins when the client invokes one of the create() methods on the bean's EJB home. A create() method is
invoked on the EJB home stub (step 1), which communicates the method to the EJB home across the network (step 2).
The EJB home plucks a ShipBean instance from the pool and invokes its corresponding ejbCreate() method (step 3).

The create() and ejbCreate() methods are responsible for initializing the bean instance so that the container (CMP) or
bean class (BMP) can insert a record into the database. In the case of the ShipBean, the minimal information required to
add a new ship to the system is the ship's name and unique id. These persistent fields are set during the ejbCreate()
method invocation (step 4).

In container-managed persistence, the container uses two of the bean's CMP fields (id and name), to insert a record into
the database. Only the fields described as CMP fields in the deployment descriptor are accessed. Once the container has
read the CMP fields from the bean instance (step 5), it will automatically insert a new record into the database using
those fields (step 6).[1] How the data is written to the database is defined when the bean's fields are mapped at
deployment time. In our example, a new record is inserted into the SHIP table.

[1] The specification does not actually require that the record be inserted into the database immediately after the
ejbCreate() method is called (step 6). As an alternative, the record insert may be deferred until after the
ejbPostCreate() method executes or even until the end of the transaction.

In bean-managed persistence, the bean class itself reads the fields and performs a
database insert to add the bean's data to the database. This would take place in steps 5
and 6.

Once the record has been inserted into the database, the bean instance is ready to be assigned to an EJB object (step
7). Once the bean is assigned to an EJB object, the bean's identity is available. This is when ejbPostCreate() is invoked
(step 8).

In CMP entity beans, ejbPostCreate() is used to manage the beans' container-managed relationship fields. This might
involve setting the Cruise in the Ship EJB's cruise CMR field or some other relationship (step 9).

Finally, when the ejbPostCreate() processing is complete, the bean is ready to service client requests. The EJB object
stub is created and returned to the client application, which will use it to invoke business methods on the bean (step
10).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2.4 Using ejbLoad() and ejbStore() in Container-Managed Persistence

The process of ensuring that the database record and the entity bean instance are equivalent is called synchronization.
In container-managed persistence, the bean's CMP fields are automatically synchronized with the database. Persistence
in container-managed beans is fairly straightforward, so in most cases we will not need the ejbLoad() and ejbStore()
methods.

Leveraging the ejbLoad() and ejbStore() callback methods in container-managed beans, however, can be useful if
custom logic is needed when synchronizing CMP fields. Data intended for the database can be reformatted or
compressed to conserve space; data just retrieved from the database can be used to calculate derived values for
nonpersistent fields.

Imagine a hypothetical bean class that includes some binary value you want to store in the database. The binary value
may be very large (an image, for example), so you may need to compress it before storing it away. Using the ejbLoad()
and ejbStore() methods in a container-managed bean allows the bean instance to reformat the data as appropriate for
the state of the bean and the structure of the database. Here's how this might work:

import java.util.zip.Inflater;

import java.util.zip.Deflater;

public abstract class HypotheticalBean implements javax.ejb.EntityBean {

 // Instance variable

 public byte [] inflatedImage;

 // CMP field methods

 public abstract void setImage(byte [] image);

 public abstract byte [] getImage();

 // Business methods. Used by client.

 public byte [] getImageFile() {

 if(inflatedImage == null) {

 Inflater unzipper = new Inflater();

 byte [] temp = getImage();

 unzipper.setInput(temp);

 unzipper.inflate(inflatedImage);

 }

 return inflatedImage;

 }

 public void setImageFile(byte [] image) {

 inflatedImage = image;

 }

 // callback methods

 public void ejbLoad() {

 inflatedImage = null;

 }

 public void ejbStore() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ejbStore() {

 if(inflatedImage != null) {

 Deflater zipper = new Deflater();

 zipper.setInput(inflatedImage);

 byte [] temp = new byte[inflatedImage.length];

 int size = zipper.deflate(temp);

 byte [] temp2 = new byte[size];

 System.arraycopy(temp, 0, temp2, 0, size);

 setImage(temp2);

 }

 }

}

Just before the container synchronizes the state of entity bean with the database, it calls the ejbStore() method. This
method uses the java.util.zip package to compress the image file, if it has been modified, before writing it to the
database.

Just after the container updates the fields of the HypotheticalBean with fresh data from the database, it calls ejbLoad(),
which reinitializes the inflatedImage instance variable to null. Decompression is preformed lazily, so it's done only when it
is needed. Compression is performed by ejbStore() only if the image was accessed; otherwise, the image field is not
modified.

10.2.5 Using ejbLoad() and ejbStore() in Bean-Managed Persistence

In bean-managed persistence, the ejbLoad() and ejbStore() methods are called by the container when it's time to read
from or write to the database. The ejbLoad() method is invoked after the start of a transaction, but before the entity
bean can service a method call. The ejbStore() method is usually called after the business method is called, but it must
be called before the end of the transaction.

While the entity bean is responsible for reading and writing its state from and to the database, the container is
responsible for managing the scope of the transaction. This means that the entity bean developer need not worry about
committing operations on database-access APIs, provided the resource is managed by the container. The container will
take care of committing the transaction and persisting the changes at the appropriate times.

If a BMP entity bean uses a resource that is not managed by the container system, the entity bean must manage the
scope of the transaction manually, using operations specific to the API. Examples of how to use the ejbLoad() and
ejbStore() methods in BMP are shown in detail in Chapter 9.

10.2.6 ejbPassivate() and ejbActivate()

The ejbPassivate() method notifies the bean developer that the entity bean instance is about to be pooled or otherwise
disassociated from the entity bean identity. This gives the entity bean developer an opportunity to do some last-minute
cleanup before the bean is placed in the pool, where it will be reused by some other EJB object. In real-world
implementations, the ejbPassivate() method is rarely used, because most resources are obtained from the JNDI ENC and
are managed automatically by the container.

The ejbActivate() method notifies the bean developer that the entity bean instance has just returned from the pool and is
now associated with an EJB object and has been assigned an identity. This gives the entity bean developer an
opportunity to prepare the entity bean for service, for example by obtaining some kind of resource connection.

As with the ejbPassivate() method, it's difficult to see why this method would be used in practice. It is best to secure
resources lazily (i.e., as needed). The ejbActivate() method suggests that some kind of eager preparation can be
accomplished, but this is rarely done in practice.

Even in EJB containers that do not pool entity bean instances, the value of ejbActivate() and
ejbPassivate() is questionable. It's possible that an EJB container may choose to evict
instances from memory between client invocations and create a new instance for each new
transaction. While this may appear to hurt performance, it's a reasonable design, provided
that the container system's Java Virtual Machine has an extremely efficient garbage
collection and memory allocation strategy. Hotspot is an example of a JVM that has made
some important advances in this area. Even in this case, however, ejbActivate() and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

some important advances in this area. Even in this case, however, ejbActivate() and
ejbPassivate() provide little value because the setEntityContext() and unsetEntityContext()
methods can accomplish the same thing.

One of the few practical reasons for using ejbActivate() is to reinitialize nonpersistent instance fields of the bean class
that may have become "dirty" while the instance serviced another client.

Regardless of their general usefulness, these callback methods are at your disposal if you need them. In most cases,
you are better off using setEntityContext() and unsetEntityContext(), since these methods will execute only once in the life
cycle of a bean instance.

10.2.7 ejbRemove()

The component interfaces (remote, local, remote home, and local home) define remove methods that can be used to
delete an entity from the system. When a client invokes one of the remove methods, as shown in the following code,
the container must delete the entity's data from the database:

CustomerHomeRemote customerHome;

CustomerRemote customer;

customer.remove();

// or

customerHome.remove(customer.getPrimaryKey());

The data deleted from the database includes all the CMP fields. So, for example, when you invoke a remove method on
a Customer EJB, the corresponding record in the CUSTOMER table is deleted.

In CMP, the remove method also removes the link between the CUSTOMER record and the ADDRESS record. However, the
ADDRESS record associated with the CUSTOMER record will not be automatically deleted. The address data will be deleted
along with the customer data only if a cascade delete is specified. A cascade delete must be declared explicitly in the
XML deployment descriptor, as explained in Chapter 7.

The ejbRemove() method in container-managed persistence notifies the entity bean that it's about to be removed and its
data is about to be deleted. This notification occurs after the client invokes one of the remove methods defined in a
component interface but before the container actually deletes the data. It gives the bean developer a chance to do
some last-minute cleanup before the entity is removed. Any cleanup operations that might ordinarily be done in the
ejbPassivate() method should also be done in the ejbRemove() method, because the bean will be pooled after the
ejbRemove() method completes without having its ejbPassivate() method invoked.

In bean-managed persistence, the bean developer is responsible for implementing the logic that deletes the entity
bean's data from the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 ejbHome()
CMP and BMP entity beans can declare home methods that perform operations related to the EJB component but that
are not specific to an entity bean instance. A home method must have a matching implementation in the bean class
with the signature ejbHome<METHOD-NAME>().

For example, the Cruise EJB might define a home method that calculates the total revenue in bookings for a specific
Cruise:

public interface CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public CruiseLocal create(String name, ShipLocal ship);

 public double totalReservationRevenue(CruiseLocal cruise);

}

Every home method declared by the home interfaces must have a corresponding ejbHome<METHOD-NAME>() in the bean
class. For example, the CruiseBean class would have an ejbHomeTotalReservationRevenue() method, as shown in the
following code:

public abstract class CruiseBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(String name, ShipLocal ship) {

 setName(name);

 }

 ...

 public double ejbHomeTotalReservationRevenue(CruiseLocal cruise) {

 Set reservations = ejbSelectReservations(cruise);

 Iterator it = reservations.iterator();

 double total = 0;

 while(it.hasNext()) {

 ReservationLocal res = (ReservationLocal)it.next();

 total += res.getAmount();

 }

 return total;

 }

 public abstract ejbSelectReservations(CruiseLocal cruise);

 ...

}

The ejbHome() methods execute without an identity within the instance pool. This is why ejbHomeTotalReservationRevenue(
) required that a CruiseLocal EJB object reference be passed in to the method. This makes sense once you realize that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) required that a CruiseLocal EJB object reference be passed in to the method. This makes sense once you realize that
the caller is invoking the home method on the entity bean's EJB home object and not an entity bean reference directly.
The EJB home (local or remote) is not specific to any one entity identity.

The bean developer may implement home methods in both bean-managed and container-managed persistence
implementations. The ejbHome() methods of CMP entities typically rely on ejbSelect() methods, while the ejbHome()
methods of BMP implementations frequently use direct database access and find methods to query data and apply
changes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 EntityContext
The first method called by the container after a bean instance is created is setEntityContext(). This method passes the
bean instance a reference to its javax.ejb.EntityContext, which is really the instance's interface to the container.

The setEntityContext() method should be implemented by the entity bean developer so that it places the EntityContext
reference in an instance field of the bean where it will be kept for the life of the instance. The definition of EntityContext
is as follows:

public interface javax.ejb.EntityContext extends javax.ejb.EJBContext {

 public EJBLocalObject getEJBLocalObject() throws IllegalStateException

 public abstract EJBObject getEJBObject() throws IllegalStateException;

 public abstract Object getPrimaryKey() throws IllegalStateException;

}

As the bean instance is swapped from one EJB object to the next, the information obtainable from the EntityContext
changes to reflect the EJB object to which the instance is assigned. This change is possible because the EntityContext is
an interface, not a static class definition, so the container can implement the EntityContext with a concrete class that it
controls. As the entity bean instance is swapped from one EJB object to another, the information made available
through the EntityContext will also change.

The EntityContext.getEJBObject() method returns a remote reference to the bean instance's EJB object. The
EntityContext.getEJBLocalObject() method, on the other hand, returns a local reference to the bean instance's EJB object.

Session beans also define the getEJBObject() and getEJBLocalObject() methods in the SessionContext interface; their
behavior is exactly the same.

The EJB objects obtained from the EntityContext are the same kinds of references that might be used by an application
client, in the case of a remote reference, or another co-located bean, in the case of a local reference. The getEJBObject()
and getEJBLocalObject() methods allow the bean instance to get its own EJB object reference, which it can then pass to
other beans. Here is an example:

public class A_Bean extends EntityBean {

 public EntityContext context;

 public void someMethod() {

 B_BeanRemote b = ... // Get a remote reference to B_Bean.

 EJBObject obj = context.getEJBObject();

 A_BeanRemote mySelf = (A_BeanRemote)

 PortableRemoteObject.narrow(obj,A_BeanRemote.class);

 b.aMethod(mySelf);

 }

 ...

 }

It is illegal for a bean instance to pass a this reference to another bean; instead, it passes its remote or local EJB object
reference, which the bean instance gets from its EntityContext.

The ability of a bean to obtain an EJB object reference to itself is also useful when establishing relationships with other
beans in container-managed persistence. For example, the Customer EJB might implement a business method that
allows it to assign itself a Reservation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allows it to assign itself a Reservation:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public EntityContext context;

 public void assignToReservation(ReservationLocal reservation) {

 EJBLocalObject localRef = context.getEJBLocalObject();

 Collection customers = reservation.getCustomers();

 customers.add(localRef);

 }

 ...

}

The EntityContext.getPrimaryKey() method allows a bean instance to get a copy of the primary key to which it is currently
assigned. Use of this method outside of the ejbLoad() and ejbStore() methods of BMP entity beans is unusual, but the
EntityContext makes the primary key available for those unusual circumstances when it is needed.

As the context in which the bean instance operates changes, some of the information made available through the
EntityContext reference will be changed by the container. This is why the methods in the EntityContext throw the
java.lang.IllegalStateException. The EntityContext is always available to the bean instance, but the instance is not always
assigned to an EJB object. When the bean is between EJB objects (i.e., when it's in the pool), it has no EJB object or
primary key to return. If the getEJBObject(), getEJBLocalObject(), or getPrimaryKey() methods are invoked when the bean
is in the pool, they will throw an IllegalStateException. Appendix B provides tables of allowed operations for each bean
type describing which EJBContext methods can be invoked at what times.

10.4.1 EJBContext

The EntityContext extends the javax.ejb.EJBContext class, which is also the base class for the SessionContext session beans
use. EJBContext defines several methods that provide useful information to a bean at runtime.

Here is the definition of the EJBContext interface:

package javax.ejb;

public interface EJBContext {

 // EJB 2.1 only: TimerService

 public TimerService getTimerService()

 throws java.lang.IllegalStateException;

 // EJB home methods

 public EJBHome getEJBHome()

 java.lang.IllegalStateException;

 public EJBLocalHome getEJBLocalHome()

 java.lang.IllegalStateException;

 // security methods

 public java.security.Principal getCallerPrincipal();

 public boolean isCallerInRole(java.lang.String roleName);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean isCallerInRole(java.lang.String roleName);

 // transaction methods

 public javax.transaction.UserTransaction getUserTransaction()

 throws java.lang.IllegalStateException;

 public boolean getRollbackOnly()

 throws java.lang.IllegalStateException;

 public void setRollbackOnly()

 throws java.lang.IllegalStateException;

 // deprecated methods

 public java.security.Identity getCallerIdentity();

 public boolean isCallerInRole(java.security.Identity role);

 public java.util.Properties getEnvironment();

}

The EJBContext.getTimerService() method (EJB 2.1 only) returns a reference to the container's Time Service, which allows
the entity to set up notifications for itself of timed events. In other words, an entity can set alarms so that the container
will call it when a specific date arrives, or some interval of time has passed. For example, an entity bean might set a
timer as follows:

public class CustomerBean implements EntityBean, TimedObject {

 EntityContext ejbContext;

 ...

 public void scheduleAppointment(Date date, String description){

 TimerService timerService = ejbContext.getTimerServcie();

 timerService.createTimer(date, description);

 }

 public void ejbTimeout(Timer timer){

 // do something when the timer goes off

 }

 ...

}

The scheduleAppointment() method is a business method that's made available to remote clients via the remote interface.
A client can call this method passing in a date and description of an event, which are in turn used to create a timer; to
register the entity for a timed event. In order for an entity to be notified of a timed event it must implement the
javax.ejb.TimedObject interface, which defines one method: ejbTimeout(). When the date of a timed event arrives, the
Timer Service, which is part of the EJB container, will call the ejbTimeout() method. The entity can get details of the
timed event from the javax.ejb.Timer object, including the description. The Timer Service is covered in detail in Chapter
13.

The EJBContext.getEJBHome() and EJBContext.getEJBLocalHome() methods return a reference to the bean's EJB home. This
is useful if the bean needs to create or find entity beans of its own type. Access to the EJB home may be more useful in
BMP entity beans than in CMP entity beans, which have select methods and CMR fields.

As an example, if all of the employees in Titan's system (including managers) are represented by BMP Employee beans,
a manager who needs access to subordinate employees can use the getEJBLocalHome() method to get beans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a manager who needs access to subordinate employees can use the getEJBLocalHome() method to get beans
representing the appropriate employees:

public class EmployeeBean implements EntityBean {

 EntityContext ejbContext;

 ...

 public EmployeeLocal createSubordinate() {

 EmployeeLocal mySelf = (EmployeeLocal)ejbContext.getEJBLocalObject();

 EmployeeHomeLocal home = (EmployeeHomeLocal)ejbContext.getEJBLocalHome();

 EmployeeLocal subordinate = home.createSubordinateTo(mySelf);

 return subordinate;

 }

 ...

}

The EJBContext.getCallerPrincipal() method is used to obtain the java.security.Principal object representing the client that is
currently accessing the bean. The Principal object can, for example, be used by the BMP Ship EJB to track the identities
of clients making updates:

public class ShipBean implements EntityBean {

 String lastModifiedBy;

 EntityContext context;

 ...

 public void setTonnage(double tons) {

 tonnage = tons;

 Principal principal = context.getCallerPrincipal();

 String modifiedBy = principal.getName();

 ...

 }

 ...

}

The EJBContext.isCallerInRole() method tells you whether the client accessing the bean is a member of a specific role,
identified by a role name. This method is useful when more access control is needed than simple method-based access
control can provide. In a banking system, for example, you might allow the Teller role to make most withdrawals but
only the Manager role to make withdrawals of over $10,000. This kind of fine-grained access control cannot be
addressed through EJB's security attributes because it involves a business logic problem. Therefore, we can use the
isCallerInRole() method to augment the automatic access control provided by EJB. First, let's assume that all managers
are also tellers. The business logic in the withdraw() method uses isCallerInRole() to make sure that only the Manager role
can withdraw sums over $10,000.00:

public class AccountBean implements EntityBean {

 int id;

 double balance;

 EntityContext context;

 public void withdraw(Double withdraw) throws AccessDeniedException {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (withdraw.doubleValue() > 10000) {

 boolean isManager = context.isCallerInRole("Manager");

 if (!isManager) {

 // Only Managers can withdraw more than 10k.

 throw new AccessDeniedException();

 }

 }

 balance = balance - withdraw.doubleValue();

 }

 ...

}

The EJBContext contains some methods that were used in EJB 1.0 but were deprecated in EJB 1.1 and have been
abandoned in EJB 2.0 and EJB 2.1. Support for these deprecated methods were optional for EJB 2.0 containers, they
are not supported by EJB 2.1. EJB containers that do not support the deprecated security methods will throw a
RuntimeException. The deprecated security methods are based on EJB 1.0's use of the Identity object instead of the
Principal object. The semantics of the deprecated methods are basically the same but, because Identity is an abstract
class, it has proven to be too difficult to use. Even if your EJB 2.0 vendor supports these deprecated methods, you
should never use them for new entity beans. They should only be used if you are continuing to support legacy EJB 1.0
entities—a fairly rare occurence.

The getEnvironment() method has been replaced by the JNDI environment naming context, which is discussed later in
this book. EJB 2.0 containers may optionally support this method for backward compatibly with legacy EJB 1.0
components, but EJB 2.1 containers do not support this method at all and will throw a RuntimeException if its called. The
transactional methods—getUserTransaction(), setRollbackOnly(), and getRollbackOnly()—are described in detail in Chapter
15.

The material on the EJBContext covered in this section applies equally well to session and message-driven beans. There
are some exceptions, however, and these differences are covered in Chapter 11 and Chapter 12.

10.4.2 JNDI ENC

Starting with EJB 1.1, the bean-container contract for entity and stateful beans was expanded beyond the EJBContext
using the Java Naming and Directory Interface (JNDI). A special JNDI name space, which is referred to as the
environment naming context (ENC), was added to allow any enterprise bean to access environment entries, other
beans, and resources (such as JDBC DataSource objects) specific to that enterprise bean.

The JNDI ENC continues to be an extremely important part of the bean-container contract. Although we used the JNDI
ENC to access JDBC in the bean-managed persistence chapter (Chapter 9), it's not specific to entity beans. The JNDI
ENC is used by session, entity, and message-driven beans alike. To avoid unnecessary duplication, a detailed discussion
of this important facility is left for Chapter 11. What you learn about using the JNDI ENC in Chapter 11 applies equally
well to session, entity, and message-driven beans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 The Life Cycle of an Entity Bean
To understand how to best develop entity beans, it is important to understand how the container manages them. The
EJB specification defines just about every major event in an entity bean's life, from the time it is instantiated to the time
it is garbage collected. This is called the life cycle, and it provides the bean developer and EJB vendors with all the
information they need to develop beans and EJB servers that adhere to a consistent protocol. To understand the life
cycle, we will follow an entity instance through several life-cycle events and describe how the container interacts with
the entity bean during these events. Figure 10-2 illustrates the life cycle of an entity instance.

Figure 10-2. Entity bean life cycle

This section identifies the points at which the container calls each of the methods described in the EntityBean interface as
well as the find methods and the select and home methods. Bean instances must implement the EntityBean interface,
which means that invocations of the callback methods are invocations on the bean instance itself.

At each stage of the entity bean's life cycle, the bean container provides varying levels of access. For example, the
EntityContext.getPrimaryKey() method will not work if it is invoked in the ejbCreate() method, but it does work when called
in the ejbPostCreate() method. Other EJBContext methods have similar restrictions, as does the JNDI ENC.

10.5.1 Does Not Exist

The entity bean begins life as a collection of files. Included in that collection are the bean's deployment descriptor,
component interfaces, and all the supporting classes generated at deployment time. At this stage, no instance of the
bean exists.

10.5.2 The Pooled State

When the EJB server is started, it reads the EJB's files and instantiates several instances of the entity bean's bean class,
which it places in a pool. The instances are created by calling the Class.newInstance() method on the bean class. The
newInstance() method creates an instance using the default constructor, which has no arguments.[2] This means that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newInstance() method creates an instance using the default constructor, which has no arguments.[2] This means that
the persistence fields of the bean instances are set at their default values; the instances themselves do not represent
any data in the database.

[2] Constructors should never be defined in the bean class. The default no-argument constructor, which is implicit if
no other constructors are declared, must be available to the container.

Immediately following the creation of an instance, and just before it is placed in the pool, the container assigns the
instance its EntityContext. The EntityContext is assigned by calling the setEntityContext() method of the EntityBean interface,
which is implemented by the bean class. After the instance has been assigned its context, it is entered into the instance
pool.

In the instance pool, the bean instance is available to the container as a candidate for servicing client requests. Until it
is requested, however, the bean instance remains inactive unless it is used to service a query method (i.e., find or
select method) or ejbHome() request. Bean instances in the Pooled state typically are used to service query and
ejbHome() requests, which makes perfectly good sense because they aren't busy and these methods don't rely on the
bean instance's state. All instances in the Pooled state are equivalent. None of the instances are assigned to an EJB
object, and none of them has meaningful state.

10.5.3 The Ready State

When a bean instance is in the Ready state, it can accept client requests. A bean instance moves to the Ready state
when the container assigns it to an EJB object. This occurs under two circumstances: when a new entity bean is being
created, or when the container is activating an entity.

10.5.3.1 Transitioning from the Pooled state to the Ready state via creation

When a client application invokes a create() method on an EJB home, several operations must take place before the EJB
container can return a remote or local reference (EJB object) to the client. First, an EJB object must be created on the
EJB server.[3] Once the EJB object is created, an entity bean instance is taken from the instance pool and assigned to
the EJB object. Next, the create() method, invoked by the client, is delegated to its corresponding ejbCreate() method on
the bean instance. After the ejbCreate() method completes, a primary key is created.

[3] This is only a conceptual model. In reality, an EJB container and the EJB object may be the same thing, or a
single EJB object may provide a multiplexing service for all entities of the same type. The implementation details
are not as important as understanding the life-cycle protocol.

When the ejbCreate() method is done, the ejbPostCreate() method on the entity bean instance is called. Finally, after the
successful completion of the ejbPostCreate() method, the home is allowed to return a remote or local reference—an EJB
object—to the client. The bean instance and EJB object are now ready to service method requests from the client. This
is one way that the bean instance can move from the Pooled state to the Ready state.

10.5.3.2 Transitioning from the Pooled state to the Ready state via a query
method

When a query method is executed, each EJB object that is found as a result of the query will be realized by transitioning
an instance from the Pooled state to the Ready state. When an entity bean is found, it is assigned to an EJB object and
its EJB object reference is returned to the client. A found bean follows the same protocol as a passivated bean; it is
activated when the client invokes a business method, and will move into the Ready state through activation, as
described in the next section.

In many cases (depending on the EJB vendor), found entity beans don't actually migrate into the Ready state until they
are accessed by the client. So, for example, if a find method returns a collection of entity beans, the entity beans may
not be activated until they are obtained from the collection or accessed directly by the client. Resources are saved by
activating entity beans lazily (as needed).

10.5.3.3 Transitioning from the Pooled state to the Ready state via activation

The activation process can also move an entity bean instance from the Pooled state to the Ready state. Activation
facilitates resource management by allowing a few bean instances to service many EJB objects. Activation was
explained in Chapter 3, but we will revisit the process here as it relates to the entity bean instance's life cycle.
Activation presumes that the entity bean has previously been passivated. More is said about this state transition later;
for now, suffice it to say that when a bean instance is passivated, it frees any resources that it does not need and
leaves the EJB object for the instance pool. When the bean instance returns to the pool, the EJB object is left without an
instance to which to delegate client requests. The EJB object maintains its stub connection on the client, so as far as the
client is concerned, the entity bean hasn't changed. When the client invokes a business method on the EJB object, the
EJB object must obtain a bean instance. This is accomplished by activating a bean instance.

When a bean instance is activated, it leaves the instance pool (the Pooled state) to be assigned to an EJB object. Once
assigned to the proper EJB object, the ejbActivate() method is called—the instance's EntityContext can now provide

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assigned to the proper EJB object, the ejbActivate() method is called—the instance's EntityContext can now provide
information specific to the EJB object, but it cannot provide security or transactional information. The ejbActivate()
callback method can be used in the bean instance to reobtain resources or perform any other necessary work before
servicing the client.

When an entity bean instance is activated, nonpersistent instance fields of the bean instance may contain arbitrary
(dirty) values and should be reinitialized in the ejbActivate() method.

In container-managed persistence, container-managed fields are automatically synchronized with the database after
ejbActivate() is invoked and before a business method can be serviced by the bean instance. The order in which these
things happen in CMP entity beans is:

1. ejbActivate() is invoked on the bean instance.

2. Persistence fields are synchronized automatically.

3. ejbLoad() notifies the bean that its persistence fields have been synchronized.

4. Business methods are invoked as needed.

In bean-managed persistence, persistence fields are synchronized by the ejbLoad() method after ejbActivate() has been
called and before a business method can be invoked. Here is the order of operations in bean-managed persistence:

1. ejbActivate() is invoked on the bean instance.

2. ejbLoad() is called to let the bean synchronize its persistence fields.

3. Business methods are invoked as needed.

10.5.3.4 Transitioning from the Ready state to the Pooled state via passivation

A bean can move from the Ready state to the Pooled state via passivation, which is the process of disassociating a bean
instance from an EJB object when it is not busy. After a bean instance has been assigned to an EJB object, the EJB
container can passivate the instance at any time, provided that the instance is not currently executing a method. As
part of the passivation process, the ejbPassivate() method is invoked on the bean instance. This callback method can be
used by the instance to release any resources or perform other processing prior to leaving the EJB object. When
ejbPassivate() has completed, the bean instance is disassociated from the EJB object server and returned to the instance
pool. The bean instance is now back in the Pooled state.

A bean-managed entity instance should not try to save its state to the database in the ejbPassivate() method; this
activity is reserved for the ejbStore() method. The container will invoke ejbStore() to synchronize the bean instance's
state with the database prior to passivating the bean.

The most fundamental thing to remember is that, for entity beans, passivation is simply a notification that the instance
is about to be disassociated from the EJB object. Unlike stateful session beans, an entity bean instance's fields are not
serialized and held with the EJB object when the bean is passivated. Whatever values were held in the instance's
nonpersistent fields when the entity bean was assigned to the EJB object will be carried with it to its next assignment.

10.5.3.5 Transitioning from the Ready state to the Pooled state via removal

A bean instance also moves from the Ready state to the Pooled state when it is removed. This occurs when the client
application invokes one of the remove methods on the bean's EJB object or EJB home. With entity beans, invoking a
remove method deletes the entity's data from the database. Once the entity's data has been deleted from the
database, it is no longer a valid entity.

Once the ejbRemove() method has finished, the bean instance is moved back to the instance pool and out of the Ready
state. It is important that the ejbRemove() method release any resources that would normally be released by
ejbPassivate(), which is not called when a bean is removed. This can be done, if need be, by invoking the ejbPassivate()
method within the ejbRemove() method body.

In bean-managed persistence, the ejbRemove() method is implemented by the entity bean developer and includes code
to delete the entity bean's data from the database. The EJB container will invoke the ejbRemove() method in response to
a client's invocation of the remove() method on one of the component interfaces.

In container-managed persistence, the ejbRemove() method notifies the entity bean instance that its data is about to be
removed from the database. Immediately following the ejbRemove() call, the container deletes the entity bean's data.

In CMP the container also cleans up the entity bean's relationships with other entity beans in the database. If a cascade
delete is specified, it removes each entity bean in the cascade delete relationships. This involves activating each entity
bean and calling its ejbActivate() methods, loading each entity bean's state by calling its ejbLoad() method, calling the
ejbRemove() on all of the entity beans in the cascade-delete relationship, and then deleting their data. This process can
continue in a chain until all the cascade-delete operations of all the relationships have completed.

10.5.4 Life in the Ready State

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A bean is in the Ready state when it is associated with an EJB object and is ready to service requests from the client.
When the client invokes a business method, like Ship.getName(), on the bean's remote or local reference (EJB object),
the method invocation is received by the EJB server and delegated to the bean instance. The instance performs the
method and returns the results. As long as the bean instance is in the Ready state, it can service all the business
methods invoked by the client. Business methods can be called zero or more times, in any order.

In addition to servicing business methods, an entity bean in the Ready state can execute select methods, which are
called by the bean instance while servicing a business method.

The ejbLoad() and ejbStore() methods, which synchronize the bean instance's state with the database, can be called only
when the bean is in the Ready state. These methods can be called in any order, depending on the vendor's
implementation. Some vendors call ejbLoad() before every method invocation and ejbStore() after every method
invocation, depending on the transactional context. Other vendors call these methods less frequently.

In bean-managed persistence, the ejbLoad() method should always use the EntityContext.getPrimaryKey() method to
obtain data from the database and should not trust any primary key or other data that the bean has stored in its fields.
(This is how we implemented it in the bean-managed version of the Ship bean in Chapter 9.) It should be assumed,
however, that the state of the bean is valid when calling the ejbStore() method.

In container-managed persistence, the ejbLoad() method is always called immediately following the synchronization of
the bean's container-managed fields with the database—in other words, right after the container updates the state of
the bean instance with data from the database. This provides an opportunity to perform any calculations or reformat
data before the instance can service business-method invocations from the client. The ejbStore() method is called just
before the database is synchronized with the state of the bean instance—just before the container writes the container-
managed fields to the database. This provides the CMP entity bean instance with an opportunity to change the data in
the container-managed fields prior to their persistence to the database.

In bean-managed persistence, the ejbLoad() and ejbStore() methods are called when the container deems it appropriate
to synchronize the bean's state with the database. These are the only callback methods that should be used to
synchronize the bean's state with the database. Do not use ejbActivate(), ejbPassivate(), setEntityContext(), or
unsetEntityContext() to access the database for the purpose of synchronization. You should use the ejbCreate() and
ejbRemove() methods, however, to insert and delete (respectively) the entity's data into and from the database.

10.5.5 End of the Life Cycle

A bean instance's life cycle ends when the container decides to remove it from the pool and allow it to be garbage
collected. This happens under a few different circumstances. If the container decides to reduce the number of instances
in the pool—usually to conserve resources—it releases one or more bean instances and allows them to be garbage
collected. The ability to adjust the size of the instance pool allows the EJB server to manage its resources (the number
of threads, available memory, etc.) so that it can achieve the highest possible performance.

When an EJB server is shut down, most containers release all the bean instances so that they can be safely garbage
collected. Some containers may also decide to release any instances that are behaving unfavorably or that have
suffered from some kind of unrecoverable error that makes them unstable. For example, any time an entity bean
instance throws a type of RuntimeException from any of its methods, the EJB container will evict that instance from
memory and replace it with a stable instance from the instance pool.

When an entity bean instance leaves the instance pool to be garbage collected, the unsetEntityContext() method is
invoked by the container to alert the bean instance that it is about be destroyed. This callback method lets the bean
instance release any resources it maintains before being garbage collected. Once the bean's unsetEntityContext() method
has been called, it is garbage collected.

The bean instance's finalize() method may or may not be invoked following the unsetEntityContext() method. A bean
should not rely on its finalize() method, since each vendor handles evicting instances differently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11. Session Beans
Entity beans provide an object-oriented model that makes it easier for developers to create, modify, and delete data
from the database. They allow developers to be more productive by encouraging reuse, thus reducing development
costs. For example, once a bean has been defined to represent a concept like a Ship, that bean can be reused
throughout a business system without redefining, recoding, or retesting the business logic and data access.

However, entity beans are not the entire story. We have seen another kind of enterprise bean: the session bean.
Session beans fill the gaps left by entity beans. They are useful for describing interactions between other beans
(taskflow) and for implementing particular tasks. Unlike entity beans, session beans do not represent shared data in the
database, but they can access shared data. This means that we can use session beans to read, update, and insert data.
For example, we might use a session bean to provide lists of information, such as a list of all available cabins.
Sometimes we might generate the list by interacting with entity beans, like the cabin list we developed in the
TravelAgent EJB in Chapter 4. More frequently, session beans will generate lists by accessing the database directly.

When do you use an entity bean and when do you use a session bean? As a rule of thumb, an entity bean should
provide a safe and consistent interface to a set of shared data that defines a concept. This data may be updated
frequently. Session beans access data that spans concepts, is not shared, and is usually read-only.

In addition to accessing data directly, session beans can represent taskflow. Taskflow means all the steps required to
accomplish a particular task, such as booking passage on a ship or renting a video. Session beans frequently manage
the interactions between entity beans, describing how they work together to accomplish a specific task. The relationship
between session beans and entity beans is like the relationship between a script for a play and the actors that perform
the play. Actors are pointless without a script; they may represent something, but they can't tell a story. Similarly,
entities represented in a database aren't meaningful unless you can have interactions between entities. It makes no
sense to have a database full of cabins, ships, customers, and such if we can't create interactions between them, such
as booking a customer for a cruise.

Session beans are divided into two basic types: stateless and stateful. A stateless session bean is a collection of related
services, each represented by a method; the bean maintains no state from one method invocation to the next. When
you invoke a method on a stateless session bean, it executes the method and returns the result without knowing or
caring what other requests have gone before or might follow. Think of a stateless session bean as a set of procedures
or batch programs that execute a request based on some parameters and return a result.

A stateful session bean is an extension of the client application. It performs tasks on behalf of a client and maintains
state related to that client. This state is called conversational state because it represents a continuing conversation
between the stateful session bean and the client. Methods invoked on a stateful session bean can write and read data to
and from this conversational state, which is shared among all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might have been captured in the client application of a two-tier
system.

Depending on the vendor, stateful session beans may have a timeout period. If the client fails to use the stateful bean
before it times out, the bean instance is destroyed and the EJB object reference is invalidated. This prevents the
stateful session bean from lingering long after a client has shut down or otherwise finished using it. After all, clients can
crash, and users can walk away from their desks and forget what they're doing; we don't want stateful session beans
associated with dead clients or forgetful users cluttering up our server forever. A client can also explicitly remove a
stateful session bean by calling one of its remove methods.

Stateless session beans have longer lives because they do not retain any conversational state and are not dedicated to
one client. As soon as a stateless session bean has finished a method invocation, it can be reassigned to service a new
client. Stateless session beans may also have a timeout period and can be removed by the client, but the impact of a
bean timeout or removal is different than with a stateful session bean. A timeout or remove operation simply invalidates
the EJB object reference for that client; the bean instance is not destroyed and is free to service other client requests.

Whether they are stateful or stateless, session beans are not persistent like entity beans. In other words, session beans
don't represent persistent date and are not saved to the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.1 The Stateless Session Bean
A stateless session bean is very efficient and relatively easy to develop. A session bean can be swapped freely between
EJB objects because it isn't dedicated to one client and doesn't maintain any conversational state. As soon as it is
finished servicing a method invocation it can be swapped to another EJB object. Because it does not maintain
conversational state, a stateless session bean does not require passivation or activation, further reducing the overhead
of swapping. In short, stateless session beans are lightweight and fast.

Saying that a stateless session bean doesn't maintain any conversational state means that every method invocation is
independent of previous invocations, and that everything the method needs to know has to be passed via the method's
parameters. Since stateless session beans can't remember anything from one method invocation to the next, they must
take care of an entire task in one method invocation. The only exception to this rule is information obtainable from the
SessionContext and the JNDI ENC. Stateless session beans are EJB's version of the traditional transaction-processing
applications, which are executed using a procedure call. The procedure executes from beginning to end and then
returns the result. Once the procedure is done, nothing about the data that was manipulated or the details of the
request are remembered.

These restrictions don't mean that a stateless session bean can't have instance variables or maintain any kind of
internal state. Nothing prevents you from keeping a variable that tracks the number of times a bean has been called or
that saves data for debugging. An instance variable can even hold a reference to a live resource, such as a URL
connection for logging, verifying credit cards, or anything else that might be useful—the resource should be obtained
from the JNDI ENC. However, it is important to remember that this state can never be visible to a client. A client can't
assume that the same bean instance will service all of its requests. Instance variables may have different values in
different bean instances, so their values can appear to change randomly as stateless session beans are swapped from
one client to another. Therefore, any resources you reference in instance variables should be generic. For example,
each bean instance might reasonably record debugging messages—that might be the only way to figure out what is
happening on a large server with many bean instances. The client doesn't know or care where debugging output is
going. However, it would clearly be inappropriate for a stateless bean to remember that it was in the process of making
a reservation for Madame X—the next time it is called, it may be servicing another client entirely.

Stateless session beans can be used for report generation, batch processing, or some stateless services such as
validating credit cards. Another good application might be a StockQuote EJB that returns a stock's current price. Any
activity that can be accomplished in one method call is a good candidate for the high-performance stateless session
bean.

11.1.1 The ProcessPayment EJB

Chapter 2 and Chapter 3 discussed the TravelAgent EJB, which has a business method called bookPassage() that uses
the ProcessPayment EJB. The next section develops a complete definition of the TravelAgent EJB, including the logic of
the bookPassage() method. At this point, however, we are primarily interested in the ProcessPayment EJB, which is a
stateless bean the TravelAgent EJB uses to charge the customer for the price of the cruise. Charging customers is a
common activity in Titan's business systems. Not only does the reservation system need to charge customers, but so do
Titan's gift shops, boutiques, and other related businesses. Because many different systems charge customers for
services, we've encapsulated the logic for charging customers in its own bean.

Payments are recorded in a special database table called PAYMENT. The PAYMENT data is batch processed for accounting
purposes and is not normally used outside of accounting. In other words, the data is only inserted by Titan's system; it
is not read, updated, or deleted. Because the process of making a charge can be completed in one method, and
because the data is not updated frequently or shared, we will use a stateless session bean for processing payments.
Several different forms of payment can be used: credit card, check, or cash. We will model these payment forms in our
stateless ProcessPayment EJB.

11.1.1.1 The database table (PAYMENT)

The ProcessPayment EJB accesses an existing table in Titan's system called the PAYMENT table. Create a table in your
database called PAYMENT with this definition:

CREATE TABLE PAYMENT

(

 customer_id INTEGER,

 amount DECIMAL(8,2),

 type CHAR(10),

 check_bar_code CHAR(50),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 check_bar_code CHAR(50),

 check_number INTEGER,

 credit_number CHAR(20),

 credit_exp_date DATE

)

11.1.1.2 The remote interface (ProcessPaymentRemote)

A stateless session bean, like an entity bean, may have a local or remote interface, or both. The remote interface
obviously needs a byCredit() method because the TravelAgent EJB uses it. We can also identify two other methods that
we'll need: byCash() for customers paying cash and byCheck() for customers paying with a personal check. Here is a
complete definition of the remote interface for the ProcessPayment EJB:

package com.titan.processpayment;

import java.rmi.RemoteException;

import com.titan.customer.CustomerRemote;

public interface ProcessPaymentRemote extends javax.ejb.EJBObject {

 public boolean byCheck(CustomerRemote customer, CheckDO check, double amount)

 throws RemoteException,PaymentException;

 public boolean byCash(CustomerRemote customer, double amount)

 throws RemoteException,PaymentException;

 public boolean byCredit(CustomerRemote customer, CreditCardDO card,

 double amount) throws RemoteException,PaymentException;

}

Remote interfaces in session beans follow the same rules as in entity beans. Here, we have defined the three business
methods byCheck(), byCash(), and byCredit(), which take information relevant to the form of payment used and return a
boolean value that indicates whether the payment succeeded. In addition to the required RemoteException, these methods
can throw an application-specific exception, the PaymentException. The PaymentException is thrown if any problems occur
while processing the payment, such as a low check number or an expired credit card. Notice, however, that nothing
about the ProcessPaymentRemote interface is specific to the reservation system. It could be used just about anywhere in
Titan's system. In addition, each method defined in the remote interface is completely independent of the others. All
the data that is required to process a payment is obtained through the method's arguments.

As an extension of the javax.ejb.EJBObject interface, the remote interface of a session bean inherits the remote interface
of an entity bean. However, the getPrimaryKey() method throws a RemoteException, since session beans do not have a
primary key to return:

public interface javax.ejb.EJBObject extends java.rmi.Remote {

 public abstract EJBHome getEJBHome() throws RemoteException;

 public abstract Handle getHandle() throws RemoteException;

 public abstract Object getPrimaryKey() throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract Object getPrimaryKey() throws RemoteException;

 public abstract boolean isIdentical(EJBObject obj) throws RemoteException;

 public abstract void remove() throws RemoteException, RemoveException;

}

The getHandle() method returns a serializable Handle object, just like the getHandle() method in the entity bean. A
stateless session bean can serialize and reuse this Handle at any time, as long as the stateless bean type is still available
in the container that generated the Handle. You can obtain a remote reference to the bean from the Handle by invoking
its getEJBObject() method:

public interface javax.ejb.Handle {

 public abstract EJBObject getEJBObject() throws RemoteException;

}

The ProcessPayment EJB has its own package, which means it has its own directory in our development tree,
dev/com/titan/processpayment. That's where we'll store all the code and class files for this bean.

11.1.1.3 Dependent objects (CreditCardDO and CheckDO classes)

The ProcessPayment EJB's remote interface uses two classes that are particularly interesting, CreditCardDO and CheckDO:

/* CreditCardDO.java */

package com.titan.processpayment;

import java.util.Date;

public class CreditCardDO implements java.io.Serializable {

 final static public String MASTER_CARD = "MASTER_CARD";

 final static public String VISA = "VISA";

 final static public String AMERICAN_EXPRESS = "AMERICAN_EXPRESS";

 final static public String DISCOVER = "DISCOVER";

 final static public String DINERS_CARD = "DINERS_CARD";

 public String number;

 public Date expiration;

 public String type;

 public CreditCardDO(String nmbr, Date exp, String typ) {

 number = nmbr;

 expiration = exp;

 type = typ;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

}

/* CheckDO.java */

package com.titan.processpayment;

public class CheckDO implements java.io.Serializable {

 public String checkBarCode;

 public int checkNumber;

 public CheckDO(String barCode, int number) {

 checkBarCode = barCode;

 checkNumber = number;

 }

}

CreditCardDO and CheckDO are dependent objects, a concept we explored with the Address EJB in Chapter 6. They are
simply serializable Java classes, not enterprise beans; they provide a convenient mechanism for transporting related
data. CreditCardDO, for example, collects all the credit card data together in one class, making it easier to pass the
information across the network as well as making our interfaces a little cleaner.

11.1.1.4 An application exception (PaymentException)

Any remote or local interface, whether it's for an entity bean or a session bean, can throw application exceptions.
Application exceptions should describe a business logic problem—in this case, a problem making a payment. Application
exceptions should be meaningful to the client, providing a brief and relevant identification of the error.

It is important to understand what exceptions to use and when to use them. The RemoteException indicates subsystem-
level problems and is used by the RMI facility. Likewise, exceptions such as javax.naming.NamingException and
java.sql.SQLException are thrown by other Java subsystems; usually these should not be thrown explicitly by your beans.
You must use try/catch blocks to capture checked exceptions like these.

The EJBException indicates that the container ran into problems processing a local interface invocation. EJBException is
unchecked, so you won't get a compile error if you don't catch it. However, under certain circumstances it is a good
idea to catch EJBException, and in other circumstances it should be propagated.

When a bean method catches a checked exception from a subsystem (JDBC, JNDI, JMS, etc.), it should be rethrown as
either an EJBException or an application exception. You would rethrow a checked exception as an EJBException if it
represented a system-level problem; use an application exception if the original exception resulted from business logic
problems. Your beans incorporate your business logic; if a problem occurs in the business logic, that problem should be
represented by an application exception. When the enterprise bean throws an EJBException or some other type of
RuntimeException, the exception is first processed by the container, which discards the bean instance and replaces it with
another. After the container processes the exception, it propagates an exception to the client. For remote clients, the
container throws a RemoteException; for local clients (co-located enterprise beans), the container rethrows the original
EJBException or RuntimeException thrown by the bean instance.

The PaymentException describes a specific business problem, so it is an application exception. Application exceptions
extend java.lang.Exception. Any instance variables you include in these exceptions should be serializable. Here is the
definition of the PaymentException:

package com.titan.processpayment;

public class PaymentException extends java.lang.Exception {

 public PaymentException() {

 super();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 super();

 }

 public PaymentException(String msg) {

 super(msg);

 }

}

11.1.1.5 The home interface (ProcessPaymentHomeRemote)

The home interface of a stateless session bean must declare a single create() method with no arguments. This is a
requirement of the EJB specification. It is illegal to define create() methods with arguments, because stateless session
beans do not maintain conversational state that needs to be initialized. There are no find methods in session beans
either, because session beans do not represent data in the database. Unlike stateful session beans and entity beans,
stateless session beans may not define any create<SUFFIX>() methods. This restriction has to do with the life cycle of
stateless session beans, which is explained later in this chapter. Here is the definition of the remote home interface for
the ProcessPayment EJB:

package com.titan.processpayment;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

public interface ProcessPaymentHomeRemote extends javax.ejb.EJBHome {

 public ProcessPaymentRemote create() throws RemoteException, CreateException;

}

The CreateException is mandatory, as is the RemoteException. The CreateException can be thrown by the bean itself to
indicate an application error in creating the bean. A RemoteException is thrown when other system errors occur—for
example, when there is a problem with network communication or when an unchecked exception is thrown from the
bean class.

The ProcessPaymentHomeRemote interface, as an extension of the javax.ejb.EJBHome, offers the same EJBHome methods as
entity beans. The only difference is that remove(Object primaryKey) does not work, because session beans do not have
primary keys; if this method is called, it throws a RemoteException. Here is the definition of the javax.ejb.EJBHome
interface:

public interface javax.ejb.EJBHome extends java.rmi.Remote {

 public abstract HomeHandle getHomeHandle() throws RemoteException;

 public abstract EJBMetaData getEJBMetaData() throws RemoteException;

 public abstract void remove(Handle handle) throws RemoteException,

 RemoveException;

 public abstract void remove(Object primaryKey) throws RemoteException,

 RemoveException;

}

The home interface of a session bean can return the EJBMetaData for the bean, just like an entity bean. EJBMetaData is a
serializable object that provides information about the bean's interfaces. The only difference between the EJBMetaData
for a session bean and an entity bean is that calling getPrimaryKeyClass() on the session bean's EJBMetaData throws a
java.lang.RuntimeException:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.lang.RuntimeException:

public interface javax.ejb.EJBMetaData {

 public abstract EJBHome getEJBHome();

 public abstract Class getHomeInterfaceClass();

 public abstract Class getPrimaryKeyClass();

 public abstract Class getRemoteInterfaceClass();

 public abstract boolean isSession();

 public abstract boolean isStateless(); // EJB 1.0 only

}

11.1.1.6 The bean class (ProcessPaymentBean)

The ProcessPayment EJB accesses data that is not generally shared by other parts of the system, so it is an excellent
candidate for a stateless session bean. This bean really represents a set of independent operations—another indication
that it is a good candidate for a stateless session bean. Here is the definition of the ProcessPaymentBean class:

package com.titan.processpayment;

import com.titan.customer.*;

import java.sql.*;

import java.rmi.RemoteException;

import javax.ejb.SessionContext;

import javax.naming.InitialContext;

import javax.sql.DataSource;

import javax.ejb.EJBException;

import javax.naming.NamingException;

public class ProcessPaymentBean implements javax.ejb.SessionBean {

 final public static String CASH = "CASH";

 final public static String CREDIT = "CREDIT";

 final public static String CHECK = "CHECK";

 public SessionContext context;

 public void ejbCreate() {

 }

 public boolean byCash(CustomerRemote customer, double amount)

 throws PaymentException{

 return process(getCustomerID(customer), amount, CASH, null, -1, null, null);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return process(getCustomerID(customer), amount, CASH, null, -1, null, null);

 }

 public boolean byCheck(CustomerRemote customer, CheckDO check, double amount)

 throws PaymentException{

 int minCheckNumber = getMinCheckNumber();

 if (check.checkNumber > minCheckNumber) {

 return process(getCustomerID(customer), amount, CHECK,

 check.checkBarCode, check.checkNumber, null, null);

 }

 else {

 throw new PaymentException("Check number is too low.

 Must be at least "+minCheckNumber);

 }

 }

 public boolean byCredit(CustomerRemote customer, CreditCardDO card,

 double amount) throws PaymentException {

 if (card.expiration.before(new java.util.Date())) {

 throw new PaymentException("Expiration date has passed");

 }

 else {

 return process(getCustomerID(customer), amount, CREDIT, null,

 -1, card.number, new java.sql.Date(card.expiration.getTime()));

 }

 }

 private boolean process(Integer customerID, double amount, String type,

 String checkBarCode, int checkNumber, String creditNumber,

 java.sql.Date creditExpDate) throws PaymentException {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = getConnection();

 ps = con.prepareStatement

 ("INSERT INTO payment (customer_id, amount, type,"+

 "check_bar_code,check_number,credit_number,"+

 "credit_exp_date) VALUES (?,?,?,?,?,?,?)");

 ps.setInt(1,customerID.intValue());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ps.setInt(1,customerID.intValue());

 ps.setDouble(2,amount);

 ps.setString(3,type);

 ps.setString(4,checkBarCode);

 ps.setInt(5,checkNumber);

 ps.setString(6,creditNumber);

 ps.setDate(7,creditExpDate);

 int retVal = ps.executeUpdate();

 if (retVal!=1) {

 throw new EJBException("Payment insert failed");

 }

 return true;

 } catch(SQLException sql) {

 throw new EJBException(sql);

 } finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbRemove() {}

 public void setSessionContext(SessionContext ctx) {

 context = ctx;

 }

 private Integer getCustomerID(CustomerRemote customer) {

 try {

 return (Integer)customer.getPrimaryKey();

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

 }

 private Connection getConnection() throws SQLException {

 // Implementations shown below

 }

 private int getMinCheckNumber() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private int getMinCheckNumber() {

 // Implementations shown below

 }

}

The three payment methods all use the private helper method process(), which does the work of adding the payment to
the database. This strategy reduces the possibility of programmer error and makes the bean easier to maintain. The
process() method simply inserts the payment information into the PAYMENT table. The JDBC connection is obtained from
the getConnection() method:

private Connection getConnection() throws SQLException {

 try {

 InitialContext jndiCntx = new InitialContext();

 DataSource ds = (DataSource)

 jndiCntx.lookup("java:comp/env/jdbc/titanDB");

 return ds.getConnection();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

The byCheck() and byCredit() methods contain some logic to validate the data before processing it. byCredit() verifies
that the credit card's expiration date does not precede the current date. If it does, a PaymentException is thrown. byCheck(
) verifies that the serial number of the check is above a certain minimum, which is determined by a property that is
defined when the bean is deployed. If the check number is below this value, a PaymentException is thrown. The property
is obtained from the getMinCheckNumber() method, which uses the JNDI ENC to read the value of the minCheckNumber
property:

private int getMinCheckNumber() {

 try {

 InitialContext jndiCntx = new InitialContext();

 Integer value = (Integer)

 jndiCntx.lookup("java:comp/env/minCheckNumber");

 return value.intValue();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

It is a good idea to capture thresholds and other limits in the bean's environment properties, rather than hardcoding
them: it gives you greater flexibility. If, for example, Titan decided to raise the minimum check number, you would
need to change the bean's deployment descriptor only, not the class definition. (You could also obtain this type of
information directly from the database.)

11.1.1.7 Accessing environment properties (JNDI ENC)

In EJB, the bean container contract includes the JNDI environment naming context (JNDI ENC). The JNDI ENC is a JNDI
namespace that is specific to each bean type. This namespace can be referenced from within any bean, not just entity
beans, using the name "java:comp/env". The enterprise naming context provides a flexible, yet standard mechanism for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

beans, using the name "java:comp/env". The enterprise naming context provides a flexible, yet standard mechanism for
accessing properties, other beans, and resources from the container.

We've already seen the JNDI ENC several times. In Chapter 9, we used it to access a resource factory, the DataSource.
The ProcessPaymentBean also uses the JNDI ENC to access a DataSource in the getConnection() method. Furthermore, it
uses the JNDI ENC to access an environment property in the getMinCheckNumber() method. This section examines the
use of the JNDI ENC to access environment properties.

Named properties can be declared and their values defined in a bean's deployment descriptor. The bean accesses these
properties at runtime by using the JNDI ENC. Properties can be of type String or one of several primitive wrapper types,
including Integer, Long, Double, Float, Byte, Boolean, and Short. By setting the values of the relevant properties, the bean
deployer can change the bean's behavior without changing its code. As we've seen in the ProcessPayment EJB, we could
change the minimum check number that we're willing to accept by modifying the minCheckNumber property at
deployment.

Here's how to declare a named property:

<ejb-jar ...>

 <enterprise-beans>

 <session>

 <env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

 </env-entry>

 ...

 </session>

 ...

 </enterprise-beans>

 ...

</ejb-jar>

11.1.1.8 The ProcessPayment EJB's deployment descriptor

Deploying the ProcessPayment EJB presents no significant problems. It is essentially the same as deploying an entity
bean, except that the ProcessPayment EJB has no primary key or persistence fields. Here is the XML deployment
descriptor for the ProcessPayment EJB in EJB 2.1:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <description>

 A service that handles monetary payments.

 </description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </description>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

 <ejb-class>

 com.titan.processpayment.ProcessPaymentBean

 </ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

 </env-entry>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the ProcessPayment EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>ProcessPaymentEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The deployment descriptor for EJB 2.0 is exactly the same, except it's based on a DTD instead of an XML Schema, so it
uses a document declaration and has a simpler <ejb-jar> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 ...

Exercise 11.1 in the Workbook shows how to deploy these examples.

11.1.1.9 Local component interfaces

Like entity beans, stateless session beans can define local component interfaces. Local interfaces allow other beans in
the same container to use the stateless session bean more efficiently. The process of defining local interfaces for a
stateless or stateful session bean is the same as for entity beans. The local interfaces extend javax.ejb.EJBLocalObject (for
business methods) and javax.ejb.EJBLocalHome (for the home interfaces). These interfaces are then defined in the XML
deployment descriptor in the <local> and <local-home> elements.

For the sake of brevity, we will not define local interfaces for either the stateless ProcessPayment EJB or the stateful
TravelAgent EJB developed later in this chapter. Your experience creating local interfaces for entity beans in Chapter 5,
Chapter 6, and Chapter 7 can be applied easily to any kind of session bean.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.2 The Life Cycle of a Stateless Session Bean
The life cycle of a stateless session bean is very simple. It only has two states: Does Not Exist and Method-Ready Pool.
The Method-Ready Pool is similar to the instance pool used for entity beans. This is an important difference between
stateless and stateful session beans; stateless beans define instance pooling in their life cycle and stateful beans do
not.[1] Figure 11-1 illustrates the states and transitions a stateless session bean instance goes through in its lifetime.

[1] Some vendors may not pool stateless instances, but may instead create and destroy instances with each
method invocation. This is an implementation-specific decision that shouldn't affect the specified life cycle of the
stateless bean instance.

Figure 11-1. Stateless session bean life cycle

11.2.1 Does Not Exist

When a bean is in the Does Not Exist state, it is not an instance in the memory of the system. In other words, it has not
been instantiated yet.

11.2.2 The Method-Ready Pool

Stateless bean instances enter the Method-Ready Pool as the container needs them. When the EJB server is first
started, it may create a number of stateless bean instances and enter them into the Method-Ready Pool. (The actual
behavior of the server depends on the implementation.) When the number of stateless instances servicing client
requests is insufficient, more can be created and added to the pool.

11.2.2.1 Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three operations are performed
on it. First, the bean instance is instantiated by invoking the Class.newInstance() method on the stateless bean class.
Second, the bean instance's setSessionContext(SessionContext context) method is invoked. This is when the instance
receives its reference to the EJBContext. The SessionContext reference may be stored in a nontransient instance field of
the stateless session bean. Finally, the bean's no-argument ejbCreate() method is invoked. Remember that a stateless
session bean has only one ejbCreate() method, which takes no arguments. ejbCreate() is invoked only once in the life
cycle of the stateless session bean.

Entity, session, and message-driven beans must never define constructors. Take care of
initialization within ejbCreate() and other callback methods. The container instantiates
instances of the bean class using Class.newInstance(), which requires a no-argument
constructor. If no constructors are defined, the no-augment constructor is implicit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constructor. If no constructors are defined, the no-augment constructor is implicit.

Stateless session beans are not subject to activation, so they can maintain open connections to resources for their
entire life cycles.[2] The ejbRemove() method should close any open resources before the stateless session bean is
evicted from memory at the end of its life cycle. You'll read more about ejbRemove() later in this section.

[2] The duration of a stateless bean instance's life is assumed to be very long. However, some EJB servers may
actually destroy and create instances with every method invocation, making this strategy less attractive. Consult
your vendor's documentation for details on how your EJB server handles stateless instances.

11.2.2.2 Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to service client requests. When a client invokes a business
method on an EJB object, the method call is delegated to any available instance in the Method-Ready Pool. While the
instance is executing the request, it is unavailable for use by other EJB objects. Once the instance has finished, it is
immediately available to any EJB object that needs it. This is slightly different from the instance pool for entity beans
described in Chapter 10. In the entity instance pool, a bean instance might be swapped in to service an EJB object for
several method invocations. Stateless session instances are typically dedicated to an EJB object only for the duration of
a single method call.

When an instance is swapped in, its SessionContext changes to reflect the context of the EJB object and the client
invoking the method. The bean instance may be included in the transactional scope of the client's request and it may
access SessionContext information specific to the client request: for example, the security and transactional methods.
Once the instance has finished servicing the client, it is disassociated from the EJB object and returned to the Method-
Ready Pool.

Stateless session beans are not subject to activation and never have their ejbActivate() or ejbPassivate() callback
methods invoked. The reason is simple: stateless instances have no conversational state to be preserved. (Stateful
session beans depend on activation, as we'll see later.)

Clients that need a remote or local reference to a stateless session bean begin by invoking the create() method on the
bean's EJB home:

Object ref = jndiConnection.lookup("ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote home = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

ProcessPaymentRemote pp = home.create();

Unlike the entity bean and stateful session bean, invoking the create() method does not result in a call to the bean's
ejbCreate() method. In stateless session beans, calling the EJB home's create() method results in the creation of an EJB
object for the client, but that is all. ejbCreate() is invoked only once in the life cycle of an instance: when it is
transitioning from the Does Not Exist state to the Method-Ready Pool. It is not reinvoked every time a client requests a
remote reference to the bean. Stateless session beans are limited to a single no-argument create() method because
there is no way for the container to anticipate which create() method the client will invoke.

11.2.2.3 Transitioning out of the Method-Ready Pool: The death of a stateless
bean instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when the server no longer needs them; that
is, when the server decides to reduce the total size of the Method-Ready Pool by evicting one or more instances from
memory. The process begins by invoking the ejbRemove() method on the instance. At this time, the bean instance
should perform any cleanup operations, such as closing open resources. As with ejbCreate(), ejbRemove() is invoked only
once: when the bean is about to transition to the Does Not Exist state. When a client invokes one of a stateless session
bean's remove methods, the bean's stub is invalidated, and the container is notified that the bean is no longer needed,
but the bean itself is not removed. The container itself invokes ejbRemove() on the stateless instance at the end of the
instance's life cycle—when it decides it no longer needs to maintain this instance in the pool. Again, this is different
from both stateful session beans and entity beans, which suffer more destructive consequences when the client invokes
a remove method. During the ejbRemove() method, the SessionContext and access to the JNDI ENC are still available to
the bean instance. Following the execution of the ejbRemove() method, the bean is dereferenced and eventually garbage
collected.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.3 The Stateful Session Bean
Each stateful session bean is dedicated to one client for the life of the bean instance; it acts on behalf of that client as
its agent. Stateful session beans are not swapped among EJB objects or kept in an instance pool like entity and
stateless session bean instances. Once a stateful session bean is instantiated and assigned to an EJB object, it is
dedicated to that EJB object for its entire life cycle.[3]

[3] This is a conceptual model. Some EJB containers may actually use instance swapping with stateful session
beans but make it appear as if the same instance is servicing all requests. Conceptually, however, the same
stateful session bean instance services all requests.

Stateful session beans maintain conversational state, which means that the instance variables of the bean class can
maintain data specific to the client between method invocations. This makes it possible for methods to be
interdependent, so that changes made to the bean's state in one method call can affect the results of subsequent
method invocations. Therefore, every method call from a client must be serviced by the same instance (at least
conceptually), so the bean instance's state can be predicted from one method invocation to the next. In contrast,
stateless session beans don't maintain client-specific data from one method call to the next, so any instance can be
used to service any method call from any client.

Although stateful session beans maintain conversational state, they are not themselves persistent like entity beans.
Entity beans represent data in the database; their persistence fields are written directly to the database. Stateful
session beans can access the database but do not represent data in the database. In addition, stateful beans are not
used concurrently like entity beans. If you have an entity EJB object that wraps an instance of the ship called Paradise,
for example, all client requests for that ship will be coordinated through the same EJB object.[4] With stateful session
beans, the EJB object is dedicated to one client—stateful session beans are not used concurrently.

[4] This is also a conceptual model. Some EJB containers may use separate EJB objects for concurrent access to the
same entity, relying on the database to control concurrency. Conceptually, however, the end result is the same.

Stateful session beans are often considered extensions of the client. This makes sense if you think of a client as being
made up of operations and state. Each task may rely on some information gathered or changed by a previous
operation. A GUI client is a perfect example: when you fill in the fields on a GUI client you are creating conversational
state. Pressing a button executes an operation that might fill in more fields, based on the information you entered
previously. The information in the fields is conversational state.

Stateful session beans allow you to encapsulate some of the business logic and conversational state of a client and
move it to the server. Moving this logic to the server thins the client application and makes the system as a whole
easier to manage. The stateful session bean acts as an agent for the client, managing processes or taskflow to
accomplish a set of tasks; it manages the interactions of other beans in addition to direct data access over several
operations to accomplish a complex set of tasks. By encapsulating and managing taskflow on behalf of the client,
stateful beans present a simplified interface that hides the details of many interdependent operations on the database
and other beans from the client.

11.3.1 Getting Set Up for the TravelAgent EJB

The TravelAgent EJB will make use of the Cabin, Cruise, Reservation, and Customer beans developed in Chapter 6 and
Chapter 7. It will coordinate the interaction of these entity beans to book a passenger on a cruise. We'll modify the
Reservation EJB that was used in Chapter 7 so that it can be created with all its relationships identified right away. To
do so, we overload its ejbCreate() method:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(CustomerRemote customer, CruiseLocal cruise,

 CabinLocal cabin, double price, Date dateBooked) {

 setAmountPaid(price);

 setDate(dateBooked);

 return null;

 }

 public void ejbPostCreate(CustomerRemote customer, CruiseLocal cruise,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ejbPostCreate(CustomerRemote customer, CruiseLocal cruise,

 CabinLocal cabin, double price, Date dateBooked)

 throws javax.ejb.CreateException {

 setCruise(cruise);

 // add Cabin to collection-based CMR field

 Set cabins = new HashSet();

 cabins.add(cabin);

 this.setCabins(cabins);

 try {

 Integer primKey = (Integer)customer.getPrimaryKey();

 javax.naming.Context jndiContext = new InitialContext();

 CustomerHomeLocal home = (CustomerHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CustomerHomeLocal");

 CustomerLocal custL = home.findByPrimaryKey(primKey);

 // add Customer to collection-based CMR field

 Set customers = new HashSet();

 customers.add(custL);

 this.setCustomers(customers);

 } catch (RemoteException re) {

 throw new CreateException("Invalid Customer");

 } catch (FinderException fe) {

 throw new CreateException("Invalid Customer");

 } catch (NamingException ne) {

 throw new CreateException("Invalid Customer");

 }

 }

Relationship fields use local EJB object references, so we must convert the CustomerRemote reference to a CustomerLocal
reference in order to set the Reservation EJB's customer relationship field. To do this, you can either use the JNDI ENC to
locate the local home interface and then execute the findByPrimaryKey() method, or implement an ejbSelect() method in
the Reservation EJB to locate the CustomerLocal reference.

11.3.2 The TravelAgent EJB

The TravelAgent EJB, which we have already seen, is a stateful session bean that encapsulates the process of making a
reservation on a cruise. We will develop this bean further to demonstrate how stateful session beans can be used as
taskflow objects. We won't develop a local interface for the TravelAgent EJB, partly because it is designed to be used by
remote clients (and therefore doesn't require local component interfaces), and partly because the rules for developing
local interfaces for stateful session beans are the same as those for stateless session and entity beans.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local interfaces for stateful session beans are the same as those for stateless session and entity beans.

11.3.2.1 The remote interface (TravelAgent)

In Chapter 4, we developed an early version of the TravelAgentRemote interface that contained a single business method,
listCabins(). We are now going to remove the listCabins() method and redefine the TravelAgent EJB so that it behaves
like a taskflow object. Later in this chapter, we will add a modified listing method for obtaining a more specific list of
cabins for the user.

As a stateful session bean that models taskflow, the TravelAgent EJB manages the interactions between several other
beans while maintaining conversational state. Here's the modified TravelAgentRemote interface:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

import com.titan.processpayment.CreditCardDO;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(Integer cruise)

 throws RemoteException, FinderException;

 public void setCabinID(Integer cabin)

 throws RemoteException, FinderException;

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws RemoteException,IncompleteConversationalState;

}

The purpose of the TravelAgent EJB is to make cruise reservations. To accomplish this task, the bean needs to know
which cruise, cabin, and customer make up the reservation. Therefore, the client using the TravelAgent EJB needs to
gather this kind of information before making the booking. The TravelAgentRemote interface provides methods for setting
the IDs of the cruise and cabin that the customer wants to book. We can assume that the cabin ID comes from a list
and that the cruise ID comes from some other source. The customer is set in the create() method of the home interface
—more about this later.

Once the customer, cruise, and cabin are chosen, the TravelAgent EJB is ready to process the reservation. This
operation is performed by the bookPassage() method, which needs the customer's credit card information and the price
of the cruise. bookPassage() is responsible for charging the customer's account, reserving the chosen cabin in the right
ship on the right cruise, and generating a ticket for the customer. How this is accomplished is not important to us at
this point; when we are developing the remote interface, we are concerned only with the business definition of the
bean. We will discuss the implementation when we talk about the bean class.

Note that the bookPassage() method throws an application-specific exception, IncompleteConversationalState. This exception
is used to communicate business problems encountered while booking a customer on a cruise. The
IncompleteConversationalState exception indicates that the TravelAgent EJB did not have enough information to process
the booking. Here's the IncompleteConversationalState class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the booking. Here's the IncompleteConversationalState class:

package com.titan.travelagent;

public class IncompleteConversationalState extends java.lang.Exception {

 public IncompleteConversationalState(){super();}

 public IncompleteConversationalState(String msg){super(msg);}

}

11.3.2.2 Dependent object (TicketDO)

Like the CreditCardDO and CheckDO classes used in the ProcessPayment EJB, the TicketDO class is defined as a pass-by-
value object. One could argue that a ticket should be an entity bean since it is not dependent and may be accessed
outside the context of the TravelAgent EJB. However, determining how a business object is used can also dictate
whether it should be a bean or simply a class. The TicketDO object, for example, could be digitally signed and emailed to
the client as proof of purchase. This would not be feasible if the TicketDO object were an entity bean, because enterprise
beans are referenced only through their component interfaces and are never passed by value.

The constructor for TicketDO uses the local interfaces of creating a new TicketDO object:

package com.titan.travelagent;

import com.titan.cruise.CruiseLocal;

import com.titan.cabin.CabinLocal;

import com.titan.customer.CustomerRemote;

public class TicketDO implements java.io.Serializable {

 public Integer customerID;

 public Integer cruiseID;

 public Integer cabinID;

 public double price;

 public String description;

 public TicketDO(CustomerRemote customer, CruiseLocal cruise,

 CabinLocal cabin, double price) throws javax.ejb.FinderException,

 RemoteException, javax.naming.NamingException {

 description = customer.getFirstName()+

 " " + customer.getLastName() +

 " has been booked for the "

 + cruise.getName() +

 " cruise on ship " +

 cruise.getShip().getName() + ".\n" +

 " Your accommodations include " +

 cabin.getName() +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cabin.getName() +

 " a " + cabin.getBedCount() +

 " bed cabin on deck level " + cabin.getDeckLevel() +

 ".\n Total charge = " + price;

 customerID = (Integer)customer.getPrimaryKey();

 cruiseID = (Integer)cruise.getPrimaryKey();

 cabinID = (Integer)cabin.getPrimaryKey();

 this.price = price;

 }

 public String toString() {

 return description;

 }

}

11.3.2.3 The home interface (TravelAgentHomeRemote)

Starting with the TravelAgentHomeRemote interface we developed in Chapter 4, we can modify the create() method to
take a remote reference to the customer who is making the reservation:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import com.titan.customer.CustomerRemote;

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgentRemote create(CustomerRemote cust)

 throws RemoteException, CreateException;

}

The create() method in this home interface requires that a remote reference to a Customer EJB be used to create the
TravelAgent EJB. Because there are no other create() methods, you cannot create a TravelAgent EJB if you do not know
who the customer is. The Customer EJB reference provides the TravelAgent EJB with some of the conversational state it
will need to process the bookPassage() method.

11.3.2.4 Taking a peek at the client view

Before settling on definitions for your component interfaces, it is a good idea to figure out how clients will use the bean.
Imagine that the TravelAgent EJB is used by a Java application with GUI fields. These fields capture the customer's
preference for the type of cruise and cabin. We start by examining the code used at the beginning of the reservation
process:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CustomerHomeRemote");

CustomerHomeRemote customerHome =(CustomerHomeRemote)

 PortableRemoteObject.narrow(ref, CustomerHomeRemote.class);

String ln = tfLastName.getText();

String fn = tfFirstName.getText();

String mn = tfMiddleName.getText();

CustomerRemote customer = customerHome.create(nextID, ln, fn, mn);

ref = jndiContext.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref, TravelAgentHomeRemote.class);

TravelAgentRemote agent = home.create(customer);

This code creates a new Customer EJB based on information the travel agent gathered over the phone. The
CustomerRemote reference is then used to create a TravelAgent EJB. Next, we gather the cruise and cabin choices from
another part of the applet:

Integer cruise_id = new Integer(textField_cruiseNumber.getText());

Integer cabin_id = new Integer(textField_cabinNumber.getText());

agent.setCruiseID(cruise_id);

agent.setCabinID(cabin_id);

The travel agent chooses the cruise and cabin the customer wishes to reserve. These IDs are set in the TravelAgent
EJB, which maintains the conversational state for the whole process.

At the end of the process, the travel agent completes the reservation by processing the booking and generating a
ticket. Because the TravelAgent EJB has maintained the conversational state, caching the customer, cabin, and cruise
information, only the credit card and price are needed to complete the transaction:

String cardNumber = textField_cardNumber.getText();

Date date = dateFormatter.parse(textField_cardExpiration.getText());

String cardBrand = textField_cardBrand.getText();

CreditCardDO card = new CreditCardDO(cardNumber,date,cardBrand);

double price = double.valueOf(textField_cruisePrice.getText()).doubleValue();

TicketDO ticket = agent.bookPassage(card,price);

PrintingService.print(ticket);

This summary of how the client will use the TravelAgent EJB confirms that our remote interface and home interface
definitions are workable. We can now move ahead with development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3.2.5 TravelAgentBean: The bean class

We can now implement all of the behavior expressed in the new remote interface and home interface for the
TravelAgent EJB.[5] Here is a partial definition of the new TravelAgentBean class:

[5] If you are modifying the bean developed in Chapter 4, remember to delete the listCabin() method. We will add
a new implementation of that method later in this chapter.

import com.titan.reservation.*;

import java.sql.*;

import javax.sql.DataSource;

import java.util.Vector;

import java.rmi.RemoteException;

import javax.naming.NamingException;

import javax.ejb.EJBException;

import com.titan.processpayment.*;

import com.titan.cruise.*;

import com.titan.customer.*;

import com.titan.cabin.*;

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 public CruiseLocal cruise;

 public CabinLocal cabin;

 public javax.ejb.SessionContext ejbContext;

 public javax.naming.Context jndiContext;

 public void ejbCreate(CustomerRemote cust) {

 customer = cust;

 }

 public void setCabinID(Integer cabinID) throws javax.ejb.FinderException {

 try {

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 cabin = home.findByPrimaryKey(cabinID);

 } catch(RemoteException re) {

 throw new EJBException(re);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new EJBException(re);

 }

 }

 public void setCruiseID(Integer cruiseID) throws javax.ejb.FinderException {

 try {

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 cruise = home.findByPrimaryKey(cruiseID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

 }

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)

 {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup("java:comp/env/ejb/

 ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer, cruise, cabin, price);

 return ticket;

 } catch(Exception e) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 public void ejbRemove() {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void setSessionContext(javax.ejb.SessionContext cntx)

 {

 ejbContext = cntx;

 try {

 jndiContext = new javax.naming.InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

 }

}

This is a lot of code to digest, so we will approach it in small pieces. First, let's examine the ejbCreate() method:

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 ...

 public javax.ejb.SessionContext ejbContext;

 public javax.naming.Context jndiContext;

 public void ejbCreate(CustomerRemote cust) {

 customer = cust;

 }

When the bean is created, the remote reference to the Customer EJB is passed to the bean instance and maintained in
the customer field. The customer field is part of the bean's conversational state. We could have obtained the customer's
identity as an integer ID and constructed the remote reference to the Customer EJB in the ejbCreate() method.
However, we passed the reference directly to demonstrate that remote references to beans can be passed from a client
application to a bean. They can also be returned from the bean to the client and passed between beans on the same
EJB server or between EJB servers.

References to the SessionContext and JNDI context are held in fields called ejbContext and jndiContext. The "ejb" and "jndi"
prefixes help to avoid confusion between the different content types.

When a bean is passivated, the JNDI ENC must be maintained as part of the bean's conversational state. This means
that the JNDI context should not be transient. Once a field is set to reference the JNDI ENC, the reference remains valid
for the life of the bean. In the TravelAgentBean, we set the jndiContext field when the SessionContext is set, at the beginning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for the life of the bean. In the TravelAgentBean, we set the jndiContext field when the SessionContext is set, at the beginning
of the bean's life cycle:

public void setSessionContext(javax.ejb.SessionContext cntx) {

 ejbContext = cntx;

 try {

 jndiContext = new InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

The EJB container makes special accommodations for references to the SessionContext, the JNDI ENC, references to
other beans (remote and home interface types), and the JTA UserTransaction type (discussed in Chapter 15). The
container must maintain any instance fields that reference objects of these types as part of the conversational state,
even if they are not serializable. All other fields must be serializable or null when the bean is passivated.

The TravelAgent EJB has methods for setting the desired cruise and cabin. These methods take Integer IDs as
arguments and retrieve references to the appropriate Cruise or Cabin EJB from the appropriate home interface. These
references are also part of the TravelAgent EJB's conversational state. Here's how setCabinID() and getCabinID() are
defined:

public void setCabinID(Integer cabinID)

 throws javax.ejb.FinderException {

 try {

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 cabin = home.findByPrimaryKey(cabinID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

}

public void setCruiseID(Integer cruiseID)

 throws javax.ejb.FinderException {

 try {

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 cruise = home.findByPrimaryKey(cruiseID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

}

It may seem strange that we set these values using Integer IDs, but we keep them in the conversational state as entity
bean references. Using Integer IDs is simpler for the client, which does not work with their entity bean references. In the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bean references. Using Integer IDs is simpler for the client, which does not work with their entity bean references. In the
client code, we get the cabin and cruise IDs from text fields. Why make the client obtain a bean reference to the Cruise
and Cabin EJBs when an ID is simpler? In addition, using the IDs is cheaper (i.e., requires less network traffic) than
passing a remote reference. We need the EJB object references to these bean types in the bookPassage() method, so we
use their IDs to obtain actual entity bean references. We could have waited until the bookPassage() method was invoked
before reconstructing the remote references, but this strategy keeps the bookPassage() method simple.

11.3.2.6 JNDI ENC and EJB references

You can use the JNDI ENC to obtain a reference to the home interfaces of other beans. Using the ENC lets you avoid
hardcoding vendor-specific JNDI properties into the bean. In other words, the JNDI ENC allows EJB references to be
network and vendor independent.

In the TravelAgentBean, we used the JNDI ENC to acquire both the remote home interface of the ProcessPayment EJB
and the local home interfaces of the Cruise and Cabin EJBs. The EJB specification recommends that all EJB references
be bound to the "java:comp/env/ejb" context, which is the convention followed here. In the TravelAgent EJB, we append
the name of the home object to "java:comp/env/ejb", giving a result like "java:comp/env/ejb/CruiseHomeLocal".

11.3.2.7 Remote EJB references in the JNDI ENC

The deployment descriptor provides a special set of tags for declaring remote EJB references. Here's how the <ejb-ref>
tag and its subelements are used:

<ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

</ejb-ref>

These elements define a name for the bean within the ENC, declare the bean's type, and give the names of its remote
and home interfaces. When a bean is deployed, the deployer maps the <ejb-ref> elements to actual beans in a way
specific to the vendor. The <ejb-ref> elements can also be linked by the application assembler to beans in the same
deployment (a subject covered in detail in Chapter 17). However, you should try to use local component interfaces for
beans located in the same deployment and container.

11.3.2.8 Local EJB references in the JNDI ENC

The deployment descriptor also provides a special set of tags, the <ejb-local-ref> elements, to declare local EJB
references: enterprise beans that are co-located in the same container and deployed in the same EJB JAR file. The <ejb-
local-ref> elements are declared immediately after the <ejb-ref> elements:

<ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cruise.CruiseHomeLocal

 </local-home>

 <local>

 com.titan.cruise.CruiseLocal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 com.titan.cruise.CruiseLocal

 </local>

 <ejb-link>CruiseEJB</ejb-link>

</ejb-local-ref>

<ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.CabinHomeLocal

 </local-home>

 <local>

 com.titan.cabin.CabinLocal

 </local>

 <ejb-link>CabinEJB</ejb-link>

</ejb-local-ref>

The <ejb-local-ref> element defines a name for the bean within the ENC, declares the bean's type, and gives the names
of its local component interfaces. These elements should be linked explicitly to other co-located beans using the <ejb-
link> element, although linking them is not strictly required at this stage—the application assembler or deployer can do
it later. The value of the <ejb-link> element within the <ejb-local-ref> must be the same as the <ejb-name> of the
appropriate bean in the same JAR file.

At deployment time the EJB container's tools map the local references declared in the <ejb-local-ref> elements to entity
beans that are co-located in the same container system.

11.3.2.9 The bookPassage() method

The last point of interest in our bean definition is the bookPassage() method. This method makes use of the
conversational state accumulated by the ejbCreate(), setCabinID(), and setCruiseID() methods to process a reservation for
a customer. Here's how the bookPassage() method is defined:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup("java:comp/env/ejb/

 ProcessPaymentHomeRemote");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

This method deomonstrates the concept of taskflow. It uses several beans, including the Reservation, ProcessPayment,
Customer, Cabin, and Cruise EJBs, to accomplish one task: booking a customer on a cruise. Deceptively simple, this
method encapsulates several interactions that ordinarily might have been performed on the client. For the price of one
bookPassage() call from the client, the TravelAgent EJB performs many operations:

1. Looks up and obtains a reference to the Reservation EJB's home.

2. Creates a new Reservation EJB.

3. Looks up and obtains a remote reference to the ProcessPayment EJB's home.

4. Creates a new ProcessPayment EJB.

5. Charges the customer's credit card using the ProcessPayment EJB.

6. Generates a new TicketDO with all the pertinent information describing the customer's purchase.

From a design standpoint, encapsulating the taskflow in a stateful session bean means a less complex interface for the
client and more flexibility for implementing changes. We could easily change bookPassage() to check for overlapped
booking (when a customer books passage on two cruises with overlapping dates). This type of enhancement does not
change the remote interface, so the client application does not need modification. Encapsulating taskflow in stateful
session beans allows the system to evolve without impacting clients.

In addition, the type of clients used can change. One of the biggest problems with two-tier architectures—besides
scalability and transactional control—is that the business logic is intertwined with the client logic. As a result, it is
difficult to reuse the business logic in a different kind of client. With stateful session beans this is not a problem,
because stateful session beans are an extension of the client but are not bound to the client's presentation. Let's say
that our first implementation of the reservation system used a Java applet with GUI widgets. The TravelAgent EJB
would manage conversational state and perform all the business logic while the applet focused on the GUI presentation.
If, at a later date, we decide to go to a thin client (HTML generated by a Java servlet, for example), we would simply
reuse the TravelAgent EJB in the servlet. Because all the business logic is in the stateful session bean, the presentation
(Java applet or servlet or something else) can change easily.

The TravelAgent EJB also provides transactional integrity for processing the customer's reservation. If any of the
operations within the body of the bookPassage() method fails, all the operations are rolled back so that none of the
changes are accepted. If the credit card cannot be charged by the ProcessPayment EJB, the newly created Reservation
EJB and its associated record are not created. The transactional aspects of the TravelAgent EJB are explained in detail
in Chapter 15.

The remote and local EJB references can be used within the same taskflow. For example, the bookPassage() method
uses local references when accessing the Cruise and Cabin beans, but remote references when accessing the
ProcessPayment and Customer EJBs. This usage is totally appropriate. The EJB container ensures that the transaction is
atomic, i.e., that failures in either the remote or local EJB reference will affect the entire transaction.

11.3.2.10 Why use a Reservation entity bean?

If we have a Reservation EJB, why do we need a TravelAgent EJB? The TravelAgent EJB uses the Reservation EJB to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we have a Reservation EJB, why do we need a TravelAgent EJB? The TravelAgent EJB uses the Reservation EJB to
create a reservation, but it also has to charge the customer and generate a ticket. These activities are not specific to
the Reservation EJB, so they need to be captured in a stateful session bean that can manage taskflow and transactional
scope. In addition, the TravelAgent EJB provides listing behavior, which spans concepts in Titan's system. It would have
been inappropriate to include any of these other behaviors in the Reservation entity bean.

11.3.2.11 Listing behavior (listAvailableCabins())

As promised, we are going to bring back the cabin-listing behavior we played around with in Chapter 4. This time we
are not going to use the Cabin EJB to get the list; instead, we will access the database directly. Accessing the database
directly is a double-edged sword. On one hand, we don't want to access the database directly if entity beans exist that
can access the same information. Entity beans provide a safe and consistent interface for a particular set of data. Once
an entity bean has been tested and proven, it can be reused throughout the system, substantially reducing data-
integrity problems. The Reservation EJB is an example of that kind of usage. Entity beans can also pull together
disjointed data and apply additional business logic such as validation, limits, and security to ensure that data access
follows the business rules.

But entity beans cannot define every possible data access needed, and they shouldn't. One of the biggest problems with
entity beans is that they tend to become bloated over time. Huge entity beans containing dozens of methods are a sure
sign of poor design. Entity beans should be focused on providing data access to a very limited, but conceptually bound,
set of data. You should be able to update, read, and insert records or data. Data access that spans concepts, like listing
behavior, should not be encapsulated in an entity bean.

Systems always need listing behavior to present clients with choices. In the reservation system, for example, customers
need to choose a cabin from a list of available cabins. The word available is key to the definition of this behavior. The
Cabin EJB can provide us with a list of cabins, but it does not know whether any given cabin is available. As you may
recall, the Cabin-Reservation relationship we defined in Chapter 7 was unidirectional: the Reservation was aware of its
Cabin relationships, but the reverse was not true. The question of whether a cabin is available is relevant to the process
using it—in this case, the TravelAgent EJB—but may not be relevant to the cabin itself. As an analogy, an automobile
entity would not care what road it is on; it is concerned only with characteristics that describe its state and behavior. An
automobile-tracking system, on the other hand, would be concerned with the locations of individual automobiles.

To get availability information, we need to compare the list of cabins on our ship to the list of cabins that have already
been reserved. The listAvailableCabins() method does exactly that. It uses an SQL query to produce a list of cabins that
have not yet been reserved for the cruise chosen by the client:

public String [] listAvailableCabins(int bedCount)

 throws IncompleteConversationalState {

 if (cruise == null)

 throw new IncompleteConversationalState();

 Connection con = null;

 PreparedStatement ps = null;;

 ResultSet result = null;

 try {

 Integer cruiseID = (Integer)cruise.getPrimaryKey();

 Integer shipID = (Integer)cruise.getShip().getPrimaryKey();

 con = getConnection();

 ps = con.prepareStatement(

 "select ID, NAME, DECK_LEVEL from CABIN "+

 "where SHIP_ID = ? and BED_COUNT = ? and ID NOT IN "+

 "(SELECT CABIN_ID FROM RESERVATION "+" WHERE CRUISE_ID = ?)");

 ps.setInt(1,shipID.intValue());

 ps.setInt(2, bedCount);

 ps.setInt(3,cruiseID.intValue());

 result = ps.executeQuery();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result = ps.executeQuery();

 Vector vect = new Vector();

 while(result.next()) {

 StringBuffer buf = new StringBuffer();

 buf.append(result.getString(1));

 buf.append(',');

 buf.append(result.getString(2));

 buf.append(',');

 buf.append(result.getString(3));

 vect.addElement(buf.toString());

 }

 String [] returnArray = new String[vect.size()];

 vect.copyInto(returnArray);

 return returnArray;

 } catch (Exception e) {

 throw new EJBException(e);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se){se.printStackTrace();}

 }

}

As you can see, the SQL query is complex. It could have been defined using a method like Cabin.findAvailableCabins(Cruise
cruise) in the Cabin EJB. However, this method would be difficult to implement because the Cabin EJB would need to
access the Reservation EJB's data. It's also easy to imagine cluttering an entity bean with lots of fairly specific find
methods that are tied to particular situations. Such clutter isn't necessary or desirable. To avoid adding find methods for
every possible query, you can instead use direct database access as shown in the listAvailableCabins() method. Direct
database access generally has less impact on performance because the container does not have to manifest EJB object
references, but it is also less reusable. When you are deciding whether to add a find method to an entity bean or to
make a direct query in a session bean, keep in mind the tradeoff between reusability, performance, and clarity.

The listAvailableCabins() method returns an array of String objects. We could have opted to return a collection of remote
Cabin references, but we didn't because we want to keep the client application as lightweight as possible. A list of String
objects is much more lightweight than a collection of remote references; this way, the client doesn't have to work with
a group of stubs, each with its own connection to EJB objects on the server. By returning a lightweight String array, we
reduce the number of stubs on the client, which keeps the client simple and conserves resources on the server.

To make this method work, you need to create a private getConnection() method for obtaining a database connection.
This method becomes part of the TravelAgentBean:

private Connection getConnection() throws SQLException {

 try {

 DataSource ds = (DataSource)jndiContext.lookup(

 "java:comp/env/jdbc/titanDB");

 return ds.getConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return ds.getConnection();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

Change the remote interface for TravelAgent EJB to include the listAvailableCabins() method:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

import com.titan.processpayment.CreditCard;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(Integer cruise) throws RemoteException, FinderException;

 public void setCabinID(Integer cabin) throws RemoteException, FinderException;

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws RemoteException,IncompleteConversationalState;

 public String [] listAvailableCabins(int bedCount)

 throws RemoteException, IncompleteConversationalState;

}

11.3.2.12 The TravelAgent deployment descriptor

Here's an abbreviated version of the XML deployment descriptor used for the TravelAgent EJB. It defines not only the
TravelAgent EJB, but also the Customer, Cruise, Cabin, and Reservation EJBs. The ProcessPayment EJB is not defined in
this deployment descriptor because it is assumed to be deployed in a separate JAR file, or possibly even a separate EJB
server on a different network node:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 </ejb-local-ref>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </session>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </session>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <description>This role represents everyone</description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The deployment descriptor for EJB 2.0 is exactly the same, except it's based on a DTD instead of an XML Schema, so it
uses a document declaration and has a simpler <ejb-jar> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 ...

Once you have generated the deployment descriptor, jar the TravelAgent EJB and deploy it in your EJB server. You will
also need to deploy the Reservation, Cruise, and Customer EJBs you downloaded earlier. Based on the business
methods in the remote interface of the TravelAgent EJB and your past experiences with the Cabin, Ship, and
ProcessPayment EJBs, you should be able to create your own client application to test this code.

Exercise 11.2 in the Workbook shows how to deploy the examples in this section.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.4 The Life Cycle of a Stateful Session Bean
The biggest difference between the stateful session bean and the other bean types is that stateful session beans do not
use instance pooling. Stateful session beans are dedicated to one client for their entire lives, so swapping or pooling of
instances isn't possible.[6] When they are idle, stateful session bean instances are simply evicted from memory. The
EJB object remains connected to the client, but the bean instance is dereferenced and garbage collected during inactive
periods. This means that each stateful bean must be passivated before it is evicted in order to preserve the
conversational state of the instance, and it must be activated to restore its state when the EJB object becomes active
again.

[6] Some vendors use pooling with stateful session beans, but that is a proprietary implementation and should not
affect the specified life cycle of the stateful session bean.

The bean's perception of its life cycle depends on whether it implements a special interface called
javax.ejb.SessionSynchronization. This interface defines an additional set of callback methods that notify the bean of its
participation in transactions. A bean that implements SessionSynchronization can cache database data across several
method calls before making an update. We have not discussed transactions in detail yet; we will consider this part of
the bean's life cycle in Chapter 15. This section describes the life cycle of stateful session beans that do not implement
the SessionSynchronization interface.

The life cycle of a stateful session bean has three states: Does Not Exist, Method-Ready, and Passivated. This sounds a
lot like a stateless session bean, but the Method-Ready state is significantly different from the Method-Ready Pool of
stateless beans. Figure 11-2 shows the state diagram for stateful session beans.

Figure 11-2. Stateful session bean life cycle

11.4.1 Does Not Exist State

A stateful bean instance in the Does Not Exist state has not been instantiated yet. It doesn't exist in the system's
memory.

11.4.2 Method-Ready State

The Method-Ready state is the state in which the bean instance can service requests from its clients. This section
explores the instance's transition into and out of the Method-Ready state.

11.4.2.1 Transitioning to the Method-Ready state

When a client invokes the create() method on an EJB home of a stateful session bean, the bean's life cycle begins. When
the create() method is received by the container, the container invokes newInstance() on the bean class, creating a new
instance of the bean. Next, the container invokes setSessionContext() on the instance, handing it its reference to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance of the bean. Next, the container invokes setSessionContext() on the instance, handing it its reference to the
SessionContext, which it must maintain for life. At this point, the bean instance is assigned to its EJB object. Finally, the
container invokes the ejbCreate() method on the instance that matches the create() method invoked by the client. Once
ejbCreate() has completed, the container returns the EJB object's reference to the client. Note that there can be
different, overloaded versions of ejbCreate(), unlike stateless session beans. The instance is now in the Method-Ready
state and is ready to service business methods invoked by the client on the bean's remote reference.

11.4.2.2 Life in the Method-Ready state

While in the Method-Ready state, the bean instance is free to receive method invocations from the client, which may
involve controlling the taskflow of other beans or accessing the database directly. During this time, the bean can
maintain conversational state and open resources in its instance variables.

11.4.2.3 Transitioning out of the Method-Ready state

Bean instances leave the Method-Ready state to enter either the Passivated state or the Does Not Exist state.
Depending on how the client uses the stateful bean, the EJB container's load, and the passivation algorithm used by the
vendor, a bean instance may be passivated (and activated) several times in its life or not at all. If the bean is removed,
it enters the Does Not Exist state. A client application can remove a bean by invoking one of the remove() methods on
the client API, or the container can choose to remove the bean.

The container can also move the bean instance from the Method-Ready state to the Does Not Exist state if the bean
times out. Timeouts are declared at deployment time in a vendor-specific manner. When a timeout occurs in the
Method-Ready state, the container may, but is not required to, call the ejbRemove() method. A stateful bean cannot
timeout while a transaction is in progress.

11.4.3 Passivated State

During the lifetime of a stateful session bean, there may be periods of inactivity when the bean instance is not servicing
methods from the client. To conserve resources, the container can passivate the bean instance by preserving its
conversational state and evicting the bean instance from memory. A bean's conversational state may consist of
primitive values, objects that are serializable, and the following special types:

javax.ejb.SessionContext
javax.ejb.EJBHome (remote home interface types)
javax.ejb.EJBObject (remote interface types)
javax.jta.UserTransaction (bean transaction interface)
javax.naming.Context (only when it references the JNDI ENC)
javax.ejb.EJBLocalHome (local home interface types)
javax.ejb.EJBLocalObject (local interface types)
References to managed resource factories (e.g., javax.sql.DataSource)

The types in this list (and their subtypes) are handled specially by the passivation mechanism. They do not need to be
serializable; they will be maintained through passivation and restored automatically when the bean instance is
activated.

When a bean is about to be passivated, its ejbPassivate() method is invoked, alerting the bean instance that it is about
to enter the Passivated state. At this time, the bean instance should close any open resources and set all nontransient,
nonserializable fields to null. This prevents problems from occurring when the bean is serialized. Transient fields are
simply ignored.

How does the container store the bean's conversational state? It's largely up to the container. Containers can use
standard Java serialization to preserve the bean instance, or some other mechanism that achieves the same result.
Some vendors, for example, simply read the values of the fields and store them in a cache. The container is required to
preserve remote references to other beans with the conversational state. When the bean is activated, the container
must restore any bean references automatically. The container must also restore any references to the special types
listed earlier.

When the client makes a request on an EJB object whose bean is passivated, the container activates the instance. This
involves deserializing the bean instance and reconstructing the SessionContext reference, bean references, and managed
resource factories held by the instance before it was passivated. When a bean's conversational state has been
successfully restored, the ejbActivate() method is invoked. The bean instance should open any resources that cannot be
passivated and initialize the values of any transient fields within the ejbActivate() method. Once ejbActivate() is complete,
the bean is back in the Method-Ready state and available to service client requests delegated by the EJB object.

The activation of a bean instance follows the rules of Java serialization, regardless of how the bean's state was actually
stored. The exception to this is transient fields. In Java serialization, transient fields are set to their default values when
an object is deserialized; primitive numbers become zero, Boolean fields false, and object references null. In EJB,
transient fields can contain arbitrary values when the bean is activated. The values held by transient fields following
activation are unpredictable across vendor implementations, so do not depend on them to be initialized. Instead, use
ejbActivate() to reset their values.

The container can also move the bean instance from the Passivated state to the Does Not Exist state if the bean times
out. When a timeout occurs in the Passivated state, the ejbRemove() method is not invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

out. When a timeout occurs in the Passivated state, the ejbRemove() method is not invoked.

11.4.3.1 System exceptions

Whenever a system exception is thrown by a bean method, the container invalidates the EJB object and destroys the
bean instance. The bean instance moves directly to the Does Not Exist state and the ejbRemove() method is not
invoked.

A system exception is any unchecked exception, including EJBException. Checked exceptions thrown from subsystems
are usually wrapped in an EJBException and rethrown as system exceptions. A checked exception thrown by a subsystem
does not need to be handled this way if the bean can safely recover from the exception. In most cases, however, the
subsystem exception should be rethrown as an EJBException.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 12. Message-Driven Beans
The Message-Driven Bean was introduced in EJB 2.0 to support the processing of asynchronous messages from a Java
Message Service (JMS) provider. EJB 2.1 expanded the definition of the message-driven bean so that it can support any
messaging system, not just JMS. This chapter examines both JMS-based message-driven beans, which all EJB 2.0 and
EJB 2.1 vendors must support, as well as the expanded message-driven bean model available to EJB 2.1 developers.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.1 JMS and Message-Driven Beans
All EJB 2.0 vendors must support a JMS provider. Most vendors have a JMS provider built in, but some may also support
other JMS providers. EJB 2.1 vendors can support any JMS provider that complies with the J2EE Connector Architecture
1.5. However, regardless of whether your vendor has its own JMS provider, or allows you to integrate some other
provider, a JMS provider is an absolute necessity for supporting message-driven beans. By forcing the adoption of JMS,
Sun has guaranteed that EJB developers can expect to have a working JMS provider on which messages can be both
sent and received.

12.1.1 JMS as a Resource

JMS is a vendor-neutral API that can be used to access enterprise messaging systems. Enterprise messaging systems
(a.k.a. message-oriented middleware) facilitate the exchange of messages between software applications over a
network. The role of JMS isn't unlike the role of JDBC: just as JDBC provides a common API for accessing many
different relational databases, JMS provides vendor-independent access to enterprise messaging systems. Although
messaging products aren't as familiar as database products, there's no shortage of messaging systems that support
JMS, including IBM's MQSeries, BEA's WebLogic JMS service, Sun Microsystems' Sun ONE Message Queue, and Sonic's
SonicMQ. Software applications that use the JMS API for sending or receiving messages are portable from one JMS
vendor to another.

Applications that use JMS are called JMS clients, and the messaging system that handles routing and delivery of
messages is called the JMS provider. A JMS application is a business system composed of many JMS clients and,
generally, one JMS provider. A JMS client that sends a message is called a producer, while a JMS client that receives a
message is called a consumer. A single JMS client can be both a producer and a consumer.

In EJB, enterprise beans of all types can use JMS to send messages. The messages are consumed by other Java
applications or message-driven beans. JMS facilitates sending messages from enterprise beans using a messaging
service, sometimes called a message broker or router. Message brokers have been around for a couple of decades—the
oldest and most established is IBM's MQSeries—but JMS is fairly new, and specifically designed to deliver a variety of
message types from one Java application to another.

12.1.1.1 Reimplementing the TravelAgent EJB with JMS

We can modify the TravelAgent EJB developed in Chapter 11 so that it uses JMS to alert some other Java application
that a reservation has been made. The following code shows how to modify the bookPassage() method so that the
TravelAgent EJB sends a simple text message based on a description obtained from the TicketDO object:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

String ticketDescription = ticket.toString();

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/TicketTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(ticketDescription);

 publisher.publish(textMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

While all the code we added may look a little overwhelming, the basics of JMS are not all that complicated.

12.1.1.2 TopicConnectionFactory and Topic

In order to send a JMS message, we need a connection to the JMS provider and a destination address for the message.
A JMS connection factory makes the connection to the provider possible; the destination address is identified by a Topic
object. Both the connection factory and the Topic object are obtained from the TravelAgent EJB's JNDI ENC:

TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

Topic topic = (Topic) jndiContext.lookup("java:comp/env/jms/TicketTopic");

The TopicConnectionFactory is similar to a DataSource in JDBC. Just as the DataSource provides a JDBC connection to a
database, the TopicConnectionFactory provides a JMS connection to a message router.[1]

[1] This analogy is not perfect. One might also say that the TopicSession is analogous to the DataSource, since both
represent transaction-resources connections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

represent transaction-resources connections.

The Topic object itself represents a network-independent destination to which the message will be addressed. In JMS,
messages aren't sent directly to applications; they're sent to topics or queues. A topic is analogous to an email list or
newsgroup; any application with the proper credentials can receive messages from and send messages to a topic. When
a JMS client receives messages from a topic, the client is said to subscribe to that topic. JMS decouples applications by
allowing them to send messages to each other through a destination, which serves as virtual channel. A queue is
another type of destination that we'll discuss in detail later.

12.1.1.3 TopicConnection and TopicSession

The TopicConnectionFactory is used to create a TopicConnection, which is an actual connection to the JMS provider:

TopicConnection connect = factory.createTopicConnection();

TopicSession session = connect.createTopicSession(true,0);

Once you have a TopicConnection, you can use it to create a TopicSession. A TopicSession allows you to group the actions of
sending and receiving messages. In this case, you need only a single TopicSession. Using multiple TopicSessions is helpful
if you wish to produce and consume messages in different threads. Session objects use a single-threaded model, which
prohibits concurrent access to a single Session from multiple threads. The thread that creates a TopicSession is usually the
thread that uses that Session's producers and consumers (i.e., TopicPublisher and TopicSubscriber objects). If you wish to
produce and consume messages using multithreading, you must create a different Session object for each thread.

The createTopicSession() method has two parameters:

createTopicSession(boolean transacted, int acknowledgeMode)

According to the EJB specifications, these arguments are ignored at runtime because the EJB container manages the
transaction and acknowledgment mode of any JMS resource obtained from the JNDI ENC. The specification recommends
that developers use the arguments true for transacted and 0 for acknowledgeMode, but since they are supposed to be
ignored, it should not matter what you use. Unfortunately, not all vendors adhere to this part of the specification. Some
vendors ignore these parameters; others do not.

It's good programming practice to close a TopicConnection after it has been used:

TopicConnection connect = factory.createTopicConnection();

...

connect.close();

12.1.1.4 TopicPublisher

The TopicSession is used to create a TopicPublisher, which sends messages from the TravelAgent EJB to the destination
specified by the Topic object. Any JMS clients that subscribe to that topic will receive a copy of the message:

TopicPublisher publisher = session.createPublisher(topic);

TextMessage textMsg = session.createTextMessage();

textMsg.setText(ticketDescription);

publisher.publish(textMsg);

12.1.1.5 Message types

In JMS, a message is a Java object with two parts: a header and a message body. The header is composed of delivery
information and metadata, while the message body carries the application data, which can take several forms: text,
serializable objects, byte streams, etc. The JMS API defines several message types (TextMessage, MapMessage,
ObjectMessage, and others) and provides methods for delivering messages to and receiving messages from other
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applications.

For example, we can change the TravelAgent EJB so that it sends a MapMessage instead of a TextMessage:

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

...

TopicPublisher publisher = session.createPublisher(topic);

MapMessage mapMsg = session.createMapMessage();

mapMsg.setInt("CustomerID", ticket.customerID.intValue());

mapMsg.setInt("CruiseID", ticket.cruiseID.intValue());

mapMsg.setInt("CabinID", ticket.cabinID.intValue());

mapMsg.setDouble("Price", ticket.price);

publisher.publish(mapMsg);

The attributes of the MapMessage (CustomerID, CruiseID, CabinID, and Price) can be accessed by name from those JMS
clients that receive it. As an alternative, the TravelAgent EJB could be modified to use the ObjectMessage type, which
would allow us to send the entire TicketDO object as the message using Java serialization:

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

...

TopicPublisher publisher = session.createPublisher(topic);

ObjectMessage objectMsg = session.createObjectMessage();

ObjectMsg.setObject(ticket);

publisher.publish(objectMsg);

In addition to the TextMessage, MapMessage, and ObjectMessage, JMS provides two other message types: StreamMessage
and BytesMessage. StreamMessage can take the contents of an I/O stream as its payload. BytesMessage can take any array
of bytes, which it treats as opaque data.

12.1.1.6 XML deployment descriptor

JMS resources must be declared in the bean's EJB deployment descriptor. The declaration is different in EJB 2.1 and EJB
2.0, so they are shown separately.

12.1.2 EJB 2.1: Declaring a JMS Resource

In EJB 2.1, a JMS resource is declared in a manner similar to the JDBC resource used by the Ship EJB in Chapter 9:

<enterprise-beans>

 <session>

 <ejb-name>TravelAgentBean</ejb-name>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

<message-destination-ref>

 <message-destination-ref-name>

 jms/TicketTopic

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Topic</message-destination-type>

 <message-destination-usage>Produces</message-destination-usage>

 </message-destination-ref>

 ...

 </session>

</enterprise-beans>

The <resource-ref> for the JMS TopicConnectionFactory is similar to the <resource-ref> declaration for the JDBC DataSource: it
declares the JNDI ENC name, interface type, and authorization protocol. In addition to the <resource-ref>, the
TravelAgent EJB must also declare the <message-destination-ref>.

The <message-destination-ref> element is new in EJB 2.1. It describes the destination to which the EJB sends messages.
The <message-destination-ref-name> declares the JNDI ENC name used to access the destination. The <message-destination-
type> declares the type of destination (javax.jms.Topic or javax.jms.Queue) and the <message-destination-usage> tells
whether the destination is used to send or receive messages; it can have one of the following values: Consumes,
Produces, or ConsumesProduces. Consumes indicates that the JMS client only receives message from the destination,
Produces indicates that it only sends messages to the destination, and ConsumesProduces indicates that the client uses the
same destination to both send and receive messages. At deployment time, the deployer maps the JMS
TopicConnectionFactory and Topic declared by the <resource-ref> and <message-destination-ref> elements to a JMS provider
and a topic.

Although any EJB can send and receive messages, in most cases, it's best that only MDBs receive JMS messages. In
this case, we declare the Topic used for sending a ticket message.

12.1.3 EJB 2.0: Declaring a JMS Resource

In EJB 2.0, a JMS resource is declared in a manner similar to the JDBC resource used by the Ship EJB in Chapter 9:

<enterprise-beans>

 <session>

 <ejb-name>TravelAgentBean</ejb-name>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

 </resource-env-ref>

 ...

 </session>

The <resource-ref> for the JMS TopicConnectionFactory is similar to the <resource-ref> declaration for the JDBC DataSource: it
declares the JNDI ENC name, interface type, and authorization protocol. In addition to the <resource-ref>, the
TravelAgent EJB must also declare the <resource-env-ref>, which lists any "administered objects" associated with a
<resource-ref> entry. In this case, we declare the Topic used for sending a ticket message. At deployment time, the
deployer maps the JMS TopicConnectionFactory and Topic declared by the <resource-ref> and <resource-env-ref> elements to
a JMS factory and topic.

12.1.4 JMS Application Client

To get a better idea of how JMS is used, we can create a Java application whose sole purpose is receiving and
processing reservation messages. This application is a simple JMS client that prints a description of each ticket as it
receives the messages. We'll assume that the TravelAgent EJB is using the TextMessage to send a description of the
ticket to the JMS clients. Here's how the JMS application client might look:

import javax.jms.Message;

import javax.jms.TextMessage;

import javax.jms.TopicConnectionFactory;

import javax.jms.TopicConnection;

import javax.jms.TopicSession;

import javax.jms.Topic;

import javax.jms.Session;

import javax.jms.TopicSubscriber;

import javax.jms.JMSException;

import javax.naming.InitialContext;

public class JmsClient_1 implements javax.jms.MessageListener {

 public static void main(String [] args) throws Exception {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(args.length != 2)

 throw new Exception("Wrong number of arguments");

 new JmsClient_1(args[0], args[1]);

 while(true){Thread.sleep(10000);}

 }

 public JmsClient_1(String factoryName, String topicName) throws Exception {

 InitialContext jndiContext = getInitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("TopicFactoryNameGoesHere");

 Topic topic = (Topic)jndiContext.lookup("TopicNameGoesHere");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session =

 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 TopicSubscriber subscriber = session.createSubscriber(topic);

 subscriber.setMessageListener(this);

 connect.start();

 }

 public void onMessage(Message message) {

 try {

 TextMessage textMsg = (TextMessage)message;

 String text = textMsg.getText();

 System.out.println("\n RESERVATION RECIEVED:\n"+text);

 } catch(JMSException jmsE) {

 jmsE.printStackTrace();

 }

 }

 public static InitialContext getInitialContext() {

 // create vendor-specific JNDI context here

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The constructor of JmsClient_1 obtains the TopicConnectionFactory and Topic from the JNDI InitialContext. This context is
created with vendor-specific properties so that the client can connect to the same JMS provider as the one used by the
TravelAgent EJB. For example, here's how the getInitialContext() method for the WebLogic application server would be
coded:[2]

[2] JNDI also allows the properties to be set in a jndi.properties file, which contains the property values for the
InitialContext and can be discovered dynamically at runtime. In this book, I chose to set the properties explicitly.

public static InitialContext getInitialContext() {

 Properties env = new Properties();

 env.put(Context.SECURITY_PRINCIPAL, "guest");

 env.put(Context.SECURITY_CREDENTIALS, "guest");

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 env.put(Context.PROVIDER_URL, "t3://localhost:7001");

 return new InitialContext(env);

}

Once the client has the TopicConnectionFactory and Topic, it creates a TopicConnection and a TopicSession in the same way as
the TravelAgent EJB. The main difference is that the TopicSession object is used to create a TopicSubscriber instead of a
TopicPublisher. The TopicSubscriber is designed to process incoming messages that are published to its Topic:

TopicSession session =

 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

connect.start();

The TopicSubscriber can receive messages directly, or it can delegate message processing to a javax.jms.MessageListener.
We chose to have JmsClient_1 implement the MessageListener interface so that it can process the messages itself.
MessageListener objects implement a single method, onMessage(), which is invoked every time a new message is sent to
the subscriber's topic. In this case, every time the TravelAgent EJB sends a reservation message to the topic, the JMS
client's onMessage() method is invoked to receive and process a copy of the message:

public void onMessage(Message message) {

 try {

 TextMessage textMsg = (TextMessage)message;

 String text = textMsg.getText();

 System.out.println("\n RESERVATION RECIEVED:\n"+text);

 } catch(JMSException jmsE) {

 jmsE.printStackTrace();

 }

}

Exercise 12.1 in the Workbook shows how to deploy these examples in JBoss.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1.5 JMS Is Asynchronous

One of the principal advantages of JMS messaging is that it's asynchronous. In other words, a JMS client can send a
message without having to wait for a reply. Contrast this flexibility with the synchronous messaging of Java RMI. Each
time a client invokes a bean's method, it blocks the current thread until the method completes execution. This lock-step
processing makes the client dependent on the availability of the EJB server, resulting in a tight coupling between the
client and the enterprise bean. JMS clients send messages asynchronously to a destination (topic or queue), from which
other JMS clients can also receive messages. When a JMS client sends a message, it doesn't wait for a reply; it sends
the message to a router, which is responsible for forwarding the message to other clients. There's no effect on the
client if one or more recipients are unavailable; it just goes ahead with its work. It's the router's responsibility to make
sure that the message eventually reaches its destination. Clients sending messages are decoupled from the clients
receiving them; senders are not dependent on the availability of receivers.

The limitations of RMI make JMS an attractive alternative for communicating with other applications. Using the standard
JNDI environment-naming context, an enterprise bean can obtain a JMS connection to a JMS provider and use it to
deliver asynchronous messages to other Java applications. For example, a TravelAgent session bean can use JMS to
notify other applications that a reservation has been processed, as shown in Figure 12-1.

Figure 12-1. Using JMS with the TravelAgent EJB

In this case, the applications receiving JMS messages from the TravelAgent EJB may be message-driven beans, other
Java applications in the enterprise, or applications in other organizations that benefit from being notified that a
reservation has been processed. Examples might include business partners who share customer information or an
internal marketing application that adds customers to a catalog mailing list.

Because messaging is inherently decoupled and asynchronous, the transactions and security contexts of the sender are
not propagated to the receiver. For example, when the TravelAgent EJB sends the ticket message, the JMS provider
may authenticate it, but the message's security context won't be propagated to the JMS client that received the
message. When a JMS client receives the message from the TravelAgent EJB, the client has no idea about the security
context under which the message was sent. This is how it should be, because the sender and receiver often operate in
environments with different security domains.

Similarly, transactions are never propagated from the sender to the receiver. For one thing, the sender has no idea who
the receivers of the message will be. If the message is sent to a topic, there could be one receiver or thousands;
managing a distributed transaction under such ambiguous circumstances is not tenable. In addition, the clients
receiving the message may not get it for a long time after it is sent; there may be a network problem, the client may be
down, or there may be some other problem. Transactions are designed to be executed quickly because they lock up
resources, and applications can't tolerate the possibility of a long transaction with an unpredictable end.

A JMS client can, however, have a distributed transaction with the JMS provider so that it manages the send or receive
operation in the context of a transaction. For example, if the TravelAgent EJB's transaction fails for any reason, the JMS
provider discards the ticket message sent by the TravelAgent EJB. Transactions and JMS are covered in more detail in
Chapter 15.

12.1.6 JMS Messaging Models

JMS provides two types of messaging models: publish-and-subscribe and point-to-point. The JMS specification refers to
these as messaging domains. In JMS terminology, publish-and-subscribe and point-to-point are frequently shortened to
pub/sub and p2p (or PTP), respectively. This chapter uses both the long and short forms throughout.

In the simplest sense, publish-and-subscribe is intended for a one-to-many broadcast of messages, while point-to-point
is intended for one-to-one delivery of messages (see Figure 12-2).

Figure 12-2. JMS messaging domains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-2. JMS messaging domains

Each messaging domain (i.e., pub/sub and p2p) has its own set of interfaces and classes for sending and receiving
messages. This results in two different APIs, which share some common types. JMS 1.1, the most recent version
(supported by EJB 2.1), introduced a Unified API that allows developers to use a single set of interfaces and classes for
both messaging domains.

12.1.6.1 Publish-and-subscribe

In publish-and-subscribe messaging, one producer can send a message to many consumers through a virtual channel
called a topic. Consumers can choose to subscribe to a topic. Any messages addressed to a topic are delivered to all the
topic's consumers. The pub/sub messaging model is by and large a push-based model, in which messages are
automatically broadcast to consumers without the consumers having to request or poll the topic for new messages.

In the pub/sub messaging model, the producer sending the message is not dependent on the consumers receiving the
message. JMS clients that use pub/sub can establish durable subscriptions that allow consumers to disconnect and later
reconnect and collect messages that were published while they were disconnected. The TravelAgent EJB in this chapter
uses the pub/sub programming model with a Topic object as a destination.

12.1.6.1.1 Point-to-point

The point-to-point messaging model allows JMS clients to send and receive messages both synchronously and
asynchronously via virtual channels known as queues. The p2p messaging model has traditionally been a pull- or
polling-based model, in which messages are requested from the queue instead of being pushed to the client
automatically.[3] A queue may have multiple receivers, but only one receiver may receive each message. As shown
earlier in Figure 12-2, the JMS provider takes care of doling out the messages among JMS clients, ensuring that each
message is consumed by only one JMS client. The JMS specification does not dictate the rules for distributing messages
among multiple receivers.

[3] The JMS specification does not specifically state how the p2p and pub/sub models must be implemented. Either
model can use push or pull—but conceptually, pub/sub is push and p2p is pull.

The messaging API for p2p is similar to the one used for pub/sub. The following code shows how the TravelAgent EJB
could be modified to use the queue-based p2p API instead of the topic-based pub/sub model:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 ...

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 String ticketDescription = ticket.toString();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 Queue queue = (Queue)

 jndiContext.lookup("java:comp/env/jms/TicketQueue");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session = connect.createQueueSession(true,0);

 QueueSender sender = session.createSender(queue);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(ticketDescription);

 sender.send(textMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

12.1.6.2 Which messaging model should you use?

The rationale behind the two models lies in the origin of the JMS specification. JMS started out as a way of providing a
common API for accessing existing messaging systems. At the time of its conception, some messaging vendors had a
p2p model and some had a pub/sub model. Hence, JMS needed to provide an API for both models to gain wide industry
support.

Almost anything that can be done with the pub/sub model can be done with point-to-point, and vice versa. An analogy
can be drawn to developers' programming language preferences. In theory, any application that can be written with
Pascal can also be written with C. Anything that can be written in C++ can also be written in Java. In some cases, it
comes down to a matter of preference, or which model you are already familiar with.

In most cases, the decision about which model to use depends on which model is a better fit for the application. With
pub/sub, any number of subscribers can be listening on a topic, and they will all receive copies of the same message.
The publisher may not care if everybody is listening, or even if nobody is listening. For example, consider a publisher
that broadcasts stock quotes. If any particular subscriber is not currently connected and misses out on a great quote,
the publisher is not concerned. In contrast, a point-to-point session is likely to be intended for a one-on-one
conversation with a specific application at the other end. In this scenario, every message really matters. The range and
variety of the data the messages represent can be a factor as well. Using pub/sub, messages are dispatched to the
consumers based on filtering that is provided through the use of specific topics. Even when messaging is being used to
establish a one-on-one conversation with another known application, it can be advantageous to use pub/sub with
multiple topics to segregate different kinds of messages. Each kind of message can be dealt with separately through its
own unique consumer and onMessage() listener.

Point-to-point is more convenient when you want a particular receiver to process a given message once. This is perhaps
the most critical difference between the two models: p2p guarantees that only one consumer processes each message.
This ability is extremely important when messages need to be processed separately but in tandem.

12.1.7 EJB 2.1: The Unified JMS API

Although the two messaging models (i.e., pub/sub and p2p) are distinct, JMS 1.1 provides a third Unified API that can
be used for both pub/sub and p2p messaging. It's important to understand that the Unified API does not represent a
new messaging model. The publish/subscribe and point-to-point messaging models are the only two messaging models
you have to choose from. The Unified API simply provides a third set of interfaces that allow developers to use the
same API for both models. There is, however, another important advantage to the Unified API. It allows p2p and
pub/sub messaging operations be part of the same transaction. In JMS 1.0.x, you could not use topic and queue-based
APIs in the same transaction. The Unified API does away with this restriction.

Here's how the TravelAgent EJB could be modified to use the Unified API instead of the pub/sub or p2p models:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how the TravelAgent EJB could be modified to use the Unified API instead of the pub/sub or p2p models:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 ...

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 String ticketDescription = ticket.toString();

 ConnectionFactory factory = (ConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/ConnectionFactory");

 Destination destination= (Destination)

 jndiContext.lookup("java:comp/env/jms/TicketDestination");

 Connection connect = factory.createConnection();

 Session session = connect.createSession(true,0);

 MessageProducer prodcuer = session.createProducer(destination);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(ticketDescription);

 producer.send(textMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

12.1.8 Entity and Session Beans Should Not Receive Messages

JmsClient_1 was designed to consume messages produced by the TravelAgent EJB. Can another entity or session bean
receive those messages also? The answer is yes, but it's a really bad idea.

Entity and session beans respond to Java RMI calls from EJB clients and cannot be programmed to respond to JMS
messages as do message-driven beans. It's impossible to write a session or entity bean that is driven by incoming
messages. It is possible to develop an entity or session bean that can consume a JMS message from a business
method, but an EJB client must call the method first. For example, when the business method on the Hypothetical EJB
is called, it sets up a JMS session and then attempts to read a message from a queue:

public class HypotheticalBean implements javax.ejb.SessionBean {

 InitialContext jndiContext;

 public String businessMethod() {

 try{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 Queue topic = (Queue)

 jndiContext.lookup("java:comp/env/jms/Queue");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session = connect.createQueueSession(true,0);

 QueueReceiver receiver = session.createReceiver(queue);

 TextMessage textMsg = (TextMessage)receiver.receive();

 connect.close();

 return textMsg.getText();

 } catch(Exception e) {

 throws new EJBException(e);

 }

 }

 ...

}

The QueueReceiver, which is a message consumer, is used to proactively fetch a message from the queue. While this
operation has been programmed correctly, it is a dangerous because a call to the QueueReceiver.receive() method blocks
the thread until a message becomes available. If a message is never delivered, the thread is blocked indefinitely! If no
one ever sends a message to the queue, the QueueReceiver just sits there waiting, forever.

To be fair, there are other receive() methods that are less dangerous. For example, receive(long timeout) allows you to
specify a time after which the QueueReceiver should stop blocking the thread and give up waiting for a message. There is
also receiveNoWait(), which checks for a message and returns null if there are none waiting, thus avoiding a prolonged
thread block. However, this operation is still dangerous. There is no guarantee that the less risky receive() methods will
perform as expected, and the risk of programmer error (e.g., using the wrong receive() method) is too great.

The moral of the story is simple: don't write convoluted code trying to force entity and session beans to receive
messages. If you need to receive messages, use a message-driven bean; MDBs are specially designed to consume JMS
messages.

12.1.9 Learning More About JMS

JMS (and enterprise messaging in general) represents a powerful paradigm in distributed computing. While this chapter
has provided a brief overview of JMS, it has presented only enough material to prepare you for the discussion of
message-driven beans in the next section. To understand JMS and how it is used, you will need to study it
independently.[4] Taking the time to learn JMS is well worth the effort.

[4] For a detailed treatment of JMS, see Java Message Service by Richard Monson-Haefel and David Chappell
(O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.2 JMS-Based Message-Driven Beans
Message-driven beans (MDBs) are stateless, server-side, transaction-aware components for processing asynchronous
messages delivered via the Java Message Service. While a message-driven bean is responsible for processing
messages, its container manages the component's environment, including transactions, security, resources,
concurrency, and message acknowledgment. It's particularly important to note that the container manages
concurrency. The thread-safety provided by the container gives MDBs a significant advantage over traditional JMS
clients, which must be custom-built to manage resources, transactions, and security in a multithreaded environment.
An MDB can process hundreds of JMS messages concurrently because numerous instances of the MDB can execute
concurrently in the container.

A message-driven bean is a complete enterprise bean, just like a session or entity bean, but there are some important
differences. While a message-driven bean has a bean class and EJB deployment descriptor, it does not have EJB object
or home interfaces. These interfaces are absent because the message-driven bean is not accessible via the Java RMI
API; it responds only to asynchronous messages.

12.2.1 The ReservationProcessor EJB

The ReservationProcessor EJB is a message-driven bean that receives JMS messages notifying it of new reservations.
The ReservationProcessor EJB is an automated version of the TravelAgent EJB that processes reservations sent via JMS.
These messages might come from another application in the enterprise or from an application in some other
organization—perhaps another travel agent. When the ReservationProcessor EJB receives a message, it creates a new
Reservation EJB (adding it to the database), processes the payment using the ProcessPayment EJB, and sends out a
ticket. This process is illustrated in Figure 12-3.

Figure 12-3. The ReservationProcessor EJB processing reservations

12.2.2 The ReservationProcessorBean Class

Here is a partial definition of the ReservationProcessorBean class. Some methods are left empty; they will be filled in later.
Notice that the onMessage() method contains the business logic; it is similar to the business logic developed in the
bookPassage() method of the TravelAgent EJB in Chapter 11. Here's the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bookPassage() method of the TravelAgent EJB in Chapter 11. Here's the code:

package com.titan.reservationprocessor;

import javax.jms.Message;

import javax.jms.MapMessage;

import com.titan.customer.*;

import com.titan.cruise.*;

import com.titan.cabin.*;

import com.titan.reservation.*;

import com.titan.processpayment.*;

import com.titan.travelagent.*;

import java.util.Date;

public class ReservationProcessorBean implements javax.ejb.MessageDrivenBean,

 javax.jms.MessageListener {

 MessageDrivenContext ejbContext;

 Context jndiContext;

 public void setMessageDrivenContext(MessageDrivenContext mdc) {

 ejbContext = mdc;

 try {

 jndiContext = new InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

 }

 public void ejbCreate() {}

 public void onMessage(Message message) {

 try {

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 double price = reservationMsg.getDouble("Price");

 // get the credit card

 Date expirationDate =

 new Date(reservationMsg.getLong("CreditCardExpDate"));

 String cardNumber = reservationMsg.getString("CreditCardNum");

 String cardType = reservationMsg.getString("CreditCardType");

 CreditCardDO card = new CreditCardDO(cardNumber,

 expirationDate, cardType);

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 deliverTicket(reservationMsg, ticket);

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 public void deliverTicket(MapMessage reservationMsg, TicketDO ticket) {

 // send it to the proper destination

 }

 public CustomerRemote getCustomer(Integer key)

 throws NamingException, RemoteException, FinderException {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws NamingException, RemoteException, FinderException {

 // get a remote reference to the Customer EJB

 }

 public CruiseLocal getCruise(Integer key)

 throws NamingException, FinderException {

 // get a local reference to the Cruise EJB

 }

 public CabinLocal getCabin(Integer key)

 throws NamingException, FinderException {

 // get a local reference to the Cabin EJB

 }

 public void ejbRemove() {

 try {

 jndiContext.close();

 ejbContext = null;

 } catch(NamingException ne) { /* do nothing */ }

 }

}

12.2.2.1 MessageDrivenBean interface

The message-driven bean class is required to implement the javax.ejb.MessageDrivenBean interface, which defines callback
methods similar to those in entity and session beans. Here is the definition of the MessageDrivenBean interface:

package javax.ejb;

public interface MessageDrivenBean extends javax.ejb.EnterpriseBean {

 public void setMessageDrivenContext(MessageDrivenContext context)

 throws EJBException;

 public void ejbRemove() throws EJBException;

}

The setMessageDrivenContext() method is called at the beginning of the MDB's life cycle and provides the MDB instance
with a reference to its MessageDrivenContext:

MessageDrivenContext ejbContext;

Context jndiContext;

public void setMessageDrivenContext(MessageDrivenContext mdc) {

 ejbContext = mdc;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ejbContext = mdc;

 try {

 jndiContext = new InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

The setMessageDrivenContext() method in the ReservationProcessorBean class sets the ejbContext instance field to the
MessageDrivenContext, which was passed into the method. It also obtains a reference to the JNDI ENC, which it stores in
the jndiContext. MDBs may have instance fields that are similar to a stateless session bean's instance fields. These
instance fields are carried with the MDB instance for its lifetime and may be reused every time it processes a new
message. Like stateless session beans, MDBs do not have conversational state and are not specific to a single JMS
client; MDB instances process messages from many different clients. Instead, they are tied to the specific topic or
queue from which they receive messages.

ejbRemove() provides the MDB instance with an opportunity to clean up any resources it stores in its instance fields. In
this case, we use it to close the JNDI context and set the ejbContext field to null. These operations are not absolutely
necessary, but they illustrate the kind of work that an ejbRemove() method might do. Note that ejbRemove() is called at
the end of the MDB's life cycle, before it is garbage collected. It may not be called if the EJB server hosting the MDB
fails or if an EJBException is thrown by the MDB instance in one of its other methods. When an EJBException (or any
RuntimeException type) is thrown by any method in the MDB instance, the instance is immediately removed from memory
and the transaction is rolled back.

12.2.2.2 MessageDrivenContext

The MessageDrivenContext simply extends the EJBContext; it does not add any new methods. The EJBContext is defined as:

package javax.ejb;

public interface EJBContext {

 // transaction methods

 public javax.transaction.UserTransaction getUserTransaction()

 throws java.lang.IllegalStateException;

 public boolean getRollbackOnly() throws java.lang.IllegalStateException;

 public void setRollbackOnly() throws java.lang.IllegalStateException;

 // EJB home methods

 public EJBHome getEJBHome();

 public EJBLocalHome getEJBLocalHome();

 // security methods

 public java.security.Principal getCallerPrincipal();

 public boolean isCallerInRole(java.lang.String roleName);

 // deprecated methods

 public java.security.Identity getCallerIdentity();

 public boolean isCallerInRole(java.security.Identity role);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean isCallerInRole(java.security.Identity role);

 public java.util.Properties getEnvironment();

}

Only the transactional methods that MessageDrivenContext inherits from EJBContext are available to message-driven
beans. The home methods—getEJBHome() and getEJBLocalHome()—throw a RuntimeException if invoked, because MDBs do
not have home interfaces or EJB home objects. The security methods—getCallerPrincipal() and isCallerInRole()—also throw
a RuntimeException if invoked on a MessageDrivenContext. When an MDB services a JMS message, there is no "caller," so
there is no security context to be obtained from the caller. Remember that JMS is asynchronous and doesn't propagate
the sender's security context to the receiver—that wouldn't make sense, since senders and receivers tend to operate in
different environments.

MDBs usually execute in a container-initiated or bean-initiated transaction, so the transaction methods allow the MDB to
manage its context. The transaction context is not propagated from the JMS sender; it is either initiated by the
container or by the bean explicitly using javax.jta.UserTransaction. The transaction methods in the EJBContext are explained
in more detail in Chapter 15.

Message-driven beans also have access to their own JNDI environment naming contexts (ENCs), which provide the MDB
instances access to environment entries, other enterprise beans, and resources. For example, the ReservationProcessor
EJB takes advantage of the JNDI ENC to obtain references to the Customer, Cruise, Cabin, Reservation, and
ProcessPayment EJBs as well as a JMS QueueConnectionFactory and Queue for sending out tickets.

12.2.2.3 MessageListener interface

In addition to the MessageDrivenBean interface, MDBs implement the javax.jms.MessageListener interface, which defines the
onMessage() method. This method processes the JMS messages received by a bean.

package javax.jms;

public interface MessageListener {

 public void onMessage(Message message);

}

It's interesting to consider why the MDB implements the MessageListener interface separately from the MessageDrivenBean
interface. Why not just put the onMessage() method, MessageListener's only method, in the MessageDrivenBean interface so
that there is only one interface for the MDB class to implement? This was the solution taken by an early, proposed
version of EJB 2.0. However, the developers quickly realized that message-driven beans could, in the future, process
messages from other types of systems, not just JMS. To make the MDB open to other messaging systems, it was
decided that the MDB should implement the javax.jms.MessageListener interface separately, thus separating the concept of
the message-driven bean from the types of messages it can process. It turns out that this was a good plan. As we'll see
later in this chapter, EJB 2.1 lets you use MDBs with non-JMS messaging systems that use a different messaging
interface.

12.2.2.4 Taskflow and integration for B2B (onMessage())

The onMessage() method is where all the business logic goes. As messages arrive, the container passes them to the
MDB via the onMessage() method. When the method returns, the MDB is ready to process a new message. In the
ReservationProcessor EJB, the onMessage() method extracts information about a reservation from a MapMessage and
uses that information to create a reservation in the system:

public void onMessage(Message message) {

 try {

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 // get the credit card

 Date expirationDate =

 new Date(reservationMsg.getLong("CreditCardExpDate"));

 String cardNumber = reservationMsg.getString("CreditCardNum");

 String cardType = reservationMsg.setString("CreditCardType");

 CreditCardDO card = new CreditCardDO(cardNumber,

 expirationDate, cardType);

JMS is frequently used as an integration point for business-to-business applications, so it's easy to imagine the
reservation message coming from one of Titan's business partners (perhaps a third-party processor or branch travel
agency).

The ReservationProcessor EJB needs to access the Customer, Cruise, and Cabin EJBs in order to process the
reservation. The MapMessage contains the primary keys for these entities; the ReservationProcessor EJB uses helper
methods (getCustomer(), getCruise(), and getCabin()) to look up the entity beans and obtain EJB object references to
them:

public void onMessage(Message message) {

 ...

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

 ...

}

public CustomerRemote getCustomer(Integer key)

 throws NamingException, RemoteException, FinderException {

 Object ref = jndiContext.lookup("java:comp/env/ejb/CustomerHomeRemote");

 CustomerHomeRemote home = (CustomerHomeRemote)

 PortableRemoteObject.narrow(ref, CustomerHomeRemote.class);

 CustomerRemote customer = home.findByPrimaryKey(key);

 return customer;

}

public CruiseLocal getCruise(Integer key)

 throws NamingException, FinderException {

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 CruiseLocal cruise = home.findByPrimaryKey(key);

 return cruise;

}

public CabinLocal getCabin(Integer key)

 throws NamingException, FinderException{

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 CabinLocal cabin = home.findByPrimaryKey(key);

 return cabin;

}

Once the information is extracted from the MapMessage, it is used to create a reservation and process the payment. This
is basically the same taskflow that was used by the TravelAgent EJB in Chapter 11. A Reservation EJB is created that
represents the reservation itself, and a ProcessPayment EJB is created to process the credit card payment:

ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

Object ref = jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow (ref, ProcessPaymentHomeRemote.class);

ProcessPaymentRemote process = ppHome.create();

process.byCredit(customer, card, price);

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

deliverTicket(reservationMsg, ticket);

Like a session bean, the MDB can access any other entity or session bean and use that bean to complete a task. An
MDB can manage a process and interact with other beans as well as resources. For example, it is commonplace for an
MDB to use JDBC to access a database based on the contents of the message it is processing.

12.2.2.5 Sending messages from a message-driven bean

An MDB can also send messages using JMS. The deliverTicket() method sends the ticket information to a destination
defined by the sending JMS client:

public void deliverTicket(MapMessage reservationMsg, TicketDO ticket)

 throws NamingException, JMSException{

 Queue queue = (Queue)reservationMsg.getJMSReplyTo();

 QueueConnectionFactory factory = (QueueConnectionFactory)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session = connect.createQueueSession(true,0);

 QueueSender sender = session.createSender(queue);

 ObjectMessage message = session.createObjectMessage();

 message.setObject(ticket);

 sender.send(message);

 connect.close();

}

Every message type has two parts: a message header and a message body (a.k.a. the payload). The message header
contains routing information and may also have properties for message filtering and other attributes. One of these
attributes may be JMSReplyTo. The message's sender may set the JMSReplyTo attribute to any destination accessible to
its JMS provider.[5] In the case of the reservation message, the sender set the JMSReplyTo attribute to the queue to
which the resulting ticket should be sent. Another application can access this queue to read tickets and distribute them
to customers or store the information in the sender's database.

[5] In EJB 2.0, if the destination identified by the JMSReplyTo attribute is of type Queue, the point-to-point (queue-
based) messaging model must be used. If the destination type identified by the JMSReplyTo attribute is Topic, the
publish-and-subscribe (topic-based) messaging model must be used. In EJB 2.1, you can use the Unified API for
both publish-and-subscribe and point-to-point messaging.

You can also use the JMSReplyTo address to report business errors. For example, if the Cabin is already reserved, the
ReservationProcessor EJB might send an error message to the JMSReplyTo queue explaining that the reservation could
not be processed. Including this type of error handling is left as an exercise for the reader.

12.2.3 XML Deployment Descriptor

MDBs are described in EJB deployment descriptors the same as entity and session beans. They can be deployed alone,
but it's more often deployed with the other enterprise beans that it references. For example, the ReservationProcessor
EJB uses the local interfaces of the Customer, Cruise, and Cabin beans, so all four beans would have to be deployed in
the same JAR.

12.2.3.1 EJB 2.1: Deployment descriptor for MDBs

The way EJB 2.1 defines the properties of message processing for MDB is significantly different than in EJB 2.0. EJB 2.0
defined a few JMS-specific elements, which have been abandoned in EJB 2.1 so that the MDB deployment descriptor can
represent Connector-based MDBs as well as JMS-based MDBs. Since Connector-based MDBs don't necessarily use JMS
as the message service, the <activation-config> element was introduced to describe the bean's messaging properties. The
<activation-config> elements are shown in bold in the following listing.

<enterprise-beans>

 ...

 <message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <ejb-class>

 com.titan.reservationprocessor.ReservationProcessorBean

 </ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Container</transaction-type>

 <message-destination-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <message-destination-type>

 javax.jms.Queue

 </message-destination-type>

 <activation-config>

 <activation-property>

 <activation-config-property-name>destinationType

 </activation-config-property-name>

 <activation-config-property-value>javax.jms.Queue

 </activation-config-property-value>

 <activation-property>

 <activation-property>

 <activation-config-property-name>messageSelector

 </activation-config-property-name>

 <activation-config-property-value>MessageFormat = 'Version 3.4'

 </activation-config-property-value>

 <activation-property>

 <activation-property>

 <activation-config-property-name>acknowledgeMode

 </activation-config-property-name>

 <activation-config-property-value>Auto-acknowledge

 </activation-config-property-value>

 <activation-property>

 </activation-config>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 </ejb-local-ref>

 <security-identity>

 <run-as>

 <role-name>everyone</role-name>

 </run-as>

 </security-identity>

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </message-driven>

 ...

</enterprise-beans>

The property names and values used in the <activation-config> to describe the messaging service vary depending on the
type of message service used, but EJB 2.1 defines a set of fixed properties for JMS-based message-driven beans. These
properties are acknowledgeMode, messageSelector, destinationType, and subscriptionDurablity. These properties are also used
by EJB 2.0 deployment descriptors, so we'll discuss them in the next section.

In addition to the <activation-config> element, EJB 2.1 introduces the <messaging-type> and <message-destination-type>
elements. An MDB is declared in a <message-driven> element within the <enterprise-beans> element, alongside <session>
and <entity> beans. Similar to <session> bean types, it defines an <ejb-name>, <ejb-class>, and <transaction-type>, but
does not define component interfaces (local or remote). MDBs do not have remote or local interfaces, so these
definitions aren't needed.

12.2.3.2 EJB 2.0: Deployment descriptor for MDBs

Here is the deployment descriptor for MDBs in EJB 2.0:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is the deployment descriptor for MDBs in EJB 2.0:

<enterprise-beans>

 ...

 <message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <ejb-class>

 com.titan.reservationprocessor.ReservationProcessorBean

 </ejb-class>

 <transaction-type>Container</transaction-type>

 <message-selector>MessageFormat = 'Version 3.4'</message-selector>

 <acknowledge-mode>Auto-acknowledge</acknowledge-mode>

 <message-driven-destination>

 <destination-type>javax.jms.Queue</destination-type>

 </message-driven-destination>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 </ejb-local-ref>

 <security-identity>

 <run-as>

 <role-name>everyone</role-name>

 </run-as>

 </security-identity>

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </message-driven>

 ...

</enterprise-beans>

An MDB is declared in a <message-driven> element within the <enterprise-beans> element, alongside <session> and
<entity> beans. Like session beans, an MDB defines an <ejb-name>, <ejb-class>, and <transaction-type>; unlike other kinds
of beans, an MDB never defines local or remote component interfaces. MDBs do not have remote or local interfaces, so
these definitions aren't needed.

12.2.3.3 Message selector

An MDB can declare a message selector. Message selectors allow an MDB to be more selective about the messages it
receives from a particular topic or queue. Message selectors use Message properties as criteria in conditional
expressions.[6] These conditional expressions use Boolean logic to declare which messages should be delivered. In EJB
2.1, a message selector is declared using standard property name, messageSelector, in an activation configuration
element:

[6] Message selectors are also based on message headers, which are outside the scope of this chapter.

<activation-property>

 <activation-config-property-name>messageSelector

 </activation-config-property-name>

 <activation-config-property-value>MessageFormat = 'Version 3.4'

 </activation-config-property-value>

<activation-property>

In EJB 2.0, a message selector is declared using the <message-selector> element:

<message-selector>MessageFormat = 'Version 3.4'</message-selector>

Message selectors are based on message properties. Message properties are additional headers that can be assigned to
a message; they allow vendors and developers to attach information to a message that isn't part of the message's
body. The Message interface provides several methods for reading and writing properties. Properties can have a String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

body. The Message interface provides several methods for reading and writing properties. Properties can have a String
value or one of several primitive values (boolean, byte, short, int, long, float, double). The naming of properties, together
with their values and conversion rules, is strictly defined by JMS.

The ReservationProcessor EJB uses a message selector filter to select messages of a specific format. In this case the
format is "Version 3.4"; this is a string Titan uses to identify messages of type MapMessage that contain the name values
CustomerID, CruiseID, CabinID, CreditCard, and Price. In other words, adding a MessageFormat to each reservation message
allows us to write MDBs that are designed to process different kinds of reservation messages. If a new business partner
needs to use a different type of Message object, Titan would use a new message version and an MDB to process it.

Here's how a JMS producer would go about setting a MessageFormat property on a Message:

Message message = session.createMapMessage();

message.setStringPropery("MessageFormat","Version 3.4");

// set the reservation named values

sender.send(message);

The message selectors are based on a subset of the SQL-92 conditional expression syntax that is used in the WHERE
clauses of SQL statements. They can become fairly complex, including the use of literal values, Boolean expressions,
unary operators, and so on.

12.2.3.4 Acknowledge mode

A JMS acknowledgment means that the JMS client notifies the JMS provider (message router) when a message is
received. In EJB, it's the MDB container's responsibility to send an acknowledgment when it receives a message.
Acknowledging a message tells the JMS provider that an MDB container has received and processed the message.
Without an acknowledgment, the JMS provider does not know whether the MDB container has received the message,
and unwanted redeliveries can cause problems. For example, once we have processed a reservation message using the
ReservationProcessor EJB, we don't want to receive the same message again.

In EJB 2.1, the acknowledgment mode is set using the standard acknowledgeMode activation configuration property, as
shown in the following XML snippet:

<activation-property>

 <activation-config-property-name>acknowledgeMode

 </activation-config-property-name>

 <activation-config-property-value>Auto-acknowledge

 </activation-config-property-value>

<activation-property>

In EJB 2.0, the acknowledgment mode is set using a special <acknowledge-mode> element, as shown in the following
XML snippet:

<acknowledge-mode>Auto-acknowledge</acknowledge-mode>

Two values can be specified for acknowledgment mode: Auto-acknowledge and Dups-ok-acknowledge. Auto-acknowledge tells
the container that it should send an acknowledgment to the JMS provider soon after the message is given to an MDB
instance to process. Dups-ok-acknowledge tells the container that it doesn't have to send the acknowledgment
immediately; any time after the message is given to the MDB instance will be fine. With Dups-ok-acknowledge, it's
possible for the MDB container to delay acknowledgment so long that the JMS provider assumes that the message was
not received and sends a "duplicate" message. Obviously, with Dups-ok-acknowledge, your MDBs must be able to handle
duplicate messages correctly.

Auto-acknowledge avoids duplicate messages because the acknowledgment is sent immediately. Therefore, the JMS
provider won't send a duplicate. Most MDBs use Auto-acknowledge to avoid processing the same message twice. Dups-ok-
acknowledge exists because it can allow a JMS provider to optimize its use of the network. In practice, though, the
overhead of an acknowledgment is so small, and the frequency of communication between the MDB container and JMS
provider is so high, that Dups-ok-acknowledge doesn't have a big impact on performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provider is so high, that Dups-ok-acknowledge doesn't have a big impact on performance.

Having said all of this, the acknowledgement mode is ignored most of the time—in fact, it is ignored unless the MDB
executes with bean-managed transactions, or with the container-managed transaction attribute NotSupported (see
Chapter 15). In all other cases, transactions are managed by the container, and acknowledgment takes place within the
context of the transaction. If the transaction succeeds, the message is acknowledged. If the transaction fails, the
message is not acknowledged. When using container-managed transactions with a Required transaction attribute, the
acknowledgment mode is usually not specified; however, it is included in the deployment descriptor for the sake of
discussion.

12.2.3.5 EJB 2.1: <messaging-type>

The <messaging-type> element declares the messaging interfaces used by the MDB:

<messaging-type>javax.jms.MessageListener</messaging-type>

For JMS-based MDBs, the messaging interface is always going to be javax.jms.MessageListener, but for other Connector-
based MDBs it might be something completely different. If the <messaging-type> element is omitted, the type is assumed
to be javax.jms.MessageListener.

12.2.3.6 EJB 2.1: <message-destination-type>

The <message-destination-type> element indicates the type of destination from which the MDB receives messages. The
allowed values for JMS-based MDBs are javax.jms.Queue and javax.jms.Topic. A Connector-based MDB might use some
other type. The value must always be a fully qualified class name.

In the ReservationProcessor EJB, this value is set to javax.jms.Queue, indicating that the MDB is getting its messages via
the p2p messaging model from a queue:

<message-destination-type>

 javax.jms.Queue

</message-destination-type>

When the MDB is deployed, the deployer maps the MDB so that it listens to a real queue on the network.

You may have noticed that the <message-destination-type> and the destinationType configuration property specify the same
thing. This seems redundant, and it is for JMS-based MDBs—but for Connector-based MDBs, it is not. That's because
Connector-based MDBs have completely different activation configuration properties than a JMS-based MDB. It's
important that the <message-destination-type> be specified for both JMS-based and Connector-based MDBs.

12.2.3.7 EJB 2.0: <message-driven-destination>

The <message-driven-destination> element indicates the type of destination from which the MDB receives messages. The
allowed values for this element are javax.jms.Queue and javax.jms.Topic. In the ReservationProcessor EJB, this value is set
to javax.jms.Queue, indicating that the MDB is getting its messages via the point-to-point messaging model from a
queue:

<message-driven-destination>

 <destination-type>javax.jms.Queue</destination-type>

</message-driven-destination>

When the MDB is deployed, the deployer maps the MDB so that it listens to a real queue on the network.

12.2.3.8 Subscription durability

In EJB 2.1 and EJB 2.0, when a JMS-based MDB uses a javax.jms.Topic, the deployment descriptor must declare whether
the subscription is Durable or NonDurable. A Durable subscription outlasts an MDB container's connection to the JMS
provider, so if the EJB server suffers a partial failure, shuts down, or otherwise disconnects from the JMS provider, the
messages that it would have received are not lost. The provider stores any messages that are delivered while the
container is disconnected; the messages are delivered to the container (and from there, to the MDB) when the
container reconnects. This behavior is commonly referred to as store-and-forward messaging. Durable MDBs are tolerant

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container reconnects. This behavior is commonly referred to as store-and-forward messaging. Durable MDBs are tolerant
of disconnections, whether intentional or the result of a partial failure.

If the subscription is NonDurable, any messages the bean would have received while it was disconnected are lost.
Developers use NonDurable subscriptions when it is not critical for all messages to be processed. Using a NonDurable
subscription improves the performance of the JMS provider but significantly reduces the reliability of the MDBs.

In EJB 2.1, durability is declared using the standard subscriptionDurability activation configuration property:

<activation-property>

<activation-config-property-name>subscriptionDurability

</activation-config-property-name>

<activation-config-property-value>Durable

</activation-config-property-value>

<activation-property>

In EJB 2.0, durability is declared by the <subscription-durability> element within the <message-driven-destination> element:

<message-driven-destination>

 <destination-type>javax.jms.Topic</destination-type>

 <subscription-durability>Durable</subscription-durability>

</message-driven-destination>

When the destination type is javax.jms.Queue, as is the case in the ReservationProcessor EJB, durability is not a factor
because of the nature of queue-based messaging systems. With a queue, messages may be consumed only once and
remain in the queue until they are distributed to one of the queue's listeners.

The rest of the elements in both the EJB 2.1 and EJB 2.0 deployment descriptors should already be familiar. The <ejb-
ref> element provides JNDI ENC bindings for a remote EJB home object, while the <ejb-local-ref> elements provide JNDI
ENC bindings for local EJB home objects. Note that the <resource-ref> element that defined the JMS
QueueConnectionFactory used by the ReservationProcessor EJB to send ticket messages is not accompanied by a
<resource-env-ref> element. The queue to which the tickets are sent is obtained from the JMSReplyTo header of the
MapMessage itself, and not from the JNDI ENC.

12.2.4 The ReservationProcessor Clients

In order to test the ReservationProcessor EJB, we need to develop two new client applications: one to send reservation
messages and the other to consume ticket messages produced by the ReservationProcessor EJB.

12.2.4.1 The reservation message producer

The JmsClient_ReservationProducer sends 100 reservation requests very quickly. The speed with which it sends these
messages forces many containers to use multiple MDB instances to process them. The code for
JmsClient_ReservationProducer looks like this:

import javax.jms.Message;

import javax.jms.MapMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.Queue;

import javax.jms.QueueSender;

import javax.jms.JMSException;

import javax.naming.InitalContext;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import javax.naming.InitalContext;

import java.util.Date;

import com.titan.processpayment.CreditCardDO;

public class JmsClient_ReservationProducer {

 public static void main(String [] args) throws Exception {

 InitialContext jndiContext = getInitialContext();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("QueueFactoryNameGoesHere");

 Queue reservationQueue = (Queue)

 jndiContext.lookup("QueueNameGoesHere");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session =

 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

 QueueSender sender = session.createSender(reservationQueue);

 Integer cruiseID = new Integer(1);

 for(int i = 0; i < 100; i++){

 MapMessage message = session.createMapMessage();

 message.setStringProperty("MessageFormat","Version 3.4");

 message.setInt("CruiseID",1);

 message.setInt("CustomerID",i%10);

 message.setInt("CabinID",i);

 message.setDouble("Price", (double)1000+i);

 // the card expires in about 30 days

 Date expirationDate = new Date(System.currentTimeMillis()+43200000);

 message.setString("CreditCardNum", "923830283029");

 message.setLong("CreditCardExpDate", expirationDate.getTime());

 message.setString("CreditCardType", CreditCardDO.MASTER_CARD);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 message.setString("CreditCardType", CreditCardDO.MASTER_CARD);

 sender.send(message);

 }

 connect.close();

 }

 public static InitialContext getInitialContext()

 throws JMSException {

 // create vendor-specific JNDI context here

 }

}

Note that the JmsClient_ReservationProducer sets the CustomerID, CruiseID, and CabinID as primitive int values, but the
ReservationProcessorBean reads these values as java.lang.Integer types. This is not a mistake. The MapMessage automatically
converts any primitive to its proper wrapper if that primitive is read using MapMessage.getObject(). So, for example, a
named value that is loaded into a MapMessage using setInt() can be read as an Integer using getObject(). For example, the
following code sets a value as a primitive int and then accesses it as a java.long.Integer object:

MapMessage mapMsg = session.createMapMessage();

mapMsg.setInt("TheValue",3);

Integer myInteger = (Integer)mapMsg.getObject("TheValue");

if(myInteger.intValue() == 3)

 // this will always be true

12.2.4.2 The ticket message consumer

The JmsClient_TicketConsumer is designed to consume all the ticket messages delivered by ReservationProcessor EJB
instances to the queue. It consumes the messages and prints out the descriptions:

import javax.jms.Message;

import javax.jms.ObjectMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.Queue;

import javax.jms.QueueReceiver;

import javax.jms.JMSException;

import javax.naming.InitalContext;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import com.titan.travelagent.TicketDO;

public class JmsClient_TicketConsumer

 implements javax.jms.MessageListener {

 public static void main(String [] args) throws Exception {

 new JmsClient_TicketConsumer();

 while(true){Thread.sleep(10000);}

 }

 public JmsClient_TicketConsumer() throws Exception {

 InitialContext jndiContext = getInitialContext();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("QueueFactoryNameGoesHere");

 Queue ticketQueue = (Queue)jndiContext.lookup("QueueNameGoesHere");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session =

 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

 QueueReceiver receiver = session.createReceiver(ticketQueue);

 receiver.setMessageListener(this);

 connect.start();

 }

 public void onMessage(Message message) {

 try {

 ObjectMessage objMsg = (ObjectMessage)message;

 TicketDO ticket = (TicketDO)objMsg.getObject();

 System.out.println("********************************");

 System.out.println(ticket);

 System.out.println("********************************");

 } catch(JMSException jmsE) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(JMSException jmsE) {

 jmsE.printStackTrace();

 }

 }

 public static InitialContext getInitialContext() throws JMSException {

 // create vendor-specific JNDI context here

 }

}

To make the ReservationProcessor EJB work with the two client applications, JmsClient_ReservationProducer and
JmsClient_TicketConsumer, you must configure your EJB container's JMS provider so that it has two queues: one for
reservation messages and another for ticket messages.

Exercise 12.2 in the Workbook shows how to deploy these examples in the JBoss EJB container.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.3 The Life Cycle of a Message-Driven Bean
Just as the entity and session beans have well-defined life cycles, so does the MDB bean. The MDB instance's life cycle
has two states: Does Not Exist and Method-Ready Pool. The Method-Ready Pool is similar to the instance pool used for
stateless session beans.[7] Figure 12-4 illustrates the states and transitions that an MDB instance goes through in its
lifetime.

[7] Some vendors may not pool MDB instances, but may instead create and destroy instances with each new
message. This is an implementation-specific decision that should not affect the specified life cycle of the stateless
bean instance.

Figure 12-4. MDB life cycle

12.3.1 Does Not Exist

When an MDB instance is in the Does Not Exist state, it is not an instance in the memory of the system. In other words,
it has not been instantiated yet.

12.3.2 The Method-Ready Pool

MDB instances enter the Method-Ready Pool as the container needs them. When the EJB server is first started, it may
create a number of MDB instances and enter them into the Method-Ready Pool. (The actual behavior of the server
depends on the implementation.) When the number of MDB instances handling incoming messages is insufficient, more
can be created and added to the pool.

12.3.3 Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three operations are performed
on it. First, the bean instance is instantiated when the container invokes the Class.newInstance() method on the MDB
class. Second, the setMessageDrivenContext() method is invoked by the container providing the MDB instance with a
reference to its EJBContext. The MessageDrivenContext reference may be stored in an instance field of the MDB.

Finally, the no-argument ejbCreate() method is invoked by the container on the bean instance. The MDB has only one
ejbCreate() method, which takes no arguments. The ejbCreate() method is invoked only once in the life cycle of the MDB.

MDBs are not subject to activation, so they can maintain open connections to resources for their entire life cycles.[8]

The ejbRemove() method should close any open resources before the MDB is evicted from memory at the end of its life
cycle.

[8] The duration of an MDB instance's life is assumed to be very long. However, some EJB servers may actually

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[8] The duration of an MDB instance's life is assumed to be very long. However, some EJB servers may actually
destroy and create instances with every new message, making this strategy less attractive. Consult your vendor's
documentation for details on how your EJB server handles stateless instances.

12.3.4 Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to handle incoming messages. When a message is delivered to
an MDB, it is delegated to any available instance in the Method-Ready Pool. While the instance is executing the request,
it is unavailable to process other messages. The MDB can handle many messages simultaneously, delegating the
responsibility of handling each message to a different MDB instance. When a message is delegated to an instance by
the container, the MDB instance's MessageDrivenContext changes to reflect the new transaction context. Once the
instance has finished, it is immediately available to handle a new message.

12.3.5 Transitioning Out of the Method-Ready Pool: The Death of an MDB
Instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when the server no longer needs them. This
occurs when the server decides to reduce the total size of the Method-Ready Pool by evicting one or more instances
from memory. The process begins by invoking the ejbRemove() method on the instance. At this time, the bean instance
should perform any necessary cleanup operations, such as closing open resources. The ejbRemove() method is invoked
only once in the life cycle of an MDB instance—when it is about to transition to the Does Not Exist state. During the
ejbRemove() method, the MessageDrivenContext and access to the JNDI ENC are still available to the bean instance.
Following the execution of the ejbRemove() method, the bean is dereferenced and eventually garbage collected.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.4 Connector-Based Message-Driven Beans
Although the JMS-based MDB has proven very useful, it has limitations. Perhaps the most glaring limitation is that EJB
vendors are only able to support a small number of JMS providers (usually only one). In fact, most EJB 2.0 vendors only
support their own JMS provider, no others. Obviously, this limits your choices: if your company or a partner company
uses a JMS provider that is not supported by your EJB vendor, you will not be able to process messages from that JMS
provider.[9]

[9] A workaround is to use a JMS Gateway, which routs messages from one JMS provider to another, but this is a
custom solution outside the EJB specification.

The root of the problem is complex and requires a fairly deep understanding of transaction management. In a nutshell,
the delivery of the message by the JMS provider to the MDB, and all the work performed by the MDB (e.g., using JDBC,
invoking methods on other beans, etc.), must be part of the same transaction, which is initiated by the EJB container.
This requires that the EJB container have prior knowledge that message delivery is imminent, so that it can initiate a
transaction before the message is actually delivered. Unfortunately, the JMS API doesn't support this kind of
functionality. So an EJB 2.0 container requires special code to coordinate transactions with each JMS provider. Custom
integration is expensive, so EJB 2.0 vendors generally choose to integrate with very few JMS providers.

Another limitation of MDBs in EJB 2.0 is that they only support the JMS programming model; no other messaging
systems are supported. While JMS is very useful, it's not the only messaging system available. SOAP, email, CORBA
Messaging, proprietary messaging systems used in ERP systems (SAP, PeopleSoft, etc.), and legacy messaging systems
are examples of other non-JMS messaging systems.

EJB 2.1 supports an expanded, more open definition of message-driven beans that allows them to service any kind of
messaging system from any vendor. The only requirement is that new types of message-driven beans implement the
javax.ejb.MessageDrivenBean interface and adhere to the message-driven bean life cycle. While EJB 2.1 vendors can build
custom code to support a new messaging system (something other than JMS), they must also support any message-
driven bean type that's based on the J2EE Connector Architecture 1.5.

The J2EE Connector Architecture provides a standard Service Provider Interface (SPI) that allows any Enterprise
Information System (EIS) to plug into any J2EE container system. Version 1.0 of the connector architecture applies only
to request/reply resources in which the J2EE component (EJB or Servlet/JSP) initiates the request. The current version
of the connector architecture (1.5), which is required by J2EE 1.4, is much more general, and can work with
asynchronous messaging systems. In such systems, the J2EE component waits for messages to arrive, instead of
initiating an interaction with an EIS; the EIS initiates the interaction by delivering a message.

J2EE Connectors 1.5 defines a messaging contract specifically tailored to message-driven beans. It defines the contracts
between an EJB container and an asynchronous Connector so that message-driven beans automatically process
incoming messages from the EIS. MDBs based on an asynchronous Connector implement the standard
javax.ejb.MessageDrivenBean interface, as well as a specific messaging interface defined by the Connector itself. Instead of
implementing the javax.jms.MessageListener interface, the MDB implements some other type of interface that is specific to
the EIS.

For example, Chapter 3 introduced a hypothetical Email Connector that allows MDBs to process email—similar to how
JMS-based MDBs process JMS messages. The Email Connector is purchased from Vendor X and delivered in a JAR file
called a RAR (Resource ARchive). The RAR contains all the Connector code and deployment descriptors necessary to
plug into the EJB container system. It also defines a messaging interface that the developer uses to create an Email
MDB. Here is the hypothetical Email messaging interface that must be implemented by an Email MDB.

package com.vendorx.email;

public interface EmailListener {

 public void onMessage(javax.mail.Message message);

}

The bean class that implements this interface also implements the javax.ejb.MessageDrivenBean interface and is
responsible for processing email messages delivered by the Email Connector. The following code shows a MDB that
implements the EmailListener interface and processes email:

package com.titan.email;

public class EmailBean

 implements javax.ejb.MessageDrivenBean, com.vendorx.email.EmailListener {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 implements javax.ejb.MessageDrivenBean, com.vendorx.email.EmailListener {

 MessageDrivenContext ejbContext;

 public void setMessageDrivenContext(MessgeDrivenContext mdc){

 ejbContext = mdc;

 }

 public void ejbCreate(){}

 public void onMessage(javax.mail.Message message){

 javax.mail.internet.MimeMessage msg =

 (javax.mail.internet.MimeMessage) message;

 Address [] addresses = msg.getFrom();

 // continue processing Email message

 }

 public void ejbRemove(){}

}

In this example, the container calls onMessage() to deliver a JavaMail Message object, which represents an email
message including MIME attachments. However, the messaging interfaces used by a Connector-based MDB don't have
to use onMessage(). The method name and method signature can be whatever is appropriate to the EIS; it can even
have a return types. For example, a Connector might be developed to handle request/reply style messaging for SOAP.
This connector might use the ReqRespListener defined by the JAXM (Java API for XML Messaging), which is a SOAP
messaging API defined by Sun Microsystems that is not a part of the J2EE platform:

package javax.xml.messaging;

import javax.xml.soap.SOAPMessage;

public interface ReqRespListener {

 public SOAPMessage onMessage(SOAPMessage message);

}

In this interface, onMessage() has a return type of SOAPMessage. This means the EJB container and Connector are
responsible for coordinating the reply message back to the sender (or some destination defined in the deployment
descriptor). In addition to supporting different method signatures, the messaging interface may have several methods
for processing different kinds of messages using the same MDB.

There's no limit to the new kinds of message-driven beans that EJB 2.1 containers systems can support. The real
beauty of all this is that Connector-based MDBs are completely portable across EJB 2.1 vendors—because all vendors
must support them. If you use a Connector-based MDB with EJB 2.1 vendor A, and later change to EJB 2.1 vendor B,
you can continue to use the same Connector-based MDB with no portability problems.

The activation configuration properties used with non-JMS-based MDBs depend on the type of Connector and its
requirements. For example, the <message-driven> element of the deployment descriptor for the Email MDB might look
something like this:

 <enterprise-beans>

 ...

 <message-driven>

 <ejb-name>EmailEJB</ejb-name>

 <ejb-class>

 com.titan.email.EmailBean

 </ejb-class>

 <messaging-type>com.vendorx.email.EmailListener</messaging-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <messaging-type>com.vendorx.email.EmailListener</messaging-type>

 <transaction-type>Bean</transaction-type>

 <activation-config>

 <activation-property>

 <activation-config-property-name>mailServer

 </activation-config-property-name>

 <activation-config-property-value>mail.ispx.com

 </activation-config-property-value>

 </activation-property>

 <activation-property>

 <activation-config-property-name>serverType

 </activation-config-property-name>

 <activation-config-property-value>POP3

 </activation-config-property-value>

 </activation-property>

 <activation-property>

 <activation-config-property-name>messageFilter

 </activation-config-property-name>

 <activation-config-property-value>to='submit@titan.com'

 </activation-config-property-value>

 </activation-property>

 </activation-config>

 <security-identity>

 <run-as>

 <role-name>Admin</role-name>

 </run-as>

 </security-identity>

 </message-driven>

 ...

</enterprise-beans>

Unfortunately, as of this writing there are no Connector-based MDBs commercially available, which is why all examples
(like the Email EJB) are hypothetical. It's likely that new Connector-based MDBs will start popping up after EJB 2.1
servers have been around for a short while.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.5 EJB 2.1: Message Linking
Message linking is a new feature to EJB 2.1 that allows the messages being sent by any enterprise bean to be routed to
a specific message-driven bean in the same deployment. By using message linking, you can orchestrate a flow of
messages between components in the same application. For example, in the beginning of this chapter, the TravelAgent
EJB from Chapter 11 was re-implemented so that it sent a JMS message with the ticket information to a Topic
destination. Here's a different implementation of the TravelAgent EJB's bookPassage() method, this time using an
ObjectMessage type:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/TicketTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 ObjectMessage objectMsg = session.createObjectMessage();

 objectMsg.setObject(ticket);

 publisher.publish(objectMsg);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 publisher.publish(objectMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

When we discussed this method earlier in the chapter, we never really mentioned where the ticket message was being
sent. It could go to the reservation agent or some other department of Titan Cruises. However, message linking makes
sure that the message goes directly to a message-driven bean that we deploy.

For example, we might deploy a message driven bean, the TicketDistributor EJB, that is responsible for distributing
ticket information to several different targets such as legacy databases, partner organizations, marketing, etc. Figure
12-5 shows how the TicketDistributor EJB (an MDB) works with the TravelAgent EJB to distribute ticket information to
several different targets.

Figure 12-5. Message flow with message linking

The TicketDistributor distributes the ticket information to a variety of disparate targets, including a separate relational
database using JDBC, a legacy system (e.g., IMS, CICS, etc.) using a J2EE Connector, and email using JavaMail. The
TravelAgent EJB could have handled this type of distribution directly, but defining a separate MDB to do distribution
provides more flexibility and better performance.

The TicketDistributor MDB is more flexible because the routing for the message can be changed without modifying the
TravelAgent EJB. The TravelAgent EJB always sends messages to the same JMS topic; it's the responsibility of the
TicketDistributor to distribute the ticket information to other sources. The TicketDistributor also improves performance,
because the TicketAgent doesn't have to wait on the various targets (a separate database, legacy system, and email) to
accept and process the message before finishing the reservation. The TicketAgent just sends the ticket information and
forgets about it. It's the responsibility of the TicketDistribution MDB to distribute the ticket information to the
appropriate parities. In addition, the TravelAgent EJB doesn't have to coordinate a distributed transaction across
different resources, which can create significant bottlenecks and affect throughput.

In order to link the outgoing messages sent by the TravelAgent EJB with the incoming messages consumed and
processed by the TicketDistribution MDB, we need to define <message-destination-link> elements in the deployment
descriptor. The <message-destination-link> element is defined by the <message-destination-ref> element of the TravelAgent
EJB. The TicketDistributor EJB also declares the <message-destination-link> element. Both elements reference the same
logical destination declared in the assembly descriptor:

<ejb-jar ...>

 <enterprise-beans>

 ...

 <session>

 <ejb-name>TravelAgentBean</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <message-destination-ref>

 <message-destination-ref-name>

 jms/TicketTopic

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Topic</message-destination-type>

 <message-destination-usage>Produces</message-destination-usage>

 <message-destination-link>

 Distributor

 </message-destination-link>

 </message-destination-ref>

 ...

 </session>

 <message-driven>

 <ejb-name>TicketDistributorEJB</ejb-name>

 <ejb-class>

 com.titan.distributor.TicketDistributorBean

 </ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Bean</transaction-type>

 <message-destination-type>

 javax.jms.Topic

 </message-destination-type>

 <message-destination-link>

 Distributor

 </message-destination-link>

 ...

 </message-driven>

 ...

 </enterprise-beans>

 <assembly-descriptor>

 ...

 <message-destination>

 <message-destination-name>Distributor</message-destination-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <message-destination-name>Distributor</message-destination-name>

 </message-destination>

 ...

 </assembly-descriptor>

</ejb-jar>

As you know, a <message-destination-ref> element declares the destination to which an enterprise beans sends or
receives messages. When the <message-destination-ref> includes a <message-destination-link> element, it means that
message senders and receivers will be sharing a logical destination described in the assembly-descriptor. In the
example above, the TravelAgent EJB's <message-destination-ref> declares a <message-destination-link>, which points to the
<message-destination> element in the <assembly-descriptor> that has the name Distributor. The <message-destination-link>
defined by the TicketDistributor MDB points to the same <message-destination> element. This means the messages sent
by the TravelAgent EJB to the Distributor message destination will go to the TicketDistributor MDB.

Message-driven beans always consume messages from the destination defined by the <message-destination-link> element
defined directly under the <message-bean> element. However, they can also produce messages that are sent to a logical
message destination if they use the message API described by their own <message-destination-ref> element. The
following listing shows that the TicketDistributor consumes messages from the Distributor destination, but also uses the
JMS to send messages to a completely different destination, called Partner:

<ejb-jar ...>

 <enterprise-beans>

 ...

 <message-driven>

 <ejb-name>TicketDistributorEJB</ejb-name>

 <ejb-class>

 com.titan.distributor.TicketDistributorBean

 </ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Bean</transaction-type>

 <message-destination-type>

 javax.jms.Topic

 </message-destination-type>

 <message-destination-link>

 Distributor

 </message-destination-link>

 ...

 <message-destination-ref>

 <message-destination-ref-name>

 jms/PartnerCompany

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Topic</message-destination-type>

 <message-destination-usage>Produces</message-destination-usage>

 <message-destination-link>

 Partner

 </message-destination-link>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </message-destination-link>

 </message-destination-ref>

 ...

 </message-driven>

 ...

 </enterprise-beans>

 <assembly-descriptor>

 ...

 <message-destination>

 <message-destination-name>Distributor</message-destination-name>

 </message-destination>

 <message-destination>

 <message-destination-name>Partner</message-destination-name>

 </message-destination>

 ...

 </assembly-descriptor>

</ejb-jar>

At deployment time, each of the <message-destination> elements are mapped to a real messaging destination in the
target environment. In most cases, this will be a JMS topic or queue, but it could be a destination of some other type of
messaging system.

The J2EE application server doesn't have to route the messages through an actual destination. It can asynchronously
send them from the sender to the receiver; in this case, from the TravelAgent EJB to the TicketDistributor MDB.
However, if the application server handles message delivery itself, rather than going through a messaging provider, it
must follow the semantics of the messaging system. For JMS, transactions, persistence, durability, security, and
acknowledgments should be handled correctly whether the message is sent directly from one component to another, or
via a JMS provider.

Although any enterprise bean can consume (receive) messages from a logical destination as well as produce (send)
messages, only MDBs should consume messages. The reasons for this limitation were discussed earlier in this chapter
(see "Entity and Session Beans Should Not Receive Messages").

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 13. Timer Service
Business systems frequently use scheduling systems to run programs at specified times. Scheduling systems typically
run applications that generate reports, reformat data, or do audit work at night. In other cases, scheduling systems
provide callback APIs that can alert subsystems of events such as due dates, deadlines, etc. Scheduling systems often
run batch jobs (a.k.a. scheduled jobs), which perform routine work automatically at a prescribed time. Users in the Unix
world frequently run scheduled jobs using cron, a simple but useful scheduling system that runs programs listed in a
configuration file. Other job-scheduling systems include the OMG's COS Timer Event Service, which is a CORBA API for
timed events, as well as commercial products.

Regardless of the software, scheduling systems are used in many different scenarios:

In a credit card processing system, credit card charges are processed in batches so that all the charges made
for an entire day are settled together instead of separately. This work is scheduled to be done in the evening to
reduce the impact of processing on the system.

In a hospital or clinical system, Electronic Data Interface (EDI) software is used to send medical claims to
various HMOs. Each HMO has its own processing requirements, but they are all routine, so jobs are scheduled
to gather claim data, put it in the proper format, and transfer it to the HMO.

In just about any company, managers need specific reports run on a regular basis. A scheduling system can be
configured to run those reports automatically and deliver them via email to managers.

Scheduling systems are also common in workflow applications, which are systems that manage document processing
that typically spans days or months, and involves many systems and lots of human intervention. In workflow
applications, scheduling is employed for auditing tasks that periodically take inventory of the state of an application,
invoice, sales order, etc., in order to ensure everything is proceeding as scheduled. The scheduling system maintains
timers and delivers events to alert applications and components when a specified date and time is reached, or when
some period has expired. Here are some examples of workflow scheduling:

In a mortgage system, a lot of tasks have to be completed (i.e., appraisal, rate lock-in, closing appointment,
etc.) before the mortgage can be closed. Timers can be set on mortgage applications to perform periodic audits
that ensure everything is proceeding on schedule.

In a healthcare claims processing system, claims must be processed within 90 days according to terms
negotiated by in-network physicians and clinics. Each claim could have a timer set to go off seven days before
the deadline.

In a stockbroker system, buy-at-limit orders can be created for a specific number of shares, but only at a
specified price or lower. These buy-at-limit orders typically have a time limit. If the stock price falls below the
specified price before the time limit, the buy-at-limit order is carried out. If the stock price does not fall below
the specified price before the time limit, the timer expires and the buy-at-limit order is canceled.

In the EJB world, there has been a general interest in scheduling systems that can work directly with enterprise beans.
However, prior to EJB 2.1, there has been no standard J2EE scheduling system. Enterprise JavaBeans 2.1 introduces a
standardized but limited scheduling system called the Timer Service.

The Java 2 Platform, Standard Edition includes the class java.util.Timer, which allows threads
to schedule tasks for future execution in a background thread. This facility is useful for a
variety of applications, but it's too limited to be used in enterprise computing. Note,
however, that the scheduling semantics of java.util.Timer are similar to those of the EJB
Timer Service.

The Timer Service is a facility of the EJB container system that provides a timed-event API, which can be used to
schedule timers for specified dates, periods, and intervals. A timer is associated with the enterprise bean that set it, and
calls that bean's ejbTimeout() method when it goes off. The rest of this chapter describes the EJB Timer Service API and
its use with entity, stateless session, and message-driven beans, as well as providing some criticism of and suggested
improvements for the Timer Service.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.1 Titan's Maintenance Timer
Titan Cruises has a policy of performing regular maintenance on its ships. For example, the engines require extensive
and varied maintenance activities throughout the year, as does navigation equipment, communications, sewer and
water systems, etc. In fact, there are literally thousands of maintenance functions to be performed on a ship
throughout the year. To manage all these items, Titan uses the EJB Timer Service to alert the proper maintenance
crews when an item needs to be serviced. In this chapter, we modify the Ship EJB to manage its own maintenance
schedule. Titan's Health and Safety department can use business methods on the Ship EJB to schedule and cancel
maintenance items, and the Ship EJB will take care of alerting the correct maintenance crew when an item needs to be
serviced.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.2 Timer Service API
The Timer Service enables an enterprise bean to be notified when a specific date has arrived, when some period of time
has elapsed, or at recurring intervals. To use the Timer Service, an enterprise bean must implement the
javax.ejb.TimedObject interface, which defines a single callback method, ejbTimeout():

package javax.ejb;

public interface TimedObject {

 public void ejbTimeout(Timer timer) ;

}

When the scheduled time is reached or the specified interval has elapsed, the container system invokes the enterprise
bean's ejbTimeout() method. The enterprise bean can then perform any processing it needs to respond to the timeout,
such as run reports, audit records, modify the states of other beans, etc. For example, the Ship EJB can be modified to
implement the TimedObject interface, as shown:

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 public Integer ejbCreate(Integer primaryKey,String name,double tonnage) {

 setId(primaryKey);

 setName(name);

 setTonnage(tonnage);

 return null;

 }

 public void ejbPostCreate(Integer primaryKey,String name,double tonnage) {}

 public abstract void setId(Integer id);

 public abstract Integer getId();

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setTonnage(double tonnage);

 public abstract double getTonnage();

 public void unsetEntityContext(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbLoad(){}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ejbLoad(){}

 public void ejbStore(){}

 public void ejbRemove(){}

}

An enterprise bean schedules itself for a timed notification using a reference to the TimerService, which it obtains from
the EJBContext. The TimerService allows a bean to register itself for notification on a specific date, after some period of
time, or at recurring intervals. The following code shows how a bean would register for notification exactly 30 days from
now:

// Create a Calendar object that represents the time 30 days from now.

Calendar time = Calendar.getInstance(); // the current time.

time.add(Calendar.DATE, 30); // add 30 days to the current time.

Date date = time.getTime();

// Create a timer that will go off 30 days from now.

EJBContext ejbContext = // ...: get EJBContext object from somewhere.

TimerService timerService = ejbContext.getTimerService();

timerService.createTimer(date, null);

This example creates a Calendar object that represents the current time, then increments this object by 30 days so that
it represents the time 30 days from now. The code obtains a reference to the container's TimerService and calls the
TimerService.createTimer() method, passing it the java.util.Date value of the Calendar object, thus creating a timer that will
go off after 30 days.

We can add a method, scheduleMaintenance(), to the Ship EJB that allows a client to schedule a maintenance item. When
the method is called, the client passes in a description of the maintenance item and the date on which it is to be
performed. For example, a client could schedule a maintenance item for the cruise ship Valhalla on April 2, 2004, as
shown in the following code snippet:

InitialContext jndiCntxt = new InitialContext();

ShipHomeRemote shipHome =

 (ShipHomeRemote) jndiCntxt.lookup("java:comp/env/ejb/ShipHomeRemote");

ShipRemote ship = shipHome.findByName("Valhalla");

Calendar april2nd = Calendar.getInstance();

april2nd.set(2004, Calendar.APRIL, 2);

String description = "Stress Test: Test Drive Shafts A & B ...";

ship.scheduleMaintenance(description, april2nd.getTime());

The ShipBean implements the scheduleMaintenance() method and takes care of scheduling the event using the Timer
Service, as shown below:

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(dateOf, description);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

}

As you can see, the Ship EJB is responsible for obtaining a reference to the Timer Service and scheduling its own
events. When April 2, 2004, rolls around, the Timer Service calls the ejbTimeout() method on the Ship EJB representing
the Valhalla. When the ejbTimeout() method is called, the Ship EJB sends a JMS message containing the description of
the test to the Health and Safety department at Titan Cruises, alerting them that a stress test is required. Here's how
the implementation of ejbTimeout() looks:

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(dateOf, description);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 try{

 String description = (String)timer.getInfo();

 InitialContext jndiContext = new InitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/MaintenanceTopic");

 TopicConnection connect = factory.createTopicConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(description);

 publisher.publish(textMsg);

 connect.close();

 }catch(Exception e){

 throw new EJBException(e);

 }

 }

}

13.2.1 The TimerService Interface

The TimerService interface provides an enterprise bean with access to the EJB container's Timer Service so that new
timers can be created and existing timers can be listed. The TimerService interface is a part of the javax.ejb package in
EJB 2.1 and has the following definition:

package javax.ejb;

import java.util.Date;

import java.io.Serializable;

public interface TimerService {

 // Create a single-action timer that expires on a specified date.

 public Timer createTimer(Date expiration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Create a single-action timer that expires after a specified duration.

 public Timer createTimer(long duration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Create an interval timer that starts on a specified date.

 public Timer createTimer(

 Date initialExpiration, long intervalDuration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Create an interval timer that starts after a specified durration.

 public Timer createTimer(

 long initialDuration, long intervalDuration, Serializable info)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long initialDuration, long intervalDuration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Get all the active timers associated with this bean

 public java.util.Collection getTimers()

 throws IllegalStateException,EJBException;

}

Each of the four TimerService.createTimer() methods establishes a timer with a different type of configuration. There are
essentially two types of timers: single-action and interval. A single-action timer expires once, while an interval timer
expires many times, at specified intervals. When a timer expires, the Timer Service calls the bean's ejbTimeout()
method.

Here's how each of the four createTimer() methods works. At this point, we are only discussing the expiration and duration
parameters and their uses. The Serializable info parameter is discussed later in this chapter.

createTimer(Date expiration, Serializable info)

Creates a single-action timer that expires once. The timer expires on the date set for the expiration parameter.
Here's how to set a timer that expires on July 4, 2004:

Calendar july4th = Calendar.getInstance();

july4th.set(2004, Calendar.JULY, 4);

timerService.createTimer(july4th.getTime(), null);

createTimer(long duration, Serializable info)

Creates a single-action timer that only expires once. The timer expires after duration time (measured in
milliseconds) has elapsed. Here's how to set a timer that expires in 90 days:

long ninetyDays = 1000 * 60 * 60 * 24 * 90; // 90 days

timerService.createTimer(ninetyDays, null);

createTimer(Date initialExpiration, long intervalDuration, Serializable info)

Creates an interval timer that expires many times. The timer first expires on the date set for the initialExpiration
parameter. After the first expiration, subsequent expirations occur at intervals equal to the intervalDuration
parameter (in milliseconds). Here's how to set a timer that expires on July 4, 2004 and continues to expire
every three days after that date:

Calendar july4th = Calendar.getInstance();

july4th.set(2004, Calendar.JULY, 4);

long threeDaysInMillis = 1000 * 60 * 60 * 24 * 3; // 3 days

timerService.createTimer(july4th.getTime(), threeDaysInMillis, null);

createTimer(long initialDuration, long intervalDuration, Serializable info)

Creates an interval timer that expires many times. The timer first expires after the period given by initialDuration
has elapsed. After the first expiration, subsequent expirations occur at intervals given by the intervalDuration
parameter. Both initialDuration and intervalDuration are in milliseconds. Here's how to set a timer that expires in 10
minutes and continues to expire every hour thereafter:

long tenMinutes = 1000 * 60 * 10; // 10 minutes

long oneHour = 1000 * 60 * 60; // 1 hour

timerService.createTimer(tenMinutes, oneHour, null);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a timer is created, the Timer Service makes it persistent in some type of secondary storage, so it will survive
system failures. If the server goes down, the timers are still active when the server comes back up. While the
specification isn't clear, it's assumed that any timers that expire while the system is down will go off when it comes
back up again. If an interval timer expires many times while the server is down, it may go off multiple times when the
system comes up again. Consult your vendors' documentation to learn how they handle expired timers following a
system failure.

The TimerService.getTimers() method returns all the timers that have been set for a particular enterprise bean. For
example, if this method is called on the EJB representing the cruise ship Valhalla, it returns only the timers that are set
for the Valhalla, not timers set for other ships. The getTimers() method returns a java.util.Collection, an unordered
collection of zero or more javax.ejb.Timer objects. Each Timer object represents a different timed event that has been
scheduled for the bean using the Timer Service.

The getTimers() method is often used to manage existing timers. A bean can look through the Collection of Timer objects
and cancel any timers that are no longer valid or need to be rescheduled. For example, the Ship EJB defines the
clearSchedule() method, which allows a client to cancel all of the timers on a specific ship. Here's the implementation of
clearSchedule():

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void clearSchedule(){

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while(timers.hasNext()){

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 timer.cancel();

 }

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 // code for scheduling timer goes here

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

}

The logic here is simple. After getting a reference to the TimerService, we get an iterator that contains all of the Timers.
Then we work through the iterator, cancelling each timer as we go. The Timer objects implement a cancel() method,
which removes the timed event from the Timer Service so that it never expires.

13.2.1.1 Exceptions

The TimerService.getTimers() method can throw an IllegalStateException or an EJBException. All of the createTimer() methods
declare these two exceptions, plus a third exception, the IllegalArgumentException. The reasons that the TimerService
methods would throw these exceptions are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.lang.IllegalArgumentException

The duration and expiration parameters must have valid values. This exception is thrown if a negative number
is used for one of the duration parameters or a null value is used for the expiration parameter, which is of type
java.util.Date.

java.lang.IllegalStateException

This exception is thrown if the enterprise bean attempts to invoke one of the TimerService methods from a
method where it's not allowed. Each enterprise bean type (i.e., entity, stateless session, and message-driven)
defines its own set of allowed operations. However, in general the TimerService methods can be invoked from
anywhere except the EJBContext methods (i.e., setEntityContext(), setSessionContext(), and setMessageDrivenContext(
)).

javax.ejb.EJBException

This exception is thrown when some type of system-level exception occurs in the Timer Service.

13.2.2 The Timer

A Timer is an object that implements the javax.ejb.Timer interface. It represents a timed event that has been scheduled
for an enterprise bean using the Timer Service. Timer objects are returned by the TimerService.createTimer() and
TimerService.getTimers() methods, and a Timer is the only parameter of the TimedObject.ejbTimeout() method. The Timer
interface is:

package javax.ejb;

public interface Timer {

 // Cause the timer and all its associated expiration

 // notifications to be canceled

 public void cancel()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 // Get the information associated with the timer at the time of creation.

 public java.io.Serializable getInfo()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 // Get the point in time at which the next timer

 // expiration is scheduled to occur.

 public java.util.Date getNextTimeout()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 // Get the number of milliseconds that will elapse

 // before the next scheduled timer expiration

 public long getTimeRemaining()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public long getTimeRemaining()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 //Get a serializable handle to the timer.

 public TimerHandle getHandle()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

}

A Timer instance represents exactly one timed event and can be used to cancel the timer, obtain a serializable handle,
obtain the application data associated with the timer, and find out when the timer's next scheduled expiration will occur.

13.2.2.1 Cancelling timers

The previous section used the Timer.cancel() method. It's used to cancel a specific timer: remove the timed event from
the Timer Service so that it never expires. It is useful if a particular timer needs to be removed completely or simply
rescheduled. To reschedule a timed event, cancel the timer and create a new one. For example, when one of the ship's
components fails and is replaced, that component must have its maintenance rescheduled: it doesn't make sense to
perform a yearly overhaul on an engine in June if it was replaced in May. The scheduleMaintenance() method can be
modified so that it can add a new maintenance item or replace an existing one by canceling it and adding the new one.

 public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while(timers.hasNext()){

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 String timerDesc = (String) timer.getInfo();

 if(description.equals(timerDesc)){

 timer.cancel();

 }

 }

 timerService.createTimer(dateOf, description);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

The scheduleMaintenance() method first obtains a Collection of all timers defined for the Ship. It then compares the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scheduleMaintenance() method first obtains a Collection of all timers defined for the Ship. It then compares the
description of each timer to the description passed into the method. If there is a match, it means a timer for that
maintenance item was already scheduled and should be canceled. After the while loop, the new Timer is added to the
Timer Service.

13.2.2.2 Identifying timers

Of course, comparing descriptions is a fairly unreliable way of identifying timers, since descriptions tend to vary over
time. What is really needed is a far more robust information object that can contain both a description and a precise
identifier.

All of the TimeService.createTimer() methods declare an info object as their last parameter. The info object is application
data that is stored with by the Timer Service and delivered to the enterprise bean when its ejbTimeout() method is
called. The serializable object used as the info parameter can be anything, as long it implements the java.io.Serializable
interface and follows the rules of serialization.[1] The info object can be put to many uses, but one obvious use is to
associate the timer with some sort of identifier.

[1] In the most basic cases, all an object needs to do to be serializable is implement the java.io.Serializable interface
and make sure any nonserializable fields (e.g., JDBC connection handle) are marked as transient.

To get the info object from a timer, call the timer's getInfo() method. This method returns a serializable object, which
you'll have to cast to an appropriate type. So far, we've been using strings as info objects, but there are much more
elaborate (and reliable) possibilities. For example, rather than compare maintenance descriptions to find duplicate
timers, Titan decided to use unique Maintenance Item Numbers (MINs). MINs and maintenance descriptions can be
combined into a new MaintenanceItem object:

public class MaintenanceItem implements java.io.Serializable {

 private long maintenanceItemNumber;

 private String description;

 public MaintenanceItem(long min, String desc){

 maintenanceItemNumber = min;

 description = desc;

 }

 public long getMIN(){

 return maintenanceItemNumber;

 }

 public String getDescription(){

 return description;

 }

}

Using the MaintenanceItem type, we can modify the scheduleMaintenance() method to be more precise, as shown below
(changes are in bold):

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(

 MaintenanceItem maintenanceItem, Date dateOfTest){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MaintenanceItem maintenanceItem, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while(timers.hasNext()){

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 MaintenanceItem timerMainItem = (MaintenanceItem) timer.getInfo();

 if(maintenanceItem.getMIN() == timerMainItem.getMIN()){

 timer.cancel();

 }

 }

 timerService.createTimer(dateOf, maintenanceItem);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

The MaintenanceInfo class contains information about the maintenance work that is to be done and is sent to the
maintenance system using JMS. When one of the timers expires, the Timer Service calls the ejbTimeout() method on the
Ship EJB. When the ejbTimeout() method is called, the info object is obtained from the Timer object and used to
determine which timer logic should be executed.

Exercise 13.1 in the Workbook shows how to deploy these examples in JBoss.

13.2.2.3 Retrieving other information from timers

The Timer.getNextTimeout() method simply returns the date—represented by a java.util.Date instance—on which the timer
will expire next. If the timer is a single-action timer, the Date returned is the time at which the timer will expire. If,
however, the timer is an interval timer, the Date returned is the time remaining until the next expiration. Oddly, there is
no way to determine subsequent expirations or the interval at which an interval timer is configured. The best way to
handle this is to put that information into your info object.

The Timer.getTimeRemaining() method returns the number of milliseconds before the timer will next expire. Like the
getNextTimeout() method, this method only provides information about the next expiration.

13.2.2.4 The TimerHandle object

The Timer.getHandle() method returns a TimerHandle. The TimerHandle is similar to the javax.ejb.Handle and
javax.ejb.HomeHandle discussed in Chapter 5. It's a reference that can be saved to a file or some other resource, then
used later to regain access to the Timer. The TimerHandle interface is simple:

package javax.ejb;

public interface TimerHandle extends java.io.Serializable {

 public Timer getTimer() throws NoSuchObjectLocalException, EJBException;

}

The TimerHandle is only valid as long as the timer has not expired (if it's a single-action timer) or been canceled. If the
timer no longer exists, calling the TimerHandle.getTimer() method throws a javax.ejb.NoSuchObjectException.

TimerHandle objects are local, which means they cannot be used outside the container system that generated them.
Passing the TimerHandle as an argument to a remote or endpoint interface method is illegal. However, a TimerHandle can
be passed between local enterprise beans using their local interface, because local enterprise beans must be co-located
in the same container system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the same container system.

13.2.2.5 Exceptions

All the methods defined in the Timer interface declare two exceptions:

javax.ejb.NoSuchObjectLocalException

This exception is thrown if you invoke any method on an expired single-action timer or a canceled timer.

javax.ejb.EJBException

This exception is thrown when some type of system level exception occurs in the Timer Service.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.3 Transactions
When a bean calls createTimer(), the operation is performed in the scope of the current transaction. If the transaction
rolls back, the timer is undone: it's not created (or, more precisely, uncreated). For example, if the Ship EJB's
scheduleMaintenance() method has a transaction attribute of RequiresNew, a new transaction will be created when the
method is called. If an exception is thrown by the method, the transaction rolls back and the new timer event is not
created.

In most cases, the ejbTimeout() method on beans should have a transaction attribute of RequiresNew. This ensures that
the work performed by the ejbTimeout() method is in the scope of container-initiated transactions. Transactions are
covered in more detail in Chapter 16.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.4 Entity Bean Timers
Entity beans set timers on a specific type of entity bean (e.g., Ship, Customer, Reservation, etc.) with a specific primary
key. When a timer goes off, the container uses the primary key associated with the timer to load the entity bean with
proper data. Once the entity bean is in the ready state—its data is loaded and it's ready to service requests—the
ejbTimeout() method is invoked. The container associates the primary key with the timer implicitly.

Using timers with entity beans allows entity beans to manage their own timed events. As we've seen, it makes sense
for a Ship to manage its own maintenance schedule. The maintenance schedule is unique for each ship and required in
order to keep the ship sailing, so it could be considered intrinsic to the definition of a ship. If, however, the timed event
is not a part of the entity's definition, it's best to put the timer into a taskflow bean (i.e., stateless session or message-
driven) that represents the scenario, instead of placing the logic in the entity bean. This avoids entity bloat, in which an
entity bean's definition becomes huge from attempting to manage every possible application of the entity bean. It's the
same reason we move taskflow logic out of entity beans and into session beans.

A serious concern with entity beans is the possibility of timer attack, which occurs when too many timers expire at the
same time. A timer attack is not caused by malicious intent, but rather poor design. For example, if all the Customer
beans in Titan system had timers set to expire five days before a cruise (perhaps to send email reminders to
customers), it's possible that thousands of timers would expire simultaneously. This scenario could lead to a timer
attack. A timer attack causes congestion and competition for resources that can overwhelm the EJB server to the point
where it cannot handle other requests. The timer attack can be exacerbated by timer rollbacks, which occur when a
timer fails to execute properly. As timers fight for resources and fail, they are re-executed, prolonging the strain on the
system. Good design and intelligent containers are the only safeguard against a timer attack. Be aware of the types of
timers you are creating and the possibility of many timers executing simultaneously.

The entity bean can access the TimerService from the EntityContext in any business method or callback method, except
the seEntityContext() method. The timers associated with an entity bean are canceled automatically when the entity is
removed, so there is no need to explicitly cancel timers in the ejbRemove() method.

When an entity bean implements the TimedObject interface, its life cycle changes to accommodate timed events. When a
bean's timer expires, the container transitions a bean instance to the Ready state, calling its ejbActivate() and then
ejbLoad() methods after loading the bean's persistent fields. When the ejbTimeout() method returns, the container calls
the bean's ejbStore() method, stores changes to the database, calls the bean's ejbPassivate() method, and returns the
bean to the Pooled state. Figure 13-1 shows the life cycle of the entity bean that implements the TimedObject interface.

Figure 13-1. Entity bean life cycle with TimedObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.5 Stateless Session Bean Timers
Stateless session bean timers can be used for auditing or batch processing. As an auditing agent, a stateless session
timer can monitor the state of the system to ensure that tasks are being completed and that data is consistent. This
type of work spans entities and possibly data sources. Such EJBs can also perform batch processing work such as
database clean up, transfer of records, etc. Stateless session bean timers can also be deployed as agents that perform
some type of intelligent work on behalf of the organization they serve. An agent can be thought of as an extension of an
audit: it monitors the system but it also fixes problems automatically.

While entity timers are associated with a specific entity bean and primary key, stateless session bean timers are
associated only with a specific type of session bean. When a timer for a stateless session bean goes off, the container
selects an instance of that stateless bean type from the instance pool and calls its ejbTimeout() method. This makes
sense, because all stateless session beans in the instance pool are logically equivalent. Any instance can serve any
client, including the container itself.

Stateless session timers are often used to manage taskflow or when the timed event applies to a collection of entities
instead of just one. For example, stateless session timers might be used to audit all maintenance records to ensure that
they meet state and federal guidelines: at specific intervals, a timer notifies the bean to look up the maintenance
records from all the Ships and generate a report. In contrast, a timer for an entity bean helps that entity manage its
own state. A stateless session timer can also be used to do something like send notifications to all the passengers for a
particular cruise, thus avoiding the timer attack problem.

The stateless session bean can access the TimerService from the SessionContext in the ejbCreate(), ejbRemove(), or any
business method, but it cannot access the timer service from the setSessionContext() method. This means a client must
call some method on a stateless session bean (either create, or a business method) in order for a timer to be set. This
is the only way to guarantee that the timer is set.

Setting a timer on the ejbCreate() method is problematic. First, there is no guarantee that ejbCreate() will ever be called.
The ejbCreate() method's stateless session bean is called sometime after the bean is instantiated, before it enters the
Method Ready Pool. However, a container might not create a pool of instances until the first client accesses that bean,
so if a client (remote or otherwise) never attempts to access the bean, ejbCreate() may never be called and the timer
will never be set. Another problem with using ejbCreate() is that it's called on every instance before it enters the pool;
you have to prevent subsequent instances (instances created after the first instance) from setting the timer—the first
instance created would have already done this. It's tempting to use a static variable to avoid recreating timers (below),
but it can cause problems.

public class StatelessTimerBean

 implements javax.ejb.SessionBean, javax.ejb.TimedObject {

 static boolean isTimerSet = false;

 public void ejbCreate(){

 if(isTimerSet == false) {

 TimerService timerService = ejbContext.getTimerService();

 InitialContext jndiContext = new InitialContext();

 Long expirationDate = (Long)

 jndiContext.lookup("java:comp/env/expirationDate");

 timerService.createTimer(expirationDate.longValue(), null);

 isTimerSet = true;

 }

 }

While this may seem like a good solution, it only works when your application is deployed within a single server with
one VM and one classloader. If you are using a clustered system, a single server with multiple VMs, or multiple
classloaders (very common), it won't work because bean instances that are not instantiated in the same VM with the
same classloader will not have access to the same static variable. In this scenario, it's easy to end up with multiple
timers doing the same thing. An alternative is to have ejbCreate() access and remove all preexisting timers to see if the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

timers doing the same thing. An alternative is to have ejbCreate() access and remove all preexisting timers to see if the
timer is already established, but this can affect performance because it's likely that new instances will be created and
added to the pool many times, resulting in many calls to ejbCreate() and therefore many calls to TimerService.getTimers().
Also, there is no requirement that the timer service work across a cluster, so timers set on one node in a cluster may
not be visible to timers set on some other node in the cluster.

With stateless session beans, you should never use the ejbRemove() method to cancel or create timers. The ejbRemove()
method is called on individual instances before they are evicted from memory. It is not called in response to client calls
to the remote or local remove method. Also, the ejbRemove() method doesn't correspond to an un-deployment of a
bean; it's only specific to a single instance. As a result, you cannot determine anything meaningful about the EJB as a
whole from a call to the ejbRemove() method and you should not use it to create or cancel timers.

When a stateless session bean implements the javax.ejb.TimedObject interface, its life cycle changes to include the
servicing of timed events. The Timer Service pulls an instance of the bean from the instance pool when a timer expires;
if there are no instances in the pool, the container creates one. Figure 13-2 shows the life cycle of a stateless session
bean that implements the TimedOut interface.

Figure 13-2. Stateless session bean life cycle with TimedObject

13.5.1 Using a Stateless Session Timer

The InactiveCustomer EJB is a stateless session timer that periodically cleans inactive customer records from the
database. It activates every 30 days and deletes records for customers who were created between 4 and 5 months ago,
and who have never booked a cruise. Titan discovered that it accumulated a lot of these inactive customer records
because customers would occasionally book a cruise, then cancel the reservation, and never return for more business.
Once it's deployed and activated, the InactiveCustomer EJB continues to work automatically until canceled. It's a
schedule-and-forget-it type of agent. Here's the bean class definition for the InactiveCustomer EJB:

public class InactiveCustomerBean

 implements javax.ejb.SessionBean, javax.ejb.TimedObject {

 final long THIRTY_DAYS = 1000 * 60 * 60 * 24 * 30;// Thirty Days in Milliseconds

 SessionContext ejbContext;

 public void setSessionContext(javax.ejb.SessionContext cntx){

 ejbContext = cntx;

 }

 public void ejbCreate(){}

 public void schedule(Date begin){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void schedule(Date begin){

 TimerService timerService = ejbContext.getTimerService();

 TimerService.createTimer(begin, THIRTY_DAYS);

 }

 public void ejbTimeout() throws EJBException {

 try{

 Calendar calendar = Calendar.getInstance();

 calendar.add(Calendar.DATE, -120);

 Date date_120daysAgo = calendar.getTime();

 calendar = Calendar.getInstance();

 calendar.add(Calendar.DATE, -150);

 Date date_150daysAgo = calendar.getTime();

 InitialContext jndiEnc = new InitialContext();

 CustomerHomeLocal home = (CustomerHomeLocal)

 jndiEnc.lookup("java:comp/env/ejb/CustomerHomeLocal");

 Iterator customers = home.findCustomersWithNoReservations().iterator();

 while(customers.hasNext()){

 CustomerLocal customer = (CustomerLocal)customers.next();

 Date dateCreated = customer.getDateCreated()

 if(dateCreated.after(date_150daysAgo) &&

 dateCreated.before(date_120daysAgo)){

 customer.remove();

 }

 }

 }catch(Exception e){ // exception handle logic goes here }

 }

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbRemove(){}

}

The InactiveCustomer EJB has a single business method, schedule(), that starts the timer, setting it to expire first on the
given date, and every 30 days thereafter. In order for the InactiveCustomer EJB to function, a client application must
call schedule() and pass in a start date. It's probably best to develop a strategy similar to this one, in which the timer is
scheduled only after an explicit call is made by a client, rather than attempting to design a stateless session bean timer
that somehow automatically schedules itself when it's deployed. The following code shows how an InvalidCustomer EJB
is scheduled by a client:

InvalidCustomerHomeRemote invalidCustomer =

 jndiEnc.lookup("java:comp/env/ejb/InvalidCustomerHomeRemote");

invalidCustomer.schedule(new Date());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invalidCustomer.schedule(new Date());

The ejbTimeout() method is hardcoded to fetch all the customers created between four and five months ago who never
made reservations. These customers are removed from the system.

There are a number of improvements that could be made to this strategy. For example, the time window could be
configured in the deployment descriptor or passed into the bean by the client. In addition, the schedule() method should
remove any existing timers so that we don't schedule multiple timers for the same task. These types of changes are left
as an exercise for you to develop if you are interested.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.6 Message-Driven Bean Timers
Message-driven bean timers are similar to stateless session bean timers in several ways: timers are associated only
with the type of bean. When a timer expires, a message-driven bean instance is selected from a pool to execute the
ejbTimeout() method. In addition, message-driven beans can be used for performing audits or other types of batch jobs.
The primary difference between a message-driven bean timer and a stateless session bean timer is the way in which
they're initiated: timers are created in response to an incoming message or, if the container supports it, from a
configuration file.

In order to initialize a message-driven bean timer from an incoming message, simply put the call to the
TimerService.createTimer() method in the message-handling method. For a JMS-based message-driven bean, the method
call goes in the onMessage() method:

public class JmsTimerBean

 implements javax.ejb.MessageDrivenBean, javax.ejb.TimedObject {

 public void onMessage(Message message){

 MapMessage mapMessage = (MapMessage)message;

 long expirationDate = mapMessage.getLong("expirationDate");

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(expirationDate, null);

 }

 public void ejbTimeout(){

 // put timeout logic hear

 }

The incoming JMS message should contain information about the timer: the beginning (start) date, duration, or even
the serializable info object. Combining JMS with the Timer Service can offer some powerful design options for
implementing audits, batch processing, and agent-like solutions.

Although it's not standardized, it is possible that vendors will allow message-driven bean timers to be configured at
deployment time. This would require a proprietary solution, since standard configuration options for message-driven
bean timers do not exist. The advantage of configured timers is that they do not require a client to initiate some action
to start the timer. When the bean is deployed, its timer is set automatically. This capability makes message-driven bean
timers more like Unix cron jobs, which are preconfigured and then run. Consult your vendor to see if they offer a
proprietary configuration for message-driven bean timers.

As was the case for stateless session beans, the TimedObject interface changes the life cycle of the message-driven bean
slightly (see Figure 13-3). When a timed event occurs, the container must pull a message-driven bean instance from
the pool. If there are no instances in the pool, then an instance must be moved from the Does Not Exist state to the
Method Ready Pool before it can receive the timed event.

Figure 13-3. Message-driven bean life cycle with TimedObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6.1 Problems with the Timer Service

The Timer Service is an excellent addition to the EJB platform, but it's limited. A lot can be learned from cron, the Unix
scheduling utility that's been around for years. Here are some proposals for improving the service. If you are only
interested in learning how timers work now, as opposed to how they may be improved, feel free to skip the rest of this
chapter—it's not required reading. That said, understanding how timers can be improved helps you understand their
limitations. If you have some time and want to expand your understanding of timers, keep reading.

13.6.1.1 A very little bit about cron

Cron is a Unix program that allows you to schedule scripts (similar to batch files in DOS), commands, and other
programs to run at specified dates and times. Unlike the EJB Timer Service, cron allows for flexible calendar-based
scheduling. Cron jobs (anything cron runs is called a job) can be scheduled to run at intervals, including a specific
minute of the hour, hour of the day, day of the week, day of the month, and month of the year.

For example, you can schedule a cron job to run every Friday at 12:15 p.m., or every hour, or the first day of every
month. While this level of refinement may sound complicated, it is actually very easy to specify. Cron uses a simple text
format of five fields of integer values, separated by spaces or tabs, to describe the intervals at which scripts should be
run. Figure 13-4 shows the field positions and their meanings.

Figure 13-4. Cron date and time format

The order of the fields is significant, since each specifies a different calendar designator: minute, hour, day, month, and
day of the week. The following examples show how to schedule cron jobs:

20 * * * * ---> 20 minutes after every hour. (00:20, 01:20, etc.)

 5 22 * * * ---> Every day at 10:05 p.m.

 0 8 1 * * ---> First day of every month at 8:00 a.m.

 0 8 4 7 * ---> The fourth of July at 8:00 a.m.

15 12 * * 5 ---> Every Friday at 12:15 p.m.

An asterisk indicates that all values are valid. For example, if you use an asterisk for the minute field, you're scheduling
cron to execute the job every minute of the hour. You can define more complex intervals by specifying multiple values,
separated by commas, for a single field. In addition, you can specify ranges of time using the hyphen:

0 8 * * 1,3,5 ---> Every Monday, Wednesday, and Friday at 8:00 a.m.

0 8 1,15 * * ---> The first and 15th of every month at 8:00 a.m.

0 8-17 * * 1-5 ---> Every hour from 8 a.m. through 5 p.m., Mon-Fri.

Cron jobs are scheduled using crontab files, which are simply text files in which you configure the date/time fields and a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cron jobs are scheduled using crontab files, which are simply text files in which you configure the date/time fields and a
command—usually a command to run a script.

13.6.1.2 Improving the Timer Service

The cron date/time format provides a lot more flexibility than is currently offered by the EJB Timer Service. The Timer
Service requires you to designate intervals in exact milliseconds, which is a bit awkward to work with (you have to
convert days, hours, and minutes to milliseconds), but more importantly, it's not flexible enough for many real-world
scheduling needs. For example, there is no way to schedule a timer to expire on the first and 15th of every month, or
every hour between 8 a.m. and 5 p.m., Monday through Friday. You can derive some of the more complex intervals,
but only at the cost of adding logic to your bean code to calculate them, and in more complicated scenarios, you'll need
multiple timers for the same task.

Cron is not perfect either. Scheduling jobs is like setting a timer on a VCR: everything is scheduled according to the
clock and calendar. You can specify that cron run a job at specific times of the day on specific days of the year, but you
can't have it run a job at relative intervals from an arbitrary starting point. For example, cron's date/time format
doesn't let you schedule a job to run every 10 minutes, starting now. You have to schedule it to run at specific minutes
of the hour (e.g., 0, 10, 20, 30, 40, 50). Cron is also limited to scheduling recurring jobs; you can't set up a single-
action timer, and you can't set a start date. A problem with both cron and the EJB Timer Service is that you can't
program a stop date—a date on which the timer will automatically cancel itself.

You also may have noticed that cron granularity is to the minute rather than the millisecond. At first glance this looks
like a weakness, but in practice it's perfectly acceptable. For calendar-driven scheduling, more precision simply isn't
very useful.

The Timer Service interface would be improved if it could handle a cron-like date/time format, with a start date and end
date. Rather than discard the current createTimer() calls (which are useful, especially for single-action timers and
arbitrary millisecond intervals), it would be preferable simply to add a new method with cron-like semantics. Instead of
using 0-6 to designate the day of the week, it would be better to use the values Sun, Mon, Tue, Wed, Thu, Fri, and Sat (as
in the Linux version of cron). For example, code to schedule a timer that would run every weekday at 11:00 p.m.
starting October 1, 2003, and ending May 31, 2004, would look like this:

TimerService timerService = ejbContext.getTimerService();

Calendar start = Calendar.getInstance().set(2003, Calendar.OCTOBER, 1);

Calendar end = Calendar.getInstance().set(2004, Calendar.MAY, 31);

String dateTimeString = "23 * * * Mon-Fri";

timerService.createTimer(dateTimeString, start, end, null);

This proposed change to the Timer Service retains the millisecond-based createTimer() methods, because they are very
useful. While cron-like configuration is powerful, it's not a silver bullet. If you need to schedule a timer to go off every
30 seconds starting now (or any arbitrary point in time), you need to use one of the existing createTimer() methods.
True millisecond accuracy is difficult; first of all, normal processing and thread contention tend to delay response time,
and secondly, a server clock must be properly synchronized with the correct time (i.e., UTC)[2] to the millisecond, and
most are not.

[2] Coordinated Universal Time (UTC) is the international standard reference time. Servers can be coordinated with
UTC using the Network Time Protocol (NTP) and public time servers. Coordinated Universal Time is abbreviated
UTC as a compromise among standardizing nations. A full explanation is provided by the National Institute of
Standards and Technology's FAQ on UTC at http://www.boulder.nist.gov/timefreq/general/misc.htm#Anchor-
14550.

13.6.1.3 Message-driven bean timers: Standard configuration properties

There is enormous potential for using message-driven beans as cron-like jobs that are configured at deployment and
run automatically. Unfortunately, there is no standard way to configure a message-driven bean timer at deployment
time. Some vendors may support this, while others do not. Preconfigured message-driven bean timers are going to be
in high demand by developers who want to schedule message-driven beans to perform work at specific dates and
times. Without support for deployment-time configuration, the only reliable way to program an enterprise bean timer is
to have a client call a method or send a JMS message. This is not an acceptable solution. Developers need deployment-
time configuration and it should be added to the next version of the specification.

Building on the cron-like semantics proposed in the previous subsection, it would be easy to devise standard activation
properties for configuring message-driven bean timers at deployment time. For example, the following code configures
a message-driven bean, the Audit EJB, to run at 11 p.m., Monday through Friday, starting October 1, 2003, and ending
May 31, 2004 (start and end dates are not required):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

May 31, 2004 (start and end dates are not required):

<activation-config>

 <description>Run Monday through Friday at 11:00 p.m.

 Starting on Oct 1st,2003 until May 31st, 2004</description>

 <activation-config-property>

 <activation-config-property-name>dateTimeFields

 </activation-config-property-name>

 <activation-config-property-value> 23 * * * Mon-Fri

 </activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>startDate</activation-config-property-name>

 <activation-config-property-value>October 1, 2003

 </activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>endDate</activation-config-property-name>

 <activation-config-property-value>May 31, 2004

 </activation-config-property-value>

 </activation-config-property>

</activation-config>

This type of configuration would be fairly easy for providers to implement if they supported enhanced cron-like
semantics. In addition, you could configure message-driven beans to use the millisecond-based timers EJB 2.1 already
supports.

13.6.1.4 Other problems with Timer API

The semantics of the Timer object convey little information about the object itself. There is no way to determine whether
a timer is a single-action timer or an interval timer. If it's an interval timer, there is no way to determine the configured
interval, or whether the timer has executed its first expiration. To solve these problems, additional methods should be
added to the Timer interface that provide this information. As a stopgap, it's a good idea to place this information in the
info object so it can be accessed by applications that need it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.7 Final Words
Whether the changes outlined in this chapter are adopted is a matter for the EJB expert group, which should be
responsive to the EJB developer community. It's likely that others will find ways to improve on these proposed changes.
Regardless of the outcome, the limited semantics of the Timer Service and the lack of support for configurable
message-driven bean timers are problems. As you develop timers, you will quickly discover the need for a much richer
way of describing expirations, and some way to configure timers at deployment time, rather than having to use a client
application to initiate a scheduled event.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 14. EJB 2.1: Web Service Standards
Web services have taken the enterprise computing industry by storm in the past couple of years, and for good reason.
They present the opportunity for real interoperability across hardware, operating systems, programming languages, and
applications. Based on XML, SOAP, and WSDL standards, web services have enjoyed widespread adoption by pretty
much all the major enterprise players, including Microsoft, IBM, BEA, Oracle, Hewlett Packard, and others. Sun
Microsystems has integrated web services into the J2EE platform; specifically, Sun and the Java Community Process
have introduced several web service APIs, including JAX-RPC (Java API for XML-based RPC), SAAJ (SOAP with
Attachments API for Java), and JAXR (Java API for XML Registries). These web service APIs have been integrated into
J2EE 1.4 and are supported by EJB 2.1.

This chapter provides an overview of the technologies that are the foundation of web services: XML Schema and
Namespaces, SOAP 1.1, and WSDL 1.1. Chapter 15 provides an overview of JAX-RPC, the most important web services
API.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.1 Web Services Overview
The term web service means different things to different people, but thankfully the definition is fairly straightforward for
EJB developers because the J2EE platform has adopted a rather narrow view of web services. Specifically, a web service
is a remote application described using WSDL (Web Service Description Language) and accessed using SOAP (Simple
Object Access Protocol) according to the rules defined by the WS-I Basic Profile 1.0. The WS-I (Web Services
Integration Organization) is group of vendors (Microsoft, IBM, BEA, Sun Microsystems, Oracle, HP, and others) that
have banded together to ensure web services are interoperable across all platforms. To do this, they have created a
recommendation called the Basic Profile 1.0, which defines a set of rules for using XML, SOAP, and WSDL together to
create interoperable web services.

In order to understand SOAP and WSDL, you must understand XML Schema and XML Namespaces. The rest of this
chapter conducts a whirlwind tour of XML, SOAP, and WSDL. Although it's not the purpose of this book to cover these
subjects in depth, you should be able to understand the basics. For more in-depth coverage, you can turn to J2EE Web
Services (Addison-Wesley) by the author of this book, Richard Monson-Haefel, or Java Web Services by David A.
Chappell and Tyler Jewell (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.2 XML Schema and XML Namespaces
We'll start with the basics of XML Schemas and XML Namespaces. It's assumed that you already understand how to use
basic XML elements and attributes. If you don't, you should probably read a primer on XML before proceeding. I
recommend the book Learning XML by Erik T. Ray (O'Reilly). If you already understand how XML Schema and XML
Namespaces work, skip ahead to the section on SOAP.

14.2.1 XML Schema

An XML Schema is similar in purpose to a DTD (Document Type Definition), which validates the structure of an XML
document. To illustrate some of the basic concepts of XML Schema, let's start with an XML document with address
information:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>

<address>

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

</address>

In order to ensure that the XML document contains the proper type of elements and data, the Address information must
be evaluated for correctness. There are two ways that the correctness of an XML document can be measured: if it is
well formed and if it is valid. To be well formed, an XML document must obey the syntactic rules of the XML markup
language: it must use proper attribute declarations, the correct characters to denote the start and end of elements, and
so on. Most XML parsers based on standards like SAX and DOM detect documents that aren't well formed automatically.

In addition to being well formed, it's sometimes important to check that the document uses the right types of elements
and attributes in the correct order and structure. A document that meets these criteria is called valid. However, the
criteria for validity have nothing to do with XML itself; they have more to do with application in which the document is
used. For example, the Address document would not be valid if it didn't include the Zip code or state elements. In order
to validate an XML document, you need a way to represent these application-specific constraints.

The XML Schema for the Address XML document looks like this:

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <element name="address" type="titan:AddressType"/>

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </sequence>

 </complexType>

</schema>

The first thing to focus on in this XML Schema is the <complexType> element, which declares a type of element in much
the same way that a Java class declares a type of object. The <complexType> element explicitly declares the names,
types, and order of elements that an AddressType element may contain. In this case, it may contain five elements of
type string in the following order: street, city, state, and zip. Validation is pretty strict, so any XML document that claims
conformance with this XML Schema must contain exactly the right elements with the right data types, in the correct
order.

There are about two dozen simple data types that are automatically supported by XML Schema, called built-in types.
Built-in types are a part of the XML Schema language and are automatically supported by any XML Schema-compliant
parser. Table 14-1 shows a short list of some of the built-in types. It also shows Java types that correspond to each
built-in type. (Table 14-1 presents only a subset of all the XML Schema (XSD) built-in types, but it's more than enough
for this book.)

Table 14-1. XML Schema built-in types and their corresponding Java types
XML Schema built-in type Java primitive type

byte byte

boolean boolean

short short

int int

long long

float float

double double

string java.lang.String

dateTime java.util.Calendar

integer java.math.BigInteger

decimal java.math.BigDecimal

By default, each element declared by a <complexType> must occur once in an XML document, but you can specify that
an element is optional or that it must occur more than once by using the occurrence attributes. For example, we can
say that the street element must occur once but may occur two times:

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string" maxOccurs="2" minOccurs="1" />

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

By default, the maxOccurs and minOccurs attributes are always 1, indicating that the element must occur exactly once.
Setting the maxOccurs to "2" allows an XML document to have two street elements or just one. You can also set the
maxOccurs to "unbounded", which means the element may occur as many times as needed. Setting minOccurs to "0"
means the element is optional and can be omitted.

The <element> declarations are nested under a <sequence> element, which indicates that the elements must occur in the
order they are declared. You can also nest the elements under an <all> declaration, which allows the elements to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

order they are declared. You can also nest the elements under an <all> declaration, which allows the elements to
appear in any order. The following shows the AddressType declared with an <all> element instead of a <sequence>
element:

<complexType name="AddressType">

 <all>

 <element name="street" type="string" maxOccurs="2" minOccurs="1" />

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </all>

 </complexType>

In addition to declaring elements of XSD built-in types, you can declare elements based on complex types. This is
similar to how Java class types declare fields that are other Java class types. For example, we can define a CustomerType
that makes use of the AddressType:

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <element name="customer" type="titan:CustomerType"/>

<complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="titan:AddressType"/>

 </sequence>

 </complexType>

<complexType name="AddressType">

 <sequence>

 <element name="street" type="string" />

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

This XSD tells us that an element of CustomerType must contain a <last-name> and <first-name> element of built-in type
string, and an element of type AddressType. This is pretty straightforward, except for the titan: prefix on AddressType. That
prefix identifies the XML Namespace of the AddressType; we'll discuss namespaces later in the chapter. For now, just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prefix identifies the XML Namespace of the AddressType; we'll discuss namespaces later in the chapter. For now, just
think of it as declaring that the AddressType is a custom type defined by Titan Cruises; it's not a standard XSD built-in
type. An XML document that conforms to the Customer XSD would look like this:

<?xml version='1.0' encoding='UTF-8' ?>

<customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address>

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

</customer>

Building on what you've learned so far, we can create a Reservation schema, using the CustomerType and the
AddressType, and a new CreditCardType:

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <element name="reservation" type="titan:ReservationType"/>

 <complexType name="ReservationType">

 <sequence>

 <element name="customer" type="titan:CustomerType"/>

 <element name="cruise-id" type="int"/>

 <element name="cabin-id" type="int"/>

 <element name="price-paid" type="double"/>

 </sequence>

 </complexType>

 <complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="titan:AddressType"/>

 <element name="credit-card" type="titan:CreditCardType"/>

 </sequence>

 </complexType>

 <complexType name="CreditCardType">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <complexType name="CreditCardType">

 <sequence>

 <element name="exp-date" type="dateTime"/>

 <element name="number" type="string"/>

 <element name="name" type="string"/>

 <element name="organization" type="string"/>

 </sequence>

 </complexType>

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

An XML document that conforms to the Reservation XSD would include information describing the customer (name and
address), credit card information, and the identity of the cruise and cabin that is being reserved. This document might
be sent to Titan Cruises from a travel agency that cannot access the TravelAgent EJB to make reservations. Here's an
XML document that conforms to the Reservation XSD:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation>

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address>

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </credit-card>

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

At runtime, the XML parser compares the document to its Schema, ensuring that the document conforms to the rules
set down by the Schema. If the document doesn't adhere to the Schema, it is considered invalid, and the parser
produces error messages. An XML Schema checks that XML documents received by your system are properly
structured, so you won't encounter errors while parsing the documents and extracting the data. For example, if
someone sent your application a Reservation document that omitted the credit-card element, the XML parser could
reject the document as invalid before your code even sees it: you don't have to worry about errors in your code caused
by missing information in the document.

This brief overview represents only the tip of the iceberg. XML Schema is a very rich XML typing system and can only
be given sufficient attention in a text dedicated to the subject. For an in-depth and insightful coverage of XML Schema,
read XML Schema: The W3C's Object-Oriented Descriptions for XML by Eric van der Vlist (O'Reilly) or read the XML
Schema specification, starting with the primer at the W3C (World Wide Web Consortium) web site
(http://www.w3.org/TR/xmlschema-0/).

14.2.2 XML Namespaces

The Reservation schema defines an XML markup language that describes the structure of a specific kind of XML
document. Just as a Class is a type of Java object, an XML markup language, defined by an XML Schema, is a type of
XML document. In some cases, it's convenient to combine two or more XML markup languages into a single document,
so that the elements from each markup language can be validated separately using different XML Schemas. This is
especially useful when you want to reuse a markup language in many difference contexts. For example, the AddressType
defined in the previous section is useful in a variety of contexts, not just the Reservation XSD, so it could be defined as
a separate markup language in its own XML Schema.

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.titan.com/Address">

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

In order to use different markup languages in the same XML document, you must clearly identify the markup language
to which each element belongs. Here is an XML document for a reservation, but this time we are using XML
Namespaces to separate the address information from the reservation information:

<?xml version='1.0' encoding='UTF-8' ?>

<res:reservation xmlns:res="http://www.titan.com/Reservation" >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<res:reservation xmlns:res="http://www.titan.com/Reservation" >

 <res:customer>

 <res:last-name>Jones</res:last-name>

 <res:first-name>Sara</res:first-name>

 <addr:address xmlns:addr="http://www.titan.com/Address">

 <addr:street>3243 West 1st Ave.</addr:street>

 <addr:city>Madison</addr:city>

 <addr:state>WI</addr:state>

 <addr:zip>53591</addr:zip>

 </addr:address>

 <res:credit-card>

 <res:exp-date>09-2005</res:exp-date>

 <res:number>0394029302894028930</res:number>

 <res:name>Sara Jones</res:name>

 <res:organization>VISA</res:organization>

 </res:credit-card>

 </res:customer>

 <res:cruise-id>123</res:cruise-id>

 <res:cabin-id>333</res:cabin-id>

 <res:price-paid>6234.55</res:price-paid>

</res:reservation>

All the elements for the address information are prefixed with characters addr:, and all the reservation elements are
prefixed with res:. These prefixes allow parsers to identify and separate the elements that belong to the Address
markup from those that belong to the Reservation markup. As a result, the address elements can be validated against
the Address XSD while the reservation elements are validated against the Reservation XSD. The prefixes are assigned
using XML Namespace declarations, which are shown in bold in the previous listing. An XML Namespace declaration
follows this format:

xmlns:prefix="URI"

The prefix can be anything you like, as long as it does not include blanks or any special characters. We use prefixes that
are abbreviations for the name of the markup language: res stands for Reservation XSD and addr stands for Address
XSD. This is the convention that most XML documents follow, but it's not a requirement; you could use prefixes like foo
or bar or anything else you fancy.

While the prefix can be any arbitrary token, the URI must be very specific. A URI (Universal Resource Identifier) is an
identifier that is a superset of the URL (Universal Resource Locator) that you use every day to look up web pages. In
most cases, people use the stricter URL format for XML Namespaces because URLs are familiar and easy to understand.
The URI used in the XML Namespace declaration identifies the exact markup language that is employed. It doesn't have
to point at a web page or an XML document; it just needs to be unique to that markup language. For example, the XML
Namespace used by the Address markup is different from the URL used for the Reservation markup.

xmlns:addr="http://www.titan.com/Address"

xmlns:res="http://www.titan.com/Reservation"

The URI in the XML Namespace declaration should match the target namespace declared by an XML Schema. Here is
the Address XSD with the target namespace declaration shown in bold. The URL value of the targetNamespace attribute is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Address XSD with the target namespace declaration shown in bold. The URL value of the targetNamespace attribute is
identical to the URL assigned to the add: prefix in the reservation document, shown earlier.

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.titan.com/Address">

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

The targetNamespace attribute identifies the unique URI of the markup language; it is the permanent identifier for that
XML Schema. Whenever elements from the Address XSD are used in some other document, the document must use an
XML Namespace declaration to identify those elements as belonging to the Address markup language.

Prefixing every element in an XML document with its namespace identifier is a bit tedious, so XML Namespace allows
you to declare a default namespace that applies to all elements that are not prefixed. The default namespace is simply
an XML Namespace declaration that has no prefix (xmlns="URL"). For example, we can use a default name in the
reservation document for all Reservation elements:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation" >

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <addr:address xmlns:addr="http://www.titan.com/Address">

 <addr:street>3243 West 1st Ave.</addr:street>

 <addr:city>Madison</addr:city>

 <addr:state>WI</addr:state>

 <addr:zip>53591</addr:zip>

 </addr:address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

 </customer>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

None of the Reservation elements names are prefixed. Any nonprefixed element belongs to the default namespace. The
Address elements do not belong to the Reservation namespace, so they are prefixed to indicate which namespace they
belong to. The default namespace declaration has scope; in other words, it applies to the element in which it is declared
(if that element has no namespace prefix), and to all nonprefixed elements nested under that element. We can use the
scoping rules of namespace to further simplify the Reservation document by allowing the Address elements to override
the default namespace with their own default namespace.

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation" >

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address xmlns="http://www.titan.com/Address">

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

The Reservation default namespace applies to the <reservation> element and all of its children except for the Address
elements. The <address> element and its children have defined their own default namespace, which overrides the
default namespace of the <reservation> element.

Default namespaces do not apply to attributes. As a result, any attributes used in an XML document should be prefixed
with a namespace identifier. The only exceptions to this rule are attributes defined by the XML language itself, such as
the xmlns attribute, which establishes an XML Namespace declaration. This attribute doesn't need to be prefixed
because it is part of XML language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because it is part of XML language.

XML Namespaces are just URIs that uniquely identify a namespace, but do not actually point at a resource. In other
words, you don't normally use the URI of a XML Namespace to look something up. It's usually just an identifier.
However, you might want to indicate the location of the XML Schema associated with an XML Namespace so that a
parser can upload it and use it in validation. This is accomplished using the schemaLocation attribute:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xsi:schemaLocation="http://www.titan.com/Reservation

 http://www.titan.com/schemas/reservation.xsd">

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address xmlns="http://www.titan.com/Address"

 xsi:schemaLocation="http://www.titan.com/Address

 http://www.titan.com/schemas/address.xsd">

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

The schemaLocation attribute provides a list of values as Namespace-Location value pairs. The first value is the URI of
the XML Namespace; the second is the physical location (URL) of the XML Schema. The following schemaLocation
attribute states that all elements belonging to the Reservation Namespace (http://www.titan.com/Reservation) can be
validated against a XML Schema located at the URL http://www.titan.com/reservation.xsd:

xsi:schemaLocation="http://www.titan.com/Reservation

 http://www.titan.com/schemas/reservation.xsd">

The schemaLocation attribute is not a part of the XML language, so we'll actually need to prefix it with the appropriate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The schemaLocation attribute is not a part of the XML language, so we'll actually need to prefix it with the appropriate
namespace in order to use it. The XML Schema specification defines a special namespace that can be used for
schemaLocation (as well as other attributes). That namespace is http://www.w3.org/2001/XMLSchema-Instance. In order to
properly declare the schemaLocation attribute, declare its XML namespace and prefix it with the identifier for that
namespace as shown in the following snippet:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xsi:schemaLocation="http://www.titan.com/Reservation

 http://www.titan.com/schemas/reservation.xsd">

A namespace declaration only needs to be defined once; it applies to all elements nested under the element in which
it's declared. The convention is to use the prefix xsi for the XML Schema Instance namespace
(http://www.w3.org/2001/XMLSchema-Instance).

XML Schemas also use XML Namespaces. Let's look at XML Schema for the Address markup language with a new focus
on the use of XML Namespaces:

<?xml version='1.0' encoding='UTF-8' ?>

<schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.titan.com/Address"

 xmlns:addr="http://www.titan.com/Address" >

 <element name="address" type="addr:AddressType"/>

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

In this file, namespaces are used in three separate declarations. The first namespace declaration states that the default
namespace is http://www.w3c.org/2001/XMLSchema, which is the namespace of the XML Schema specification. This
declaration makes it easier to read the XSD because most of the elements do not need to be prefixed. The second
declaration states that the target namespace of the XML Schema is the namespace of the Address markup. This tells us
that all the types and elements defined in this XSD belong to that namespace. Finally, the third namespace declaration
assigns the prefix addr to the target namespace so that types can be referenced exactly. For example, the top level
<element> definition uses the name addr:AddressType to say that the element is of type AddressType, belonging to the
namespace http://www.titan.com/Address.

Why do you have to declare a prefix for the target namespace? The reason is clearer when you examine the XSD for
the Reservation XSD:

<?xml version='1.0' encoding='UTF-8' ?>

<schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xmlns:addr="http://www.titan.com/Address"

 xmlns:res="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <import namespace="http://www.titan.com/Address"

 xsi:schemaLocation="http://www.titan.com/Address.xsd" />

 <element name="reservation" type="res:ReservationType"/>

 <complexType name="ReservationType">

 <sequence>

 <element name="customer" type="res:CustomerType"/>

 <element name="cruise-id" type="int"/>

 <element name="cabin-id" type="int"/>

 <element name="price-paid" type="double"/>

 </sequence>

 </complexType>

 <complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="addr:AddressType"/>

 <element name="credit-card" type="res:CreditCardType"/>

 </sequence>

 </complexType>

 <complexType name="CreditCardType">

 <sequence>

 <element name="exp-date" type="dateTime"/>

 <element name="number" type="string"/>

 <element name="name" type="string"/>

 <element name="organization" type="string"/>

 </sequence>

 </complexType>

</schema>

The Reservation XSD imports the Address XSD so that the AddressType can be used to define the CustomerType. You can
see the use of namespaces in the definition of the CustomerType, which references types from both the Reservation and
Address namespace, prefixed by addr and res:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Address namespace, prefixed by addr and res:

<?xml version='1.0' encoding='UTF-8' ?>

<schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xmlns:addr="http://www.titan.com/Address"

 xmlns:res="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

...

 <complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="addr:AddressType"/>

 <element name="credit-card" type="res:CreditCardType"/>

 </sequence>

 </complexType>

Assigning a prefix to the Reservation namespace allowed us to distinguish between elements that are defined as
Reservation types (e.g., credit-card) and elements that are defined as Address types (e.g., address). All the type attributes
that reference built-in types string and int also belong to the XML Schema namespace, so we don't need to prefix them.
We could, though, for clarity. That is, we'd replace string and int with xsd:string and xsd:int. The prefix xsd references the
XML Schema namespace; using it allows us to identify built-in types defined as XML Schema more clearly. It's not a
problem that the default namespace is the same as the namespace prefixed by xsd. By convention, the xsd prefix is the
one used in most XML schemas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.3 SOAP 1.1
SOAP 1.1 is simply a distributed object protocol like DCOM, CORBA IIOP, and Java RMI-JRMP. The most significant
difference between SOAP 1.1 and other distributed object protocols is that SOAP 1.1 is based on XML.

EJB 2.1 and the J2EE 1.4 platform are standardized on SOAP 1.1. At the time of this
writing, SOAP 1.2 (the latest version of SOAP) has just been released, but it is not
supported by J2EE 1.4/EJB 2.1. From this point forward, we'll only talk about SOAP 1.1,
which we'll simply call SOAP.

SOAP is defined by its own XML Schema and relies heavily on the use of XML Namespaces. Every SOAP message that is
sent across the wire is an XML document that consists of standard SOAP elements and application data. The use of
namespaces differentiates the standard SOAP elements from the application data. Here's a SOAP request message that
might be sent from a client to a server:

<?xml version='1.0' encoding='UTF-8' ?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header />

 <env:Body>

 <reservation xmlns="http://www.titan.com/Reservation>

 <customer>

 <!-- customer info goes here -->

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

 </reservation>

 </env:Body>

</env:Envelope>

The standard SOAP elements are shown in bold while the application data, the Reservation XML document fragment, is
shown in regular text. SOAP's primary purpose is to establish a standard XML framework for packaging application data
that is exchanged between different software platforms, such as Java and Perl, or Java and .NET. To do this, SOAP
defines a set of elements, each of which is designed to carry different data. The <Envelope> element is the root of the
SOAP message; all other elements are contained by it. Within the <Envelope> element are two direct children: the
<Header> element and the <Body> element.

The <Header> element is generally used for carrying infrastructure data such as security tokens, transaction IDs,
routing information, and so on. In the previous example, the <Header> element is empty, which is not unusual for basic
web services. In many cases, we are only interested in exchanging information and not in more advanced issues, such
as those relating to security and transactions. Although the <Body> element is required, the <Header> element is not.
From this point forward, the <Header> element will be omitted from examples.

The <Body> element carries the application information that is being exchanged. In the previous example, the <Body>
element contains a <reservation> element, which is the application data. It's an XML document fragment based on the
Reservation XSD developed earlier in this chapter. It's called a "fragment" because it's embedded inside a SOAP
message, rather than standing alone.

14.3.1 SOAP Messaging Modes

The SOAP message we just looked at is a Document/Literal message, which means that the message carries an XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SOAP message we just looked at is a Document/Literal message, which means that the message carries an XML
document fragment that may be validated against an XML Schema.

The schemaLocation attribute could have been included; it's omitted because we assume that the receiver is already
familiar with the schema used for that type of SOAP message.

The other messaging mode allowed by the WS-I Basic Profile 1.0 and supported by EJB 2.1 is RPC/Literal. RPC/Literal
represents SOAP messages as RPC calls, with parameters and return values, rather than arbitrary XML document
fragments. The following Java interface defines a single method called makeReservation():

public interface TravelAgent extends java.rmi.Remote {

 public void makeReservation(int cruiseID, int cabinID,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

The makeReservation() method can be modeled as a SOAP message using the RPC/Literal messaging style:

<env:Envelope

 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:titan="http://www.titan.com/TravelAgent"/>

 <env:Body>

 <titan:makeReservation xmlns="http://www.titan.com/TravelAgent" >

 <cruiseId>23</cruiseId>

 <cabinId>144</cabinId>

 <customerId>9393</cusotmerId>

 <price>5677.88</price>

 </titan:makeReservation>

 </env:Body>

</env:Envelope

The first element within the <Body> identifies the web service operation being invoked. In this case, it's the
makeReservation operation. Directly under the <titan:makeReservation> element are the parameters of the RPC call, each of
which is represented by an element with a value.

EJB 2.1, but not the WS-I Basic Profile 1.0, supports the RPC/Encoded mode of SOAP messaging. Most SOAP
applications used RPC/Encoded when web services were first created. However, the web services industry has moved
toward Document/Literal and RPC/Literal, primarily because interoperability between platforms using RPC/Encoded
proved to be less than perfect, and sometimes downright difficult. While RPC/Encoded SOAP messages rely on SOAP
defined types for Arrays, Enumeration, Union, Lists, and the like, RPC/Literal and Document/Literal depend only on XML
Schema for their data types, which seems to provide a better system for interoperability across programming
languages. Although EJB 2.1 supports RPC/Encoded messaging, it's really not a very good option to use in web services.
RPC/Encoded messaging will not be addressed in this book.

14.3.2 Exchanging SOAP Messages with HTTP

SOAP messages are network protocol-agnostic, which means that a SOAP message is not aware of or dependent on the
type of network or protocol used to carry it. That said, SOAP is primarily exchanged using HTTP. The reason for using
HTTP is simple. Most Internet products, including web servers, application servers, and wireless devices, are designed
to handle the HTTP protocol. The widespread support for HTTP provides an instant infrastructure for SOAP messaging.
The fact that SOAP can leverage the ubiquity of HTTP is one of the reasons it has become so popular so quickly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The fact that SOAP can leverage the ubiquity of HTTP is one of the reasons it has become so popular so quickly.

Another advantage of using HTTP is that SOAP messages can slip through firewalls without any hassles. If you have
ever tried to support internal or external customers who are separated from you by a firewall (yours or theirs), you
know the headaches a firewall can create. Unless you have direct control over the firewall, your chances of
communicating with arbitrary clients using anything but HTTP or SMTP (email) are slim to none. However, because
SOAP can be transmitted with HTTP, it slips through the firewall unnoticed. This ability makes life a lot simpler for the
application developer, but it's a point of contention with the security folks. Understandably, the security community is a
bit irked about the idea of application developers circumventing their defenses. Using HTTP to carry an application
protocol like SOAP is commonly called HTTP tunneling. In the past, support for tunneling by vendors of other distributed
object protocols (CORBA IIOP, DCOM, and so on) was sporadic and proprietary, making interoperability extremely
difficult. With SOAP, tunneling over HTTP is built into the SOAP 1.1 specification—which means interoperability is no
longer a problem. As just about every application server vendor rapidly adopts SOAP, SOAP-HTTP tunneling is becoming
ubiquitous.

You can use SOAP 1.1 with other protocols, such as SMTP, FTP, and even raw TCP/IP, but HTTP is the only protocol for
which a binding is currently specified. As a result, EJB 2.1 and J2EE 1.4 require support for SOAP 1.1 over HTTP 1.1,
but not other protocols.

14.3.3 Now You See It, Now You Don't

All this talk about SOAP is designed to give you a better idea of what is going on under the hood, but in practice, you
are unlikely to interact with the protocol directly. Like most protocols, SOAP is designed to be produced and consumed
by software and is usually encapsulated by a developer API. In EJB 2.1, the API you will use to exchange SOAP
messages is JAX-RPC (Java API for XML-based RPC), which hides the details of SOAP messaging so you can focus on
developing and invoking web services. While using JAX-RPC, you will rarely have to deal with the SOAP protocol, which
is nice because it makes you a lot more productive. JAX-RPC is covered in Chapter 15.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.4 WSDL 1.1
WSDL (Web Service Description Language) is an XML markup language used to describe a web service. WSDL is
programming language-, platform-, and protocol-agnostic. The fact that WSDL is protocol-agnostic means it can
describe web services that use protocols other than SOAP and HTTP. This ability makes WSDL very flexible, but it has
the nasty side effect of making WSDL abstract and difficult to understand. Fortunately, the WS-I Basic Profile 1.0
endorses only SOAP 1.1 over HTTP, so we'll discuss WSDL as if that's the only combination of protocols supported.

Imagine that you want to develop a web service component that implements the following interface:

public interface TravelAgent extends java.rmi.Remote {

 public String makeReservation(int cruiseID, int cabinID,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

Any application should be able to invoke this method using SOAP, regardless of the language in which it was written or
the platform on which it is running. Since other programming languages don't understand Java, we have to describe the
web service in a language they do understand: XML. Using XML, and specifically the WSDL markup language, we can
describe the type of SOAP messages that must be sent to invoke the makeReservation() method. A WSDL document that
describes the makeReservation() method might look like this:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="makeReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </output>

 </operation>

</binding>

<!-- service element tells us the Internet address of a web service -->

<service name="TravelAgentService">

 <port name="TravelAgentPort" binding="titan:TravelAgentBinding">

 <soap:address location="http://www.titan.com/webservices/TravelAgent" />

 </port>

</service>

</definitions>

If you find the previous WSDL listing indecipherable, don't despair. Most people can't understand a WSDL document the
first time they see one. Like many things that are complicated, the best approach to understanding WSDL is to study it
in pieces. And fortunately, modern web services platforms like Axis generate (and read) WSDL for you. WSDL should be
something you only need to look at when things break. At this point, things still break fairly often, so it's helpful to be
familiar with WSDL: it will show you what the server expects when a method is called. But don't think that you'll be
called on to write a WSDL document by yourself.

14.4.1 The <definitions> Element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The root element of a WSDL document is the <definitions> element. Usually, a WSDL document declares all the XML
namespaces used in the root element. In the previous example, the <definitions> element makes four XML Namespace
declarations:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

The default namespace (xmlns="http://schemas.xmlsoap.org/wsdl/") is the WSDL namespace. The xsd prefix is assigned to
the XML Schema namespace. It is used primarily to identify simple data types such as xsd:string, xsd:int, and xsd:dateTime
in <message> elements:

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

The titan prefix is assigned to a Titan Cruise URL, which indicates that it's an XML Namespace that belongs to Titan
Cruises. This namespace is also the value of the targetNamespace attribute. This attribute is similar to the one used in
XML Schemas. For example, the <portType> references <message> elements, and the <binding> element references a
<portType> using the target namespace:

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 ...

</binding>

As you can see, the different WSDL types reference each other by name, and a named WSDL type automatically takes
on the namespace declared by the targetNamespace attribute.

14.4.2 The <portType> and <message> Elements

The <message> and <portType> elements are the immediate children of the <definitions> element. Here's what they look
like:

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

The <portType> element describes the web service operations (Java methods) that are available. An operation can have
input, output, and fault messages. An input message describes the type of SOAP message a client should send to the
web service. An output message describes the type of SOAP message a client should expect to get back. A fault
message (not shown in the example) describes any SOAP error messages that the web service might send back to the
client. A fault message is similar to a Java exception.

JAX-RPC, and therefore EJB 2.1, supports two styles of web service messaging: request-response and one-way. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAX-RPC, and therefore EJB 2.1, supports two styles of web service messaging: request-response and one-way. You
know you are dealing with request-response if the <operation> element contains a single <input> element, followed by a
single <output> element, and, optionally, zero or more <fault> elements. The TravelAgent <portType> is an example of
the request-response messaging style:

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

The one-way message style, on the other hand, is implied by the presence of a single <input> element but no <output>
or <fault> messages. Here is a web service that supports one-way messaging:

<!-- portType element describes the abstract interface of a web service -->

<portType name="ReservationProcessor">

 <operation name="submitReservation">

 <input message="titan:ReservationMessage"/>

 </operation>

</portType>

The request-response style of messaging is the kind you expect in RPC programming: you send a message and get a
response. The one-way style tends to be used for asynchronous messaging; you send a message but do not expect a
response. In addition, one-way messaging is frequently used to deliver XML documents, like Reservation, rather than
parameters and return values. However, both request-response and one-way messaging styles can be used with either
RPC or document-style messaging.

WSDL also supports two other messaging styles: notification (a single <output> and no <input>) and solicitation (a single
<output> followed by a single <input>). While WSDL makes these messaging styles available, they are not supported by
the WS-I Basic Profile 1.0 or JAX-RPC.

14.4.3 The <types> Element

If your service needs any custom types, they are defined in the <types> element, which is the first child of the
<definitions> element. The complete WSDL document shown earlier did not include a <types> element because it didn't
define any new types (it used XML Schema built-in types). The <types> element allows us to declare more complex XML
types. For example, instead of declaring each of the parameters of the makeReservation operation as individual parts,
they can be combined into a single structure that serves as the parameter of the operation:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

<!-- types element describes complex XML data types -->

<types>

 <xsd:schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsd:schema

 targetNamespace="http://www.titan.com/TravelAgent">

 <xsd:complexType name="ReservationType">

 <xsd:sequence>

 <xsd:element name="cruiseId" type="xsd:int"/>

 <xsd:element name="cabinId" type="xsd:int"/>

 <xsd:element name="customerId" type="xsd:int"/>

 <xsd:element name="price-paid" type="xsd:double"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="reservation" type="titan:ReservationType" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

The <types> element is frequently used with document-oriented messaging. For example, the following WSDL binding
defines an XML Schema for the Reservation markup so that Reservation documents can be submitted to Titan as one-
way messages. The schema is embedded within the WSDL document, as the content of the <types> element.

<?xml version="1.0"?>

<definitions name="Reservation"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

<!-- types element describes complex XML data types -->

<types>

 <xsd:schema

 targetNamespace="http://www.titan.com/Reservation">

 <xsd:element name="reservation" type="titan:ReservationType"/>

 <xsd:complexType name="ReservationType">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsd:sequence>

 <xsd:element name="customer" type="titan:CustomerType"/>

 <xsd:element name="cruise-id" type="xsd:int"/>

 <xsd:element name="cabin-id" type="xsd:int"/>

 <xsd:element name="price-paid" type="xsd:double"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CustomerType">

 <xsd:sequence>

 <xsd:element name="last-name" type="xsd:string"/>

 <xsd:element name="first-name" type="xsd:string"/>

 <xsd:element name="address" type="titan:AddressType"/>

 <xsd:element name="credit-card" type="titan:CreditCardType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CreditCardType">

 <xsd:sequence>

 <xsd:element name="exp-date" type="xsd:dateTime"/>

 <xsd:element name="number" type="xsd:string"/>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="organization" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="AddressType">

 <xsd:sequence>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

<!-- message elements describe the paramters and return values -->

<message name="ReservationMessage">

 <part name="inmessage" element="titan:reservation" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <part name="inmessage" element="titan:reservation" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="ReservationProcessor">

 <operation name="submitReservation">

 <input message="titan:ReservationMessage"/>

 </operation>

</portType>

<!-- binding tells us which protocols and encoding styles are used -->

<binding name="ReservationProcessorBinding" type="titan:ReservationProcessor">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="submitReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"/>

 </input>

 </operation>

</binding>

<!-- service tells us the Internet address of a web service -->

<service name="ReservationProcessorService">

 <port name="ReservationProcessorPort" binding="titan:ReservationProcessorBinding">

 <soap:address location="http://www.titan.com/webservices/Reservation" />

 </port>

</service>

</definitions>

14.4.4 The <binding> and <service> elements

In addition to the <portType> and <message> elements, a WSDL document also defines <binding> and <service>
elements. These elements are used by JAX-RPC to generate marshalling and network communication code used to send
and receive messages.

The <binding> element describes the type of encoding used to send and receive messages as well as the protocol on
which the SOAP messages are carried. The <binding> definition for the TravelAgent port type looks like this:

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="makeReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </output>

 </operation>

</binding>

A binding element is always interlaced with protocol-specific elements—usually, the elements describe the SOAP
protocol binding. (In fact, this is the only binding that is allowed by the WS-I Basic Profile 1.0.) Because J2EE web
services must support SOAP with attachments, the MIME binding is also supported when attachments (images,
documents, and so on) are sent with SOAP messages. However, that subject is a bit involved and is outside the scope
of this book.

The <binding> element contains <operation>, <input>, <output>, and <fault> elements, similar to the <portType> element.
In fact, a binding is specific to a particular <portType>: its <operation>, <input>, and <output> elements describe the
implementation details of the corresponding <portType>. The previous example used the HTTP protocol with RPC/Literal-
style messaging. The WSDL binding for Document/Literal style messaging would be different:

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="submitReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal/"/>

 </input>

 </operation>

</binding>

The <binding> element describes a one-way web service that accepts an XML document fragment. The <portType>
associated with this <binding> also defines a single input message (consistent with one-way messaging) within an
operation called submitReservation:

<!-- portType element describes the abstract interface of a web service -->

<portType name="ReservationProcessor">

 <operation name="submitReservation">

 <input message="titan:ReservationMessage"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <input message="titan:ReservationMessage"/>

 </operation>

</portType>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.5 UDDI 2.0
UDDI (Universal Description, Discovery and Integration) is a specification that describes a standard for publishing and
discovering web services on the Internet. It's essentially a repository with a rigid data structure that describes
companies and the web services that they provide. UDDI is not as fundamental to web services and XML, SOAP, and
WSDL, but it is considered a basic constituent of web services in J2EE.

The analogy normally used to describe UDDI is that it provides electronic White, Yellow, and Green pages for companies
and their web services. You can look up companies by name or identifier (White pages) or by business or product
category (Yellow pages). You can also discover information about web services hosted by a company by examining the
technical entities of a UDDI registry (Green pages). In other words, UDDI is an electronic directory that allows
organizations to advertise their business and web services and to locate other organizations and web services.

Not only does a UDDI registry provide information about web services and their hosts, a UDDI repository is itself a web
service. You can search, access, add, update, and delete information in a UDDI registry using a set of standard SOAP
messages. All UDDI registry products must support the standard UDDI data structures and SOAP messages, which
means you can access any UDDI-compliant registry using the same standard set of SOAP messages.

Although organizations can set up private UDDI registries, there is a free UDDI registry anyone can use, called the UBR
(Universal Business Registry). This registry is accessed at one of four sites hosted by Microsoft, IBM, SAP, and NTT. If
you publish information about your company in any one of these sites, the data will be replicated to the each of the
other four. You can find out more about the UBR and the sites that host it at http://www.uddi.org.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.6 From Standards to Implementation
Understanding the fundamental web service standards (XML, SOAP, and WSDL) is essential to becoming a competent
web services developer. However, you'll also need to understand how to implement web services in software. There are
numerous web service platforms that allow you to build production systems based on the web service standards,
including .NET, Perl, Apache Axis, and J2EE. The focus of this book is obviously the J2EE platform, and specifically
support for web services in EJB. The next chapter explains how JAX-RPC is used to support web services in Enterprise
JavaBeans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 15. EJB 2.1 and Web Services
Support for web services in EJB 2.1 is based on the web services for the J2EE 1.1 (WS-J2EE) specification. This
specification includes the Java API for XML-based RPC (JAX-RPC), SOAP with Attachments API for Java (SAAJ), and the
Java API for XML Registries (JAXR). JAX-RPC is basically Java RMI over SOAP; SAAJ is an API for manipulating the
structure of a SOAP message; and JAXR allows you to access web service registries, usually UDDI (Universal
Description, Discovery and Integration).

While this chapter and the one before it provide you with a launching pad for learning about web services in J2EE
(specifically EJB), the subject is too huge to cover in a book about EJB. In order to cover J2EE web services
comprehensively we would have needed another 500 pages—since you'll need to lift this book to read it, I wrote a
lighter approach to the subject. This chapter provides you with an introduction to JAX-RPC, but it should not be
considered a comprehensive guide to the API.

If you are interested in learning more about the standard web services technologies (XML, SOAP 1.1, WSDL, and UDDI)
and J2EE APIs (JAX-RPC, SAAJ, and JAXR), you might want to read J2EE Web Services (Addison-Wesley) by the author
of this book, for a complete and thorough coverage of these topics.

The main purpose of JAX-RPC is to describe the relationship between WSDL 1.1, XML, SOAP 1.1, and Java. JAX-RPC
provides EJB with a client-side programming model for accessing remote web services, as well as a server-side
programming model for deploying EJBs as web services.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.1 Accessing Web Services with JAX-RPC
JAX-RPC provides a client-side programming model based on Java RMI that allows you to access web services on other
platforms from your EJBs. In other words, by using JAX-RPC, EJBs can access web services across the network hosted
on Java and non-Java platforms (Perl, .NET, C++, and so on) alike. There are three APIs for accessing web services:
generated stubs, dynamic proxies, and the DII (Dynamic Invocation Interface). Of these three APIs, the one you are
most likely to use is the Generated Stubs programming model, which is the primary focus of this chapter.

Generated stubs are based on the classic Java RMI programming model, where the client accesses a remote service via
a Java RMI remote interface implemented by a network stub. The stub translates calls made on the remote interface
into network messages sent to the remote service. It's pretty much the same as using an EJB remote reference, except
the protocol is SOAP over HTTP rather than CORBA IIOP. Figure 15-1 illustrates the RMI loop executed with a JAX-RPC
generated stub.

Figure 15-1. The JAX-RPC RMI Loop

The RMI loop in JAX-RPC is basically the same as any other RMI loop. In step 1, the client invokes a method on the
JAX-RPC generated stub. The method invocation is transformed into a SOAP message that is sent to the server in step
2. In step 3 the web service process the request and send the results back as a SOAP response message in step 4. In
step 5, the SOAP response messages is transformed into either a return value or an exception (if it was a SOAP Fault)
and returned to the client.

15.1.1 Generating JAX-RPC Stubs from WSDL

Generated stubs get their name because the remote interface, called an endpoint interface, and the network stub are
generated at deployment time. A JAX-RPC-compliant compiler generates the endpoint interface and stub from a WSDL
document. The WSDL <portType> is used to create an endpoint interface, while the WSDL <binding> and <port>
definitions are used to create the stub. The WSDL document is provided by the organization that hosts the web service.
The JAX-RPC compiler reads the WSDL document and translates it into an endpoint interface and stub that you can use
at runtime to send and receive SOAP messages.

Imagine that Titan Cruises subcontracts a company, Charge-It, Inc., to process payments made by customers using
credit cards. Charge-It runs a system based on .NET and exposes its credit card processing application to clients via a
web service. The web service is described by a WSDL document. The WSDL document for Charge-It's web service looks
like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://charge-it.com/Processor"

 targetNamespace="http://charge-it.com/Processor">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 targetNamespace="http://charge-it.com/Processor">

<message name="chargeRequest">

 <part name="name" type="xsd:string"/>

 <part name="number" type="xsd:string"/>

 <part name="exp-date" type="xsd:dateTime"/>

 <part name="card-type" type="xsd:string"/>

 <part name="amount" type="xsd:float"/>

</message>

<message name="chargeResponse">

 <part name="return" type="xsd:int"/>

</message>

<portType name="Processor">

 <operation name="charge">

 <input message="tns:chargeRequest"/>

 <output message="tns:chargeResponse"/>

 </operation>

</portType>

<binding name="ProcessorSoapBinding" type="tns:Processor">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="charge">

 <soap:operation soapAction="" style="rpc"/>

 <input>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </output>

 </operation>

</binding>

<service name="ProcessorService">

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">

 <soap:address

 location="http://www.charge-it.com/ProcessorService"/>

 </port>

</service>

</definitions>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</definitions>

The endpoint interface is based on the WSDL <portType> and its corresponding <message> definitions. Based on these
definitions, a JAX-RPC compiler would generate the following interface:

package com.charge_it;

public interface Processor extends java.rmi.Remote {

 public int charge(String name, String number, java.util.Calendar expDate,

 String cardType, float amount)

 throws java.rmi.RemoteException;

}

An endpoint interface is a Java RMI remote interface that extends the java.rmi.Remote type. Its methods must throw the
java.rmi.RemoteException and, optionally, application exceptions. The interface name, method names, parameters, and
exceptions are all derived from the WSDL document. Figure 15-2 shows the mapping between the <portType> and
<message> definitions and the endpoint interface.

Figure 15-2. Mapping a WSDL <portType> to a JAX-RPC endpoint interface

The name of the endpoint interface comes from the name of the <portType>, which is Processor. The methods defined by
the endpoint interface are derived from the <operation> elements declared by the WSDL <portType>. In this case, there
is one <operation> element, which maps a single method, charge(). The parameters of the charge() method are derived
from <operation> element's input message. For each <part> element of the input message, there will be a corresponding
parameter in the charge() method. The output message, in this case, declares a single <part> element, which maps to
the return type of the charge() method.

The JAX-RPC specification defines an exact mapping between many of the XML Schema built-in types and Java. This is
how the XML Schema types declared by the WSDL <part> elements are mapped to the parameters and the return type
of an endpoint method. Table 15-1 shows the mapping between XML Schema built-in types and Java primitives and
classes.

Table 15-1. XML Schema built-in types and their corresponding Java types
XML Schema built-in type Java type

xsd:byte byte

xsd:boolean boolean

xsd:short short

xsd:int int

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsd:long long

xsd:float float

xsd:double double

xsd:string java.lang.String

xsd:dateTime java.util.Calendar

xsd:integer java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:QName java.xml.namespace.QName

xsd:base64Binary byte []

xsd:hexBinary byte []

JAX-RPC also maps nillable types (types that can be null), based on XML Schema built-in types, to Java primitive
wrappers. For example, a nillable xsd:int type would map to a java.lang.Integer type and a nillable xsd:double would map to
a java.lang.Long type.

In addition, JAX-RPC defines a mapping between complex types defined in the WSDL <types> element and Java bean
classes. Complex types are addressed later in this chapter.

The stub, which implements the endpoint interface, is generated from the <binding> and <port> definitions. The JAX-RPC
compiler translates the messaging style specified by the <binding> definition into a marshalling algorithm for converting
method calls made on the endpoint stub into SOAP request and reply messages. Charge-It's WSDL document defines
the following <binding> element:

<binding name="ProcessorSoapBinding" type="tns:Processor">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="charge">

 <soap:operation soapAction="" style="rpc"/>

 <input>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </output>

 </operation>

</binding>

According to the <binding> element, the web service employs RPC/Literal SOAP 1.1 messages with a request-response
style operation. When the JAX-RPC compiler reads this <binding>, it generates a corresponding stub that implements
the endpoint interface. The stub is responsible for converting method calls made on the endpoint interface into SOAP
messages sent to the web service. It's also responsible for converting SOAP response messages sent back to the stub
into a return value—or, if it's a SOAP fault message, into an exception thrown by the endpoint method.

The stub is also based on a particular <port> definition, which declares the Internet address where the web service is
located. The Charge-It WSDL document defines the following <port> element:

<service name="ProcessorService">

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">

 <soap:address

 location="http://www.charge-it.com/ProcessorService"/>

 </port>

</service>

Based on this <port> definition, the JAX-RPC compiler generates the stub that exchanges SOAP messages with the URL
indicated by the address attribute (http://www.charge-it.com/ProcessorService). Figure 15-3 illustrates how the Processor
endpoint interface and stub are used to access the Charge-It credit card processing web service.

Figure 15-3. The JAX-RPC RMI loop for the Charge-It web service

In addition to the endpoint interface and its stub, the JAX-RPC compiler also creates a Service interface, which is used
to get an instance of the generated stub at runtime. The Service interface is based on the <service> element of the
WSDL document and declares methods for obtaining a live endpoint stub. Here's the definition of the ProcessorService
interface generated from Charge-It's WSDL document:

package com.charge_it;

public interface ProcessorService extends javax.xml.rpc.Service {

 public com.charge_it.Processor getProcessorPort()

 throws javax.xml.rpc.ServiceException;

 public java.lang.String getProcessorPortAddress();

 public com.charge_it.Processor getProcessorPort(java.net.URL portAddress)

 throws javax.xml.rpc.ServiceException;

}

The getProcessorPort() method returns a live endpoint stub that is ready to invoke methods on the web service. The
getProcessPortAddress() method returns the URL that the stub accesses by default. The getProcessorPort(URL) method
allows you to create an endpoint stub that accesses a URL that is different from the default URL defined in the WSDL
document.

The JAX-RPC compiler also generates a class that implements the Service interface. This class is tightly bound to the
EJB Container system and manufactures endpoint stubs at runtime.

15.1.2 Using JAX-RPC Generated Stubs

Just like other resources (JDBC, JMS, and so on) the JAX-RPC Service is bound to a specific namespace in the JNDI ENC
at deployment time. To get a reference to a stub at runtime, therefore, the EJB requests a specific JAX-RPC Service
from the JNDI ENC. The stub is then used to execute operations on the remote web service.

To illustrate how stubs are used by EJBs, we will modify the bookPassage() method of the TravelAgentBean defined in
Chapter 11. Instead of using the ProcessPayment EJB to process credit cards, the TravelAgent EJB will use the Charge-
It's Processor web service. The following code shows the changes to the TravelAgentBean class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's Processor web service. The following code shows the changes to the TravelAgentBean class:

package com.titan.travelagent;

import com.charge_it.ProcessorService;

import com.charge_it.Processor;

...

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 public CruiseLocal cruise;

 public CabinLocal cabin;

 public javax.naming.Context jndiContext;

 ...

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)

 {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 ProcessorService webService = (ProcessorService) jndiContext.lookup(

 "java:comp/env/service/ChargeItProcessorService");

 Processor endpointStub = webService.getProcessorPort();

 String customerName = customer.getFirstName()+" "+

 customer.getLastName();

 java.util.Calandar expDate = new Calandar(card.date);

 endpointStub.charge(customerName, card.number,

 expDate, card.type, price);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 expDate, card.type, price);

 TicketDO ticket = new TicketDO(customer, cruise, cabin, price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

}

As you can see, the EJB uses the JAX-RPC endpoint stub much like it would any other resource. It obtains a reference
to a resource factory from the JNDI ENC, uses that to obtain the stub, and uses the stub to invoke operations on the
web service—in this case, Charge-It's Processor web service.

The stub, however, presents some problems in a transactional environment. If the stub encounters a networking
problem or SOAP processing error, it throws a JAXRPCException, which is caught and rethrown as an EJBException, causing
the entire transaction to roll back. However, if an error occurs after the web service has executed but before the EJB
method successfully returns, a partial rollback occurs: the reservation would be rolled back, but the charge made using
the Charge-It web service would not.

15.1.3 The <service-ref> Deployment Element

EJB 2.1 includes a new element, <service-ref>, which binds a JAX-RPC Service to the JNDI ENC. The modified
TravelAgent EJB declares a <service-ref> element that looks like this:

<?xml version='1.0' encoding='UTF-8' ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:chargeIt="http://charge-it.com/Processor"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 ...

 <service-ref>

 <service-ref-name>service/ChargeItProcessorService</service-ref-name>

 <service-interface>com.charge_it.ProcessorService</service-interface>

 <wsdl-file>META-INF/wsdl/ChargeItProcessor.wsdl</wsdl-file>

 <jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>

 <service-qname>chargeIt:ProcessorService</service-qname>

 </service-ref>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </service-ref>

 ...

 </session>

 </enterprise-beans>

 ...

</ejb-jar>

The <service-ref-name> element declares the name of the JAX-RPC Service in the JNDI ENC—it's always relative to the
"java:comp/env" context. The <service-interface> identifies the JAX-RPC Service interface, which is implemented by a JAX-
RPC service object. The <wsdl-file> identifies the location of the WSDL document that describes the Charge-It web
service. The WSDL document must be packaged in the same EJB-JAR file as the EJB that is making the web service call.
The path is always relative to the root of the EJB-JAR file. In this case, a copy of the Charge-It WSDL document,
ChargeItProcessor.wsdl, is stored in the META-INF directory of the EJB-JAR file. The <jaxrpc-mapping-file> identifies the
location of the JAX-RPC mapping file relative to the root of the EJB-JAR file. In this case, it's also located in the META-
INF directory. (The JAX-RPC mapping file is an additional deployment file that helps the EJB container system
understand the mapping between the WSDL document and the endpoint service interfaces.) The <service-qname>
identifies the fully qualified XML name of the WSDL <service> definition to which this reference pertains. The qualified
service name is relative to the WSDL document identified by the <wsdl-file> element.

15.1.4 The JAX-RPC Mapping File

A JAX-RPC mapping file is required if an EJB is to use JAX-RPC to access web services. The mapping file conforms to a
specific XML Schema defined by the Web Services for J2EE 1.1 specification. This file helps the deployment tools and
EJB container understand the relationship between a JAX-RPC service and endpoint interfaces, and their corresponding
WSDL document, allowing the deployment tools to generate a proper stub: one that uses the correct protocols and
messaging modes.

At a bare minimum, the JAX-RPC mapping file must specify the mapping between the WSDL XML namespace of a
<service> element and a Java package name. Example 15-1 is a perfectly legal JAX-RPC mapping file for the <service-
ref> used by the TravelAgent EJB.

Example 15-1. EJB 2.1: Lightweight JAX-RPC mapping file

<?xml version='1.0' encoding='UTF-8' ?>

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

version="1.1">

 <package-mapping>

 <package-type>com.charge_it</package-type>

 <namespaceURI>http://charge-it.com/Processor</namespaceURI>

 </package-mapping>

</java-wsdl-mapping>

The JAX-RPC mapping shown in the previous listing is as simple as it gets. Only under very specific conditions can a
JAX-RPC mapping file be this simple; the TravelAgent EJB happens to use a web service that qualifies. Here's a brief list
of the attributes a WSDL document must have in order to qualify for a package-only JAX-RPC mapping file:

1. It has only one <service> element, which contains one <port> element.

2. The <service>, <binding>, <portType>, and all custom XML types (complexType and simpleType) have unique
names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The <binding> definition uses the RPC messaging style (style="rpc") and SOAP 1.1 Encoding
(encodingStyle="http://schemas.xmlsoap.org/soap/encoding/") for all input, output, and fault message parts.

4. No header blocks or header faults are specified in the <binding> definition; the parts attribute of input and output
elements must be omitted or, if the parts attribute is declared, it must list all parts.

5. Each <operation> within a <portType> definition must:

Have a unique name.

Include exactly one <input> element, zero or one <output> elements, and zero or more <fault>
elements.

Omit the parameterOrder attribute. If the parameterOrder is declared, the <operation> must specify all parts
from the input message in the order they are originally declared in the corresponding <message>
definition.

6. A fault <message> definition has one part named "message" of type "xsd:string".

7. The input <message> definition may declare zero or more <part> elements, and the output <message> definition
may declare zero or one <part> elements.

8. Every <part> definition is defined with a name attribute and a type attribute; the element attribute is not used.
The type attribute may be one of the following:

A standard XML Schema built-in type

An XML Schema-based complex type, which uses either the xsd:sequence or xsd:all compositor and can
be easily mapped to Java beans according to the JAX-RPC specifications

A WSDL-restricted SOAP Encoded array

The ChargeItProcessor.wsdl document meets all these requirements; as a result, it only needs to have a package
mapping. It's not difficult to create WSDL documents that meet these requirements; however, if you are attempting to
access a web service defined by someone else, you're likely to run into WSDL documents that do not adhere to the
criteria for a lightweight mapping file. In that case, you'll have to create a heavyweight mapping file. Example 15-2 is a
heavyweight mapping file for the ChargeItProcessor.wsdl document.

Example 15-2. Heavyweight JAX-RPC mapping file

<?xml version='1.0' encoding='UTF-8' ?>

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:chargeIt="http://charge-it.com/Processor"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

 version="1.1">

 <package-mapping>

 <package-type>com.charge_it</package-type>

 <namespaceURI>http://charge-it.com/Processor</namespaceURI>

 </package-mapping>

 <service-interface-mapping>

 <service-interface>com.charge_it.ProcessorService</service-interface>

 <wsdl-service-name>chargeIt:ProcessorService</wsdl-service-name>

 <port-mapping>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <port-mapping>

 <port-name>chargeIt:ProcessorPort</port-name>

 <java-port-name>ProcessorPort</java-port-name>

 </port-mapping>

 </service-interface-mapping>

 <service-endpoint-interface-mapping>

 <service-endpoint-interface>com.charge_it.Processor

 </service-endpoint-interface>

 <wsdl-port-type>chargeIt:Processor</wsdl-port-type>

 <wsdl-binding>chargeIt:ProcessorSoapBinding</wsdl-binding>

 <service-endpoint-method-mapping>

 <java-method-name>charge</java-method-name>

 <wsdl-operation>chargeIt:charge</wsdl-operation>

 <method-param-parts-mapping>

 <param-position>0</param-position>

 <param-type>java.lang.String</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>name</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>1</param-position>

 <param-type>java.lang.String</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>number</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>2</param-position>

 <param-type>java.util.Calandar</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>exp-date</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>3</param-position>

 <param-type>java.lang.String</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>card-type</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>4</param-position>

 <param-type>float</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>amount</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <wsdl-return-value-mapping>

 <method-return-value>int</method-return-value>

 <wsdl-message>chargeIt:chargeResponse</wsdl-message>

 <wsdl-message-part-name>return</wsdl-message-part-name>

 </wsdl-return-value-mapping>

 </service-endpoint-method-mapping>

 </service-endpoint-interface-mapping>

</java-wsdl-mapping>

The complete JAX-RPC mapping file is too complicated to discuss in detail. Suffice it to say, the heavyweight mapping
file is complex and provides elements for mapping every aspect of the service and endpoint interfaces to a WSDL
document. The service interface is mapped to a WSDL <service> element, the endpoint interface is mapped to a WSDL
<portType>, each method is mapped to a WSDL <operation>, and every parameter and return value is mapped to a
specific WSDL <part> of a specific WSDL <message> definition.

It seems to me that a JAX-RPC compiler should be able to interpret a far broader set of WSDL definitions than the very
narrow criteria required for a lightweight mapping. The Web Services for J2EE specification requires a complete
mapping for any JAX-RPC resource that strays even a little from the minimum criteria for a lightweight mapping. In my
opinion, the criteria should be broadened. Only the nonconforming aspects of the WSDL document should be mapped;
conforming elements should not require documentation in the mapping file.

Exercise 15.1 in the Workbook shows how to deploy these examples.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.2 EJB Endpoints
An EJB endpoint is a stateless session bean that serves as a web service. Basically, the endpoint exposes a stateless
session bean through a new component interface, called the endpoint interface; remote clients use SOAP 1.1 to access
the methods defined in this interface. Because an EJB endpoint is simply a SOAP-accessible stateless session bean, it
has the same advantages as other EJBs. An EJB endpoint runs in the EJB container that automatically manages
transactions and security and provides access to other EJBs and resources via the JNDI ENC.

To illustrate how an EJB endpoint is developed, we'll create a new version of the TravelAgent EJB. The revised
TravelAgent will use the same logic as the TravelAgent EJB developed in Chapter 11 and the ReservationProcessor
developed in Chapter 12, but it will be deployed as a stateless session bean with an endpoint interface. The TravelAgent
endpoint is based on the WSDL document shown earlier in this chapter.

15.2.1 The WSDL Document

Every EJB endpoint must have a WSDL document that describes the web service. The <portType> declared by the WSDL
document must be aligned with the endpoint interface of the web service. In other words, the mapping between the
WSDL <portType> and the endpoint interface must be correct according to the JAX-RPC specification. One way to
accomplish this is to create the WSDL document first, and then use it to generate the endpoint interface:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

<!-- message elements describe the parameters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgentEndpoint">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgentEndpoint">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="makeReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </output>

 </operation>

</binding>

<!-- service element tells us the Internet address of a web service -->

<service name="TravelAgentService">

 <port name="TravelAgentPort" binding="titan:TravelAgentBinding">

 <soap:address location="http://www.titan.com/webservices/TravelAgent" />

 </port>

</service>

</definitions>

15.2.2 The Endpoint Interface

Based on this WSDL document, we can generate a JAX-RPC endpoint interface, which will be implemented by our EJB
endpoint. The endpoint interface is generated from the <portType> and <message> definitions (and <types>, if present).
The endpoint interface looks like this:

package com.titan.webservice;

public interface TravelAgentEndpoint extends java.rmi.Remote {

 public java.lang.String makeReservation(int cruiseId, int cabinId,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The endpoint interface defines the business methods that will be accessible as SOAP operations. The interface extends
java.rmi.Remote—there is no EJBObject interface—and defines one or more business methods, each of which must throw
a java.rmi.RemoteException. The types that can be used as parameters and return types are the same types that can be
used with JAX-RPC generated endpoints (see Table 15-1). You can also use simple Java bean types for holding complex
data.

15.2.3 No Home Interface

An EJB endpoint does not define a home interface; there is no EJB home object for creating or locating EJB endpoints.
An EJB endpoint cannot be created or located; it's a truly stateless service, both semantically and physically. The only
time an EJB would have a home interface is if the EJB defined remote or local interfaces in addition to the endpoint
interface. In other words, a single EJB can be local, remote, and an endpoint.

15.2.4 The Stateless Bean Class

The bean class defined for the TravelAgent endpoint must implement the methods defined by the endpoint interface. A
stateless bean class can implement the endpoint interface directly—something that's not recommended for the local or
remote interfaces. That's because the endpoint interface is a direct descendent of java.rmi.Remote, and doesn't define
any EJBObject methods. Here's the new definition for the TravelAgent bean class:

package com.titan.webservice;

import com.titan.reservation.*;

import com.titan.cruise.*;

import com.titan.customer.*;

import com.titan.cabin.*;

import com.titan.processpayment.*;

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

import javax.naming.NamingException;

import javax.ejb.EJBException;

import java.util.Date;

import java.util.Calendar;

public class TravelAgentBean

 implements TravelAgentEndpoint, javax.ejb.SessionBean {

 public javax.naming.Context jndiContext;

 public void ejbCreate() {}

 public String makeReservation(int cruiseId, int cabinId,

 int customerId, double price){

 try {

 CruiseLocal cruise = this.getCruise(cruiseId);

 CabinLocal cabin = this.getCabin(cabinId);

 CustomerRemote customer = this.getCustomer(customerId);

 CreditCardDO card = this.getCreditCard(customerId);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CreditCardDO card = this.getCreditCard(customerId);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup(

 "java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 return reservation.getPrimaryKey().toString();

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 public CustomerRemote getCustomer(int customer_id) throws Exception {

 Integer customerID = new Integer(customer_id);

 CustomerHomeRemote home = (CustomerHomeRemote)

 jndiContext.lookup("java:comp/env/ejb/CustomerHomeRemote");

 return home.findByPrimaryKey(customerID);

 }

 public CreditCardDO getCreditCard(int customer_id) throws Exception{

 Integer customerID = new Integer(customer_id);

 CustomerHomeLocal home = (CustomerHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CustomerHomeLocal");

 CustomerLocal customer = home.findByPrimaryKey(customerID);

 CreditCardLocal card = customer.getCreditCard();

 return new CreditCardDO(card.getNumber(),card.getExpirationDate(),

 card.getCreditOrganization());

 }

 public CabinLocal getCabin(int cabin_id) throws Exception {

 Integer cabinID = new Integer(cabin_id);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 return home.findByPrimaryKey(cabinID);

 }

 public CruiseLocal getCruise(int cruise_id) throws Exception {

 Integer cruiseID = new Integer(cruise_id);

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 return home.findByPrimaryKey(cruiseID);

 }

 public void ejbRemove() {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void setSessionContext(javax.ejb.SessionContext cntx){

 try {

 jndiContext = new javax.naming.InitialContext();

 }catch(NamingException ne) {

 throw new EJBException(ne);

 }

 }

}

The TravelAgentBean class is not that different from the TravelAgent EJB developed earlier in this chapter (the version
that uses the Charge-It credit card processing web service). The primary difference is that it responds to web service
calls, rather than remote or local calls.

15.2.5 The Deployment Files

The TravelAgent endpoint requires four deployment files: a standard ejb-jar.xml deployment descriptor, a WSDL file, a
JAX-RPC mapping file, and a webservices.xml file.

15.2.5.1 ejb-jar.xml file

An EJB endpoint is deployed using the same ejb-jar.xml elements as a regular stateless session bean. The endpoint
declares a single component interface element, the <service-endpoint>. This element can be used only with stateless
session beans that are deployed as EJB endpoints. A single EJB can actually support remote, local, and endpoint
interfaces simultaneously. Here, we'll keep it simple and limit the TravelAgent endpoint to web services. Other than the
<service-endpoint> element, the rest of the deployment descriptor is pretty much the same as a regular stateless session
bean:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bean:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <description>

 A Web Service reservation service

 </description>

 <ejb-name>TravelAgentEjbEndpoint</ejb-name>

 <service-endpoint>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint>

 <ejb-class>

 com.titan.webservice.TravelAgentBean

 </ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 ...

 </session>

 ...

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

The value for the <ejb-name> element can be anything you choose; in this book, we use the suffix "Endpoint" to denote
an EJB endpoint component.

You cannot declare the transaction attribute of any method of an endpoint as mandatory, because doing so implies that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You cannot declare the transaction attribute of any method of an endpoint as mandatory, because doing so implies that
the Enterprise Bean method must be enrolled in the calling client's transaction. Since transaction propagation is not
standardized in web services, it's assumed that the client will not be propagating a transaction.

15.2.5.2 WSDL file

The WSDL file used to generate the endpoint interface must be packaged with the EJB endpoint. Normally, the WSDL
document is placed in the META-INF directory of the JAR file, but it can go anywhere as long as it's in the same JAR file
as the EJB endpoint.

15.2.5.3 JAX-RPC mapping file

EJB endpoints, like JAX-RPC generated stubs, require you to define a JAX-RPC mapping file. The mapping file can have
any name, but it should be descriptive, and the file type should be XML. It's common to name this file mapping.xml or
travelagent_mapping.xml, or something along those lines. Here's a lightweight JAX-RPC mapping file for the
TravelAgent endpoint:

<?xml version='1.0' encoding='UTF-8' ?>

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

 version="1.1">

 <package-mapping>

 <package-type>com.titan.webservice</package-type>

 <namespaceURI>http://www.titan.com/TravelAgent</namespaceURI>

 </package-mapping>

</java-wsdl-mapping>

The JAX-RPC mapping file was covered earlier in this chapter, in the section entitled "The JAX-RPC Mapping File."
Basically, this deployment descriptor maps a Java package to the XML Namespace of the WSDL <port> and other
elements, helping the container to understand which packaged classes are associated with which WSDL definitions.

15.2.5.4 webservices.xml file

The webservices.xml file is the baling wire that ties the separate deployment files together. It defines the relationships
between the ejb-jar.xml, the WSDL file, and the JAX-RPC mapping file:

<?xml version='1.0' encoding='UTF-8' ?>

<webservices

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:titan="http://www.titan.com/TravelAgent"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"

 version="1.1">

 <webservice-description>

 <webservice-description-name>TravelAgentService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <webservice-description-name>TravelAgentService

 </webservice-description-name>

 <wsdl-file>/META-INF/travelagent.wsdl</wsdl-file>

 <jaxrpc-mapping-file>/META-INF/travelagent_mapping.xml

 </jaxrpc-mapping-file>

 <port-component>

 <port-component-name>TravelAgentEndpoint</port-component-name>

 <wsdl-port>titan:TravelAgentPort</wsdl-port>

 <service-endpoint-interface>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>TravelAgentEjbEndpoint</ejb-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

The <webservice-description> element describes an EJB endpoint: there may be one or more of these elements in a single
webservices.xml file.[1] The <webservice-description-name> is a unique name assigned to the web service description. It
can be anything you like. The <wsdl-file> element points to the WSDL document of the EJB endpoint. Each EJB endpoint
has exactly one WSDL document, which is usually located in the META-INF directory of the EJB-JAR file. When the EJB
endpoint is deployed, your deployment tool will probably provide you with the option of copying the WSDL document to
some type of public URL or registry so that others can discover the web service. The <jaxrpc-mapping-file> element
indicates the location of the JAX-RPC mapping file that is associated with the EJB endpoint and the WSDL document. It,
too, is usually located in the META-INF directory of the EJB JAR file.

[1] The <webservice-description> element can also describe a JAX-RPC service endpoint, which is a servlet-based
web service that is outside the scope of this book.

The <port-component> element maps a stateless session bean declared in the ejb-jar.xml file to a specific <port> in the
WSDL document. The <port-component-name> is the logical name you assign the EJB endpoint. It can be anything. The
<wsdl-port> element maps the EJB endpoint deployment information to a specific WSDL <port> element in the WSDL
document. The <service-endpoint-interface> is the fully qualified name of the endpoint interface—it must be the same
interface declared by the <service-endpoint> element for the EJB in the ejb-jar.xml file. The <service-impl-bean> and its
<ejb-link> element link the <port-component> to a specific EJB in the ejb-jar.xml. The value of the <ejb-link> must match
the value of the <ejb-name> in the ejb-jar.xml file.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 16. Transactions
Section 16.1. ACID Transactions

Section 16.2. Declarative Transaction Management

Section 16.3. Isolation and Database Locking

Section 16.4. Nontransactional Beans

Section 16.5. Explicit Transaction Management

Section 16.6. Exceptions and Transactions

Section 16.7. Transactional Stateful Session Beans

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.1 ACID Transactions
To understand how transactions work, we will revisit the TravelAgent EJB, the stateful session bean developed in
Chapter 11 that encapsulates the process of making a cruise reservation for a customer. The TravelAgent EJB's
bookPassage() method looks like this:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

The TravelAgent EJB is a fairly simple session bean, and its use of other EJBs is typical of business-object design and
taskflow. Unfortunately, good business-object design is not enough to make these EJBs useful in an industrial-strength
application. The problem is not with the definition of the EJBs or the taskflow; the problem is that a good design does
not, in and of itself, guarantee that the TravelAgent EJB's bookPassage() method represents a good transaction. To
understand why, we will take a closer look at what a transaction is and what criteria a transaction must meet to be
considered reliable.

In business, a transaction usually involves an exchange between two parties. When you purchase an ice cream cone,
you exchange money for food; when you work for a company, you exchange skill and time for money (which you use to
buy more ice cream). When you are involved in these exchanges, you monitor the outcome to ensure that you don't get
"ripped off." If you give the ice cream vendor a $20 bill, you don't want him to drive off without giving you your
change; likewise, you want to make sure that your paycheck reflects all the hours you worked. By monitoring these
commercial exchanges, you are attempting to ensure the reliability of the transactions; you are making sure that each
transaction meets everyone's expectations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transaction meets everyone's expectations.

In business software, a transaction embodies the concept of a commercial exchange. A business system transaction
(transaction for short) is the execution of a unit-of-work that accesses one or more shared resources, usually
databases. A unit-of-work is a set of activities that relate to each other and must be completed together. The
reservation process is a unit-of-work made up of several activities: recording a reservation, debiting a credit card, and
generating a ticket together make up a unit-of-work.

The object of a transaction is to execute a unit-of-work that results in a reliable exchange. Here are some types of
business systems that employ transactions:

ATM

The ATM (automatic teller machine) you use to deposit, withdraw, and transfer funds executes these units-of-
work as transactions. In an ATM withdrawal, for example, the ATM checks to make sure you don't overdraw and
then debits your account and spits out some money.

Online book order

You've probably purchased many of your Java books—maybe even this book—from an online bookseller. This
type of purchase is also a unit-of-work that takes place as a transaction. In an online book purchase, you
submit your credit card number, it is validated, and a charge is made for price of the book. Then an order to
ship you the book is sent to the bookseller's warehouse.

Medical system

In a medical system, important data—some of it critical—is recorded about patients every day, including
information about clinical visits, medical procedures, prescriptions, and drug allergies. The doctor prescribes the
drug, then the system checks for allergies, contraindications, and appropriate dosages. If all tests pass, the
drug can be administered. These tasks make up a unit-of-work. A unit-of-work in a medical system may not be
financial, but it's just as important. Failure to identify a drug allergy in a patient could be fatal.

As you can see, transactions are often complex and usually involve the manipulation of a lot of data. Mistakes in data
can cost money, or even a life. Transactions must therefore preserve data integrity, which means that the transaction
must work perfectly every time or not be executed at all. This is a pretty tall order. As difficult as this requirement is,
however, when it comes to commerce, there is no room for error. Units-of-work involving money or anything of value
always require the utmost reliability, because errors impact the revenues and the well-being of the parties involved.

To give you an idea of the accuracy required by transactions, think about what would happen if a transactional system
suffered from seemingly infrequent errors. ATMs provide customers with convenient access to their bank accounts and
represent a significant percentage of the total transactions in personal banking. The transactions handled by ATMs are
simple but numerous, providing us with a great example of why transactions must be error-proof. Let's say that a bank
has 100 ATMs in a metropolitan area, and each ATM processes 300 transactions (deposits, withdrawals, or transfers) a
day, for a total of 30,000 transactions per day. If each transaction, on average, involves the deposit, withdrawal, or
transfer of about $100, about 3 million dollars will move through the ATM system per day. In the course of a year,
that's a little over a billion dollars:

365 days 100 ATMs 300 transactions $100.00 = $1,095,000,000.00

How well do the ATMs have to perform to be considered reliable? For the sake of argument, let's say that ATMs execute
transactions correctly 99.99% of the time. This seems to be more than adequate: after all, only one out of every ten
thousand transactions executes incorrectly. But over the course of a year, if you do the math, that could result in over
$100,000 in errors!

$1,095,000,000.00 .01% = $109,500.00

Obviously, this example is an oversimplification of the problem, but it illustrates that even a small percentage of errors
is unacceptable in high-volume or mission-critical systems. For this reason, experts have identified four characteristics
of a transaction that must be met for a system to be considered safe. Transactions must be atomic, consistent, isolated,
and durable (ACID)—the four horsemen of transaction services. Here's what each term means:

Atomic

An atomic transaction must execute completely or not at all. This means that every task within a unit-of-work
must execute without error. If any of the tasks fails, the entire unit-of-work or transaction is aborted, meaning
that any changes to the data are undone. If all the tasks execute successfully, the transaction is committed,
which means that the changes to the data are made permanent or durable.

Consistent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consistency is a transactional characteristic that must be enforced by both the transactional system and the
application developer. Consistency refers to the integrity of the underlying data store. The transactional system
fulfills its obligation for consistency by ensuring that a transaction is atomic, isolated, and durable. The
application developer must ensure that the database has appropriate constraints (primary keys, referential
integrity, and so forth) and that the unit-of-work, the business logic, doesn't result in inconsistent data (i.e.,
data that is not in harmony with the real world it represents). In an account transfer, for example, a debit to
one account must equal the credit to another account.

Isolated

A transaction must be allowed to execute without interference from other processes or transactions. In other
words, the data that a transaction accesses cannot be affected by any other part of the system until the
transaction or unit-of-work is completed.

Durable

Durability means that all the data changes made during the course of a transaction must be written to some
type of physical storage before the transaction is successfully completed. This ensures that the changes are not
lost if the system crashes.

To get a better idea of what these principles mean, we will examine the TravelAgent EJB in terms of the four ACID
properties.

16.1.1 Is the TravelAgent EJB Atomic?

Our first measure of the TravelAgent EJB's reliability is its atomicity: does it ensure that the transaction executes
completely or not at all? What we are really concerned with are the critical tasks that change or create information. In
the bookPassage() method, a Reservation EJB is created, the ProcessPayment EJB debits a credit card, and a TicketDO
object is created. All of these tasks must be successful for the entire transaction to be successful.

To understand the importance of the atomic characteristic, imagine what would happen if even one of the subtasks
failed to execute. If, for example, the creation of a Reservation EJB failed but all other tasks succeeded, your customer
would probably end up getting bumped from the cruise or sharing the cabin with a stranger. As far as the travel agent
is concerned, the bookPassage() method executed successfully because a TicketDO was generated. If a ticket is
generated without the creation of a reservation, the state of the business system becomes inconsistent with reality,
because the customer paid for a ticket but the reservation was not recorded. Likewise, if the ProcessPayment EJB fails
to charge the customer's credit card, the customer gets a free cruise. He may be happy, but management won't be.
Finally, if the TicketDO is never created, the customer will have no record of the transaction and probably will not be
allowed onto the ship.

So the only way bookPassage() can be completed is if all the critical tasks execute successfully. If something goes
wrong, the entire process must be aborted. Aborting a transaction requires more than simply not finishing the tasks; in
addition, all the tasks that did execute within the transaction must be undone. If, for example, the creation of the
Reservation EJB and ProcessPayment.byCredit() method succeeded but the creation of the TicketDO failed, throwing an
exception from the constructor, the reservation record and payment records must not be added to the database.

16.1.2 Is the TravelAgent EJB Consistent?

In order for a transaction to be consistent, the business system must make sense after the transaction has completed.
In other words, the state of the business system must be consistent with the reality of the business. This requires that
the transaction enforce the atomic, isolated, and durable characteristics of the transaction, and it also requires diligent
enforcement of integrity constraints by the application developer. If, for example, the application developer fails to
include the credit card charge operation in the bookPassage() method, the customer will be issued a ticket but will never
be charged. The data will be inconsistent with the expectation of the business—a customer should be charged for
passage.

In addition, the database must be set up to enforce integrity constraints. For example, it should not be possible for a
record to be added to the RESERVATION table unless the CABIN_ID, CRUISE_ID, and CUSTOMER_ID foreign keys map to
corresponding records in the CABIN, CRUISE, and CUSTOMER tables, respectively. If a CUSTOMER_ID that does not map to
a CUSTOMER record is used, referential integrity should cause the database to throw an error message.

16.1.3 Is the TravelAgent EJB Isolated?

If you are familiar with the concept of thread synchronization in Java or row-locking schemes in relational databases,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are familiar with the concept of thread synchronization in Java or row-locking schemes in relational databases,
isolation will be a familiar concept. To be isolated, a transaction must protect the data it is accessing from other
transactions. This is necessary to prevent other transactions from interacting with data that is in transition. In the
TravelAgent EJB, the transaction is isolated to prevent other transactions from modifying the EJBs that are being
updated. Imagine the problems that would arise if separate transactions were allowed to change any entity bean at any
time—transactions would walk all over each other. You could easily have several customers book the same cabin
because their travel agents happened to make their reservations at the same time.

The isolation of data accessed by EJBs does not mean that the entire application shuts down during a transaction. Only
those entity beans and data directly affected by the transaction are isolated. In the TravelAgent EJB, for example, the
transaction isolates only the Reservation EJB created. There can be many Reservation EJBs in existence; there's no
reason these other EJBs can't be accessed by other transactions.

16.1.4 Is the TravelAgent EJB Durable?

To be durable, the bookPassage() method must write all changes and new data to a permanent data store before it can
be considered successful. While this may seem like a no-brainer, often it is not what happens in real life. In the name of
efficiency, changes are often maintained in memory for long periods of time before being saved on a disk drive. The
idea is to reduce disk accesses—which slow systems down—and only periodically write the cumulative effect of data
changes. While this approach is great for performance, it is also dangerous because data can be lost when the system
goes down and memory is wiped out. Durability requires the system to save all updates made within a transaction as
the transaction successfully completes, thus protecting the integrity of the data.

In the TravelAgent EJB, this means that the new RESERVATION and PAYMENT records inserted are made persistent before
the transaction can complete successfully. Only when the data is made durable are those specific records accessible
through their respective EJBs from other transactions. Hence, durability also plays a role in isolation. A transaction is
not finished until the data is successfully recorded.

Ensuring that transactions adhere to the ACID principles requires careful design. The system has to monitor the
progress of a transaction to ensure that it does all its work, that the data is changed correctly, that transactions do not
interfere with each other, and that the changes can survive a system crash. Engineering all this functionality into a
system is a lot of work, and not something you would want to reinvent for every business system on which you work.
Fortunately, EJB is designed to support transactions automatically, making the development of transactional systems
easier. The rest of this chapter examines how EJB supports transactions implicitly (through declarative transaction
attributes) and explicitly (through the Java Transaction API).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.2 Declarative Transaction Management
One of the primary advantages of Enterprise JavaBeans is that it allows for declarative transaction management.
Without this feature, transactions must be controlled using explicit transaction demarcation, which involves the use of
fairly complex APIs like the OMG's Object Transaction Service (OTS) or its Java implementation, the Java Transaction
Service (JTS). At best, explicit demarcation is difficult to use, particularly if you are new to transactional systems. In
addition, explicit transaction demarcation requires that the transactional code be written within the business logic,
which reduces the clarity of the code and, more importantly, creates inflexible distributed objects. Once transaction
demarcation is hardcoded into the business object, changes in transaction behavior require changes to the business
logic itself. We talk more about explicit transaction management and EJB later in this chapter.

With declarative transaction management, the transactional behavior of EJBs can be controlled using the deployment
descriptor, which sets transaction attributes for individual enterprise bean methods. This means that the transactional
behavior of an EJB can be changed without changing the EJB's business logic. In addition, an EJB deployed in one
application can be defined with different transactional behavior than the same EJB deployed in a different application.
Declarative transaction management reduces the complexity of transactions for EJB developers and application
developers and makes it easier to create robust transactional applications.

16.2.1 Transaction Scope

Transaction scope is a crucial concept for understanding transactions. In this context, transaction scope means those
EJBs—both session and entity—that are participating in a particular transaction. In the bookPassage() method of the
TravelAgent EJB, all the EJBs involved are part of the same transaction scope. The scope of the transaction starts when
a client invokes the TravelAgent EJB's bookPassage() method. Once the transaction scope has started, it is propagated to
both the newly created Reservation EJB and the ProcessPayment EJB.

As you know, a transaction is a unit-of-work made up of one or more tasks. In a transaction, all the tasks that make up
the unit-of-work must succeed for the entire transaction to succeed; in other words, the transaction must be atomic. If
any task fails, the updates made by all the other tasks in the transaction will be rolled back or undone. In EJB, tasks are
expressed as enterprise bean methods, and a unit-of-work consists of every enterprise bean method invoked in a
transaction. The scope of a transaction includes every EJB that participates in the unit-of-work.

It is easy to trace the scope of a transaction by following the thread of execution. If the invocation of the bookPassage()
method begins a transaction, then logically, the transaction ends when the method completes. The scope of the
bookPassage() transaction would include the TravelAgent, Reservation, and ProcessPayment EJBs—every EJB touched by
the bookPassage() method. A transaction is propagated to an EJB when that EJB's method is invoked and included in the
scope of that transaction.

A transaction can end if an exception is thrown while the bookPassage() method is executing. The exception can be
thrown from one of the other EJBs or from the bookPassage() method itself. An exception may or may not cause a
rollback, depending on its type. We'll discuss exceptions and transactions in more detail later.

The thread of execution is not the only factor that determines whether an EJB is included in the scope of a transaction;
the EJB's transaction attributes also play a role. Determining whether an EJB participates in the transaction scope of
any unit-of-work is accomplished implicitly, using the EJB's transaction attributes, or explicitly, using the Java
Transaction API (JTA).

16.2.2 Transaction Attributes

As an application developer, you don't normally need to control transactions explicitly when using an EJB server. EJB
servers can manage transactions implicitly, based on the transaction attributes established at deployment time. When
an EJB is deployed, you can set its runtime transaction attribute in the deployment descriptor to one of several values.
Here are the XML attribute values used to specify transaction attributes:

NotSupported
Supports
Required
RequiresNew
Mandatory
Never

You can set a transaction attribute for the entire EJB (in which case it applies to all methods) or you can set different
transaction attributes for individual methods. The former method is much simpler and less error-prone, but setting
attributes at the method level offers more flexibility. The code in the following sections shows how to set the default
transaction attribute of an EJB in the EJB's deployment descriptor.

16.2.2.1 Setting a transaction attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2.2.1 Setting a transaction attribute

In the XML deployment descriptor, a <container-transaction> element specifies the transaction attributes for the EJBs
described in the deployment descriptor:

<ejb-jar ...>

 ...

 <assembly-descriptor>

 ...

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name> * </method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>listAvailableCabins</method-name>

 </method>

 <trans-attribute>Supports</trans-attribute>

 </container-transaction>

 ...

 </assembly-descriptor>

 ...

</ejb-jar>

This deployment descriptor specifies the transaction attributes for the TravelAgent EJB. Each <container-transaction>
element specifies a method and that method's transaction attribute. The first <container-transaction> element specifies
that all methods have a transaction attribute of Required by default; the * is a wildcard that indicates all the methods of
the TravelAgent EJB. The second <container-transaction> element overrides the default setting to specify that the
listAvailableCabins() method has a Supports transaction attribute. Note that we have to specify which EJB we are referring
to with the <ejb-name> element; an XML deployment descriptor can cover many EJBs.

16.2.2.2 Transaction attributes defined

Here are the definitions of the transaction attributes listed earlier. In a few of the definitions, the client transaction is
described as suspended. This means the transaction is not propagated to the enterprise bean method being invoked;
propagation of the transaction is temporarily halted until the enterprise bean method returns. To make things easier,
we will talk about attribute types as if they were bean types: for example, we'll say a "Required EJB" as shorthand for
"an enterprise bean with the Required transaction attribute." The attributes are:

NotSupported

Invoking a method on an EJB with this transaction attribute suspends the transaction until the method is
completed. This means that the transaction scope is not propagated to the NotSupported EJB or any of the EJBs it
calls. Once the method on the NotSupported EJB is done, the original transaction resumes its execution.

Figure 16-1 shows that a NotSupported EJB does not propagate the client transaction when one of its methods is
invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-1. NotSupported attribute

Supports

This attribute means that the enterprise bean method will be included in the transaction scope if it is invoked
within a transaction. In other words, if the EJB or client that invokes the Supports EJB is part of a transaction
scope, the Supports EJB and all EJBs accessed by it become part of the original transaction. However, the
Supports EJB doesn't have to be part of a transaction and can interact with clients and other EJBs that are not
included in a transaction scope.

Figure 16-2 (a) shows the Supports EJB being invoked by a transactional client and propagating the transaction.
Figure 16-2 (b) shows the Supports EJB being invoked by a nontransactional client.

Figure 16-2. Supports attribute

Required

This attribute means that the enterprise bean method must be invoked within the scope of a transaction. If the
calling client or EJB is part of a transaction, the Required EJB is automatically included in its transaction scope. If,
however, the calling client or EJB is not involved in a transaction, the Required EJB starts its own new
transaction. The new transaction's scope covers only the Required EJB and all other EJBs accessed by it. Once
the method invoked on the Required EJB is done, the new transaction's scope ends.

Figure 16-3 (a) shows the Required EJB being invoked by a transactional client and propagating the transaction.
Figure 16-3 (b) shows the Required EJB being invoked by a nontransactional client, which causes it to start its
own transaction.

Figure 16-3. Required attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RequiresNew

This attribute means that a new transaction is always started. Regardless of whether the calling client or EJB is
part of a transaction, a method with the RequiresNew attribute begins a new transaction when invoked. If the
calling client is already involved in a transaction, that transaction is suspended until the RequiresNew EJB's
method call returns. The new transaction's scope covers only the RequiresNew EJB and all the EJBs accessed by
it. Once the method invoked on the RequiresNew EJB is done, the new transaction's scope ends and the original
transaction resumes.

Figure 16-4 (a) shows the RequiresNew EJB being invoked by a transactional client. The client's transaction is
suspended while the EJB executes under its own transaction. Figure 16-4 (b) shows the RequiresNew EJB being
invoked by a nontransactional client; the RequiresNew EJB executes under its own transaction.

Figure 16-4. RequiresNew attribute

Mandatory

This attribute means that the enterprise bean method must always be made part of the transaction scope of the
calling client. The EJB may not start its own transaction; the transaction must be propagated from the client. If
the calling client is not part of a transaction, the invocation will fail, throwing a
javax.transaction.TransactionRequiredException to remote clients or a javax.ejb.TransactionRequiredLocalException to local
EJB clients.

Figure 16-5 (a) shows the Mandatory EJB being invoked by a transactional client and propagating the
transaction. Figure 16-5 (b) shows the Mandatory EJB being invoked by a nontransactional client; the method
throws a TransactionRequiredException to remote clients or a TransactionRequredLocalException to local EJB clients,
because there is no transaction scope.

Figure 16-5. Mandatory attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Never

This attribute means that the enterprise bean method must not be invoked within the scope of a transaction. If
the calling client or EJB is part of a transaction, the Never EJB will throw a RemoteException to remote clients or
an EJBException to local EJB clients. However, if the calling client or EJB is not involved in a transaction, the Never
EJB will execute normally without a transaction.

Figure 16-6 (a) shows the Never EJB being invoked by a nontransactional client. Figure 16-6 (b) shows the Never
EJB being invoked by transactional client; the method throws a RemoteException to remote clients or an
EJBException to local EJB clients, because a client or EJB that is included in a transaction can never invoke the
method.

Figure 16-6. Never attribute

16.2.2.3 Container-managed persistence and transaction attributes

The EJB specification strongly advises that CMP entity beans use only the Required, RequiresNew, and Mandatory
transaction attributes. This restriction ensures that all database access occurs in the context of a transaction, which is
important when the container is automatically managing persistence. While the specification requires that these three
transaction attributes be supported for CMP, support for the Never, Supports, and NotSupported transaction attributes is
optional. If a vendor wishes to support these attributes (which allow the bean to execute without a transaction) they
may do so, but it's not recommended. Consult your vendor's documentation to determine if they support the optional
transaction attributes. This book recommends that you use only Required, RequiresNew, or Mandatory with EJB container-
managed persistence entity beans.

16.2.2.4 Message-driven beans and transaction attributes

Message-driven beans may declare only the NotSupported or Required transaction attributes. The other transaction
attributes don't make sense in message-driven beans because they apply to client-initiated transactions. The Supports,
RequiresNew, Mandatory, and Never attributes are all relative to the transaction context of the client. For example, the
Mandatory attribute requires the client to have a transaction in progress before calling the enterprise bean. This is
meaningless for a message-driven bean, which is decoupled from the client.

The NotSupported transaction attribute indicates that the message will be processed without a transaction. The Required
transaction attribute indicates that the message will be processed with a container-initiated transaction.

16.2.2.5 EJB endpoints and transaction attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2.2.5 EJB endpoints and transaction attributes

The Mandatory transaction attribute cannot be used with EJB endpoints, because an EJB endpoint does not propagate a
client transaction. Perhaps when web service transactions become standardized this will change, but for now using
Mandatory with an EJB endpoint method is prohibited.

16.2.3 Transaction Propagation

To illustrate the impact of transaction attributes, we'll look once again at the bookPassage() method of the TravelAgent
EJB. In order for bookPassage() to execute as a successful transaction, both the creation of the Reservation EJB and the
charge to the customer must be successful. This means both operations must be included in the same transaction. If
either operation fails, the entire transaction fails. We could have specified the Required transaction attribute as the
default for all the EJBs involved, because that attribute enforces our desired policy that all EJBs must execute within a
transaction and thus ensures data consistency.

As a transaction monitor, an EJB server watches each method call in the transaction. If any of the updates fail, all the
updates to all the EJBs will be reversed or rolled back. A rollback is like an undo command. If you have worked with
relational databases, the concept of a rollback should be familiar to you. Once an update is executed, you can either
commit the update or roll it back. A commit makes the changes requested by the update permanent; a rollback aborts
the update and leaves the database in its original state. Making EJBs transactional provides the same kind of
rollback/commit control. For example, if the Reservation EJB cannot be created, the charge made by the
ProcessPayment EJB is rolled back. Transactions make updates an all-or-nothing proposition. This ensures that the unit-
of-work, like the bookPassage() method, executes as intended, and it prevents inconsistent data from being written to
databases.

In cases in which the container implicitly manages the transaction, the commit and rollback decisions are handled
automatically. When transactions are managed explicitly within an enterprise bean or by the client, the responsibility
falls on the enterprise bean or application developer to commit or roll back a transaction. Explicit demarcation of
transactions is covered in detail later in this chapter.

Let's assume that the TravelAgent EJB is created and used on a client as follows:

TravelAgent agent = agentHome.create(customer);

agent.setCabinID(cabin_id);

agent.setCruiseID(cruise_id);

try {

 agent.bookPassage(card,price);

} catch(Exception e) {

 System.out.println("Transaction failed!");

}

Furthermore, let's assume that the bookPassage() method has been given the transaction attribute RequiresNew. In this
case, the client that invokes the bookPassage() method is not itself part of a transaction. When bookPassage() is invoked
on the TravelAgent EJB, a new transaction is created, as dictated by the RequiresNew attribute. This means the
TravelAgent EJB registers itself with the EJB server's transaction manager, which will manage the transaction
automatically. The transaction manager coordinates transactions, propagating the transaction scope from one EJB to
the next to ensure that all EJBs touched by a transaction are included in the transaction's unit-of-work. That way, the
transaction manager can monitor the updates made by each enterprise bean and decide, based on the success of those
updates, whether to commit all changes made by all enterprise beans to the database or roll them all back. If a system
exception is thrown by the bookPassage() method, the transaction is automatically rolled back. We talk more about
exceptions later in this chapter.

When the byCredit() method is invoked within the bookPassage() method, the ProcessPayment EJB registers with the
transaction manager under the transactional context that was created for the TravelAgent EJB; the transactional
context is propagated to the ProcessPayment EJB. When the new Reservation EJB is created, it is also registered with
the transaction manager under the same transaction. When all the EJBs are registered and their updates are made, the
transaction manager checks to ensure that their updates will work. If all the updates will work, the transaction manager
allows the changes to become permanent. If one of the EJBs reports an error or fails, any changes made by either the
ProcessPayment or Reservation EJB are rolled back by the transaction manager. Figure 16-7 illustrates the propagation
and management of the TravelAgent EJB's transactional context.

Figure 16-7. Managing the TravelAgent EJB's transactional context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-7. Managing the TravelAgent EJB's transactional context

In addition to managing transactions in its own environment, an EJB server can coordinate with other transactional
systems. If, for example, the ProcessPayment EJB actually came from a different EJB server than the TravelAgent EJB,
the two EJB servers would cooperate to manage the transaction as one unit-of-work. This is called a distributed
transaction.[1] A distributed transaction requires what is called a two-phase commit (2-PC or TPC). 2-PC allows
transactions to be managed across different servers and resources (e.g., databases and JMS providers). The details of a
2-PC are beyond the scope of this book, but a system that supports it will not require any extra operations by an EJB or
application developer. If distributed transactions are supported, the protocol for propagating transactions, as discussed
earlier, will be supported. In other words, as an application or EJB developer, you should not notice a difference
between local and distributed transactions.

[1] Not all EJB servers support distributed transactions.

There are a number of books on transaction processing and 2-PC. Perhaps the best books
on the subject are Principles of Transaction Processing (Morgan Kaufmann 1997) and
Transaction Processing: Concepts and Techniques (Morgan Kaufmann 1993). A much
lighter resource is the series of "XA Exposed" articles (I, II, and III) by Mike Spielle, which
you can find at http://jroller.com/page/pyrasun/?anchor=xa_exposed.

16.2.4 Collection-Based Relationships and Transactions

In EJB container-managed persistence, collection-based relationships may only be accessed within a single transaction.
In other words, it's illegal to obtain a Collection object from a collection-based relationship field in one transaction and
then use it in another. For example, if an enterprise bean accesses another's collection-based relationship field through
its local interface, the Collection returned from the accessor method can be used only within the same transaction:

public class HypotheticalBean implements javax.ejb.EntityBean {

 public void methodX(CustomerLocal customer) {

 Collection reservations = customer.getReservations();

 Iterator iterator = reservations.iterator;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Iterator iterator = reservations.iterator;

 while(iterator.hasNext()){

 ...

 }

 }

}

If the Customer EJB's getReservations() method was declared with a transaction attribute of RequiresNew, attempting to
invoke any methods on the Collection, including the iterator() method, will result in a java.lang.IllegalStateException. This
exception is thrown because the Collection object was created within the scope of the getReservations() transaction, not in
the scope of methodX()'s transaction. The transaction context of methodX() is different from the transaction context of
the getReservations() method.

The Collection from an entity bean can be used by another co-located bean only if it is obtained and accessed in the
same transaction context. As long as the Customer EJB's getReservations() method propagates the transaction context of
methodX(), the Collection can be used without any problems. This can be accomplished by changing the getReservations()
method so that it declares its transaction attribute as Required or Mandatory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.3 Isolation and Database Locking
Transaction isolation (the "I" in ACID) is a critical part of any transactional system. This section explains isolation
conditions, database locking, and transaction isolation levels. These concepts are important when deploying any
transactional system.

16.3.1 Dirty, Repeatable, and Phantom Reads

Transaction isolation is defined in terms of isolation conditions called dirty reads, repeatable reads, and phantom reads.
These conditions describe what can happen when two or more transactions operate on the same data.[2] To illustrate
these conditions, let's think about two separate client applications using their own instances of the TravelAgent EJB to
access the same data—specifically, a cabin record with the primary key of 99. These examples revolve around the
RESERVATION table, which is accessed by both the bookPassage() method (through the Reservation EJB) and the
listAvailableCabins() method (through JDBC). (It might be a good idea to go back to Chapter 11 and review how the
RESERVATION table is accessed through these methods. This will help you to understand how two transactions executed
by two different clients can impact each other.) Assume that both methods have a transaction attribute of Required.

[2] Isolation conditions are covered in detail by the ANSI SQL-92 Specification, Document Number: ANSI X3. 135-
1992 (R1998).

16.3.1.1 Dirty reads

A dirty read occurs when a transaction reads uncommitted changes made by a previous transaction. If the first
transaction is rolled back, the data read by the second transaction becomes invalid because the rollback undoes the
changes. The second transaction will not be aware that the data it has read has become invalid. Here's a scenario
showing how a dirty read can occur (illustrated in Figure 16-8):

1. Time 10:00:00: Client 1 executes the TravelAgent.bookPassage() method. Along with the Customer and Cruise
EJBs, Client 1 had previously chosen Cabin 99 to be included in the reservation.

2. Time 10:00:01: Client 1's TravelAgent EJB creates a Reservation EJB within the bookPassage() method. The
Reservation EJB's create() method inserts a record into the RESERVATION table, which reserves Cabin 99.

3. Time 10:00:02: Client 2 executes TravelAgent.listAvailableCabins(). Client 1 has reserved Cabin 99, so it is not in
the list of available cabins that is returned from this method.

4. Time 10:00:03: Client 1's TravelAgent EJB executes the ProcessPayment.byCredit() method within the
bookPassage() method. The byCredit() method throws an exception because the expiration date on the credit
card has passed.

5. Time 10:00:04: The exception thrown by the ProcessPayment EJB causes the entire bookPassage() transaction
to be rolled back. As a result, the record inserted into the RESERVATION table when the Reservation EJB was
created is not made durable (i.e., it is removed). Cabin 99 is now available.

Figure 16-8. A dirty read

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client 2 is now using an invalid list of available cabins because Cabin 99 is available but is not included in the list. This
omission would be serious if Cabin 99 was the last available cabin, because Client 2 would inaccurately report that the
cruise was booked. The customer would presumably try to book a cruise on a competing cruise line.

16.3.1.2 Repeatable reads

A repeatable read occurs when the data read is guaranteed to look the same if read again during the same transaction.
Repeatable reads are guaranteed in one of two ways: either the data read is locked against changes or the data read is
a snapshot that doesn't reflect changes. If the data is locked, it cannot be changed by any other transaction until the
current transaction ends. If the data is a snapshot, other transactions can change the data, but these changes will not
be seen by this transaction if the read is repeated. Here's an example of a repeatable read (illustrated in Figure 16-9):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking for a list of available cabins that have
two beds. Cabin 99 is in the list of available cabins.

3. Time 10:00:02: Client 2 is working with an interface that manages Cabin EJBs. Client 2 attempts to change the
bed count on Cabin 99 from 2 to 3.

4. Time 10:00:03: Client 1 re-executes TravelAgent.listAvailableCabins(2). Cabin 99 is still in the list of available
cabins.

Figure 16-9. Repeatable read

This example is somewhat unusual because it uses javax.transaction.UserTransaction. This class is covered in more detail
later in this chapter; essentially, it allows a client application to control the scope of a transaction explicitly. In this case,
Client 1 places transaction boundaries around both calls to listAvailableCabins(), so that they are a part of the same
transaction. If Client 1 didn't do this, the two listAvailableCabins() methods would have executed as separate transactions
and our repeatable read condition would not have occurred.

Although Client 2 attempted to change the bed count for Cabin 99 to 3, Cabin 99 still shows up in the Client 1 call to
listAvailableCabins() when a bed count of 2 is requested. Either Client 2 was prevented from making the change (because
of a lock) or Client 2 was able to make the change, but Client 1 is working with a snapshot of the data that doesn't
reflect that change.

A nonrepeatable read is when the data retrieved in a subsequent read within the same transaction can return different
results. In other words, the subsequent read can see the changes made by other transactions.

16.3.1.3 Phantom reads

A phantom read occurs when new records added to the database are detectable by transactions that started prior to the
insert. Queries will include records added by other transactions after their transaction has started. Here's a scenario
that includes a phantom read (illustrated in Figure 16-10):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking for a list of available cabins that have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking for a list of available cabins that have
two beds. Cabin 99 is in the list of available cabins.

3. Time 10:00:02: Client 2 executes bookPassage() and creates a Reservation EJB. The reservation inserts a new
record into the RESERVATION table, reserving Cabin 99.

4. Time 10:00:03: Client 1 re-executes TravelAgent.listAvailableCabins(2). Cabin 99 is no longer in the list of available
cabins.

Figure 16-10. Phantom read

Client 1 places transaction boundaries around both calls to listAvailableCabins(), so that they are part of the same
transaction. In this case, the reservation was made between the listAvailableCabins() queries in the same transaction.
Therefore, the record inserted in the RESERVATION table did not exist when the first listAvailableCabins() method was
invoked, but it did exist and was visible when the second listAvailableCabins() method was invoked. The record inserted is
called a phantom record.

16.3.2 Database Locks

Databases, especially relational databases, normally use several different locking techniques. The most common are
read locks, write locks, and exclusive write locks. (I've taken the liberty of adding "snapshots," although this isn't a
formal term.) These locking mechanisms control how transactions access data concurrently. Locking mechanisms
impact the read conditions just described. These types of locks are simple concepts that are not directly addressed in
the EJB specification. Database vendors implement these locks differently, so you should understand how your database
addresses these locking mechanisms to best predict how the isolation levels described in this section will work.

The four types of locks are:

Read locks

Read locks prevent other transactions from changing data read during a transaction until the transaction ends,
thus preventing nonrepeatable reads. Other transactions can read the data but not write to it. The current
transaction is also prohibited from making changes. Whether a read lock locks only the records read, a block of
records, or a whole table depends on the database being used.

Write locks

Write locks are used for updates. A write lock prevents other transactions from changing the data until the
current transaction is complete but allows dirty reads by other transactions and by the current transaction itself.
In other words, the transaction can read its own uncommitted changes.

Exclusive write locks

Exclusive write locks are used for updates. An exclusive write lock prevents other transactions from reading or
changing the data until the current transaction is complete. An exclusive write lock prevents dirty reads by
other transactions. Other transactions are not allowed to read the data while it is exclusively locked. Some
databases do not allow transactions to read their own data while it is exclusively locked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

databases do not allow transactions to read their own data while it is exclusively locked.

Snapshots

Some databases get around locking by providing every transaction with its own snapshot of the data. A
snapshot is a frozen view of the data that is taken when the transaction begins. Snapshots can prevent dirty
reads, nonrepeatable reads, and phantom reads. They can be problematic because the data is not real-time; it
is old the instant the snapshot is taken.

16.3.3 Transaction Isolation Levels

Transaction isolation is defined in terms of the isolation conditions (dirty reads, repeatable reads, and phantom reads).
Isolation levels are commonly used in database systems to describe how locking is applied to data within a
transaction.[3] The following terms are used to discuss isolation levels:

[3] Isolation conditions are covered in detail by ANSI SQL-92 Specification, Document Number: ANSI X3.135- 1992
(R1998).

Read Uncommitted

The transaction can read uncommitted data (i.e., data changed by a different transaction that is still in
progress). Dirty reads, nonrepeatable reads, and phantom reads can occur. Bean methods with this isolation
level can read uncommitted changes.

Read Committed

The transaction cannot read uncommitted data; data that is being changed by a different transaction cannot be
read. Dirty reads are prevented; nonrepeatable reads and phantom reads can occur. Bean methods with this
isolation level cannot read uncommitted data.

Repeatable Read

The transaction cannot change data that is being read by a different transaction. Dirty reads and nonrepeatable
reads are prevented; phantom reads can occur. Bean methods with this isolation level have the same
restrictions as Read Committed and can execute only repeatable reads.

Serializable

The transaction has exclusive read and update privileges to data; different transactions can neither read nor
write to the same data. Dirty reads, nonrepeatable reads, and phantom reads are prevented. This isolation level
is the most restrictive.

These isolation levels are the same as those defined for JDBC. Specifically, they map to the static final variables in the
java.sql.Connection class. The behavior modeled by the isolation levels in the connection class is the same as the behavior
described here.

The exact behavior of these isolation levels depends largely on the locking mechanism used by the underlying database
or resource. How the isolation levels work depends in large part on how your database supports them.

In EJB, the deployer sets transaction isolation levels in a vendor-specific way if the container manages the transaction.
The EJB developer sets the transaction isolation level if the enterprise bean manages its own transactions. Up to this
point, we have discussed only container-managed transactions; we will discuss bean-managed transactions later in this
chapter.

16.3.4 Balancing Performance Against Consistency

Generally speaking, as the isolation levels become more restrictive, the performance of the system decreases because
more restrictive isolation levels prevent transactions from accessing the same data. If isolation levels are very
restrictive, like Serializable, then all transactions, even simple reads, must wait in line to execute. This can result in a
system that is very slow. EJB systems that process a large number of concurrent transactions and need to be very fast
will therefore avoid the Serializable isolation level where it is not necessary.

Isolation levels, however, also enforce consistency of data. More restrictive isolation levels help ensure that invalid data
is not used for performing updates. The old adage "garbage in, garbage out" applies. The Serializable isolation level
ensures that data is never accessed concurrently by transactions, thus ensuring that the data is always consistent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ensures that data is never accessed concurrently by transactions, thus ensuring that the data is always consistent.

Choosing the correct isolation level requires some research about the database you are using and how it handles
locking. You must also balance the performance needs of your system against consistency. This is not a cut-and-dried
process, because different applications use data differently.

Although there are only three ships in Titan's system, the entity beans that represent them are included in most of
Titan's transactions. This means that many, possibly hundreds, of transactions will be accessing these Ship EJBs at the
same time. Access to Ship EJBs needs to be fast or a bottleneck will occur, so we do not want to use a restrictive
isolation level. At the same time, the ship data also needs to be consistent; otherwise, hundreds of transactions will be
using invalid data. Therefore, we need to use a strong isolation level when making changes to ship information. To
accommodate these conflicting requirements, we can apply different isolation levels to different methods.

Most transactions use the Ship EJB's get methods to obtain information. This is read-only behavior, so the isolation level
for the get methods can be very low—such as Read Uncommitted. The set methods of the Ship EJB are almost never
used; the name of the ship probably will not change for years. However, the data changed by the set methods must be
isolated to prevent dirty reads by other transactions, so we will use the most restrictive isolation level, Serializable, on
the ship's set methods. By using different isolation levels on different business methods, we can balance consistency
against performance.

16.3.4.1 Controlling isolation levels

Different EJB servers allow different levels of granularity for isolation levels; some servers defer this responsibility to
the database. Most EJB servers control the isolation level through the resource access API (e.g., JDBC and JMS) and
may allow different resources to have different isolation levels, but will generally require that access to the same
resource within a single transaction use a consistent isolation level. Consult your vendor's documentation to find out the
level of control your server offers.

Bean-managed transactions in session beans and message-driven beans, however, allow you to specify the transaction
isolation level using the database's API. The JDBC API, for example, provides a mechanism for specifying the isolation
level of the database connection. For example:

DataSource source = (javax.sql.DataSource)

 jndiCntxt.lookup("java:comp/env/jdbc/titanDB");

Connection con = source.getConnection();

con.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

You can have different isolation levels for different resources within the same transaction, but all enterprise beans that
use the same resource in a transaction should use the same isolation level.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.4 Nontransactional Beans
Beans outside of a transaction's scope normally provide some kind of stateless service that does not manipulate data in
a data store. While these types of enterprise beans may be necessary as utilities during a transaction, they do not need
to meet the ACID requirements. Consider a nontransactional stateless session bean, the Quote EJB, that provides live
stock quotes. This EJB may respond to a request from an EJB involved in a stock purchase transaction. The success or
failure of the stock purchase, as a transaction, will not impact the state or operations of the Quote EJB, so it does not
need to be part of the transaction. Beans that are involved in transactions are subjected to the isolated ACID property,
which means that their services cannot be shared during the life of the transaction. Making an enterprise bean
transactional can be expensive at runtime. Declaring an EJB to be nontransactional (i.e., NotSupported) leaves it out of
the transaction scope, which may improve the performance and availability of that service.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.5 Explicit Transaction Management

Although this section covers JTA, it is strongly recommended that you do not attempt to
manage transactions explicitly. Through transaction attributes, Enterprise JavaBeans
provides a comprehensive and simple mechanism for delimiting transactions at the method
level and propagating transactions automatically. Only developers with a thorough
understanding of transactional systems should attempt to use JTA with EJB.

EJB provides implicit transaction management on the method level: we can define transactions that are delimited by the
scope of the method being executed. This is one of the primary advantages of EJB over cruder distributed object
implementations: it reduces complexity and therefore programmer error. In addition, declarative transaction
demarcation, as used in EJB, separates the transactional behavior from the business logic; a change to transactional
behavior does not require changes to the business logic. In rare situations, however, it may be necessary to take
control of transactions explicitly.

Explicit management of transactions is normally accomplished using the OMG's Object Transaction Service (OTS) or the
Java implementation of OTS, the Java Transaction Service (JTS). OTS and JTS provide APIs that allow developers to
work with transaction managers and resources (e.g., databases and JMS providers) directly. While the JTS
implementation of OTS is robust and complete, it is not the easiest API to work with; it requires clean and intentional
control over the bounds of enrollment in transactions.

Enterprise JavaBeans supports a much simpler API, the Java Transaction API (JTA), for working with transactions. This
API is implemented by the javax.transaction package. JTA actually consists of two components: a high-level transactional
client interface and a low-level X/Open XA interface. We are concerned with the high-level client interface, since it is
accessible to enterprise beans and is also recommended for client applications. The low-level XA interface is used by the
EJB server and container to coordinate transactions with resources such as databases.

Your use of explicit transaction management will probably focus on one simple interface: javax.transaction.UserTransaction.
UserTransaction allows you to manage the scope of a transaction explicitly. Here's how explicit demarcation might be
used in an EJB or client application:

Object ref = getInitialContext().lookup("TravelAgentHomeRemote");

TravelAgentHome home = (TravelAgentHome)

 PortableRemoteObject.narrow(ref, TravelAgentHome.class);

TravelAgent tr1 = home.create(customer);

tr1.setCruiseID(cruiseID);

tr1.setCabinID(cabin_1);

TravelAgent tr2 = home.create(customer);

tr2.setCruiseID(cruiseID);

tr2.setCabinID(cabin_2);

javax.transaction.UserTransaction tran = ...; // Get the UserTransaction.

tran.begin();

tr1.bookPassage(visaCard,price);

tr2.bookPassage(visaCard,price);

tran.commit();

The client application needs to book two cabins for the same customer—in this case, the customer is purchasing a cabin
for himself and his children. The customer does not want to book either cabin unless he can get both, so the client
application is designed to include both bookings in the same transaction. Explicitly marking the transaction's boundaries
through the use of the javax.transaction.UserTransaction object does this. Each enterprise bean method invoked by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through the use of the javax.transaction.UserTransaction object does this. Each enterprise bean method invoked by the
current thread between the UserTransaction.begin() and UserTransaction.commit() methods is included in the same
transaction scope, according to the transaction attributes of the enterprise bean methods invoked.

Obviously, this example is contrived, but the point it makes is clear. Transactions can be controlled directly, instead of
depending on method scope to delimit them. The advantage of using explicit transaction demarcation is that it gives the
client control over the bounds of a transaction. The client, in this case, may be a client application or another enterprise
bean.[4] In either case, the same javax.transaction.UserTransaction is used, but it is obtained from different sources
depending on whether it is needed on the client or in an enterprise bean.

[4] Only beans declared as managing their own transactions (bean-managed transaction beans) can use the
UserTransaction interface.

Java 2 Enterprise Edition (J2EE) specifies how a client application can obtain a UserTransaction object using JNDI. Here's
how a client obtains a UserTransaction object if the EJB container is part of a J2EE system (J2EE and its relationship with
EJB is covered in more detail in Chapter 18):

Context jndiCntx = new InitialContext();

UserTransaction tran = (UserTransaction)

 jndiCntx.lookup("java:comp/UserTransaction");

utx.begin();

...

utx.commit();

Enterprise beans can also manage transactions explicitly. Only session beans and message-driven beans with the
<transaction-type> value of Bean can manage their own transactions. Enterprise beans that manage their own
transactions are frequently referred to as bean-managed transaction (BMT) beans. Entity beans can never be BMT
beans. BMT beans do not declare transaction attributes for their methods. Here's how a session bean declares that it
will manage transactions explicitly:

<ejb-jar>

 <enterprise-beans>

 ...

 <session>

 ...

 <transaction-type>Bean</transaction-type>

 ...

To manage its own transaction, an enterprise bean needs to obtain a UserTransaction object. An enterprise bean obtains
a reference to the UserTransaction from the EJBContext:

public class HypotheticalBean extends SessionBean {

 SessionContext ejbContext;

 public void someMethod() {

 try {

 UserTransaction ut = ejbContext.getUserTransaction();

 ut.begin();

 // Do some work.

 ut.commit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ut.commit();

 } catch(IllegalStateException ise) {...}

 catch(SystemException se) {...}

 catch(TransactionRolledbackException tre) {...}

 catch(HeuristicRollbackException hre) {...}

 catch(HeuristicMixedException hme) {...}

An enterprise bean can also access the UserTransaction from the JNDI ENC. The enterprise bean performs the lookup
using the "java:comp/env/UserTransaction" context:

InitialContext jndiCntx = new InitialContext();

UserTransaction tran = (UserTransaction)

 jndiCntx.lookup("java:comp/env/UserTransaction");

16.5.1 Transaction Propagation in Bean-Managed Transactions

With stateless session beans, transactions that are managed using UserTransaction must be started and completed within
the same method. In other words, UserTransaction transactions cannot be started in one method and ended in another.
This makes sense because stateless session bean instances are shared across many clients; while one stateless
instance may service a client's first request, a completely different instance may service a subsequent request by the
same client. With stateful session beans, however, a transaction can begin in one method and be committed in another
because a stateful session bean is used by only one client. Therefore, a stateful session bean can associate itself with a
transaction across several different client-invoked methods. As an example, imagine the TravelAgent EJB as a BMT
bean. In the following code, the transaction is started in the setCruiseID() method and completed in the bookPassage()
method. This allows the TravelAgent EJB's methods to be associated with the same transaction. The definition of the
TravelAgentBean class looks like this:

import com.titan.reservation.*;

import java.sql.*;

import javax.sql.DataSource;

import java.util.Vector;

import java.rmi.RemoteException;

import javax.naming.NamingException;

import javax.ejb.EJBException;

public class TravelAgentBean implements javax.ejb.SessionBean {

 ...

 public void setCruiseID(Integer cruiseID)

 throws javax.ejb.FinderException {

 try {

 ejbContext.getUserTransaction().begin();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ejbContext.getUserTransaction().begin();

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHome");

 cruise = home.findByPrimaryKey(cruiseID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

 }

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 try {

 if (ejbContext.getUserTransaction().getStatus() !=

 javax.transaction.Status.STATUS_ACTIVE) {

 throw new EJBException("Transaction is not active");

 }

 } catch(javax.transaction.SystemException se) {

 throw new EJBException(se);

 }

 if (customer == null || cruise == null || cabin == null)

 {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price);

 Object ref =

 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 ejbContext.getUserTransaction().commit();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

}

Repeated calls to the EJBContext.getUserTransaction() method return a reference to the same UserTransaction object. The
container is required to retain the association between the transaction and the stateful bean instance across multiple
client calls until the transaction terminates.

In the bookPassage() method, we can check the status of the transaction to ensure that it is still active. If the
transaction is no longer active, we throw an exception. The use of getStatus() is covered in more detail later in this
chapter.

When a client that is already involved in a transaction invokes a bean-managed transaction method, the client's
transaction is suspended until the method returns. This suspension occurs regardless of whether the BMT bean explicitly
started its own transaction within the method or the transaction was started in a previous method invocation. The client
transaction is always suspended until the BMT method returns.

Transaction control across methods is strongly discouraged because it can result in
improperly managed transactions and long-lived transactions that lock up resources.

16.5.1.1 Message-driven beans and bean-managed transactions

Message-driven beans also have the option of managing their own transactions. In the case of MDBs, the scope of the
transaction must begin and end within the onMessage() method—it is not possible for a bean-managed transaction to
span onMessage() calls.

You can transform the ReservationProcessor EJB you created in Chapter 12 into a BMT bean simply by changing its
<transaction-type> value to Bean:

<ejb-jar>

 <enterprise-beans>

 ...

 <message-driven>

 ...

 <transaction-type>Bean</transaction-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <transaction-type>Bean</transaction-type>

 ...

In this case, the ReservationProcessorBean class would be modified to use javax.transaction.UserTransaction to mark the
beginning and end of the transaction:

public class ReservationProcessorBean implements javax.ejb.MessageDrivenBean,

 javax.jms.MessageListener {

 MessageDrivenContext ejbContext;

 Context jndiContext;

 public void onMessage(Message message) {

 try {

 ejbContext.getUserTransaction().begin();

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 //get the credit card

 Date expirationDate =

 new Date(reservationMsg.getLong("CreditCardExpDate"));

 String cardNumber = reservationMsg.getString("CreditCardNum");

 String cardType = reservationMsg.getString("CreditCardType");

 CreditCardDO card =

 new CreditCardDO(cardNumber,expirationDate,cardType);

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 Object ref =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Object ref =

 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 deliverTicket(reservationMsg,ticket);

 ejbContext.getUserTransaction.commit();

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

It is important to understand that in a BMT, the message consumed by the MDB is not part of the transaction. When an
MDB uses container-managed transactions, the message it is handling is a part of the transaction, so if the transaction
is rolled back, the consumption of the message is also rolled back, forcing the JMS provider to redeliver the message.
But with bean-managed transactions, the message is not part of the transaction, so if the BMT transaction is rolled
back, the JMS provider will not be aware of the transaction's failure. However, all is not lost, because the JMS provider
can still rely on message acknowledgment to determine if the message was successfully delivered.

The EJB container will acknowledge the message if the onMessage() method returns successfully. If, however, a
RuntimeException is thrown by the onMessage() method, the container will not acknowledge the message and the JMS
provider will suspect a problem and probably attempt to redeliver the message. If redelivery of a message is important
when a transaction fails, your best course of action is to ensure that the onMessage() method throws an EJBException, so
that the container will not acknowledge the message received from the JMS provider.

Vendors use proprietary (declarative) mechanisms to specify the number of times to
redeliver messages to BMT/NotSupported MDBs that "fail" to acknowledge receipt. The JMS-
MDB provider may provide a "dead message" area into which such messages will be placed
if they cannot be successfully processed according to the retry count. Administrators can
monitor the dead message area, and delivered messages can be detected and handled
manually.

Although the message is not part of the transaction, everything else between the UserTransaction.begin() and
UserTransaction.commit() methods is part of the same transaction. This includes creating a new Reservation EJB and
processing the credit card using the ProcessPayment EJB. If a transaction failure occurs, these operations will be rolled
back. The transaction also includes the use of the JMS API in the deliverTicket() method to send the ticket message. If a
transaction failure occurs, the ticket message will not be sent.

16.5.2 Heuristic Decisions

Transactions are normally controlled by a transaction manager (often the EJB server) that manages the ACID
characteristics across several enterprise beans, databases, and servers. The transaction manager uses a two-phase
commit (2-PC) to manage transactions. 2-PC is a protocol for managing transactions that commits updates in two
stages. 2-PC is complex, but basically it requires that servers and databases cooperate through an intermediary—the
transaction manager—in order to ensure that all the data is made durable together. Some EJB servers support 2-PC,
while others do not, and the value of this transaction mechanism is a source of some debate. The important point to
remember is that a transaction manager controls the transaction; based on the results of a poll against the resources
(databases, JMS providers, and other resources), it decides whether all the updates should be committed or rolled back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(databases, JMS providers, and other resources), it decides whether all the updates should be committed or rolled back.
A heuristic decision takes place when one of the resources makes a unilateral decision to commit or roll back without
permission from the transaction manager. When a heuristic decision has been made, the atomicity of the transaction is
lost and data-integrity errors can occur.

UserTransaction, discussed in the next section, throws a few different exceptions related to heuristic decisions; these are
included in the following discussion.

16.5.3 UserTransaction

EJB servers are required to support UserTransaction, but not required to support the rest of JTA, nor are they required to
use JTS for their transaction service. The UserTransaction is defined as:

public interface javax.transaction.UserTransaction {

 public abstract void begin() throws IllegalStateException, SystemException;

 public abstract void commit() throws IllegalStateException, SystemException,

 TransactionRolledbackException, HeuristicRollbackException,

 HeuristicMixedException;

 public abstract int getStatus();

 public abstract void rollback() throws IllegalStateException, SecurityException,

 SystemException;

 public abstract void setRollbackOnly() throws IllegalStateException,

 SystemException;

 public abstract void setTransactionTimeout(int seconds) throws SystemException;

}

Here's what the methods defined in this interface do:

begin()

Invoking the begin() method creates a new transaction. The thread that executes the begin() method is
immediately associated with the new transaction, which is then propagated to any EJB that supports existing
transactions. The begin() method can throw one of two checked exceptions. An IllegalStateException is thrown
when begin() is called by a thread that is already associated with a transaction. You must complete any
transactions associated with that thread before beginning a new transaction. A SystemException is thrown if the
transaction manager (i.e., the EJB server) encounters an unexpected error condition.

commit()

The commit() method completes the transaction that is associated with the current thread. When commit() is
executed, the current thread is no longer associated with a transaction. This method can throw several checked
exceptions. An IllegalStateException is thrown if the current thread is not associated with a transaction. A
SystemException is thrown if the transaction manager (the EJB server) encounters an unexpected error condition.
A TransactionRolledbackException is thrown when the entire transaction is rolled back instead of committed; this
can happen if one of the resources was unable to perform an update or if the UserTransaction.rollBackOnly()
method was called. A HeuristicRollbackException indicates that heuristic decisions were made by one or more
resources to roll back the transaction. A HeuristicMixedException indicates that heuristic decisions were made by
resources to both roll back and commit the transaction; that is, some resources decided to roll back while
others decided to commit.

rollback()

The rollback() method is invoked to roll back the transaction and undo updates. The rollback() method can throw
one of three different checked exceptions. A SecurityException is thrown if the thread using the UserTransaction
object is not allowed to roll back the transaction. An IllegalStateException is thrown if the current thread is not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object is not allowed to roll back the transaction. An IllegalStateException is thrown if the current thread is not
associated with a transaction. A SystemException is thrown if the transaction manager (the EJB server)
encounters an unexpected error condition.

setRollbackOnly()

The setRollbackOnly() method is invoked to mark the transaction for rollback. This means that, whether or not
the updates executed within the transaction succeed, the transaction must be rolled back when completed. This
method can be invoked by any BMT EJB participating in the transaction or by the client application. The
setRollBackOnly() method can throw one of two checked exceptions: an IllegalStateException is thrown if the
current thread is not associated with a transaction; a SystemException is thrown if the transaction manager (the
EJB server) encounters an unexpected error condition.

setTransactionTimeout(int seconds)

The setTransactionTimeout(int seconds) method sets the lifespan of a transaction; i.e., how long it will live before
timing out. The transaction must complete before the transaction timeout is reached. If this method is not
called, the transaction manager (EJB server) automatically sets the timeout. If this method is invoked with a
value of 0 seconds, the default timeout of the transaction manager will be used. This method must be invoked
after the begin() method. A SystemException is thrown if the transaction manager (EJB server) encounters an
unexpected error condition.

getStatus()

The getStatus() method returns an integer that can be compared to constants defined in the
javax.transaction.Status interface. A sophisticated programmer can use this method to determine the status of a
transaction associated with a UserTransaction object. A SystemException is thrown if the transaction manager (EJB
server) encounters an unexpected error condition.

16.5.4 Status

Status is a simple interface that contains no methods, only constants. Its sole purpose is to provide a set of constants
that describe the current status of a transactional object—in this case, the UserTransaction:

interface javax.transaction.Status

{

 public final static int STATUS_ACTIVE;

 public final static int STATUS_COMMITTED;

 public final static int STATUS_COMMITTING;

 public final static int STATUS_MARKED_ROLLBACK;

 public final static int STATUS_NO_TRANSACTION;

 public final static int STATUS_PREPARED;

 public final static int STATUS_PREPARING;

 public final static int STATUS_ROLLEDBACK;

 public final static int STATUS_ROLLING_BACK;

 public final static int STATUS_UNKNOWN;

}

The value returned by getStatus() tells the client using the UserTransaction the status of a transaction. Here's what the
constants mean:

STATUS_ACTIVE

An active transaction is associated with the UserTransaction object. This status is returned after a transaction has
been started and prior to a transaction manager beginning a two-phase commit. (Transactions that have been
suspended are still considered active.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

suspended are still considered active.)

STATUS_COMMITTED

A transaction is associated with the UserTransaction object; the transaction has been committed. It is likely that
heuristic decisions have been made; otherwise, the transaction would have been destroyed and the
STATUS_NO_TRANSACTION constant would have been returned instead.

STATUS_COMMITTING

A transaction is associated with the UserTransaction object; the transaction is in the process of committing. The
UserTransaction object returns this status if the transaction manager has decided to commit but has not yet
completed the process.

STATUS_MARKED_ROLLBACK

A transaction is associated with the UserTransaction object; the transaction has been marked for rollback,
perhaps as a result of a UserTransaction.setRollbackOnly() operation invoked somewhere else in the application.

STATUS_NO_TRANSACTION

No transaction is currently associated with the UserTransaction object. This occurs after a transaction has
completed or if no transaction has been created. This value is returned rather than throwing an
IllegalStateException.

STATUS_PREPARED

A transaction is associated with the UserTransaction object. The transaction has been prepared, which means that
the first phase of the two-phase commit process has completed.

STATUS_PREPARING

A transaction is associated with the UserTransaction object; the transaction is in the process of preparing, which
means that the transaction manager is in the middle of executing the first phase of the two-phase commit.

STATUS_ROLLEDBACK

A transaction is associated with the UserTransaction object; the outcome of the transaction has been identified as
a rollback. It is likely that heuristic decisions have been made; otherwise, the transaction would have been
destroyed and the STATUS_NO_TRANSACTION constant would have been returned.

STATUS_ROLLING_BACK

A transaction is associated with the UserTransaction object; the transaction is in the process of rolling back.

STATUS_UNKNOWN

A transaction is associated with the UserTransaction object; its current status cannot be determined. This is a
transient condition and subsequent invocations will ultimately return a different status.

16.5.5 EJBContext Rollback Methods

Only BMT beans have access to the UserTransaction from the EJBContext and JNDI ENC. Container-managed transaction
(CMT) beans cannot use the UserTransaction. CMT beans use the setRollbackOnly() and getRollbackOnly() methods of the
EJBContext to interact with the current transaction instead.

The setRollbackOnly() method gives an enterprise bean the power to veto a transaction. This power can be used if the
enterprise bean detects a condition that would cause inconsistent data to be committed when the transaction
completes. Once an enterprise bean invokes the setRollbackOnly() method, the current transaction is marked for rollback
and cannot be committed by any other participant in the transaction—including the container.

The getRollbackOnly() method returns true if the current transaction has been marked for rollback. This information can
be used to avoid executing work that would not be committed anyway. If, for example, an exception is thrown and
captured within an enterprise bean method, getRollbackOnly() can be used to determine whether the exception caused

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

captured within an enterprise bean method, getRollbackOnly() can be used to determine whether the exception caused
the current transaction to be rolled back. If it did, there is no sense in continuing the processing. If it did not, the EJB
has an opportunity to correct the problem and retry the task that failed. Only expert EJB developers should attempt to
retry tasks within a transaction. Alternatively, if the exception did not cause a rollback (getRollbackOnly() returns false), a
rollback can be forced using the setRollbackOnly() method.

BMT beans must not use the setRollbackOnly() and getRollbackOnly() methods of the EJBContext. BMT beans should use the
getStatus() and rollback() methods on the UserTransaction object to check for rollback and force a rollback, respectively.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.6 Exceptions and Transactions
Exceptions have a large impact on the outcome of transactions.

16.6.1 System Exceptions Versus Application Exceptions

System exceptions are java.lang.RuntimeException and its subtypes, including EJBException. An application exception is any
exception that does not extend java.lang.RuntimeException or java.rmi.RemoteException.

An application exception must never extend the RuntimeException, the RemoteException, or one of
their subtypes.

Transactions are automatically rolled back if a system exception is thrown from an enterprise bean method. Transactions are
not automatically rolled back if an application exception is thrown. If you remember these two rules, you will be well prepared to
deal with exceptions and transactions in EJB. The bookPassage() method illustrates how to use application exceptions:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price);

 Object ref =

 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

16.6.1.1 System exceptions

System exceptions include RuntimeException and its subclasses. The EJBException is a subclass of the RuntimeException, so it is
considered a system exception.

System exceptions always cause a transaction to roll back when they are thrown from an enterprise bean method. Any
RuntimeException (EJBException, NullPointerException, IndexOutOfBoundsException, and so on) thrown within the bookPassage() method
is handled by the container automatically and results in a transaction rollback. In Java, RuntimeException types do not need to be
declared in the throws clause of the method signature or handled using try/catch blocks; they are automatically thrown from the
method.

The container handles system exceptions automatically; it will always:

Roll back the transaction.

Log the exception to alert the system administrator.

Discard the EJB instance.

When a system exception is thrown from the callback methods (ejbLoad(), ejbActivate(), and so on) are treated the same as
exceptions thrown from business methods.

While EJB requires system exceptions must be logged, it does not specify how exceptions should be logged or the format of the
log file. The exact mechanism for recording exceptions and reporting them to the system administrator is left to the vendor.

When a system exception occurs, the EJB instance is discarded, which means that it is dereferenced and garbage collected. The
container assumes that the EJB instance may have corrupt variables or otherwise be unstable and is therefore unsafe to use.

The impact of discarding an EJB instance depends on the enterprise bean's type. In the case of stateless session beans and
entity beans, the client does not notice that the instance was discarded. These instance types are not dedicated to a particular
client; they are swapped in and out of an instance pool, so any instance can service a new request. With stateful session beans,
however, the impact on the client is severe. Stateful session beans are dedicated to a single client and maintain conversational
state. Discarding a stateful bean instance destroys the instance's conversational state and invalidates the client's reference to
the EJB. When stateful session instances are discarded, subsequent invocations of the EJB's methods by the client result in a
NoSuchObjectException, a subclass of the RemoteException.[5]

[5] Although the instance is always discarded with a RuntimeException, the impact on the remote reference may vary
depending on the vendor.

With message-driven beans, a system exception thrown by the onMessage() method or one of the callback methods (ejbCreate()
or ejbRemove()) will cause the bean instance to be discarded. If the MDB was a BMT bean, the message it was handling may or
may not be redelivered, depending on when the EJB container acknowledges delivery. In the case of container-managed
transactions, the container will roll back the transaction, so the message will not be acknowledged and may be redelivered.

In session and entity beans, when a system exception occurs and the instance is discarded, a RemoteException is always thrown
to remote clients—that is, clients using the beans' remote component interfaces. If the client started the transaction, which was
then propagated to the EJB, a system exception (thrown by the enterprise bean method) will be caught by the container and
rethrown as a javax.transaction.TransactionRolledbackException. The TransactionRolledbackException is a subtype of the RemoteException
it is a more explicit indication to the client that a rollback occurred.

In EJB session and entity beans, when a system exception occurs and the instance is discarded, an EJBException is always thrown
to any local enterprise bean clients (i.e., clients using the enterprise bean's local component interfaces). If the client started the
transaction and it was then propagated to the EJB, a system exception (thrown by the enterprise bean method) will be caught
by the container and rethrown as a javax.ejb.TransactionRolledbackLocalException. The TransactionRolledbackLocalException is a subtype
of the EJBException; it is a more explicit indication to the client that a rollback occurred. In all other cases, whether the EJB is
container-managed or bean-managed, a RuntimeException thrown from within the enterprise bean method will be caught by the
container and rethrown as an EJBException.

An EJBException should generally be thrown when a subsystem throws an exception, such as JDBC throwing a SQLException or JMS
throwing a JMSException. In some cases, however, the bean developer may attempt to handle the exception and retry an
operation rather then throw an EJBException. This should be done only when the exceptions thrown by the subsystem and their
repercussions on the transaction are well understood. As a rule of thumb, rethrow subsystem exceptions as EJBExceptions and
allow the EJB container to roll back the transaction and discard the bean instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allow the EJB container to roll back the transaction and discard the bean instance.

The callback methods defined in the javax.ejb.EntityBean and javax.ejb.SessionBean interfaces declare
the java.rmi.RemoteException in their throws clauses. This is left over from EJB 1.0 and has been
deprecated since EJB 1.1. You should never throw RemoteExceptions from callback methods or any
other bean class methods.

16.6.1.2 Application exceptions

An application exception is normally thrown in response to a business-logic error, as opposed to a system error. Application
exceptions are always delivered directly to the client, without being repackaged as RemoteException or EJBException types. They
do not typically cause transactions to roll back; the client usually has an opportunity to recover after an application exception is
thrown. For example, the bookPassage() method throws an application exception called IncompleteConversationalState; this is an
application exception because it does not extend RuntimeException or RemoteException. The IncompleteConversationalState exception
is thrown if one of the arguments passed into the bookPassage() method is null. (Application errors are frequently used to report
validation errors like this.) In this case, the exception is thrown before tasks are started and is clearly not the result of a
subsystem failure (e.g., JDBC, JMS, Java RMI, JNDI).

Because it is an application exception, throwing an IncompleteConversationalState exception does not result in a transaction
rollback. The exception is thrown before any work is done, avoiding unnecessary processing by the bookPassage() method and
providing the client (the enterprise bean or application that invoked the bookPassage() method) with an opportunity to recover
and possibly retry the method call with valid arguments.

Business methods defined in the remote and local interfaces can throw any kind of application exception. These application
exceptions must be declared in the method signatures of the remote and local interfaces and in the corresponding methods in
the enterprise EJB classes.

The EJB create, find, and remove methods can also throw several exceptions defined in the javax.ejb package: CreateException
DuplicateKeyException, FinderException, ObjectNotFoundException, and RemoveException. These exceptions are considered application
exceptions: they are delivered to the client as-is, without being repackaged as RemoteExceptions. Furthermore, these exceptions
don't necessarily cause a transaction to roll back, giving the client the opportunity to retry the operation. These exceptions may
be thrown by the EJBs themselves; in the case of container-managed persistence, the container can also throw any of these
exceptions while handling the EJB's create, find, or remove methods (ejbCreate(), ejbFind(), and ejbRemove()). The container
might, for example, throw a CreateException if it encounters a bad argument while attempting to insert a record for a container-
managed EJB. You can always choose to throw a standard application exception from the appropriate method regardless of how
persistence is managed.

Here is a detailed explanation of the five standard application exceptions and the situations in which they are thrown:

CreateException

CreateException is thrown by the create() method in the remote interface. The container can throw this exception if the
container is managing persistence, or it can be thrown explicitly by the EJB developer in the ejbCreate() or ejbPostCreate()
methods. It indicates that an application error (invalid arguments, etc.) occurred while the EJB was being created. If the
container throws this exception, it may or may not roll back the transaction. Explicit transaction methods must be used
to determine the outcome. Bean developers should roll back the transaction before throwing this exception only if data
integrity is a concern.

DuplicateKeyException

DuplicateKeyException is a subtype of CreateException; it is thrown by the create() method in the remote interface. The
container can throw this exception if the container is managing persistence, or it can be thrown explicitly by the EJB
developer in the ejbCreate() method. It indicates that an EJB with the same primary key already exists in the database.
The EJB provider or container typically does not roll the transaction back before throwing this exception.

FinderException

FinderException is thrown by the find methods in the home interface. The container can throw this exception if the
container is managing persistence, or it can be thrown explicitly by the EJB developer in the ejbFind() methods. It
indicates that an application error (invalid arguments, etc.) occurred while the container was attempting to find the
EJBs. Do not use this method to indicate that entities were not found. Multi-entity find methods return an empty
collection if no entities were found; single-entity find methods throw an ObjectNotFoundException to indicate that no object
was found. The EJB provider or container typically does not roll the transaction back before throwing this exception.

ObjectNotFoundException

ObjectNotFoundException is thrown from a single-entity find method to indicate the container could not find the requested

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ObjectNotFoundException is thrown from a single-entity find method to indicate the container could not find the requested
entity. This exception can be thrown either by the container (if the container is managing persistence) or explicitly by
the EJB developer in the ejbFind() methods. It shouldn't be thrown to indicate a business-logic error (invalid arguments,
etc.). Use the FinderException to indicate business-logic errors in single-entity find methods. The ObjectNotFoundException
thrown by single-entity find methods only to indicate that the entity requested was not found. Find methods that return
multiple entities should return an empty collection if nothing is found. The EJB provider or container typically does not
roll the transaction back before throwing this exception.

RemoveException

The RemoveException is thrown from the remove() methods in the remote and home interfaces. The container can throw
this exception if the container is managing persistence, or it can be thrown explicitly by the EJB developer in the
ejbRemove() method. It indicates that an application error has occurred while the EJB was being removed. The
transaction may or may not have been rolled back by the container before throwing this exception. Explicit transaction
methods must be used to determine the outcome. Bean developers should roll back the transaction before throwing the
exception only if data integrity is a concern.

Table 16-1 summarizes the interactions between different types of exceptions and transactions in session and entity beans.

Table 16-1. Exception summary for session and entity beans

Transaction
scope

Transaction
type

attributes

Exception
thrown Container's action Client's view

Client-
initiated
transaction.

The
transaction
is started by
the client
(application
or EJB) and
propagated
to the
enterprise
bean
method.

transaction-
type
=Container

transaction-
attribute =
Required |
Mandatory
|Supports

Application
exception

If the EJB invoked setRollbackOnly(),
mark the client's transaction for
rollback.

Rethrow the application exception.

Receives the application exception. The
client's transaction may or may not have
been marked for rollback.

 System
exception

Mark the client's transaction for rollback.

Log the error.

Discard the instance.

Rethrow the JTA
TransactionRolledbackException to remote
clients or the
javax.ejb.TransactionRolledbackLocalException
to EJB local clients.

Remote clients receive the JTA
TransactionRolledbackException; local clients
receive the
javax.ejb.TransactionRolledbackLocalException

The client's transaction has been rolled
back.

Container-
mangaged
transaction.

The
transaction
started when
the EJB's
method was
invoked and
will end
when the
method
completes.

transaction-
type
=Container

transaction-
attribute =
Required |
RequiresNew

Application
exception

If the EJB invoked setRollbackOnly(), roll
back the transaction and rethrow the
application exception.

If the EJB did not explicitly roll back the
transaction, attempt to commit the
transaction and rethrow the application
exception.

Receives the application exception. The
EJB's transaction may or may not have
been rolled back. The client's transaction
is not affected.

 System
exception

Roll back the transaction.

Log the error.

Discard the instance.

Rethrow the RemoteException to remote
clients or the EJBException to EJB local
clients.

Remote clients receive the
RemoteException; local EJB clients receive
the EJBException.

The EJB's transaction was rolled back.

The client's transaction may marked for
rollback, depending on the vendor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bean is
not part of a
transaction.

The EJB was
invoked but
doesn't
propagate
the client's
transaction
and doesn't
start its own
transaction.

transaction-
type
=Container

transaction-
attribute =
Never |
NotSupported
| Supports |

Application
exception Rethrow the application exception.

Receives the application exception.

The client's transaction is not affected.

 System
exception

Log the error.

Discard the instance.

Rethrow the RemoteException to remote
clients or the EJBException to EJB local
clients.

Remote clients receive the
RemoteException; local EJB clients receive
the EJBException.

The client's transaction may or may not
be marked for rollback, depending on the
vendor.

Bean-
managed
transaction.

The stateful
or stateless
session EJB
uses the
EJBContext to
explicitly
manage its
own
transaction.

transaction-
type = Bean

transaction-
attribute =
Bean-
managed
transaction
EJBs do not
use
transaction
attributes.

Application
exception Rethrow the application exception.

Receives the application exception.

The client's transaction is not affected.

 System
exception

Roll back the transaction.

Log the error.

Discard the instance.

Rethrow the RemoteException to remote
clients or the EJBException to EJB local
clients.

Remote clients receive the
RemoteException; local EJB clients receive
the EJBException.

The client's transaction is not affected.

Table 16-2 summarizes the interactions between different types of exceptions and transactions in message-driven beans.

Table 16-2. Exception summary for message-driven beans

Transaction scope Transaction type attributes Exception
thrown

Container's
action

Container-initiated transaction.

The transaction started before the onMessage()
method was invoked and will end when the method
completes.

transaction-type =Container

transaction-attribute = Required
System
exception

Roll back
the
transaction.

Log the
error.

Discard the
instance.

Container-initiated transaction.

No transaction was started.

transaction-type =Container

transaction-attribute = NotSupported
System
exception

Log the
error.

Discard the
instance.

Bean-managed transaction.

The message-driven bean uses the EJBContext to
explicitly manage its own transaction.

transaction-type = Bean

transaction-attribute = Bean-managed
transaction EJBs do not use transaction
attributes.

System
exception

Roll back
the
transaction.

Log the
error.

Discard the
instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.7 Transactional Stateful Session Beans
Session beans can interact directly with the database as easily as they can manage the taskflow of other enterprise
beans. The ProcessPayment EJB, for example, makes inserts into the PAYMENT table when the byCredit() method is
invoked, and the TravelAgent EJB queries the database directly when the listAvailableCabins() method is invoked.
Stateless session beans such as the ProcessPayment EJB have no conversational state, so each method invocation must
make changes to the database immediately. With stateful session beans, however, we may not want to make changes
to the database until the transaction is complete. Remember, a stateful session bean can be one of many participants in
a transaction, so it may be advisable to postpone database updates until the entire transaction is committed or to avoid
updates if it is rolled back.

There are several different scenarios in which a stateful session bean might cache changes before applying them to the
database. For example, think of a shopping cart implemented by a stateful session bean that accumulates several items
for purchase. If the stateful bean implements SessionSynchronization, it can cache the items and write them to the
database only when the transaction is complete.

The javax.ejb.SessionSynchronization interface allows a session bean to receive additional notification of the session's
involvement in transactions. The addition of these transaction callback methods by the SessionSynchronization interface
expands the EJB's awareness of its life cycle to include a new state, the Transactional Method-Ready state. This third
state, although not discussed in Chapter 11, is always a part of the life cycle of a transactional stateful session bean.
Implementing the SessionSynchronization interface simply makes it visible to the EJB. Figure 16-11 shows the stateful
session bean with the additional state.

Figure 16-11. Life cycle of a stateful session bean

The SessionSynchronization interface is defined:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SessionSynchronization interface is defined:

package javax.ejb;

public interface javax.ejb.SessionSynchronization {

 public abstract void afterBegin() throws RemoteException;

 public abstract void beforeCompletion() throws RemoteException;

 public abstract void afterCompletion(boolean committed) throws RemoteException;

}

When a method of the SessionSynchronization bean is invoked outside of a transaction scope, the method executes in the
Method-Ready state, as discussed in Chapter 11. However, when a method is invoked within a transaction scope (or
creates a new transaction), the EJB moves into the Transactional Method-Ready state.

16.7.1 The Transactional Method-Ready State

The SessionSynchronization methods are called in the Transactional Method-Ready state.

16.7.1.1 Transitioning into the Transactional Method-Ready state

When a transactional method is invoked on a SessionSynchronization bean, the stateful bean becomes part of the
transaction, causing the afterBegin() callback method defined in the SessionSynchronization interface to be invoked. This
method should take care of reading any data from the database and storing the data in the bean's instance fields. The
afterBegin() method is called before the EJB object delegates the business-method invocation to the EJB instance.

16.7.1.2 Life in the Transactional Method-Ready state

When the afterBegin() callback method completes, the business method originally invoked by the client is executed on
the EJB instance. Any subsequent business methods invoked within the same transaction will be delegated directly to
the EJB instance.

Once a stateful session bean is a part of a transaction—whether it implements SessionSynchronization or not—it cannot be
accessed by any other transactional context. This is true regardless of whether the client tries to access the EJB with a
different context or the EJB's own method creates a new context. If, for example, a method with a transaction attribute
of RequiresNew is invoked, the new transactional context causes an error to be thrown. Since the NotSupported and Never
attributes specify a different transactional context (no context), invoking a method with these attributes also causes an
error. A stateful session bean cannot be removed while it is involved in a transaction. This means that invoking
ejbRemove() while the SessionSynchronization bean is in the middle of a transaction will cause an error to be thrown.

At some point, the transaction in which the SessionSynchronization bean has been enrolled will come to an end. If the
transaction is committed, the SessionSynchronization bean will be notified through its beforeCompletion() method. At this
time, the EJB should write its cached data to the database. If the transaction is rolled back, the beforeCompletion()
method will not be invoked, avoiding the pointless effort of writing changes that won't be committed to the database.

The afterCompletion() method is always invoked, whether the transaction ended successfully with a commit or
unsuccessfully with a rollback. If the transaction was a success—which means that beforeCompletion() was invoked—the
committed parameter of the afterCompletion() method will be true. If the transaction was unsuccessful, committed will be
false.

It may be desirable to reset the stateful session bean's instance variables to some initial state if the afterCompletion()
method indicates that the transaction was rolled back.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 17. J2EE
The specification for the Java 2 Enterprise Edition (J2EE) defines a platform for developing web-enabled applications
that includes Enterprise JavaBeans, servlets, and JavaServer Pages (JSP). J2EE products are application servers that
provide a complete implementation of the EJB, servlet, and JSP technologies. In addition, J2EE outlines how these
technologies work together to provide a complete solution for developing applications. To help you understand J2EE, we
must introduce servlets and JSP and explain the synergy between these technologies and Enterprise JavaBeans.

At the risk of spoiling the story, J2EE provides two kinds of "glue" to make it easier for components to interact. First,
the JNDI enviroment naming context (ENC) is used to standardize the way components look up resources they need.
We discussed the ENC in the context of enterprise beans; in this chapter, we will look briefly at how servlets, JSPs, and
even some clients can use the ENC to find resources. Second, the use of deployment descriptors—in particular, the use
of XML to define a language for deployment descriptors—is extended to servlets and JSP. Java servlets and JSP pages
can be packaged with deployment descriptors that define their relationships to their environment. Deployment
descriptors are also used to define entire assemblies of many components into applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.1 Servlets
The servlet specification defines a server-side component model that can be implemented by web server vendors.
Servlets provide a simple but powerful API for generating web pages dynamically. (Although servlets can be used for
many different request-response protocols, they are predominantly used to process HTTP requests for web pages.)

Servlets are developed in the same fashion as enterprise beans; they are Java classes that extend a base component
class and have a deployment descriptor. Once a servlet is developed and packaged in a JAR file, it can be deployed in a
web server. When a servlet is deployed, it is assigned to handle requests for a specific web page or to assist other
servlets in handling page requests. The following servlet, for example, might be assigned to handle any request for the
helloworld.html page on a web server:

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse response)

 throws ServletException,java.io.IOException {

 try {

 ServletOutputStream writer = response.getWriter();

 writer.println("<HTML><BODY>");

 writer.println("<h1>Hello World!!</h1>");

 writer.println("</BODY></HTML>");

 } catch(Exception e) {

 // handle exception

 }

 ...

}

When a browser sends a request for the page to the web server, the server delegates the request to the appropriate
servlet instance by invoking the servlet's doGet() method.[1] The servlet is provided with information about the request
in the HttpServletRequest object and can use the HttpServletResponse object to reply to the request. This simple servlet
sends a short HTML document (including the text "Hello World") back to the browser, which displays it. Figure 17-1
illustrates how a request is sent by a browser and serviced by a servlet running in a web server.

[1] HttpServlets also have a doPost() method that handles requests for forms.

Figure 17-1. Servlet servicing an HTTP request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Servlets are similar to session beans because they both perform a service and can directly access backend resources
(e.g., databases) through JDBC, but they do not represent persistent data. Servlets do not, however, have support for
container-managed transactions and are not composed of business methods. Servlets deal with very specific (usually
HTTP) requests and respond by writing to an output stream.

The servlet specification is extensive and robust but also simple and elegant. Learn more about servlets by reading Java
Servlet Programming by Jason Hunter (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.2 JavaServer Pages
JavaServer Pages is an extension of the servlet component model that simplifies the process of generating HTML
dynamically. JSP essentially allows you to incorporate Java directly into an HTML page as a scripting language. In J2EE,
the Java code in a JSP page can access the JNDI ENC, just like the code in a servlet. In fact, JSP pages (text
documents) are translated and compiled into Java servlets, which are then run in a web server just like any other
servlet—some servers do the compilation automatically at runtime. You can also use JSP to generate XML documents
dynamically. If you want to learn more about JSP, take a look at JavaServer Pages by Hans Bergsten (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.3 Web Components and EJB
Together, servlets and JSP provide a powerful platform for generating web pages dynamically. Servlets and JSP, which
are collectively called web components, can access resources like JDBC and enterprise beans. Because web components
can access databases using JDBC, they allow an enterprise to expose its business systems to the Web through an HTML
interface. HTML interfaces have several advantages over more conventional client interfaces. The most important
advantages have to do with distribution and firewalls. Conventional clients need to be installed and distributed on client
machines: they require additional work for deployment and maintenance. Applets, which are dynamically downloaded,
can eliminate the headache of installation, but applets have their own limitations—such as sandbox restrictions and
lengthy downloads. In contrast, HTML is extremely lightweight, does not require prior installation, and does not suffer
from security restrictions. In addition, HTML interfaces can be modified and enhanced at their source without having to
update the clients.

Firewalls present another significant problem in e-commerce. HTTP, the protocol over which web pages are requested
and delivered, can pass through most firewalls without a problem, but protocols such as IIOP or JRMP cannot. This
limitation is extremely important. It means that a client usually cannot access a server using IIOP or JRMP without
modifications to the firewall. And the firewall is usually not under the control of the groups who need the application to
run. HTTP does not suffer from this limitation, since practically all firewalls allow HTTP to pass unhindered.

The problems with distribution and firewalls have led most of the EJB industry to adopt an architecture based on web
components (servlets/JSP) and Enterprise JavaBeans. Web components provide the presentation logic for generating
web pages; EJB supplies a middle tier for business logic. Web components access enterprise beans using the same API
as application clients. Each technology is doing what it does best: servlets and JSP are excellent components for
generating dynamic HTML, while EJB is an excellent platform for business logic. Figure 17-2 illustrates how the
architecture works.

Figure 17-2. Using servlets/JSP and EJB together

This web component-EJB architecture is so widely accepted that it begs the question, "Should there be a united
platform?" The J2EE specification answers this question. J2EE defines a single application server platform that focuses
on the interaction between servlets, JSP, and EJB. J2EE is important because it provides a specification for the
interaction of web components with enterprise beans, making solutions more portable across vendors that support both
component models.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.4 Filling in the Gaps
The J2EE specification attempts to fill the gaps between the web components and Enterprise JavaBeans by defining how
these technologies come together to form a complete platform. One of the ways in which J2EE adds value is by creating
a consistent programming model across web components and enterprise beans through the use of the JNDI ENC and
XML deployment descriptors. A servlet in J2EE can access JDBC DataSource objects, environment entries, and references
to enterprise beans through a JNDI ENC in exactly the same way that enterprise beans use the JNDI ENC. To support
the JNDI ENC, web components have their own XML deployment descriptor that declares elements for the JNDI ENC
(<ejb-ref>, <resource-ref>, <env-entry>) as well as security roles and other elements specific to web components. In
J2EE, web components are packaged along with their XML deployment descriptors and deployed in JAR files with the
extension .war, which stands for web archive. A .war file can contain several servlets and JSP documents that share an
XML deployment descriptor. The use of the JNDI ENC, deployment descriptors, and JAR files in web components makes
them consistent with the EJB programming model and unifies the entire J2EE platform.

Use of the JNDI ENC makes it much simpler for web components to access Enterprise JavaBeans. The web component
developer does not need to be concerned with the network location of enterprise beans; the server will map the <ejb-
ref> elements listed in the deployment descriptor to the enterprise beans at deployment time.

Optionally, J2EE vendors can allow web components to access the EJB local component interfaces of enterprise beans.
This strategy makes a lot of sense if the web component and the bean are located in the same Java Virtual Machine,
because the Java RMI-IIOP semantics can improve performance. It's expected that most J2EE vendors will support this
option.

The JNDI ENC also supports access to a javax.jta.UserTransaction object, as is the case in EJB. The UserTransaction object
allows the web component to manage transactions explicitly. The transaction context must be propagated to any
enterprise beans accessed within the scope of the transaction (according to the transaction attribute of the enterprise
bean method). J2EE also defines an .ear file (enterprise archive), which is a JAR file for packaging EJB JAR files and web
component JAR files (.war files) together into one complete deployment, called a J2EE application. A J2EE application
has its own XML deployment descriptor that points to the EJB and web component JAR files (called modules) as well as
other elements such as icons, descriptions, and the like. When a J2EE application is created, interdependencies such as
<ejb-ref> and <ejb-local-ref> elements can be resolved and security roles can be edited to provide a unified view of the
entire web application. Figure 17-3 illustrates the file structure of a J2EE archive file.

Figure 17-3. Contents of a J2EE .ear file

17.4.1 J2EE Application Client Components

In addition to integrating web and enterprise bean components, J2EE introduces a new component model: the
application client component. An application client component is a Java application that resides on a client machine and
accesses enterprise bean components on the J2EE server. Client components also have access to a JNDI ENC that
operates the same way as the JNDI ENC for web and enterprise bean components. The client component includes an
XML deployment descriptor that declares the <env-entry>, <ejb-ref>, and <resource-ref> elements of the JNDI ENC in
addition to a <description>, <display-name>, and <icon> that can be used to represent the component in a deployment
tool.

A client component is simply a Java program that uses the JNDI ENC to access environment properties, enterprise
beans, and resources (JDBC, JavaMail, and so on) made available by the J2EE server. Client components reside on the
client machine, not the J2EE server. Here is an extremely simple component:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

client machine, not the J2EE server. Here is an extremely simple component:

public class MyJ2eeClient {

 public static void main(String [] args) {

 InitialContext jndiCntx = new InitialContext();

 Object ref = jndiCntx.lookup("java:comp/env/ejb/ShipBean");

 ShipHome home = (ShipHome)

 PortableRemoteObject.narrow(ref,ShipHome.class);

 Ship ship = home.findByPrimaryKey(new ShipPK(1));

 String name = ship.getName();

 System.out.println(name);

 }

}

MyJ2eeClient illustrates how a client component is written. Notice that the client component did not need to use a
network-specific JNDI InitialContext. In other words, we did not have to specify the service provider in order to connect
to the J2EE server. This is the real power of the J2EE application client component: location transparency. The client
component does not need to know the exact location of the Ship EJB or choose a specific JNDI service provider; the
JNDI ENC takes care of locating the enterprise bean.

When application components are developed, an XML deployment descriptor is created that specifies the JNDI ENC
entries. At deployment time, a vendor-specific J2EE tool generates the class files needed to deploy the component on
client machines. A client component is packaged into a JAR file with its XML deployment descriptor and can be included
in a J2EE application. Once a client component is included in the J2EE application deployment descriptor, it can be
packaged in the .ear file with the other components, as Figure 17-4 illustrates.

Figure 17-4. Contents of a J2EE .ear file with application component

17.4.2 Guaranteed Services

The J2EE specifications require application servers to support a specific set of protocols and Java enterprise extensions,
ensuring a consistent platform for deploying J2EE applications. J2EE application servers must provide the following
"standard" services:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"standard" services:

Java Virtual Machine

J2EE 1.4 products must support Java 2, SDK 1.4. J2EE 1.3 products must support Java 2, SDK 1.3.

Enterprise JavaBeans

J2EE 1.4 products must support EJB 2.1. J2EE 1.3 products must support EJB 2.0.

Servlets

J2EE 1.4 products must support Servlets 2.4. J2EE 1.3 products must support Servlets 2.3.

JavaServer Pages

J2EE 1.4 products must support JSP 2.0. J2EE 1.3 products must support JSP 1.2.

HTTP and HTTPS

Web components in a J2EE server service both HTTP and HTTPS requests. The J2EE product must be capable of
advertising HTTP 1.0 and HTTPS (HTTP 1.0 over SSL 3.0) on ports 80 and 443, respectively. Components must
have full access to HTTP/HTTPS client APIs.

Java RMI-IIOP

Support for Java RMI-IIOP is required. However, the vendor may also use other protocols, as long as they are
compatible with Java RMI-IIOP semantics.

Java RMI-JRMP.

J2EE components can be native Java RMI (JRMP) clients.

JavaIDL

Web components and enterprise beans must be able to access CORBA services hosted outside the J2EE
environment using JavaIDL, a standard part of the Java 2 platform.

JDBC

J2EE 1.4 requires support for JDBC 3.0. J2EE 1.3 requires support for the JDBC 2.0 and some parts of the JDBC
2.0 Extension.

Java Naming and Directory Interface (JNDI) 1.2

Web and enterprise bean components must have access to the JNDI ENC, to access things like the EJBHome
objects, JTA UserTransaction objects, JDBC DataSource objects, Java Message Service ConnectionFactory objects,
and JAX-RPC ConnectionFactory objects.

JavaMail and JAF

J2EE 1.4 products must support JavaMail 1.3, including access to a message store. J2EE 1.3 products must
support JavaMail 1.2. Both platforms must support JAF (Java Activation Framework) 1.0; it's needed to support
different MIME types and required for support of JavaMail.

Java Message Service (JMS)

J2EE 1.4 products must support JMS 1.1. J2EE 1.3 products must support JMS 1.0.2. J2EE products must
provide support for both point-to-point (p2p) and publish-and-subscribe (pub/sub) messaging models. J2EE 1.4
must also support the Unified messaging model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must also support the Unified messaging model.

Java API for XML Parsing (JAXP)

J2EE 1.4 products must support JAXP 1.2, which includes XML Schema validation, while J2EE 1.3 products must
support JAXP 1.1.

J2EE Connector Architecture (J2CA)

J2EE 1.4 products must support J2CA 1.5, which includes asynchronous messaging. J2EE 1.3 products must
support J2CA 1.0.

Java Authentication and Authorization Service (JAAS)

J2EE 1.4 and 1.3 products must support the use of JAAS 1.0, as described in the J2CA specifications.

Java Transaction API 1.0.1

J2EE 1.4 and 1.3 products must support JTA 1.0 and must have access to the UserTransaction objects via the
JNDI ENC.

Web Services for J2EE (WS-J2EE)

J2EE 1.4 must support Web Services for J2EE 1.1 The specification includes JAX-RPC 1.1, JAXR 1.0, and SAAJ
1.2.

Java Logging API

J2EE 1.4 products must support the logging of events using the java.util.logging package, which is part of the
J2SDK 1.4 core.

J2EE Management API

J2EE 1.4 products must support the J2EE Management API 1.0, including support for some features of JMX 1.2.

J2EE Deployment API

J2EE 1.4 products must support the J2EE Deployment API 1.1. Vendors must support the plug-in component for
tool vendors.

Java Authorization Service Provider Contract (JACC)

J2EE 1.4 must support the JACC 1.0, which defines a contract between a J2EE application server and an
authorization policy provider.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.5 Fitting the Pieces Together
To illustrate how a J2EE platform might function, imagine using a J2EE server in Titan's reservation system. To build
this system, we would use the TravelAgent, Cabin, ProcessPayment, Customer, and other enterprise beans we defined
in this book, along with web components that would provide an HTML interface. The web components would access the
enterprise beans in the same way that any Java client would, using the enterprise beans' remote and home interfaces.
The web components would generate HTML to represent the reservation system.

Figure 17-5 shows a web page generated by a servlet or JSP page for the Titan reservation system. This web page was
generated by web components on the J2EE server. When this page appears, the person using the reservation system
has been guided through a login page, a customer selection page, and a cruise selection page, and is about to choose
an available cabin for a reservation.

Figure 17-5. HTML interface to the Titan reservation system

The list of available cabins is obtained from the TravelAgent EJB, whose listAvailableCabins() method is invoked by the
servlet that generated the web page. The list of cabins creates an HTML list box in a web page that is loaded into the
user's browser. When the user chooses a cabin and submits the selection, an HTTP request is sent to the J2EE server.
The J2EE server receives the request and delegates it to the ReservationServlet, which invokes the TravelAgent.bookPassage(
) method to do the actual reservation. The ticket information returned by the bookPassage() method is then used to
create another web page, which is sent back to the user's browser. Figure 17-6 shows how the different components
work together to process the request.

Figure 17-6. J2EE Titan reservation system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-6. J2EE Titan reservation system

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 18. XML Deployment Descriptors
This chapter teaches you how to write XML deployment descriptors for your beans. You may never need to write a
deployment descriptor by hand: most vendors of integrated development tools and EJB servers provide tools for
creating the descriptor automatically. Even if you have such a tool available, however, you must be familiar with
deployment descriptors: the ability to read a deployment descriptor is an essential skill. This chapter does not attempt
to teach you how to read or write correct XML. There are many books on the subject: XML Pocket Reference by Bob
Eckstein (O'Reilly) is a good quick reference; XML in a Nutshell, by Elliotte Rusty Harold and W. Scott Means (O'Reilly),
provides a more detailed treatment.

Very briefly, XML looks like HTML, but with different tag names and attributes inside the tags. You won't see <h1> and
<p> inside a deployment descriptor; instead, you'll see tags like <ejb-jar>. But if you're familiar with the structure of
HTML, you're most of the way towards reading XML. The tag names and attribute names for an XML document are
defined by a special document called an XML Schema Definition (XSD). (EJB 2.0 used an older kind of definition
document called a Document Type Definition (DTD)). An XSD or DTD defines the tags and attributes that can be used in
a deployment descriptor, as well; the XSDs for deployment descriptors in EJB 2.1 and the DTDs for EJB 2.0 are
available online at http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd (EJB 2.1) and http://java.sun.com/dtd/ejb-
jar_2_0.dtd (EJB 2.0).

There are other important differences between XML and HTML. XML is much more strict; many things that are
acceptable in HTML are errors in XML. This should not make a difference if you're just reading a deployment descriptor,
but if you're writing one, be careful. Two differences are particularly important. First, XML is case-sensitive: you cannot
mix uppercase and lowercase in your tag names. HTML does not care about the difference between <h1> and <H1>, but
XML does. All the tags and attributes used in deployment descriptors are lowercase. Second, XML will not forgive you if
you fail to supply closing tags. In HTML, you can write <p>...<p> without ever putting in a </p> to end the first
paragraph. But XML never allows you to be sloppy. Whenever you have an opening tag, you must also supply a closing
tag.

That's about it. These few paragraphs don't qualify as a real introduction to XML, but the basic ideas are very simple,
and they are all you need to get going.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.1 The ejb-jar File
The JAR file format is a platform-independent format for compressing, packaging, and delivering several files together.
Based on the Zip file format and the ZLIB compression standards, the JAR (Java archive) packages and tool were
originally developed to make downloads of Java applets more efficient. As a packaging mechanism, however, the JAR
file format is a convenient way to "shrink-wrap" components and other software for delivery to third parties. The
original JavaBeans component architecture depends on JAR files for packaging, as does Enterprise JavaBeans. The goal
in using the JAR file format is to package all the classes and interfaces associated with one or more beans, including the
deployment descriptor, into one file.

The JAR file is created using a vendor-specific tool, or using the jar utility that is part of the Java 2, Standard Edition
development kit. An ejb-jar file contains:

The XML deployment descriptors

The bean classes

The remote and home interfaces

The primary key class

Dependent classes and interfaces

All of the XML deployment descriptors (ejb-jar.xml, webservices.xml, WSDL, JAX-RPC Mapping) should be located in the
META-INF directory and must contain all the deployment information for all the beans in the ejb-jar file. For each bean
declared in the XML deployment descriptor, the ejb-jar file must contain its bean class, remote and home interfaces,
and dependent classes and interfaces. Dependent classes and interfaces are usually things like application-specific
exceptions, business interfaces, and other supertypes, and dependent objects that are used by the bean. In the ejb-jar
file for the TravelAgent bean, for example, we would include the IncompleteConversationalState application exception and
the Ticket and CreditCard classes, as well as the remote and home interfaces to other beans referenced by the
TravelAgent bean, such as the Customer and ProcessPayment beans.[1]

[1] The EJB 1.1 specification also allows remote and home interfaces of referenced beans to be named in the
manifest's Class-Path attribute, instead of including them in the JAR file. Use of the Class-Path entry in the JAR's
manifest is addressed in more detail in the Java 2, Standard Edition specification.

You can use the jar utility from the command line to package a bean in a JAR file. Here's an example of how the jar
utility was used to package the Cabin EJB in Chapter 4:

\dev % jar cf cabin.jar com/titan/cabin/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\cabin*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first, and copy ejb-jar.xml into that directory. The c option tells the jar
utility to create a new JAR file that contains the files indicated in subsequent parameters. It also tells the jar utility to
stream the resulting JAR file to standard output. The f option tells jar to redirect the standard output to a new file
named in the second parameter (cabin.jar). It is important to get the order of the option letters and the command-line
parameters to match. You can learn more about the jar utility and the java.util.zip package in Java in a Nutshell by David
Flanagan or Learning Java by Pat Niemeyer and Jonathan Knudsen, both published by O'Reilly.

The jar utility creates the file cabin.jar in the dev directory. If you are interested in looking at the contents of the JAR
file, you can use any standard ZIP application (WinZip, PKZIP, etc.) or the command jar tvf cabin.jar.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.2 The Contents of a Deployment Descriptor
We've discussed XML deployment descriptors throughout this book—you probably know enough to write deployment
descriptors on your own. However, it is still worthwhile to take a tour through a complete descriptor. Example 18-1 is a
complete deployment descriptor for the Cabin EJB, which we created in Chapter 4. Other than the type of schema used
(XSD or DTD) and the fact that EJB 2.1 uses XML namespaces, the elements are the same in EJB 2.1 and 2.0. The
Cabin EJB's deployment descriptor contains most of the tags that are needed to describe entity beans; session and
message-driven beans are not much different. The differences between the versions are small but significant. We'll use
this deployment descriptor to guide our discussion in the following sections.

Example 18-1. Cabin EJB deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>

...

<ejb-jar ...>

 <enterprise-beans>

 <entity>

 <description>

 This Cabin enterprise bean entity represents a cabin

 on a cruise ship.

 </description>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>com.titan.cabin.CabinPK</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Cabin</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>shipId</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the Cabin EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.3 The Document Headerand Schema Declarations
An XML document may start with a tag that specifies the version of XML in use:

<?xml version="1.0" encoding="UTF-8"?>

This tag identifies the document as an XML document that adheres to Version 1.0 of the XML specification and uses the
UTF-8 character encoding. EJB vendors usually support this character encoding.

In EJB 2.1, the element following the XML header (the <ejb-jar> element) is the root element of the deployment
descriptor. This element declares the document's XML namespace and the location of the XML schema that can be used
to validate its contents. A complete <ejb-jar> element looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

...

</ejb-jar>

In EJB 2.0, a DOCTYPE element follows the document header and specifies the DTD that defines the document's
contents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

...

</ejb-jar>

In both EJB 2.1 and 2.0, the schema definition provides a URL from which you (or, more importantly, tools processing
the deployment descriptor) can download the schema used to validate the XML document; this means that the EJB
server deploying the bean can download the XSD or DTD and use it to prove that your deployment descriptor is correct
(i.e., that it is organized correctly and uses the right tag names, and that all the tags and attributes have the
appropriate parameters).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.4 The Descriptor's Body
The body of any XML document begins and ends with the tag for the document's root element. For an EJB deployment
descriptor, the root element is named <ejb-jar>, and looks like this (EJB 2.1 includes XML namespace and schemaLocation
attributes not shown):

<ejb-jar ...>

... other elements ...

</ejb-jar>

All other elements must be nested within the <ejb-jar> element. You can place the following kinds of elements within
<ejb-jar>:

<description> (optional)

The <description> element provides a description of the deployment descriptor. This element can be used in
many contexts within a deployment descriptor: to describe the descriptor as a whole, to describe particular
beans, to describe particular security roles, and so on. The Cabin EJB deployment descriptor doesn't use a
<description> element for the deployment descriptor as a whole, but it does provide a description for the Cabin
EJB itself.

<display-name> (optional)

Tools (such as a deployment wizard) that are working with the deployment descriptor use the <display-name>
element to provide a convenient visual label for the entire JAR file and for individual bean components.

<small-icon> and <large-icon> (optional)

These elements point to files within the JAR file that provide icons a deployment wizard or some other tool can
use to represent the JAR file. Icons must be image files in either the JPEG or GIF format. Small icons must be
16 16 pixels; large icons must be 32 32 pixels. These icon elements are also used in the <entity>, <session>,
and <message-driven> elements to represent individual enterprise bean components.

<enterprise-beans> (one required)

The <enterprise-beans> element contains descriptions of one or more enterprise beans that are contained in the
JAR file. A deployment descriptor may have only one <enterprise-beans> element. Within this element, <entity>,
<session>, and <message-driven> elements describe the individual beans.

<relationships> (optional)

The <relationships> element describes the container-managed relationships of entity beans declared in the
deployment descriptor. The <relationships> element contains a number of other elements that describe the
participants, direction, and cardinality of each relationship.

<assembly-descriptor> (optional)

The application assembler or bean developer adds an <assembly-descriptor> element to the deployment
descriptor to define how the enterprise beans are used in an actual application. The <assembly-descriptor>
contains a number of elements that define the security roles used to access the bean, the method permissions
that govern which roles can call different methods, and the transaction attributes.

<ejb-client-jar> (optional)

The <ejb-client-jar> element provides the path of the client JAR, which normally contains all the classes
(including stubs, remote and home interface classes, and so on) the client will need in order to access the beans
defined in the deployment descriptor. How client JAR files are organized and delivered to the client is not
specified—consult your vendor's documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specified—consult your vendor's documentation.

These elements are quite simple, with the exception of the <enterprise-beans> and <assembly-descriptor> elements. These
two elements contain a lot of nested material. We'll look at the <enterprise-beans> element first.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.5 Describing Enterprise Beans
The enterprise beans contained in a JAR file are laid out within the deployment descriptor's <enterprise-beans> element.
So far, we have talked about deployment descriptors for a single enterprise bean, but it is possible to package several
enterprise beans in a JAR file and describe them all within a single deployment descriptor. We could, for example, have
deployed the TravelAgent, ProcessPayment, Cruise, Customer, Reservation, and ReservationProcessor EJBs in the same
JAR file. The deployment descriptor would look something like this:

<?xml version="1.0" encoding="UTF-8"?>

...

<ejb-jar...>

 <description>

 This Deployment includes all the beans needed to make a reservation:

 TravelAgent, ProcessPayment, Reservation, Customer, Cruise, and Cabin.

 </description>

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 ...

 </session>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <remote>com.titan.customer.CustomerRemote</remote>

 ...

 </entity>

 <session>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 ...

 </session>

 <message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 ...

 </message-driven>

 ...

 </enterprise-beans>

 <relationships>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </relationships>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

 ...

</ejb-jar>

In this descriptor, the <enterprise-beans> element contains two <session> elements, one <entity> element, and a
<message-driven> element describing the enterprise beans. Other elements within the <entity>, <session>, and <message-
driven> elements provide detailed information about the enterprise beans; as you can see, the <ejb-name> element
defines the enterprise bean's name. We will discuss all the things that can go into a bean's description later.

When CMP entity beans are deployed, all the beans that have relationships must be deployed in the same EJB-JAR file,
using the same deployment descriptor. The relationships are expressed in the <relationships> element, which follows the
<enterprise-beans> element.

All types of EJBs share assembly information, which is defined in the <assembly-descriptor> element that follows the
<relationships> element (if it's present). In other words, beans can share security and transactional declarations, making
it simpler to deploy them consistently. For example, deployment is easier if the same logical security roles control
access to all the beans, and it is easiest to guarantee that the roles are defined consistently if they are defined in one
place. This strategy also makes it easier to ensure that the transaction attributes are applied consistently to all the
beans, because you can declare them all at once.

18.5.1 Session and Entity Beans

The <session> and <entity> elements, which describe session and entity beans, usually contain many nested elements.
The lists of allowable subelements are similar, so we'll discuss the <session> and <entity> elements together.

Like the <ejb-jar> element, a <session> or <entity> element can optionally contain <description>, <display-name>, <small-
icon>, and <large-icon> elements. These are fairly self-explanatory and, in any case, have the same meanings as when
they appear in the <ejb-jar> element. The <description> lets you provide a comment that describes the enterprise bean;
the <display-name> is used by deployment tools to represent the enterprise bean; and the two icon elements are used to
represent the enterprise bean in visual environments. The icon elements must point to JPEG or GIF images within the
JAR file. The other elements are more interesting:

<ejb-name> (one required)

Specifies the name of the enterprise bean component. It is used in the <methodx> element to scope method
declarations to the correct enterprise bean. Throughout this book, we use a name of the form "NameEJB" as the
<ejb-name> for an enterprise bean. Other common conventions use names of the form "NameBean" or
"TheName".

<home> (optional)

Specifies the fully qualified class name of the enterprise bean's remote home interface.

<remote> (optional)

Specifies the fully qualified class name of the enterprise bean's remote interface.

<local-home> (optional)

Specifies the fully qualified class name of the enterprise bean's local home interface.

<local> (optional)

Specifies the fully qualified class name of the enterprise bean's local interface.

<service-endpoint> (EJB 2.1 only; optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<service-endpoint> (EJB 2.1 only; optional)

Identifies the JAX-RPC endpoint interface used with stateless session beans that are deployed as EJB Endpoints.
Web services and EJB are covered in detail in Chapter 14 and Chapter 15.

<ejb-class> (one required)

Specifies the fully qualified class name of the bean class.

<session-type> (one required; session beans only)

Declares that a session bean is either stateful or stateless. This element can have one of two values: Stateful or
Stateless.

<primkey-field> (optional; entity beans only)

Specifies the primary key field for entity beans that use container-managed persistence. This element's value is
the name of the field that is used as the primary key. It is not used if the bean has a compound primary key or
if the entity bean manages its own persistence. In the Cabin EJB, the <primkey-field> is the id CMP field. This
element is discussed in more detail in Specifying Primary Keys later in this chapter.

<prim-key-class> (one required; entity beans only)

Specifies the class of the primary key for entity beans. This element's value is the fully qualified name of the
primary key class; it makes no difference whether you are using a custom compound primary key or a simple
<primkey-field> such as an Integer, String, Date, etc. If you defer definition of the primary key class to the
deployer, specify the type as java.lang.Object in this element.

<persistence-type> (one required; entity beans only)

Declares that the entity bean uses either container-managed persistence or bean-managed persistence. This
element can have one of two values: Container or Bean.

<reentrant> (one required; entity beans only)

Declares that the bean either allows loopbacks (reentrant invocations) or does not. This element can have one
of two values: True or False. True means that the bean allows loopbacks; False means that the bean throws an
exception if a loopback occurs.

<cmp-version> (optional; entity beans only)

Describes the version of container-managed persistence for which the entity bean is deployed. EJB containers
must support EJB 2.1 CMP, EJB 2.0 CMP, and even EJB 1.1 CMP for backward compatibility. This element may
have one of two values: 2.x for EJB 2.1 and EJB 2.0 or 1.x for EJB 1.1.

<abstract-schema-name> (optional; entity beans only)

Uniquely identifies entity beans in a JAR file so that EJB QL statements can reference them. This method is
described in more detail in the section "Declaring EJB QL Elements."

<cmp-field> (zero or more; entity beans only)

Used in entity beans with container-managed persistence. A <cmp-field> element must exist for each container-
managed field in the bean class. Each <cmp-field> element may include a <description> element and must include
a <field-name> element. The <description> is an optional comment describing the field. The <field-name> is
required and must be the name of one of the bean's CMP fields. It must match the method name of the abstract
accessor method (e.g., deckLevel for getDeckLevel()/setDeckLevel()). The following portion of a descriptor shows
several <cmp-field> declarations for the Cabin EJB:

<cmp-field>

 <description>This is the primary key</description>

 <field-name>id</field-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <field-name>id</field-name>

</cmp-field>

<cmp-field>

 <field-name>name</field-name>

</cmp-field>

<cmp-field>

 <field-name>deckLevel</field-name>

</cmp-field>

<cmp-field>

 <field-name>shipId</field-name>

</cmp-field>

<cmp-field>

 <field-name>bedCount</field-name>

</cmp-field>

<env-entry> (zero or more)

Declares an environment entry that is available through the JNDI ENC. The use of environment entries in a
bean and a deployment descriptor is discussed further in the "Environment Entries" section.

<ejb-ref> (zero or more)

Declares a remote enterprise bean reference that is available through the JNDI ENC. The mechanism for making
bean references available through the ENC is described in more detail later, in References to Other Beans.

<ejb-local-ref> (zero or more)

Declares a local enterprise bean reference that is available through the JNDI ENC. The mechanism for making
bean references available through the ENC is described in more detail later, in References to Other Beans.

<security-role-ref> (zero or more)

Used to declare security roles in the deployment descriptor and map them into the security roles in effect for
the bean's runtime environment. This method is described in more detail in the "Security Roles" section.

<security-identity> (optional)

Specifies security identity under which a method will run. This element is described in more detail in the
"Specifying Security Roles and Method Permissions" section.

<resource-ref> (zero or more)

Declares a reference to a connection factory that is available through the JNDI ENC. An example of a resource
factory is the javax.sql.DataSource, which is used to obtain a connection to a database. This element is discussed
in detail in References to External Resources,

<resource-env-ref> (zero or more)

Describes additional "administered objects" required by the resource. The <resource-env-ref> element and
administered objects are explained in more detail in the References to External Resources, later in this chapter.

<message-destination-ref> (EJB 2.1 only: optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <message-destination-ref> element is new in EJB 2.1. It describes the type of destination the EJB will send
messages to. The <message-destination-ref-name> declares the JNDI ENC lookup name used by the EJB to access
the destination.

<transaction-type> (one required; session beans only)

Declares either that a session bean manages its own transactions or that the container manages its
transactions. This element can have one of two values: Bean or Container. A bean that manages its own
transactions will not have container-transaction declarations in the <assembly-descriptor> section of the
deployment descriptor.

<query> (zero or more; entity beans only)

Contains an EJB QL statement that is bound to a find or a select method. The EJB QL statement defines how the
find or select method should execute at runtime. This element is described in more detail later in Section 18.5.9

18.5.2 Message-Driven Beans

The <message-driven> element describes message-driven bean deployments. <message-driven> elements occur after
<entity> and <session> elements within the <enterprise-bean> element. Like the <entity> and <session> elements, the
<message-driven> element can optionally have <description>, <display-name>, <small-icon>, and <large-icon> elements.
These elements are used primarily by visual deployment tools to represent the message-driven bean. The <message-
driven> element also requires the declaration of the <ejb-name>, <ejb-class>, <transaction-type>, and <security-id-entity>
elements. In addition, it contains the standard JNDI ENC elements <env-entry>, <ejb-ref>, <ejb-local-ref>, <resource-ref>,
and <resource-env-ref>. These are fairly self-explanatory and have the same meaning as they did in the <entity> and
<session> elements.

The elements specific to the message-driven bean are different in EJB 2.1 and EJB 2.0.

18.5.2.1 EJB 2.1 elements

EJB 2.0 defined a few JMS specific elements, which have been abandoned in EJB 2.1 so that the MDB deployment
descriptor can represent JMS-based MDBs as well as Connector-based MDBs. The MDB elements and properties are
covered in detail in Chapter 12.

<messaging-type>

Declares the messaging interfaces used by the MDB. For JMS-based MDBs, the messaging interface is always
going to be javax.jms.MessageListener, but for other J2EE Connector-based MDBs it might be something different.
If this element is omitted, the type is assumed to be javax.jms.MessageListener.

<message-destination-type>

Designates the type of destination from which the MDB receives messages. The allowed values for JMS-based
MDBs are javax.jms.Queue and javax.jms.Topic. A J2EE Connector-based MDB might use some other type.

<activation-config>

Describes the messaging properties of the MDB. The property names and values used in <activation-config>
depend on the type of message service used, but EJB 2.1 defines a set of fixed properties for JMS-based
message-driven beans, including:

acknowledgeMode

The container considers this property only if the message-driven bean uses bean-managed
transactions; with container-managed transactions, it is ignored. It determines which type of
acknowledgment it uses; its value can be either Auto-acknowledge or Dups-ok-acknowledge. The first value
acknowledges messages immediately; the second can delay acknowledgment to benefit performance
but may result in duplicate or redelivered messages.

messageSelector

Message selectors allow an MDB to be more selective about the messages it receives from a particular
topic or queue. Message selectors use Message properties as criteria in conditional expressions.[2] These

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

topic or queue. Message selectors use Message properties as criteria in conditional expressions.[2] These
conditional expressions use Boolean logic to declare which messages should be delivered to a client. The
syntax of message selectors can cause problems with XML processing. See CDATA Sections later in this
chapter.

[2] Message selectors are also based on message headers, which are outside the scope of this
chapter.

destinationType

The <message-destination-type> and the destinationType activation configuration property are redundant for
JMS-based MDBs—but not for other types of J2EE Connector-based MDBs. That's because the activation
configuration properties of Connector-based MDBs and JMS-based MDBs are completely different. It's
important that the <message-destination-type> be specified for both JMS-based and Connector-based
MDBs.

subscriptionDurablity

When a JMS-based MDB uses a javax.jms.Topic, the subscription must be declared to be either Durable or
NonDurable. A Durable subscription outlasts an MDB container's connection to the JMS provider; if the EJB
server suffers a partial failure, shuts down, or otherwise disconnects from the JMS provider, the
messages that it would have received are not lost. A NonDurable subscription means that any messages
the bean would have received while it was disconnected are lost.

18.5.2.2 EJB 2.0 elements

EJB 2.0 supports only one type of Message Driven Bean, the JMS-based MDB. Since only one messaging API is
supported, EJB 2.0 defined JMS-specific elements, which were replaced in EJB 2.1 with JMS-specific properties.

<message-selector>

Message selectors allow an MDB to be more selective about the messages it receives from a particular topic or
queue. Message selectors use Message properties as criteria in conditional expressions. These conditional
expressions use Boolean logic to declare which messages should be delivered to a client. The syntax of message
selectors can cause problems with XML processing. See the "CDATA Sections" sidebar later in this chapter.

<acknowledge-mode>

The container considers this element only if the message-driven bean uses bean-managed transactions; with
container-managed transactions, it is ignored. It determines which type of acknowledgment it uses; its value
can be either Auto-acknowledge or Dups-ok-acknowledge. The first acknowledges messages immediately; the
second can delay acknowledgment to benefit performance, but may result in duplicate or redelivered messages.

<message-driven-destination>

This element designates the type of destination to which the MDB subscribes or listens. The allowed values for
this element are javax.jms.Queue and javax.jms.Topic.

<subscription-durability>

When a MDB uses a javax.jms.Topic, the subscription must be declared to be either Durable or NonDurable. A
Durable subscription outlasts an MDB container's connection to the JMS provider; if the EJB server suffers a
partial failure, shuts down, or otherwise disconnects from the JMS provider, the messages that it would have
received are not lost. A NonDurable subscription means that any messages the bean would have received while it
was disconnected are lost.

CDATA Sections
The <message-selector> elements used by message-driven beans and the <ejb-ql> elements often require
the use of characters that have special meanings in XML, like < and >. These characters cause parsing
errors unless CDATA sections are used.

The CDATA section takes the form <![CDATA[literal-text]]>. When an XML processor encounters a CDATA
section, it does not attempt to parse the contents enclosed by the CDATA section.

Here's how to use a CDATA section in a <message-selector> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how to use a CDATA section in a <message-selector> element:

<message-selector>

<![CDATA[

 TotalCharge >500.00 AND ((TotalCharge /ItemCount)>=75.00)

 AND State IN ('MN','WI','MI','OH')";]]>

</message-selector>

Here's how to use a CDATA section in an <ejb-ql> element:

<query>

 <query-method>

 ...

 </query-method>

 <ejb-ql>

 <![CDATA[

 SELECT OBJECT(r) FROM Reservation r

 WHERE r.amountPaid > 300.00

]]>

 </ejb-ql>

 </query>

18.5.3 Specifying Primary Keys

If a single field in the bean can serve naturally as a unique identifier, you can use that field as the primary key.
Optionally, a custom primary key can be used as a compound primary key. In the Cabin EJB, for example, the primary
key type could be the CabinPK, which is mapped to the bean class fields id and name, as shown here (the CabinBean is
using bean-managed persistence to better illustrate):

public class CabinBean implements javax.ejb.EntityBean {

 public int id;

 public String name;

 public int deckLevel;

 public int ship;

 public int bedCount;

 public CabinPK ejbCreate(int id, String name) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public CabinPK ejbCreate(int id, String name) {

 this.id = id;

 this.name = name;

 return null;

 }

 ...

}

In Chapter 4, we used the appropriate primitive wrapper, java.lang.Integer, instead of the custom CabinPK class, and
defined the CabinBean as:

public class CabinBean implements javax.ejb.EntityBean {

 public int id;

 public String name;

 public int deckLevel;

 public int ship;

 public int bedCount;

 public Integer ejbCreate(int id) {

 this.id = id;

 return null;

 }

 ...

}

This simplifies things a lot. Instead of taking the time to define a custom primary key like CabinPK, we simply use the
appropriate wrapper. To do this, we need to add a <primkey-field> element to the Cabin EJB's deployment descriptor, so
it knows which field to use as the primary key. We also need to change the <prim-key-class> element to state that the
Integer class is being used to represent the primary key. Here's how the Cabin EJB's deployment descriptor would need
to change to use Integer as the primary key field:

<entity>

 <description>

 This Cabin enterprise bean entity represents a cabin on

 a cruise ship.

 </description>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHome</home>

 <remote>com.titan.cabin.Cabin</remote>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <reentrant>False</reentrant>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>ship</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

</entity>

Simple primary key fields are not limited to the primitive wrapper classes (Byte, Boolean, Integer, and so on); any
container-managed field can be used as a primary key, as long as it is serializable. String types are probably the most
common, but other types, such as java.lang.StringBuffer, java.util.Date, or even java.util.Hashtable are also valid. Custom
types can also be primary keys, provided they are serializable. Use common sense when choosing a primary key: since
it is used as an index to the data in the database, it should be lightweight.

18.5.3.1 Deferring primary key definition

Container-managed persistence makes it possible for the bean developer to defer defining the primary key, leaving key
definition to the bean deployer. This feature might be needed if, for example, the primary key is generated by the
database and is not a container-managed field in the bean class. Containers that have a tight integration with database
or legacy systems that automatically generate primary keys might use this approach. It is also an attractive approach
for vendors that sell shrink-wrapped beans, because it makes the bean more portable. Here's how an entity bean using
container-managed persistence defers the definition of the primary key to the deployer:

// bean class for bean that uses a deferred primary key

public class HypotheticalBean implements javax.ejb.EntityBean {

 ...

 public java.lang.Object ejbCreate() {

 ...

 return null;

 }

 ...

}

// home interface for bean with deferred primary key

public interface HypotheticalHome extends javax.ejb.EJBHome {

 public Hypothetical create() throws ...;

 public Hypothetical findByPrimaryKey(java.lang.Object key) throws ...;

}

Here's the relevant portion of the deployment descriptor:

// primkey-field declaration for the Hypothetical bean

...

<entity>

 <ejb-name>HypotheticalEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Object</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>creationDate</field-name></cmp-field>

 ...

</entity>

Because the primary key is of type java.lang.Object, the client application's interaction with the bean's key is limited to
the Object type and its methods.

18.5.4 Environment Entries

A deployment descriptor can define environment entries, values similar to properties the bean can read when it is
running. The bean can use environment entries to customize its behavior, find out about how it is deployed, and so on.

The <env-entry> element is used to define environment entries. This element contains the subelements <description>
(optional), <env-entry-name> (required), <env-entry-type> (required), and <env-entry-value> (optional). Here is a typical
<env-entry> declaration:

<env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

</env-entry>

The <env-entry-name> is relative to the "java:comp/env" context. For example, the minCheckNumber entry can be accessed
using the path "java:comp/env/minCheckNumber" in a JNDI ENC lookup:

InitialContext jndiContext = new InitialContext();

Integer miniumValue = (Integer)

 jndiContext.lookup("java:comp/env/minCheckNumber");

The <env-entry-type> can be of type String or one of several primitive wrapper types, including Integer, Long, Double, Float,
Byte, Boolean, and Short.

The <env-entry-value> is optional. The value can be specified by the bean developer or deferred to the application
assembler or deployer.

18.5.5 References to Other Beans

In EJB, references to other beans can be local or remote. In EJB 2.1 you can also reference a web Service object that
provides access to an EJB endpoint (see Chapter 15 to learn more about EJB endpoints).

18.5.5.1 Remote references

The <env-ref> element defines references to other beans within the JNDI ENC. This makes it much easier for beans to
reference other beans; a bean can use JNDI to look up a reference to the home interface for any bean in which it is
interested.

The <env-ref> element contains the subelements <description> (optional), <ejb-ref-name> (required), <ejb-ref-type>
(required), <remote> (required), <home> (required), and <ejb-link> (optional). Here is a typical <env-ref> declaration:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(required), <remote> (required), <home> (required), and <ejb-link> (optional). Here is a typical <env-ref> declaration:

<ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentHomeRemote</remote>

</ejb-ref>

The <ejb-ref-name> is relative to the "java:comp/env" context. It is recommended but not required that the name be
placed under a subcontext of ejb/. Following this convention, the path used to access the ProcessPayment EJB's home
would be "java:comp/env/ejb/ProcessPaymentHomeRemote". Here's how a client bean would use this context to look up a
reference to the ProcessPayment EJB:

InitialContext jndiContext = new InititalContext();

Object ref = jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote home = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

The <ejb-ref-type> can have one of two values, Entity or Session, according to whether it is an entity or a session bean.

The <home> element specifies the fully qualified class name of the bean's home interface; the <remote> element
specifies the fully qualified class name of the bean's remote interface.

If the bean referenced by the <ejb-ref> element is deployed in the same deployment descriptor (i.e., it is defined under
the same <ejb-jar> element), the <ejb-ref> element can be linked to the bean's declaration using the <ejb-link> element.
If, for example, the TravelAgent bean uses a reference to the ProcessPayment EJB that is declared in the same
deployment descriptor, the <ejb-ref> elements for the TravelAgent bean can use an <ejb-link> element to map its <ejb-
ref> elements to the ProcessPayment EJB. The <ejb-link> value must match one of the <ejb-name> values declared in the
same deployment descriptor. Here's a portion of a deployment descriptor that uses the <ejb-link> element:

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 ...

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 <ejb-link>ProcessPaymentEJB</ejb-link>

 </ejb-ref>

 ...

 </session>

 <session>

 <ejb-name>ProcessPaymentEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 ...

 </session>

 ...

 </enterprise-beans>

 ...

</ejb-jar>

In most cases, you are better off using the <ejb-local-ref> element to obtain references to beans in the same JAR file,
unless the referenced enterprise bean does not have a set of local component interfaces. If that's the situation, use the
<ejb-link> element with the <ejb-ref> element to get a remote reference to the enterprise bean.

18.5.5.2 Local references

The deployment descriptor also provides a special set of tags, the <ejb-local-ref> elements, to declare local EJB
references, i.e., references to enterprise beans that are co-located in the same container and deployed in the same EJB
JAR file. The <ejb-local-ref> elements are declared immediately after the <ejb-ref> elements:

<ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 <ejb-link>CruiseEJB</ejb-link>

</ejb-local-ref>

<ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-link>CabinEJB</ejb-link>

</ejb-local-ref>

The <ejb-local-ref> element defines a name for the bean within the ENC, declares the bean's type, and gives the names
of its local component interfaces. These elements should be linked explicitly to other co-located beans using the <ejb-
link> element, but it's not required—the application assembler or deployer can do it later. The value of the <ejb-link>
element within the <ejb-local-ref> must equal the <ejb-name> of the appropriate bean in the same JAR file.

At deployment time, the EJB container's tools map the local references declared in the <ejb-local-ref> elements to entity
beans that are co-located in the same container system.

Enterprise beans declared in the <ejb-local-ref> elements are local enterprise beans and so do not require the use of the
PortableRemoteObject.narrow() method to narrow the reference. Instead, you can use a simple native cast operation:

InitialContext jndiContext = new InititalContext();

CabinHome home = (CabinHome)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5.6 References to External Resources

Enterprise beans also use the JNDI ENC to look up external resources, such as database connections, that they need to
access. The mechanism for doing this is similar to the mechanism used for referencing other beans and environment
entries: the external resources are mapped into a name within the JNDI ENC namespace. For external resources, the
mapping is performed by the <resource-ref> element.

The <resource-ref> element contains the <description> (optional), <res-ref-name> (required), <res-type> (required), and
<res-auth> (required) subelements.

Here is a <resource-ref> declaration used for a DataSource connection factory:

<resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

The <res-ref-name> is relative to the "java:comp/env" context. Although not a requirement, it is a good idea to place
connection factories under a subcontext that describes the resource type. For example:

jdbc/ for a JDBC DataSource factory

jms/ for a JMS QueueConnectionFactory or TopicConnectionFactory factory

mail/ for a JavaMail session factory

url/ for a javax.net.URL factory

Here is how a bean would use JNDI to look up a resource—in this case, a DataSource:

InitialContext jndiContext = new InitialContext();

DataSource source = (DataSource)

 jndiContext.lookup("java:comp/env/jdbc/titanDB");

The <res-type> element declares the fully qualified class name of the connection factory. In this example, the <res-type>
is javax.sql.DataSource.

The <res-auth> element tells the server who is responsible for authentication. It can have one of two values: Container or
Application. If Container is specified, the container will automatically perform authentication (sign-on or login) to use the
resource, as specified at deployment time. If Application is specified, the bean itself must perform authentication before
using the resource. Here's how a bean might sign on to a connection factory when Application is specified for <res-auth>:

InitialContext jndiContext = new InitialContext();

DataSource source = (DataSource)

 jndiContext.lookup("java:comp/env/jdbc/titanDB");

String loginName = ejbContext.getCallerPrincipal().getName();

String password = ...; // get password from somewhere

// use login name and password to obtain a database connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// use login name and password to obtain a database connection

java.sql.Connection con = source.getConnection(loginName, password);

18.5.6.1 Additional administered objects

In addition to the resource factory described in the <resource-ref> element, some resources may have other
administered objects that need to be obtained from the JNDI ENC. An administered object is a resource that is
configured at deployment time and managed by the EJB container at runtime. For example, to use JMS, the bean
developer must obtain both a JMS factory object and a destination object:

TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/ejb/TicketTopic");

Both the JMS factory and destination are administered objects that must be obtained from the JNDI ENC. The <resource-
ref> element declares the JMS factory, while the <resource-env-ref> element declares the destination:

<resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

<resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

<resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>

At deployment time, the deployer maps the JMS TopicConnectionFactory or QueueConnectionFactory and the Topic or Queue
declared by the <resource-ref> and <resource-env-ref> elements to a JMS factory and topic.

18.5.6.2 Shareable resources

When several enterprise beans in a unit-of-work or transaction all use the same resource, you will want to configure
your EJB server to share that resource. Sharing a resource means that each enterprise bean will use the same
connection to access the resource (e.g., database or JMS provider), a strategy that is more efficient than using separate
resource connections.

In the TravelAgent EJB, the bookPassage() method uses the ProcessPayment EJB and the Reservation EJB to book a
passenger on a cruise. If the enterprise beans use the same database, they should share their resource connection for
efficiency. Enterprise JavaBeans containers share resources by default, but resource sharing can be turned on or off
explicitly with the <resource-ref> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explicitly with the <resource-ref> element:

<resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

<res-sharing-scope> is an optional element that may be declared as either Shareable, indicating that connections should be
shared in local transactions, or Unshareable, indicating that they should not. If it is not specified, the default is Shareable.

Occasionally, advanced developers may run into situations where resource sharing is not desirable, and having the
option to turn off resource sharing is beneficial. Unless you have a good reason for turning off resource sharing, I
recommend that you use Shareable resources.

18.5.7 The <service-ref> Deployment Element (EJB 2.1)

EJB 2.1 includes a new element, <service-ref>, that is used to bind a JAX-RPC Service to the JNDI ENC. The modified
TravelAgent EJB declares a <service-ref> element that looks like this:

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:chargeIt="http://charge-it.com/Processor"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 ...

 <service-ref>

 <service-ref-name>service/ChargeItProcessorService</service-ref-name>

 <service-interface>com.charge_it.ProcessorService</service-interface>

 <wsdl-file>META-INF/wsdl/ChargeItProcessor.wsdl</wsdl-file>

 <jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>

 <service-qname>chargeIt:ProcessorService</service-qname>

 </service-ref>

 ...

 </session>

 </enterprise-beans>

 ...

</ejb-jar>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</ejb-jar>

The <service-ref-name> element declares the JNDI ENC lookup name of the JAX-RPC Service: it is always relative to the
"java:comp/env" context. For more details about various web service deployment descriptors, see Chapter 15.

18.5.8 Security Roles

The <security-role-ref> element defines the security roles that are used by a bean and maps them into the security roles
that are in effect for the runtime environment. It can contain three subelements: an optional <description>, a <role-
name> (required), and an optional <role-link>.

Here's how security roles are defined. When a role name is used in the EJBContext.isCallerInRole(String roleName) method,
the role name must be statically defined (it cannot be derived at runtime) and it must be declared in the deployment
descriptor using the <security-role-ref> element:

<-- security-role-ref declaration for Account bean -->

<entity>

 <ejb-name>AccountEJB</ejb-name>

 ...

 <security-role-ref>

 <description>

 The caller must be a member of this role in

 order to withdraw over $10,000

 </description>

 <role-name>Manager</role-name>

 <role-link>Administrator</role-link>

 </security-role-ref>

 ...

</entity>

The <role-name> defined in the deployment descriptor must match the role name used in the EJBContext.isCallerInRole()
method. Here is how the role name is used in the bean's code:

// Account bean uses the isCallerInRole() method

public class AccountBean implements EntityBean {

 int id;

 double balance;

 EntityContext context;

 public void withdraw(Double withdraw) throws AccessDeniedException {

 if (withdraw.doubleValue() > 10000) {

 boolean isManager = context.isCallerInRole("Manager");

 if (!isManager) {

 // only Managers can withdraw more than 10k

 throw new AccessDeniedException();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 }

 balance = balance - withdraw.doubleValue();

 }

 ...

}

The <role-link> element is optional; it can be used to map the role name used in the bean to a logical role defined in a
<security-role> element in the <assembly-descriptor> section of the deployment descriptor. If no <role-link> is specified, the
deployer must map the <security-role-ref> to an existing security role in the target environment.

18.5.9 Declaring EJB QL Elements

EJB QL statements are declared in <query> elements in an entity bean's deployment descriptor. In the following listing,
you can see that findByName() and ejbSelectShips() methods were declared in the <query> elements of the Cruise EJB
deployment descriptor:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 ...

 <abstract-schema-name>Ship</abstract-schema-name>

 ...

 </entity>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 ...

 <reentrant>False</reentrant>

 <abstract-schema-name>Cruise</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <primkey-field>id</primkey-field>

 <query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>

 <mehod-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1

 </ejb-ql>

 </query>

 <query>

 <query-method>

 <method-name>ejbSelectShips</method-name>

 <method-params></method-params>

 </query-method>

 <result-type-mapping>Remote</result-type-mapping>

 <ejb-ql>

 SELECT OBJECT(s) FROM Ship AS s

 </ejb-ql>

 </query>

 </entity>

 </enterprise-beans>

</ejb-jar>

The <query> element contains two primary elements; the <query-method> element identifies the find method of the
remote or local home interface, and the <ejb-ql> element declares the EJB QL statement. The <query> element binds
the EJB QL statement to the proper find method. The syntax of EJB QL may cause problems for the XML parser; you
may need to wrap the query in a CDATA section. See the sidebar "CDATA Sections" for more details.

When two find methods in the local and remote home interfaces have the same method name and parameters, the
query declaration applies to both methods. The container returns the proper type for each query method: queries that
use the remote home return one or more remote EJB objects, and queries that use the local home return one or more
local EJB objects. This feature allows you to define the behavior of both the local and remote home find methods using
a single <query> element—which is convenient if you want local clients to have access to the same find methods as
remote clients.

The <result-type-mapping> element can be used to declare whether a select method should return local or remote EJB
objects. The value Local indicates that a method should return local EJB objects; Remote indicates remote EJB objects. If
the <result-type-mapping> element is not declared, the default is Local. In the <query> element for the ejbSelectShips()
method, the <result-type-mapping> is declared as Remote, which means the query should return remote EJB object types
(i.e., remote references to the Ship EJB).

Every entity bean that is referenced in an EJB QL statement must have an abstract schema name, which is declared by
the <abstract-schema-name> element. No two entity beans may have the same abstract schema name. In the entity
element that describes the Cruise EJB, the abstract schema name is Cruise, while the Ship EJB's abstract schema name
is Ship. The <ejb-ql> element contains an EJB QL statement that uses this identifier in its FROM clause.

In Chapter 7, you learned that the abstract persistence schema of an entity bean is defined by its <cmp-field> and <cmr-
field> elements. The abstract schema name is also an important part of the abstract persistence schema. EJB QL
statements are always expressed in terms of the abstract persistence schemas of entity beans. EJB QL uses the
abstract schema names to identify entity bean types, the container-managed persistence (CMP) fields to identify
specific entity bean data, and the container-managed relationship (CMR) fields to create paths for navigating from one
entity bean to another.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.6 Describing Relationships
CMP entity bean classes are defined using abstract accessor methods that represent virtual persistence and relationship
fields. As discussed in Chapter 6, Chapter 7, and Chapter 8, the fields themselves are not declared in the entity classes.
Instead, the characteristics of these fields are described in the bean's deployment descriptor. The abstract persistence
schema is the set of XML elements in the deployment descriptor that describe the relationship and persistence fields. By
combining the abstract persistence schema with the abstract programming model (i.e., the abstract accessor methods)
and a little help from the deployer, the container tool has enough information to map the entity and its relationships
with other entity beans.

The relationships between entity beans are described in the <relationships> section of the XML deployment descriptor.
The <relationships> section falls between the <enterprise-beans> and <assembly-descriptor> sections. Within the
<relationships> element, each entity-to-entity relationship is defined in a separate <ejb-relation> element:

<ejb-jar>

 <enterprise-beans>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 ...

 </ejb-relation>

 <ejb-relation>

 ...

 </ejb-relation>

 </relationships>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

Defining relationship fields requires that an <ejb-relation> element be added to the XML deployment descriptor for each
entity-to-entity relationship. These <ejb-relation> elements complement the abstract programming model. For each pair
of abstract accessor methods that define a relationship field, there is an <ejb-relation> element in the deployment
descriptor. EJB requires that the entity beans in a relationship be defined in the same XML deployment descriptor.

Here is a partial listing of the deployment descriptor for the Customer and Address EJBs, emphasizing the elements that
define the relationship:

<ejb-jar>

 ...

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CustomerEJB</ejb-name>

 <local-home>com.titan.customer.CusomterLocalHome</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>AddressEJB</ejb-name>

 <local-home>com.titan.address.AddressLocalHome</local-home>

 <local>com.titan.address.AddressLocal</local>

 ...

 </entity>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

</ejb-jar>

All relationships between the Customer EJB and other entity beans, such as the CreditCard, Address, and Phone EJBs,
require that we define an <ejb-relation> element to complement the abstract accessor methods. Every relationship may
have a relationship name, which is declared in the <ejb-relation-name> element. This name is intended for people reading
the deployment descriptor or for deployment tools, but it is not required.

Every <ejb-relation> element has exactly two <ejb-relationship-role> elements, one for each participant in the relationship.
In the previous example, the first <ejb-relationship-role> declares the Customer EJB's role in the relationship. We know
this because the <relationship-role-source> element specifies the <ejb-name> as CustomerEJB, which is the <ejb-name> used
in the Customer EJB's original declaration in the <enterprise-beans> section. The <relationship-role-source> element's <ejb-
name> must always match an <ejb-name> element in the <enterprise-beans> section.

The <ejb-relationship-role> element also declares the cardinality, or multiplicity, of the role. The <multiplicity> element can
be either One or Many. In this case, the Customer EJB's <multiplicity> element has a value of One, which means that
every Address EJB has a relationship with exactly one Customer EJB. The Address EJB's <multiplicity> element also
specifies One, which means that every Customer EJB has a relationship with exactly one Address EJB. If the Customer
EJB had a relationship with many Address EJBs, the Address EJB's <multiplicity> element would be set to Many.

If the bean described by the <ejb-relationship-role> element maintains a reference to the other bean in the relationship,
that reference must be declared as a container-managed relationship field in the <cmr-field> element. The <cmr-field>
element is declared under the <ejb-relationship-role> element:

<ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

</ejb-relationship-role>

EJB requires that the <cmr-field-name> begin with a lowercase letter. For every relationship field defined by a <cmr-field>
element, the bean class must include a pair of matching abstract accessor methods. One method in this pair must be
defined with the method name set<cmr-field-name>(), and the first letter of the <cmr-field-name> must be changed to
uppercase. The other method is defined as get<cmr-field-name>(), also with the first letter of the <cmr-field-name> in
uppercase. In this example, the <cmr-field-name> is homeAddress, which corresponds to the getHomeAddress() and
setHomeAddress() methods defined in the CustomerBean class:

// bean class code

public abstract void setHomeAddress(AddressLocal address);

public abstract AddressLocal getHomeAddress();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract AddressLocal getHomeAddress();

// XML deployment descriptor declaration

<cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

</cmr-field>

The <cascade-delete> element requests cascade deletion; it can be used with one-to-one or one-to-many relationships. It
is always declared as an empty element: <cascade-delete/>. <cascade-delete> indicates that the lifetime of one entity
bean in a particular relationship depends upon the lifetime the other entity bean in the relationship. Here's how to
modify the relationship declaration for the Customer and Address EJBs to obtain a cascade delete:

<relationships>

 <ejb-relation>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

 <role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

 <cascade-delete/>

 <role-source>

 <dependent-name>Address</dependent-name>

 </role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

With this declaration, the Address EJB will be deleted automatically when the Customer EJB that refers to it is deleted.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.7 Describing Bean Assembly
At this point, we have said just about all that can be said about the bean itself. We are now ready to describe how the
beans are assembled into an application. That is, we are ready to talk about the other major element inside the <ejb-
jar> element: the <assembly-descriptor>.

The <assembly-descriptor> element is optional, though it is difficult to imagine a bean being deployed successfully without
one. When we say that the <assembly-descriptor> is optional, we really mean that a developer whose only role is to
create enterprise beans (for example, someone who is developing beans for use by another party and who has no role
in deploying the beans) can omit this part of the deployment descriptor. The descriptor is valid without it—but someone
will almost certainly have to fill in the assembly information before the bean can be deployed.

The <assembly-descriptor> serves three purposes: it describes the transaction attributes of the bean's methods; it
describes the logical security roles that are used in the method permissions; and it specifies the method permissions
(i.e., which roles are allowed to call each of the methods). To this end, an <assembly-descriptor> can contain three kinds
of elements, each of which is fairly complex in its own right. These are:

<container-transaction> (zero or more)

This element declares which transaction attributes apply to which methods. It contains an optional <description>
element, one or more <method> elements, and exactly one <trans-attribute> element. Entity beans must have
<container-transaction> declarations for all remote and home interface methods. Session beans that manage their
own transactions will not have <container-transaction> declarations. This element is discussed in more detail in
the next section.

<security-role> (zero or more)

This element defines the security roles that are used to access the bean. These security roles are used in the
<method-permission> element. A <security-role> element contains an optional description and one <role-name>.
This element and the <method-permission> element are described in more detail in the "Specifying Security Roles
and Method Permissions" section.

<method-permission> (zero or more)

This element specifies which security roles are allowed to call one or more of a bean's methods. It contains an
optional <description> element, one or more <role-name> elements, and one or more <method> elements. It is
discussed in more Specifying Security Roles and Method Permissions, along with the <security-role> element.

The <container-transaction> and <method-permission> elements both rely on the ability to identify particular methods. This
can be a complicated affair, given features of the Java language such as method overloading. The <method> element is
used within these tags to identify methods; it is described at length in the "Identifying Specific Methods" section.

18.7.1 Specifying a Bean's Transaction Attributes

The <container-transaction> elements are used to declare the transaction attributes for all the beans defined in the
deployment descriptor. A <container-transaction> element maps one or more bean methods to a single transaction
attribute, so each <container-transaction> specifies one transaction attribute and one or more bean methods.

The <container-transaction> element includes a single <trans-attribute> element, which can have one of six values:
NotSupported, Supports, Required, RequiresNew, Mandatory, and Never. These are the transaction attributes we discussed in
Chapter 14. In addition to <trans-attribute>, the <container-transaction> element includes one or more <method> elements.

The <method> element itself contains at least two subelements: an <ejb-name> element, which specifies the name of the
bean, and a <method-name> element, which specifies a subset of the bean's methods. The value of the <method-name>
can be a method name or an asterisk (*), which acts as wildcard for all the bean's methods. A lot more complexity is
involved in handling overloading and other special cases, but we'll discuss the rest later.

To see how the <container-transaction> element is typically used, let's look again at the Cabin EJB. Assume that we want
to give the transaction attribute Mandatory to the create() method; all other methods use the Required attribute:

<container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 </method>

 <trans-attribute>Mandatory</trans-attribute>

</container-transaction>

In the first <container-transaction>, we have a single <method> element that uses the wildcard character (*) to refer to all
of the Cabin EJB's methods. We set the transaction attribute for these methods to Required. Then, we have a second
<container-transaction> element that specifies a single method of the Cabin EJB: create(). We set the transaction attribute
for this method to Mandatory. This setting overrides the wildcard setting; in <container-transaction> elements, specific
method declarations always override more general declarations.

For entity beans, the following methods must be assigned transaction attributes:

All business methods defined in the remote interface (and all superinterfaces)

Create methods defined in the home interface

Find methods defined in the home interface

Home methods defined in the home interface

Remove methods defined in the EJBHome and EJBObject interfaces

And for session beans, the following methods must be assigned transactional attributes:

All business methods defined in the remote interface (and all superinterfaces)

For session beans, only the business methods have transaction attributes; the create and remove methods in session
beans do not have transaction attributes.

The ejbSelect() methods do not have their own transaction attributes. ejbSelect() methods always propagate the
transaction of the methods that call them.

18.7.2 Specifying Security Roles and Method Permissions

Two elements define logical security roles and specify which roles can call particular bean methods. The <security-role>
can contain an optional <description>, plus a single <role-name> that provides the name. An <assembly-descriptor> can
contain any number of <security-role> elements.

It is important to realize that the security role names are not derived from a specific security realm. These security role
names are logical; they are simply labels that can be mapped to real security roles in the target environment at
deployment time. For example, the following <security-role> declarations define two roles—everyone and administrator:

<security-role>

 <description>

 This role represents everyone who is allowed read/write access

 to existing Cabin EJBs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 to existing Cabin EJBs.

 </description>

 <role-name>everyone</role-name>

</security-role>

<security-role>

 <description>

 This role represents an administrator or manager who is allowed

 to create new Cabin EJBs. This role may also be a member

 of the everyone role.

 </description>

 <role-name>administrator</role-name>

</security-role>

These role names might not exist in the environment in which the beans will be deployed. There's nothing inherent in
everyone that gives it fewer (or greater) privileges than an administrator. It is up to the deployer to map one or more
roles from the target environment to the logical roles in the deployment descriptor. For example, the deployer may find
that the target environment has two roles, DBA (database administrator) and CSR (customer service representative),
which map to the administrator and everyone roles defined in the <security-role> element.

18.7.2.1 Assigning roles to methods

Security roles would not be worth much if you couldn't specify what the roles were allowed to do. That's where the
<method-permission> element comes in. This element maps the security roles to methods in the remote and home
interfaces of the bean. A <method-permission> is a flexible declaration that allows a many-to-many relationship between
methods and roles. It contains an optional <description>, one or more <method> elements, and one or more <role-name>
elements. The names specified in the <role-name> elements correspond to the roles that appear in the <security-role>
elements.

Here's one way to set method permissions for the Cabin EJB:

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

 </method>

</method-permission>

In this example, the administrator role has access to all methods in the Cabin EJB. The everyone role has access only to
the getDeckLevel() method—it cannot access any of the other methods of the Cabin EJB. Note that the specific method
permissions are combined to form a union. The getDeckLevel() method, for example, is accessible by both the
administrator and everyone roles. Once again, we still do not know what administrator and everyone mean. The person

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

administrator and everyone roles. Once again, we still do not know what administrator and everyone mean. The person
deploying the bean, who must map these logical security roles to real security roles defined in the target environment,
defines them.

All the methods defined in the remote or home interface and all superinterfaces, including the methods defined in the
EJBObject and EJBHome interfaces, can be assigned security roles in the <method-permission> elements. Any method that
is excluded will not be accessible by any security role.

18.7.2.2 Unchecked methods

A set of methods can be designated as unchecked, which means that security permissions are not checked before the
method is invoked. Any client can invoke an unchecked method, no matter what role it is using.

To designate a method or methods as unchecked, use the <method-permission> element and replace the <role-name>
element with an empty <unchecked> element:

<method-permission>

 <unchecked/>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

This declaration tells us that all the methods of the Cabin EJB, as well as the Customer EJB's findByPrimaryKey() method,
are unchecked. Although the second <method-permission> element gives the administrator permission to access all the
Cabin EJB's methods, this declaration is overridden by the unchecked method permission. Unchecked method
permissions always override all other method permissions.

18.7.2.3 The runAs security identity

In addition to specifying the Principals that have access to an enterprise bean's methods, the deployer can also specify
the runAs Principal for the entire enterprise bean. The runAs security identity was originally specified in EJB 1.0, but was
abandoned in EJB 1.1. It has been reintroduced in EJB 2.0 and modified so that it is easier for vendors to implement.

While the <method-permission> elements specify which Principals have access to the bean's methods, the <security-identity>
element specifies the Principal under which the method will run. In other words, the runAs Principal is used as the
enterprise bean's identity when it tries to invoke methods on other beans—and this identity isn't necessarily the same
as the identity that's currently accessing the bean. For example, the following deployment descriptor elements declare
that the create() method can be accessed only by JimSmith, but that the Cabin EJB always runs under the Administrator
security identity:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

security identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>EmployeeService</ejb-name>

 ...

 <security-identity>

 <run-as>

 <role-name>Administrator</role-name>

 </run-as>

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

<assembly-descriptor>

 <security-role>

 <role-name>Administrator</role-name>

 </security-role>

 <security-role>

 <role-name>JimSmith</role-name>

 </security-role>

 ...

 <method-permission>

 <role-name>JimSmith</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 </method>

 </method-permission>

 ...

</assembly-descriptor>

To specify that an enterprise bean will execute under the caller's identity, the <security-identity> role contains a single
empty element, <use-caller-identity/>. The following declarations specify that the Cabin EJB always executes under the
caller's identity, so if Jim Smith invokes the create() method, the bean will run under the JimSmith security identity:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

caller's identity, so if Jim Smith invokes the create() method, the bean will run under the JimSmith security identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>EmployeeService</ejb-name>

 ...

 <security-identity>

 <use-caller-identity/>

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

The use of <security-identity> applies to entity and stateless session beans. Message-driven beans have only a runAs
identity; they never execute under the caller identity, because there is no "caller." The messages that a message-driven
bean processes are not considered calls, and the clients that send them are not associated with the messages. With no
caller identity to propagate, message-driven beans must always have a runAs security identity specified.

18.7.2.4 Exclude list

The last element of the <assembly-descriptor> is the optional <exclude-list> element. The <exclude-list> element contains a
<description> and a set of <method> elements. Every method listed in the <exclude-list> should be considered uncallable,
which means that the deployer needs to set up security permissions for those methods so that all calls, from any client,
are rejected. Remote clients should receive a java.rmi.remoteException and local clients should receive a
javax.ejb.AccessLocalException:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <exclude-list>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

 </method>

 <method>

 ...

 </method>

 </exclude-list>

 </assembly-descriptor>

</ejb-jar>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.7.3 Identifying Specific Methods

The <method> element is used by the <method-permission> and <container-transaction> elements to specify a specific
group of methods in a particular bean. The <method> element always contains an <ejb-name> element that specifies the
bean's name and a <method-name> element that specifies the method. It may also include a <description> element,
<method-params> elements that specify which method parameters will be used to resolve overloaded methods, and a
<method-intf> element that specifies whether the method belongs to the bean's home, remote, local home, or local
interface. This last element takes care of the possibility that the same method name might be used in more than one
interface.

18.7.3.1 Wildcard declarations

The method name in a <method> element can be a simple wildcard (*). A wildcard applies to all methods of the bean's
home and remote interfaces. For example:

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

</method>

Although it's tempting to combine the wildcard with other characters, don't. The value get*, for example, is illegal. The
asterisk character can be used only by itself.

18.7.3.2 Named method declarations

Named declarations apply to all methods defined in the bean's remote and home interfaces that have the specified
name. For example:

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

</method>

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

</method>

These declarations apply to all methods with the given name in both interfaces. They do not distinguish between
overloaded methods. For example, if the home interface for the Cabin EJB is modified so that it has three overloaded
create() methods, as shown here, the previous <method> declaration would apply to all three methods:

public interface CabinHome javax.ejb.EJBHome {

 public Cabin create() throws CreateException, RemoteException;

 public Cabin create(int id) throws CreateException, RemoteException;

 public Cabin create(int id, Ship ship, double [][] matrix)

 throws CreateException, RemoteException;

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.7.3.3 Specific method declarations

Specific method declarations use the <method-params> element to pinpoint a specific method by listing its parameters,
allowing you to differentiate between overloaded methods. The <method-params> element contains zero or more
<method-param> elements that correspond, in order, to each parameter type (including multidimensional arrays)
declared in the method. To specify a method with no arguments, use a <method-params> element with no <method-
param> elements nested within it.

For example, let's look again at our Cabin EJB, to which we have added some overloaded create() methods. Here are
three <method> elements, each of which unambiguously specifies one of the create() methods by listing its parameters:

<method>

 <description>Method: public Cabin create(); </description>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 <method-params></method-params>

</method>

<method>

 <description>Method: public Cabin create(int id);</description>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 <method-params>

 <method-param>int</method-param>

 </method-params>

</method>

<method>

 <description>

 Method: public Cabin create(int id, Ship ship, double [][] matrix);

 </description>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 <method-params>

 <method-param>int</method-param>

 <method-param>com.titan.ship.Ship</method-param>

 <method-param>double [][]</method-param>

 </method-params>

</method>

18.7.3.4 Remote/home/local differentiation

There's one problem left. The same method name can be used in the home interface, the local home interface, the
remote interface, and the local interface. To resolve this ambiguity, add the <method-intf> element to a method
declaration as a modifier. Four values are allowed for a <method-intf> element: Remote, Home, LocalHome, Local, and
ServiceEndpoint.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ServiceEndpoint.

In practice, it is unlikely that a good developer would use the same method names in both home and remote interfaces:
it would lead to unnecessarily confusing code. However, you would expect to see the same names in the local, remote,
and possibly endpoint interfaces, or the home and local home interfaces. It is also likely that you will need the <method-
intf> element in a wildcarded declaration. For example, the following declaration specifies all the methods in the remote
interface of the Cabin EJB:

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 <method-intf>Remote</method-intf>

</method>

All these styles of method declarations can be used in any combination, within any element that uses the <method>
element. The <method-permission> elements are combined to form a union of role-to-method permissions. For example,
in the following listing the first <method-permission> element declares that the administrator has access to the Cabin EJB's
home methods (create and find methods). The second <method-permission> specifies that everyone has access to the
findByPrimaryKey() method. This means both roles (everyone and administrator) have access to the findByPrimaryKey()
method:

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 <method-intf>Home</method_intf>

 </method>

</method-permission>

<method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 19. EJB Design in the Real World
EJB changed rapidly over the past couple of years. Best practices for using EJBs "in the real world" are only now
beginning to be documented, and there are already entire books on how to use EJBs. We cannot hope to cover
everything in a single chapter. However, we can hit the important topics in designing EJBs for use in real-world business
applications.

This chapter covers:

The questions you need to ask about your EJB container and database selections before you begin designing
your EJBs.

A step-by-step how-to for designing EJBs from functional requirements to completed EJB design, including the
identification of potential base classes and EJB-helper classes.

Alternatives to EJB. There are places where Enterprise JavaBeans are not the best choice. The last section in
this chapter helps you identify those places and introduces some alternatives.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.1 Pre-Design: Containers and Databases
Before you begin designing your application, it is essential that you consider the execution environment in which your
code is run. The execution environment includes your:

Hardware platform
Operating system
Java Virtual Machine (JVM) implementation
Application server (EJB container)
Database server

Each of these elements has a direct effect on your application design's success. We won't talk about hardware and
operating systems (about which you may have little choice, anyway), and we'll stay away from arguments about who
has a better JVM. We'll focus on the last two issues; they have the greatest effect on EJB application architecture.

19.1.1 Container Capabilities

Which EJB container you choose has a significant effect on your application's implementation and design. Regardless of
your application's functional requirements, spend some time familiarizing yourself with how your application server
works. Ideally, you'd develop that familiarity before choosing your application server.

When learning your container's capabilities, you are trying to find out how the application server's vendor has
implemented its key features. Here are the primary areas on which to focus:

What version of the EJB specification does it implement?

A container that implements the latest (2.1) EJB specification will offer more features (non-JMS MDBs, for
example). However, a container that implements the older (2.0) specification will be more mature.

What vendor-specific functionality or extensions does it implement?

Almost all EJB containers introduce some vendor-specific features. If you choose to use vendor-specific
features, your application will be tied to that vendor's container. Switching to another vendor later may be
costly. While this is often unavoidable (several popular development tools, for example, tie you closely to a
vendor's implementation), there are tools such as XDoclet[1] that help to alleviate some of the risk.

[1] XDoclet is an open source Java tool that allows for attribute-driven development. See
http://xdoclet.sourceforge.net/ for more information.

How does the container's design or implementation affect performance?

Because every vendor's implementation of the EJB spec is unique, containers from different vendors will
perform differently. If possible, research the performance of your various container options specifically for the
functionality you need before choosing.

Most vendors do a good job of implementing the specification, and it's relatively easy to move from one vendor to
another. But don't walk into the EJB arena with your eyes closed. Ask the same kinds of questions that you would ask
for any other major software purchase, and you'll be okay.

19.1.2 Database Capabilities

While we place a lot of emphasis on the EJB container, the database server is just as influential on the overall system.
Although the EJB container isolates you from the database, the database is still there, and every data-related function
depends on it.

The most critical function of a database is to ensure that data is available and consistent. Availability and consistency
are qualities that depend on how your application uses transactions and how the database implements transactions.[2]

When investigating how your database implements transactions, your primary concern should be the database's
locking, isolation levels, and other resource management. Here are some questions to ask:

[2] Transactions are discussed in Chapter 16.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What transaction isolation levels does the database support?

While most databases support the four isolation levels discussed in Chapter 16 (read uncommitted, read
committed, repeatable read, and serializable), there are some that do not. For example, PostgreSQL 7.3.x[3]

offers only read committed and serializable.

[3] The most recent version of PostgreSQL at the time this was written.

What are the lock types and lock scopes? What factors influence them?

Lock scope is the number of rows that are protected when a lock is enacted. Depending on the vendor, the
database may lock only the rows used by the transaction, blocks of rows (pages) that contain the rows used, or
the entire table. The more rows are protected, the more likely it is that another process won't be able to access
the data it needs. If such contention occurs, the other process will either fail or wait until the lock is released.

As for what factors influence lock types and lock scopes, the database may "promote" locks under certain
situations, such as if a query cannot use an index. This could mean that a nonexclusive write lock becomes an
exclusive write lock or that a row-specific lock becomes a table-wide lock, should an index on that table not be
usable in the write.

How are database resources handled within a transaction?

During a transaction, especially a multi-step transaction, the database has certain resources that it must
manage; a good example is the number of open cursors involved in executing the transaction. Depending on
how the database handles reclaiming those open cursors, a series of database operations that work fine outside
a transaction may not work at all when included in a transaction because needed cursors are left committed
until after the end of the last operation. In this case, large, multi-step, iterative processes ("batch" processes)
can hit the maximum number of open cursors and fail. Knowing how your database manages resources like
open cursors can help you plan your transaction structure to ensure success.

Obviously, there is more involved in the selection of a database server for your application/system than we've described
here. However, these issues all have direct ramifications on your EJB application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.2 Design
In this section, we go through the process of designing several EJBs. While the design process of an EJB application is
95% identical to the design process for a non-EJB application (maybe even 99% identical), there are some steps in this
process that require special attention.

To discuss design, we need to change our thinking a bit. Throughout this book, we have focused the details of EJBs and
how their individual components work. In this section, we consider the Titan EJB application as a system meeting a
business need, and not simply as a collection of fine-grained components. We will look at the design of such a system
from the ground up, taking the application—as a whole—rather than continuing to view only the EJB components
themselves (though we'll obviously pay special attention to those components, since this is a book on EJBs). Let's start
by looking at its requirements.

At a high level, the application will be used by:

Travel agents to sell reservations

The general public to view cruise details

Cruise administrators to manage the application's ship and cruise data

The application will be accessed via three mechanisms. The first two mechanisms are for "person" users (as opposed to
"system" users, described below):

Web interface (general public, travel agents, and cruise administrators)

Standalone Java application (travel agents)

The third access mechanism is for systems that need direct access to the business layer. For our application, this
includes access by:

External travel agency systems (which includes both travel agents not working for Titan and reservation
distribution services that act as clearing houses for cruise line availability)

Ship provisioning companies that need to know physical specifications for Titan's ships in order to provide auto-
ordering of provisions (ship capacity, fuel type, and so on)

All three communications mechanisms (web client, standalone application, and business-to-business) must allow only
secure actions to be executed by the users. Connectivity to the external travel agencies and to the ship provisioning
vendors is not guaranteed, so the communication mechanism will need to handle disconnects. Finally, we want to
generate reservation confirmations and other forms in PDF format. Figure 19-1 is a system diagram for our
requirements so far.

Figure 19-1. Application system diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.1 Business Entity Identification

Now that we know our application's requirements, at least at a high level, we can identify the key business entities the
application needs to represent. This is generally a lengthy process, and we will only go over some of the results here.
While in our example this is presented as a step-by-step, one-time process, it is really iterative. You will probably take a
first stab at identifying business entities, and then go through the process again and again before having a final list of
all your business entities.

Here are some of the business entities for the Titan application:

Reservation

Reservations are created by Travel Agents and belong to a Customer. They are associated with a Cruise and
zero or more Cabins. A Reservation has a financial subtotal.

Travel Agent

Travel Agents create and update Reservations and view Cruise information. Travel Agents are a kind of Person.

Customer

A Customer is also a kind of Person. Customers have zero or more Reservations.

Ship

A Ship has zero or more Cabins and belongs to zero or more Cruises.

Cruise

A Cruise has a Ship and a date period and is associated with zero or more Reservations.

Cabin

A Cabin belongs to a Ship and is associated with zero or more Reservations. All associated Reservations must
have a Cruise with a Ship that matches the Ship for the Cabin on the Reservation.

There's more structure to this list than is immediately apparent. It follows a number of guidelines that help reveal the
important aspects of each entity:

Capitalization

Business entities are capitalized, while simpler pieces of information (date period, subtotal) are not.

"Kind of," "belongs," "has," "is associated with"

These phrases indicate fundamental connections between two entities. We have guessed at specific connection
types for now, though the reality may change as we proceed. "Kind of" may indicate inheritance. "Has" and
"have" may indicate that an entity is the parent in a parent/child relationship, while "belongs" may indicate that
the entity is a child of another entity. "Is associated with" is a relationship too, but with a weaker sense of
ownership (i.e., not parent-child).

Concrete verbs

There are three concrete verbs (create, update, and view), all in the description of the Travel Agent business
entity. These verbs indicate processes or significant responsibilities handled by the entity.

Since we focus on the components that will end up being EJBs, our functional analysis is complete: selecting business
entities is the most important part of the EJB design process.[4]

[4] Business entity identification is part of a complete functional analysis. There is a great deal more involved in
functional analysis for an application: user interface comps, lists of fields or attributes for each entity, and
nonfunctional requirements (the number of users, usage patterns, and so on) are all examples of additional items
you may need to include in a functional analysis in order to design the complete application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you may need to include in a functional analysis in order to design the complete application.

The next step is to look at the technical architecture and its implications for our entities. We'll get to that in just a
moment. First, let's take a moment to diagram our business entities using UML so that we have a clear understanding
of their relationships. While the textual descriptions help define the business relationships, a UML diagram depicts them
more exactly. Figure 19-2 is a UML diagram of our business entities and their relationships.

Figure 19-2. UML diagram of the application's business entities

The UML diagram introduces a Person entity from which we will derive both the TravelAgent and Customer entities.
We've also introduced a mapping entity for mapping Reservation entities to Cabin entities. Otherwise, the UML diagram
states exactly what we described earlier in the text.

The next step is to consider which entities to implement as EJBs, and what types of EJBs to use. But first, it will help to
understand the architecture of the system as aspects of that technical architecture will have direct implications on our
entity implementation choices.

19.2.2 Technical Architecture

Earlier, we depicted our system in a high-level diagram (Figure 19-1). This diagram depicts relationships among various
entities and our system, but not much more. What else do we know about the various interactions of these entities and
our Titan application?

1. We know that connectivity between the external travel agencies and our system is not guaranteed. Since we
are working with a Java implementation of this system, we may want to consider JMS as the communication
mechanism between our system and theirs.

2. Furthermore, we know that communication between our application and external travel agencies will be two-
way (our application must be able to accept reservation requests), but communication between our application
and the shop provision entities need only be one way (we will tell them how many people are attending a
cruise, for example).

3. From our initial description we can infer that making reservations is transactional and involves the following
steps:

Reserve a Cabin for use by a Customer.

Reduce the total number of Cabins by one.

Increase the total number of Customers for whom the provisioning vendor must provide food.

4. These steps could involve up to three different database tables. At a minimum, this might involve the following
database objects and systems:

One to store Reservations.

One to store Cabin availability.

One to store Customer information for provisioning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One to store Customer information for provisioning.

While the complexity of these operations is not clearly defined, we can assume that reservations systems and
the management of cruise and ship data are probably of moderate to high complexity. When combined with the
need for transactional enforcement and the fact that only certain users will be able to execute certain actions
(implied), using EJBs to represent the entities is appropriate.

5. We know that customers and travel agents will be able to access the Titan application over the web. This
indicates that part of our system will involve controlling a user interface. EJBs are not well suited to user-
interface work, so we'll include the use of servlets and JSPs in our system view.

6. We also know that travel agents will be able to further access the system via a standalone Java application,
indicating that some of the communications with the business tier of our application might not come via the
Web.

Using this information, our technical system diagram can be amended as shown in Figure 19-3.

Figure 19-3. Amended system diagram

While it may not look like it at first, we've gotten much closer to identifying our EJBs. Between the new architecture
diagram and our business entity UML diagram, we have all we need to move forward.

19.2.3 EJB Identification

Not all of our business entities will turn out to be EJBs, so the next step in our design process is to identify which of
them should. Our understanding of the application's technical architecture helps. This is not a simple or well-defined
process, like completing a jigsaw puzzle or building a bridge. For all but the simplest of applications, the process of
identifying EJBs in the application's technical architecture presents ambiguity and conflicting requirements. It's not easy
to make the right choices. Fortunately, there are several rules of thumb that will help guide the process.

Let's quickly review the EJB types:

Entity beans

Represent records persisted in a database. Entity beans can often be used to represent the nouns or things
from our functional description. If a business entity has a real-world counterpart, it is probably an entity bean.

Session beans

Manage processes or tasks, often calling other EJBs and non-EJB business objects. Represent taskflows. They
are invoked locally or via RMI, both synchronous mechanisms.

Message-driven beans

Manage processes or tasks, like session beans, but are invoked asynchronously, via JMS or possibly another
messaging system. A message is received by the system and some function of the MDB is executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messaging system. A message is received by the system and some function of the MDB is executed.

19.2.3.1 Identifying entity beans

With these characteristics in mind, let's start out by identifying entity beans in our application.

Guideline #1

The description of entity beans gives us our first guideline: entity beans represent the entities (significant
nouns) from the functional requirements. They are rows in a database table.

Our class diagram was created from the list of business entities in our functional analysis, which are essentially the
things in our functional requirements. We know right away that the components in the diagram are all candidates for
implementation as entity beans. However, not all of them should be implemented as entity beans. Entities that are
read-only may be best implemented using one of the EJB alternatives, such as JDBC or JDO. Read-only entity beans
can take advantage of caching and other vendor-specific optimizations that your container may offer, but they really
don't need the transaction enforcement that EJB provides.

Other factors to bear in mind when making this decision are your team's skill set, the performance ramifications of the
options, and the relative amount of functionality implemented in the options.

You should also avoid logical inheritance with entity beans, in which one entity bean, Customer, is a subclass of another
entity bean, Person, and could be cast to the parent's type. While inheritance works all right for sharing common EJB
implementation code between different EJBs (see the "Base and Utility Classes" section below), never try to implement
logical inheritance with entity beans. The most important reason to avoid logical inheritance derives from the fact that
entity beans correspond to rows in a database table, and inheritance, as an object-oriented concept, is foreign to the
database world. You can't define tables CUSTOMER and TRAVEL_AGENT to inherit the attributes of a third PERSON table.
Moving back to our entity beans, our best option is to remove the inheritance relationship and replace it with a
composition relationship, which is functionally equivalent. Which brings us to the next guideline.

Guideline #2

Guideline #2 involves using composition between entity beans instead of logical inheritance. This means the
Customer and TravelAgent entity beans will have a corresponding Person entity bean. Figure 19-4 shows the
updated class diagram.

Figure 19-4. Updated class diagram

19.2.3.2 Identifying session beans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.3.2 Identifying session beans

While entity beans are the things in our application, session beans implement taskflow. They are the processors and
workhorses; they do stuff. We will identify them by considering the work that our application must do, and a good
starting place is the responsibilities depicted in the class diagram.

Looking over the class diagram, we see TravelAgent has the following responsibilities:

Views Cruises

Creates and updates Reservations

Creates and updates Customers

In any application, functionality seems to clump around one or more entities. Such a grouping of responsibilities often
indicates that a session bean is needed. And this gives us the next guideline.

Guideline #3

Each session bean encapsulates access to data that spans concepts as identified in the functional requirements
analysis and initial technical architecture. So, when we see the clumping, as we do with TravelAgent in our class
diagram, we know that a new session bean needs to be added to the design. However, the business entity (or
actor)—TravelAgent, in this case—will not become the session bean. It indicates where a session bean is needed.
The session bean represents the action the entity takes, not the entity itself. Think of the entity—implemented
as an entity bean—as the subject of a sentence and the session bean as the sentence's verb.[5]

[5] To extend the metaphor, the direct objects of the sentence will be the other entity beans (or possibly
even session beans) that will be used by the session bean when it executes. This approach is the starting
point from which we evolve the Session Façade design pattern, in which session beans encapsulate a
taskflow that uses one or more components.

As for the name for the session bean, a good way to think of it is to create a name that reflects a combination of the
target of the action and the action itself. For example, the TravelAgent creates and updates or "manages" Reservations, so
a good name for our session bean might be ReservationManager. The primary objective of the name is to communicate
what the session bean does. As the session bean encapsulates the responsibilities, each responsibility corresponds to a
method in the EJB. So, our ReservationManager session bean will initially have three methods: bookReservation,
updateReservation, and cancelReservation. These names are also named intuitively, to suggest what they do.

If we follow this line of reasoning, we may think we need to have a separate session bean called a CruiseManager.
However, the only interaction the TravelAgent has with a Cruise is to list it. Furthermore, it could be argued that in the
overwhelming majority of the cases, the TravelAgent will only list Cruises when making a Reservation. For these reasons, it
might make more sense to combine the Cruise functionality and simply add a new listCruises method to the
ReservationManager.

The listCruises method stands apart from the other methods a bit, both in effect (it reads data while the other methods
write data) and in direct object (it returns a collection of cruises while the other methods manipulate a single
reservation).This suggests Guideline #4.

Guideline #4

If a given session bean has a method that's almost always called in the context of another session bean's
function(s), combine the session beans or move the method.

We have now accounted for all the responsibilities depicted in the class diagram, but we haven't accounted for all the
functionality specified in the functional requirements. Creating the initial class diagram from the business entities
initially misses functionality that has no "source" entity. For example, we've focused only on the reservations and the
actions and entities around them. However, a reservation involves a Cruise that has certain characteristics. Some part
of our application must be available to administer these Cruises. Cruises are made up of Cabins and Ships. Our
administration functionality should focus on the management of all three entities: Cruise, Ship, and Cabin.

Our application revolves around travel agency functionality, but without the configuration of the cruises themselves, the
travel agency functionality (creation of reservations, and so on) would be meaningless. Let's add a general session bean
around this and other (to be determined) configuration chores. While we may need to break this into multiple session
beans later, we can start with one called ConfigurationManager.

Here too, we want to give it methods based on the functionality it encapsulates. Since no taskflows are detailed above,
we will assume that all three items need to be created, updated, and deactivated. Thus, these actions (for the three
entities) become nine initial methods:

addCruise

updateCruise

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updateCruise

cancelCruise

addShip

updateShip

inactivateShip

addCabin

updateCabin

inactivateCabin[6]

[6] Most developers would expect to see "deleted" instead of "inactivated," but we have found that it is
more prudent not to let the business tier delete configuration data (and possibly all application data).
Instead, data should be deactivated by the business tier, and deleted only during archival or export to a
data warehouse, according to an agreed upon process.

We can now expand our entity diagram into the class diagram of Figure 19-5.

Figure 19-5. Entity diagram expanded into a class diagram

19.2.3.3 Identifying message-driven beans

Now we need to look for the message-driven beans in the application. As our review of the EJB types reminds us,
message-driven beans (MDBs) implement taskflows like session beans but can be invoked asynchronously. Roughly put,
they are transactional message handlers.[7]

[7] EJB qualities such as object distribution and role-based security enforcement are irrelevant in this context,
because the MDB has no connection to the message sender.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the MDB has no connection to the message sender.

Guideline #5

Each message-driven bean encapsulates related functionality that must be invoked in a transactional manner
when an asynchronous message is received. So, in order to tell where we might want to use message-driven
beans—the same as with session beans—we look for groups of functionality. However, for MDBs the
functionality is usually initiated with the reception of an asynchronous message.

Here's where our system architecture diagram helps us. There are two places where messaging takes place between
our system and another (ostensibly external) system:

Between external travel agencies and the Titan application

Between ship provisioning vendors and the Titan application

As you can see from our functional requirements and the technical architecture diagram, our system receives messages
only from external travel agencies, so we'll focus on the travel agent functionality.

Since we've not been told anything to the contrary, we assume that external travel agent systems function like ours.
Thus, ours should include all the functionality incorporated into ReservationManager. Additionally, the external travel
agencies need some way to retrieve a list of ships and their cabins. This listing ability is included because the external
travel agency systems can only communicate via messaging. This suggests that one or more MDBs could be used to
implement this functionality.

For the Titan application, we will have two MDBs:

ReservationListener

The ReservationListener creates, updates, or cancels one or more reservation in response to a reservation
function message.

QueryListener

The QueryListener retrieves cruise and ship data in response to a query message.

The Naming of MDBs
MDB names, like session bean names, should suggest what the component does. A rule of thumb is to
combine a description of the kind of messages that the MDB receives with the word "Listener."
"Processor" is a common alternative to "Listener," but it is less definitive and thus easier to confuse.

Compare the responsibilities of ReservationListener with those of ReservationManager. The cruise-listing behavior and the
reservation-specific behavior are implemented in separate MDBs. Why? Guideline #4 tells us that if we are only going to
execute a given piece of functionality in the context of a given process, we should combine that function with the
others. This guideline is appropriate for session beans. To add another method to a session bean does not introduce
any complexity to the bean. It's just another method. However, in JMS-based MDB, you have only one onMessage
function. While you can certainly have many different types of messages coming into the queue on which the MDB is
listening, each message type must be processed separately. Each message type adds another significant condition to
the MDB's processing logic. Furthermore, the functionality represented by the various messages for the
ReservationListener will be largely the same, but messages representing queries for cruise information might be different.

While we're talking about JMS-based MDB, it makes sense to discuss the importance of message design. When a
message listener is invoked, the only information it has is the message that it has been passed. In many cases, the
message listener needs specific business information to do its work, and that information is packaged in the message.

Exactly how it is packaged depends on which message type you choose: javax.jms.Message or its subinterfaces
(BytesMessage, MapMessage, ObjectMessage, StreamMessage, and TextMessage). A general rule of thumb is to use
ObjectMessage for messaging between systems that are guaranteed to be Java-based and to use TextMessage for
messaging between potentially non-Java systems. Because ObjectMessage carries a full Java object, the data inside it is
already structured for easy access by the MDB, whereas all but the simplest data embedded in a TextMessage (and the
other types to varying extents) will generally have to be processed before it can be used (by a StringTokenizer, an XML
parser, Integer.parseInt, or something similar).

On the upside, TextMessage (and maybe BytesMessage) is the most universal message type—every messaging system
knows how to send and receive simple text (and also binary data). That said, you should investigate message types and
their trade-offs before making final decisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their trade-offs before making final decisions.

Because we need to accept messages from the greatest variety of external travel agency systems, we will use
TextMessage messages carrying XML payloads. While it requires a heavy XML parser when processing messages, it
provides interoperability benefits that fit our needs.

We've now identified all of the EJBs in our sample application. Figure 19-6 is an updated class diagram.

Figure 19-6. Updated class diagram

19.2.4 EJB Details

Now that we have identified the EJBs in our application along with some of their methods, we are about two-thirds done
with our design. So far, much of the design has flowed almost naturally from our business and technical requirements.
The remaining third of the design is more difficult and requires some hard decisions.

Much of the remaining design work centers on determining each bean's sub-type and interface type (remote or local).
Our application has the following EJBs:

Entity beans

Cabin, Cruise, Customer, Person, Reservation, Ship, TravelAgent

Session beans

ConfigurationManager, ReservationManager

Message-driven beans

QueryListener, ReservationListener

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QueryListener, ReservationListener

We can ignore the MDBs, because they do not have sub-types or interface types—other than javax.jms.MessageListener.
However, we must determine the sub-type and interface type for the remaining EJBs. The attributes are critical to your
application's design, as they dictate the overall usage and implementation of your core business components. For
example, implementing an EJB with a remote interface requires that all invocations of that EJB must catch a
RemoteException. It is not impossible to change these attributes later in your application's lifetime, but it can be difficult.
For example, if we change an EJB from a remote interface to a local interface, we need to review and possibly remove
all the code that was catching RemoteExceptions.

With this in mind, let's determine the sub-type and interface type of our session and entity beans. We start by listing
the decisions, and then discuss the reasoning in the following sections. After reviewing the business and technical
requirements, we implement the EJBs as indicated in Table 19-1.

Table 19-1. Types of session and entity beans
EJB name EJB type EJB sub-type Interface type

Cabin Entity CMP Local

ConfigurationManager Session Stateless Remote and local

Cruise Entity CMP Local

Customer Entity CMP Local

Person Entity CMP Local

Reservation Entity CMP Local

ReservationManager Session Stateless Remote and local

Ship Entity CMP Local

TravelAgent Entity CMP Local

You may have noticed that the two session beans are stateless with remote interfaces, and the entity beans are CMP
with local interfaces. Let's explore how this came about. First, we'll discuss the reasons a particular session bean might
be stateless or stateful.

19.2.4.1 Stateless versus stateful session beans

As their names indicate, the difference between the two sub-types of session beans is the maintenance of state. A
common source of confusion is that we use similar words when we talk about web session state, as with servlets and
other aspects of web-based applications. Session bean state is taskflow-related and should have little or no relation to
the web or presentation tiers of your application. Session bean state is a way of sharing information between multiple
methods of the same session bean. For example, the stateful version of ReservationManager contains the current
Customer, so that it is not passed into the bookReservation, updateReservation, and cancelReservation methods (Figure 19-7).

Figure 19-7. Stateful version of ReservationManager

Contrast that with the stateless version of ReservationManager, in which the current Customer is a parameter for those
methods (Figure 19-8).

Figure 19-8. Stateless version of ReservationManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-8. Stateless version of ReservationManager

The stateful session bean appears more elegant when we need to call bookReservation, updateReservation, or
cancelReservation multiple times. However, that elegance has a cost. Stateful session beans are slower and more
resource intensive than stateless session beans. This makes the choice of stateful session beans a trade-off rather than
a pure benefit.

Perhaps you're thinking, "That's a pretty balanced trade-off." Unfortunately, stateful session beans are not as useful as
they first appear. Remember that stateful session beans share information between multiple methods of the same
session bean. But the methods in the session bean's interface are coarse-grained enough that the application should
only be calling one at any given time. Why would your code call bookReservation and then cancelReservation?

In our example, we wouldn't. However, you will encounter situations where you will need to execute multiple methods
on the same EJB. In that case, you should apply the Session Façade design pattern.[8] In essence, the Session Façade
pattern manages a taskflow, and it can manage information just as a stateful session bean does. Even better, it offers
the same transaction and security management between multiple EJBs. Thus, stateless session beans with the Session
Façade pattern are preferable to stateful session beans.

[8] There are four design patterns that will often be used in the design of EJB applications: Session Façade, Data
Access Object, Transfer Object, and Business Delegate. We will not cover these in detail in this chapter. For more
information, see the Design Patterns section of the Sun Microsystems site at
http://java.sun.com/blueprints/corej2eepatterns/Patterns/.

19.2.4.2 Container-managed versus bean-managed persistence

The decision to use containter-managed or bean-managed persistence for an entity bean determines the bean's
persistence mechanism, affecting the bean's implementation. BMP beans must implement their data access, while CMP
beans are implemented by the container. BMP offers greater flexibility in the datastores your application can use and
how your application integrates with them. CMP beans can only use datastores that the container knows about, usually
those with JDBC drivers. The flexibility of BMP can be essential if you need to integrate with external systems, making a
good match with the Java Connector Architecture. BMP is also an option with entity beans that require complex data
operations, such as those spanning multiple datastores or multiple tables in one datastore.

However, this heightened flexibility has a cost: you must develop data access functionality yourself, rather than
depending on the container. This means that BMP beans require more effort to develop and maintain. CMP beans are
virtually guaranteed to integrate flawlessly with the container, while BMP beans may contain code that is not EJB safe.
BMP beans that integrate with external systems should hide the operational and semantic differences between EJB and
the external system's technology. Otherwise, the external system may cause all kinds of potentially serious side effects,
some subtle and unpredictable. Also, BMP code may not be portable—which makes sense for code that is specifically
written for complex data operations or integration with external systems.

CMP beans don't have these issues. Here are some considerations about CMP:

CMP is easy to build and maintain. It requires only the creation and maintenance of deployment descriptors and
the rest of the abstract persistence mechanism.

CMP can persist to any JDBC-capable datastore, which is sufficient for most applications.

CMP and CMR are fully capable of implementing simple to moderately complex data operations, which will
generally cover most of your needs.

CMP is fully integrated into the container, so there is less concern about dangerous code or unpredictable
external systems. This also allows you to take advantage of vendor-specific features more easily.

Don't use BMP beans unless the requirements supporting them are strong and clear-cut. If you are using BMP beans to
integrate with external datastores, locate or create as much documentation as possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integrate with external datastores, locate or create as much documentation as possible.

19.2.4.3 Local versus remote interfaces

Don't use remote interfaces unless you really have to: it can't be emphasized enough. Distributing your EJBs adds a
whole layer of complication that is often unnecessary. There are the basic, only somewhat irritating issues, such as
handling RemoteExceptions in your client code, and there are the complex, intractable issues, such as loss of performance
and reliability when your components must operate across a network. One big complication is that remote interfaces
(and the implementation they present) are often difficult to change, because the remote interface will be used by other
systems or applications that may be resistant to change.

Our application clearly needs to be distributed: it must support the standalone Java client that our internal travel agents
will use. In your application, take a long, hard look at any requirements that push you in the direction of distributed
components. Approach such requirements as with BMP:

Understand the requirements in detail and validate them.

Determine whether the requirements truly merit being implemented as distributed EJBs.

Document the detailed requirements before initiating development in order to ensure agreement and to prevent
scope creep.

If, after this process, you determine that you need distributed functionality, your next task is to identify which EJBs
should be implemented with remote interfaces and which should stay as local interfaces. In our application, travel
agents will use the standalone client to access the full range of application functionality. We already know that session
beans are the workhorses of our application—which is why we have exposed the session beans via remote interfaces.

However, none of our entity beans use remote interfaces. Why not? Remember that session beans encapsulate
taskflows that manage entity beans, especially when we make good use of the Session Façade pattern. If our session
beans are well designed, there should be no need to access entity beans remotely. Also, recall that CMR requires the
dependent entities have local interfaces. So we avoid remote interfaces for entity beans.

In that case, how do we pass the entity data, such as cruise information, across the remote interface? Good answers to
this question are provided in Returning Entity Data from EJBs. The Transfer Object pattern is preferable to the other
approaches when working with remote interfaces. Transfer Objects complement the strict interface of EJB components,
and most EJB applications will have Java clients.

In the EJB list above, we chose to implement both remote and local interfaces for our session beans. While this does
result in slightly more code to build and maintain, it is a good idea to use the local interfaces in the code that runs
inside the application server, such as servlets or JSPs. The small duplication is worth avoiding the remote interface.

Thus, our interface recommendations are:

Use remote interfaces only if you must, and only for session beans.

Insist that entity beans have only local interfaces.

Implement local interfaces for session beans if there will be code calling them from inside your application
server.

19.2.5 Fleshing Out the Design

Now that you've determined the major aspects of your EJBs, all that remains is to complete the design down to the
class and method level. This is the same task you would do for any application, so we will not cover it here. However,
this stage can undo or compromise a good EJB design if it is executed poorly. This section discusses the two most
critical lessons we have learned to keep an EJB design in good shape.

19.2.5.1 Minimize transaction scope

As you flesh out your EJBs, especially session beans, make sure that your transactions have the smallest scope
possible. By scope, we mean the number of operations executed and the number of components used. Operations
executed inside a transactional context require more container management than nontransactional operations, and this
management generally results in limitations and performance costs. The limitations depend on the container, database,
and other transactional components of your application. Exceeding these limitations can create problems that depend
greatly on the execution environment and the exact processing being done.

This variability often makes diagnosis and troubleshooting of transactional problems difficult, so the best approach is to
minimize transactional scope during design or early in coding. Here is how to identify possible transaction resource
problems:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Understand the transactional capabilities and constraints of your EJB container, your database, and other
subsystems. You should be concerned with what resources are limited during a transaction. Remember to check
both the vendor documentation and any specification documentation.

2. Identify the complex taskflows in your application. Focus on functionality that iterates through EJBs, aggregates
through data, or chains EJBs (where one EJB calls another, which calls another, and so on) inside a single
transaction.[9]

3. Estimate the amount of processing that the taskflows will perform. Consider the data entities used in the
taskflows, and determine the maximum number of each entity that your application will support.[10] This
knowledge can help you determine how many EJBs will be used. Also, consider non-EJB resources, such as
database cursors. Combine this data with the steps and dependencies of each taskflow to produce a list of
resources used.

4. Compare the list of resources used by each taskflow to the relevant setting or constraint. For example, the total
number of EJB instances is limited by the max-beans-in-pool deployment descriptor setting. Where the resources
used could exceed the available resources, you will need to minimize the transactional scope.

Repeat this evaluation if you make significant changes to your EJBs, especially after revisions that affect your session
beans.

19.2.5.2 Don't confuse EJB types

This may seem like a no-brainer, but don't try to make one EJB type behave like another. If you've been paying
attention throughout this book (you have, haven't you?), the differences between EJB types should be pretty clear in
your head. Session and message-driven beans manage processes (synchronously and asynchronously, respectively),
entity beans persist data, and everyone is happy. That's great! There are two possible wrinkles:

Not everyone has read this book; some people will have different understandings of how to design EJBs.

Your application will evolve, and the changes may alter your EJB design.

As a consequence, you may find some of the following in your application:

A custom JMS listener that calls a session bean.

Session beans presenting getters/setters for individual data items.

Entity beans containing complex business logic.[11]

[11] We once saw a BMP entity bean designed to retrieve and manage a hierarchical collection, a tree, of
key-value pairs. The entity bean contained data elements from the key table and the value table, all held
in multiple instances of the same kind of entity bean. The entity bean contained the necessary logic to
populate, traverse, and persist the entire tree of data.

These are all bad things.[12] If you see these or any similar misconceptions about what each kind of EJB does, do
everything you can to fix them ASAP. Depending on the exact circumstances, the consequences may be minor—an
additional class or two requiring creation and maintenance—or they may make the EJB nonfunctional or impossible to
maintain.

[12] Can you identify the kinds of EJBs the examples should be? Hint: a message-driven bean, an entity bean, and
a session bean.

19.2.6 Special Circumstances

Any application will have features that are best implemented by combining two or more technologies. We'll look at
several scenarios where EJB technology may need to be combined with other technologies and give some approaches to
melding them successfully.

19.2.6.1 Returning entity data from EJBs

In all but the simplest applications, you will need to return data from your EJBs. This data will be used by other
components, other tiers of the application, and maybe even other systems. While EJBs, specifically entity beans, could
fulfill this need, there are several reasons why entity beans should not be used outside the EJB container (see the
"Local versus remote interfaces" section, above).

The Transfer Object pattern is one solution to this problem. It provides lightweight objects specifically for sending data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Transfer Object pattern is one solution to this problem. It provides lightweight objects specifically for sending data
outside the EJB container. We can also use some other approaches to represent an entity's data, such as an array of
Strings, a Map of field-value pairs, a JDBC ResultSet, or XML. These approaches are generally more loosely coupled than
Transfer Objects, providing greater flexibility with commensurate costs. Here's a quick summary of the pros and cons of
each approach:

Transfer objects

The available data is set in code, which makes for a strict interface. The remote client must be Java-based.

Array of Strings

There is no metadata, so the data order of the array must be known ahead of time, which makes for a
unintuitive interface. The remote client does not need to be Java-based.

Map of field-value pairs

The field names in the Map provide some metadata, so data ordering is not a constraint. No type information is
provided, so that must be specified or not needed. (For example, by assuming everything is a string.) This may
handicap the interface for some complex business taskflows, but it is sufficient for most situations. The remote
client must be Java-based.

JDBC ResultSet

This provides full metadata, making it useful for even the most complex taskflows. On the downside, the remote
client must be Java-based.

XML

XML can express multiple levels of metadata and relationship complexity. Thus, it can be equivalent to the Map
approach, equivalent to the ResultSet approach, or even express a complete entity hierarchy. The remote client
does not need to be Java-based, but XML imposes some performance penalties. It is not very size-efficient,
resulting in higher memory usage and slower network transmission, and it must be parsed to be
programmatically accessed.

You have lots of freedom in how you choose to implement these approaches. For example, you could implement a Map-
like structure using arrays of Strings to get the benefits of the former while remaining platform-agnostic. However, the
benefits of that approach may be offset by the effort needed to build it.

One drawback to these approaches is that the data is a snapshot. If the underlying data changes, none of these
structures will know. Therefore, it's possible that changes to the underlying data could render the data contained in
these structures incorrect. This risk can be mitigated by the following data latency strategies:

Use the data only during a limited lifetime, say, during a single UI request. Then discard it.

Always validate your business preconditions and process inputs before executing a taskflow. Do not blindly
execute business logic. That way, you can always ensure that the right thing happens.

Buy or build a caching framework that integrates with your EJB code or your EJB container.

Of course, all of these strategies have downsides. You will need to balance the trade-offs of entity beans, these
"snapshot" approaches, and the above data latency strategies against your requirements.

19.2.6.2 Sequential processing with EJBs

Many applications, especially those focused on business operations, require sequential ("batch") processing, such as for
an end-of-day process. In these kinds of taskflows, a series of well-defined steps are executed, and many of these
steps involve processing a collection of entities. For example, our travel agent application might have an end-of-day
process wherein it iterates through all the Customers and generates an invoice record for any new Reservations.
Another step might populate reporting tables in a database. There are many other possible steps.

EJB makes implementing these features both easier and more difficult. It is easier because of the transactional
enforcement and the logical assignment of responsibilities. After all, the application will make multiple changes in each
step (at least one to each entity), and wrapping the changes in a transaction might save us from having to keep track
of which entities we've processed and which we haven't. It makes sense to put any processing logic in one place, such
as a session bean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as a session bean.

On the other hand, sequential processing can be challenging because of EJB's performance and resource overhead, and
the constraints of transaction enforcement (see the "Minimize transaction scope" section, above). The more steps
involved in your taskflow, the more likely you will be to exceed your system's capabilities. The same is true as more
EJBs (entity or session) are used in the taskflow: each additional EJB slows the processing that much more, perhaps
unacceptably. Additionally, a gargantuan transaction that takes a long time to complete can have extreme concurrency
ramifications.

The bottom line is EJB alone will probably not be successful here. A framework must be developed that incorporates EJB
but is not limited by EJB. The heart of the framework is a process controller that knows how to execute a series of
steps, each in its own transaction. Part of the process controller is implemented as a session bean. Then you can group
the logical tasks of the business process into separate transactional steps. Each of these steps is implemented as a plain
Java class that in turn calls the best feasible technology, and each class is called by the process controller. For example,
aggregating reporting data in a database might be best implemented as a database stored procedure. Figure 19-9
illustrates a rough UML diagram of the framework.

Figure 19-9. Rough UML diagram of the framework

In short, the sequential processing in your application will probably require some creative integration of EJB and other
technologies. Be willing to explore different technologies to serve your needs.

19.2.7 Exceptions

Exceptions are fundamental to error notification and management in Java. Understanding exceptions and how to handle
them is even more important in EJB because exceptions have a significant effect on transaction control. Be sure to
review the section on exceptions and transactions in Chapter 16.

Exception design for EJBs is essentially the same as general exception design. The most noticeable difference is that
EJB distinguishes between application and system exceptions rather than checked and unchecked exceptions. System
exceptions are the same as unchecked exceptions (java.lang.RuntimeException and its subclasses), and application
exceptions are checked exceptions—with one exclusion. That exclusion is java.rmi.RemoteException and its subclasses,
which is used to indicate an underlying problem with a remote EJB call, such as a communication failure. As such,
RemoteException appears in each EJB method in the interface, but not in the corresponding implementation.

There is an informal category of checked exceptions that deserve special treatment. We call them subsystem
exceptions. As the name indicates, subsystem exceptions are checked exceptions thrown by a subsystem of the JVM or
a resource, such as JDBC or JMS. For example, IOException is thrown by the I/O subsystem; JMSException is thrown by
JMS; SQLException is thrown by JDBC, and so on. When one EJB calls another (by its remote interface), you treat
RemoteException as a subsystem exception.

Here are the fundamental steps in exception design:

1. Determine what application exceptions are needed.

2. Design an exception hierarchy for the application exceptions.

3. Wrap subsystem exceptions.

4. Everything else will be system exceptions.

19.2.7.1 Identifying application exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.7.1 Identifying application exceptions

The first step is to determine the application exceptions. Application exceptions encapsulate business errors that
prevent the completion of a taskflow. The user should be notified, or the application should attempt to recover from the
error, or both. The essential criterion is that the error needs to be propagated several layers (at least) up the
application call stack. For example, the Titan application would throw an application exception if a reservation could not
be completed because the desired cruise was sold out, and this exception would cause the user interface to display an
error message. Avoid scenarios where application exceptions are used as costly if-then statements or other forms of
flow control. Exceptions are exceptional.[13]

[13] Because throwing exceptions is costly, your application should take reasonable steps to avoid predictable
exceptions. In other words, be sure to check the preconditions at the beginning of all taskflows and methods. This
also avoids performing part of a taskflow only to have to roll it back, which is a waste of time and resources. For
example, check if the cruise is sold out before attempting to create a reservation. While the cruise might sell out in
the split second between the check and the creation, it's unlikely 99% of the time.

Application exceptions can often be identified almost straight from your business requirements, so if the requirements
are fully defined, much of the work in this step is already done. The trick is to make sure your exceptions focus on error
conditions. Some developers have used exceptions for user interface control, which is bad. For example, if a query for
cabin information from the Titan application had no results, it is better to return an empty Collection than throw an
exception. Exceptions should be reserved for errors, and other mechanisms should be employed for controlling user
interaction.

19.2.7.2 Design the exception hierarchy

After you have determined what application exceptions you need, incorporate them into a class hierarchy. A hierarchy
provides at least two benefits:

Common functionality can be implemented in superclasses.

A package-specific superclass can be used in throws clauses instead of listing multiple subclasses. For example,
the signature can show InventoryException instead of CabinSoldOutException, DeckSoldOutException, and
CruiseSoldOutException.

Here are some specific steps to assist in creating the hierarchy:

1. Always have a base class, probably abstract, to contain general exception functionality. This can be called
AbstractException.

2. AbstractException should also contain code and attributes for passing at least two error codes: one for user
notification and another for developer notification. The codes should correspond to entries in a resource bundle
or other text localization mechanism. Short, mnemonic textual codes ("AVAILABLE_INVENTORY_EXCEEDED")
rather than numeric or otherwise cryptic codes ("I-01765") are preferable.

3. Create a subclass of AbstractException for each major package, e.g., InventoryException, GuestException.

4. Package-specific exceptions can be subclassed as necessary to indicate particular error conditions. As
mentioned above, CabinSoldOutException, DeckSoldOutException, and CruiseSoldOutException are possible subclasses
of InventoryException. Use as many subclasses as you need.

5. When designing the EJB interfaces, start out by listing all exceptions that each method can throw. A rule of
thumb is that if three or more exceptions thrown by a method are subclasses of the same package-level
exception, replace them with the package-level exception.

19.2.7.3 Wrap subsystem exceptions

Subsystem exceptions should not appear in your EJB method signatures. The EJB interface presents functionality and
data from a business perspective, while subsystems are implementation-specific. If you cannot recover from a
subsystem exception inside your EJB, always catch and rethrow it wrapped in an EJBException.

try {

 ...

} catch (SQLException se) {

 throw new EJBException("SQLException caught during processing: " +

 se.getMessage(), se);

} catch (RemoteException re) {

 throw new EJBException("RemoteException caught during processing: "

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new EJBException("RemoteException caught during processing: "

 + re.getMessage(), re);

}

19.2.8 Base and Utility Classes

As you design your EJBs, you will begin to spot areas of common functionality. For example, since several classes and
functions deal with reservations in the Titan application, several of the implementations may require the use of startDate
and endDate parameters. They may even be of similar type (i.e., java.util.Date or something similar). As another example,
suppose the DBA for your application's database decides that there will be a timestamp column named LAST_MODIFIED
in all database tables. Every single entity bean in your application will support this field. Furthermore, the
implementation of this field will have to remain consistent across all implementations of all entity beans in order to be
of use.

As a final example, consider the EJB implementation interfaces javax.ejb.EntityBean, javax.ejb.SessionBean, and
javax.ejb.MessageDrivenBean. All require that our EJBs implement various container callback methods, regardless of
whether they are actually implemented or not. For example, stateless session beans require but do not use ejbActivate()
and ejbPassivate().

Each one of these situations adds some amount of code to every EJB; code which must be written and maintained. To
avoid this development overhead, consider implementing this functionality in either base classes or utility classes, as
appropriate. While it might not make sense to build a unique base class for two separate EJBs, if you have 10, suddenly
the time investment in building the base class more than pays for itself.

As discussed here, a base class is generally declared abstract and inherited by your EJBs. They implement methods
needed by all or several EJBs. A utility class implements generalized, frequently used structures or functionality. Utility
classes are often used across several packages and really can't be assigned to a specific domain area.

19.2.8.1 Base classes

We will create base classes for our EJBs that contain empty implementations of the container callback methods as well
as methods for getting and setting the EJB context. Since the specific set of callback methods and the EJB context class
depend on the type of EJB, we will create three base classes: AbstractEntityBean, AbstractSessionBean, and
AbstractMessageDrivenBean. In addition, we will add support for the LAST_MODIFIED timestamp column, as it is a common
feature in EJB applications. This step requires that we incorporate two abstract methods (getLastModified() and
setLastModified()) into the AbstractEntityBean class.

This is the code for AbstractEntityBean:

package com.titan.common;

import javax.ejb.EntityContext;

import javax.ejb.EntityBean;

import java.sql.Timestamp;

public abstract class AbstractEntityBean implements EntityBean {

 private EntityContext entityContext = null;

 public void setEntityContext(EntityContext context) {

 entityContext = context;

 }

 public EntityContext getEntityContext() {

 if (null == entityContext) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (null == entityContext) {

 throw new IllegalStateException("The entity context has " +

 "not been set.");

 }

 return entityContext;

 }

 public void unsetEntityContext() {

 entityContext = null;

 }

 public void ejbActivate() {

 }

 public void ejbPassivate() {

 }

 public void ejbLoad() {

 }

 public void ejbStore() {

 }

 public void ejbRemove() {

 }

 public abstract Timestamp getLastModified();

 public abstract void setLastModified(Timestamp lastModified);

}

This is the code for AbstractSessionBean:

package com.titan.common;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

public abstract class AbstractSessionBean implements SessionBean {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private SessionContext sessionContext;

 public void setSessionContext(SessionContext context) {

 sessionContext = context;

 }

 public SessionContext getSessionContext() {

 if (null == sessionContext) {

 throw new IllegalStateException("The session context has " +

 "not been set.");

 }

 return sessionContext;

 }

 public void unsetSessionContext() {

 sessionContext = null;

 }

 public void ejbActivate() {

 }

 public void ejbPassivate() {

 }

 public void ejbCreate() {

 }

 public void ejbRemove() {

 }

}

And here's the code for AbstractMessageDrivenBean:

package com.titan.common;

import javax.ejb.MessageDrivenBean;

import javax.ejb.MessageDrivenContext;

public abstract class AbstractMessageDrivenBean implements MessageDrivenBean {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private MessageDrivenContext messageContext;

 public void setMessageDrivenContext(MessageDrivenContext context) {

 messageContext = context;

 }

 public MessageDrivenContext getMessageDrivenContext() {

 if (null == messageContext) {

 throw new IllegalStateException("The message context has " +

 "not been set.");

 }

 return messageContext;

 }

 public void unsetMessageDrivenContext() {

 messageContext = null;

 }

 public void ejbCreate() {

 }

 public void ejbRemove() {

 }

}

Empty implementations of ejbCreate() have been provided for the session and message-driven bean base classes. We
did not provide an ejbCreate() for the entity bean base class because each entity bean's ejbCreate() must return that
bean's primary key type.

Our bean implementation classes will now extend the appropriate base class, like so:

public abstract class CabinBean extends AbstractEntityBean {

 ...

}

public class ReservationProcessorBean extends AbstractMessageDrivenBean

implements javax.jms.MessageListener {

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

}

public class TravelAgentBean extends AbstractSessionBean {

 ...

}

MDBs must still implement the javax.jms.MessageListener interface.

With these changes, we have decreased the amount of code we have to write and maintain. During the implementation
phase, you will probably find additional code that can be moved into the base classes.

Using base classes in this way presents three pitfalls:

If you only have a few EJBs, you will spend more time creating and using the base classes than you will save.

You will gain no benefit if you have to override more than a few methods in the base classes. This is especially
likely with the container callback methods when you are creating stateful session beans.

You will not be able to inherit functionality from another class. If you need to do so, you will have to decide
whether to copy the base class methods to your EJB or to access the other class's functionality in another
manner, such as composition.[14]

[14] I have never seen a case where an EJB should subclass a class other than with a base class, and a
requirement like that is suspicious.

19.2.8.2 Utility classes

Now that we have taken care of the base classes, let's turn to the utility classes. Utility classes are hard to define
precisely, because they include generalized data-holding classes, such as a DateRange class that encapsulates a start
date and an end date, and non-data classes that contain infrastructure-related, library-like, and convenience methods.
Examples of non-data classes include a StringUtils class containing String manipulation functionality, an ObjectUtils class
containing various equality and comparison convenience methods, or a DatabaseUtils class containing primary key
generation and database connection functionality. Data-holding classes can be more ambiguous. Determining whether
they are utility classes or domain-specific types will depend on your particular application and design. For example, a
Money class that combines an amount and a currency could be considered a generalized, cross-package class or a
finance-specific class.

The primary benefit of utility classes is reducing code duplication, which makes it easier to fix or improve your
application without risking shotgun surgery.[15] Utility classes can also increase code readability.

[15] Shotgun surgery takes place "...when every time you make a kind of change, you have to make a lot of little
changes to a lot of different classes." (From Refactoring: Improving the Design of Existing Code by Martin Fowler,
published by Addison-Wesley.)

You will discover candidate utility classes as you implement your design. The biggest sign that you might need a utility
class is code duplication. If your code performs the same or very similar logic multiple times, or if two or more classes
always accompany each other in methods or method signatures, you have a possible utility class (more correctly, a
possible utility method or a possible utility class). Here's a method that might belong in a utility class:

 public static boolean isEmpty(String str) {

 return ((str == null) || (str.trim().equals("")));

 }

The isEmpty method is very simple, but implementing it in a utility class is worthwhile if you check for null or empty
Strings often enough—say, when validating method arguments. I would put this method in a StringUtils class.

Here's an example of a data-holding utility class: suppose you have a series of classes with method signatures that
require both a currency and an amount parameter every time:

public Ticket bookPassage(CreditCard card, double price, Integer currency)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Ticket bookPassage(CreditCard card, double price, Integer currency)

If you created a Money class, the modified method from the TravelAgent session bean would look like this:

public Ticket bookPassage(CreditCard card, Money amount)

A DateRange utility class is a common requirement in handling reservations. For example, say that we had added
startDate and endDate virtual persistence fields to the Cruise EJB:

public Date getStartDate();

public void setStartDate(Date start);

public Date getEndDate();

public void setEndDate(Date end);

Because travel agents will want to search for cruises by these fields, we have added a listMatchingCruises method to the
TravelAgent EJB:

public Collection listMatchingCruises(Date start, Date end) throws RemoteException;

After a DateRange class is created, this method changes to:

public Collection listMatchingCruises(DateRange range) throws RemoteException;

While reduced duplication is the most obvious benefit to implementing utility classes, an additional benefit is that
reduced duplication makes the interface more coherent: it's easier to understand a method signature with a date range
than a method signature with separate parameters for the start and end dates. Likewise, it's easier to understand a
Money parameter than separate price and currency parameters. Everyone who touches the revised bookPassage and
listMatchingCruises methods—their developers, the developers of any client code, or some college intern tasked with
maintaining the code a year or two down the line—will have a more intuitive grasp of what those methods expect.

Unfortunately, knowing when to implement this type of refactoring comes with experience. Fortunately, there is an
excellent book on refactoring: Martin Fowler's Refactoring: Improving the Design of Existing Code (Addison-Wesley).
Take a look for other ways to identify candidates for utility classes (and for other ways to refactor your code).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.3 Should You Use EJBs?
This book assumes that you've already made the decision to use EJBs. However, there are several instances where EJBs
are not the best solution to a problem. It makes sense, therefore to review where EJBs are strong and then discuss
situations in which EJBs don't make as much sense. There are several situations—even some enterprise database-
centric applications—in which EJBs are simply not the best choice. At the end of this section, we'll look at some of the
alternative approaches and where they might fit.

19.3.1 When to Use EJBs

Here's a list of situations where EJBs are strong; we haven't distinguished between different types of EJBs.

Single and multisystem business transactions

The ability to maintain transactional integrity for complex business entities is one of an EJB's key strengths.
EJBs aren't alone in providing straightforward transactional control over a single data repository. However, EJBs
shine where multiple resources (relational databases, messaging systems, etc.) are involved because they allow
transactions to spread across as many different resources as you like, so long as the resources support
distributed transactions.

Distributed functionality

Business services often live on a remote server. For example, a business enterprise will have many different
systems, ranging in degrees of inflexibility and entrenchment. One of these systems may need to access
another; EJBs, which are inherently distributed, are often the simplest way to distribute remote services. EJB
also allows you to provide business services to remote clients more easily than some alternatives. Remote
access through components is easier to maintain than direct database access, because the component code can
shield the client from database schema changes.

Portable components (not classes)

Until recently, if you wanted to share your business services with another application developer, you were
forced to share classes or at least packages. Java did not allow for the easy creation of enterprise components,
reusable software building blocks that can be assembled with other components to form an application. EJBs
allow you to package your business logic into a tidy, distributable unit that can be shared in a loosely coupled
fashion. The user of your component need only tweak a descriptor file for her environment.

Applications relying on asynchronous messaging

EJBs (specifically MDBs) provide a strong technology for handling asynchronous communication such as JMS-
based messaging or web services.

Security roles

If your application's business operations can be mapped to specific business roles in your enterprise, then EJBs
may be a good choice. So much is made of the transaction management capability of EJBs that their
deployment-descriptor-based security management features are overlooked. This capability is very powerful; if
your application's users fit into distinct roles and the rules for those roles dictate which users can write what
data, EJBs are a good choice.

19.3.2 When Not to Use EJBs

There are several situations in building a software application—even an "enterprise" software application—in which
using EJBs may actually be a barrier to meeting your business goals. The following list represents places where you
might not want to use EJBs:

Read-mostly applications

If your application requires only (or even mostly) database reads (as opposed to writes), then the added

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your application requires only (or even mostly) database reads (as opposed to writes), then the added
complexity and performance overhead of EJBs may be unwarranted. If your application is only reading and
presenting data, you should go with straight JDBC (see below) or another persistence mechanism. That said, if
your application's writes (database update and inserts) require transactional support (especially if those
transactions go over multiple systems), then EJBs may be the way to go—at least for the write portion of the
application.

Applications requiring thread control

If your application design requires extensive use of threads, then the EJB spec actually prevents you from using
EJBs (although some EJB container vendors may provide nonportable ways around this restriction). Container
systems manage resources, transactions, security, and other qualities of service using threads; threads you
create are outside of the container's control and can potentially cause system failures. Also, EJB containers may
distribute EJBs across multiple JVMs, preventing the synchronization of threads.

Performance

Because EJBs do so much more than plain Java classes, they are slower than plain Java classes. The EJB
container has to do a lot: maintain transactional integrity, manage bean instances and the bean pools, enforce
security roles, manage resources and resource pools, coordinate distributed operations, synchronize shared
services (if the vendor offers clustering capabilities), and so on. The security and transactional management
operations can have a significant impact on the performance of method calls (on both local and remote
interfaces). If you require real-time or near-real-time performance characteristics, EJB may not be your best
choice.

19.3.3 Alternatives to EJB

There are several alternatives to EJB; some of them are growing in popularity and maturity. EJBs still rank as the de
facto standard for enterprise transactional needs, but some of the alternatives, like JDO, are also available.

19.3.3.1 JDBC

The first (and likely most common) alternative to using EJB is to write straight JDBC functions. While EJB provides you
with many niceties, there are situations in which JDBC makes more sense. The simplest case is when your application is
only reading (and not writing) data from a database table in a row-column format (list displays, for example). In this
scenario, using EJB would not only be more complex but also quite a bit slower than straight JDBC.

If you are writing only simple rows of data without parent-child or foreign key relationships it may be better to use
JDBC—especially if your application is built for a single user working with a single database or multiple users using a
single database with little chance of contention while writing (relatively rare writes). This case is a little more
ambiguous, because you are writing as well as reading data. But if the way you're using the database is simple, JDBC
may end up being easier.

However, there is one scenario in which people often go with JDBC when EJB might make their lives easier. Say that
you have no need of transactional support and the data with which you are interacting does not involve parent-child or
foreign key relationships, but you still need to represent that data as an object (potentially in relation to other objects
that also represent data). To be more specific, suppose your application handles only contact management. The
application may not write data very often and there may be little need for the transactional support or security provided
by EJB. However, your application needs to represent contacts (and their affiliated phone numbers, addresses, and so
on) as business objects. The ease with which EJB can help you represent this data as business objects, specifically as
entity beans, may save a great deal of time.

The situations in which straight JDBC is preferable to EJB are not concrete. You should use straight JDBC when the need
for speed outweighs the need for transactional support or security provided by EJB. Here's a simple example that uses
JDBC:

import java.sql.*;

public class JDBCExample {

 public static void main(java.lang.String[] args) {

 try {

 // Load driver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Load driver

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 }

 catch (ClassNotFoundException e) {

 System.out.println("Cannot load driver.");

 return;

 }

 try {

 // Connect to database.

 Connection con = DriverManager.getConnection("jdbc:odbc:contactdb",

 "", "");

 // Create SQL Statement and execute.

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT name FROM contacts");

 // Display the SQL Results.

 while(rs.next()) {

 System.out.println(rs.getString("name"));

 }

 // Release database resources.

 rs.close();

 stmt.close();

 con.close();

 }

 catch (SQLException se) {

 // Display error message upon exception.

 System.out.println("SQL Exception: " + se.getMessage());

 se.printStackTrace(System.out);

 }

 }

}

JDBC is very straightforward; it allows you to access your data repository directly. However, you must understand a fair
amount of the underlying mechanics in order to use it (SQL, database connection properties, and so on). Now, in a
"real" application using JDBC, you centralize most of this code into a few classes, but you still must write all the SQL
yourself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3.3.2 Java Data Objects

Java Data Objects or JDO is a recent Sun specification for database persistence and access with Java. According to the
JDO specification (JSR 12), its objectives are:

...first, to provide application programmers a transparent Java-centric view of persistent information,
including enterprise data and locally stored data; and second, to enable pluggable implementations of
data stores into application servers.

This description sounds very similar to the objectives laid out for JDBC or EJB. Why another specification to allow for
database connectivity and use? For one thing, after setting up a mapping file, you need not deal with database
information again; you can access data as you would access Java objects. You can edit and delete data using a
"persistence manager" (more on this in a moment) that insulates you from having to deal directly with the SQL
involved.

But EJB does these things as well. Once you have set up your EJB and created a suitable descriptor file, you deal with
the data through the use of the objects representing the data (as opposed to through result sets as in JDBC, for
example). However, JDO allows for a simpler mapping (JDO mapping files are simpler than EJB descriptor files); in
addition, there's no mucking about with remote and home interfaces. JDO classes look like any other classes.

There are six basic steps to using JDO in your applications:

1. Create a Java class that represents the underlying database business entity.

2. Create a metadata file containing information about the fields of your Java class. This metadata file can contain
data about your already existing database, or not. If it does not, you can run a schema builder that looks at this
object and generates the SQL for the database generation.

3. Compile your Java to a .class file.

4. Run the JDO enhancer against your metadata file. The enhancer grabs your class name from the metadata file
and uses it to grab the compiled .class file. The enhancer then modifies the .class file—at the bytecode level—to
implement JDO's PresistenceCapable interface.[16]

5. Run the JDO schema builder[17] against your metadata file and the (now modified) .class file for your Java class.
The schema builder generates DDL SQL that you can use to create the database objects required for your newly
modified JDO class. (Optional)

6. Create an application that uses your Java class. This application will use the PersistenceManagerFactory and
PersistenceManager classes from your JDO implementation. These two classes are your handlers for interacting
with your newly created class file.

The best way to demonstrate this process is through a brief example. We'll create a very simple Contact class and uses
JDO to persist it to a database. We use the LIBeLIS LiDO JDO implementation (community edition). In this
implementation, the generation of a database schema involves the use of a separate application from the JDO
enhancer:

package com.oreilly.ejb.jdoexample;

public class SimpleContact {

 public String name;

 public String ssn;

 public AddressImpl(String pName, String pSsn){

 this.name = pName;

 this.ssn = pSsn;

 }

 public String getName() {

 return this.name;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public String getSsn() {

 return this.ssn;

 }

 public void setName(String pName) {

 this.name = pName;

 }

 public void setSsn(String pSsn) {

 this.ssn = pSsn;

 }

}

The SimpleContact class contains no details on how the information will be persisted to the database, nor the fact that it
will implement the PersistenceCapable interface.

Next, we create a metadata file for SimpleContact, called SimpleContact.jdo:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "file:/c:/work/jdo.dtd">

<jdo>

 <package name="com.oreilly.ejb.jdoexample">

 <class name="SimpleContact" identity-type="datastore">

 </class>

 </package>

</jdo>

This code is pretty straightforward. The metadata points to the location of the JDO DTD (which you can get from your
implementation), the package name for your class, and the name of the class itself.

We'll assume you compile your SimpleContact.java file to SimpleContact.class. Now you must "enhance" the
SimpleContact.class file so that it implements the JDO PersistenceCapable interface like so:

java com.libelis.lido.Enhance -metadata SimpleContact.jdo

This command reads the SimpleContact.jdo file, uses it to find SimpleContact.class, and modifies its bytecodes to
implement the JDO PersistenceCapable interface. Next, you can build a schema like this:[18]

[18] There are several details carefully ignored here so as not to interfere with the JDO example. For example, we
will not cover the setup of the MySQL JDBC driver or MySQL itself.

java com.libelis.lido.ds.jdbc.DefineSchema

 -driver org.gjt.mm.mysql.Driver

 -database jdbc:mysql://localhost/jdoexample

 -metadata metadata.jdo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -metadata metadata.jdo

This generates a series of SQL files (not shown) that you can use to generate the database for your SimpleContact data.
All that's left is to create an application that allows you to use your new persistent object. The following class allows you
add a new SimpleContact instance to the database:

package com.oreilly.ejb.jdoexample;

import javax.jdo.PersistenceManagerFactory;

import javax.jdo.PersistenceManager;

import javax.jdo.Transaction;

public class Test1 {

 public static final String DBURL = "jdbc:mysql://localhost/jdoexample";

 public static final String DBDRIVER = "org.gjt.mm.mysql.Driver";

 public static void main(String[] args) {

 try {

 // Use a factory class to generate PersistenceManager.

 // You are using the LIBeLIS JDO implementation

 // of the PersistenceManagerFactory and PersistenceManager

 // classes.

 PersistenceManagerFactory pmf = (PersistenceManagerFactory)

 Class.forName("com.libelis.lido.PersistenceManagerFactory")

 .newInstance();

 pmf.setConnectionURL(DBURL);

 pmf.setConnectionDriverName(DBDRIVER);

 PersistenceManager pm = pmf.getPersistenceManager();

 // Grab the current transaction.

 Transaction t = pm.currentTransaction();

 // Start a new transaction

 t.begin();

 SimpleContact a =

 new SimpleContact("Gern Blanston", "222334444");

 pm.makePersistent(a);

 // Commit the transaction.

 // All changes made between the begin and

 // commit are persisted to the DB.

 t.commit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 t.commit();

 pm.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

You start by instantiating a PersistenceManagerFactory, which then generates a PersistenceManager for your use. Finally, you
create an instance of our SimpleContact class and then tell the PersistenceManager to write it (by committing the
transaction begun earlier.

There is much more to JDO than this very simple example demonstrates (such as editing, deleting, and querying using
the JDO query language). For more information about JDO, see Java Data Objects, by David Jordan and Craig Russell
(O'Reilly). JDO is worth investigating, especially if you have no need for the extra transactional and security features
provided by EJB.

While JDO is an alternative to EJB, the context in which it is used must be seriously considered. EJB is designed for
high-traffic transaction-centric systems. These types of applications are not a very good fit for JDO because it doesn't
have the enterprise level support for transactions, security, clustering and sessions that EJB does. Smaller systems can
frequently be built using JDO, but really big systems are best left to EJB.

19.3.3.3 Others

There are, of course, other alternatives to EJB than straight JDBC and JDO. Here are a few worth reviewing for
suitability, should you determine that your application does not require EJB or that certain requirements (speed, for
example) demand an alternative approach.

Castor JDO[19] (http://www.exolab.org)

While Castor JDO contains the word "JDO," Exolabs built it independently from Sun's specification. Like JDO, its
primary function is to perform data binding. Castor generates Java class source files from an XML schema
document that describes the XML data model of an object. You can instantiate objects of these classes directly
from XML documents, if those documents conform to the original XML schema. However, the conversion of an
XML document into an object instance is only half of what Castor provides; it can also turn an object instance
back into an XML document. Conversion from object to XML document is called marshalling, and it's Castor's
original focus. In addition, Castor has the ability to map objects to database tables through mapping files very
similar to those for JDO.

Hibernate (http://www.hibernate.org)

Hibernate is another Java class-to-database table mapping project. While JDO is designed for mapping Java
objects to relational or object-oriented data stores, Hibernate is specifically designed for object relational (OR)
mapping. It allows you to create straight Java classes and a database-mapping file (by hand or automatically,
using XDoclet tags or something similar). The mechanics of interacting with the database are similar to those of
JDO, but with slightly different manager objects (sessions and connections instead of managers, etc.). This is
gross oversimplification of all that Hibernate will do, but suffice it to say that Hibernate is functionally equivalent
to something like JDO, which maps Java objects to database entities through an XML mapping file and handles
the persistence machinery for you. Take a look at Hibernate instead of EJB if you are considering JDO, as the
two are similar and fit in similar situations.

Prevayler (http://www.prevayler.org)

Prevayler approached data binding from a very different perspective, one that does not rely on mappings.
Prevayler is all about speed. It uses a fairly old idea: keep all your data in RAM throughout the life of your
application and write your data en masse to the database from time to time. This approach makes accessing
database information much faster (mostly because you are accessing RAM instead of the database after your
data is loaded into memory). Where would it make sense to use Prevayler? The most effective target for
something like Prevayler is a single-user database application when storage of database changes can be non-
realtime. It is also appropriate for read-only "static" systems in which the data is mostly unchanging.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

realtime. It is also appropriate for read-only "static" systems in which the data is mostly unchanging.

As you can see, there are several alternatives to EJB. If your application doesn't need the complexity or some of the
features of EJB, take a look around. Data persistence with Java has been around for some time and there is a wide
assortment of approaches.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.4 Wrapping Up
The main purpose of this book is to teach you how to use the Enterprise JavaBeans components and APIs as opposed to
design and architecture of enterprise systems. Although this chapter has focused on design considerations and
alternatives to EJB,it is not a comprehensive or complete treatment of architecture or design—that requires an entire
book dedicated to that subject.

There are a number of books that we feel complement this chapter and will extend your understanding of design and
architecture of EJB and J2EE systems. Chief among them is Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition by Deepak Alur, et al. (Addison-Wesley), and Patterns of Enterprise Application Architecture by Martin
Fowler (Addison-Wesley). These books are excellent resources for a more in-depth understanding of design and
architecture issues. That said, these books provide only shallow or no discussion of the EJB APIs, life cycles, deployment
and components. To master those topics, critical during development, you'll need this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

II: JBoss Workbook
Chapter 20: Introduction

Chapter 21: JBoss Installation and Configuration

Chapter 22: Exercises for Chapter 4

Chapter 23: Exercises for Chapter 5

Chapter 24: Exercises for Chapter 6

Chapter 25: Exercises for Chapter 7

Chapter 26: Exercises for Chapter 8

Chapter 27: Exercises for Chapter 9

Chapter 28: Exercises for Chapter 11

Chapter 29: Exercises for Chapter 12

Chapter 30: Exercises for Chapter 13

Chapter 31: Exercises for Chapter 15

Appendix A: Database Configuration

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 20. Introduction
This workbook is designed to be a companion for O'Reilly's Enterprise JavaBeans, Fourth Edition, by Richard Monson-
Haefel, for users of JBoss™, an open-source J2EE™ application server. The goal of this workbook is to provide step-by-
step instructions for installing, configuring, and using JBoss, and for deploying and running the examples from
Enterprise JavaBeans.

This workbook is based on the production release of JBoss 4.0 and includes all the EJB 2.0 examples from the
Enterprise JavaBeans, Fourth Edition book. All the examples in this workbook will work properly with JBoss 4.0 and
above, but not with earlier versions of JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

20.1 Contents of the JBoss Workbook
The workbook is divided into three sections:

JBoss Installation and Configuration

Walks you through downloading, installing, and configuring JBoss. Also provides a brief overview of the
structure of the JBoss installation.

Exercises

Contains step-by-step instructions for downloading, building, and running the example programs in Enterprise
JavaBeans, Fourth Edition (for brevity, this workbook calls it "the EJB book"). The text also walks through the
various deployment descriptors and source code to point out JBoss features and concerns.

Appendix

Provides useful information that did not fit neatly in the other sections, including a collection of XML snippets for
configuring a few popular JDBC drivers from various database vendors.

The workbook text for each exercise depends on the amount of configuration required for the example program, but
generally also include s instructions on:

Compiling and building the example code

Deploying the EJB components to the application server

Running the example programs and evaluating the results

The exercises were designed to be built and executed in order. Every effort was made to remove any dependencies
between exercises by including all components each one needs in the directory for that exercise, but some
dependencies still exist. The workbook text will guide you through these where they arise.

Also note that this workbook is not intended to be a course on database configuration or design. The exercises have
been designed to work out-of-the-box with the open-source database Hypersonic SQL, which is shipped with JBoss, and
the application server creates all database tables automatically, at run time.

20.1.1 Online Resources

This workbook is designed for use with the EJB book and with downloadable example code, both available from our web
site:

http://www.oreilly.com/catalog/entjbeans4/workbooks/index.html

We will post any errata here, and any updates required to support changes in specifications or products. This site also
contains links to many popular EJB-related sites on the Internet.

We hope you find this workbook useful in your study of Enterprise JavaBeans and the JBoss open source J2EE
implementation. Comments, suggestions, and error reports on the text of this workbook or the downloaded example
files are welcome and appreciated. Please post on the JBoss Forum:

http://www.jboss.org/index.html?module=bb&op=viewforum&f=152

In order to obtain more information about JBoss or the JBoss project, visit the project's web site:

http://www.jboss.org/

There you will find links to detailed JBoss documentation, online forums, and events happening in the JBoss community.
You will also be able to obtain detailed information on JBoss training, support, and consulting services.

JBoss, Inc. has also produced books on JBoss and other J2EE standards, among them JBoss Administration and
Development by Marc Fleury and Scott Stark, and JMX: Managing J2EE with Java Management Extensions by Marc
Fleury and Juha Lindfors.

20.1.2 Acknowledgments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We would like to thank Marc Fleury, the founder of JBoss, for recommending us for this book and Richard Monson-
Haefel for accepting the recommendation. We would also like to thank Greg Nyberg, the author of the WebLogic edition
in this series of workbooks. The example programs he provided in his workbook were a great starting place for us and
made our lives much easier.

Special thanks also go out to those who reviewed and critiqued this work: the members of JBoss Inc., Daniel Ruflé, and
Thomas Laresch. We would like to publicly recognize the series editor, Brian Christeson, for his courage and bravery for
digging so deeply in this book and relentlessly hunting down our anglish misthakes (especially Sacha's Franco-British
dialect).

Finally, Bill would like to thank his wife for putting up with all his whining and complaining, and Sacha promises Sophie
that he will no longer use the writing of this workbook as an excuse for being late for any of their rendezvous.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 21. JBoss Installation and Configuration
This chapter guides you through the steps required to install a fully working JBoss server. Along the way, you will learn
about JBoss 4.0's microkernel architecture, and the last section will show you how to install the code for the
forthcoming exercises. If you need more detailed information about JBoss configuration, visit the JBoss web site,
http://www.jboss.org, where you will find comprehensive online documentation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.1 About JBoss
JBoss is a collaborative effort of a worldwide group of developers to create an open source application server based on
the Java 2 Platform, Enterprise Edition (J2EE). With more than five million downloads in the last two years, JBoss is the
leading J2EE application server.

JBoss implements the full J2EE stack of services:

EJB (Enterprise JavaBeans)

JMS (Java Message Service)

JTS/JTA (Java Transaction Service/Java Transaction API)

Servlets and JSP (JavaServer Pages)

JNDI (Java Naming and Directory Interface)

It also provides advanced features such as clustering, JMX, web services, and IIOP (Internet Inter-ORB Protocol)
integration.

Because JBoss code is licensed under the LGPL (GNU Lesser General Public License, see
http://www.gnu.org/copyleft/lesser.txt), you can use it freely, at no cost, in any commercial application, or redistribute
it as is.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.2 Installing JBoss Application Server
Before going any further, make sure you have the J2SE JDK 1.4 or higher installed and correctly configured.

To download the JBoss binaries, go to the JBoss web site at http://www.jboss.org and follow the Downloads link. There
you will find all current binaries in both zip and tar.gz archive formats. Download the package that best meets your
needs.

Extract the downloaded archive in the directory of your choice. Under Windows, you can use the WinZip utility to
extract the archive content. Under Unix, you can use the following commands:

$ gunzip jboss-4.0.tar.gz

$ tar xf jboss-4.0.tar

Then change to the $JBOSS_HOME/bin directory and launch the run script that matches your OS:

Unix:

$ run.sh

Windows:

C:\jboss-4.0\bin>run.bat

That's it! You now have a fully working JBoss server!

21.2.1 Discovering the JBoss Directory Structure

Installing JBoss creates the directory structure shown in Figure 21-1.

Figure 21-1. JBoss directory structure

Table 21-1 describes the purposes of the various directories.

Table 21-1. JBoss directories
Directory Description

bin Scripts to start and shut down JBoss.

client Client-side Java libraries (JARs) required to communicate with JBoss.

docs Sample configuration files (for database configuration, etc.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

docs/dtd DTDs (Document Type Definitions) for the various XML files used in JBoss.

lib JARs loaded at startup by JBoss and shared by all JBoss configurations. (You won't put your
own libraries here.)

server
Various JBoss configurations. (Each configuration must be in a different subdirectory. The
name of the subdirectory represents the name of the configuration. As distributed, JBoss
contains three configurations: minimal, default, and all.)

server/all JBoss's complete configuration; starts all services, including clustering and IIOP.

server/minimal JBoss's minimal configuration; starts only very basic services; cannot be used to deploy EJBs.

server/default JBoss's default configuration; used when no configuration name is specified on JBoss
command line.

server/default/conf JBoss's configuration files. (You will learn more about the content of this directory in the next
section.)

server/default/data JBoss's database files (embedded database or JBossMQ, for example).

server/default/deploy JBoss's hot-deployment directory. (Any file or directory dropped in this directory is
automatically deployed in JBoss: EJBs, WARs, EARs, and even services.)

server/default/lib JARs that JBoss loads at startup when starting this particular configuration. (The all and
minimal configurations also have this directory and the next two.)

server/default/log JBoss's logfiles.

server/default/tmp JBoss's temporary files.

If you want to define your own configuration, create a new sub-directory under the server directory containing the
appropriate files. To start JBoss with a given configuration, use the -c parameter on the command line:

Windows:

C:\jboss-4.0 \bin> run.bat -c config-name

Unix:

$./run.sh -c config-name

21.2.2 JBoss Configuration Files

As the previous section described, JBoss's server directory can contain any number of directories, each representing a
different JBoss configuration.

The server/config-name/conf directory contains JBoss's configuration files. The purpose of the various files is discussed
in Table 21-2.

Table 21-2. JBoss configuration files
File Description

jacorb.properties JBoss IIOP configuration.

jbossmq-state.xml JBossMQ (JMS implementation) user configuration.

jboss-service.xml Definition of JBoss's services launched at startup (class loaders, JNDI, deployers, etc.).

log4j.xml Log4J logging configuration.

login-config.xml JBoss security configuration (JBossSX).

standardjaws.xml Default configuration for JBoss's legacy CMP 1.1 engine; contains JDBC-to-SQL mapping
information for various databases, default CMP settings, logging configuration, etc.

standardjboss.xml Default container configuration.

standardjbosscmp-
jdbc.xml Same as standardjaws.xml except that it is used for JBoss's CMP 2.0 engine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2.3 Deployment in JBoss

The deployment process in JBoss is straightforward. In each configuration, JBoss constantly scans a specific directory
for changes: $JBOSS_HOME/server/config-name/deploy. This directory is generally referred to informally as the deploy
directory.

You can copy to this directory:

Any JAR library (the classes it contains are automatically added to the JBoss classpath)

An EJB JAR

A WAR (Web Application aRrchive)

An EAR (Enterprise Application aRchive)

An XML file containing JBoss MBean definitions

A directory ending in .jar, .war, or .ear and containing respectively the extracted content of an EJB JAR, a WAR,
or an EAR

To redeploy any of the above files (JAR, WAR, EAR, XML, etc.), simply overwrite it with a more recent version. JBoss
will detect the change by comparing the files' timestamps, undeploy the previous files, and deploy their replacements.
To redeploy a directory, update its modification timestamp by using a command-line utility such as touch. To undeploy
a file, just remove it from the deploy directory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.3 A Quick Look at JBoss Internals
Since Version 3.0, JBoss has been built around a few very powerful concepts that allow users to customize and fine-
tune their servers for very specific needs, not limited to J2EE. This flexibility allows JBoss to be used in very different
environments, ranging from embedded systems to very large server clusters. The next few sections comment on some
of these concepts briefly.

21.3.1 Microkernel Architecture

JBoss is based on a microkernel design in which components can be plugged at runtime to extend its behavior.

This design fits particularly well with the J2EE platform, which is essentially a service-based platform. The platform
contains services for persistence, transactions, security, naming, messaging, logging, and so on.

Other application servers are generally built as monolithic applications containing all services of the J2EE platform at all
times. JBoss takes a radically different approach: each of the services is hot-deployed as a component running on top of
a very compact core, called the JBoss Server Spine (Figure W-2). Furthermore, users are encouraged to implement
their own services to run on top of JBoss.

Consequently, the JBoss application server is not limited to J2EE applications, and indeed
is frequently used to build any kind of application requiring a strong and reliable base. For
this reason, the JBoss core is also known as the WebOS.

Figure 21-2. JBoss Server Spine with some hot-deployed services

JBoss Server Spine itself is based on Sun's Java Management eXtensions (JMX) specification, making any deployed
component automatically manageable in a standard fashion. In the JMX terminology, a service deployed in JBoss is
called an a managed bean (MBean).

More information about the JMX specification can be found at the Sun web site,
http://java.sun.com/products/JavaManagement/.

21.3.2 Hot Deployment

Since Release 2.0, JBoss has been famous for being the first J2EE-based application server to support hot deployment
and redeployment of applications (EJB JAR, WAR, and EAR), while many application servers required a restart to update
an application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an application.

Thanks to its microkernel architecture and revolutionary Java class loader, JBoss 3.0 and later releases push this logic
further. Not only can they hot-deploy and -redeploy applications, but they can hot-(re)deploy any service and keep
track of dependencies between services. These features make JBoss usable in very demanding environments such as
telecommunications systems.

21.3.3 Net Boot

JBoss is able to boot itself and your applications from any network location just by pointing the JBoss Server Spine to a
simple URL. This allows you to manage the entire configuration of a cluster of JBoss nodes from one central web server.
This impressive flexibility makes deployment of new servers very easy (Figure 21-3).

Figure 21-3. A JBoss instance bootstrapping from three distinct netboot servers

JBoss's bootstrap code is approximately 50K, which makes it suitable for many embedded
systems.

21.3.4 Detached Invokers

JBoss completely detaches the protocol handlers on which invocations are received from the target service that
eventually serves the requests. Consequently, when a new handler (called an invoker in JBoss) for a given protocol is
deployed in JBoss, all existing services and applications can automatically be reached through this new invocation
transport. Figure 21-4 shows detached invokers.

JBoss 4.0 currently supports the following kinds of invokers:

RMI

RMI over HTTP

IIOP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IIOP

JMS

SOAP

HA-RMI (Clustering over RMI)

Figure 21-4. Detached invokers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.4 Exercise Code Setup and Configuration
You can download the example code for the exercises from
http://www.oreilly.com/catalog/entjbeans4/workbooks/index.html. Exercises that require a database will use JBoss's
default embedded database. Consequently, no additional database setup is required. This workbook includes an
Appendix that shows you how to configure JBoss to use a different database, if you want to.

21.4.1 Exercises Directory Structure

The example code is organized as a set of directories, one for each exercise (Figure 21-5). You'll find the code of each
exercise in the src/main subdirectory and the configuration files in src/resources.

Figure 21-5. Exercises directory structure

To build and run the exercises, you'll use the Ant tool. A build.xml is provided for each exercise. It contains the Ant
configuration needed to compile the classes, build the EJB JAR, deploy it to JBoss, and run the client test applications.
For this reason, the Ant tool is provided with the exercises and can be found in the ant directory.

You can find out more about Ant at the Apache Jakarta web site
http://jakarta.apache.org/ant/.

21.4.2 Environment Setup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the Ant scripts to work correctly, first set some environment variables in the shells you will use to run the exercises:

The JAVA_HOME environment variable must point to where your JDK is installed.

The JBOSS_HOME environment variable must point to where JBoss is installed.

The directory containing the Ant scripts must be in your path.

Depending on your platform, you'll have to execute commands like these:

Windows:

C:\workbook\ex04_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex04_1> set JBOSS_HOME=C:\jboss-4.0

C:\workbook\ex04_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

$ export PATH=../ant/bin:$PATH

In each chapter, you'll find detailed instructions on how to build, deploy, and run the exercises using Ant.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 22. Exercises for Chapter 4
Section 22.1. Exercise 4.1: A Simple Entity Bean

Section 22.2. Exercise 4.2: A Simple Session Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

22.1 Exercise 4.1: A Simple Entity Bean
The Cabin EJB demonstrates basic CMP 2.0 capability for a simple entity bean mapped to a single table. The following
sections outline the steps necessary to build, deploy, and execute the Cabin EJB example. Please note that because
you're using JBoss's default embedded database, you don't need to configure the database or create tables. The code
you'll see here mirrors the example code provided in Chapter 4 of the EJB book.

22.1.1 Start Up JBoss

Start up JBoss as described in the JBoss Installation and Configuration chapter at the beginning of this workbook.

22.1.2 Initialize the Database

The database table for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when the
EJB JAR is deployed.

22.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex04_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex04_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex04_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility

Windows:

C:\workbook\ex04_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant. Ant uses build.xml to figure out what to compile and how to build your JARs.

If you need to learn more about the Ant utility, visit the Ant project at the Jakarta web site at
http://jakarta.apache.org/ant/index.html.

Ant compiles the Java source code, builds the EJB JAR, and deploys the JAR simply by copying it to JBoss's deploy
directory. If you are watching the JBoss console window, you will notice that JBoss automatically discovers the EJB JAR
once it has been copied into the deploy directory, and automatically deploys the bean.

Another particularly interesting thing about building EJB JARs is that there is no special EJB compilation step. Unlike
other servers, JBoss does not generate code for client stubs. Instead, it has a lightweight mechanism that creates client
proxies when the EJB JAR is deployed, accelerating the development and deployment cycle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1.4 Deconstructing build.xml

The build.xml file provided for each workbook exercise gives the Ant utility information about how to compile and
deploy your Java programs and EJBs. The following build tasks can be executed by typing ant taskname :

The default task (just typing ant without a task name) compiles the code, builds the EJB JAR, and deploys the
JAR into JBoss. The deployment procedure is just a simple copy into the JBoss deploy directory.

ant compile compiles all the Java source files.

ant clean removes all .class and .jar files from the working directory and undeploys the JAR from JBoss by
deleting the file from JBoss's deploy directory.

ant clean.db provides you with a clean copy of the HypersonicSQL database used throughout the exercises. This
task works only with HypersonicSQL.

run.client_xxx runs a specific example program. Each exercise in this book will have a run.client rule for each
example program.

clean.db can be used only when JBoss is not running.

Here's a breakdown of what is contained in build.xml.

<project name="JBoss" default="ejbjar" basedir=".">

The default attribute defines the default target that ant will run if you type only ant on the command line. The basedir
attribute tells Ant what directory to run the build in:

 <property environment="env"/>

 <property name="src.dir" value="${basedir}/src/main"/>

 <property name="src.resources" value="${basedir}/src/resources"/>

 <property name="jboss.home" value="${env.JBOSS_HOME}"/>

 <property name="build.dir" value="${basedir}/build"/>

 <property name="build.classes.dir" value="${build.dir}/classes"/>

All the properties defined above are variables that Ant will use throughout the build process. You can see that the
JBOSS_HOME environment variable is pulled from the system environment and other directory paths defined:

 <path id="classpath">

 <fileset dir="${jboss.home}/client">

 <include name="**/*.jar"/>

 </fileset>

 <pathelement location="${build.classes.dir}"/>

 <pathelement location="${basedir}/jndi"/>

 </path>

To compile and run the example applications in this workbook, add all the JARS in $JBOSS_HOME/client to the Java
classpath. Also notice that build.xml inserts the ${basedir}/jndi directory into the classpath. A jndi.properties file in this
directory enables the example programs to find and connect to JBoss's JNDI server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directory enables the example programs to find and connect to JBoss's JNDI server:

 <property name="build.classpath" refid="classpath"/>

 <target name="prepare" >

 <mkdir dir="${build.dir}"/>

 <mkdir dir="${build.classes.dir}"/>

 </target>

The prepare target creates the directories where the Java compiler will place compiled classes:

 <target name="compile" depends="prepare">

 <javac srcdir="${src.dir}"

 destdir="${build.classes.dir}"

 debug="on"

 deprecation="on"

 optimize="off"

 includes="**">

 <classpath refid="classpath"/>

 </javac>

 </target>

The compile target compiles all the Java files under the src/main directory. Notice that it depends on the prepare target;
prepare will run before the compile target is executed:

<target name="ejbjar" depends="compile">

 <jar jarfile="build/titan.jar">

 <fileset dir="${build.classes.dir}">

 <include name="com/titan/cabin/*.class"/>

 </fileset>

 <fileset dir="${src.resources}/">

 <include name="**/*.xml"/>

 </fileset>

 </jar>

 <copy file="build/titan.jar"

 todir="${jboss.home}/server/default/deploy"/>

</target>

The ejbjar target creates the EJB JAR file and deploys it to JBoss simply by copying it to JBoss's deploy directory:

<target name="run.client_41a" depends="ejbjar">

 <java classname="com.titan.clients.Client_1" fork="yes" dir=".">

 <classpath refid="classpath"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <classpath refid="classpath"/>

 </java>

</target>

<target name="run.client_41b" depends="ejbjar">

 <java classname="com.titan.clients.Client_2" fork="yes" dir=".">

 <classpath refid="classpath"/>

 </java>

</target>

The run.client_xxx targets are used to run the example programs in this chapter:

<target name="clean.db">

 <delete dir="${jboss.home}/server/default/db/hypersonic"/>

</target>

The clean.db target cleans the default database used by JBoss for the example programs in this book. Remember, you
can only use it when JBoss is not running:

<target name="clean">

 <delete dir="${build.dir}"/>

 <delete file="${jboss.home}/server/default/deploy/titan.jar"/>

</target>

</project>

The clean target removes compiled classes and undeploys the EJB JAR from JBoss by deleting the JAR file in the deploy
directory.

22.1.5 Examine the JBoss-Specific Files

You do not need any JBoss-specific files to write a simple EJB. For an entity bean as simple as the Cabin EJB, JBoss
creates the appropriate database tables within its embedded database Hypersonic SQL by examining the ejb-jar.xml
deployment descriptor.

In later chapters, you will learn how to map entity beans to different data sources and pre-
existing database tables using JBoss-specific CMP deployment descriptors.

By default, JBoss uses the <ejb-name> from the bean's ejb-jar.xml deployment descriptor for the JNDI binding of the
bean's home interface. If you do not like this default, you can override it in a jboss.xml file. Clients use this name to
look up an EJB's home interface. For this example, CabinEJB is bound to CabinHomeRemote.

22.1.5.1 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1.5.1 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>

 </enterprise-beans>

</jboss>

22.1.6 Examine and Run the Client Applications

Two example programs implement the sample clients provided in the EJB book:

Client_1.java

Creates a single Cabin bean, populates each of its attributes, then queries the created bean with the primary
key.

Client_2.java

Creates 99 additional Cabins with a variety of different data that will be used in subsequent exercises.

22.1.6.1 Client_1.java

package com.titan.clients;

import com.titan.cabin.CabinHomeRemote;

import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

import java.rmi.RemoteException;

public class Client_1

{

 public static void main(String [] args)

 {

 try

 {

 Context jndiContext = getInitialContext();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin_1 = home.create(new Integer(1));

 cabin_1.setName("Master Suite");

 cabin_1.setDeckLevel(1);

 cabin_1.setShipId(1);

 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);

 CabinRemote cabin_2 = home.findByPrimaryKey(pk);

 System.out.println(cabin_2.getName());

 System.out.println(cabin_2.getDeckLevel());

 System.out.println(cabin_2.getShipId());

 System.out.println(cabin_2.getBedCount());

 }

 catch (java.rmi.RemoteException re){re.printStackTrace();}

 catch (javax.naming.NamingException ne){ne.printStackTrace();}

 catch (javax.ejb.CreateException ce){ce.printStackTrace();}

 catch (javax.ejb.FinderException fe){fe.printStackTrace();}

 }

 public static Context getInitialContext()

 throws javax.naming.NamingException

 {

 return new InitialContext();

 }

}

The getInitialContext() method creates an InitialContext with no properties. Because no properties are set, the Java library
that implements InitialContext searches the classpath for the file jndi.properties. Each example program in this workbook
will have a jndi directory that contains a jndi.properties file. You will be executing all example programs through Ant,
and it will set the classpath appropriately to refer to this properties file.

Run the Client_1 application by invoking ant run.client_41a at the command prompt. Remember to set your JBOSS_HOME
and PATH environment variables.

The output of Client_1 should look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output of Client_1 should look something like this:

C:\workbook\ex04_1>ant run.client_41a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_41a:

 [java] Master Suite

 [java] 1

 [java] 1

 [java] 3

Client_1 adds a row to the database representing the Cabin bean and does not delete it at the conclusion of the
program. You cannot run this program more than once unless you stop JBoss, clean the database by invoking the Ant
task clean.db and restarting JBoss. Otherwise, you will get the following error:

run.client_41a:

 [java] javax.ejb.DuplicateKeyException: Entity with primary key 1 already exists

 [java] at org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand.

execute(JDBCCreateEntityCommand.java:160)

 [java] at org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager.

createEntity(JDBCStoreManager.java:633)

 [java] at org.jboss.ejb.plugins.CMPPersistenceManager.

createEntity(CMPPersistenceManager.java:253)

 [java] at org.jboss.resource.connectionmanager.CachedConnectionInterceptor.

createEntity(CachedConnectionInterce

...

 [java] at org.jboss.invocation.InvokerInterceptor.invoke(InvokerInterceptor.

java:92)

 [java] at org.jboss.proxy.TransactionInterceptor.

invoke(TransactionInterceptor.java:77)

 [java] at org.jboss.proxy.SecurityInterceptor.invoke(SecurityInterceptor.

java:80)

 [java] at org.jboss.proxy.ejb.HomeInterceptor.invoke(HomeInterceptor.java:

175)

 [java] at org.jboss.proxy.ClientContainer.invoke(ClientContainer.java:82)

 [java] at $Proxy0.create(Unknown Source)

 [java] at com.titan.clients.Client_1.main(Client_1.java:22)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] at com.titan.clients.Client_1.main(Client_1.java:22)

Run the Client_2 application by invoking ant run.client_41b at the command prompt. Remember to set your JBOSS_HOME
and PATH environment variables.

The output of Client_2 should look something like this:

run.client_41b:

 [java] PK=1, Ship=1, Deck=1, BedCount=3, Name=Master Suite

 [java] PK=2, Ship=1, Deck=1, BedCount=2, Name=Suite 100

 [java] PK=3, Ship=1, Deck=1, BedCount=3, Name=Suite 101

 [java] PK=4, Ship=1, Deck=1, BedCount=2, Name=Suite 102

 [java] PK=5, Ship=1, Deck=1, BedCount=3, Name=Suite 103

 [java] PK=6, Ship=1, Deck=1, BedCount=2, Name=Suite 104

 [java] PK=7, Ship=1, Deck=1, BedCount=3, Name=Suite 105

 [java] PK=8, Ship=1, Deck=1, BedCount=2, Name=Suite 106

 ...

 [java] PK=90, Ship=3, Deck=3, BedCount=3, Name=Suite 309

 [java] PK=91, Ship=3, Deck=4, BedCount=2, Name=Suite 400

 [java] PK=92, Ship=3, Deck=4, BedCount=3, Name=Suite 401

 [java] PK=93, Ship=3, Deck=4, BedCount=2, Name=Suite 402

 [java] PK=94, Ship=3, Deck=4, BedCount=3, Name=Suite 403

 [java] PK=95, Ship=3, Deck=4, BedCount=2, Name=Suite 404

 [java] PK=96, Ship=3, Deck=4, BedCount=3, Name=Suite 405

 [java] PK=97, Ship=3, Deck=4, BedCount=2, Name=Suite 406

 [java] PK=98, Ship=3, Deck=4, BedCount=3, Name=Suite 407

 [java] PK=99, Ship=3, Deck=4, BedCount=2, Name=Suite 408

 [java] PK=100, Ship=3, Deck=4, BedCount=3, Name=Suite 409

Like Client_1, this example creates rows in the database and does not delete them when it finishes. Client_2 can be
executed only once without causing DuplicateKey exceptions.

22.1.7 Managing Entity Beans

Every EJB in JBoss is deployed and managed as a JMX MBean. You can view and manage EJBs deployed within JBoss
through your web browser by accessing the JMX management console available at http://localhost:8080/jmx-console/
(Figure 22-1).

Figure 22-1. The JMX management console

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click on the jndiName=CabinHomeRemote,service=EJB link shown in Figure 22-1. Entity beans have two management
functions. You can flush the entity bean's cache or view the number of cached objects for it. To flush, click on the
flushCache button. To view the number of cached beans, click on the getCacheSize button (Figure 22-2).

Figure 22-2. Managing entity beans from the console

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

22.2 Exercise 4.2: A Simple Session Bean
In this exercise, you will create and build the TravelAgent EJB. This simple bean illustrates the use of a stateless session
bean and mirrors the code shown in Chapter 4 of the EJB section of this book.

22.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter.

22.2.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from the previous
exercise, Client_1 and Client_2.

22.2.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex04_2 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex04_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex04_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility.

Windows:

C:\workbook\ex04_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

22.2.4 Examine the JBoss-Specific Files

In this example, the jboss.xml deployment descriptor overrides the default JNDI binding for the deployed EJBs. CabinEJB
is bound to CabinHomeRemote and TravelAgentEJB is bound to TravelAgentHomeRemote.

22.2.4.1 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2.4.1 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </ejb-ref>

 </session>

 </enterprise-beans>

</jboss>

The EJB book describes how you must use <ejb-ref> declarations when one EJB references another. The TravelAgent
EJB references the Cabin entity bean, so the following XML is required in ejb-jar.xml.

22.2.4.2 ejb-jar.xml

<ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

</ejb-ref>

If you have a <ejb-ref-name> declared in your ejb-jar.xml file, you must have a corresponding <ejb-ref> declaration in
your jboss.xml file that maps the portable JNDI name used by the TravelAgent EJB to the real JNDI name of the Cabin
EJB.

22.2.4.3 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </ejb-ref>

 </session>

 </enterprise-beans>

</jboss>

22.2.5 Examine and Run the Client Application

The example program in this section invokes the TravelAgent EJB to list cabins that meet certain criteria.

22.2.5.1 Client_3.java

...

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote travelAgent = home.create();

// Get a list of all cabins on ship 1 with a bed count of 3.

String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

for(int i = 0; i < list.length; i++)

{

 System.out.println(list[i]);

}

...

The client code does a JNDI lookup for the TravelAgent home and does a simple create() method invocation to obtain a
reference to a TravelAgent EJB. The client then calls listCabins() and receives a list of cabin names that meet the
provided criteria.

Let's examine a little of the code in TravelAgent EJB's listCabins() method to see how it works.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's examine a little of the code in TravelAgent EJB's listCabins() method to see how it works.

22.2.5.2 TravelAgentBean.java

public String [] listCabins(int shipID, int bedCount)

{

 try

 {

 javax.naming.Context jndiContext = new InitialContext();

 Object obj =

 jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

 CabinHomeRemote home =

 ...

When a deployed EJB in JBoss wants to access JNDI, all that's needed is a simple new InitialContext(). JBoss will
automatically create an optimized, in-process reference to the JNDI server running inside the application server, to
avoid the overhead of a distributed network call when accessing it. The rest of listCabins() is pretty straightforward, so
you can just go on to running the client application.

Run the Client_3 application by invoking ant run.client_42 at the command prompt. Remember to set your JBOSS_HOME
and PATH environment variables.

The output of Client_3 should look something like this:

C:\workbook\ex04_2>ant run.client_42

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_42:

 [java] 1,Master Suite,1

 [java] 3,Suite 101,1

 [java] 5,Suite 103,1

 [java] 7,Suite 105,1

 [java] 9,Suite 107,1

 [java] 12,Suite 201,2

 [java] 14,Suite 203,2

 [java] 16,Suite 205,2

 [java] 18,Suite 207,2

 [java] 20,Suite 209,2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] 20,Suite 209,2

 [java] 22,Suite 301,3

 [java] 24,Suite 303,3

 [java] 26,Suite 305,3

 [java] 28,Suite 307,3

 [java] 30,Suite 309,3

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 23. Exercises for Chapter 5
Section 23.1. Exercise 5.1: The Remote Component Interfaces

Section 23.2. Exercise 5.2: The EJBObject, Handle, and Primary Key

Section 23.3. Exercise 5.3: The Local Component Interfaces

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

23.1 Exercise 5.1: The Remote Component Interfaces
The example programs in Exercise 5.1 dive into some of the features of the home interface of an EJB, including the use
of the remove() method. They also show you how to obtain and use various metadata available through an EJB's API.

23.1.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter at the beginning of this workbook.

23.1.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from Exercise 4.1.

23.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex05_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex05_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex05_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex05_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

23.1.4 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

23.1.5 Examine and Run the Client Applications

Two example programs illustrate the concepts explained in the EJB book:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two example programs illustrate the concepts explained in the EJB book:

Client_51a.java

Illustrates the use of the remove() method on the Cabin EJB home interface.

Client _51b.java

Illustrates the use of bean metadata methods.

The example code for Client_51a and Client_51b is pulled directly from the EJB book. There is no need to go into this
code here because the EJB book already does a very good job of that.

Run Client_51a by invoking ant run.client_51a at the command prompt. Remember to set your JBOSS_HOME and PATH
environment variables. Run Client_51b the same way: ant run.client_51b. The output of Client_51a should be exactly as
described in the EJB book. The output of Client_51b is as follows:

C:\workbook\ex05_1>ant run.client_51b

Buildfile: build.xml

prepare:

compile:

run.client_51b:

 [java] com.titan.cabin.CabinHomeRemote

 [java] com.titan.cabin.CabinRemote

 [java] java.lang.Integer

 [java] false

 [java] Master Suite

Note that if you try to run Client_51a more than once, an exception will tell you that the entity you're attempting to
remove does not exist.

[java] java.rmi.NoSuchObjectException: Entity not found: primaryKey=30

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

23.2 Exercise 5.2: The EJBObject, Handle, and Primary Key
The example programs in Exercise 5.2 explore the APIs available through the EJBObject and EJBMetaData interfaces. They
also reveal how to use Handle and HomeHandle as persistent references to EJB objects and homes.

23.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter at the beginning of this workbook.

23.2.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from Exercise 4.1;
otherwise, this example will not work properly.

23.2.3 Build and Deploy the Example Programs

In the ex05_2 directory, build and deploy the examples as you did for Exercise 5.1.

23.2.4 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

23.2.5 Examine and Run the Client Applications

Three example programs illustrate the concepts explained in the EJB book:

Client_52a.java

Shows the use of EJBObject to retrieve an EJB's home interface.

Client _52b.java

Shows how to use isIdentical() to determine whether two EJB references are to the same object.

Client _52c.java

Shows how to use EJB handles as persistent bean references.

The example code is pulled directly from the EJB book and embellished somewhat to expand on introduced concepts.
The EJB book does a pretty good job of explaining the concepts illustrated in the example programs, so further
explanation of the code is not needed in this workbook.

Run Client_52a, Client_52b, and Client_52c by invoking the appropriate Ant task as you did in previous examples:
run.client_52a, run.client_52b, and run.client_52c. Remember to set your JBOSS_HOME and PATH environment variables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

23.3 Exercise 5.3: The Local Component Interfaces
The example program in Exercise 5.3 explores the use of local interfaces. The Cabin entity bean you created in Exercise
4.1 will be expanded to provide a local interface for use in the TravelAgent stateless session bean. This exercise also
describes how to modify your EJB deployment descriptors to enable local interfaces.

23.3.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter.

23.3.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from Exercise 4.1.

23.3.3 Build and Deploy the Example Programs

In the ex05_3 directory, build and deploy the examples as you did for Exercise 5.1.

23.3.4 Examine the JBoss-Specific Files

JBoss has a minor restriction. It requires that you use <ejb-link> when you want your bean to reference a local bean
through an <ejb-local-ref> tag.

23.3.4.1 ejb-jar.xml

<ejb-jar>

 <enterprise-beans>

 ...

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <!-- ejb-link is required by jboss for local-refs. -->

 <ejb-link>CabinEJB</ejb-link>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>

 ...

</ejb-jar>

If you examine the jboss.xml file for Exercise 5.3, you'll see that you must also declare the JNDI binding for the remote
home interface. The Cabin EJB's local home interface doesn't need a binding in jboss.xml, though, because the binding
information is contained in the <ejb-link> tag instead. JBoss will register both CabinHomeRemote and CabinHomeLocal into
the JNDI tree.

23.3.4.2 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 <local-jndi-name>CabinHomeLocal</local-jndi-name>

 </entity>

TravelAgentEJB only tells JBoss under which JNDI name it should be bound:

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 </entity>

 </enterprise-beans>

</jboss>

23.3.5 Examine and Run the Client Applications

The example code for Client_53 is exactly the same as Client_3 from Exercise 4.2.

Run Client_53 by invoking the appropriate Ant task, as you did in previous examples: run.client_53. Remember to set
your JBOSS_HOME and PATH environment variables.

The output should look something like this:

C:\workbook\ex05_3>ant run.client_53

Buildfile: build.xml

prepare:

compile:

ejbjar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run.client_53:

 [java] 1,Master Suite,1

 [java] 3,Suite 101,1

 [java] 5,Suite 103,1

 [java] 7,Suite 105,1

 [java] 9,Suite 107,1

 [java] 12,Suite 201,2

 [java] 14,Suite 203,2

 [java] 16,Suite 205,2

 [java] 18,Suite 207,2

 [java] 20,Suite 209,2

 [java] 22,Suite 301,3

 [java] 24,Suite 303,3

 [java] 26,Suite 305,3

 [java] 28,Suite 307,3

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 24. Exercises for Chapter 6
Section 24.1. Exercise 6.1: Basic Persistence in CMP 2.0

Section 24.2. Exercise 6.2: Dependent Value Classes in CMP 2.0

Section 24.3. Exercise 6.3: A Simple Relationship in CMP 2.0

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

24.1 Exercise 6.1: Basic Persistence in CMP 2.0
This exercise begins walking you through the intricacies of CMP 2.0. In this chapter, you will learn more detailed JBoss
CMP 2.0 configuration mechanisms by creating the Customer EJB described in the EJB book.

24.1.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter.

24.1.2 Initialize the Database

The database table for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when the
EJB JAR is deployed.

24.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex06_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex06_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex06_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

24.1.4 Examine the JBoss-Specific Files

In this section, we introduce a new JBoss CMP 2.0 deployment descriptor, jbosscmp-jdbc.xml. This file provides more
detailed control of your bean's database mapping as well as more advanced performance-tuning options.

24.1.4.1 jbosscmp-jdbc.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1.4.1 jbosscmp-jdbc.xml

<jbosscmp-jdbc>

 <defaults>

 <datasource>java:/DefaultDS</datasource>

 <datasource-mapping>Hypersonic SQL</datasource-mapping>

 <create-table>true</create-table>

 <remove-table>true</remove-table>

 </defaults>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <table-name>Customer</table-name>

 <cmp-field>

 <field-name>id</field-name>

 <column-name>ID</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>lastName</field-name>

 <column-name>LAST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>firstName</field-name>

 <column-name>FIRST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>hasGoodCredit</field-name>

 <column-name>HAS_GOOD_CREDIT</column-name>

 </cmp-field>

 </entity>

 </enterprise-beans>

</jbosscmp-jdbc>

24.1.4.2 The <defaults> section

The <datasource> configuration variable tells JBoss's CMP engine what database connection pool to use for the entity
beans defined in this JAR.

<datasource>java:/DefaultDS</datasource>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<datasource>java:/DefaultDS</datasource>

It is currently configured to use the default data source defined in $JBOSS_HOME/server/default/deploy/hsqldb-
service.xml, but you can change it to your own defined data sources. The workbook's Appendix goes into more detail on
how to configure your own data sources.

This variable describes the database mapping that CMP should use:

<datasource-mapping>Hypersonic SQL</datasource-mapping>

Here are some other mappings you could use (this list is not exhaustive):

<datasource-mapping>Oracle8</datasource-mapping>

<datasource-mapping>Oracle7</datasource-mapping>

<datasource-mapping>MS SQLSERVER</datasource-mapping>

<datasource-mapping>MS SQLSERVER2000</datasource-mapping>

For other available supported database mappings, please review JBoss's advanced documentation on its web site at
http://www.jboss.org.

When the <create-table> configuration variable is set to true, JBoss creates the database tables for each entity bean
defined in the deployment descriptor unless these tables already exist. This create action is triggered when the EJB JAR
is deployed:

<create-table>true</create-table>

When the <remove-table> configuration variable is set to true, JBoss drops the database tables for each entity bean
defined in the deployment descriptor. This remove action is triggered when the EJB JAR is redeployed or undeployed:

<remove-table>true</remove-table>

24.1.4.3 The <enterprise-beans> section

There's an XML fragment <entity></entity> for each entity bean defined in this EJB JAR. The <ejb-name> variable defines
the entity bean that is described in that section:

<ejb-name>CustomerEJB</ejb-name>

The <table-name> variable defines what database table this entity bean should map to:

<table-name>Customer</table-name>

Each <cmp-field> section describes the mapping between an entity bean's fields and the corresponding columns of the
database table. The <field-name> tag is the entity bean field's name, while the <column-name> defines the table column's
name:

<cmp-field>

 <field-name>id</field-name>

 <column-name>ID</column-name>

 </cmp-field>

24.1.5 Examine and Run the Client Applications

There is only one client application for this exercise, Client_61. It is modeled after the example in the EJB book. It

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is only one client application for this exercise, Client_61. It is modeled after the example in the EJB book. It
creates Customer EJBs in the database based on the command-line parameters.

To run the client, first set your JBOSS_HOME and PATH environment variables appropriately. Then invoke the provided
wrapper script to execute the program. For each customer, you must supply on the command line a set of values for
primary key, first name, and last name, as shown here:

Client_61 777 Bill Burke 888 Sacha Labourey

The output of this execution should be:

C:\workbook\ex06_1>client_61 777 Bill Burke 888 Sacha Labourey

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_61:

 [java] 777 = Bill Burke

 [java] 888 = Sacha Labourey

When it finishes, the example program removes the created beans, so no data remains in the database.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

24.2 Exercise 6.2: Dependent Value Classes in CMP 2.0
The example programs in Exercise 6.2 explore using a dependent value class to combine multiple CMP fields into a
single serializable object that can be passed in and out of entity-bean methods.

24.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

24.2.2 Initialize the Database

No database initialization is needed.

24.2.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_2 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex06_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex06_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex06_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

24.2.4 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

24.2.5 Examine and Run the Client Applications

The example program, Client_62, shows how the Name dependent value class is used with the Customer EJB. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example program, Client_62, shows how the Name dependent value class is used with the Customer EJB. The
example code is pulled directly from the EJB book and embellished somewhat to expand on introduced concepts. The
EJB book does a pretty good job of explaining the concepts illustrated in Client_62, so further explanation of the code is
not needed in this workbook.

The client application uses the new getName() and setName() methods of the Customer EJB to initialize, modify, and
display a newly created Customer bean using the Name dependent value class. This test bean is then removed from the
database before the application finishes.

To run Client_62, invoke the Ant task run.client_62. Remember to set your JBOSS_HOME and PATH environment variables.
The output should look something like this:

C:\workbook\ex06_2>ant run.client_62

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_62:

 [java] 1 = Richard Monson

 [java] 1 = Richard Monson-Haefel

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

24.3 Exercise 6.3: A Simple Relationship in CMP 2.0
The example program in Exercise 6.3 shows how to implement a simple CMP relationship between the Customer EJB
and the Address EJB. The client again uses dependent value classes, to pass address information along to the Customer
EJB.

24.3.1 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_3 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex06_3> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex06_3> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex06_3> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

24.3.2 Examine the JBoss-Specific Files

The Customer-Address relationship in this example can be mapped to a database table by defining the mapping in
jbosscmp-jdbc.xml.

24.3.2.1 jbosscmp-jdbc.xml

<jbosscmp-jdbc>

...

</enterprise-beans>

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <foreign-key-mapping/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <foreign-key-mapping/>

 <ejb-relationship-role>

 <ejb-relationship-role-name>Customer-has-a-Address

 </ejb-relationship-role-name>

 <key-fields/>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>HOME_ADDRESS</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

</jbosscmp-jdbc>

To define the mapping of a relationship to a database table, you must define <key-fields>. The <field-name> tag must be
the primary key field of the entity bean in the relationship. Thus above, the id <field-name> corresponds to the Address
EJB's primary key field. You can define the <column-name> field to be whatever the column name is in the database.
Based on the mappings defined in this file, the Customer table would look like this:

CREATE TABLE CUSTOMER

(ID INTEGER NOT NULL,

LAST_NAME VARCHAR(256),

FIRST_NAME VARCHAR(256),

HAS_GOOD_CREDIT BIT NOT NULL,

HOME_ADDRESS INTEGER,

CONSTRAINT PK_CUSTOMER PRIMARY KEY (ID))

For details on more complex optimizations and database-to-relationship mappings, please see the JBoss CMP 2.0
documentation available at http://www.jboss.org.

24.3.3 Examine and Run the Client Applications

The example program, Client_63, shows how to create a Customer EJB and set the Address relation on that customer.

24.3.3.1 AddressBean.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.3.3.1 AddressBean.java

public abstract class AddressBean implements javax.ejb.EntityBean

{

 private static final int IDGEN_START =

 (int)System.currentTimeMillis();

 private static int idgen = IDGEN_START;

 public Integer ejbCreateAddress (String street, String city,

 String state, String zip)

 throws CreateException

 {

 setId(new Integer(idgen++));

 setStreet(street);

 setCity(city);

 setState(state);

 setZip(zip);

 return null;

 }

 ...

}

JBoss CMP does have automatic primary-key generation. For this and subsequent examples, though, a very crude ID
generator has been created to provide a more predictable mechanism for creating keys. The code just takes the current
time in milliseconds at the load of the bean and increments it by one at every ejbCreate(). Crude, workable for these
examples, but not recommended for real applications.

In order to run Client_63, invoke the Ant task run.client_63. Remember to set your JBOSS_HOME and PATH environment
variables.

The output should look something like this:

C:\workbook\ex06_3>ant run.client_63

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_63:

 [java] Creating Customer 1..

 [java] Creating AddressDO data object..

 [java] Setting Address in Customer 1...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Setting Address in Customer 1...

 [java] Acquiring Address data object from Customer 1...

 [java] Customer 1 Address data:

 [java] 1010 Colorado

 [java] Austin,TX 78701

 [java] Creating new AddressDO data object..

 [java] Setting new Address in Customer 1...

 [java] Customer 1 Address data:

 [java] 1600 Pennsylvania Avenue NW

 [java] DC,WA 20500

 [java] Removing Customer 1...

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 25. Exercises for Chapter 7
Section 25.1. Exercise 7.1: Entity Relationships in CMP 2.0, Part 1

Section 25.2. Exercise 7.2:Entity Relationships in CMP 2.0, Part 2

Section 25.3. Exercise 7.3: Cascade Deletes in CMP 2.0

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

25.1 Exercise 7.1: Entity Relationships in CMP 2.0, Part 1
This exercise walks you through implementing a complex set of interrelated entity beans defined in Chapter 7 of the EJB
book.

25.1.1 Start Up JBoss

If JBoss is not running, start it up. If it's already running, there's no reason to restart it.

25.1.2 Initialize the Database

The database table for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when the
EJB JAR is deployed.

25.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex07_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex07_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex07_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

25.1.4 Examine the JBoss-Specific Files

This chapter introduces no new features in JBoss-specific files. Please review Exercise 6.1 to understand the JBoss-
specific files in this example. Also, this chapter implements nonperformance-tuned entity beans and relies on the CMP
2.0 engine to create all database tables. To learn about JBoss's extensive configuration options, please review the
advanced CMP 2.0 documentation at http://www.jboss.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.1.5 Examine and Run the Client Applications

From this chapter on, we no longer use remote entity bean interfaces (so the example code matches the code
illustrated in the EJB section of this book). Accordingly, the Customer EJB switches to local-only interfaces:

CustomerHomeRemote becomes CustomerHomeLocal.

CustomerRemote becomes CustomerLocal.

Bean interface methods no longer throw RemoteExceptions.

The ejb-jar.xml descriptor changes to use local interfaces. Thus:

<ejb-name>CustomerEJB</ejb-name>

<home>com.titan.customer.CustomerHomeRemote</home>

<remote>com.titan.customer.CustomerRemote</remote>

<ejb-class>com.titan.customer.CustomerBean</ejb-class>

changes to:

<ejb-name>CustomerEJB</ejb-name>

<local-home>com.titan.customer.CustomerHomeLocal</local-home>

<local>com.titan.customer.CustomerLocal</local>

<ejb-class>com.titan.customer.CustomerBean</ejb-class>

The JNDI binding in jboss.xml changes as well. Thus:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

 <jndi-name>CustomerHomeRemote</jndi-name>

</entity>

changes to:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

 <local-jndi-name>CustomerHomeLocal</local-jndi-name>

</entity>

Because interfaces are now local, the example programs no longer need to use dependent value classes to set up
relationships like Customer-Address. This change simplifies the code and allows you to pass local entity beans such as
Address, Credit Card, and Phone to Customer EJB methods directly.

Another consequence is that remote clients can no longer invoke business logic on the entity beans implemented in this
chapter. Instead, you'll implement all example business logic in the methods of a stateless session bean. Also, EJB
containers don't allow the manipulation of a relationship collection (including iteration through the collection) outside
the context of a transaction. In JBoss, all bean methods are Required by default, so all example test code will run within
a transaction. Chapter 16 in the EJB book discusses transactions in more detail.

To execute these examples from the command line, implement separate, distinct remote clients that get a reference to
the stateless test bean and invoke the appropriate test method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.1.5.1 Client_71a

The Client_71a example program reveals the unidirectional relationship between Customer and Address. The business
logic for this example is implemented in com.titan.test.Test71Bean in the test71a() method.

In test71a(), output is written to the PrintWriter created below. The method finishes by extracting a String from the
PrintWriter and passing it back to the remote client for display:

public String test71a() throws RemoteException

{

 String output = null;

 StringWriter writer = new StringWriter();

 PrintWriter out = new PrintWriter(writer);

 try

 {

The first part of test71a() simply fetches the home interfaces of Customer and Address from JNDI. It then creates both a
Customer and an Address:

InitialContext jndiContext = getInitialContext();

Object obj = jndiContext.lookup("CustomerHomeLocal");

CustomerHomeLocal customerhome = (CustomerHomeLocal)obj;

obj = jndiContext.lookup("AddressHomeLocal");

AddressHomeLocal addresshome = (AddressHomeLocal)obj;

out.println("Creating Customer 71");

Integer primaryKey = new Integer(71);

CustomerLocal customer = customerhome.create(primaryKey);

customer.setName(new Name("Smith","John"));

AddressLocal addr = customer.getHomeAddress();

if (addr==null)

{

 out.println("Address reference is NULL, Creating one and

 setting in Customer..");

 addr = addresshome.createAddress("333 North Washington"

 ,"Minneapolis"

 ,"MN","55401");

A call to customer.setHomeAddress() sets up the relationship:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A call to customer.setHomeAddress() sets up the relationship:

 customer.setHomeAddress(addr);

 }

 ...

Next, modify the address directly with new information. Calling the Address object's set methods is the correct way to
modify a unidirectional relationship that has already been set up.

addr.setStreet("445 East Lake Street");

addr.setCity("Wayzata");

addr.setState("MN");

addr.setZip("55432");

...

The next bit of code shows the wrong way to modify a unidirectional relationship that's already been created. Instead of
modifying the existing Address entity, it creates a new one. Passing the new one to customer.setHomeAddress() orphans
the old one, which thereafter just sits there in the database, unused and forgotten. The result is a database "leak:"

addr = addresshome.createAddress("700 Main Street"

 ,"St. Paul","MN","55302");

...

customer.setHomeAddress(addr);

Two different relationships can share the same entity. This code shares a single address between the Home Address
and Billing Address relationships:

addr = customer.getHomeAddress();

...

customer.setBillingAddress(addr);

AddressLocal billAddr = customer.getBillingAddress();

AddressLocal homeAddr = customer.getHomeAddress();

The Billing Address and Home Address now refer to the same bean:

if (billAddr.isIdentical(homeAddr))

{

 out.println("Billing and Home are the same!");

}

else

{

 out.println("Billing and Home are NOT the same!

 BUG IN JBOSS!");

}

}

 catch (Exception ex)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch (Exception ex)

 {

 ex.printStackTrace(out);

 }

Finally, test71a() closes the PrintWriter, extracts the output string, and returns it to the client for display:

 out.close();

 output = writer.toString();

 return output;

}

In order to run Client_71a, invoke the Ant task run.client_71a. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_1>ant run.client_71a

Buildfile: build.xml

prepare:

compile:

run.client_71a:

 [java] Creating Customer 71

 [java] Address reference is NULL, Creating one and setting in Customer..

 [java] Address Info: 333 North Washington Minneapolis, MN 55401

 [java] Modifying Address through address reference

 [java] Address Info: 445 East Lake Street Wayzata, MN 55432

 [java] Creating New Address and calling setHomeAddress

 [java] Address Info: 700 Main Street St. Paul, MN 55302

 [java] Retrieving Address reference from Customer via getHomeAddress

 [java] Address Info: 700 Main Street St. Paul, MN 55302

 [java] Setting Billing address to be the same as Home address.

 [java] Testing that Billing and Home Address are the same Entity.

 [java] Billing and Home are the same!

25.1.5.2 Client_71b

The Client_71b program illustrates a simple one-to-one bidirectional relationship between a Customer bean and a Credit
Card bean. The business logic for this example is implemented in com.titan.test.Test71Bean, in the test71b() method.
Examine the code for this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examine the code for this example.

You use the default JNDI context to obtain references to the local home interfaces of the Customer and Credit Card
EJBs. The code also creates an instance of a Customer EJB:

// obtain CustomerHome

InitialContext jndiContext = getInitialContext();

Object obj = jndiContext.lookup("CustomerHomeLocal");

CustomerHomeLocal customerhome = (CustomerHomeLocal)obj;

obj = jndiContext.lookup("CreditCardHomeLocal");

CreditCardHomeLocal cardhome = (CreditCardHomeLocal)obj;

Integer primaryKey = new Integer(71);

CustomerLocal customer = customerhome.create(primaryKey);

customer.setName(new Name("Smith","John"));

Next, create an instance of a Credit Card. Notice that you don't need to pass in a primary key; the crude algorithm
introduced in Exercise 6.3 generates one automatically:

// set Credit Card info

Calendar now = Calendar.getInstance();

CreditCardLocal card = cardhome.create(now.getTime(),

 "370000000000001", "John Smith", "O'Reilly");

Then you establish the one-to-one bidirectional relationship between Customer and Credit Card simply by calling the
Customer EJB's setCreditCard() method:

 customer.setCreditCard(card);

The following code illustrates the bidirectional nature of the relationship by navigating from a Credit Card to a Customer
and vice versa:

String cardname = customer.getCreditCard().getNameOnCard();

out.println("customer.getCreditCard().getNameOnCard()="

 + cardname);

Name name = card.getCustomer().getName();

String custfullname = name.getFirstName() + " " +

 name.getLastName();

out.println("card.getCustomer().getName()="+custfullname);

Finally, the code illustrates how to destroy the relationship between the Customer and Credit Card beans:

card.setCustomer(null);

CreditCardLocal newcardref = customer.getCreditCard();

if (newcardref == null)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (newcardref == null)

{

 out.println

 ("Card is properly unlinked from customer bean");

}

else

{

 out.println("Whoops, customer still thinks it has a

 card! BUG IN JBOSS!");

}

In order to run Client_71b, invoke the Ant task run.client_71b. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_1>ant run.client_71b

Buildfile: build.xml

prepare:

compile:

run.client_71b:

 [java] Finding Customer 71

 [java] Creating CreditCard

 [java] Linking CreditCard and Customer

 [java] Testing both directions on relationship

 [java] customer.getCreditCard().getNameOnCard()=John Smith

 [java] card.getCustomer().getName()=John Smith

 [java] Unlink the beans using CreditCard, test Customer side

 [java] Card is properly unlinked from customer bean

 [java]

25.1.5.3 Client_71c

The Client_71c program illustrates the proper use of a one-to-many unidirectional relationship between customers and
their phone numbers. The business logic for this example is implemented in com.titan.test.Test71Bean, in the test71c()
method.

First, the test code locates the Customer home interface through JNDI, then finds the Customer that needs new phone
numbers:

// obtain CustomerHome

InitialContext jndiContext = getInitialContext();

Object obj = jndiContext.lookup("CustomerHomeLocal");

CustomerHomeLocal home = (CustomerHomeLocal)obj;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CustomerHomeLocal home = (CustomerHomeLocal)obj;

// Find Customer 71

Integer primaryKey = new Integer(71);

CustomerLocal customer = home.findByPrimaryKey(primaryKey);

The next bit of code invokes the Customer helper method addPhoneNumber() to relate two phone numbers to the
customer and outputs the contents of the customer-phone relationship after each addition:

// Display current phone numbers and types

out.println("Starting contents of phone list:");

ArrayList vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

// add a new phone number

out.println("Adding a new type 1 phone number..");

customer.addPhoneNumber("612-555-1212",(byte)1);

out.println("New contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

// add a new phone number

out.println("Adding a new type 2 phone number..");

customer.addPhoneNumber("800-333-3333",(byte)2);

out.println("New contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This code uses the updatePhoneNumber() helper method to modify an existing phone number:

// update a phone number

out.println("Updating type 1 phone numbers..");

customer.updatePhoneNumber("763-555-1212",(byte)1);

out.println("New contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

Finally, this code illustrates how to remove a member of a one-to-many unidirectional relationship:

// delete a phone number

out.println("Removing type 1 phone numbers from this

 Customer..");

customer.removePhoneNumber((byte)1);

out.println("Final contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

 {

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

Note that the phone entity hasn't been destroyed. It's still in the database; it's just no longer related to this customer
bean.

In order to run Client_71c, invoke the Ant task run.client_71c. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_1>ant run.client_71c

Buildfile: build.xml

prepare:

compile:

run.client_71c:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Starting contents of phone list:

 [java] Adding a new type 1 phone number..

 [java] New contents of phone list:

 [java] Type=1 Number=612-555-1212

 [java] Adding a new type 2 phone number..

 [java] New contents of phone list:

 [java] Type=1 Number=612-555-1212

 [java] Type=2 Number=800-333-3333

 [java] Updating type 1 phone numbers..

 [java] New contents of phone list:

 [java] Type=1 Number=763-555-1212

 [java] Type=2 Number=800-333-3333

 [java] Removing type 1 phone numbers from this Customer..

 [java] Final contents of phone list:

 [java] Type=2 Number=800-333-3333

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

25.2 Exercise 7.2:Entity Relationships in CMP 2.0, Part 2
The example programs in Exercise 7.2 illustrate the remaining four types of entity-bean relationship:

Many-to-one unidirectional (Cruise-Ship)

One-to-many bidirectional (Cruise-Reservation)

Many-to-many bidirectional (Customer-Reservation)

Many-to-many unidirectional (Cabin-Reservation)

25.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

25.2.2 Initialize the Database

No database is initialization needed; JBoss will create the needed tables at bean deployment.

25.2.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_2 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex07_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex07_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex07_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

25.2.4 Examine the JBoss-Specific Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No new concepts are introduced in the JBoss-specific deployment descriptors.

25.2.5 Examine and Run the Client Applications

This exercise uses six example programs to demonstrate the various relationships described in the corresponding
chapter of the EJB book. Note that you can rerun any of these examples as many times as you like because they clean
up after themselves by removing all the entities they create.

Client_72a

Demonstrates the many-to-one unidirectional Cruise-Ship relationship, as well as the sharing of a reference
between different beans.

Client_72b

Demonstrates the one-to-many bidirectional Cruise-Reservation relationship and how to use set methods to
modify reservations that are associated with a cruise.

Client_72c

Expands on the Cruise-Reservation relationship, using the addAll() method to modify the reservations associated
with a cruise.

Client_72d

Demonstrates the many-to-many bidirectional Customer-Reservation relationship.

Client_72e

Continues the demonstration of the Customer-Reservation relationship by showing how to use setCustomers() to
modify the Customers for a Reservation.

Client_72f

Demonstrates the many-to-many unidirectional Cabin-Reservation relationship.

25.2.5.1 Client_72a

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72a() method. Client_72a
models the many-to-one unidirectional Cruise-Ship relationships shown in Figure 7-12 of the EJB section of this book.

First, this code creates the relationships described in the top half of the figure. Cruises 1 to 3 embark on Ship A; Cruises
4 to 6 set sail on Ship B.

cruises[0] = cruisehome.create("Cruise 1", shipA);

cruises[1] = cruisehome.create("Cruise 2", shipA);

cruises[2] = cruisehome.create("Cruise 3", shipA);

cruises[3] = cruisehome.create("Cruise 4", shipB);

cruises[4] = cruisehome.create("Cruise 5", shipB);

cruises[5] = cruisehome.create("Cruise 6", shipB);

Next, the code switches Cruise 4 so that it is now handled by Ship A instead of Ship B. This relationship change is
illustrated in the bottom half of Figure 7-12:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

illustrated in the bottom half of Figure 7-12:

ShipLocal newship = cruises[0].getShip();

cruises[3].setShip(newship);

In order to run Client_72a, invoke the Ant task run.client_72a. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72a

Buildfile: build.xml

prepare:

compile:

run.client_72a:

 [java] Creating Ships

 [java] PK=1001 name=Ship A tonnage=30000.0

 [java] PK=1002 name=Ship B tonnage=40000.0

 [java] Creating Cruises

 [java] Cruise 1 is using Ship A

 [java] Cruise 2 is using Ship A

 [java] Cruise 3 is using Ship A

 [java] Cruise 4 is using Ship B

 [java] Cruise 5 is using Ship B

 [java] Cruise 6 is using Ship B

 [java] Changing Cruise 4 to use same ship as Cruise 1

 [java] Cruise 1 is using Ship A

 [java] Cruise 2 is using Ship A

 [java] Cruise 3 is using Ship A

 [java] Cruise 4 is using Ship A

 [java] Cruise 5 is using Ship B

 [java] Cruise 6 is using Ship B

 [java] Removing created beans

25.2.5.2 Client_72b

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72b() method. Client_72b
models the one-to-many bidirectional Cruise-Reservation relationships shown in Figure 7-14 of the EJB section of this
book.

First, this code creates the relationships described in the top half of the figure. Reservations 1 to 3 are for Cruise A;
Reservations 4 to 6 are for Cruise B:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reservations 4 to 6 are for Cruise B:

 for (int i = 0; i < 6; i++)

 {

 CruiseLocal cruise = (i < 3) ? cruiseA : cruiseB;

 reservations[i] = reservationhome.create(cruise,new ArrayList());

 reservations[i].setDate(date.getTime());

 reservations[i].setAmountPaid((i + 1) * 1000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 }

Next, the code sets the reservations of Cruise B to be the reservations of Cruise A. Those relationships actually move
from A to B. Afterward, Cruise A and Reservations 1-3 no longer have any Cruise-Reservation relationships, as you see
in the bottom half of Figure 7-14:

 Collection a_reservations = cruiseA.getReservations();

 cruiseB.setReservations(a_reservations);

To run Client_72b, invoke the Ant task run.client_72b. Remember to set your JBOSS_HOME and PATH environment
variables. The output will look something like this:

C:\workbook\ex07_2>ant run.client_72b

Buildfile: build.xml

prepare:

compile:

run.client_72b:

 [java] Creating Cruises

 [java] name=Cruise A

 [java] name=Cruise B

 [java] Creating Reservations

 [java] Reservation date=11/01/2002 is for Cruise A

 [java] Reservation date=11/08/2002 is for Cruise A

 [java] Reservation date=11/15/2002 is for Cruise A

 [java] Reservation date=11/22/2002 is for Cruise B

 [java] Reservation date=11/29/2002 is for Cruise B

 [java] Reservation date=12/06/2002 is for Cruise B

 [java] Testing CruiseB.setReservations(CruiseA.getReservations())

 [java] Reservation date=11/01/2002 is for Cruise B

 [java] Reservation date=11/08/2002 is for Cruise B

 [java] Reservation date=11/15/2002 is for Cruise B

 [java] Reservation date=11/22/2002 is for No Cruise!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/22/2002 is for No Cruise!

 [java] Reservation date=11/29/2002 is for No Cruise!

 [java] Reservation date=12/06/2002 is for No Cruise!

 [java] Removing created beans.

25.2.5.3 Client_72c

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72c() method. Client_72c
explores the use of Collection.addAll() in the Cruise-Reservation s shown in Figure 7-15 of the EJB section.

First, this code creates the relationships described in the top half of the figure. Reservations 1 to 3 are for Cruise A;
Reservations 4 to 6 are for Cruise B:

 for (int i = 0; i < 6; i++)

 {

 CruiseLocal cruise = (i < 3) ? cruiseA : cruiseB;

 reservations[i] = reservationhome.create(cruise,new ArrayList());

 reservations[i].setDate(date.getTime());

 reservations[i].setAmountPaid((i + 1) * 1000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 }

Then the code changes all reservations of Cruise A to be for Cruise B instead. The result of this action can be seen in
the bottom half of Figure 7-15:

 Collection a_reservations = cruiseA.getReservations();

 Collection b_reservations = cruiseB.getReservations();

 b_reservations.addAll(a_reservations);

In order to run Client_72c, invoke the Ant task run.client_72c. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72c

Buildfile: build.xml

prepare:

compile:

run.client_72c:

 [java] Creating Cruises

 [java] name=Cruise A

 [java] name=Cruise B

 [java] Creating Reservations

 [java] Reservation date=11/01/2002 is for Cruise A

 [java] Reservation date=11/08/2002 is for Cruise A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/08/2002 is for Cruise A

 [java] Reservation date=11/15/2002 is for Cruise A

 [java] Reservation date=11/22/2002 is for Cruise B

 [java] Reservation date=11/29/2002 is for Cruise B

 [java] Reservation date=12/06/2002 is for Cruise B

 [java] Testing using b_res.addAll(a_res) to combine reservations

 [java] Reservation date=11/01/2002 is for Cruise B

 [java] Reservation date=11/08/2002 is for Cruise B

 [java] Reservation date=11/15/2002 is for Cruise B

 [java] Reservation date=11/22/2002 is for Cruise B

 [java] Reservation date=11/29/2002 is for Cruise B

 [java] Reservation date=12/06/2002 is for Cruise B

25.2.5.4 Client_72d

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72d() method. Client_72d
explores the use of Collection.addAll() in the Customer-Reservation many-to-many bidirectional relationship shown in
Figure 7-17 of the EJB section.

First, two sets of customers are created:

 Set lowcustomers = new HashSet();

 Set highcustomers = new HashSet();

 CustomerLocal[] allCustomers = new CustomerLocal[6];

 for (int kk=0; kk<6; kk++)

 {

 CustomerLocal cust = customerhome.create(new Integer(kk));

 allCustomers[kk] = cust;

 cust.setName(new Name("Customer "+kk,""));

 if (kk<=2)

 {

 lowcustomers.add(cust);

 }

 else

 {

 highcustomers.add(cust);

 }

 out.println(cust.getName().getLastName());

 }

Next, the code creates six reservations and relates them to one of the customer sets, as shown in the top half of Figure
7-17. Customers 1 to 3 have Reservation A; Customers 4 to 6 have Reservation B.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7-17. Customers 1 to 3 have Reservation A; Customers 4 to 6 have Reservation B.

 reservations[0] = reservationhome.create(cruiseA, lowcustomers);

 reservations[0].setDate(date.getTime());

 reservations[0].setAmountPaid(4000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[1] = reservationhome.create(cruiseA, highcustomers);

 reservations[1].setDate(date.getTime());

 reservations[1].setAmountPaid(5000.0);

Finally, the code uses addAll() to relate Customers 4 to 6 with Reservation A. They now have a reservation for both
Cruise A and Cruise B. The bottom half of Figure 7-17 illustrates this result:

Set customers_a = reservations[0].getCustomers();

Set customers_b = reservations[1].getCustomers();

customers_a.addAll(customers_b);

In order to run Client_72d, invoke the Ant task run.client_72d. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72d

Buildfile: build.xml

prepare:

compile:

run.client_72d:

 [java] cruise.getName()=Cruise A

 [java] ship.getName()=Ship A

 [java] cruise.getShip().getName()=Ship A

 [java] Creating Customers 1-6

 [java] Customer 0

 [java] Customer 1

 [java] Customer 2

 [java] Customer 3

 [java] Customer 4

 [java] Customer 5

 [java] Creating Reservations 1 and 2, each with 3 customers

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2 Customer 1 Customer 0

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 5 Customer 4 Customer 3

 [java] Performing customers_a.addAll(customers_b) test

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2 Customer 1 Customer 0 Customer 5 Custo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2 Customer 1 Customer 0 Customer 5 Custo

mer 4 Customer 3

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 5 Customer 4 Customer 3

 [java] Removing created beans

25.2.5.5 Client_72e

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72e() method. Client_72e
explores the use of setCustomers() to share an entire collection, in the Customer-Reservation many-to-many
bidirectional relationship shown in Figure 7-18 of the EJB section.

First, four sets of customers are created:

Set customers13 = new HashSet();

Set customers24 = new HashSet();

Set customers35 = new HashSet();

Set customers46 = new HashSet();

CustomerLocal[] allCustomers = new CustomerLocal[6];

for (int kk=0; kk<6; kk++)

{

 CustomerLocal cust = customerhome.create(new Integer(kk));

 allCustomers[kk] = cust;

 cust.setName(new Name("Customer "+kk,""));

 if (kk<=2) { customers13.add(cust); }

 if (kk>=1 && kk<=3) { customers24.add(cust); }

 if (kk>=2 && kk<=4) { customers35.add(cust); }

 if (kk>=3) { customers46.add(cust); }

}

Next, the code sets up the relationships between Customers and Reservations shown in the top half of Figure 7-18:

reservations[0] = reservationhome.create(cruiseA, customers13);

reservations[0].setDate(date.getTime());

reservations[0].setAmountPaid(4000.0);

date.add(Calendar.DAY_OF_MONTH, 7);

reservations[1] = reservationhome.create(cruiseA, customers24);

reservations[1].setDate(date.getTime());

reservations[1].setAmountPaid(5000.0);

date.add(Calendar.DAY_OF_MONTH, 7);

reservations[2] = reservationhome.create(cruiseA, customers35);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reservations[2] = reservationhome.create(cruiseA, customers35);

reservations[2].setDate(date.getTime());

reservations[2].setAmountPaid(6000.0);

date.add(Calendar.DAY_OF_MONTH, 7);

reservations[3] = reservationhome.create(cruiseA, customers46);

reservations[3].setDate(date.getTime());

reservations[3].setAmountPaid(7000.0);

Finally, the code sets up the relationships shown in the bottom half of the figure:

Set customers_a = reservations[0].getCustomers();

 reservations[3].setCustomers(customers_a);

In order to run Client_72e, invoke the Ant task run.client_72e. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72e

Buildfile: build.xml

prepare:

compile:

run.client_72e:

 [java] Creating a Ship and Cruise

 [java] cruise.getName()=Cruise A

 [java] ship.getName()=Ship A

 [java] cruise.getShip().getName()=Ship A

 [java] Creating Customers 1-6

 [java] Creating Reservations 1-4 using three customers each

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2

Customer 1 Customer 0

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 3

Customer 2 Customer 1

 [java] Reservation date=11/15/2002 is for Cruise A with customers Customer 4

Customer 3 Customer 2

 [java] Reservation date=11/22/2002 is for Cruise A with customers Customer 5

Customer 4 Customer 3

 [java] Performing reservationD.setCustomers(customersA) test

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2

Customer 1 Customer 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 3

Customer 2 Customer 1

 [java] Reservation date=11/15/2002 is for Cruise A with customers Customer 4

Customer 3 Customer 2

 [java] Reservation date=11/22/2002 is for Cruise A with customers Customer 2

Customer 1 Customer 0

 [java] Removing created beans.

25.2.5.6 Client_72f

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72f() method. Client_72f
demonstrates removing beans in the many-to-many unidirectional Cabin-Reservation relationship, as shown in Figure
7-20 of the EJB section.

First, four sets of cabins are created:

 Set cabins13 = new HashSet();

 Set cabins24 = new HashSet();

 Set cabins35 = new HashSet();

 Set cabins46 = new HashSet();

 CabinLocal[] allCabins = new CabinLocal[6];

 for (int kk=0; kk<6; kk++)

 {

 CabinLocal cabin = cabinhome.create(new Integer(kk));

 allCabins[kk] = cabin;

 cabin.setName("Cabin "+kk);

 if (kk<=2) { cabins13.add(cabin); }

 if (kk>=1 && kk<=3) { cabins24.add(cabin); }

 if (kk>=2 && kk<=4) { cabins35.add(cabin); }

 if (kk>=3) { cabins46.add(cabin); }

 out.println(cabin.getName());

 }

Next, the code creates the initial relationships between Reservations and Cabins, shown in the top half of Figure 7-20:

 reservations[0] = reservationhome.create(cruiseA, null);

 reservations[0].setCabins(cabins13);

 reservations[0].setDate(date.getTime());

 reservations[0].setAmountPaid(4000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 reservations[1] = reservationhome.create(cruiseA, null);

 reservations[1].setCabins(cabins24);

 reservations[1].setDate(date.getTime());

 reservations[1].setAmountPaid(5000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[2] = reservationhome.create(cruiseA, null);

 reservations[2].setCabins(cabins35);

 reservations[2].setDate(date.getTime());

 reservations[2].setAmountPaid(6000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[3] = reservationhome.create(cruiseA, null);

 reservations[3].setCabins(cabins46);

 reservations[3].setDate(date.getTime());

 reservations[3].setAmountPaid(7000.0);

Finally, the code removes some of the relationships, as shown in the bottom half of the figure:

 Set cabins_a = reservations[0].getCabins();

 Iterator iterator = cabins_a.iterator();

 while (iterator.hasNext())

 {

 CabinLocal cc = (CabinLocal)iterator.next();

 out.println("Removing "+cc.getName()+" from cabins_a");

 iterator.remove();

 }

In order to run Client_72f, invoke the Ant task run.client_72f. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72f

Buildfile: build.xml

prepare:

compile:

run.client_72f:

 [java] Creating a Ship and Cruise

 [java] cruise.getName()=Cruise A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] ship.getName()=Ship A

 [java] cruise.getShip().getName()=Ship A

 [java] Creating Cabins 1-6

 [java] Cabin 0

 [java] Cabin 1

 [java] Cabin 2

 [java] Cabin 3

 [java] Cabin 4

 [java] Cabin 5

 [java] Creating Reservations 1-4 using three cabins each

 [java] Reservation date=11/01/2002 is for Cruise A with cabins Cabin 2 Cabin 1

Cabin 0

 [java] Reservation date=11/08/2002 is for Cruise A with cabins Cabin 3 Cabin 2

Cabin 1

 [java] Reservation date=11/15/2002 is for Cruise A with cabins Cabin 4 Cabin 3

Cabin 2

 [java] Reservation date=11/22/2002 is for Cruise A with cabins Cabin 5 Cabin 4

Cabin 3

 [java] Performing cabins_a collection iterator.remove() test

 [java] Removing Cabin 2 from cabins_a

 [java] Removing Cabin 1 from cabins_a

 [java] Removing Cabin 0 from cabins_a

 [java] Reservation date=11/01/2002 is for Cruise A with cabins

 [java] Reservation date=11/08/2002 is for Cruise A with cabins Cabin 3 Cabin 2

Cabin 1

 [java] Reservation date=11/15/2002 is for Cruise A with cabins Cabin 4 Cabin 3

Cabin 2

 [java] Reservation date=11/22/2002 is for Cruise A with cabins Cabin 5 Cabin 4

Cabin 3

 [java] Removing created beans

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

25.3 Exercise 7.3: Cascade Deletes in CMP 2.0
This very short exercise demonstrates the use of the automatic cascade-delete feature of CMP 2.0 containers. It does
this with an example Customer bean and some other beans related to it.

25.3.1 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_3 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex07_3> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex07_3> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex07_3> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

25.3.2 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

25.3.3 Examine and Run the Client Applications

Client_73 is a simple example to demonstrate cascade-delete. The example code is pretty straightforward and needs no
explanation.

In order to run Client_73, invoke the Ant task run.client_73. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\workbook\ex07_3>ant run.client_73

Buildfile: build.xml

prepare:

compile:

run.client_73:

 [java] Creating Customer 10078, Addresses, Credit Card, Phones

 [java] Creating CreditCard

 [java] customer.getCreditCard().getName()=Ringo Star

 [java] Creating Address

 [java] Address Info: 780 Main Street Beverly Hills, CA 90210

 [java] Creating Phones

 [java] Adding a new type 1 phone number..

 [java] Adding a new type 2 phone number.

 [java] New contents of phone list:

 [java] Type=1 Number=612-555-1212

 [java] Type=2 Number=888-555-1212

 [java] Removing Customer EJB only

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 26. Exercises for Chapter 8
Section 26.1. Exercise 8.1: Simple EJB QL Statements

Section 26.2. Exercise 8.2: Complex EJB QL Statements

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

26.1 Exercise 8.1: Simple EJB QL Statements
The exercises in this section reveal some of the basic aspects of EJB QL programming and functionality. You'll explore
basic finder methods, ejbSelect methods, and the use of the IN operation in EJB QL queries.

26.1.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

26.1.2 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex08_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex08_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex08_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex08_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

26.1.3 Examine the JBoss-Specific Files

This exercise introduces no new features in JBoss-specific files. If you think you need to, review Exercise 6.1 of this
workbook to understand the JBoss-specific files in this example.

26.1.4 Initialize the Database

The database tables for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when
the EJB JAR is deployed. To initialize all the tables in this example, though, you must perform the Ant task run.initialize:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the EJB JAR is deployed. To initialize all the tables in this example, though, you must perform the Ant task run.initialize:

C:\workbook\ex08_1>ant run.initialize

Buildfile: build.xml

prepare:

compile:

run.initialize:

 [java] added Bill Burke

 [java] added Sacha Labourey

 [java] added Marc Fleury

 [java] added Jane Swift

 [java] added Nomar Garciaparra

As in the preceding exercise, all business logic is implemented within a stateless session bean. If you would like to see
the database initialization code, take a look at com.titan.test.Test81Bean's initialize() method, which creates all the entity
beans for this exercise.

26.1.5 Examine and Run the Client Applications

Each example method of Test81Bean implements the example code fragments shown in the EJB book. Each Test81Bean
method is invoked by a small, simple client application.

26.1.5.1 Client_81a

The Client_81a program demonstrates a few simple finder methods that are exposed through the Customer home
interface:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome

{

 ...

 public CustomerLocal findByName(String lastName,

 String firstName)

 throws FinderException;

 public Collection findByGoodCredit()

 throws FinderException;

 ...

}

The Customer EJB's deployment descriptor defines these finder methods as follows:

<query>

 <query-method>

 <method-name>findByName</method-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <method-name>findByName</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer c

 WHERE c.lastName = ?1 AND c.firstName = ?2

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>findByGoodCredit</method-name>

 <method-params/>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer c

 WHERE c.hasGoodCredit = TRUE

 </ejb-ql>

</query>

The example also demonstrates a few ejbSelect methods, defined in the Address EJB's deployment descriptor as follows:

<query>

 <query-method>

 <method-name>ejbSelectZipCodes</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT a.zip FROM Address AS a

 WHERE a.state = ?1

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectAll</method-name>

 <method-params/>

 </query-method>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-ql>

 SELECT OBJECT(a) FROM Address AS a

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectCustomer</method-name>

 <method-params>

 <method-param>com.titan.address.AddressLocal</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(C) FROM Customer AS c

 WHERE c.homeAddress = ?1

 </ejb-ql>

</query>

Because ejbSelect methods are private to the entity bean class, the Address home interface needs custom home
methods to wrap and invoke the private ejbSelect methods.

public interface AddressHomeLocal extends javax.ejb.EJBLocalHome

{

 ...

 public Collection queryZipCodes(String state)

 throws FinderException;

 public Collection queryAll()

 throws FinderException;

 public CustomerLocal queryCustomer(AddressLocal addr)

 throws FinderException;

}

These custom home methods need corresponding ejbHome methods defined in the Address bean class. All they do is
delegate to the ejbSelect methods they wrap.

public abstract class AddressBean implements javax.ejb.EntityBean

{

 ...

 public abstract Collection ejbSelectZipCodes(String state)

 throws FinderException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract Collection ejbSelectAll()

 throws FinderException;

 public abstract CustomerLocal ejbSelectCustomer

 (AddressLocal addr)

 throws FinderException;

 public Collection ejbHomeQueryZipCodes(String state)

 throws FinderException

 {

 return ejbSelectZipCodes(state);

 }

 public Collection ejbHomeQueryAll()

 throws FinderException

 {

 return ejbSelectAll();

 }

 public CustomerLocal ejbHomeQueryCustomer(AddressLocal addr)

 throws FinderException

 {

 return ejbSelectCustomer(addr);

 }

 ...

}

Custom home methods are described briefly in Chapter 5 of the EJB book and in more detail in Chapter 11. As you can
see, they are extremely useful in exposing private ejbSelect methods so that they can be invoked by test programs or
business logic. All the workbook example programs for Chapter 8 use the custom home methods for this purpose.

Client_81a invokes these queries and displays their output. To run it, invoke the Ant task run.client_81a. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_1>ant run.client_81a

Buildfile: build.xml

prepare:

compile:

run.client_81a:

 [java] FIND METHODS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] FIND METHODS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.lastName = ?1 AND c.firstName = ?2

 [java] Find Bill Burke using findByName

 [java] Found Bill Burke

 [java]

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.hasGoodCredit = TRUE

 [java] Find all with good credit. Sacha has bad credit!

 [java] Bill has good credit.

 [java] Marc has good credit.

 [java] Jane has good credit.

 [java] Nomar has good credit.

 [java]

 [java] SELECT METHODS

 [java] --------------------------------

 [java] SELECT a.zip FROM Address AS a

 [java] WHERE a.state = ?1

 [java] show ejbSelectZipCodes with queryZipCodes

 [java] 01821

 [java] 02115

 [java] 02116

 [java]

 [java] SELECT OBJECT(a) FROM Address AS a

 [java] show ejbSelectAll with queryAll

 [java] 123 Boston Road

 [java] Billerica, MA 01821

 [java]

 [java] Etwa Schweitzer Strasse

 [java] Neuchatel, Switzerland 07711

 [java]

 [java] Somewhere Dr.

 [java] Atlanta, GA 06660

 [java]

 [java] 1 Beacon Street

 [java] Boston, MA 02115

 [java]

 [java] 1 Yawkey Way

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] 1 Yawkey Way

 [java] Boston, MA 02116

 [java]

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] Somewhere

 [java] Atlanta, GA 06660

 [java]

 [java]

 [java] SELECT OBJECT(C) FROM Customer AS c

 [java] WHERE c.homeAddress = ?1

 [java] show ejbSelectCustomer using Bill's address.

 [java] The customer is:

 [java] Bill Burke

 [java] 123 Boston Road

 [java] Billerica, MA 01821

26.1.5.2 Client_81b

The Client_81b program gives you a chance to investigate some of the queries illustrated in the EJB book. For an
explanation of the details of the tested queries below, please refer to Section 8.3.2 in Chapter 8 of the EJB section of
this book. The business logic for this example is implemented in com.titan.test.Test81Bean, in the test81b() method.

All the EJB QL queries in this example are ejbSelect methods. Again, these ejbSelect methods are wrapped by custom
home methods. This example tests the following Customer EJB QL queries and home methods:

query: SELECT c.lastName FROM Customer AS c

ejbSelect method: ejbSelectLastNames()

custom home method: queryLastNames()

ejbHome method: ejbHomeQueryLastNames()

query: SELECT c.creditCard FROM Customer c

ejbSelect method: ejbSelectCreditCards()

custom home method: queryCreditCards()

ejbHome method: ejbHomeQueryCreditCards()

query: SELECT c.homeAddress.city FROM Customer c

ejbSelect method: ejbSelectCities()

custom home method: queryCities()

ejbHome method: ejbHomeQueryCities()

query: SELECT c.creditCard.creditCompany.address

 FROM Customer AS c

ejbSelect method: ejbSelectCreditCompanyAddresses()

custom home method: queryCreditCompanyAddresses()

ejbHome method: ejbHomeQueryCreditCompanyAddresses()

query: SELECT c.creditCard.creditCompany.address.city

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

query: SELECT c.creditCard.creditCompany.address.city

 FROM Customer AS c

ejbSelect method: ejbSelectCreditCompanyCities()

custom home method: queryCreditCompanyCities()

ejbHome method: ejbHomeQueryCreditCompanyCities()

Client_81b invokes these queries and displays their output. To run it, invoke the Ant task run.client_81b. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_1>ant run.client_81b

Buildfile: build.xml

prepare:

compile:

run.client_81b:

 [java] SIMPLE QUERIES with PATHS

 [java] --------------------------------

 [java] SELECT c.lastName FROM Customer AS c

 [java] Burke

 [java] Labourey

 [java] Fleury

 [java] Swift

 [java] Garciaparra

 [java]

 [java] SELECT c.creditCard FROM Customer c

 [java] 5324 9393 1010 2929

 [java] 5311 5000 1011 2333

 [java] 5310 5131 7711 2663

 [java] 5810 5881 7788 2688

 [java] 5450 5441 7448 2644

 [java]

 [java] SELECT c.homeAddress.city FROM Customer c

 [java] Billerica

 [java] Neuchatel

 [java] Atlanta

 [java] Boston

 [java] Boston

 [java]

 [java] SELECT c.creditCard.creditCompany.address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] FROM Customer AS c

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] Somewhere

 [java] Atlanta, GA 06660

 [java]

 [java] Somewhere

 [java] Atlanta, GA 06660

 [java]

 [java]

 [java] SELECT c.creditCard.creditCompany.address.city

 [java] FROM Customer AS c

 [java] Richmond

 [java] Richmond

 [java] Richmond

 [java] Atlanta

 [java] Atlanta

26.1.5.3 Client_81c

The Client_81c program lets you investigate some more queries illustrated in the EJB book. For an explanation of the
details of the tested queries below, please refer to Section 8.3.3 in Chapter 8 of the EJB section. The business logic for
this example is implemented in com.titan.test.Test81Bean, in the test81c() method.

All the EJB QL queries in this example are ejbSelect methods. Again, these ejbSelect methods are wrapped by custom
home methods. This example tests the following Customer EJB QL queries and home methods:

query: SELECT OBJECT(r)

 FROM Customer AS c, IN(c.reservations) AS r

ejbSelect method: ejbSelectReservations()

custom home method: queryReservations()

ejbHome method: ejbHomeQueryReservations()

query: SELECT r.cruise

 FROM Customer AS c, IN(c.reservations) AS r

ejbSelect method: ejbSelectCruises()

custom home method: queryCruises()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ejbHome method: ejbHomeQueryCruises()

query: SELECT cbn.ship

 FROM Customer AS c, IN(c.reservations) AS r,

 IN(r.cabins) AS cbn

ejbSelect method: ejbSelectShips()

custom home method: queryShips()

ejbHome method: ejbHomeQueryShips()

Client_81c invokes these queries and displays their output. To run it, invoke the Ant task run.client_81c. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_1>ant run.client_81c

Buildfile: build.xml

prepare:

compile:

run.client_81c:

 [java] THE IN OPERATOR

 [java] --------------------------------

 [java] SELECT OBJECT(r)

 [java] FROM Customer AS c, IN(c.reservations) AS r

 [java] Reservation for Alaskan Cruise

 [java] Reservation for Alaskan Cruise

 [java] Reservation for Atlantic Cruise

 [java] Reservation for Atlantic Cruise

 [java] Reservation for Alaskan Cruise

 [java]

 [java] SELECT r.cruise

 [java] FROM Customer AS c, IN(c.reservations) AS r

 [java] Cruise Alaskan Cruise

 [java] Cruise Alaskan Cruise

 [java] Cruise Atlantic Cruise

 [java] Cruise Atlantic Cruise

 [java] Cruise Alaskan Cruise

 [java]

 [java] SELECT cbn.ship

 [java] FROM Customer AS c, IN(c.reservations) AS r,

 [java] IN(r.cabins) AS cbn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] IN(r.cabins) AS cbn

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

26.2 Exercise 8.2: Complex EJB QL Statements
The example programs in Exercise 8.2 delve deeper into the complexities of EJB QL. You will learn about arithmetic and
logic operators in WHERE clauses as well as other, more complex WHERE-clause constructs. The test programs of this
section demonstrate most of the example queries provided in Chapter 8 of the EJB book.

26.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

26.2.2 Build and Deploy the Example Programs

Build the examples for this exercise in the ex08_2 directory, following the same procedure as for earlier exercises.

26.2.3 Examine the JBoss-Specific Files

This exercise introduces no new features in JBoss-specific files. If you think you need to, review Exercise 6.1 of this
workbook to understand the JBoss-specific files in this example.

26.2.4 Initialize the Database

The database tables for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when
the EJB JAR is deployed, but to initialize all database tables in this example, you must perform the Ant task run.initialize:

C:\workbook\ex08_2>ant run.initialize

Buildfile: build.xml

prepare:

compile:

run.initialize:

 [java] added Bill Burke

 [java] added Sacha Labourey

 [java] added Marc Fleury

 [java] added Jane Swift

 [java] added Nomar Garciaparra

 [java] added Richard Monson-Haefel

As in the preceding exercise, all example business logic is implemented within a stateless session bean—in this case,
com.titan.test.Test82Bean—and the database initialization code is in that bean's initialize() method, which creates all the
entity beans for this exercise.

26.2.5 Examine and Run the Client Applications

Each example method of Test82Bean implements the example code fragments shown in the EJB book. Each Test82Bean
method is invoked by a small, simple client application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method is invoked by a small, simple client application.

26.2.5.1 Client_82a

The Client_82a program implements the queries illustrated in the EJB section of this book, in the section of Chapter 8
called Section 8.3.4. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82a()
method.

The code demonstrates a Customer EJB finder query that returns duplicate responses, then invokes a finder query that
uses the DISTINCT keyword to filter out duplicates.

finder method: findAllCustomersWithReservations()

query: SELECT OBJECT(cust)

 FROM Reservation res, IN (res.customers) cust

finder method: findDistinctCustomersWithReservations()

query: SELECT DISTINCT OBJECT(cust)

 FROM Reservation res, IN (res.customers) cust

Client_82a invokes these queries and displays their output. To run it, invoke the Ant task run.client_82a. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_2>ant run.client_82a

Buildfile: build.xml

prepare:

compile:

run.client_82a:

 [java] USING DISTINCT

 [java] --------------------------------

 [java] Non-distinct:

 [java] SELECT OBJECT(cust)

 [java] FROM Reservation res, IN (res.customers) cust

 [java] Bill has a reservation.

 [java] Sacha has a reservation.

 [java] Nomar has a reservation.

 [java] Bill has a reservation.

 [java] Marc has a reservation.

 [java] Jane has a reservation.

 [java]

 [java] Distinct:

 [java] SELECT DISTINCT OBJECT(cust)

 [java] FROM Reservation res, IN (res.customers) cust

 [java] Bill has a reservation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Bill has a reservation.

 [java] Sacha has a reservation.

 [java] Marc has a reservation.

 [java] Jane has a reservation.

 [java] Nomar has a reservation.

26.2.5.2 Client_82b

The Client_82b program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.5. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82b() method.

Various Customer and Ship EJB finder queries show how to use string, numeric, and Boolean literals in EJB QL queries.

EJB: Customer

finder method: findByAmericanExpress()

query: SELECT OBJECT(c) FROM Customer AS c

 WHERE c.creditCard.organization = 'American Express'

EJB: Ship

finder method: findByTonnage100000 ()

query: SELECT OBJECT(s) FROM Ship AS s

 WHERE s.tonnage = 100000.0

EJB: Customer

finder method: findByGoodCredit()

query: SELECT OBJECT(c) FROM Customer AS c

 WHERE c.hasGoodCredit = TRUE

Client_82b invokes these queries and displays their output. To run it, invoke the Ant task run.client_82b. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82b

Buildfile: build.xml

prepare:

compile:

run.client_82b:

 [java] THE WHERE CLAUSE AND LITERALS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] WHERE c.creditCard.organization = 'American Express'

 [java] Jane has an American Express card.

 [java] Nomar has an American Express card.

 [java]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java]

 [java] SELECT OBJECT(s) FROM Ship AS s

 [java] WHERE s.tonnage = 100000.0

 [java] Ship Queen Mary as tonnage 100000.0

 [java]

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] WHERE c.hasGoodCredit = TRUE

 [java] Bill has good credit.

 [java] Marc has good credit.

 [java] Jane has good credit.

 [java] Nomar has good credit.

 [java] Richard has good credit.

26.2.5.3 Client_82c

The Client_82c program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.6. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82c() method.

The code demonstrates a Customer EJB ejbSelect query that uses strings as input parameters to the query and a Cruise
EJB finder method that uses a Ship EJB as an input parameter. As in previous sections, the ejbSelect query is wrapped in
a custom home method.

EJB: Customer

ejbSelect method: ejbSelectLastNames()

custom home method: queryLastNames()

ejbHome method: ejbHomeQueryLastNames()

query: SELECT OBJECT(c) FROM Customer AS c

 WHERE c.homeAddress.state = ?2

 AND c.homeAddress.city = ?1

EJB: Cruise

finder method: findByShip()

query: SELECT OBJECT(crs) FROM Cruise AS crs

 WHERE crs.ship = ?1

Client_82c invokes these queries and displays their output. To run it, invoke the Ant task run.client_82c. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_2>ant run.client_82c

Buildfile: build.xml

prepare:

compile:

run.client_82c:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run.client_82c:

 [java] THE WHERE CLAUSE AND INPUT PARAMETERS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] WHERE c.homeAddress.state = ?2

 [java] AND c.homeAddress.city = ?1

 [java] Get customers from Billerica, MA

 [java] Bill is from Billerica.

 [java]

 [java] SELECT OBJECT(crs) FROM Cruise AS crs

 [java] WHERE crs.ship = ?1

 [java] Get cruises on the Titanic

 [java] Atlantic Cruise is a Titanic cruise.

26.2.5.4 Client_82d

The Client_82d example program implements the queries illustrated in the EJB book, in the section of Chapter 8 called
Section 8.3.8 The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82d() method.
The code demonstrates a Reservation EJB finder method that must be enclosed in an XML CDATA section because it
uses the > symbol in the query.

EJB: Reservation

finder method: findWithPaymentGreaterThan()

query: <![CDATA[

 OBJECT(r) FROM Rservation r

 WHERE r.amountPaid > ?1

]]>

Client_82d invokes this query and displays its output. To run it, invoke the Ant task run.client_82d. The output should
look something like this:

C:\workbook\ex08_2>ant run.client_82d

Buildfile: build.xml

prepare:

compile:

run.client_82d:

 [java] THE WHERE CLAUSE AND CDATA Sections

 [java] --------------------------------

 [java] ![CDATA[

 [java] SELECT OBJECT(r) FROM Rservation r

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] SELECT OBJECT(r) FROM Rservation r

 [java] WHERE r.amountPaid > ?1

 [java]]]>

 [java] found reservation with amount paid > 20000.0: 40000.0

26.2.5.5 Client_82e

The Client_82e program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.13. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82e() method. Two Ship
EJB finder methods demonstrate how to use the BETWEEN keyword in a WHERE clause.

EJB: Ship

finder method: findByTonnageBetween()

query: SELECT OBJECT(s) FROM Ship s

 WHERE s.tonnage BETWEEN 80000.00 and 130000.00

EJB: Ship

finder method: findByTonnageNotBetween()

query: SELECT OBJECT(s) FROM Ship s

 WHERE s.tonnage NOT BETWEEN 80000.00 and 130000.00

Client_82e invokes these queries and displays their output. To run it, invoke the Ant task run.client_82e. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82e

Buildfile: build.xml

prepare:

compile:

run.client_82e:

 [java] THE WHERE CLAUSE AND BETWEEN

 [java] --------------------------------

 [java] SELECT OBJECT(s) FROM Ship s

 [java] WHERE s.tonnage BETWEEN 80000.00 and 130000.00

 [java] Queen Mary has tonnage 100000.0

 [java]

 [java] SELECT OBJECT(s) FROM Ship s

 [java] WHERE s.tonnage NOT BETWEEN 80000.00 and 130000.00

 [java] Titanic has tonnage 200000.0

26.2.5.6 Client_82f

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.2.5.6 Client_82f

The Client_82f program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.14. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82f() method.

The code uses two Customer EJB finder methods. One queries for all customers living in Georgia or Massachusetts. The
other queries for all customers that do not live in these two states.

EJB: Customer

finder method: findInStates()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress.state IN ('GA', 'MA')

EJB: Customer

finder method: findNotInStates()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress.state NOT IN ('GA', 'MA')

Client_82f invokes these queries and displays their output. To run it, invoke the Ant task run.client_82f. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82f

Buildfile: build.xml

prepare:

compile:

run.client_82f:

 [java] THE WHERE CLAUSE AND IN

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress.state IN ('GA', 'MA')

 [java] Bill

 [java] Marc

 [java] Jane

 [java] Nomar

 [java]

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress.state NOT IN ('GA', 'MA')

 [java] Sacha

26.2.5.7 Client_82g

The Client_82g program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.15. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82g() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.15. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82g() method.

There are two Customer EJB finder methods. One selects all customers that have a null home address. The other selects
all customers that do not have a null address.

EJB: Customer

finder method: findHomeAddressIsNull()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress IS NULL

EJB: Customer

finder method: findHomeAddressIsNotNull()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress IS NOT NULL

Client_82g invokes these queries and displays their output. To run it, invoke the Ant task run.client_82g. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82g

Buildfile: build.xml

prepare:

compile:

run.client_82g:

 [java] THE WHERE CLAUSE AND IS NULL

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress IS NULL

 [java] Richard

 [java]

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress IS NOT NULL

 [java] Bill

 [java] Sacha

 [java] Marc

 [java] Jane

 [java] Nomar

26.2.5.8 Client_82h

The Client_82h program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.16. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82h() method.

The code uses two Cruise EJB finder methods to illustrate the use of IS EMPTY. One returns all the Cruises that do not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code uses two Cruise EJB finder methods to illustrate the use of IS EMPTY. One returns all the Cruises that do not
have Reservations. The other method returns all Cruises that have Reservations.

EJB: Cruise

finder method: findEmptyReservations()

query: SELECT OBJECT(crs) FROM Cruise crs

 WHERE crs.reservations IS EMPTY

EJB: Cruise

finder method: findNotEmptyReservations()

query: SELECT OBJECT(crs) FROM Cruise crs

 WHERE crs.reservations IS NOT EMPTY

Client_82h invokes these queries and displays their output. To run it, invoke the Ant task run.client_82h. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82h

Buildfile: build.xml

prepare:

compile:

run.client_82h:

 [java] THE WHERE CLAUSE AND IS EMPTY

 [java] --------------------------------

 [java] SELECT OBJECT(crs) FROM Cruise crs

 [java] WHERE crs.reservations IS EMPTY

 [java]

 [java] SELECT OBJECT(crs) FROM Cruise crs

 [java] WHERE crs.reservations IS NOT EMPTY

 [java] Alaskan Cruise is not empty.

 [java] Atlantic Cruise is not empty.

26.2.5.9 Client_82i

The Client_82i program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.17. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82i() method.

Two Cruise EJB finder methods demonstrate how to use EJB QL to find whether or not an entity is a member of a
relationship.

EJB: Cruise

finder method: findMemberOf()

query: SELECT OBJECT(crs) FROM Cruise crs,

 IN (crs.reservations) res, Customer cust

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE cust = ?1 ANT cust MEMBER OF res.customers

EJB: Cruise

finder method: findNotMemberOf()

query: SELECT OBJECT(crs) FROM Cruise crs,

 IN (crs.reservations) res, Customer cust

 WHERE cust = ?1 ANT cust NOT MEMBER OF res.customers

Client_82i invokes these queries and displays their output. To run it, invoke the Ant task run.client_82i. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82i

Buildfile: build.xml

prepare:

compile:

run.client_82i:

 [java] THE WHERE CLAUSE AND MEMBER OF

 [java] --------------------------------

 [java] SELECT OBJECT(crs) FROM Cruise crs,

 [java] IN (crs.reservations) res, Customer cust

 [java] WHERE cust = ?1 ANT cust MEMBER OF res.customers

 [java] Use Bill Burke

 [java] Bill is member of Alaskan Cruise

 [java] Bill is member of Atlantic Cruise

 [java]

 [java] SELECT OBJECT(crs) FROM Cruise crs,

 [java] IN (crs.reservations) res, Customer cust

 [java] WHERE cust = ?1 ANT cust NOT MEMBER OF res.customers

 [java] Use Nomar Garciaparra

 [java] Nomar is not member of Atlantic Cruise

26.2.5.10 Client_82j

The Client_82j program implements the queries illustrated in the EJB book, in the section of Chapter 8 entitled Section
8.3.18. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82j() method.

One Customer EJB finder method is used to query all Customers with a hyphenated name.

EJB: Customer

finder method: findHyphenatedLastNames()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.lastName LIKE '%-%'

Client_82j invokes this query and displays its output. To run it, invoke the Ant task run.client_82j. The output should look
something like this:

C:\workbook\ex08_2>ant run.client_82j

Buildfile: build.xml

prepare:

compile:

run.client_82j:

 [java] THE WHERE CLAUSE AND LIKE

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.lastName LIKE '%-%'

 [java] Monson-Haefel

26.2.5.11 Client_82k

The Client_82k program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.19. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82k() method.

One Customer EJB finder method demonstrates the use of a couple of functional expressions.

EJB: Customer

finder method: findByLastNameLength()

query: SELECT OBJECT(c) FROM Customer c

 WHERE LENGTH(c.lastName) > 6 AND

 LOCATE(c.lastName, 'Monson') > -1

Client_82k invokes this query and displays its output. To run it, invoke the Ant task run.client_82k. The output should
look something like this:

C:\workbook\ex08_2>ant run.client_82k

Buildfile: build.xml

prepare:

compile:

run.client_82k:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run.client_82k:

 [java] THE WHERE CLAUSE AND FUNCTIONAL EXPRESSIONS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE LENGTH(c.lastName) > 6 AND

 [java] LOCATE(c.lastName, 'Monson') > -1

 [java] Labourey

 [java] Garciaparra

 [java] Monson-Haefel

26.2.5.12 Client_82m

The Client_82m program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.19.2. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82m() method.

The first query finds the count of all customer Zip codes that are in the Boston, MA area. Most Zip codes in the Boston
area start with 0211, so a LIKE statement is used. A custom home method from the Customer EJB's home interface is
used to wrap the private ejbSelect queries defined in the same bean.

query: SELECT DISTINCT COUNT(c.homeAddress.zip)

 FROM Customer AS c

 WHERE c.homeAddress.zip LIKE '0211%'

ejbSelect method: ejbSelectCountOfBostonZips()

custom home method: countOfBostonZips()

ejbHome method: ejbHomeCountOfBostonZips()

The second gets the maximum value of the amountPaid field of all Reservation EJBs. A custom home method from
Reservation EJB is used to wrap the private ejbSelect queries that are declared within the bean class.

query: SELECT SELECT MAX(r.amountPaid)

 FROM Reservation As r

ejbSelect method: ejbSelectMaxAmountPaid()

custom home method: maxAmountPaid()

ejbHome method: ejbHomeMaxAmountPaid()

The third query gets the sum of all reservations paid based on a cruise passed in as a parameter. A custom home
method from Cruise EJB is used to wrap the private ejbSelect queries that are declared within the bean class.

query: SELECT SUM(r.amountPaid)

 FROM Cruise c, IN(c.reservations) AS r

 WHERE c = ?1

ejbSelect method: ejbSelectSumReservation(CruiseLocal cruise)

custom home method: sumReservation(CruiseLocal cruise)

ejbHome method: ejbHomeSumReservation(CruiseLocal cruise)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The final query takes the average of all reservations paid based on a cruise passed in as a parameter. A custom home
method from Cruise EJB is used to wrap the private ejbSelect queries that are declared within the bean class.

query: SELECT AVG(r.amountPaid)

 FROM Cruise c, IN(c.reservations) AS r

 WHERE c = ?1

ejbSelect method: ejbSelectAveragePaidReservation(CruiseLocal cruise)

custom home method: averagePaidReservation(CruiseLocal cruise)

ejbHome method: ejbHomeAveragePaidReservation(CruiseLocal cruise)

Client_82m invokes these queries and displays their output. To run it, invoke the Ant task run.client_82m. The output
should look something like this:

C:\workbook...x08_2>ant run.client_82m

Buildfile: build.xml

prepare:

compile:

run.client_82m:

 [java] EJB 2.1 Aggregate Functions

 [java] --------------------------------

 [java] SELECT DISTINCT COUNT(c.homeAddress.zip)

 [java] FROM Customer AS c

 [java] WHERE c.homeAddress.zip LIKE '0211%'

 [java] count of Boston zip codes: 2

 [java] --------------------------------

 [java] SELECT MAX(r.amountPaid)

 [java] FROM Reservation As r

 [java] max amount paid for a reservation: $40000.0

 [java] --------------------------------

 [java] SELECT SUM(r.amountPaid)

 [java] FROM Cruise c, IN(c.reservations) AS r

 [java] WHERE c = ?1

 [java] Sum of Alaskan Cruise reservations: $40000.0

 [java] --------------------------------

 [java] SELECT AVG(r.amountPaid)

 [java] FROM Cruise c, IN(c.reservations) AS r

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] FROM Cruise c, IN(c.reservations) AS r

 [java] WHERE c = ?1

 [java] Average of Atlantic Cruise reservations: $10000.0

26.2.5.13 Client_82n

The Client_82n program implements the queries illustrated in the EJB book, in the section of Chapter 8 entitled Section
8.3.20. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82n() method.

One Customer EJB finder method demonstrates the use of ORDER BY with the DESC keyword.

EJB: Customer

finder method: findByOrderedLastName()

query: SELECT OBJECT(c) FROM Customer AS c

 ORDER BY c.lastName DESC

Client_82n invokes this query and displays its output. To run it, invoke the Ant task run.client_82n. The output should
look something like this:

C:\workbook...x08_2>ant run.client_82n

Buildfile: build.xml

prepare:

compile:

run.client_82n:

 [java] EJB 2.1 ORDER BY Clause

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] ORDER BY c.lastName DESC

 [java] Swift

 [java] Monson-Haefel

 [java] Labourey

 [java] Garciaparra

 [java] Fleury

 [java] Burke

26.2.6 JBoss Dynamic QL

One of the features seriously lacking in EJB QL is the ability to do dynamic queries at run time. This example shows how
you can do dynamic queries on Customer EJBs with JBoss CMP 2.0.

First, you must declare an ejbSelectGeneric() method that will invoke your dynamic queries and an ejbHome wrapper
method so that the test program can invoke it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method so that the test program can invoke it.

public abstract class CustomerBean implements javax.ejb.EntityBean

{

 public abstract Set ejbSelectGeneric(String jbossQl, Object[] arguments)

 throws FinderException;

 public Set ejbHomeDynamicQuery(String jbossQL, Object[] arguments)

 throws FinderException

 {

 return ejbSelectGeneric(jbossQL, arguments);

 }

Next, declare your ejbHome wrapper method in CustomerHomeLocal.java:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome

{

 ...

 public Set dynamicQuery(String jbossQl, Object[] arguments)

 throws FinderException;

}

The ejbSelectGeneric() method must be defined in the ejb-jar.xml deployment descriptor. Notice that the <ejb-ql> value is
empty.

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 ...

 <query>

 <query-method>

 <method-name>ejbSelectGeneric</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.Object[]</method-param>

 </method-params>

 </query-method>

 <ejb-ql></ejb-ql>

 </query>

Finally, in jbosscmp-jdbc.xml, tell JBoss that the ejbSelectGeneric() method is dynamic:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, in jbosscmp-jdbc.xml, tell JBoss that the ejbSelectGeneric() method is dynamic:

<jbosscmp-jdbc>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <query>

 <query-method>

 <method-name>ejbSelectGeneric</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.Object[]</method-param>

 </method-params>

 </query-method>

 <dynamic-ql/>

 </query>

 </entity>

 </enterprise-beans>

</jbosscmp-jdbc>

The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82Dynamic() method.

public String test82Dynamic() throws RemoteException

{

 ...

 // obtain Home interfaces

 InitialContext jndiContext = getInitialContext();

 Object obj = jndiContext.lookup("CustomerHomeLocal");

 CustomerHomeLocal customerHome = (CustomerHomeLocal)obj;

 ...

 Object[] params = {};

 Set customers =

 customerHome.dynamicQuery("SELECT OBJECT(c) FROM Customer c " +

 "WHERE c.lastName LIKE 'B%'", params);

 ...

}

The test82Dynamic() method generates a dynamic query string and invokes the dynamicQuery() method defined in the
CustomerHomeLocal interface.

Client_82Dynamic invokes test82Dynamic() and displays its output. To run it, invoke the Ant task run.client_82dynamic.
The output should look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output should look something like this:

C:\workbook\ex08_2>ant run.client_82dynamic

Buildfile: build.xml

prepare:

compile:

run.client_82dynamic:

 [java] JBoss Dynamic Queries

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.lastName LIKE 'B%'

 [java] Burke

26.2.6.1 Advanced JBoss QL

In Section 8.4 of Chapter 8, Richard Monson-Haefel talks about some of the limitations of EJB QL. In the JBoss CMP 2.0
implementation, EJB QL is just a subset of a larger JBoss query language. JBoss QL does a great job of filling in some of
the gaps in the EJB QL spec. Features such as the ability to use parameters within IN and LIKE clauses are just a few of
the enhancements JBoss has implemented. Please review the advanced CMP 2.0 documentation available at the JBoss
web site, http://www.jboss.org, for more information on these features.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 27. Exercises for Chapter 9
Section 27.1. Exercise 9.1: A BMP Entity Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

27.1 Exercise 9.1: A BMP Entity Bean
In this exercise, you will build and examine a simple EJB that uses bean-managed persistence (BMP) to synchronize the
state of the bean with a database. You will also build a client application to test this Ship BMP bean.

27.1.1 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

27.1.2 Initialize the Database

As in the CMP examples, the state of the entity beans will be stored in the database that is embedded in JBoss. JBoss
was able to create all tables for CMP beans, but it cannot do the same for BMP beans because the deployment
descriptors don't contain any persistence information (object-to-relational mapping, for example). The bean is in fact
the only one that knows how to load, store, remove, and find data. The persistence mapping is not described in a
configuration file, but embedded in the bean code instead.

One consequence is that the database environment for BMP must always be built explicitly. To make this task easier for
the BMP Ship example, Ship's home interface defines two helpful home methods.

Entity beans can define home methods that perform operations related to the EJB
component's semantics but that are not linked to any particular bean instance. As an
analogy, consider the static methods of a class: their semantics are generally closely
related to the class's semantics, but they're not associated with any particular class
instance. Don't worry if this is not totally clear: Chapter 10 of the EJB book, explains all
about home methods.

Here's a partial view of the Ship EJB's home interface:

public interface ShipHomeRemote extends javax.ejb.EJBHome

{

 ...

 public void makeDbTable () throws RemoteException;

 public void deleteDbTable () throws RemoteException;

}

It defines two home methods. The first creates the table needed by the Ship EJB in the JBoss-embedded database and
the second drops it.

The implementation of the makeDbTable() home method is essentially a CREATE TABLE SQL statement:

public void ejbHomeMakeDbTable () throws SQLException

{

 PreparedStatement ps = null;

 Connection con = null;

 try

 {

 con = this.getConnection ();

 System.out.println("Creating table SHIP...");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ps = con.prepareStatement ("CREATE TABLE SHIP (" +

 "ID INT PRIMARY KEY, " +

 "NAME CHAR (30), " +

 "TONNAGE DECIMAL (8,2), " +

 "CAPACITY INT" +

 ")");

 ps.execute ();

 System.out.println("...done!");

 }

 finally

 {

 try { if (ps != null) ps.close (); } catch (Exception e) {}

 try { if (con != null) con.close (); } catch (Exception e) {}

 }

}

The deleteDbTable() home method differs only by the SQL statement it executes:

 ...

 System.out.println("Dropping table SHIP...");

 ps = con.prepareStatement ("DROP TABLE SHIP");

 ps.execute ();

 System.out.println("...done!");

 ...

We explain how to call these methods in a subsequent section.

27.1.3 Examine the EJB Standard Files

The Ship EJB source code requires no modification to run in JBoss, so the standard EJB deployment descriptor is very
simple.

27.1.3.1 ejb-jar.xml (part I)

...

 <enterprise-beans>

 <entity>

 <description>

 This bean represents a cruise ship.

 </description>

 <ejb-name>ShipEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ship.ShipHomeRemote</home>

 <remote>com.titan.ship.ShipRemote</remote>

 <ejb-class>com.titan.ship.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <security-identity><use-caller-identity/></security-identity>

 <resource-ref>

 <description>DataSource for the Titan DB</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </entity>

 </enterprise-beans>

 ...

This first part of the deployment descriptor essentially tells the container that the Ship bean:

Is named ShipEJB.

Has a persistence type set to Bean because it's a BMP bean.

Declares a reference to a data source named jdbc/titanDB.

Because the bean directly manages the persistence logic, the deployment descriptor does not contain any persistence
information. In contrast, this information would have been mandatory for a CMP EJB.

The second part of the deployment descriptor declares the transactional and security attributes of the Ship bean.

27.1.3.2 ejb-jar.xml (part II)

...

<assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full

 access to the Ship EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <role-name>everyone</role-name>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

All methods of the Ship bean require a transaction. If no transaction is active when a method invocation enters the
container, a new one will be started.

In entity beans, transactions are always managed by the container, never directly by the
bean. Thus, all work done on transactional resources, such as databases, will implicitly be
part of the transactional context of the container.

27.1.4 Examine the JBoss-Specific Files

If you don't include a jboss.xml-specific deployment descriptor with your bean, JBoss will take the following actions at
deployment time. It will:

Bind the Ship bean in the public JNDI tree under /ShipEJB (which is the name given to the bean in its associated
ejb-jar.xml deployment descriptor).

Link the jdbc/titanDB data source expected by the bean to java:/DefaultDS, which is a default data source that
represents the embedded database.

Unless you require different settings, you don't need to provide a jboss.xml file. While this shortcut is generally useful
for quick prototyping, it will not satisfy more complex deployment situations. Furthermore, using a JBoss-specific
deployment descriptor enables you to fine-tune a container for a particular situation.

If you take a look at the $JBOSS_HOME/server/default/conf/standardjboss.xml file, you will find all the default
container settings that are predefined in JBoss (standard BMP, standard CMP, clustered BMP, and so on). In JBoss,
there's a one-to-one mapping between a bean and a container, and each container can be configured independently.

This mapping was a design decision made by the JBoss container developers and has not
been dictated by the EJB specification: other application servers may use another
mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mapping.

When you write a JBoss-specific deployment descriptor, you have three options:

Don't specify any container configuration. JBoss will use the default configuration found in standardjboss.xml.

Create a brand new container configuration. The default settings are not used at all. JBoss will configure the
container only as you specify in jboss.xml.

Modify an existing configuration. JBoss loads the default settings from the existing configuration found in
standardjboss.xml and overrides them with the settings you specify in the jboss.xml deployment descriptor.
This solution allows you to make minor modifications to the default container with minimal writing in your
deployment descriptor.

The Ship bean uses the last option in order to test its behavior with different commit options. As outlined below, this
new configuration defines only a single setting (<commit-option>). All others are inherited from the Standard BMP
EntityBean configuration declared in the standardjboss.xml file. We'll discuss commit options in a dedicated section at the
end of this chapter.

27.1.4.1 jboss.xml

<?xml version="1.0"?>

<!DOCTYPE jboss PUBLIC

 "-//JBoss//DTD JBOSS 4.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>

...

<container-configurations>

 <container-configuration>

 <container-name>Standard BMP EntityBean</container-name>

 <commit-option>A</commit-option>

 </container-configuration>

</container-configurations>

...

Because a single deployment descriptor may define multiple EJBs, the role of the <ejb-name> tag is to link the
definitions from the ejb-jar.xml and jboss.xml files. You can consider this tag to be the bean's identifier. The <jndi-
name> tag determines the name under which the client applications will be able to look up the EJB's home interface, in
this case ShipHomeRemote.

You can also see how the bean refers to a specific configuration, thanks to the <configuration-name> tag.

...

 <enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 <jndi-name>ShipHomeRemote</jndi-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <jndi-name>ShipHomeRemote</jndi-name>

 <configuration-name>Standard BMP EntityBean

 </configuration-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

 </entity>

 </enterprise-beans>

</jboss>

The Ship bean BMP implementation needs to establish a database connection explicitly. It's the getConnection() method
that manages the acquisition of this resource.

27.1.4.2 ShipBean.java

private Connection getConnection () throws SQLException

{

 try

 {

 Context jndiCntx = new InitialContext ();

 DataSource ds =

 (DataSource)jndiCntx.lookup ("java:comp/env/jdbc/titanDB");

 return ds.getConnection ();

 ...

The bean expects to find a data source bound to the java:comp/env/jdbc/titanDB JNDI name. That's why the ejb-jar.xml
file contains the following declaration.

27.1.4.3 ejb-jar.xml

...

<resource-ref>

 <description>DataSource for the Titan DB</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

...

Then jboss.xml maps the jdbc/titanDB data source name to the actual name defined in JBoss.

27.1.4.4 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.4.4 jboss.xml

...

<resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

</resource-ref>

...

In any default JBoss installation, java:/DefaultDS represents the embedded database.

27.1.5 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex9_1 directory created by the extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex9_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex9_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex9_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

27.1.6 Examine the Client Application

In the Section 27.1.2 section earlier in this chapter, you saw how the bean implements the home methods that create
and drop the table in the database. Now you'll see how the client application calls these home methods.

27.1.6.1 Client_91.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.6.1 Client_91.java

public class Client_91

{

 public static void main (String [] args)

 {

 try

 {

 Context jndiContext = getInitialContext ();

 Object ref = jndiContext.lookup ("ShipHomeRemote");

 ShipHomeRemote home = (ShipHomeRemote)

 PortableRemoteObject.narrow (ref,ShipHomeRemote.class);

 // We check if we have to build the database schema...

 //

 if ((args.length > 0) &&

 args[0].equalsIgnoreCase ("CreateDB"))

 {

 System.out.println ("Creating database table...");

 home.makeDbTable ();

 }

 // ... or if we have to drop it...

 //

 else if ((args.length > 0) &&

 args[0].equalsIgnoreCase ("DropDB"))

 {

 System.out.println ("Dropping database table...");

 home.deleteDbTable ();

 }

 else

 ...

Depending on the first argument found on the command line (CreateDB or DropDB), the client application calls the
corresponding home method.

If nothing is specified on the command line, the client will test our BMP bean:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If nothing is specified on the command line, the client will test our BMP bean:

...

else

{

 // ... standard behavior

 //

 System.out.println ("Creating Ship 101..");

 ShipRemote ship1 = home.create (new Integer

 (101),"Edmund Fitzgerald");

 ship1.setTonnage (50000.0);

 ship1.setCapacity (300);

 Integer pk = new Integer (101);

 System.out.println ("Finding Ship 101 again..");

 ShipRemote ship2 = home.findByPrimaryKey (pk);

 System.out.println (ship2.getName ());

 System.out.println (ship2.getTonnage ());

 System.out.println (ship2.getCapacity ());

 System.out.println ("ship1.equals (ship2) == " +

 ship1.equals (ship2));

 System.out.println ("Removing Ship 101..");

 ship2.remove ();

}

...

The client application first creates a new Ship and calls some of its remote methods to set its tonnage and capacity.
Then it finds the bean again by calling findByPrimaryKey() and compares the bean references for equality. Because they
represent the same bean instance, they must be equal. We've omitted the exception handling because it deserves no
specific comments.

27.1.7 Run the Client Application

Testing the BMP bean is a three-step process that involves:

1. Creating the database table

2. Testing the bean (possibly many times)

3. Dropping the database table

For each of these steps, a different Ant target is available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.7.1 Creating the database table

To create the table, use the createdb_91 Ant target:

C:\workbook\ex9_1>ant createdb_91

Buildfile: build.xml

prepare:

compile:

createdb_91:

 [java] Creating database table...

On the JBoss side, the BMP bean displays the following lines:

...

12:31:42,584 INFO [STDOUT] Creating table SHIP...

12:31:42,584 INFO [STDOUT] ...done!

...

Once this step has been performed, the actual testing of the BMP bean can take place.

If you're having trouble creating the database, shut down JBoss, then run the Ant build
target clean.db. This removes all database files and allows you to start fresh.

27.1.7.2 Testing the BMP bean

To test the BMP bean, use the run.client_91 Ant target:

C:\workbook\ex9_1>ant run.client_91

Buildfile: build.xml

prepare:

compile:

run.client_101:

 [java] Creating Ship 101..

 [java] Finding Ship 101 again..

 [java] Edmund Fitzgerald

 [java] 50000.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] 50000.0

 [java] 300

 [java] ship1.equals (ship2) == true

 [java] Removing Ship 101..

27.1.7.3 Analyzing the effects of transactions and commit options

Even though it's not particularly related to BMP beans, let's focus on an interesting problem that arises when the client
first creates and initializes the bean:

ShipRemote ship1 = home.create (new Integer

 (101),"Edmund Fitzgerald");

ship1.setTonnage (50000.0);

ship1.setCapacity (300);

This piece of code generates three different transactions on the server side. The client does not implicitly start any
transaction in its code. The transaction starts only when the invocation enters the bean container and commits when
the invocation leaves the container. Thus, when the client performs three calls, each one is executed in its own
transactional context.

Look at the implications for the BMP bean:

14:36:31,730 INFO [STDOUT] ejbCreate() pk=101 name=Edmund Fitzgerald

14:36:31,780 INFO [STDOUT] ejbStore() pk=101

14:36:31,840 INFO [STDOUT] setTonnage()

14:36:31,840 INFO [STDOUT] ejbStore() pk=101

14:36:31,860 INFO [STDOUT] setCapacity()

14:36:31,860 INFO [STDOUT] ejbStore() pk=101

As you can see, ejbStore() is called at the end of each transaction! Consequently, these three lines of code cause the
bean to be stored three times. Worst of all, after any method invocation, the container has no way of knowing whether
the state of the bean has been modified, and thus, to be on the safe side, it triggers storage of the bean. Given that
there is no read-only method concept in EJBs, calls to get methods also trigger calls to ejbStore():

15:03:19,301 INFO [STDOUT] getName()

15:03:19,311 INFO [STDOUT] ejbStore() pk=101

15:03:19,331 INFO [STDOUT] getTonnage()

15:03:19,331 INFO [STDOUT] ejbStore() pk=101

15:03:19,371 INFO [STDOUT] getCapacity()

15:03:19,371 INFO [STDOUT] ejbStore() pk=101

In the execution of the test program, ejbStore() is called seven times.

You can see that transaction boundaries (i.e., where transactions are started and stopped) directly influence the
number of callbacks from the container to the Ship bean, and consequently have a direct effect on performance. We'll
now focus on another setting that also affects the set of callback methods the container will invoke on the bean: the
commit option. The commit option determines how an entity bean container can make use of its cache. Remember from
the container configuration section that the bean is currently using commit option A. Let's examine all the options and
their effects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their effects.

If you select commit option A, the entity bean container is allowed to cache any bean that it has loaded. Next time an
invocation targets a bean that is already in the application server cache,[1] the container will not have to make a costly
database access call to load it again.

[1] We are speaking about the application server cache, not the database cache. While database caches are critical
to performance, application server caches can improve it even further.

If you select commit option B or C, the entity bean container is allowed to cache a bean only if it loads that bean during
the lifetime of the currently running transaction. Once the transaction commits or rolls back, the container must remove
the bean from the cache. The next time an invocation targets the bean, the container will have to reload it from the
database.

That extra reloading is costly—but you must use B or C[2] whenever the data represented by the container can also be
modified by other means. Direct database access calls through a console, for example, will cause the container cache to
become unsychronized with the database, leading to incorrect computations and other dire results. A container must
not use commit option A unless it "owns" the database (or, more accurately, the specific tables it accesses).

[2] The difference between commit option B and C is very small: when a transaction commits, a container using
commit option C must effectively throw away the bean instance while a container using commit option B may keep
it and reuse it later. This distinction allows commit option B to be used for very specific container optimizations
(such as checking whether the data has really been modified in the database and reusing the instance if no
modification has occurred, instead of reloading the whole state).

Most of the time, this "black or white" approach isn't satisfactory: in real-world applications, commit option A can be
used only very rarely, and commit options B and C will preclude useful cache optimizations. To circumvent these
limitations, JBoss provides some proprietary optimizations: an additional commit option, distributed cache invalidations,
and even a distributed transactional cache with various locking policies (JBossCache). See the JBoss web site for more
information.

The JBoss-proprietary commit option D is a compromise between options A and C: The bean instance can be cached
across transactions, but a configurable timeout value indicates when this cached data is stale and must be reloaded
from the database. This option is very useful when you want some of the efficiency of commit option A, but want
cached entities to be updated periodically to reflect modifications by an external system.

Remember that each EJB deployed in JBoss has its own container. Consequently, for each
EJB, you can define the commit option that best fits its specific environment. For example,
a Zip code entity bean (with data that will most probably never change) could use commit
option A, whereas the Order EJB would use commit option C.

After this introduction to commit options, it becomes possible to guess that the container is currently using commit
option A without looking at its configuration. Two pieces of evidence lead us to this conclusion:

The findByPrimaryKey() call isn't displayed in the log. The container first checks whether the cache already
contains an instance for the given primary key. Because it does, there is no need to invoke the bean
implementation's ejbFindByPrimaryKey() method.

ejbLoad() isn't called for the bean. At the start of each new transaction, it's already in cache and there is no
need to reload it from the database.

Note that only direct access to a given bean (using its remote reference) or
findByPrimaryKey() calls can be resolved in cache. All other queries (findAll(), findByCapacity(
), and so on) must be resolved by the database directly (there is no way to perform
queries in the container cache directly).

To see how different commit options lead to different behavior, change the commit option in jboss.xml from A to C:

27.1.7.4 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.7.4 jboss.xml

 ...

 <container-configurations>

 <container-configuration>

 <container-name>Standard BMP EntityBean</container-name>

 <commit-option>C</commit-option>

 </container-configuration>

 </container-configurations>

 ...

Run the tests again. You'll see:

14:41:29,798 INFO [STDOUT] ejbCreate() pk=101 name=Edmund Fitzgerald

14:41:30,449 INFO [STDOUT] ejbStore() pk=101

14:41:30,539 INFO [STDOUT] ejbLoad() pk=101

14:41:30,599 INFO [STDOUT] setTonnage()

14:41:30,609 INFO [STDOUT] ejbStore() pk=101

14:41:30,659 INFO [STDOUT] ejbLoad() pk=101

14:41:30,669 INFO [STDOUT] setCapacity()

14:41:30,679 INFO [STDOUT] ejbStore() pk=101

14:41:30,709 INFO [STDOUT] ejbFindByPrimaryKey() primaryKey=101

14:41:30,729 INFO [STDOUT] ejbLoad() pk=101

14:41:30,750 INFO [STDOUT] getName()

14:41:30,750 INFO [STDOUT] ejbStore() pk=101

14:41:30,780 INFO [STDOUT] ejbLoad() pk=101

14:41:30,790 INFO [STDOUT] getTonnage()

14:41:30,800 INFO [STDOUT] ejbStore() pk=101

14:41:30,840 INFO [STDOUT] ejbLoad() pk=101

14:41:30,850 INFO [STDOUT] getCapacity()

14:41:30,860 INFO [STDOUT] ejbStore() pk=101

14:41:30,880 INFO [STDOUT] ejbLoad() pk=101

14:41:30,900 INFO [STDOUT] ejbStore() pk=101

14:41:30,910 INFO [STDOUT] ejbRemove() pk=101

Now, in addition to the ejbStore() calls you've already seen, you see calls to ejbLoad() at the start of each new
transaction, and the call to ejbFindByPrimaryKey() as well, which reaches the bean implementation because it cannot be
resolved within the cache.

27.1.7.5 Possible optimizations

As you have seen during the execution of the client application, the Ship bean performs many ejbLoad() and ejbStore()
operations. There are two reasons behind this behavior:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operations. There are two reasons behind this behavior:

Many transactions are started.

The Ship bean BMP code is not optimized.

You can reduce the number of transactions in several ways:

Define less fine-grained methods that return all attributes of the bean in a single data object.

Add a new create method with many parameters, so a single call can create and initialize the bean.

Use the Façade pattern: create a stateless session bean that starts a single transaction, then performs all the
steps in that one transaction.

Start a transaction in the client application, using a UserTransaction object.

BMP code optimization is a wide topic. Here are some tricks that are frequently used:

Use an isModified flag in your bean. Set it to true each time the state of the bean changes (in set methods, for
example). In the implementation of ejbStore(), perform the actual database call only if isModified is true. Think
about the impact on the test application. All the ejbStore() calls resulting from invocations to get methods will
detect that no data has been modified and will not try to synchronize with the database.

Detect which fields are actually modified during a transaction and update only those particular fields in the
database. This tactic is especially useful for beans with lots of fields or with fields that contain large amounts of
data. Contrast with the Ship BMP bean as it's currently written, where each setXXX() call updates all fields of the
database even though only one actually changes.

Note that any decent CMP engine performs many of these optimizations by default.

27.1.7.6 Dropping the database table

Once you've run all the tests, clean the database environment associated with the BMP bean by removing the unused
table. Use the dropdb_91 target:

C:\workbook\ex9_1>ant dropdb_91

Buildfile: build.xml

prepare:

compile:

dropdb_101:

 [java] Dropping database table...

On the JBoss side, the BMP bean logs the following lines:

...

14:40:34,339 INFO [STDOUT] Dropping table SHIP...

14:40:34,349 INFO [STDOUT] ...done!

...

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 28. Exercises for Chapter 11
Section 28.1. Exercise 11.1: A Stateless Session Bean

Section 28.2. Exercise 11.2: A Stateful Session Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

28.1 Exercise 11.1: A Stateless Session Bean
In this exercise, you will build and examine a stateless session bean, ProcessPaymentEJB, which writes payment
information to the database. You will also build a client application to test this ProcessPayment bean.

The bean inserts the payment information data directly into the database, without using an intermediary entity bean.

28.1.1 Examine the EJB

This example is based on the Customer and Address EJBs and their related data objects that you used in Exercise 6.3.
The present exercise leaves these EJBs unchanged, and focuses on the ProcessPayment stateless session bean.

The ProcessPayment bean has a very simple remote interface. It offers options to process a payment by check, cash, or
credit card. Each possibility is handled by a different method.

28.1.1.1 ProcessPaymentRemote.java

public interface ProcessPaymentRemote extends javax.ejb.EJBObject

{

 public boolean byCheck (CustomerRemote customer,

 CheckDO check,

 double amount)

 throws RemoteException, PaymentException;

 public boolean byCash (CustomerRemote customer,

 double amount)

 throws RemoteException, PaymentException;

 public boolean byCredit (CustomerRemote customer,

 CreditCardDO card,

 double amount)

 throws RemoteException, PaymentException;

 ...

}

Each method's third parameter is a simple transaction amount. The other two are more interesting.

The first is a CustomerRemote interface, which enables the ProcessPayment EJB to get any information it needs about the
customer.

It's possible to use EJB remote interfaces as parameters of other EJB methods because
they extend EJBObject, which in turn extends java.rmi.Remote. Objects implementing either
Remote or Serializable are perfectly valid RMI types. This choice of parameter type makes no
difference at all to the EJB container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second parameter conveys the details of the transaction in a data object with a type that reflects the form of
payment. A data object is a Serializable object that a client and a remote server can pass by value back and forth. Most
of the time it is a simple data container, with minimal behavior. For example, the CheckDO class contains the check's
number and bar code.

28.1.1.2 CheckDO.java

public class CheckDO implements java.io.Serializable

{

 public String checkBarCode;

 public int checkNumber;

 public CheckDO (String barCode, int number)

 {

 this.checkBarCode = barCode;

 this.checkNumber = number;

 }

Focus on the ProcessPayment EJB implementation for a little while. Each remote method first performs validity tests
appropriate to the type of payment. Eventually all of them call the same private method: process(), which inserts the
payment information into the database. For example, byCredit() implements this logic as shown.

28.1.1.3 ProcessPaymentBean.java

public boolean byCredit (CustomerRemote customer,

 CreditCardDO card,

 double amount)

throws PaymentException

{

 if (card.expiration.before (new java.util.Date ()))

 {

 throw new PaymentException ("Expiration date has passed");

 }

 else

 {

 return

 process (getCustomerID (customer),

 amount,

 CREDIT,

 null,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 null,

 -1,

 card.number,

 new java.sql.Date (card.expiration.getTime ()));

 }

}

If the credit card has expired, the method throws an application exception. If not, it simply delegates the chore of
inserting the payment information into the database to process(). Note that some parameters passed to process() are
meaningless. For example, the fourth parameter represents the check bar code, which means nothing in a credit card
payment, so byCredit() passes a dummy value.

The process() method is very similar to the ejbCreate() method of the BMP example in Chapter 10. It simply gets a data-
source connection, creates a PreparedStatement, and inserts the payment information into the PAYMENT table:

 ...

 con = getConnection ();

 ps = con.prepareStatement

 ("INSERT INTO payment (customer_id, amount, " +

 "type, check_bar_code, " +

 "check_number, credit_number, " +

 "credit_exp_date) "+

 "VALUES (?,?,?,?,?,?,?)");

 ps.setInt (1,customerID.intValue ());

 ps.setDouble (2,amount);

 ps.setString (3,type);

 ps.setString (4,checkBarCode);

 ps.setInt (5,checkNumber);

 ps.setString (6,creditNumber);

 ps.setDate (7,creditExpDate);

 int retVal = ps.executeUpdate ();

 if (retVal!=1)

 {

 throw new EJBException ("Payment insert failed");

 }

 return true;

 ...

Note that the returned value is not significant. The method either returns true or throws an application exception, so its
return type could as easily be void.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28.1.2 Examine the EJB Standard Deployment Descriptor

The ProcessPayment standard deployment descriptor is very similar to one you've already seen.

28.1.2.1 ejb-jar.xml

...

<session>

 <description>

 A service that handles monetary payments

 </description>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 <ejb-class>com.titan.processpayment.ProcessPaymentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

 </env-entry>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</session>

...

Note that the ProcessPaymentEJB's <session-type> tag is set to Stateless and its <transaction-type> tag is set to Container.
These settings ensure that the container will automatically manage the transactions and enlist any transactional
resources the bean uses. Chapter 16 of the EJB section of this book explains how these tasks can be handled by the EJB
itself (if it's a session bean or a message-driven bean).

The descriptor contains a reference to a data source it will use to store the payments. You use this data source the
same way you did in the BMP example in Chapter 10.

28.1.2.2 ProcessPaymentBean.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28.1.2.2 ProcessPaymentBean.java

private Connection getConnection () throws SQLException

{

 try

 {

 InitialContext jndiCntx = new InitialContext ();

 DataSource ds = (DataSource)

 jndiCntx.lookup ("java:comp/env/jdbc/titanDB");

 return ds.getConnection ();

 }

 catch(NamingException ne)

 {

 throw new EJBException (ne);

 }

}

The ejb-jar.xml file also specifies an environment property, minCheckNumber. Environment properties provide a very
flexible way to parameterize a bean's behavior at deployment time. The <env-entry> tag for minCheckNumber specifies
the property's type (java.lang.Integer) and a default value (2000). The ProcessPayment EJB accesses the value of this
property through its JNDI ENC.

28.1.2.3 ProcessPaymentBean.java

...

InitialContext jndiCntx = new InitialContext ();

Integer value = (Integer) jndiCntx.lookup

 ("java:comp/env/minCheckNumber");

...

One very interesting point to note is that although the ProcessPayment bean works with Customer beans (recall that
each remote method's first parameter is a Customer interface), the deployment descriptor doesn't declare any
reference to the Customer EJB. No <ejb-ref> or <ejb-local-ref> tag is needed because the ProcessPayment bean won't
find or create Customer beans through the CustomerRemoteHome interface, but instead receives Customer beans directly
from the client application. Thus, from the ProcessPayment EJB's point of view, the Customer is a standard remote Java
object.

28.1.3 Examine the JBoss Deployment Descriptors

The JBoss-specific deployment descriptor for the ProcessPayment bean is very simple. It only maps the data source to
the embedded database in Jboss.

28.1.3.1 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28.1.3.1 jboss.xml

<session>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <jndi-name>ProcessPaymentHomeRemote</jndi-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

</session>

The <res-ref-name> in jboss.xml maps to the same <res-ref-name> in ejb-jar.xml.

28.1.4 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

28.1.5 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex11_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex11_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex11_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex11_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

28.1.6 Initialize the Database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As in previous examples, you'll use the relational database that's embedded in JBoss to store payment information.
Because the deployment descriptor of a stateless session bean does not contain any information about the database
schema that the bean needs, JBoss can't automatically create the database table, as it does for CMP beans. Instead,
you will have to create the database schema for the PAYMENT table manually through JDBC. Use the createdb Ant target:

C:\workbook\ex11_1>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:

 [java] Looking up home interfaces...

 [java] Creating database table...

On the JBoss console, you'll see:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build target clean.db. This removes all
database files and allow you to start fresh.

A dropdb Ant target has been added as well, if you want to destroy the PAYMENT table:

C:\workbook\ex11_1>ant dropdb

Buildfile: build.xml

prepare:

compile:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

BUILD SUCCESSFUL

To implement the createdb and dropdb Ant targets, the JBoss version of the ProcessPayment bean introduced in the EJB
book defines two new methods: makeDbTable() and dropDbTable().

Here's a partial view of the ProcessPayment EJB's remote interface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's a partial view of the ProcessPayment EJB's remote interface:

public interface ProcessPaymentRemote extends javax.ejb.EJBObject

{

 public void makeDbTable () throws RemoteException;

 public void deleteDbTable () throws RemoteException;

}

It defines two home methods: the first creates the table needed by the ProcessPayment EJB in the JBoss embedded
database, and the second drops it.

The implementation of makeDbTable() is essentially a CREATE TABLE SQL statement:

public void makeDbTable ()

{

 PreparedStatement ps = null;

 Connection con = null;

 try

 {

 con = this.getConnection ();

 System.out.println("Creating table PAYMENT...");

 ps = con.prepareStatement

 ("CREATE TABLE PAYMENT (" + "CUSTOMER_ID INT, " +

 "AMOUNT DECIMAL (8,2), " + "TYPE CHAR (10), " +

 "CHECK_BAR_CODE CHAR (50), " + "CHECK_NUMBER INTEGER, " +

 "CREDIT_NUMBER CHAR (20), " + "CREDIT_EXP_DATE DATE" +

 ")");

 ps.execute ();

 System.out.println("...done!");

 }

 catch (SQLException sql)

 {

 throw new EJBException (sql);

 }

 finally

 {

 try { ps.close (); } catch (Exception e) {}

 try { con.close (); } catch (Exception e) {}

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The deleteDbTable() home method differs only in the SQL statement it executes:

public void dropDbTable ()

{

 ...

 System.out.println("Dropping table PAYMENT...");

 ps = con.prepareStatement ("DROP TABLE PAYMENT");

 ps.execute ();

 System.out.println("...done!");

 ...

}

28.1.7 Examine the Client Applications

This exercise includes two example clients. The first simply prepares and creates a single Customer bean, which the
second uses to insert data into the PAYMENT table.

28.1.7.1 Client_111a

Run the first application by invoking the run.client_111a Ant target:

C:\workbook\ex11_1>ant run.client_111a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_111a:

 [java] Creating Customer 1..

 [java] Creating AddressDO data object..

 [java] Setting Address in Customer 1...

 [java] Acquiring Address data object from Customer 1...

 [java] Customer 1 Address data:

 [java] 1010 Colorado

 [java] Austin,TX 78701

28.1.7.2 Client_111b

The code of the client application that actually tests the PaymentProcess EJB is much more interesting. First, it acquires
a reference to the remote home of the ProcessPayment EJB from a newly created JNDI context:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a reference to the remote home of the ProcessPayment EJB from a newly created JNDI context:

Context jndiContext = getInitialContext ();

System.out.println ("Looking up home interfaces..");

Object ref = jndiContext.lookup ("ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote procpayhome = (ProcessPaymentHomeRemote)

PortableRemoteObject.narrow (ref,ProcessPaymentHomeRemote.class);

This home makes it possible to create a remote reference to the stateless session bean:

ProcessPaymentRemote procpay = procpayhome.create ();

Then the client acquires a remote home reference for the Customer EJB and uses it to find the Customer bean created
in the preceding example:

ref = jndiContext.lookup ("CustomerHomeRemote");

CustomerHomeRemote custhome = (CustomerHomeRemote)

PortableRemoteObject.narrow (ref,CustomerHomeRemote.class);

CustomerRemote cust = custhome.findByPrimaryKey (new Integer (1));

The ProcessPayment EJB can now be tested by executing payments of all three kinds: cash, check, and credit card.

System.out.println ("Making a payment using byCash()..");

procpay.byCash (cust,1000.0);

System.out.println ("Making a payment using byCheck()..");

CheckDO check = new CheckDO ("010010101101010100011", 3001);

procpay.byCheck (cust,check,2000.0);

System.out.println ("Making a payment using byCredit()..");

Calendar expdate = Calendar.getInstance ();

expdate.set (2005,1,28); // month=1 is February

CreditCardDO credit = new CreditCardDO ("370000000000002",

 expdate.getTime (),

 "AMERICAN_EXPRESS");

procpay.byCredit (cust,credit,3000.0);

Finally, to check the validation logic, the client tries to execute a payment with a check whose number is too low. The
ProcessPayment EJB should refuse the payment and raise an application exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProcessPayment EJB should refuse the payment and raise an application exception.

System.out.println ("Making a payment using byCheck() with a low

 check number..");

CheckDO check2 = new CheckDO ("111000100111010110101", 1001);

try

{

 procpay.byCheck (cust,check2,9000.0);

 System.out.println("Problem! The PaymentException has

 not been raised!"); }

catch (PaymentException pe)

{

 System.out.println ("Caught PaymentException: "+

 pe.getMessage ());

}

procpay.remove ();

You can launch this test by invoking the run.client_111b Ant target:

C:\workbook\ex11_1>ant run.client_111b

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_111b:

 [java] Looking up home interfaces..

 [java] Making a payment using byCash()..

 [java] Making a payment using byCheck()..

 [java] Making a payment using byCredit()..

 [java] Making a payment using byCheck() with a low check number..

 [java] Caught PaymentException: Check number is too low. Must be at least 2000

At the same time, the JBoss console will display:

INFO [STDOUT] process() with customerID=1 amount=1000.0

INFO [STDOUT] process() with customerID=1 amount=2000.0

INFO [STDOUT] process() with customerID=1 amount=3000.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INFO [STDOUT] process() with customerID=1 amount=3000.0

Once you've performed the tests, you can drop the table by invoking the dropdb Ant target:

C:\workbook\ex11_1>ant dropdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

The JBoss console displays:

INFO [STDOUT] Dropping table PAYMENT...

INFO [STDOUT] ...done!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

28.2 Exercise 11.2: A Stateful Session Bean
In this exercise, you will build and examine a stateful session bean, TravelAgent, which coordinates the work of booking
a trip on a ship. You will also build a client application to test this EJB.

Our version of this exercise does not follow the one in the EJB section strictly. Instead of simplifying the beans and their
relationships as the EJB section does, we use the beans implemented in Chapter 6 and Chapter 7 and thus take
advantage of the CMP 2.0 features of JBoss.

28.2.1 Examine the EJB

This exercise is based on the EJBs from Exercise 7.3 and doesn't contain much material that previous sections haven't
covered. Nevertheless, a few modifications have been made:

The Customer EJB again has a remote home and bean interfaces (as in Chapter 6) and exposes its relationship
with the Address EJB in the remote interface through a new data object, AddressDO.

The Cabin EJB has a new create method that takes several parameters.

The Reservation EJB has a new create method that takes several parameters, and has a local reference to the
Customer EJB.

The TravelAgent bean's role is to perform all activities needed to book a successful trip. Thus, as in the preceding
example, this session bean acts as a coordinator between different EJBs and groups several actions on different beans
in the same transaction. Here, though, the bean maintains a conversational state with the client; i.e., each client has a
dedicated bean on the server.

In the previous example featuring stateless session beans, the home create method was not allowed to have
parameters: providing initialization parameters would be useless, as the bean wouldn't be able to remember them for
forthcoming invocations. A stateful session bean, by contrast, maintains a conversational state, so its create methods
can have parameters to initialize the bean state. Indeed, the home interface can have several create methods. In this
example, however, the TravelAgent home interface declares only one:

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome

{

 public TravelAgentRemote create (CustomerRemote cust)

 throws RemoteException, CreateException;

}

Furthermore, if you take a look at the remote interface, you can see that methods are correlated around an identical
state:

public interface TravelAgentRemote extends javax.ejb.EJBObject

{

 public void setCruiseID (Integer cruise)

 throws RemoteException, FinderException;

 public void setCabinID (Integer cabin)

 throws RemoteException, FinderException;

 public TicketDO bookPassage (CreditCardDO card, double price)

 throws RemoteException, IncompleteConversationalState;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws RemoteException, IncompleteConversationalState;

 public String [] listAvailableCabins (int bedCount)

 throws RemoteException, IncompleteConversationalState;

}

If no conversational state between the client and the server existed, calling setCruiseId() would make no sense. The role
of this method is simply to populate this conversational state so that future calls can use this data in their processing.

Because this exercise is based on the beans implemented in Chapter 6 and Chapter 7, it needs a database schema that
includes all the relationships among them, and thus differs from the one in the EJB book. Because the listAvailableCabins(
) method performs direct SQL calls, it must be rewritten to take this new database schema into account:

...

Integer cruiseID = (Integer)cruise.getPrimaryKey ();

Integer shipID = (Integer)cruise.getShip ().getPrimaryKey ();

con = getConnection ();

ps = con.prepareStatement (

 "select ID, NAME, DECK_LEVEL from CABIN "+

 "where SHIP_ID = ? and BED_COUNT = ? and ID NOT IN "+

 "(SELECT RCL.CABIN_ID FROM RESERVATION_CABIN_LINK AS RCL,"+

 "RESERVATION AS R "+

 "WHERE RCL.RESERVATION_ID = R.ID " +

 "AND R.CRUISE_ID = ?)");

ps.setInt (1,shipID.intValue ());

ps.setInt (2,bedCount);

ps.setInt (3,cruiseID.intValue ());

result = ps.executeQuery ();

...

You may remember that in previous examples we added a method (either home or remote) to the EJB to be able to
initialize the test environment. As you can guess, this example uses the same trick. The TravelAgent EJB remote
interface has been extended with one method:

public interface TravelAgentRemote extends javax.ejb.EJBObject

{

 ...

 // Mechanism for building local beans for example programs.

 //

 public void buildSampleData () throws RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method removes any Customer, Cabin, Ship, Cruise, and Reservation EJBs from the database and recreates a basic
environment. You can follow this initialization step by step. First, the method acquires references to the remote home of
the Customer EJB, and to the local homes of the Cabin, Ship, Cruise, and Reservation EJBs:

public Collection buildSampleData ()

{

 Collection results = new ArrayList ();

 try

 {

 System.out.println ("TravelAgentBean::buildSampleData()");

 Object obj = jndiContext.lookup

 ("java:comp/env/ejb/CustomerHomeRemote");

 CustomerHomeRemote custhome = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow (obj,

 CustomerHomeRemote.class);

 CabinHomeLocal cabinhome =

 (CabinHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/CabinHomeLocal");

 ShipHomeLocal shiphome =

 (ShipHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/ShipHomeLocal");

 CruiseHomeLocal cruisehome =

 (CruiseHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/CruiseHomeLocal");

 ReservationHomeLocal reshome =

 (ReservationHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/ReservationHomeLocal");

Then any existing bean is deleted from the database:

// we first clean the db by removing any customer, cabin,

// ship, cruise and reservation beans.

//

removeBeansInCollection (custhome.findAll());

results.add ("All customers have been removed");

removeBeansInCollection (cabinhome.findAll());

results.add ("All cabins have been removed");

removeBeansInCollection (shiphome.findAll());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeBeansInCollection (shiphome.findAll());

results.add ("All ships have been removed");

removeBeansInCollection (cruisehome.findAll());

results.add ("All cruises have been removed");

removeBeansInCollection (reshome.findAll());

results.add ("All reservations have been removed");

The removeBeansInCollection() method is a simple one. It iterates through the specified collection and removes each
EJBObject or EJBLocalObject.

Two customers and two ships are created:

// We now set our new basic environment

//

System.out.println ("Creating Customers 1 and 2...");

CustomerRemote customer1 = custhome.create (new Integer (1));

customer1.setName (new Name ("Burke","Bill"));

results.add ("Customer with ID 1 created (Burke Bill)");

CustomerRemote customer2 = custhome.create (new Integer (2));

customer2.setName (new Name ("Labourey","Sacha"));

results.add("Customer with ID 2 created (Labourey Sacha)");

System.out.println ("Creating Ships A and B...");

ShipLocal shipA = shiphome.create (new Integer (101),

 "Nordic Prince", 50000.0);

results.add("Created ship with ID 101...");

ShipLocal shipB = shiphome.create (new Integer (102),

 "Bohemian Rhapsody", 70000.0);

results.add("Created ship with ID 102...");

The buildSampleData() method adds a message to the results collection after each significant step, and ultimately returns
results so the caller knows what's happened on the server. It then creates 10 cabins on each ship:

System.out.println ("Creating Cabins on the Ships...");

ArrayList cabinsA = new ArrayList ();

ArrayList cabinsB = new ArrayList ();

for (int jj=0; jj<10; jj++)

{

 CabinLocal cabinA = cabinhome.create (new Integer

 (100+jj),shipA,"Suite 10"+jj,1,1);

 cabinsA.add(cabinA);

 CabinLocal cabinB = cabinhome.create (new Integer

 (200+jj),shipB,"Suite 20"+jj,2,1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (200+jj),shipB,"Suite 20"+jj,2,1);

 cabinsB.add(cabinB);

}

results.add("Created cabins on Ship A with IDs 100-109");

results.add("Created cabins on Ship B with IDs 200-209");

The method quickly organizes some cruises for each ship:

CruiseLocal cruiseA1 = cruisehome.create ("Alaska Cruise", shipA);

CruiseLocal cruiseA2 = cruisehome.create ("Norwegian Fjords",

 shipA);

CruiseLocal cruiseA3 = cruisehome.create ("Bermuda or Bust", shipA);

results.add("Created cruises on ShipA with IDs

 "+cruiseA1.getId()+", "+cruiseA2.getId()+",

 "+cruiseA3.getId());

CruiseLocal cruiseB1 = cruisehome.create ("Indian Sea

 Cruise", shipB);

CruiseLocal cruiseB2 = cruisehome.create ("Australian Highlights",

 shipB);

CruiseLocal cruiseB3 = cruisehome.create ("Three-Hour Cruise",

 shipB);

results.add ("Created cruises on ShipB with IDs "+

 cruiseB1.getId ()+", "+cruiseB2.getId ()+",

 "+cruiseB3.getId ());

Finally, some reservations are made for these cruises:

 ReservationLocal res =

 reshome.create (customer1, cruiseA1,

 (CabinLocal)(cabinsA.get (3)),

 1000.0, new Date ());

 res = reshome.create (customer1, cruiseB3,

 (CabinLocal)(cabinsB.get (8)),

 2000.0, new Date ());

 res = reshome.create (customer2, cruiseA2,

 (CabinLocal)(cabinsA.get (5)),

 2000.0, new Date ());

 res = reshome.create (customer2, cruiseB3,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 res = reshome.create (customer2, cruiseB3,

 (CabinLocal)(cabinsB.get (2)),

 2000.0, new Date ());

 results.add ("Made reservation for Customer 1 on Cruise "+

 cruiseA1.getId ()+" for Cabin 103");

 results.add ("Made reservation for Customer 1 on Cruise "+

 cruiseB3.getId ()+" for Cabin 208");

 results.add ("Made reservation for Customer 2 on Cruise "+

 cruiseA2.getId ()+" for Cabin 105");

 results.add ("Made reservation for Customer 2 on Cruise "+

 cruiseB3.getId ()+" for Cabin 202");

 }

 ...

 return results;

}

Later, you'll see how to call this method to set up the environment.

28.2.2 Examine the EJB Standard Deployment Descriptor

Most of the ejb-jar.xml file comprises definitions you've seen in previous examples (entity beans, relationships, the
ProcessPayment stateless session bean, etc.). Only two things have been added.

28.2.2.1 ejb-jar.xml

First, the Customer EJB now has both local and remote interfaces:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

<home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <local-home>com.titan.customer.CustomerHomeLocal</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <cmp-field><field-name>hasGoodCredit</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

</entity>

Providing the second interface enables the Customer EJB to serve local clients as well as remote ones. Note that the
remote and local interfaces do not declare the same methods. For example, it's illegal for a remote interface to expose
entity relationships, so they're accessible only via the local interface.

The second addition is the new TravelAgent stateful session bean that is the heart of this exercise:

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>

 ...

As you can see, only the value of the <session-type> tag distinguishes the declaration of a stateful session bean from
that of a stateless bean.

The deployment descriptor then declares all the beans referenced by the TravelAgent EJB:

 ...

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

 <ejb-link>ProcessPaymentEJB</ejb-link>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>

 com.titan.customer.CustomerHomeRemote

 </home>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-link>CustomerEJB</ejb-link>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.CabinHomeLocal

 </local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ShipHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.ShipHomeLocal

 </local-home>

 <local>com.titan.cabin.ShipLocal</local>

 <ejb-link>ShipEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cruise.CruiseHomeLocal

 </local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 <ejb-link>CruiseEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.reservation.ReservationHomeLocal

 </local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 <ejb-link>ReservationEJB</ejb-link>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-link>ReservationEJB</ejb-link>

 </ejb-local-ref>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</session>

28.2.3 Examine the JBoss Deployment Descriptor

The jboss.xml deployment descriptor contains the JNDI name mapping found in the previous examples. The only new
entry is the TravelAgent EJB definition.

28.2.3.1 jboss.xml

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

</session>

This file defines the JNDI name for the TravelAgent, then maps the data source's JNDI ENC name to the embedded
database.

The listAvailableCabins() method uses this mapping to execute SQL statements directly against the database, so it must
know precisely the names of the tables and fields to use in each query. While jbosscmp-jdbc.xml already defines the
field-to-column mapping of all CMP beans, it doesn't define the fields and tables used by relationships between these
beans. If it doesn't have those definitions, JBoss will use arbitrary names for these tables—not good in this case. To
avoid this problem, extend jbosscmp-jdbc.xml, adding definitions that map the relationships into the desired tables and
columns exactly. For this exercise, we mapped only the relationships used in the SQL query: Cabin-Ship, Cabin-
Reservation, and Cruise-Reservation.

28.2.3.2 jbosscmp-jdbc.xml

Cabin-Reservation is a many-to-many relationship:

<ejb-relation>

 <ejb-relation-name>Cabin-Reservation</ejb-relation-name>

 <relation-table-mapping>

 <table-name>RESERVATION_CABIN_LINK</table-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <table-name>RESERVATION_CABIN_LINK</table-name>

 <create-table>true</create-table>

 <remove-table>true</remove-table>

 </relation-table-mapping>

 <ejb-relationship-role>

<ejb-relationship-role-name

 >Cabin-has-many-Reservations<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>CABIN_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 <ejb-relationship-role>

<ejb-relationship-role-name

 >Reservation-has-many-Cabins<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>RESERVATION_ID</column-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <column-name>RESERVATION_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

</ejb-relation>

...

Many-to-many relationships always need an intermediate table. The name of this table is defined in the <table-name>
tag. Then, for each role of the relationship, the <field-name> and <column-name> tags do the mapping between the CMR
field of the bean and the column in the table.

The last two mappings needed are for one-to-many relationships, Cabin-Ship and Cruise-Reservation:

...

<ejb-relation>

 <ejb-relation-name>Cabin-Ship</ejb-relation-name>

 <foreign-key-mapping/>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Ship-has-many-Cabins<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>SHIP_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Cabin-has-a-Ship<

 /ejb-relationship-role-name>

 <key-fields/>

 </ejb-relationship-role>

</ejb-relation>

<ejb-relation>

 <ejb-relation-name>Cruise-Reservation</ejb-relation-name>

 <foreign-key-mapping/>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Cruise-has-many-Reservations<

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 >Cruise-has-many-Reservations<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>CRUISE_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Reservation-has-a-Cruise<

 /ejb-relationship-role-name>

 <key-fields/>

 </ejb-relationship-role>

</ejb-relation>

For each relationship identified by an <ejb-relation-name> tag (the name must be the same as the one declared in ejb-
jar.xml), the mapping of the CMR field to a table column is defined by the <field-name> and <column-name> tags.

28.2.4 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

28.2.5 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex11_2 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex11_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex11_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex11_2> set PATH=..\ant\bin;%PATH%

Unix:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

28.2.6 Initialize the Database

Because the exercise uses the ProcessPayment EJB from the previous example, the database must contain the PAYMENT
table. The createdb and dropdb Ant targets, Java code, and clients here have been borrowed from Exercise 11.1.

If you have dropped the PAYMENT table after running the examples in Exercise 11.1, re-create it now by running the
createdb Ant target.

C:\workbook\ex11_2>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:

 [java] Looking up home interfaces..

 [java] Creating database table...

On the JBoss console, you'll see:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build
target clean.db. This removes all database files and allows you to start fresh.

The container manages the persistence of all other entity beans used in this exercise, so it will create the needed tables
for them automatically.

28.2.7 Examine the Client Applications

This exercise includes three example client applications.

28.2.7.1 Client_112a

The first client simply calls the TravelAgent bean's buildSampleData() method. To run this application, invoke the Ant
target run.client_112a:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

target run.client_112a:

C:\workbook\ex11_2>ant run.client_112a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112a:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

Now that you've prepared the environment, you can use the other two client applications. Client_112b allows you to
book a passage, while Client_112c gives you a list of the Cabins for a specific Cruise that have a specified number of
beds.

28.2.7.2 Client_112b

The second client starts by getting remote home interfaces to the TravelAgent and Customer EJBs:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second client starts by getting remote home interfaces to the TravelAgent and Customer EJBs:

public static void main(String [] args) throws Exception

{

 if (args.length != 4)

 {

 System.out.println

 ("Usage: java " +

 "com.titan.clients.Client_122b" +

 "<customerID> <cruiseID> <cabinID> <price>");

 System.exit(-1);

 }

 Integer customerID = new Integer(args[0]);

 Integer cruiseID = new Integer(args[1]);

 Integer cabinID = new Integer(args[2]);

 double price = new Double(args[3]).doubleValue();

 Context jndiContext = getInitialContext();

 Object obj = jndiContext.lookup("TravelAgentHomeRemote");

 TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

 TravelAgentHomeRemote.class);

 obj = jndiContext.lookup("CustomerHomeRemote");

 CustomerHomeRemote custhome = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

 CustomerHomeRemote.class);

With the home references in hand, it can now get a reference to the customer whose ID was given on the command
line. If no customer with this ID exists, an exception is thrown.

 // Find a reference to the Customer for which to book a cruise

 System.out.println("Finding reference to Customer "+customerID);

 CustomerRemote cust = custhome.findByPrimaryKey(customerID);

The application then creates a TravelAgent stateful session bean and gives it, as part of the transactional state, the
reference to the customer, the cruise ID, and the Cabin ID.

 // Start the Stateful session bean

 System.out.println("Starting TravelAgent Session...");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.println("Starting TravelAgent Session...");

 TravelAgentRemote tagent = tahome.create(cust);

 // Set the other bean parameters in agent bean

 System.out.println("Setting Cruise and Cabin information in TravelAgent..");

 tagent.setCruiseID(cruiseID);

 tagent.setCabinID(cabinID);

It can then book the passage, thanks to a dummy credit card:

 // Create a dummy CreditCard for this

 //

 Calendar expdate = Calendar.getInstance();

 expdate.set(2005,1,5);

 CreditCardDO card = new CreditCardDO("370000000000002",

 expdate.getTime(),

 "AMERICAN EXPRESS");

 // Book the passage

 //

 System.out.println("Booking the passage on the Cruise!");

 TicketDO ticket = tagent.bookPassage(card,price);

 System.out.println("Ending TravelAgent Session...");

 tagent.remove();

 System.out.println("Result of bookPassage:");

 System.out.println(ticket.description);

 }

Test this client application by booking Suite 201 for Mr. Bill Burke on the Three-Hour Cruise aboard the "Bohemian
Rhapsody."

Ant doesn't make it particularly easy to pass command-line parameters through to the client. To make this task easier,
use one of the scripts that accept command-line parameters in a more customary fashion, available in the ex11_2
directory.

To book a passage, use the BookPassage.bat (Windows) or the BookPassage script (Unix):

BookPassage.bat <customerID> <cruiseID> <cabinID> <price>

Or

./BookPassage <customerID> <cruiseID> <cabinID> <price>

C:\workbook\ex11_2>BookPassage 1 5 201 2000.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\workbook\ex11_2>BookPassage 1 5 201 2000.0

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112b:

 [java] Finding reference to Customer 1

 [java] Starting TravelAgent Session...

 [java] Setting Cruise and Cabin information in TravelAgent..

 [java] Booking the passage on the Cruise!

 [java] Ending TravelAgent Session...

 [java] Result of bookPassage:

 [java] Bill Burke has been booked for the Three-Hour Cruise cruise on ship Bohemian Rhapsody.

 [java] Your accommodations include Suite 201 a 2 bed cabin on deck level 1.

 [java] Total charge = 2000.0

BUILD SUCCESSFUL

28.2.7.3 Client_112c

The last application gives you a list of available cabins for a specific cruise that have a desired number of beds. First,
the application verifies that it's been given the correct number of command-line arguments and gets a remote home
reference to the TravelAgent EJB:

public static void main(String [] args) throws Exception

{

 if (args.length != 2)

 {

 System.out.println("Usage: java " +

 "com.titan.clients.Client_122c" +

 " <cruiseID> <bedCount>");

 System.exit(-1);

 }

 Integer cruiseID = new Integer(args[0]);

 int bedCount = new Integer(args[1]).intValue();

 Context jndiContext = getInitialContext();

 Object obj = jndiContext.lookup("TravelAgentHomeRemote");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

 TravelAgentHomeRemote.class);

Because the session bean is not really dedicated to a specific instance of Customer, but is instead making an SQL query
in the database, the client creates a TravelAgent bean with a dummy Customer reference, which will never be used.
Then it supplies the Cruise ID:

 // Start the Stateful session bean

 System.out.println("Starting TravelAgent Session...");

 TravelAgentRemote tagent = tahome.create(null);

 // Set the other bean parameters in agent bean

 System.out.println

 ("Setting Cruise information in TravelAgent..");

 tagent.setCruiseID(cruiseID);

Finally, the application asks for a list of all available cabins with a desired number of beds on a particular cruise and
displays the result, if any:

 String[] results = tagent.listAvailableCabins(bedCount);

 System.out.println("Ending TravelAgent Session...");

 tagent.remove();

 System.out.println("Result of listAvailableCabins:");

 for (int kk=0; kk<results.length; kk++)

 {

 System.out.println(results[kk]);

 }

 }

To launch this application, you can use the ListCabins.bat (Windows) or ListCabins (Unix) script:

ListCabins.bat <cruiseID> <bedCount>

Or

./ListCabins <cruiseID> <bedCount>

Ask the system for a list of the two-bed cabins that are available on the Three-Hour Cruise, the one Mr. Bill Burke
chose:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chose:

C:\workbook\ex11_2>ListCabins 5 2

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112c:

 [java] Starting TravelAgent Session...

 [java] Setting Cruise information in TravelAgent..

 [java] Ending TravelAgent Session...

 [java] Result of listAvailableCabins:

 [java] 200,Suite 200,1

 [java] 203,Suite 203,1

 [java] 204,Suite 204,1

 [java] 205,Suite 205,1

 [java] 206,Suite 206,1

 [java] 207,Suite 207,1

 [java] 209,Suite 209,1

BUILD SUCCESSFUL

Suite 201 has two beds but is not shown as available. This omission is correct, because Mr. Bill Burke has booked that
suite.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 29. Exercises for Chapter 12
Section 29.1. Exercise 12.1: JMS as a Resource

Section 29.2. Exercise 12.2: The Message-Driven Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

29.1 Exercise 12.1: JMS as a Resource
This exercise is entirely based on the beans implemented in Exercise 11.2. You'll modify the TravelAgent EJB so it
publishes a text message to a JMS topic when it completes a reservation.

You'll learn how to create a new JMS topic in JBoss, and configure your bean to use JMS as a resource. You'll also build
a client application that will subscribe to this topic and display any published message. To complete new reservations,
you'll use one of the client applications created for the preceding example.

29.1.1 Start Up JBoss

If JBoss is already running there is no reason to restart it.

29.1.2 Initialize the Database

Because the exercise uses the ProcessPayment EJB used in recent exercises, the database must contain the PAYMENT
table. The createdb and dropdb Ant targets, Java code, and clients here have been borrowed from Exercise 11.1.

If you haven't already dropped the PAYMENT table after running the examples in Exercise 11.2, do so now by running
the dropdb Ant target.

C:\workbook\ex12_1>ant dropdb

Buildfile: build.xml

prepare:

compile:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

BUILD SUCCESSFUL

Then re-create the PAYMENT database table by running the createdb Ant target

C:\workbook\ex12_1>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:

 [java] Looking up home interfaces..

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Looking up home interfaces..

 [java] Creating database table...

On the JBoss console, the following lines are displayed:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build
target clean.db. This will remove all database files and allow you to start fresh.

The persistence of all other entity beans used in this exercise is managed by the container (CMP), so JBoss will create
the needed tables for them automatically.

29.1.3 Create a New JMS Topic

Because the TravelAgent EJB will publish messages in a JMS topic, you'll have to create this new topic in JBoss. This
exercise walks you through two different ways to create a new JMS topic: through an XML configuration file and through
the JBoss JMX HTTP connector.

29.1.3.1 Adding a JMS Topic through a configuration file

The most common way to set up a JMS topic is to use an XML configuration file. As you learned in the installation
chapter, every component in JBoss is a JMX MBean that can be hot-deployed. This part of the exercise shows you how
to write a JMX MBean definition for a new JMS topic.

You can find the JMX configuration file in the ex12_1/src/resources/services directory.

29.1.3.2 jbossmq-titantopic-service.xml

<server>

 <mbean code="org.jboss.mq.server.jmx.Topic"

 name="jboss.mq.destination:service=Topic,

 name=titan-TicketTopic">

 <depends optional-attribute-name="DestinationManager"

 >jboss.mq:service=DestinationManager</depends>

 </mbean>

</server>

Each set of MBeans in a JMX configuration file must be defined within a <server> tag. An MBean itself is declared in an
<mbean> tag. The only MBean declaration in this file defines the actual JMS topic you'll use for the example code in this
chapter. Each MBean is uniquely identified by its name, called an ObjectName. JMX ObjectNames can include any
number of key-value parameters to describe the MBean further. In our case, the MBean class representing the JMS
topic is declared first (org.jboss.mq.server.jmx.Topic), along with its JMX ObjectName (jboss.mq.destination:service=Topic,
name=titan-TicketTopic). For JMS topic MBeans, a single parameter is useful: name. This is where the name of the JMS
topic is defined (titan-TicketTopic).

One thing to note is that the application server must deploy the DestinationManager MBean before any queue or topic is
deployed. This dependency is declared in jbossmq-titantopic-service.xml's depends tag. JBoss will take care of satisfying
this dependency and make sure the titan-TicketTopic isn't started until the DestinationManager MBean has finished

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this dependency and make sure the titan-TicketTopic isn't started until the DestinationManager MBean has finished
initializing and is ready to provide services to new queues and topics. Copying this file into the JBoss deploy directory
will hot-deploy the JMS topic and make it ready for use.

We've defined a make-topic Ant target for deploying the topic bean. Run this target to copy jbossmq-titantopic-
service.xml into JBoss's deploy directory:

C:\workbook\ex12_1>ant make-topic

Buildfile: build.xml

make-topic:

 [copy] Copying 1 file to C:\jboss-4.0\server\default\deploy

On the server side, the following line is displayed:

[titan-TicketTopic] Bound to JNDI name: topic/titan-TicketTopic

29.1.3.3 Adding a JMS Topic through the JMX HTTP connector

An XML configuration file is the preferred means to deploy a JMS topic permanently, but for quick tests and such an
alternative approach that uses JBoss's JMX HTTP connector and the DestinationManager is sometimes better, because the
topic lives in JBoss only until the application server is shut down. First open your browser and go to
http://localhost:8080/jmx-console/, where you can browse through all deployed JBoss JMX MBeans. Scroll down to the
jboss.mq section and find in it the MBean service DestinationManager (Figure 29-1).

Figure 29-1. Finding the DestinationManager

Click on the service=DestinationManager link and you get a list of the MBean's attributes and operations. One of the
operations, createTopic(), allows you to create a new JMS topic (Figure 29-2).

Figure 29-2. Naming a new JMS topic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-2. Naming a new JMS topic

Type the name of the new JMS topic in the text area, and click on the Invoke button associated with the createTopic()
operation. The Destination Manager will create the JMS topic and display a status message (Figure 29-3).

Figure 29-3. Confirming topic creation

To see your new JMS topic MBean, go back to the home page of the JMX HTTP connector and search for the
jboss.mq.destination domain. You should be able to see your new topic MBean (Figure 29-4).

Figure 29-4. Finding the new topic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that you can use the JMX HTTP connector to see the status of your topics and queues even if you create then in an
XML configuration file.

29.1.4 Examine the EJB Standard Files

The ejb-jar.xml deployment descriptor is equivalent to the one for Exercise 11.2 except for the TravelAgent EJB. The
definition for this bean has been extended to reference the JMS topics you just created.

29.1.4.1 ejb-jar.xml

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>

 ...

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

 </resource-env-ref>

</session>

A reference to a TopicConnectionFactory is declared in the same way as a reference to a DataSource. The definition contains
the name of the resource (jms/TopicFactory), the class of the resource (javax.jms.TopicConnectionFactory), and whether the
container or the bean performs the authentication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container or the bean performs the authentication.

29.1.5 Examine the JBoss-Specific Files

The TravelAgentEJB definition in jboss.xml must be modified as well, to describe the JMS topic references declared in
ejb-jar.xml.

29.1.5.1 jboss.xml

...

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <jndi-name>java:/JmsXA</jndi-name>

 </resource-ref>

 <resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <jndi-name>topic/titan-TicketTopic</jndi-name>

 </resource-env-ref>

</session>

...

The <resource-ref> entry from ejb-jar.xml is mapped in the jboss.xml file to the JNDI name java:/JmsXA. If you take a
look at the JBossMQ default configuration file in $JBOSS_HOME/server/default/deploy/jms/jms-ds.xml, you'll see that
the XA connection manager is bound to this name by default.

The last part of the TravelAgent EJB descriptor in jboss.xml maps the jms/TicketTopic name from the JNDI ENC of the
bean to the topic/titan-TicketTopic JNDI name. This name corresponds to the JMS topic you just created.

29.1.6 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex12_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex12_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex12_1> set JBOSS_HOME=C:\jboss-4.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex12_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

You will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the application server.

29.1.7 Examine the Client Applications

This exercise includes two client applications. You can find the code for them in the ex12_1/src/main/com/titan/clients
directory.

The first application is the one used in Exercise 11.2 to make a reservation. The Ant target run.client_112b hasn't
changed, and needs no review.

The second application is new. JmsClient_1 subscribes to the titan-TicketTopic JMS topic and displays all messages
published on it.

The application first gets an InitialContext, and looks up its TopicConnectionFactory and Topic.

29.1.7.1 JmsClient_1.java

...

Context jndiContext = getInitialContext();

TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("ConnectionFactory");

Topic topic = (Topic)

 jndiContext.lookup("topic/titan-TicketTopic");

The name of the JMS topic is the same as the one you created in Exercise 11.1, but the name of the
TopicConnectionFactory is not the same as the one used by the TravelAgent EJB.

Remember that the java:/JmsXA connection factory used by the EJB was in the private JNDI space of the JBoss JVM
(indicated by the java: prefix). Thus, the client application cannot look up this name from its JVM. For external
applications, JBoss binds a set of connection factories within the public JNDI tree, each dedicated to a particular
message transport protocol.

JBossMQ supports several different kinds of message invocation layers. Each layer has its own ConnectionFactory that is
bound in JNDI, as shown in Table 29-1.

Table 29-1. JBossMQ message invocation layers
Invocation Layer JNDI name

JVM java:/ConnectionFactory
and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hyperefficient invocation layer using standard Java method invocation, used for in-JVM
JMS clients; external clients cannot use this invocation layer

and

java:/XAConnectionFactory
(with XA support)

RMI

RMI-based invocation layer

RMIConnectionFactory and

RMIXAConnectionFactory
(with XA support)

OIL (Optimized Invocation Layer)

Uses custom TCP/IP sockets to obtain good network performance with a small memory
footprint

ConnectionFactory and

XAConnectionFactory (with
XA support)

UIL2

Used by client applications that cannot accept network connections originating from the
server

UIL2ConnectionFactory and

UIL2XAConnectionFactory
(with XA support)

We strongly suggest to use the UIL2 invocation layer; it is the most robust and efficient layer currently available.

TopicConnection connect = factory.createTopicConnection();

TopicSession session =

 connect.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

System.out.println

 ("Listening for messages on topic/titan-TicketTopic...");

connect.start();

The end of the client application code is the same as in the EJB book.

29.1.8 Run the Client Applications

When you redeployed titan.jar, JBoss dropped and recreated the database tables, destroying any existing content. For
this reason, you must have Ant execute the run.client_112a target to repopulate the database.

The run.client_112a target originated in Exercise 11.2, but we've duplicated it in the ex12_1
directory to facilitate your work.

Here's the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the output:

C:\workbook\ex12_1>ant run.client_112a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112a:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

BUILD SUCCESSFUL

For your new application to receive the message published on the JMS topic, you have to start it first:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For your new application to receive the message published on the JMS topic, you have to start it first:

C:\workbook\ex12_1>ant run.client_121

Buildfile: build.xml

prepare:

compile:

ejbjar:

client_121:

 [java] Listening for messages on topic/titan-TicketTopic...

The last line of the output confirms that the client application has successfully subscribed to the topic and is waiting for
messages.

Now you need to make some reservations exactly as you did in Exercise 11.2. Open a new shell and use the
BookPassage script to make a reservation for Bill Burke on the Three-Hour Cruise for cabin 101 at $3,000.00:

C:\workbook\ex12_1>BookPassage 1 5 101 3000.0

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112b:

 [java] Finding reference to Customer 1

 [java] Starting TravelAgent Session...

 [java] Setting Cruise and Cabin information in TravelAgent..

 [java] Booking the passage on the Cruise!

 [java] Ending TravelAgent Session...

 [java] Result of bookPassage:

 [java] Bill Burke has been booked for the Three-Hour Cruise cruise on ship

Bohemian Rhapsody.

 [java] Your accommodations include Suite 101 a 1 bed cabin on deck level 1.

 [java] Total charge = 3000.0

In the JMS subscriber window you started, the following lines should appear:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the JMS subscriber window you started, the following lines should appear:

[java] Listening for messages on topic/titan-TicketTopic...

[java]

[java] RESERVATION RECEIVED:

[java] Bill Burke has been booked for the Three-Hour Cruise cruise on ship

Bohemian Rhapsody.

[java] Your accommodations include Suite 101 a 1 bed cabin on deck level 1.

[java] Total charge = 3000.0

Remember from the EJB section of this book that our client application uses a nondurable subscription to the topic.
Consequently, all the messages sent while the subscriber client application is not running are lost. That would not be
the case if we had used a durable subscription to the topic.

To see the "many-to-many" nature of JMS topics, launch several JMS listener applications at the same time. They will
all receive the messages sent to the topic.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

29.2 Exercise 12.2: The Message-Driven Bean
This exercise is an extension of the preceding one. You'll add a message-driven bean (MDB), ReservationProcessor, which
plays the same role as the TravelAgent EJB but receives its booking orders through a JMS queue instead of synchronous
RMI invocations.

To test the MDB, you'll build a new client application that makes multiple reservations in batch, using a JMS queue
that's bound to the MDB. You'll also build a second client application that listens on another queue to receive booking
confirmations.

Along the way, you'll learn how to create a new JMS queue in JBoss and configure a message-driven bean (MDB).

29.2.1 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

29.2.2 Initialize the Database

Because the exercise uses the ProcessPayment EJB used in recent exercises, the database must contain the PAYMENT
table. The createdb and dropdb Ant targets, Java code, and clients here have been borrowed from exercise 12_1.

If you haven't already dropped the PAYMENT table after running the examples in Exercise 12.1, do so now by running
the dropdb Ant target.

C:\workbook\ex12_2>ant dropdb

Buildfile: build.xml

prepare:

compile:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

BUILD SUCCESSFUL

Then re-create the PAYMENT database table by running the createdb Ant target:

C:\workbook\ex12_2>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createdb:

 [java] Looking up home interfaces..

 [java] Creating database table...

On the JBoss console, the following lines are displayed:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build
target clean.db. This will remove all database files and allow you to start fresh.

The persistence of all other entity beans used in this exercise is managed by the container, so it will create the needed
tables for them automatically.

29.2.3 Create a New JMS Queue

This exercise requires two different JMS queues, one for the ReservationProcessor MDB and one to receive booking
confirmations.

Adding new JMS queues to JBoss is much like adding new JMS topics. As in the preceding exercise, you have two
options, one involving a configuration file, the other the JMX HTTP connector.

29.2.3.1 Adding a JMS queue through a configuration file

The most common way to set up a JMS queue is to use an XML configuration file. This part of the exercise shows you
how to write a JMX MBean definition for a new JMS queue. You can find the JMX configuration file in
ex12_2/src/resources/services.

29.2.3.2 jbossmq-titanqueues-service.xml

<server>

 <mbean code="org.jboss.mq.server.jmx.Queue"

 name="jboss.mq.destination:service=Queue,

 name=titan-ReservationQueue">

 <depends optional-attribute-name="DestinationManager"

 >jboss.mq:service=DestinationManager</depends>

 </mbean>

<mbean code="org.jboss.mq.server.jmx.Queue"

 name="jboss.mq.destination:service=Queue,

 name=titan-TicketQueue">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name=titan-TicketQueue">

 <depends optional-attribute-name="DestinationManager"

 >jboss.mq:service=DestinationManager</depends>

 </mbean>

</server>

Recall that each set of MBeans must be defined within a <server> tag and each MBean declared in an <mbean> tag.
Because this exercise requires two different queues, we've defined two MBeans. The MBean class that represents a JMS
queue is org.jboss.mq.server.jmx.Queue. Its name property specifies the name of the JMS queue to be created, such as
titan-ReservationQueue and titan-TicketQueue.

Remember also that the application server must deploy the DestinationManager MBean before any queue or topic is
deployed. This dependency is declared within the <depends> tag in jbossmq-titanqueues-service.xml. JBoss will take
care of satisfying this dependency and make sure the titan-ReservationQueue and titan-TicketQueue will not be started until
the DestinationManager MBean has finished initializing and is ready to provide services to new queues and topics. Copying
this file into the JBoss deploy directory will hot-deploy these JMS queues and make them ready for use.

To deploy jbossmq-titanqueues-service.xml, run the make-queues Ant target:

C:\workbook\ex12_2>ant make-queues

Buildfile: build.xml

make-queues:

 [copy] Copying 1 file to C:\jboss-4.0\server\default\deploy

On the server side, the following lines are displayed:

[titan-ReservationQueue] Bound to JNDI name: queue/titan-ReservationQueue

[titan-TicketQueue] Bound to JNDI name: queue/titan-TicketQueue

You must deploy the XML file containing the queues before you deploy the JAR containing
your beans (see below). If you deploy your EJB JAR first, JBoss detects that the MDB's
expected queue does not exist and creates it dynamically. Then, when you try to deploy
the XML file that contains the queues, an exception arises, and you'll be told you're trying
to create a queue that already exists.

29.2.3.3 Adding a JMS queue through the JMX HTTP connector

Add each of the new JMS queues through the JMX HTTP connector the same way you added the JMS topic in the
preceding exercise, with one obvious difference: instead of using the createTopic() operation of the JBossMQ server, use
the createQueue() operation.

Remember that queues and topics created in the JMX HTTP Connector live only until the application server is shut
down.

29.2.4 Examine the EJB Standard Files

The ejb-jar.xml file for this exercise is based on the one for Exercise 12.1. The only notable difference is the addition of
the new ReservationProcessor MDB.

29.2.4.1 ejb-jar.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

29.2.4.1 ejb-jar.xml

<message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <ejb-class

 >com.titan.reservationprocessor.ReservationProcessorBean<

 /ejb-class>

 <transaction-type>Container</transaction-type>

 <message-selector>MessageFormat = 'Version 3.4'</message-selector>

 <acknowledge-mode>auto-acknowledge</acknowledge-mode>

 <message-driven-destination>

 <destination-type>javax.jms.Queue</destination-type>

 </message-driven-destination>

The MDB descriptor specifies container-managed transactions and automatic acknowledgement of messages, and that
messages will be received from a queue rather than a topic. The descriptor also contains a <message-selector> tag that
allows the MDB to receive only those messages that conform to a specified format. Then a set of <ejb-ref> entries
identifies all the beans that ReservationProcessor beans will use during their execution:

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

 <ejb-link>ProcessPaymentEJB</ejb-link>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>

 com.titan.customer.CustomerHomeRemote

 </home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-link>CustomerEJB</ejb-link>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <local-home>

 com.titan.cruise.CruiseHomeLocal

 </local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 <ejb-link>CruiseEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.CabinHomeLocal

 </local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.reservation.ReservationHomeLocal

 </local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 <ejb-link>ReservationEJB</ejb-link>

 </ejb-local-ref>

 <security-identity>

 <run-as><role-name>everyone</role-name></run-as>

 </security-identity>

Because the MDB will send a confirmation message to a queue once the booking has been successful, it needs a
reference to a javax.jms.QueueConnectionFactory, specified in the <resource-ref> at the end of the MDB descriptor:

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</message-driven>

Note this difference from the preceding exercise: while this bean does send messages to a queue, its descriptor does
not contain a <resource-env-ref> entry that refers to the destination queue. Why not? In Exercise 12.1, the destination

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not contain a <resource-env-ref> entry that refers to the destination queue. Why not? In Exercise 12.1, the destination
was fixed at deployment time, but in this exercise the destination is not fixed and not even known by the MDB. It is the
client application that knows the destination, and transmits it to the MDB by serializing the JMS queue object as part of
the JMS message.

29.2.5 Examine the JBoss-Specific Files

No modifications have been made to the CMP entity beans, so the jbosscmp-jdbc.xml file is unchanged.

The jboss.xml file does need modification to take the new ReservationProcessor EJB into account.

29.2.5.1 jboss.xml

<message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <destination-jndi-name

 >queue/titan-ReservationQueue<

 /destination-jndi-name>

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <jndi-name>java:/JmsXA</jndi-name>

 </resource-ref>

</message-driven>

The <destination-jndi-name> tag maps the MDB to an existing JMS destination in the deployment environment. You should
recognize the name of one of the two JMS queues you just created: titan-ReservationQueue.

By default, each MDB EJB deployed in JBoss can serve up to 15 concurrent messages.

The <resource-ref> tag maps the ConnectionFactory name used by the ReservationProcessor EJB to an actual factory in
the deployment environment. This mapping is identical to the one in the exercise for the TravelAgent EJB.

29.2.6 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex12_2 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex12_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex12_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex12_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

29.2.7 Examine the Client Applications

In this exercise, you'll use two client applications at the same time. The producer generates large numbers of JMS
messages reporting passage bookings, destined for the ReservationProcessor MDB EJB. The consumer listens to a JMS
queue for messages confirming the bookings, and displays them as they come in.

The producer first gets the cruise ID and the number of bookings from the command line.

29.2.7.1 JmsClient_ReservationProducer.java

public static void main (String [] args) throws Exception

{

 if (args.length != 2)

 throw new Exception

 ("Usage: java JmsClient_ReservationProducer <CruiseID> <count>");

 Integer cruiseID = new Integer (args[0]);

 int count = new Integer (args[1]).intValue ();

The producer then looks up a QueueConnectionFactory and two JMS queues from the JBoss naming service. The first
queue is the one bound to the ReservationProcessor MDB, to which passage booking messages will be sent. The second
is not used directly, as you'll see later.

QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup ("ConnectionFactory");

Queue reservationQueue = (Queue)

 jndiContext.lookup ("queue/titan-ReservationQueue");

Queue ticketQueue = (Queue)

 jndiContext.lookup ("queue/titan-TicketQueue");

QueueConnection connect = factory.createQueueConnection ();

QueueSession session = connect.createQueueSession

 (false,Session.AUTO_ACKNOWLEDGE);

QueueSender sender = session.createSender (reservationQueue);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QueueSender sender = session.createSender (reservationQueue);

The client application is now ready to send count booking messages in batch. Among other chores, it has looked up the
ticket queue, the JMS queue that the ReservationProcessor MDB will use to send confirmation messages.

For each booking, it then creates a JMS MapMessage, assigns the ticket queue into the message's JMSReplyTo property,
and sets the booking data: Cruise ID, Customer ID, Cabin ID, price, credit card number, and expiration date, and so on.
Note that only basic data types such as String and int can be stored in a MapMessage:

 for (int i = 0; i < count; i++)

 {

 MapMessage message = session.createMapMessage ();

 // Used in ReservationProcessor to send Tickets back out

 message.setJMSReplyTo (ticketQueue);

 message.setStringProperty ("MessageFormat", "Version 3.4");

 message.setInt ("CruiseID", cruiseID.intValue ());

 // either Customer 1 or 2, all we've got in database

 message.setInt ("CustomerID", i%2 + 1);

 // cabins 100-109 only

 message.setInt ("CabinID", i%10 + 100);

 message.setDouble ("Price", (double)1000 + i);

 // the card expires in about 30 days

 Date expDate = new Date (System.currentTimeMillis () +

 30*24*60*60*1000L);

 message.setString ("CreditCardNum", "5549861006051975");

 message.setLong ("CreditCardExpDate", expDate.getTime ());

 message.setString ("CreditCardType",

 CreditCardDO.MASTER_CARD);

 System.out.println ("Sending reservation message #" + i);

 sender.send (message);

 }

 connect.close ();

}

One interesting property that's set in the JMS message header is MessageFormat. Recall that the <message-selector> tag in
the MDB deployment descriptor used this property to specify a constraint on the messages the MDB is to receive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the MDB deployment descriptor used this property to specify a constraint on the messages the MDB is to receive.

Once all messages are sent, the application closes the connection and terminates. Because messages are sent
asynchronously, the application may terminate before the ReservationProcessor EJB has processed all of the messages
in the batch.

The consumer application is very similar to the client application in Exercise 12.1. This time, though, it will subscribe not
to a topic but to a queue.

29.2.7.2 JmsClient_TicketConsumer.java

To receive JMS messages, the client application class implements the javax.jms.MessageListener interface, which defines
the onMessage() method. The main method simply creates an instance of the class and uses a trick to make the main
thread wait indefinitely:

public class JmsClient_TicketConsumer

 implements javax.jms.MessageListener

{

 public static void main (String [] args) throws Exception

 {

 new JmsClient_TicketConsumer ();

 while(true) { Thread.sleep (10000); }

 }

The constructor is very simple JMS code that subscribes the client application to the JMS queue and waits for incoming
messages:

 public JmsClient_TicketConsumer () throws Exception

 {

 Context jndiContext = getInitialContext ();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup ("ConnectionFactory");

 Queue ticketQueue = (Queue)

 jndiContext.lookup ("queue/titan-TicketQueue");

 QueueConnection connect = factory.createQueueConnection ();

 QueueSession session =

 connect.createQueueSession (false,Session.AUTO_ACKNOWLEDGE);

 QueueReceiver receiver = session.createReceiver (ticketQueue);

 receiver.setMessageListener (this);

 System.out.println ("Listening for messages on titan-

 TicketQueue...");

 connect.start ();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

When a message arrives in the queue, the consumer's onMessage() method is called. The method simply displays the
content of the ticket:

 public void onMessage (Message message)

 {

 try

 {

 ObjectMessage objMsg = (ObjectMessage)message;

 TicketDO ticket = (TicketDO)objMsg.getObject ();

 System.out.println ("********************************");

 System.out.println (ticket);

 System.out.println ("********************************");

 }

 catch (JMSException displayed)

 {

 displayed.printStackTrace ();

 }

 }

29.2.8 Run the Client Applications

When you redeployed titan.jar, JBoss dropped and recreated the database tables, destroying any existing content, so
you must repopulate the database. Have Ant execute the run.client_112a target.

The run.client_112a target originated in Exercise 11.2, but we've duplicated it in the ex12_2 directory for your
convenience.

C:\workbook\ex12_2>ant run.client_112a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112a:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

BUILD SUCCESSFUL

At this point, you're going to launch both the client that sends booking messages and the client that receives the tickets
as passage confirmations. Launch the consumer first by invoking the Ant target run.client_122:

C:\workbook\ex12_2>ant run.client_122

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122:

 [java] Listening for messages on titan-TicketQueue...

Now start the producer, adhering to the following usage:

BookInBatch <cruiseID> <count>

where cruiseID is the ID of a Cruise in the database (created when you invoked the run.client_112a Ant target) and count

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where cruiseID is the ID of a Cruise in the database (created when you invoked the run.client_112a Ant target) and count
is the number of passages to book.

Book 100 passages on the Alaskan Cruise:

C:\workbook\ex12_2>BookInBatch 0 100

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.bookinbatch:

 [java] Sending reservation message #0

 [java] Sending reservation message #1

 [java] Sending reservation message #2

 [java] Sending reservation message #3

 ...

 [java] Sending reservation message #98

 [java] Sending reservation message #99

Shortly after the producer starts, the consumer, which has been patiently listening to its JMS queue for booking
confirmations, will display:

run.client_122:

 [java] Listening for messages on titan-TicketQueue...

 [java] ********************************

 [java] Bob Smith has been booked for the Alaska Cruise cruise

 on ship Nordic Prince.

 [java] Your accommodations include Suite 100 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1000.0

 [java] ********************************

 [java] ********************************

 [java] Joseph Stalin has been booked for the Alaska Cruise

 cruise on ship Nordic Prince.

 [java] Your accommodations include Suite 101 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1001.0

 [java] ********************************

 [java] ********************************

 [java] Bob Smith has been booked for the Alaska Cruise cruise

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 on ship Nordic Prince.

 [java] Your accommodations include Suite 102 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1002.0

 [java] ********************************

 ...

 [java] ********************************

 [java] Joseph Stalin has been booked for the Alaska Cruise

 cruise on ship Nordic Prince.

 [java] Your accommodations include Suite 109 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1099.0

 [java] ********************************

Note that because the booking confirmation messages are queued, you could start the consumer much later than the
producer, rather than before. The confirmation messages sent by the ReservationProcessor MDB would then be stored
on the server until the client application starts and begins to listen to the queue.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 30. Exercises for Chapter 13
Section 30.1. Exercise 13.1: EJB Timer Service

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

30.1 Exercise 13.1: EJB Timer Service
In this exercise, you will learn how to use work with the EJB Timer Service. The examples in this chapter match the
modifications made to the Ship EJB to enable Timers. This exercise builds off the code within Exercise 12.1, so
initialization and deployment should be around the same.

30.1.1 Clean the Database

You need to clean and refresh the database. To do this, shutdown JBoss if you have it running and run ant clean.db. Then
restart JBoss.

30.1.2 Build and Deploy Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex13_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex13_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex13_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility.

Windows:

C:\workbook\ex13_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. The exercise uses a JMS Topic. Deploy the topic using the following Ant target.

$ ant make-topic

5. Build the EJBs used in this example.

$ ant

You will see titan.jar copied to the JBoss deploy directory and redeployed by the application server.

6. Initialize the database.You will see a bunch of entity beans being created.

$ ant createdb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

30.1.3 Examine the Service Code

The scheduleMaintenance, clearSchedule, and ejbTimeout methods from the EJB book have been added to Ship EJB to
show the EJB Timer Service in action.

30.1.3.1 ShipBean.java

public void scheduleMaintenance(String descr, Date dateOf) {

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(dateOf, description);

}

public void clearSchedule() {

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while (timers.hasNext()) {

 System.out.println("Cancelling maintenance on ship: " + getName());

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 timer.cancel();

 }

}

public void ejbTimeout(javax.ejb.Timer timer) {

 String description = (String) timer.getInfo();

 try {

 InitialContext jndiContext = new InitialContext();

 TopicConnectionFactory factory =(TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/MaintenanceTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true, 0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(getName() + " " + description);

 publisher.publish(textMsg);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 publisher.publish(textMsg);

 session.close();

 connect.close();

 } catch (Exception e){

 throw new EJBException(e);

 }

}

A stateless session bean has been added to the ship package so that the Ship EJB methods can be called remotely. The
scheduleMaintenance and clearSchedule methods look up a Ship EJB and call those methods on that particular entity
bean.

30.1.3.2 ShipMaintenanceBean.java

public void scheduleMaintenance(int shipId, int secs, String desc) {

 try {

 ShipHomeLocal shiphome =(ShipHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ShipHomeLocal");

 ShipLocal ship =

 shiphome.findByPrimaryKey(new Integer(shipId));

 Date dateOfTest = new Date(System.currentTimeMillis()

 + (secondsToSchedule * 1000));

 ship.scheduleMaintenance(description, dateOfTest);

 } catch (NamingException e){

 throw new EJBException(e);

 } catch (javax.ejb.FinderException e){

 throw new EJBException(e);

 }

}

public void clearSchedule(int shipId) {

 try {

 ShipHomeLocal shiphome =(ShipHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ShipHomeLocal");

 ShipLocal ship =

 shiphome.findByPrimaryKey(new Integer(shipId));

 Date dateOfTest = new Date(System.currentTimeMillis()

 + (secondsToSchedule * 1000));

 ship.clearSchedule();

 } catch (NamingException e){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch (NamingException e){

 throw new EJBException(e);

 } catch (javax.ejb.FinderException e){

 throw new EJBException(e);

 }

}

30.1.4 Examine the Client Code

There are four client programs used to run the examples. The programs are in the com.titan.clients package. InitDB.java
calls code in TravelAgentEJB to create all the entity beans needed for this example. JmsClient_1.java listens on the
MaintenanceTopic for published messages from the ejbTimeout method in ShipEJB. MaintenanceScheduler.java initiates
a call to the ShipMaintenance EJB to schedule maintenance. CancelMaintenance.java initiates a call to the
ShipMaintenance EJB to clear the maintenance schedule. We don't walk through the code for these programs because
they are a quite straightforward example of invoking on a stateless session bean.

30.1.5 Run the Example

The first thing you must do to run the example is start up the JMS client that listens for maintenance messages. Launch
another console window and initialize its environment as described above. Start the JMS client by executing the
following Ant target:

C:\workbook\ex13_1>ant run.watcher

You should see the following displayed on the console:

C:\workbook\ex13_1>ant run.watcher

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.watcher:

 [java] Listening for messages on topic/titan-MaintenanceTopic...

Next, you can schedule maintenance to a ship by running the ScheduleMaintenance script. There is one provided for both
Windows and Unix. To run this script, you need to provide a ship ID (101 or 102), the time in seconds for when you
want the maintenance scheduled, and finally a description of the maintenance that will be scheduled:

C:\workbook\ex13_1>ScheduleMaintenance 101 5 propellar

After five seconds, you should see the JMS client console window show up with the scheduled maintenance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After five seconds, you should see the JMS client console window show up with the scheduled maintenance:

C:\jboss\workbook\ex13_1>ant run.watcher

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.watcher:

 [java] Listening for messages on topic/titan-MaintenanceTopic...

 [java] MAINTENANCE SCHEDULED:

 [java] Nordic Prince propeller

You can cancel any maintenance by running the CancelMaintenance script before the ejbTimeout executes. There is one
provided for both Windows and Unix. To run this script, you need to provide a ship ID (101 or 102):

C:\workbook\ex13_1>CancelMaintenance 101

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 31. Exercises for Chapter 15
Section 31.1. Exercise 15.1: Web Services and EJB 2.1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

31.1 Exercise 15.1: Web Services and EJB 2.1
In this exercise, you will learn how to use JAX-RPC's client and server-side programming model with EJB 2.1. You will
expose a stateless session bean as a web service. You will also investigate how to connect to and invoke on an existing
web service from within EJB code. The stateless session bean that is exposed models the TravelAgentEndpoint in
Chapter 15 of the EJB book. The supporting code for the rest of this exercise is borrowed from the exercises for Chapter
11 (Workbook 8). This exercise also introduces another stateless session bean that acts as a JAX-RPC client to the
TravelAgentEndpoint EJB.

31.1.1 Initialize Your Environment

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex15_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex15_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex15_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility.

Windows:

C:\workbook\ex15_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

31.1.2 Clean the Database

You need to clean and refresh the database. To do this, first shutdown JBoss if you have it running and then run the ant
clean.db.

31.1.3 Build and Deploy Example Programs

JBoss implements web services integration using the Apache Axis project http://ws.apache.org/axis/. One of the more
annoying things about web services and EJB is creating a WSDL document based on a Service Endpoint interface. To
alleviate this work, Axis has a nice tool called Java2WSDL that allows you to automatically generate a WSDL document
based on a plain Java interface. If you examine the build.xml file, you can see an ant target devoted to invoking this
utility.

31.1.3.1 build.xml

 <target name="wsdl" depends="compile">

 <java classname="org.apache.axis.wsdl.Java2WSDL" fork="yes" dir=".">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <java classname="org.apache.axis.wsdl.Java2WSDL" fork="yes" dir=".">

 <classpath refid="classpath"/>

 <arg value="-lhttp://localhost:8080/ws4ee/services/TravelAgentService"/>

 <arg value="-uLITERAL"/>

 <arg value="-sTravelAgentEndpoint"/>

 <arg value="-o${src.resources}/META-INF/travelagent.wsdl"/>

 <arg value="com.titan.webservice.TravelAgentEndpoint"/>

 </java>

 <copy file="${src.resources}/META-INF/travelagent.wsdl" todir="${src.resources}/client/META-INF/" />

 </target>

The -l switch tells Java2WSDL the default service location URL that will be used by a client connection. The -uLITERAL
switch tells Axis to generate WSDL with RPC/Literal messaging. No one takes the default RPC/Encoded messaging
seriously anymore as it doesn't interoperate very well. The -o switch just specifies where the WSDL file should be
generated. The class name of the Service Endpoint Interface (it can be any Java interface) must be specified as an
argument and must also be within the classpath.

In this exercise there are two EJB jar files. One is titan.jar, which contains TravelAgentEndpoint and other supporting
EJBs; the other is titan-client.jar, which contains the EJB that will be connecting to TravelAgentEndpoint as a JAX-RPC
client. Both of these jars require the travelagent.wsdl file to do their things.

To do the build, perform the following steps:

1. Generate the WSDL documents:

$ ant wsdl

2. Compile and deploy the ejb jars:

$ ant ejbjar

You will see titan.jar and titan-client.jar built, copied to the JBoss deploy directory, and redeployed by the application
server.

So where's the JAX-RPC stub generation? The spirit of JBoss has always been to avoid any precompilation step. If you
have run any of the other examples in this book, you will have seen that there is not any stub generation for EJBs
either. At deployment time, JBoss automatically generates dynamic proxies to handle all web service communication
both with clients and services.

31.1.4 Examine the Server Model

To illustrate how to expose a stateless session bean, the TravelAgentEJB from Exercise 4.2 has been extended. This
first thing to be done was to define a Service Endpoint interface the web service will implement. This interface is defined
in src/main/com/titan/travelagent.

31.1.4.1 TravelAgentEndpoint.java

package com.titan.webservice;

public interface TravelAgentEndpoint extends java.rmi.Remote {

 String makeReservation(int cruiseId, int cabinId,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This interface is taken directly from Chapter 15 of the EJB book. Next, you have to define all the deployment
descriptors. These files reside in src/resources/META-INF.

31.1.4.2 ejb-jar.xml

<session>

 <description>

 A Web Service reservation service

 </description>

 <ejb-name>TravelAgentEjbEndpoint</ejb-name>

 <service-endpoint>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint>

 <ejb-class>

 com.titan.webservice.TravelAgentBean

 </ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

...

This XML is taken directly from Chapter 15 of the EJB book and added to the definition of the other supporting EJBs.

31.1.4.3 travelagent_mapping.xml

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

 version="1.1">

 <package-mapping>

 <package-type>com.titan.webservice</package-type>

 <namespaceURI>

 http://webservice.titan.com/TravelAgentEndpoint

 </namespaceURI>

 </package-mapping>

</java-wsdl-mapping>

The endpoint we are exposing follows the guidelines for a simple mapping file. The namespaceURI element is a little

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The endpoint we are exposing follows the guidelines for a simple mapping file. The namespaceURI element is a little
different from Chapter 15 of the EJB book because it should match the generated WSDL document.

31.1.4.4 webservices.xml

<webservices

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:titan="http://www.titan.com/TravelAgent"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"

 version="1.1">

<webservice-description>

 <webservice-description-name>

 TravelAgentService

 </webservice-description-name>

 <wsdl-file>META-INF/travelagent.wsdl</wsdl-file>

 <jaxrpc-mapping-file>

 META-INF/travelagent_mapping.xml

 </jaxrpc-mapping-file>

 <port-component>

 <port-component-name>TravelAgentEndpoint</port-component-name>

 <wsdl-port>titan:TravelAgentEndpoint</wsdl-port>

 <service-endpoint-interface>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>TravelAgentEjbEndpoint</ejb-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

This is a standard webservices.xml descriptor. It links the WSDL file, mapping file, Service Endpoint interface, and
TravelAgentEndpoint EJB all together. The important part of this file as it pertains to Jboss is the <webservice-description-
name>. JBoss binds all deployed web services under the /ws4ee/services/<webservice-description-name> URL. For this
example, it would be under /ws4ee/services/TravelAgentEndpoint. You can also view all endpoints by going to the base
URL /ws4ee/services (Figure 31-1).

Figure 31-1. Listing the deployed services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-1. Listing the deployed services

31.1.5 Examine the Client Model

TravelAgentClientEJB is a stateless session bean that illustrates how to invoke a web service from within EJB code. It
simply exposes the same interface as TravelAgentEndpoint EJB and implements it by delegating to the
TravelAgentEndpoint interface, invoking over the wire via a SOAP invocation.

31.1.5.1 TravelAgentClientBean.java

public String makeReservation(int cruiseId, int cabinId,

 int customerId, double price)

 throws java.rmi.RemoteException {

 try {

 javax.naming.Context jndiContext = new InitialContext();

 Object obj =

 jndiContext.lookup("java:comp/env/service/TravelAgent");

 javax.xml.rpc.Service svc = (javax.xml.rpc.Service) obj;

 TravelAgentEndpoint endpoint = (TravelAgentEndpoint)

 svc.getPort(TravelAgentEndpoint.class);

 return endpoint.makeReservation(cruiseId, cabinId,

 customerId, price);

 } catch (Exception e) {

 e.printStackTrace();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.printStackTrace();

 throw new EJBException("failed");

 }

}

Since the spirit of JBoss is to avoid stub generation, the preferred method for clients is the Dynamic Proxy API as JBoss
will automatically set up all proxies at deploy time. TravelAgentClientBean.makeReservation is an example of this. A generic
proxy is registered for the service reference and you can get a proxy to any endpoint interface you want by passing in a
Java Class parameter to the getPort method.

31.1.5.2 ejb-jar.xml

<session>

 <ejb-name>TravelAgentClientEJB</ejb-name>

...

 <service-ref>

 <service-ref-name>service/TravelAgent</service-ref-name>

 <service-interface>

 javax.xml.rpc.Service

 </service-interface>

 <wsdl-file>META-INF/travelagent.wsdl</wsdl-file>

 <jaxrpc-mapping-file>

 META-INF/travelagent_mapping.xml

 </jaxrpc-mapping-file>

 </service-ref>

 </session>

The <service-ref> element is standard. One thing to note is that the <service-qname> element can be left out if the WSDL
file contains only one service definition. The other deployment descriptors are the same descriptors as in the server
model.

31.1.5.3 travelagent.wsdl

<wsdl:service name="TravelAgentEndpointService">

 <wsdl:port name="TravelAgentEndpoint"

 binding="impl: TravelAgentEndpointSoapBinding">

 <wsdlsoap:address location="http://localhost:8080/ws4ee/services/

 TravelAgentService"/>

 </wsdl:port>

</wsdl:service>

The address location in the TravelAgentEJB.wsdl file is the URL used by the Dynamic Proxy created in the listCabins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The address location in the TravelAgentEJB.wsdl file is the URL used by the Dynamic Proxy created in the listCabins
method.

31.1.6 Run the Client Application

The client application is made up of two clients. The first client initializes the entity beans and database tables that are
needed for this exercise.

C:\workbook\ex15_1>ant createdb

Buildfile: build.xml

prepare:

compile:

createdb:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] added credit card: 4300000000000000 for Bill

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

 [java] Creating database table...

The second client is a MakeReservation script that can be run from the command line. There is a script provided for
both Unix and Windows. The arguments for the script are a cruise ID, cabin ID, a customer ID, and finally a price for
the reservation. You can pull three of the arguments from the output of run.createdb:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the reservation. You can pull three of the arguments from the output of run.createdb:

C:\workbook\ex15_1>MakeReservation 1 106 1 5000.00

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client:

 [java] reservation 5 completed.

Here we are, back at the dock, our "EJB on JBoss" cruise complete! We really hope you've enjoyed the voyage and that
we'll soon meet you on JBoss's forums for some more exciting adventures.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. Database Configuration
This appendix describes how to set up database pools for data sources other than the default database embedded in
JBoss, Hypersonic SQL. It also shows you how to set up your EJBs to use these database pools. For illustration
purposes, we've modified Exercise 6.1 to configure and use an Oracle connection pool with JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.1 Set Up the Database
To deploy a database connection pool, JBoss requires a datapool configuration file. The configuration file is very simple,
yet can be used for almost all standard datapool setups.

A.1.1 Basic Setup

The first step is to download the JDBC driver classes for your database. Copy your database's JDBC JAR file to
$JBOSS_HOME/server/default/lib. For example, the Oracle JDBC class files are contained in classes12.zip.

The JBoss distribution includes example database connection-pool files, in the directory
$JBOSS_HOME/docs/examples/jca. The name of each file ends in -ds.xml. For this exercise, we've copied the oracle-
ds.xml configuration file to exAppendixA/titandb-ds.xml and modified it accordingly.

To deploy this connection pool, you must copy titandb-ds.xml to the $JBOSS_HOME/service/default/deploy directory.
Note that the name of this config file must end with -ds.xml, or JBoss will not deploy it.

Database connection pools are among the many things that can be hot-deployed in JBoss,
simply by plopping the pool's XML configuration file into the deploy directory.

Examine some of the configuration parameters this file defines.

A.1.2 titandb-ds.xml

<datasources>

 <local-tx-datasource>

 <jndi-name>OracleDS</jndi-name>

The <jndi-name> tag identifies the connection pool within JNDI. You can look up this pool in JNDI with the java:/OracleDS
string. The class of this bound object is javax.sql.DataSource.

 <connection-url

 >jdbc:oracle:thin:@localhost:1521:JBOSSDB</connection-url>

The <connection-url> tag tells the Oracle JDBC driver how to connect to the database. The URL varies depending on the
database you use, so consult your database JDBC manuals to find out how to obtain the appropriate address.

 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>

The <driver-class> tag tells JBoss and the base JDBC classes the name of Oracle's JDBC driver class they need to
instantiate and use.

 <user-name>scott</user-name>

 <password>tiger</password>

 </local-tx-datasource>

</datasources>

Finally, the <user-name> and <password> tags are used when connecting to the Oracle database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the <user-name> and <password> tags are used when connecting to the Oracle database.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.2 Examine the JBoss-Specific Files
The example code for this appendix has been borrowed from Exercise 6.1 of this workbook. It is fairly easy to configure
the EJBs from this exercise to use the Oracle connection pool you created above. Simply point the data source to
java:/OracleDS and use the Oracle8 database mapping.

A.2.1 jbosscmp-jdbc.xml

<jbosscmp-jdbc>

 <defaults>

 <datasource>java:/OracleDS</datasource>

 <datasource-mapping>Oracle8</datasource-mapping>

 <create-table>true</create-table>

 <remove-table>true</remove-table>

 </defaults>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <table-name>Customer</table-name>

 <cmp-field>

 <field-name>id</field-name>

 <column-name>ID</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>lastName</field-name>

 <column-name>LAST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>firstName</field-name>

 <column-name>FIRST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>hasGoodCredit</field-name>

 <column-name>HAS_GOOD_CREDIT</column-name>

 </cmp-field>

 </entity>

 </enterprise-beans>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</jbosscmp-jdbc>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.3 Start Up JBoss
In this variation of Exercise 6.1, you must restart JBoss,so recognizes the JDBC JAR file you copied into the lib
directory. Review the JBoss Installation and Configuration chapter at the beginning of this workbook if you don't
remember how to start JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.4 Build and Deploy the Example Programs
To build and deploy the example for this chapter, you must configure the file described above, titandb-ds.xml, to
conform to the database you're using.

Perform the following steps:

1. Open a command prompt or shell terminal and change to the exAppendixA directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed.Examples:

Windows:

C:\workbook\exAppendixA> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\exAppendixA> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\exAppendixA> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

You will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the application server. The build
script copies titandb-ds.xml to the deploy directory as well, which triggers deployment of the customer database pool.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.5 Examine and Run the Client Applications
There is only one client application for this exercise, Client_61. It's modeled after the example in Chapter 6 of the EJB
book. It will use information you supply in the command-line parameters to create Customer EJBs in the database.

To run the client, first set your JBOSS_HOME and PATH environment variables appropriately. Then invoke the provided
wrapper script. You must supply data on the command line, specifiying a primary key, first name, and last name for
each Customer. For example:

Client_61 777 Bill Burke 888 Sacha Labourey

For the sample command, the output should be:

777 = Bill Burke

888 = Sacha Labourey

The example program removes the created beans at the conclusion of operation, so there will be no data left in the
database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animals on the cover of Enterprise JavaBeans, Fourth Edition, are a wallaby and her joey. Wallabies are middle-
sized marsupials belonging to the kangaroo family (Macropodidae, the second-largest marsupial family). They are
grazers and browsers, native to Australia and found in a variety of habitats on that continent. Female wallabies have a
well-developed anterior pouch in which they hold their young. When they are born, the tiny, still-blind joeys
instinctively crawl up into their mothers' pouches and begin to nurse. They stay in the pouch until they are fairly well-
grown. A female wallaby can support joeys from up to three litters at once: one in her uterus, one in her pouch, and
one that has graduated from the pouch but still returns to nurse.

Like all Macropodidae, wallabies have long, narrow hind feet and powerful hind limbs. Their long, heavy tails are used
primarily for balance and stability and are not prehensile. Wallabies resemble kangaroos, but are smaller: they can
measure any-where from less than two feet to over five feet long, with the tail accounting for nearly half of their total
length. Oddly enough, although they can hop along quite quickly (reaching speeds of up to 50 km/h), it is physically
impossible for wallabies to walk backward!

The three main types of wallaby are brush, rock, and nail-tailed. There are 11 species of brush wallaby (genus
Macropus), including the red-necked and pretty-faced wallabies, and 6 named species of rock wallaby (Petrogale).
Brush wallabies usually live in brushland or open woods. Rock wallabies, which are notable for their extreme agility, are
usually found among rocks and near water. There are only three species of nail-tailed wallaby (Onychogalea), which are
so named because of the horny growth that appears on the tip of their tails. Two of these species are endangered-
although they were once the most numerous type of wallaby, their numbers have been seriously depleted by foxes and
feral cats. Aside from hunting and habitat destruction, predation and competition by introduced species such as these
are what threaten wallabies today.

Colleen Gorman was the production editor and copyeditor for Enterprise JavaBeans, Fourth Edition . Leanne Soylemez
was the proofreader. Reg Aubry and Mary Anne Weeks Mayo provided quality control. Julie Hawks wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is an original
engraving from The Illustrated Natural History: Mammalia, by J.G. Wood, published in 1865. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Rachel Wheeler.

Whenever possible, our books use a durable and flexible lay-flat binding. If the pagecount exceeds this binding's limit
Perfect Binding is used.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

% percent
> comparison operator
> greater than
>= comparison operator
< comparison operator
< less than
<= comparison operator
= comparison operator
_ underscore
2-PC (two-phase commit protocol)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<abstract-schema-name> element
ABS arithmetic function
abstract persistence schema 2nd 3rd 4th
 EJBQL and
 terminology conventions and
abstract programming model 2nd
abstract schema name 2nd
<activation-config> element 2nd
<acknowledge-mode> element
access control
 deployment and
 isCallerInRole() method and
 role-driven
AccessLocalException
accessor methods (accessors)
 defining
 element and
 naming conventions and
ACID
 principles, ensuring transactions adhere to
 transactions
acknowledgeMode property (<activation-config> element)
activating enterprise beans
 entity beans and
 MDBs and
 stateful session beans and
 stateless session beans and 2nd
 transient fields and
activation callback methods
actual types
addPhoneNumber() method
Address EJB (sample entity bean)
 queries and
 relationships and
ADDRESS table, creating
Address XML document
AddressBean class 2nd
AddressDO dependent value class
administered objects 2nd
afterBegin() method
aggregate functions in SELECT clause
AND operator
Ant scripts (for exercises)
Ant tool
Apache Axis project
application client component
architecture
 for distributed objects
 of EJB
arithmetic functions
arithmetic operators
 in WHERE clauses
array of Strings
<assembly-descriptor> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nesting inside <ejb-jar> element 3rd
asterisk (*) indicating wildcard 2nd 3rd
asynchronous messaging 2nd 3rd
 JMS and
 MDBs and
ATM transactions
 reliability of
atomicity of transactions 2nd
auditing
authentication
 element and 2nd
 JNDI API and
Auto-acknowledge value
automatic primary-key generation in JBoss CMP 2.0
automatic teller machine (ATM) transactions
AVG() function

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

base classes
 limitations
batch jobs
batch processing
bean class 2nd
 Client API and
 for entity beans
 for session beans
 stateful session beans and
 stateless session beans and
bean instances
 concurrent access to prohibited
 reentrant
bean-managed persistence [See BMP]
bean-managed transaction (BMT) beans [See BMT beans]
BETWEEN clause
<binding> element (WSDL)
bindings
BMP (bean-managed persistence) 2nd 3rd 4th
 code optimization
 deployment descriptors
 disadvantages of
 ejbCreate() method
 ejbFind() method
 ejbLoad() method
 ejbRemove() method
 ejbStore() method
 entity beans [See BMP entity beans]
 primary keys
 remote home interface
 remote interface
 synchronizing bean';s state with database
 versus container-managed persistence 2nd
BMP entity beans 2nd
 exceptions thrown by
 exercises
 methods for
 resource connections and
 XML deployment descriptors for
BMT (bean-managed transaction) beans
 transaction propogation and
bookPassage() method
books, online order transactions for
Borland products, JBuilder IDE and
build.xml file (Cabin EJB exercise)
built-in types (XML)
business concepts, CMP entity beans and 2nd
business logic
 encapsulating into business objects
 session beans and
 stateful session beans and
business methods 2nd
 invoked by clients
 local interface and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transaction attributes and
business objects
business system transactions
business transactions
business-to-business applications
BytesMessage message type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C++ programming language
<cascade-delete> element
Cabin EJB (sample entity bean)
 creating new
 deploying
 deployment descriptor for 2nd
 EJB 2.0 deployment descriptor
 EJB 2.1 deployment descriptor
 exercise
 build.xml file
 local interface, creating for
 many-to-many relationship and
 persistence and
 populating database
 queries and
 using
CABIN table
 creating
 with one cabin record
cabin.jar file
CabinBean class
 callback methods
 complete definition of
 container-managed fields
CabinHomeRemote home interface
CabinRemote interface
callback methods 2nd 3rd
 bean class and
 container and
 EJBException and
 RemoteException and
cardinality
cascade deletes
 caution with
 exercise
casting, programming language support for
Castor JDO
CDATA sections
 WHERE clause and
CheckDO.java
checked exceptions
Class.newInstance() method
classes (bean)
Client API
client applications
 container-managed persistence and
 creating
 entity bean relationships, testing with
 examples of for MDBs
 for JMS
 for session beans
 locating entity beans
 stateful session beans and
client view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RMI protocols and
 stateful session beans and
Client_1.java example program
Client_111a example program
Client_111b example program
Client_112a example program
Client_112b example program
Client_112c example program
Client_2.java example program 2nd
Client_3.java example program
Client_51a.java example program
Client_51b.java example program
Client_52a.java example program
Client_52b.java example program
Client_52c.java example program
Client_53 example program
Client_63 example program
Client_71a example program
Client_71b example program
Client_71c example program
Client_72a example program
Client_72b example program
Client_72c example program
Client_72d example program
Client_72e example program
Client_72f example program
Client_73 example program
Client_81a example program
Client_81b example program
Client_81c example program
Client_82a example program
Client_82b example program
Client_82c example program
Client_82d example program
Client_82e example program
Client_82f example program
Client_82g example program
Client_82h example program
Client_82i example program
Client_82j example program
Client_82k example program
Client_82m example program
Client_82n example program
Client_91.java example program
CLR (Common Language Runtime)
<cmp-version> element
<cmp-field> element
<cmp-version> element
 nesting inside <entity> elements
<cmp-field> element
 nesting inside <entity> elements
CMP (container-managed persistence) 2nd 3rd 4th
 cascade deletes exercise
 collection-based relationships and
 dependent value class
 exercise
 element and 2nd
 entity beans
 primary keys and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 relationships between
 transaction attributes and
 entity relationships
 exercise
 exercise
 fields
 in ORDER BY clause
 in EJB 1.0
 no-argument constructor and
 versus bean-managed persistence 2nd 3rd 4th 5th
CMR fields 2nd
 EJB QL and
<complexType> element
<container-transaction> element 2nd 3rd
<configuration-name> element
<connection-url> element
<container-transaction> element
 nesting inside <assembly-descriptor> element
co-located enterprise beans 2nd
code duplication
Collection type
collection-based relationships
Collection.add() method
Collection.addAll() method
Collection.remove() method
COM (Component Object Model)
COM+
commit option
commit() method 2nd
Common Language Runtime (CLR)
comparison operators 2nd
 unsupported Date class and
 WHERE clause and
complex types
component interfaces
 differentiating between
 EJB 2.0 and
component models
 standard model and
Component Object Model (COM)
components, portable
composition between entity beans
compound primary keys 2nd 3rd 4th
 specifying
CONCAT string function
concurrency
 stateful session beans and
connection factories
Connector-based MDBs
consistency of transactions 2nd
constructors
 definition of prohibited
consumers
container-managed fields
container-managed persistence [See CMP]
container-managed relationship fields
containers
 beans and
 choosing before EJB development

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 deployment tools for
 primary keys
Context class
conventions for enterprise beans 2nd
conversational state 2nd 3rd
 stateful session beans and
CORBA and IDL
COS Timer Event Service
COUNT() function
course-grained abstraction
create methods 2nd
 CMP entity beans and
 enterprise beans, initializing with
 remote references and
 stateful session beans and
 stateless session beans and
 transaction attributes and
 transitioning between states and
CREATE TABLE SQL statement
createAddress() method
CreateException
 CMP entity beans and
createTopicSession() method
CreditCard EJB (sample entity bean)
 queries and
cron utility 2nd
 limitations
Cruise EJB (sample entity bean)
 queries and
Customer EJB (sample entity bean) 2nd
 declaring persistence fields
 deploying
 exercises
 queries and
CUSTOMER table, creating
CustomerBean class

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

data integrity
data types, actual versus declared
data-holding classes
database connection pool, deploying
database locking and transaction isolation
database locks
 types
database mapping, object-to-relational
database pools, setting up
databases
 bean-managed persistence and 2nd
 choosing
 entity beans and
 locking techniques for
 reading versus writing
 tables, schemas for
datapool configuration file
DataSource resource factory
 declaring
Date class
DateRange utility class
DCOM (Distributed Component Object Model)
<definitions> element (WSDL)
<description> element
<destination-jndi-name> element
declarative transaction management
declared types
deleteDbTable() home method
deliverTicket() method
dependent objects
 stateful session beans and
 stateless session beans and
dependent value classes 2nd 3rd
 AddressDO
deploy directory (JBoss)
deploying enterprise beans
 CMP entity beans and
 entity beans and
 multiple deployment and
 session beans and
deployment descriptors 2nd 3rd 4th
 BMP entity beans and
 CMP entity beans and
 co-located enterprise beans and
 contents of
 controlling EJBs transactional behavior
 document header and
 EJB 2.0
 elements
 <ejb-class>
 <ejb-jar>
 <ejb-name>
 <enterprise-beans>
 <entity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <home>
 <persistence-type>
 <prim-key-class>
 <reentrant>
 <remote>
 example downloads
 example for Cabin EJB
 find methods and
 for Cabin Bean in EJB 2.0
 for Cabin Bean in EJB 2.1
 for client components
 for entity beans
 for session beans
 JMS and
 local interface and
 MDBs and
 roles and
 security roles and
 stateful session beans and
 stateless session beans and
 transaction attributes and
 types of validation
 XML elements and
deployment files, vendor specific
deserializing primary keys
designing EJBs
 base classes
 limitations
 choosing container
 choosing databases
 combining technologies
 determining each bean';s sub-type and interface type
 EJB identification
 exceptions
 hierarchy
 identifying entity beans
 identifying MDBs
 identifying session beans
 pre-design
 technical architecture
 Titan application business entities
 UML diagram of business entities and their relationships
 utility classes
destinations
 element and
destinationType property (<activation-config> element)
<display-name> element
directory service 2nd
directory structure
 for entity beans
 for session beans
dirty reads 2nd
DISTINCT keyword
DISTINCT operator
distributed business objects
Distributed Component Object Model (DCOM)
distributed computing
 resources for further reading
distributed functionality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

distributed objects
 architecture/systems for
 concurrency and
 firewalls and
 Titan Cruises sample business illustrating
distributed transactions (2-PC)
DO qualifier
document header
Document Type Definition (DTD)
Does Not Exist state
 MDBs and
 stateful session beans and
 stateless session beans and
 transitioning to from Method-Ready Pool
doGet() method
doPost() method
<driver-class> element
drivers for JNDI
DTD (Document Type Definition)
DuplicateKeyException
duplicates
Dups-ok-acknowledge value
durability of transactions 2nd
Durable value 2nd
Durable value (subscription)
dynamic queries
 in JBoss CMP 2.0

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.ear files
EISs (Enterprise Information Systems)
<ejb-jar> element
<ejb-name> element
<ejb-class> element
<ejb-ql> element
<ejb-client-jar> element
<ejb-relation> element
<ejb-relationship-role> element
<ejb-ref-name> element
 corresponding <ejb-ref> element
<ejb-local-ref> element
 local references and
<ejb-name> element
 nesting inside <session> or <entity> elements
<ejb-class> element
 nesting inside <session> or <entity> elements
<ejb-ref> element
 nesting inside <session> or <entity> elements
<ejb-local-ref> element
 nesting inside <session> or <entity> elements
<ejb-jar> element
 nesting other elements inside
<ejb-name> element
 role
EJB 2.1
 expanded role of MDBs
 message linking
 new element
 new primary service
EJB client view
EJB endpoints
 deployment files
 home objects and
 Mandatory transaction attribute and
 WSDL documents and
EJB home
EJB Query Language (EJB QL)
 basic finder methods
 declaring
 dynamic queries
 ejbSelect methods
 elements/queries
 examples
 IN operator
 programming and functionality exercises
 statements
 weaknesses of
EJB references, stateful session beans and
EJB server
ejb-jar.xml file 2nd 3rd
EJB-to-CORBA mapping
ejbActivate() method 2nd 3rd
 instance swapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transitioning from Pooled state to Ready state via
EJBContext interface 2nd 3rd
 rollback methods and
ejbCreate() method 2nd 3rd
 BMP entity beans and
 CMP entity beans and
 ejbPostCreate() method versus
 MDBs and
 requirements
 return values and
 setting timers on
 stateful session beans and
 stateless session beans and
 transitioning from Pooled state to Ready state via
ejbCreateAddress() method
EJBException
 callback methods and
 EJBLocalObject and
ejbFind() method
 BMP and
ejbFind() methods
 in home interface versus bean class
ejbFindByCapacity() method
ejbFindByPrimaryKey() method
EJBHome interface 2nd 3rd 4th 5th
 Java RMI-IIOP and
 reference to, finding
 stateless session beans and
ejbHome methods
ejbHome() method
ejbLoad() method
 BMP entity beans and
 Ready state and
 using
EJBLocalHome interface 2nd
EJBLocalObject interface 2nd 3rd
 container-managed relationships and 2nd
EJBMetaData interface 2nd
 exercise
 session beans and
EJBObject interface 2nd
 defining
 exercise
 HomeHandle object and
 Java RMI-IIOP and
ejbPassivate() method 2nd
 ejbRemove() method and
 instance swapping
 transitioning from Pooled state to Ready state via
ejbPostCreate() method 2nd 3rd 4th
 CMP entity beans and
 ejbCreate() method versus
ejbRemove() method 2nd 3rd
 BMP entity beans and
 stateless session beans and
EJBs (Enterprise JavaBeans) 2nd 3rd
 accessing from client applications
 activating
 alternatives to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 architecture of
 assembling into applications
 asynchronous messaging and 2nd
 avoiding type confusion
 background and development of
 classes and interfaces
 co-located
 containers and
 creating
 deploying
 in JBoss
 describing
 designing [See designing EJBs]
 developing first
 finding
 home methods and
 identity, comparing for
 interacting with other beans
 interfaces and exceptions
 interoperability and
 J2EE support for
 local interface and 2nd 3rd
 MDBs and 2nd
 nontransactional
 overview
 passivating
 returning data from
 sequential processing
 signing on to connection factory
 source code for
 Sun Microsystems' definition of
 technologies addressed by
 transactional behavior of
 types
 using
 Version1.1
 Version2.0
 versus JavaBeans
 web components and
 when not to use
 when to use
ejbSelect methods 2nd
ejbSelect naming convention 2nd
ejbSelect() method
ejbSelectAll() method
ejbSelectByCity() method
ejbSelectCustomer() method
ejbSelectMostPopularCity() method
ejbSelectZipCodes() method
ejbStore() method
 BMP entity beans and
 Ready state and
 using
ejbTimeout() method
elements
 first
 root
Email-Message Driven Bean (Email-MDB)
<enterprise-beans> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<entity> element 2nd
<env-entry> element
<enterprise-beans> element
 nesting inside <ejb-jar> element
<env-entry> element
 nesting inside <session> or <entity> elements
<env-ref> element
 remote references and
encapsulation
 of business logic into business objects
 primary key data and
 stateful session beans and
endpoint interface 2nd
 defined
 stateless bean class implementing
 WSDL file used to generate
enterprise APIs
enterprise archive (.ear) files
Enterprise Information Systems (EISs)
Enterprise Resource Planning (ERP)
entity beans 2nd [See also CMP, entity beans]
 bean-managed persistence and
 callback methods
 cascade deletes and
 composition between
 concurrency and
 container relationship
 creating
 deploying
 end of life cycle
 getting information from
 identifying
 interactions between exceptions and transactions (synoptic table)
 JMS messages and
 life cycle of 2nd
 logical inheritance and
 newly created
 primary keys and
 read-only
 Ready state
 transitioning from Pooled state
 relationships [See relationships between entity beans]
 removing
 states of
 system exceptions and
 timers
 serious concern
 transactions
 types
 types of
 versus MDBs
 versus session beans 2nd
entity bloat
entity relationships
 exercises
EntityBean interface
 callback methods and 2nd
 CMP entity beans and
EntityContext interface 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enumeration type
 EJB 2.0 and 2nd
environment entries
environment properties, accessing
equality semantics
equals() method
 versus isIdentical() method
ERP (Enterprise Resource Planning)
escape character
escape character ()
event logging
<exclude-list> element
example code for exercises [See workbook, exercises]
example programs
 Client _2.java
 Client _51b.java
 Client _52b.java
 Client_1.java
 Client_111a
 Client_111b
 Client_112a
 Client_112b
 Client_112c
 Client_2.java
 Client_3.java
 Client_51a.java
 Client_52a.java
 Client_52c.java
 Client_53
 Client_63
 Client_71a
 Client_71b
 Client_71c
 Client_72a
 Client_72b
 Client_72c
 Client_72d
 Client_72e
 Client_72f
 Client_73
 Client_81a
 Client_81b
 Client_81c
 Client_82a
 Client_82b
 Client_82c
 Client_82d
 Client_82e
 Client_82f
 Client_82g
 Client_82h
 Client_82i
 Client_82j
 Client_82k
 Client_82m
 Client_82n
 Client_91.java
exceptions 2nd 3rd 4th
 application versus system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bean-managed persistence and
 checked
 container response to
 designing hierarchy
 FinderException and
 package-specific
 runtime
 standard
 stateless session beans and 2nd
 summary of interactions between (table)
 transactions and
 unchecked
 usage
 wrapping subsystem
exclusive write locks
exercises
 arithmetic operators in WHERE clauses
 BMP entity beans
 build.xml files
 Cabin EJB, building, deploying, and executing
 build.xml file
 creating JMS topic in JBoss
 adding through configuration file
 adding through JMX HTTP connector
 Customer EJB
 directory structure
 EJB QL programming and functionality
 EJBMetaData interface
 EJBObject interface
 entity bean relationships
 exposing stateless session bean as web service
 Handle interface
 home interface
 HomeHandle
 JAX-RPC, using client and server-side programming model
 JBoss CMP 2.0
 dependent value class
 dynamic queries in
 entity relationships
 JMS queue
 adding through configuration file
 adding through JMX HTTP connector
 local interfaces
 logic operators in WHERE clauses
 MDBs
 obtaining metadata through EJB APIs
 Ship BMP bean
 stateful session beans
 stateless session beans
 Timer Service
 TravelAgent EJB, building, deploying, and executing
 using JMS as a resource
 web services
explicit narrowing
explicit transaction management 2nd
 caution with
Extensible Markup Language

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

fields
 persistence
 relationship 2nd
finalize() method
find methods 2nd
 bean-managed persistence and
 CMP entity beans and
 custom
 multi-entity
 transaction attributes and
findByCapacity() method
findByGoodCredit() method
findByName() method
 query elements and
findByPrimaryKey() method 2nd 3rd 4th 5th 6th
 BMP entity beans and
 CMP entity beans and
FinderException
 query methods and
fine-grained abstraction
firewalls, e-commerce and
foreign keys
forms, requests for
Forte IDE (Sun Microsystems)
FROM clause
functional expressions
 support for limited in EJBQL
 WHERE clause and

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

get methods 2nd
 BMP and
get() method 2nd
getCallerPrincipal() method 2nd
getConnection() method 2nd 3rd
getCustomers() method
getEJBHome() method
 EJBContext interface and
 EJBMetaData interface and
 HomeHandle interface and
 MDBs and
getEJBLocalHome() method
 EJBContext interface and
 MDBs and
getEJBMetaData() method
getEJBObject() method 2nd
 BMP entity beans and
getEnvironment() method
 replaced with JNDI ENC
getHandle() method
getHomeAddress() method
getHomeHandle() method 2nd
getId() method
getInitialContext() method 2nd
getName() method
 CMP entity beans and
getObject() method
getPhoneNumbers() method
getPrimaryKey() method
 BMP entity beans and
 EJBObject interface and
 EntityContext interface and
 stateless session beans and
getPrimaryKeyClass() method
getRollbackOnly() method
getStatus() method 2nd
getters
getUserTransaction() method
graphical deployment wizards
graphical user interfaces
greater than (>)
GROUP BY clause
GUIs (graphical user interfaces)
 component models and

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Handle interface 2nd
Handles
 exercise
 Handle interface and 2nd
 HomeHandle interface and 2nd
 implementing
 removing enterprise beans with
 serializing/deserializing
 stateless session beans and
 versus primary keys
hashCode() method
HAVING clause
heavyweight mapping file
heuristic decisions
Hibernate
<home> element
 nesting inside <session> or <entity> elements
home interface
 exercises
 stateful session beans and
 stateless session beans and
home methods 2nd 3rd
 custom
HomeHandle interface 2nd
 exercise
HomeHandle object
hot deployment
HTML versus XML
HTTP/HTTPS requests, J2EE support for
Hypersonic SQL

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IBM products
 JMS and
 MQSeries
 VisualAge IDE
 WebSphere
icon elements
identity 2nd
IDEs (integrated development environments)
 vendors of
IDL (Interface Definition Language), CORBA and
IIOP (Internet-Inter-Operability Protocol)
 firewalls and
IllegalArgumentException
IllegalStateException 2nd
implementation independence
 standard server-side component model and
implicit transaction management
 using transaction attributes and
IN operator 2nd
 WHERE clause and
IncompleteConversationalState exception 2nd
initial context
InitialContext class
 client components and
 instance of
input parameters
 LIKE operator and
 WHERE clause and
instance pooling
 MDBs and
 stateful session beans and
 stateless session beans and
 strategies
instance swapping 2nd
 stateful session beans and
instance variables, stateless session beans and
integrated development environments
interfaces
 component
 local versus remote
 recommendations
interoperability
interprocess components
intra-instance method invocation
intraprocess components
IS EMPTY operator
IS NULL comparison operator
isCallerInRole() method 2nd 3rd
isIdentical() method 2nd
isolation conditions
isolation levels, controlling
isolation of transactions 2nd
Iterator.remove() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

J2EE (Java 2 Enterprise Edition) 2nd
 application client component
 components and JNDI properties
 guaranteed services and
 SDK server
 servlets
 web services
J2EE Connector Architecture
J2EE Connector Architecture (J2EE Connectors)
J2EE Connector Architecture 1.0
J2EE Connector Architecture 1.5
J2EE Deployment API
J2EE Management API
<jaxrpc-mapping-file> element
JAF (Java Activation Framework), J2EE support for
JAR files
 cabin.jar and
 CMP entity beans and
 deploying multiple enterprise beans in
 ejb-jar file and
 entity beans and
 session beans and
 zipping/unzipping
jar utility 2nd
Java 2nd
 platform independence and
Java archive files
Java Authorization Service Provider Contract (JACC)
Java Data Objects (JDO)
Java Database Connectivity
Java IDEs
Java Message Service
Java RMI-IIOP 2nd
 J2EE support for
 programming model for
Java RMI-JRMP, J2EE support for
Java Transaction Service (JTS) 2nd
 API
java.rmi.RemoteException
java.util.Timer class
JavaBeans versus EJB
JavaIDL, J2EE support for
JavaMail API, J2EE support for
JavaMail Message object
JavaServer Pages (JSP) 2nd
 J2EE support for
JAX-RPC (Java API for XML-based RPC)
 accessing web services with
 endpoint interface
 generating stubs from WSDL
 mapping file 2nd
 heavyweight
 WSDL document required attributes for package-only
 nillable types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SOAP and
 specification mappings between XML Schema built-in types and Java
 stubs in a transactional environment
 using client and server-side programming model
 using generated stubs
JAXP (Java API for XML Parsing), J2EE support for
JAXR (Java API for XML Registries)
JBoss
 application server
 installing
 binaries, downloading
 bootstrap code
 configuration files
 deployment
 detached invokers
 directory structure
 EJBs deployed in
 hot deployment
 internal structure
 invokers
 micro-kernel architecture
 more information
 net boot
 overview
 services
 WebOS
 workbook [See workbook]
JBoss CMP 2.0
 cascade deletes exercise
 dynamic queries in
 exercises
 primary-key generation
JBoss Server Spine
JBoss-specific deployment descriptor
 options
jboss.xml-specific deployment descriptor
jbosscmp-jdbc.xml file
JBossMQ message invocation layers
JBuilder IDE (Borland)
JCA (J2EE Connector Architecture), J2EE support for
JDBC (Java Database Connectivity)
 as alternative to EJB
 J2EE support for
 JAR file
 obtaining connection to
JMS (Java Message Service) 2nd
 acknowledgment
 advantages of
 application client
 as a resource
 exercises
 client application for
 connection factory
 connection to a message router
 declaing a resource in EJB 2.0
 declaring a resource in EJB 2.1
 J2EE support for
 MDBs and
 messaging models

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 providers
 connecting to
 setting a MessageFormat property on a Message producer
 Unified API
JMS queue
 adding through configuration file
 adding through JMX HTTP connector
JMS topic in JBoss, exercises
 adding through configuration file
 adding through JMX HTTP connector
JMS-based MDBs 2nd
 limitations
 message design
 timers
JmsClient_1.java
JmsClient_ReservationProducer
JmsClient_ReservationProducer.java
JmsClient_TicketConsumer
JmsClient_TicketConsumer.java
JMSReplyTo attribute
<jndi-name> element 2nd
JNDI (Java Naming and Directory Interface)
 authentication and
 features
 J2EE support for
 lookups
 naming service and
 overview
 properties
JNDI ENC 2nd 3rd 4th 5th
 getEnvironment() method and
 MDBs and 2nd
 stateful session beans and
 stateless session beans and
 TravelAgent EJB and
job-scheduling systems [See Timer Service]
JSP [See JavaServer Pages]
JTA (Java Transaction API)
 explicit transaction management and 2nd
 J2EE servers, required access to
JTS (Java Transaction Service)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<large-icon> element
legacy persistence
LENGTH string function
less than (<)
LIKE comparison operator
listAvailableCabins() method
listCabins() method (TravelAgent EJB)
listing behavior
literals
<local> element
<local-home> element
 nesting inside <session> or <entity> elements
Local Client API
 uses for
 using
local home interface 2nd
local interfaces 2nd
 exercise
 stateless session beans and
local references
LOCATE string function
location transparency
logic operators in WHERE clauses
logical inheritance and entity beans
logical operators
 WHERE clause and
lookup APIs
lookup() method
loopbacks 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

main() method
makeDbTable() home method
managed objects
Mandatory transaction attribute 2nd
mandatory, declaring transaction attributes of endpoint methods as
many-to-many bidirectional relationship
many-to-many unidirectional relationship
many-to-many, bidirectional relationship 2nd
many-to-many, unidirectional relationship 2nd
many-to-one unidirectional relationship
many-to-one, unidirectional relationship 2nd
Map of field-value pairs
MapMessage 2nd 3rd
mapping logical roles to user group
MAX() function
MDBs (message-driven bean)
 exercise
MDBs (message-driven beans) 2nd 3rd 4th
 accessing EJB with
 asynchronous messages and
 concurrency and
 Connector-based
 container and
 conversational state and
 deployment descriptors
 EJB 2.0
 EJB 2.1
 deployment descriptors and
 Does Not Exist state
 explicit transaction management and
 identifying
 instance pooling and
 JMS and
 JMS-based 2nd
 limitations
 life cycle of
 limitations in EJB 2.0
 message interface
 message selectors
 Method-Ready Pool
 transitioning out of
 naming
 reentrance and
 sending messages from
 timers
 configuring at deployment
 initializing
 standard configuration properties
 transaction attributes and 2nd
 transaction methods
 versus entity and session beans
<method-name> element
<method-params> element
<message-destination-ref> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<messaging-type> element
<message-destination-type> element
<message-destination-ref> element
<message-destination-link> element 2nd
<message> element (WSDL)
<message-driven> element
<messaging-type> element
<message-destination-type> element
<message-selector> element
<message-driven-destination> element
<method> element
<method-permission> element
<method> element
<method-permission> element
<method-params> element
<method-permission> element
 nesting inside <assembly-descriptor> element
<message-destination-ref> element
 nesting inside <session> or <entity> elements
medical systems transactions
MEMBER OF operator
message brokers
message linking
message selectors
message types
message types (JMS)
message-driven beans [See MDBs]
MessageDrivenBean interface 2nd
MessageDrivenContext
MessageDrivenContext interface 2nd 3rd
MessageListener interface 2nd
messages, consuming
messageSelector property (<activation-config> element)
messaging
 asynchronous [See asynchronous messaging]
 domains
 sending messages from MDBs
 store-and-forward
META-INF directory 2nd
metadata
 obtaining (exercises)
 session beans and
method arguments
method overloading
method permissions, specifying
Method-Ready Pool
 MDBs and
 stateless session beans and 2nd
 transitioning out of
Method-Ready state
 stateful session beans and
methods
 accessor
 business
 life-cycle 2nd
 select
 specifying
 unchecked 2nd
Microsoft products

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .NET Framework
 CTMs and
 MTS
Microsoft Transaction Server (MTS)
MIN() function
MOD arithmetic function
MOM (message-oriented middleware)
 for asynchronous messaging
MQSeries (IBM)
 JMS and
MTS (Microsoft Transaction Server)
<multiplicity> element
multi-entity find methods
multi-entity select methods
multiple-bean deployment
multiplicity 2nd 3rd
 class diagram depicting

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

named declarations
naming (primary service) 2nd
naming conventions
 accessor methods and
 ejbSelect and
 for suffixes used with create method names
narrow() method
navigation operator
.NET Framework (Microsoft)
network communication layer
network connections, reducing with session beans
network traffic, reducing with session beans
Never transaction attribute
newInstance() method
 MDBs and
no state (entity beans)
no-argument constructor
NonDurable value 2nd
NonDurable value (subscription)
nonreentrance
nonrepeatable reads
nontransactional enterprise beans
NOT operator
notifications
NotSupported transaction attribute 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object bindings
Object class
object database persistence
object ID (OID)
object serialization
 bean instance activation and
 Handles and
Object Transaction Service (OTS) 2nd
Object type, primary keys and
OBJECT() operator 2nd 3rd
object-oriented databases, persistence and
object-oriented programming languages
object-to-relational database mapping wizards
object-to-relational persistence
ObjectMessage
ObjectMessage message type
ObjectNotFoundException 2nd
 find methods and
OID (object ID)
one-to-many bidirectional relationship
one-to-many, bidirectional relationship 2nd
one-to-many, unidirectional relationship 2nd
one-to-one, bidirectional relationship 2nd
one-to-one, unidirectional relationship 2nd
online book order transactions
onMessage() method 2nd 3rd 4th
 business-to-business applications and
open connections
operator precedence, WHERE clause and
optimizations, BMP code
OR operator
ORDER BY clause
 CMP fields in
OTS (Object Transaction Service)
overloaded constructor
overloaded methods

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

parameters
passing by reference
Passivated state
 stateful session beans and
passivating enterprise beans 2nd
 ejbPassivate() method and
paths, simple queries with
PAYMENT table
<persistence-type> element 2nd
 nesting inside <entity> element
percent (%)
performance
 across methods
 balancing against consistency
 improving with session beans
persistence
 abstract schema
 bean-managed [See BMP]
 classes
 container-managed [See CMP]
 enterprise beans and
 entity beans and
 fields
 instances
 stateful session beans and
phantom reads 2nd
phantom records
Phone EJB (sample entity bean)
platform independence
 web services and
<portType> element (WSDL)
point-to-point (p2p) messaging model
pointers
Pooled state of entity beans 2nd
 transitioning to Ready state
portability
PortableRemoteObject class
 narrow() method
<prim-key-class> element
<primkey-field> field
<prim-key-class> field
<primkey-field> element
<prim-key-class> element
<primkey-field> element
 nesting inside <entity> element
<prim-key-class> element
 nesting inside <entity> element
Pramati Application Server
 mapping wizard for
Prevayler
primary keys 2nd 3rd
 BMP and
 compound 2nd
 container-managed persistence and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 containers
 deferring defining
 entity beans and
 generating in JBoss CMP 2.0
 mapping to autogenerated fields
 MDBs and
 modifying fields
 removing enterprise beans with
 serializing/deserializing
 session beans and
 single-field 2nd
 specifying
 stateless session beans and
 types of
 undefined
 validity
 versus Handles
primary services
 supported by EJB servers
primitive data types 2nd
primitive wrappers 2nd 3rd
Principal object
 tracking client identity with
process() method
ProcessPayment EJB
 remote interface
ProcessPayment EJB (sample session bean) 2nd
ProcessPayment standard deployment descriptor
ProcessPaymentBean.java 2nd
ProcessPaymentEJB stateless session bean
ProcessPaymentRemote.java
producers
Progress SonicMQ messaging product
properties
 JNDI
publish-and-subscribe (pub/sub) messaging model

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<query> elements 2nd
<query> element
 nesting inside <entity> elements
queries
 dynamic
 EJB QL and, weaknesses of
 simple
 with paths
 subqueries
query methods 2nd
 arguments and
 transitioning from Pooled state to Ready state via
QueryListener (Titan application)
QueueReceiver
 message consumer
 receive() method
queues 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<remote> element
<reentrant> element 2nd
<relationships> section
<result-type-mapping> element
<resource-ref> element 2nd
<resource-env-ref> element
<res-type> element
<res-auth> element
<resource-env-ref> element
<result-type-mapping> element
<relationships> element
<resource-ref> element
 external references and
<relationships> element
 nesting inside <ejb-jar> element
<reentrant> element
 nesting inside <entity> element
<remote> element
 nesting inside <session> or <entity> elements
<resource-ref> element
 nesting inside <session> or <entity> elements
<resource-env-ref> element
 nesting inside <session> or <entity> elements
Read Committed isolation level
read locks
Read Uncommitted isolation level
 performance and
read-only entities
ready state (entity beans)
Ready state of entity beans
 transitioning from Pooled state
receive methods
receiveNoWait() method
reentrance
reentrance and MDBs
references
 local
 remote
 to EJB home interface, finding
 to enterprise beans
 to external resources
relational databases
 CustomerEJB and
 object-to-relational persistence and
relationship fields 2nd
relationship name
relationships
 IS EMPTY operator and
 MEMBER OF operator and
 paths and
relationships between entity beans
 exercises
 types of
 many-to-many, bidirectional 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 many-to-many, unidirectional 2nd
 many-to-one, unidirectional 2nd
 one-to-many, bidirectional 2nd
 one-to-many, unidirectional 2nd
 one-to-one, bidirectional 2nd
 one-to-one, unidirectional
Remote Client API
remote home interface 2nd 3rd 4th
 BMP and
 CMP entity beans and
 for entity beans
 for session beans
Remote interface
remote interfaces 2nd 3rd 4th 5th
 BMP entity beans and
 CMP entity beans and
 defining
 for entity beans
 for session beans
 restrictions on
 stateful session beans and
 stateless session beans and
remote interfacess
 using as parameters of other EJB methods
remote references 2nd
 comparing
 explicit narrowing of
 Handles, obtaining through
remote types
RemoteException 2nd 3rd
 callback methods and
 stateless session beans and
remove() method
 EJBHome interface and
 EJBObject interface and
 transaction attributes and
RemoveException
 remove() method and
removePhoneNumber() method
removing
 enterprise beans 2nd
 session beans
Repeatable Read isolation level
repeatable reads 2nd
Required transaction attribute
RequiresNew transaction attribute
Reservation EJB (sample entity bean)
 created by ReservationProcessor EJB
 queries and
 reasons for using
Reservation XSD
ReservationListener (Titan application)
ReservationProcessor EJB (sample MDB)
 client applications for
ReservationProcessor MDB
ReservationProcessorBean class
resource connections, managing
resource factories, obtaining
resource management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource-management facilities
resources for further reading
 distributed computing
 Enterprise JavaBeans specification
 Java Message Service
 JavaServer Pages
 JNDI
 servlets
 XML 2nd
resources, sharing
responsibilities, grouping of
return types
RMI loop
RMI over IIOP
RMI protocols 2nd
role names
role-driven access control
roles
rollback() method
RollbackException
rollbacks 2nd
 BMTs and
 database updates and
 EJBContext interface and
 exceptions and
 transactional stateful beans and
root element ()
runAs security identity 2nd
runtime behaviors
 customizing with deployment descriptors
 modifying at deployment in server-side components
runtime exceptions
 BMP and

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

SAAJ (SOAP with Attachments API for Java)
scheduled jobs
scheduleMaintenance() method 2nd
scheduling systems [See Timer Service]
scope
 of transactions
<security-identity> element
<service> element (WSDL)
<session> element
<security-role-ref> element
<service-ref> element
<security-role-ref> element
<session-type> element
<service-ref> element
<service-qname> element
<security-role> element
 nesting inside <assembly-descriptor> element
<session-type> element
 nesting inside <session> element
<service-endpoint> element
 nesting inside <session> or <entity> elements
<security-identity> element
 nesting inside <session> or <entity> elements
secure communication
Secure Socket Layer (SSL)
security
 identities
 runAs 2nd
 methods
 roles 2nd 3rd
 CMP entity beans and
 specifying
 types of
security identities
SELECT clause
 aggregate functions in
 selecting multiple items
select methods 2nd
 bean-managed persistence and
 DISTINCT keyword and
 multi-entity
sequential processing of EJBs
serializable classes
Serializable interface
 persistence fields and
 primary keys and
Serializable isolation level
 performance and
serializable objects
 EJBMetaData and
serializable types 2nd
server-side components
 benefits/importance of standard model
 models for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servers
 choosing/setting up
 containers and
 implementation independence and
 transaction management and
service providers (drivers) for JNDI
services
 guaranteed per J2EE specification
servlets
 J2EE 2nd
session beans 2nd 3rd 4th
 combining
 concurrency and
 creating
 explicit transaction management and
 identifying
 interactions between exceptions and transactions (synoptic table)
 JMS messages and
 modeling workflow with
 naming
 removing
 stateful [See stateful session beans]
 stateful and stateless
 stateless [See stateless session beans]
 system exceptions and
 testing
 transaction attributes and
 types
 versus entity beans 2nd
 versus MDBs 2nd
SessionBean interface 2nd
SessionContext interface 2nd
SessionSynchronization interface
set methods
 BMP and
set() method 2nd
setAddress() method
setCreditCard() method
setCustomer() method
setCustomers() method
setEntityContext() method
 EJBContext interface and
 EntityContext interface and 2nd
setHomeAddress() method
setId() method
setInt() method
setMessageDrivenContext() method 2nd 3rd
setName() method
setPhoneNumbers() method
setReservations() method
setRollbackOnly() method 2nd
setSessionContext() method
setters
setTransactionTimeout() method
sharing resources
Ship EJB (sample entity bean) 2nd
 bean-managed persistence and
 deployment descriptor
 exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 home interface
 modified to enable Timers
 queries and
 testing
ShipBean.java 2nd
ShipMaintenanceBean.java
Simple Object Access Protocol
simple queries
 with paths
single-entity find methods
single-entity select methods
single-field primary keys 2nd
<small-icon> element
 nesting inside <ejb-jar> element
Smalltalk programming language
snapshots
SOAP (Simple Object Access Protocol) 2nd
 defined
SOAP 1.1
 exchanging messages with HTTP
 messaging modes
SonicMQ messaging product (Progress)
source code
 in this book
SQL (Structured Query Language)
 versus EJBQL
SQRT arithmetic function
SSL (Secure Socket Layer)
state
 bean-managed persistence and
 conversational
state-management callback methods
stateful session beans 2nd 3rd 4th 5th
 activating/passivating
 Does Not Exist state
 exercises
 instance pooling and
 life cycle of
 Method-Ready state
 Passivated state
 remote interface and
 transactional
 versus stateless session beans
stateless session beans 2nd 3rd
 accessing TimerService
 creating/cancelling timers
 Does Not Exist state
 exercises
 exposing as web service
 implementing endpoint interface
 instance pooling and
 life cycle of
 Method-Ready Pool
 open connections for
 remote interface and
 timers
 using
 versus stateful session beans
 when declared stateless

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statements
Status interface
store-and-forward messaging
StreamMessage message type
String functions
String types
Strings, array of
Structured Query Language
stubs
 EJB objects and
 reducing number of with session beans
<subscription-durability> element
subqueries
subscribing to topics 2nd
subscription durability
subscriptionDurablity property (<activation-config> element)
SUBSTRING string function
subsystem exceptions
 BMP and
suffixes 2nd
 create methods and 2nd
SUM() function
Sun Microsystems
 EJB-to-CORBA mapping developed by
 Forte IDE developed by
Sun';s JMX (Java Management eXtensions)
Supports transaction attribute
suspended transactions
synchronizing beans state 2nd 3rd 4th
system exceptions 2nd
 subsystem-level
 versus application exceptions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tables, creating in databases
taskflow
terminology conventions
 abstract persistence schema and
TextMessage
TextMessage message type
thread control
threads
three-tier architecture
TicketDistributor EJB
 consuming messages
TicketDO object 2nd
timeouts
 Passivated state and
 setting
 stateful session beans and
 stateless session beans and
timer attacks
Timer interface
 exceptions
 getNextTimeout() method
Timer Service 2nd
 API
 creating timers
 exceptions
 exercises
 how a bean would register for notification at a set time
 how it works
 improving
 problems with
 transactions
 uses for scheduling systems
TimerHandle object
timers
 cancelling
 entity bean
 serious concern
 identifying
 managing
 MDBs
 configuring at deployment
 initializing
 standard configuration properties
 problems with
 retrieving information from
 stateless session bean
TimerService interface
 createTimer() methods
 definition
 getTimers() method
Titan application
 business entities
Titan Cruises (sample business)
Topic object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TopicConnection
TopicConnectionFactory 2nd
TopicPublisher 2nd
topics (JMS)
TopicSession
TopicSubscriber
toString() method
TPC (two-phase commit protocol)
<trans-attribute> element
<transaction-type> element
 nesting inside <session> element
Transactional Method-Ready state 2nd
transactions 2nd
 accuracy of
 ACID
 atomic
 attributes 2nd
 CMP entity beans and
 definitions of
 EJB endpoints and
 Mandatory
 MDBs and 2nd
 Never
 NotSupported
 Required
 RequiresNew
 setting
 specifying
 Supports
 balancing performance of against consistency
 business
 business systems that employ
 consistency of
 declarative management and
 durability of
 entity beans
 exceptions and
 explicit management and
 how they work
 interoperability
 isolation and database locking
 isolation levels
 isolation of
 database locking
 management, explicit
 managers
 propagation of
 propogation 2nd
 BMT beans and
 scope
 minimizing
 scope of
 stateful session beans and
 summary of interactions between (table)
 suspended
Transfer Object pattern
transient fields 2nd
transitioning between states
 Method-Ready Pool and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 stateful session beans and
 Transactional Method-Ready state and
TravelAgent EJB (sample session bean) 2nd 3rd
 ACID properties
 creating
 deploying
 exercise
 listCabins() method
 MDBs and 2nd
 reasons for using
 transactions and
travelagent.wsdl file
travelagent_mapping.xml file
TravelAgentClientBean.java
TravelAgentEndpoint.java
two-phase commit protocol (2-PC or TPC)
<types> element (WSDL)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI (Universal Description, Discovery and Integration)
 registry
 repository
UML diagram of business entities and their relationships
unchecked exceptions
unchecked methods 2nd
undefined primary keys
underscore (_)
unidirectional relationships, wrong way to modify
unit-of-work 2nd
unsetEntityContext() method 2nd
updatePhoneNumber() method
URLs
 distributed computing technologies
 EJB
 in JNDI
 this book
 XML deployment descriptors and
<use-caller-identity/> element
users
UserTransaction interface 2nd
 definition of
utilities
 container-deployment
 for database tables
utility classes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

valid XML
value types, restrictions on
vendors
 fear of lock-in and
 support for JMS
virtual persistence fields
VisualAge IDE (IBM)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.war (web archive) files
web components
 EJBs and
Web Service Description Language [See WSDL]
web services
 accessing with JAX-RPC
 exercises
 J2EE
 overview
 standards
WebOS
webservices.xml file
WebSphere (IBM)
well formed XML
WHERE clause
 arithmetic and logic operators in
 arithmetic operators and
 BETWEEN clause and
 CDATA sections and
 comparison operators and
 equality semantics and
 IN operator and
 input parameters and
 IS EMPTY operator and
 IS NULL comparison operator and
 LIKE comparison operator and
 literals and
 logical operators and
 MEMBER OF operator and
 operator precedence and
wildcards, asterisk indicating 2nd 3rd
wizards
 for graphical deployment
 for object-to-relational database mapping
workbook
 contents
 example code
 downloading
 exercises [See exercises]
 online resources
workflow scheduling examples
workflow, modeling with session beans 2nd
 stateful session beans and 2nd
wrapper classes for primitive data types
write locks
write once, run anywhere
WSDL
 file used to generate endpoint interface
 generating JAX-RPC stubs from
WSDL (Web Service Description Language) 2nd 3rd
 <binding> element
 <definitions> element
 <message> element
 <portType> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <service> element
 <types> element

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML
 as entity data from EJBs
 correctness
 documents
 element delimiters
 parsers
 using different markup languages in same document
 version of, specifying in documents
 versus HTML
XML deployment descriptors [See deployment descriptors]
XML elements
 defining
 for session beans
XML Namespaces
 declarations
 default namespaces
 prefixes for target namespace
 URI
XML Schema
 built-in types
 built-in types and corresponding Java types
 specification
XSDs for deployment descriptors in EJB 2.1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zipping/unzipping JAR files

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.1 Set Up the Database
To deploy a database connection pool, JBoss requires a datapool configuration file. The configuration file is very simple,
yet can be used for almost all standard datapool setups.

A.1.1 Basic Setup

The first step is to download the JDBC driver classes for your database. Copy your database's JDBC JAR file to
$JBOSS_HOME/server/default/lib. For example, the Oracle JDBC class files are contained in classes12.zip.

The JBoss distribution includes example database connection-pool files, in the directory
$JBOSS_HOME/docs/examples/jca. The name of each file ends in -ds.xml. For this exercise, we've copied the oracle-
ds.xml configuration file to exAppendixA/titandb-ds.xml and modified it accordingly.

To deploy this connection pool, you must copy titandb-ds.xml to the $JBOSS_HOME/service/default/deploy directory.
Note that the name of this config file must end with -ds.xml, or JBoss will not deploy it.

Database connection pools are among the many things that can be hot-deployed in JBoss,
simply by plopping the pool's XML configuration file into the deploy directory.

Examine some of the configuration parameters this file defines.

A.1.2 titandb-ds.xml

<datasources>

 <local-tx-datasource>

 <jndi-name>OracleDS</jndi-name>

The <jndi-name> tag identifies the connection pool within JNDI. You can look up this pool in JNDI with the java:/OracleDS
string. The class of this bound object is javax.sql.DataSource.

 <connection-url

 >jdbc:oracle:thin:@localhost:1521:JBOSSDB</connection-url>

The <connection-url> tag tells the Oracle JDBC driver how to connect to the database. The URL varies depending on the
database you use, so consult your database JDBC manuals to find out how to obtain the appropriate address.

 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>

The <driver-class> tag tells JBoss and the base JDBC classes the name of Oracle's JDBC driver class they need to
instantiate and use.

 <user-name>scott</user-name>

 <password>tiger</password>

 </local-tx-datasource>

</datasources>

Finally, the <user-name> and <password> tags are used when connecting to the Oracle database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the <user-name> and <password> tags are used when connecting to the Oracle database.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.2 Examine the JBoss-Specific Files
The example code for this appendix has been borrowed from Exercise 6.1 of this workbook. It is fairly easy to configure
the EJBs from this exercise to use the Oracle connection pool you created above. Simply point the data source to
java:/OracleDS and use the Oracle8 database mapping.

A.2.1 jbosscmp-jdbc.xml

<jbosscmp-jdbc>

 <defaults>

 <datasource>java:/OracleDS</datasource>

 <datasource-mapping>Oracle8</datasource-mapping>

 <create-table>true</create-table>

 <remove-table>true</remove-table>

 </defaults>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <table-name>Customer</table-name>

 <cmp-field>

 <field-name>id</field-name>

 <column-name>ID</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>lastName</field-name>

 <column-name>LAST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>firstName</field-name>

 <column-name>FIRST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>hasGoodCredit</field-name>

 <column-name>HAS_GOOD_CREDIT</column-name>

 </cmp-field>

 </entity>

 </enterprise-beans>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</jbosscmp-jdbc>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.3 Start Up JBoss
In this variation of Exercise 6.1, you must restart JBoss,so recognizes the JDBC JAR file you copied into the lib
directory. Review the JBoss Installation and Configuration chapter at the beginning of this workbook if you don't
remember how to start JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.4 Build and Deploy the Example Programs
To build and deploy the example for this chapter, you must configure the file described above, titandb-ds.xml, to
conform to the database you're using.

Perform the following steps:

1. Open a command prompt or shell terminal and change to the exAppendixA directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed.Examples:

Windows:

C:\workbook\exAppendixA> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\exAppendixA> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\exAppendixA> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

You will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the application server. The build
script copies titandb-ds.xml to the deploy directory as well, which triggers deployment of the customer database pool.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.5 Examine and Run the Client Applications
There is only one client application for this exercise, Client_61. It's modeled after the example in Chapter 6 of the EJB
book. It will use information you supply in the command-line parameters to create Customer EJBs in the database.

To run the client, first set your JBOSS_HOME and PATH environment variables appropriately. Then invoke the provided
wrapper script. You must supply data on the command line, specifiying a primary key, first name, and last name for
each Customer. For example:

Client_61 777 Bill Burke 888 Sacha Labourey

For the sample command, the output should be:

777 = Bill Burke

888 = Sacha Labourey

The example program removes the created beans at the conclusion of operation, so there will be no data left in the
database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. Database Configuration
This appendix describes how to set up database pools for data sources other than the default database embedded in
JBoss, Hypersonic SQL. It also shows you how to set up your EJBs to use these database pools. For illustration
purposes, we've modified Exercise 6.1 to configure and use an Oracle connection pool with JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Server-Side Components
Object-oriented languages such as Java, C++, and C# are used to write software that is flexible, extensible, and
reusable—the three axioms of object-oriented development. In business systems, object-oriented languages are used
to improve development of GUIs, to simplify access to data, and to encapsulate the business logic. The encapsulation of
business logic into business objects is a fairly recent focus in the information-technology industry. Business is fluid,
which means that a business's products, processes, and objectives evolve over time. If the software that models the
business can be encapsulated into business objects, it becomes flexible, extensible, and reusable, and therefore evolves
as the business evolves.

A server-side component model may define an architecture for developing distributed business objects that combines
the accessibility of distributed object systems with the fluidity of objectified business logic. Server-side component
models are used on the middle-tier application servers, which manage the components at runtime and make them
available to remote clients. They provide a baseline of functionality that makes it easy to develop distributed business
objects and assemble them into business solutions.

Server-side components can also be used to model other aspects of a business system, such as presentation and
routing. The Java servlet, for example, is a server-side component that is used to generate HTML and XML data for the
presentation layer of a three-tier architecture. EJB 2.1 message-driven beans, which are discussed later in this book,
are server-side components that can be used to consume and process asynchronous messages.

Server-side components, like other components, can be bought and sold as independent pieces of executable software.
They conform to a standard component model and can be executed without direct modification in a server that supports
that component model. Server-side component models often support attribute-based programming, which allows the
runtime behavior of the component to be modified when it is deployed, without having to change the programming code
in the component. Depending on the component model, the server administrator can declare a server-side component's
transactional, security, and even persistence behavior by setting these attributes to specific values.

As an organization's services, products, and operating procedures evolve, server-side components can be reassembled,
modified, and extended so that the business system reflects those changes. Imagine a business system as a collection
of server-side components that model concepts such as customers, products, reservations, and warehouses. Each
component is like a Lego(™) block that can be combined with other components to build a business solution. Products
can be stored in the warehouse or delivered to a customer; a customer can make a reservation or purchase a product.
You can assemble components, take them apart, use them in different combinations, and change their definitions. A
business system based on server-side components is fluid because it is objectified, and it is accessible because the
components can be distributed.

1.1.1 Enterprise JavaBeans Defined

Sun Microsystems' definition of the Enterprise JavaBeans architecture is:

The Enterprise JavaBeans architecture is a component architecture for the development and deployment
of component-based distributed business applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional, and multi-user secure. These applications may be
written once, and then deployed on any server platform that supports the Enterprise JavaBeans
specification.[3]

[3] Sun Microsystems' Enterprise JavaBeans Specification, v2.1, Copyright 2002 by Sun
Microsystems, Inc.

That's a mouthful, but it's not atypical of how Sun defines many of its Java technologies—have you ever read the
definition of the Java language itself? It's about twice as long. This book offers a shorter definition of EJB:

Enterprise JavaBeans is a standard server-side component model for distributed business applications.

This means the EJB offers a standard model for building server-side components that represent both business objects
(customers, items in inventory, and the like) and business processes (purchasing, stocking, and so on). Once you have
built a set of components that fit the requirements of your business, you can combine them to create business
applications. On top of that, as "distributed" components, they don't all have to reside on the same server. Components
can reside wherever it's most convenient: a Customer component can "live" near the Customer database, a Part
component can live near the inventory database, and a Purchase business-process component can live near the user
interface. You can do whatever's necessary for minimizing latency, sharing the processing load, or maximizing
reliability.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 Distributed Object Architectures
To understand EJB, you need to understand how distributed objects work. Distributed object systems are the foundation
for modern three-tier architectures. In a three-tier architecture, as shown in Figure 1-1, the presentation logic resides
on the client (first tier), the business logic resides on the middle tier (second tier), and other resources, such as the
database, reside on the backend (third tier).

Figure 1-1. Three-tier architecture

All distributed object protocols are built on the same basic architecture, which is designed to make an object on one
computer look like it's residing on a different computer. Distributed object architectures are based on a network
communication layer that is really very simple. Essentially, there are three parts to this architecture: the business
object, the skeleton, and the stub.

The business object resides on the middle tier. It's an instance of an object that models the state and business logic of
some real-world concept, such as a person, order, or account. Every business object class has matching stub and
skeleton classes built specifically for that type of business object. For example, a distributed business object called
Person would have matching Person_Stub and Person_Skeleton classes. As shown in Figure 1-2, the business object and
skeleton reside on the middle tier, and the stub resides on the client.

The stub and the skeleton are responsible for making the business object on the middle tier look as if it is running
locally on the client machine. This is accomplished through some kind of remote method invocation (RMI) protocol. An
RMI protocol is used to communicate method invocations over a network. CORBA, Java RMI, and Microsoft .NET all use
their own RMI protocols.[4] Every instance of the business object on the middle tier is wrapped by an instance of its
matching skeleton class. The skeleton is set up on a port and IP address and listens for requests from the stub, which
resides on the client machine and is connected via the network to the skeleton. The stub acts as the business object's
surrogate on the client and is responsible for communicating requests from the client to the business object through the
skeleton. Figure 1-2 illustrates the process of communicating a method invocation from the client to the server object
and back. The stub and the skeleton hide the communication specifics of the RMI protocol from the client and the
implementation class, respectively.

[4] The acronym "RMI" isn't specific to Java RMI. This section uses the term RMI to describe distributed object
protocols in general. Java RMI is the Java language version of a distributed object protocol.

Figure 1-2. RMI loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2. RMI loop

The business object implements a public interface that declares its business methods. The stub implements the same
interface as the business object, but the stub's methods do not contain business logic. Instead, the business methods
on the stub implement whatever networking operations are required to forward the request to the business object and
receive the results. When a client invokes a business method on the stub, the request is communicated over the
network by streaming the name of the method invoked, and the values passed in as parameters, to the skeleton. When
the skeleton receives the incoming stream, it parses the stream to discover which method is requested, then invokes
the corresponding business method on the business object. Any value that is returned from the method invoked on the
business object is streamed back to the stub by the skeleton. The stub then returns the value to the client application
as if it had processed the business logic locally.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Component Models
The term "component model" has many different interpretations. Enterprise JavaBeans specifies a server-side
component model. Using a set of classes and interfaces from the javax.ejb package, developers can create, assemble,
and deploy components that conform to the EJB specification.

The original JavaBeans is also a component model, but it's not a server-side component model like EJB. Other than
sharing the name "JavaBeans," these two component models are completely unrelated. In the past, a lot of the
literature referred to EJB as an extension of the original JavaBeans, but this is a misrepresentation. The two APIs serve
very different purposes, and EJB does not extend or use the original JavaBeans component model.

JavaBeans is intended to be used for intraprocess purposes, while EJB is designed for interprocess components. In
other words, the original JavaBeans was not intended for distributed components. JavaBeans can be used to solve a
variety of problems, but it is primarily used to build clients by assembling visual (GUI) and nonvisual widgets. It's an
excellent component model, possibly the best one ever devised for intraprocess development, but it's not a server-side
component model. EJB, on the other hand, is explicitly designed to address issues involved with managing distributed
business objects in a three-tier architecture.

Given that JavaBeans and Enterprise JavaBeans are completely different, why are they both called component models?
In this context, a component model defines a set of contracts between the component developer and the system that
hosts the component. The contracts express how a component should be developed and packaged. Once a component
is defined, it becomes an independent piece of software that can be distributed and used in other applications. A
component is developed for a specific purpose but not a specific application. In the original JavaBeans, a component
might be a push button or a spreadsheet that can be used in any GUI application according to the rules specified in the
original JavaBeans component model. In EJB, there are several different types of components: components that
represent entities in a database (entity beans) have a slightly different contract with their container than components
that represent business processes (session beans). For example, a component might be a Customer business object,
represented by an entity bean, that can be deployed in any EJB server and used to develop any business application
that needs a customer business object. Another type of component might be a MakePurchase object, represented by a
session bean, that models what happens when a customer buys a particular product. (Although the act of making a
purchase isn't itself represented in a database, a purchase involves a complex interaction between a customer, a sales
person, inventory, accounts receivable, and possibly other entities.) The MakePurchase object has a different contract
with its container than the Customer object, but it too can still be deployed in any EJB server and used in any business
application that needs to support purchases. A third type of EJB, the MessageDrivenBean, has a slightly different
contract with its container—but it, too, can be deployed in any EJB server.

1.3.1 Competing Component Models: Microsoft's .NET Framework

Enterprise JavaBeans did not appear out of nowhere; it is one of a number of component transaction monitors (CTMs),
which in turn have their origin in older transaction processing monitors (like Tuxedo) and Object Request Brokers.
However, the most important competition for EJB is Microsoft's .NET framework. .NET has its origins in the Microsoft
Transaction Server (MTS), which was arguably the first commercially available CTM. MTS was later renamed COM+.
Microsoft's COM+ is based on the Component Object Model (COM), originally designed for use on the desktop but
eventually pressed into service as a server-side component model. For distributed access, COM+ clients use the
Distributed Component Object Model (DCOM).

When MTS was introduced in 1996, it was an exciting development because it provided a comprehensive environment
for business objects. With MTS, application developers could write COM components without worrying about system-
level concerns. Once a business object was designed to conform to the COM model, MTS (and now COM+) took care of
everything else, including transaction management, concurrency, and resource management.

Since then, COM+ has become part of Microsoft's .NET Framework. The core functionality provided by COM+ services
remains essentially the same in .NET, but the way it appears to a developer has changed significantly. Rather than
writing components as COM objects, .NET Framework developers build applications as managed objects. All managed
objects, and in fact all code written for the .NET Framework, depends on a Common Language Runtime (CLR). For Java-
oriented developers, the CLR is much like a Java virtual machine (VM), and a managed object is analogous to an
instance of a Java class; i.e., to a Java object.

The .NET Framework provides first-class support for web services via the SOAP (Simple Object Access Protocol)
protocol, which enables business components in the .NET world to communicate with applications on any other platform
written in any language. This can potentially make business components in .NET universally accessible, a feature that is
not easily dismissed. In fact, .NET was the impetus that motivated Sun Microsystems to extend EJB and the rest of the
J2EE platform to support web services. Microsoft's .NET platform represents the greatest threat to the dominance of the
Java platform since the Java programming language was introduced in 1995.

Although the .NET Framework provides many interesting features, it falls short as an open standard. The COM+
services in the .NET Framework are Microsoft's proprietary CTM, which means that using this technology binds you to
the Microsoft platform. If your company plans to deploy server-side components on a non-Microsoft platform, .NET is
not a viable solution. In addition, the COM+ services in the .NET Framework are focused on stateless components;
there's no built-in support for persistent transactional objects. Although stateless components can offer higher
performance, business systems need the kind of flexibility offered by CTMs, which include stateful and persistent
components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

components.

1.3.2 Benefits of a Standard Server-Side Component Model

What does it mean to be a standard server-side component model? Quite simply, it means that you can develop
business objects using the Enterprise JavaBeans component model and expect them to work in any application server
that supports the complete EJB specification. This is a pretty powerful statement, because it largely eliminates the
biggest problem faced by potential customers of Microsoft .NET products: fear of vendor "lock-in." With a standard
server-side component model, customers can commit to using an EJB-compliant application server with the knowledge
that they can migrate to a better server if one becomes available. Obviously, care must be taken when using
proprietary extensions developed by vendors, but this is nothing new. Even in the relational database industry—which
has been using the SQL standard for a couple of decades—optional proprietary extensions abound.

Having a standard server-side component model has benefits beyond implementation independence. A standard
component model provides a vehicle for growth in the third-party products. If numerous vendors support EJB, creating
add-on products and component libraries is more attractive to software vendors. The IT industry has seen this type of
cottage industry grow up around other standards, such as SQL; hundreds of add-on products can now be purchased to
enhance business systems with data that is stored in SQL-compliant relational databases. Report-generating tools and
data-warehouse products are typical examples. The GUI component industry has also seen the growth of its own third-
party products. A healthy market for component libraries already exists for GUI component models such as Sun's
original JavaBeans component model.

Many third-party products for Enterprise JavaBeans exist today. Add-on products for credit-card processing, legacy
database access, and other business services have been introduced for various EJB-compliant systems. These types of
products make development of EJB systems simpler and faster than the alternatives, making the EJB component model
attractive to corporate IT and server vendors alike. The market for prepackaged EJB components is growing in several
domains, including sales, finance, education, web-content management, collaboration, and other areas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Asynchronous Messaging
In addition to supporting RMI-based distributed business objects, Enterprise JavaBeans supports asynchronous
messaging. An asynchronous messaging system allows two or more applications to exchange information in the form of
messages. A message, in this case, is a self-contained package of business data and network routing headers. The
business data contained in a message can be anything—depending on the business scenario—and usually contains
information about some business transaction. In enterprise systems, messages inform an application of some event or
occurrence in another system.

Asynchronous messages may be transmitted from one application to another on a network using message-oriented
middleware (MOM). MOM products ensure that messages are properly distributed among applications. In addition, MOM
usually provides fault-tolerance, load-balancing, scalability, and transactional support for enterprises that need to
reliably exchange large quantities of messages. MOM vendors use different message formats and network protocols for
exchanging messages, but the basic semantics are the same. An API is used to create a message, give it a payload
(application data), assign it routing information, and then send the message. The same API is used to receive messages
produced by other applications.

In modern enterprise-messaging systems, applications exchange messages through virtual channels called destinations.
When you send a message, it's addressed to a destination, not to a specific application. Any application that subscribes
or registers an interest in that destination may receive that message. In this way, the applications that receive
messages and those that send messages are decoupled. Senders and receivers are not bound to each other in any way
and may send and receive messages as they see fit.

Enterprise JavaBeans integrates the functionality of MOM into its component model. This integration extends the EJB
platform so that it supports both RMI and asynchronous messaging. EJB 2.0 and 2.1 support asynchronous messaging
through the Java Message Service (JMS) and a new component called the message-driven bean. In addition to JMS,
message-driven beans in EJB 2.1 can support other synchronous and asynchronous messaging systems.

1.4.1 Java Message Service

Each MOM vendor implements its own networking protocols, routing, and administration facilities, but the basic
semantics of the developer API provided by different MOMs are the same. It's this similarity in APIs that makes the Java
Message Service (JMS) possible.

JMS is a vendor-agnostic Java API that can be used with many different MOM vendors. JMS is very similar to JDBC in
that an application developer can reuse the same API to access many different systems. If a vendor provides a
compliant service provider for JMS, the JMS API can be used to send messages to and receive messages from that
vendor. For example, you can use the same JMS API to send messages with Progress's SonicMQ as with IBM's
MQSeries.

1.4.2 Message-Driven Beans and J2eeCA 1.5

Enterprise JavaBeans 2.0 introduced a new kind of component, called a message-driven bean, which is a kind of
standard JMS bean. It can receive and send asynchronous JMS messages, and can easily interact with other EJBs.

EJB 2.1 extends the programming model of the message-driven bean beyond JMS to any messaging system. While
vendors must continue to support JMS-based message-driven beans (JMS-MDBs), other types of messaging systems
are also allowed. It's likely that vendors will develop new message-driven bean types to support all kinds of protocols,
including SMTP for email, SNMP for device control, peer-to-peer protocols (e.g., BEEP and Jabber) and many other open
and proprietary messaging systems. In addition, the message-driven bean has become an elegant option for serving
connections to legacy transaction processing systems like CICS, IMS, openUTM, and others.

The expansion of message-driven beans in EJB 2.1 to other protocols is made possible by the new J2EE Connector
Architecture (J2eeCA 1.5), which defines a portable programming model for interfacing with enterprise information
systems. The use of J2eeCA in J2EE is analogous to the use of USB in computer hardware. A computer that supports
USB can interface with just about any USB-compliant device. Similarly, an EJB 2.1 container that supports J2eeCA 1.5
can interface with any J2eeCA 1.5-compliant resource. For example, if XYZ Vendor creates a new message-driven bean
component for their proprietary messaging system based on J2eeCA 1.5, that component will be portable across all EJB
2.1-compliant servers. Figure 1-3 illustrates how a J2eeCA for a messaging system integrates with EJB 2.1.

Figure 1-3. EJB 2.1 message-driven beans and J2eeCA 1.5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. EJB 2.1 message-driven beans and J2eeCA 1.5

Message-driven beans in EJB 2.1 and 2.0 allow other applications to send messages that can be captured and
processed by the EJB application. This feature allows EJB applications to better integrate with legacy and other
proprietary systems.

1.4.3 Web Services

Web services represent the latest wave in distributed computing, and perhaps the most important innovation since the
introduction of Java in 1995 and XML in 1998. Although the term "web services" is bandied about quite a bit, arriving at
a concrete definition is difficult because web services is, at the highest level, not specific to any particular technology or
platform. It's often defined in fairly abstract terms like "a substrate for building distributed applications using software
running on different operating systems and devices"[5] or "self-contained, self-describing, modular applications that can
be published, located, and invoked across the Web."[6] Of course, these quotes are taken out of context, but that's the
essential point: you need some kind of context to define web services. Here's my definition of web services that has
meaning in the context of J2EE, EJB, .NET, and most other web services platforms:

[5] Tim Ewald, "The Web Services Idea," July 12, 2002, Microsoft.com
(http://msdn.microsoft.com/webservices/understanding/readme/default.asp).

[6] Doug Tidwell, "Web services—the Web's next revolution," November 29, 2000, IBM.com (http://www-
105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-
bytitle/BA84142372686CFB862569A400601C18?OpenDocument).

Web services are network applications that use SOAP and WSDL to exchange information in the form of
XML documents.

To understand this definition, you need to understand SOAP and WSDL. Here are brief definitions of these terms.

SOAP 1.1

SOAP (Simple Object Access Protocol) is an XML grammar developed by Microsoft, IBM, and others, that is
currently under the auspices of the W3C. It's an application protocol used in both RPC and asynchronous
messaging. SOAP is very flexible and extensible and, unlike its predecessors (DCE RPC, CORBA IIOP, Java RMI-
JRMP, and DCOM), it's been endorsed and adopted by just about every major vendor. (If you're not familiar
with XML, see Java and XML by Brett McLaughlin (O'Reilly) or XML in a Nutshell by Elliotte Rusty Harold
(O'Reilly).

WSDL 1.1

The Web Service Description Language (WSDL) is another XML grammar, developed by Microsoft and IBM
under the auspices of the W3C. It is an XML-based IDL (Interface Definition Language) that can be used to
describe web services, including the kind of message format expected, the Internet protocol used, and the
Internet address of the web service.

Web services are truly platform-independent. Although Java RMI and CORBA IIOP also claim to be platform-
independent, in fact these older technologies require their own platforms. To use Java RMI, you need a Java virtual
machine and the Java programming language; a program written in Visual Basic or C++ can't interact with a Java
program using RMI. CORBA IIOP is also restrictive, because the IIOP protocol usually requires an elaborate
infrastructure like a CORBA ORB, which limits developers to those few vendors that support CORBA, or to the Java
environment (which includes built-in support for CORBA IIOP).

Web services, on the other hand, are not tied to a specific platform like the JVM or to a technology infrastructure like
CORBA because they focus on the protocols used to exchange messages—SOAP and WSDL—not the implementation
that supports those protocols. In other words, you can build web services on any platform, using any programming
language any way you please.

EJB 2.1 allows enterprise beans to be exposed as web services, so that their methods can be invoked by other J2EE
applications as well as applications written in other programming languages on a variety of platforms. Web services in
EJB 2.1 supports both RPC-style and document-style messaging. Support for web services is based on a new web
service API: JAX-RPC. Web services and the use of JAX-RPC is covered in detail in Chapter 14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

service API: JAX-RPC. Web services and the use of JAX-RPC is covered in detail in Chapter 14.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 Titan Cruises: An Imaginary Business
To make things a easier and more fun, we discuss all the concepts in this book in the context of an imaginary business,
a cruise line called Titan. A cruise line makes a particularly interesting example because it incorporates several different
businesses: it has ship cabins that are similar to hotel rooms; it serves meals like a restaurant; it offers various
recreational opportunities; and it needs to interact with other travel businesses.

This type of business is a good candidate for a distributed object system because many of the system's users are
geographically dispersed. Commercial travel agents, for example, who need to book passage on Titan ships need to
access the reservation system. Supporting many—possibly hundreds—of travel agents requires a robust transactional
system to ensure agents have access and reservations are completed properly.

Throughout this book, we will build a fairly simple slice of Titan's EJB system that focuses on the process of making a
reservation for a cruise. This exercise will give us an opportunity to develop Ship, Cabin, TravelAgent, ProcessPayment,
and other enterprise beans. In the process, you will need to create relational database tables for persisting data used in
the example. It is assumed that you are familiar with relational database management systems and that you can create
tables according to the SQL statements provided. EJB can be used with any kind of database or legacy application, but
the relational database is most commonly understood database technology, so I have chosen this as the persistence
layer.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6 What's Next?
To develop business objects using EJB, you have to understand the life cycles and architecture of EJB components. This
means understanding the concepts of how EJB's components are managed and made available as distributed objects.
Developing an understanding of the EJB architecture is the focus of the next two chapters.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introduction
This book is about Enterprise JavaBeans 2.1, the latest version of the Enterprise JavaBeans specification. It also covers
Enterprise JavaBeans 2.0, which is still in widespread use. Just as the Java platform has revolutionized the way we
think about software development, the Enterprise JavaBeans (EJB) specification has revolutionized the way we think
about developing mission-critical enterprise software. It combines server-side components with distributed object
technologies, asynchronous messaging, and web services to greatly simplify the task of application development. It
automatically takes into account many of the requirements of business systems, including security, resource pooling,
persistence, concurrency, and transactional integrity.

This book shows you how to use Enterprise JavaBeans to develop scalable, portable business systems. But before we
can start talking about EJB itself, we'll need a brief introduction to the technologies addressed by EJB, such as
component models, distributed objects, asynchronous messaging, and web services. It's particularly important to have
a basic understanding of component transaction monitors, the technology that lies beneath EJB. In Chapter 2 and
Chapter 3, we'll look at EJB itself and see how enterprise beans are put together. The rest of the book is devoted to
developing enterprise beans for an imaginary business and discussing advanced issues.

It is assumed that you're already familiar with Java; if you're not, Learning Java, by Patrick Niemeyer and Josh Peck
(O'Reilly), is an excellent introduction. This book also assumes that you're conversant in the JDBC API, or at least in
SQL. If you're not familiar with JDBC, see Database Programming with JDBC and Java by George Reese (O'Reilly).

One of Java's most important features is platform independence. Since it was first released, Java has been marketed as
"write once, run anywhere." While the hype has gotten a little heavy-handed at times, code written with Sun's Java
programming language is remarkably platform-independent. Enterprise JavaBeans isn't just platform-independent—it's
also implementation-independent. If you've worked with JDBC, you know a little about what this means. Not only can
the JDBC API run on a Windows machine or on a Unix machine, it can also access relational databases of many different
vendors (DB2, Oracle, MySQL, SQLServer, etc.) by using different JDBC drivers. You don't have to code to a particular
database implementation—just change JDBC drivers, and you change databases.[1] It's the same with EJB. Ideally, an
EJB component—an enterprise bean—can run in any application server that implements the EJB specification.[2] This
means that you can develop and deploy your EJB business system in one server, such as BEA's WebLogic, and later
move it to a different EJB server, such as Pramati, Sybase EAServer, IBM's WebSphere, or an open source project such
as Apache Geronimo, OpenEJB, JOnAS, or JBoss. Implementation independence means that your business components
are not dependent on the brand of server, which gives you many more options before, during, and after development
and deployment.

[1] In some cases, differences in database vendor's support for SQL may require customization of SQL statements
used in development.

[2] Provided that the bean components and EJB servers comply with the specification, and no proprietary
functionality is used in development.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 The Primary Key
A primary key is an object that uniquely identifies an entity bean. A primary key can be any serializable type, including
primitive wrappers (Integer, Double, Long, etc.) or custom classes defined by the bean developer. In the Ship EJB
discussed in Chapter 7 and Chapter 9, we used the Integer type as a primary key. Primary keys can be declared by the
bean developer, or the primary key type can be deferred until deployment. We will talk about deferred primary keys
later.

Because the primary key may be used in remote invocations, it must adhere to the restrictions imposed by Java RMI-
IIOP; that is, it must be a valid Java RMI-IIOP value type. These restrictions are discussed in Chapter 5, but for most
cases, you just need to make the primary key serializable. In addition, the primary key must implement equals() and
hashCode() appropriately.

EJB allows two types of primary keys: single-field and compound. Single-field primary keys map to a single persistence
field defined in the bean class. The Customer and Ship EJBs, for example, use a java.lang.Integer primary key that maps
to the container-managed persistence field named id. A compound primary key is a custom-defined class that declares
several instance variables that map to more than one persistence field in the bean class.

10.1.1 Single-Field Primary Keys

The String class and the standard wrapper classes for the primitive data types (java.lang.Integer, java.lang.Double, etc.) can
be used as primary keys. These are referred to as single-field primary keys because they are atomic; they map to one
of the bean's persistence fields. Compound primary keys map to two or more persistence fields.

In the Ship EJB, we specified an Integer type as the primary key:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public Ship findByPrimaryKey(java.lang.Integer primarykey)

 throws FinderException, RemoteException;

 ...

}

In this case, there must be a single persistence field in the bean class with the same type as the primary key. For the
ShipBean, the id persistent field is of type java.lang.Integer, one of the single-field primary key types. The term "persistent
field" means a container-managed persistent field in CMP entities or a instance field in an BMP entity that maps to the
beans state in the database. In container-managed persistence, the primary key type must map to one of the bean's
CMP fields. The abstract accessor methods for the id field in the ShipBean class fit this description:

public class ShipBean implements javax.ejb.EntityBean {

 public abstract Integer getId();

 public abstract void setId(Integer id);

 ...

}

The single-field primary key must also map to a CMP field in bean-managed persistence. For the BMP ShipBean class
defined in Chapter 9, the Integer primary key maps to the id instance field:

public class ShipBean implements javax.ejb.EntityBean {

 public Integer id;

 public String name;

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

In CMP entities, you identify the CMP field that will serve as the single-field primary key using the <primkey-field>
element in the deployment descriptor. In addition, the <prim-key-class> element specifies the type of object used for the
primary key class. The CMP Ship EJB discussed in Chapter 7 uses both of these elements when defining the id CMP field
as the primary key:

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>tonnage</field-name></cmp-field>

 <primkey-field>id</primkey-field>

</entity>

In BMP entities you do not specify a <primkey-field>, because primary keys are created by the bean code, not the
container. However, you are required to identify the <prim-key-class> with BMP entities as shown in the following listing.

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

</entity>

Although primary keys can be primitive wrappers (Integer, Double, Long, etc.), they cannot be primitive types (int, double,
long, etc.) because the semantics of the EJB programming model require the use of Object type primary keys. For
example, the EJBObject.getPrimaryKey() method returns an Object type, thus forcing primary keys to be Objects. Primitives
also cannot be primary keys because primary keys must be managed by Collection objects, which work only with Object
types. Primitives are not Object types and do not have equals() or hashcode() methods.

10.1.2 Compound Primary Keys

A compound primary key is a class that implements java.io.Serializable and contains one or more public fields whose
names and types match a subset of persistence fields in the bean class. They are defined by bean developers for
specific entity beans.

For example, if a Ship EJB didn't have an id field, we might uniquely identify ships by their names and registration
numbers. (We are adding the registration persistent field to the Ship EJB for this example.) In this case, the name and
registration persistent fields would become our primary key fields, which match corresponding fields (NAME and
REGISTRATION) in the SHIP database table. To accommodate multiple fields as a primary key, we need to define a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REGISTRATION) in the SHIP database table. To accommodate multiple fields as a primary key, we need to define a
primary key class.

The convention in this book is to define all compound primary keys as serializable classes with names that match the
pattern BeanNamePK. In this case we can construct a new class called ShipPK, which serves as the compound primary key
for our Ship EJB:

public class ShipPK implements java.io.Serializable {

 public String name;

 public String registration;

 public ShipPK(){

 }

 public ShipPK(String name, String registration) {

 this.name = name;

 this.registration = registration;

 }

 public String getName() {

 return name;

 }

 public String getRegistration() {

 return registration;

 }

 public boolean equals(Object obj) {

 if (obj == null || !(obj instanceof ShipPK))

 return false;

 ShipPK other = (ShipPK)obj;

 if(this.name.equals(other.name) &&

 this.registration.equals(other.registration))

 return true;

 else

 return false;

 }

 public int hashCode() {

 return name.hashCode()^registration.hashCode();

 }

 public String toString() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String toString() {

 return name+" "+registration;

 }

}

To make the ShipPK class work as a compound primary key, we must make its fields public. This allows the container
system to use reflection when synchronizing the values in the primary key class with the persistence fields in the bean
class. We must also define equals() and hashCode() methods to allow the primary key to be easily manipulated within
collections by container systems and application developers. We have also overridden the toString() method to return a
meaningful value. The default implementation defined in Object returns the class name of the object appended to the
object identity for that name space.

With CMP entities, it's important to make sure that the variables declared in the primary key have corresponding CMP
fields in the entity bean with matching identifiers (names) and data types. This is required so that the container, using
reflection, can match the variables declared in the compound key to the correct CMP fields in the bean class. In this
case, the name and registration instance variables declared in the ShipPK class correspond to name and registration CMP
fields in the Ship EJB, so it's a good match.

With BMP entities, the instance fields of the primary key class are not required to map exactly to corresponding
persistent fields in the bean class. The bean class is directly responsible for creating and managing the instance fields of
the primary key, not the container. In most cases, however, the instance fields in the primary key will map to persistent
fields in the bean class.

The ShipPK class defines two constructors: a no-argument constructor and an overloaded constructor that sets the name
and registration variables. The overloaded constructor is a convenience method for developers that reduces the number
of steps required to create a primary key. The no-argument constructor is required for container-managed persistence.
When a new EJB is created in CMP, the container automatically instantiates the primary key using the Class.newInstance(
) method and populates it from the bean's container-managed fields. A no-argument constructor must exist in order for
this process to work.

To accommodate the ShipPK, we change the ejbCreate()/ejbPostCreate() methods on the bean class of both BMP and CMP
entities so that they have name and registration arguments to set the primary key fields in the bean.

Here is how the ShipPK primary key class would be used in the CMP ShipBean class we developed for in Chapter 7:

import javax.ejb.EntityContext;

import javax.ejb.CreateException;

public abstract class ShipBean implements javax.ejb.EntityBean {

 public ShipPK ejbCreate(String name, String registration) {

 setName(name);

 setRegistration(registration);

 return null;

 }

 public void ejbPostCreate(String name, String registration) {

 }

 ...

The deployment descriptor for CMP entities is required to define <cmp-field> entries that match the instance fields of the
compound primary key, but it must not define a <primkey-field> element. The <primkey-field> element is only used with
single-field primary keys. The deployment descriptor for CMP entities must define a <prim-key-class> for compound
primary keys, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

primary keys, however.

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>com.titan.ShipPK</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><filed-name>registration</field-name></cmp-field>

 <cmp-field><field-name>tonnage</field-name></cmp-field>

</entity>

Here is how the ShipPK primary key class might be used in the BMP ShipBean class we developed for in Chapter 9:

public class ShipBean implements javax.ejb.EntityBean {

 public String name;

 public String registration;

 public ShipPK ejbCreate(String name, String registration){

 this.name = name;

 this.registration = registration;

 ...

 // database insert logic goes here

 ...

 return new ShipPK(name, registration);

 }

The deployment descriptor for BMP entities is always required to define the <prim-key-class> for both single-field and
compound primary keys as shown in the following listing:

<entity>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ShipHomeRemote</home>

 <remote>com.titan.ShipRemote</remote>

 <ejb-class>com.titan.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>com.titan.ShipPK</prim-key-class>

</entity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ejbCreate() method of both the BMP and CMP entities now declares the ShipPK as the primary key type. The return
type of the ejbCreate() method must match the primary key type if the primary key is defined or the java.lang.Object type
if it is undefined (CMP only).

In container-managed persistence, if the primary key fields are defined—i.e., if they are accessible through abstract
accessor methods—they must be set in the ejbCreate() method. While the return type of the ejbCreate() method is
always the primary key type, the value returned in CMP must always be null. The EJB container itself takes care of
extracting the proper primary key directly. In bean-managed persistence, the bean class is responsible for constructing
the primary key and returning it to the container.

The ShipHomeRemote interface for both CMP and BMP entities is modified so that it uses the name and registration
arguments in the create() method and the ShipPK in the findByPrimaryKey() method (EJB requires that we use the primary
key type in that method):

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(String name, String registration)

 throws CreateException, RemoteException;

 public ShipRemote findByPrimaryKey(ShipPK primaryKey)

 throws FinderException, RemoteException;

}

setName() and setRegistration(), which modify the name and registration fields of the Ship EJB, should not be declared in
the bean's remote or local interfaces. As explained in the next paragraph, the primary key of an entity bean must not
be changed once the bean is created. However, methods that simply read the primary key fields (e.g., getName() and
getRegistration()) may be exposed because they don't change the key's values.

CMP requires that the primary key may be set only once, either in the ejbCreate() method or, if it's undefined,
automatically by the container when the bean is created. Once the bean is created, the primary key fields must never
be modified by the bean or any of its clients. This is a reasonable requirement that should also be applied to bean-
managed persistence beans, because the primary key is the unique identifier of the bean. Changing it could violate
referential integrity in the database, possibly resulting in two beans being mapped to the same identifier or breaking
any relationships with other beans that are based on the value of the primary key.

10.1.3 Undefined Primary Keys in CMP

Undefined primary keys for container-managed persistence were introduced in EJB 1.1. Basically, undefined primary
keys allow the bean developer to defer declaring the primary key to the deployer, which makes it possible to create
more portable entity beans.

One problem with container-managed persistence in EJB 1.0 was that the entity bean developer had to define the
primary key before the entity bean was deployed. This requirement forced the developer to make assumptions about
the environment in which the entity bean would be used, which limited the entity bean's portability across databases.
For example, a relational database uses a set of columns in a table as the primary key, to which an entity bean's fields
map nicely. An object database, however, uses a completely different mechanism for indexing objects, to which a
primary key may not map well. The same is true for legacy systems and Enterprise Resource Planning (ERP) systems.

An undefined primary key allows the deployer to choose a system-specific key at deployment time. An object database
may generate an object ID, while an ERP system may generate some other primary key. These keys may be
automatically generated by the database or backend system. The CMP bean may need to be altered or extended by the
deployment tool to support the key, but this is immaterial to the bean developer; she concentrates on the business
logic of the bean and leaves the indexing to the container.

To facilitate the use of undefined primary keys, the CMP bean class and its interfaces use the Object type to identify the
primary key. The Ship EJB developed in Chapter 7 could use an undefined primary key. As the following code shows,
the Ship EJB's ejbCreate() method returns an Object type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Ship EJB's ejbCreate() method returns an Object type:

public abstract class ShipBean extends javax.ejb.EntityBean {

 public Object ejbCreate(String name, int capacity, double tonnage) {

 ...

 return null;

}

The findByPrimaryKey() method defined in the local and remote home interfaces must also use an Object type:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote findByPrimaryKey(Object primaryKey)

 throws javax.ejb.FinderException;

}

The Ship EJB's deployment descriptor defines its primary key type as java.lang.Object and does not define any <prim-key-
field> elements:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 ...

 <ejb-class>com.titan.ship.ShipBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Object</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>capacity</field-name></cmp-field>

 <cmp-field><field-name>tonnage</field-name></cmp-field>

 </entity>

One drawback of using an undefined primary key is that it requires the bean developer and application developer (client
code) to work with a java.lang.Object type and not a specific primary key type, which can be limiting. For example, it's
not possible to construct an undefined primary key to use in a find method if you don't know its type. This limitation can
be quite daunting if you need to locate an entity bean by its primary key. However, entity beans with undefined primary
keys can be located easily using other query methods that do not depend on the primary key value, so this limitation is
not a serious handicap.

In bean-managed persistence, you can declare an undefined primary key simply by making the primary key type
java.lang.Object. However, this is pure semantics; the primary key value will not be auto-generated by the container
because the bean developer has total control over persistence. In this case the bean developer would still need to use a
valid primary key, but its type would be hidden from the bean clients. This method can be useful if the primary key type
is expected to change over time.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 The Callback Methods
All entity beans (container- and bean-managed) must implement the javax.ejb.EntityBean interface. The EntityBean
interface contains a number of callback methods that the container uses to alert the bean instance of various runtime
events:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {

 public abstract void ejbActivate() throws EJBException, RemoteException;

 public abstract void ejbPassivate() throws EJBException, RemoteException;

 public abstract void ejbLoad() throws EJBException, RemoteException;

 public abstract void ejbStore() throws EJBException, RemoteException;

 public abstract void ejbRemove() throws EJBException, RemoteException,

 RemoveException;

 public abstract void setEntityContext(EntityContext ctx) throws EJBException,

 RemoteException;

 public abstract void unsetEntityContext() throws EJBException,

 RemoteException;

}

Each callback method is invoked on an entity bean instance at a specific time during its life cycle.

As described in Chapter 9, BMP beans must implement most of these callback methods to synchronize the bean's state
with the database. The ejbLoad() method tells the BMP bean when to read its state from the database; ejbStore() tells it
when to write to the database; and ejbRemove() tells the bean when to delete itself from the database.

While BMP beans take full advantage of callback methods, CMP entity beans may not need to use all of them. The
persistence of CMP entity beans is managed automatically, so in most cases the resources and logic that might be
managed by these methods is already handled by the container. However, a CMP entity bean can take advantage of
these callback methods if it needs to perform actions that are not automatically supported by the container.

You may have noticed that each method in the EntityBean interface throws both a javax.ejb.EJBException and a
java.rmi.RemoteException. EJB 1.0 required that a RemoteException be thrown if a system exception occurred while a bean
was executing a callback method. However, since EJB 1.1 the use of RemoteException in these methods has been
deprecated in favor of the javax.ejb.EJBException. EJB 2.0 and EJB 2.1 suggest that the EJBException be thrown if the bean
encounters a system error, such as a SQLException, while executing a method. The EJBException is a subclass of
RuntimeException, so you don't have to declare it in the method signature. Since the use of the RemoteException is
deprecated, you also don't have to declare it when implementing the callback methods either; in fact, it's recommended
that you don't.

10.2.1 setEntityContext() and unsetEntityContext()

The first method called after a bean instance is instantiated is setEntityContext(). As the method signature indicates, this
method passes the bean instance a reference to a javax.ejb.EntityContext, which is the bean instance's interface to the
container. The purpose and functionality of the EntityContext is covered later in this chapter.

The setEntityContext() method is called prior to the bean instance's entry into the instance pool. In Chapter 3, we
discussed the instance pool that EJB containers maintain, where instances of entity and stateless session beans are kept
ready to use. EntityBean instances in the instance pool are not associated with any data in the database; their state is
not unique. When a client requests a specific entity, an instance from the pool is chosen, populated with data from the
database, and assigned to service the client. Any nonmanaged resources needed for the life of the instance should be
obtained when this method is called. This ensures that such resources are obtained only once in the life of a bean
instance. A nonmanaged resource is one that is not automatically managed by the container (e.g., references to CORBA
objects). Only resources that are not specific to the entity bean's identity should be obtained in the setEntityContext()
method. Other managed resources (e.g., Java Message Service factories) and entity bean references are obtained as
needed from the JNDI ENC. Bean references and managed resources obtained through the JNDI ENC are not available
from setEntityContext(). The JNDI ENC is discussed later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from setEntityContext(). The JNDI ENC is discussed later in this chapter.

At the end of the entity bean instance's life, after it is removed permanently from the instance pool and before it is
garbage collected, the unsetEntityContext() method is called, indicating that the bean instance is about to be evicted from
memory by the container. This is a good time to free up any resources obtained in the setEntityContext() method.

10.2.2 ejbCreate()

In a CMP bean, the ejbCreate() method is called before the bean's state is written to the database. Values passed in to
the ejbCreate() method should be used to initialize the CMP fields of the bean instance. Once the ejbCreate() method
completes, a new record, based on the CMP fields, is written to the database.

In bean-managed persistence, the ejbCreate() method is called when it's time for the bean to add itself to the database.
Inside the ejbCreate() method, a BMP bean must use some kind of API to insert its data into the database.

Each ejbCreate() method must have parameters that match a create() method in the home interface. If you look at the
ShipBean class definition and compare it to the Ship EJB's home interfaces (see Chapter 7 and Chapter 9), you can see
how the parameters for the create methods match exactly in type and sequence. This enables the container to delegate
each create() method invoked on an EJB home to the proper ejbCreate() method in the bean instance.

In addition, the ejbCreate() method can take the form ejbCreate<SUFFIX>(), which allows for easier method overloading
when parameters are the same but the methods act differently. For example, ejbCreateByName(String name) and
ejbCreateByRegistration(String registration) would have corresponding create() methods defined in the local or home
interface, in the form createByName(String name) and createByRegistration(String registration).

The EntityContext maintained by the bean instance does not provide an entity bean with the proper identity until
ejbCreate() has completed. This means that while the ejbCreate() method is executing, the bean instance doesn't have
access to its primary key or EJB object. The EntityContext does, however, provide the bean with information about the
caller's identity and access to its EJB home object (local and remote) and properties. The bean can also use the JNDI
naming context to access other beans and resource managers such as javax.sql.DataSource.

However, the CMP entity bean developer must ensure that ejbCreate() sets the CMP fields that correspond to the fields
of the primary key. When a new CMP entity bean is created, the container will use the CMP fields in the bean class to
instantiate and populate a primary key automatically. If the primary key is undefined, the container and database will
work together to generate the primary key for the entity bean.

Once the bean's state has been populated and its ejbCreate() method has executed, the ejbPostCreate() method is
invoked. This method gives the bean an opportunity to perform any postprocessing prior to servicing client requests. In
CMP entity beans, ejbPostCreate() is used to manipulate container-managed relationship (CMR) fields. These CMR fields
must not be modified by ejbCreate(). The reason for this restriction has to do with referential integrity. The primary key
for the entity bean may not be available until after ejbCreate() executes. The primary key is needed if the mapping for
the relationship uses it as a foreign key, so assignment of relationships is postponed until ejbCreate() completes and the
primary key becomes available. This is also true with autogenerated primary keys, which usually require that the insert
be done before a primary key can be generated. In addition, referential integrity may specify non-null foreign keys in
referencing tables, so the insert must take place first. In reality, the transaction does not complete until both ejbCreate()
and ejbPostCreate() have executed, so the vendors are free to choose the best time for database inserts and linking of
relationships.

The bean identity is not available during the call to ejbCreate(), but it is available in ejbPostCreate(). This means that the
bean can access its own primary key and EJB object (local or remote) inside of ejbPostCreate(). This can be useful for
performing postprocessing prior to servicing business-method invocations.

Each ejbPostCreate() method must have the same parameters as the corresponding ejbCreate() method, as well as the
same method name. For example, if the ShipBean class defines an ejbCreateByName(String name) method, it must also
define a matching ejbPostCreateByName(String name) method. The ejbPostCreate() method returns void.

Matching the name and parameter lists of ejbCreate() and ejbPostCreate() methods is important for two reasons. First, it
indicates which ejbPostCreate() method is associated with which ejbCreate() method. This ensures that the container calls
the correct ejbPostCreate() method after ejbCreate() is done. Second, in CMP, it is possible that one of the parameters
passed is not assigned to a CMP field. In this case, you would need to duplicate the parameters of the ejbCreate()
method to have that information available in the ejbPostCreate() method. CMR fields are the primary reason for utilizing
the ejbPostCreate() method in CMP, because of referential integrity.

10.2.3 ejbCreate() and ejbPostCreate() Sequence of Events

To understand how an entity bean instance gets up and running, we have to think of a entity bean in the context of its
life cycle. Figure 10-1 shows the sequence of events during a portion of a CMP bean's life cycle, as defined by the EJB
specification. Every EJB vendor must support this sequence of events.

Figure 10-1. Event sequence for bean-instance creation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-1. Event sequence for bean-instance creation

The process begins when the client invokes one of the create() methods on the bean's EJB home. A create() method is
invoked on the EJB home stub (step 1), which communicates the method to the EJB home across the network (step 2).
The EJB home plucks a ShipBean instance from the pool and invokes its corresponding ejbCreate() method (step 3).

The create() and ejbCreate() methods are responsible for initializing the bean instance so that the container (CMP) or
bean class (BMP) can insert a record into the database. In the case of the ShipBean, the minimal information required to
add a new ship to the system is the ship's name and unique id. These persistent fields are set during the ejbCreate()
method invocation (step 4).

In container-managed persistence, the container uses two of the bean's CMP fields (id and name), to insert a record into
the database. Only the fields described as CMP fields in the deployment descriptor are accessed. Once the container has
read the CMP fields from the bean instance (step 5), it will automatically insert a new record into the database using
those fields (step 6).[1] How the data is written to the database is defined when the bean's fields are mapped at
deployment time. In our example, a new record is inserted into the SHIP table.

[1] The specification does not actually require that the record be inserted into the database immediately after the
ejbCreate() method is called (step 6). As an alternative, the record insert may be deferred until after the
ejbPostCreate() method executes or even until the end of the transaction.

In bean-managed persistence, the bean class itself reads the fields and performs a
database insert to add the bean's data to the database. This would take place in steps 5
and 6.

Once the record has been inserted into the database, the bean instance is ready to be assigned to an EJB object (step
7). Once the bean is assigned to an EJB object, the bean's identity is available. This is when ejbPostCreate() is invoked
(step 8).

In CMP entity beans, ejbPostCreate() is used to manage the beans' container-managed relationship fields. This might
involve setting the Cruise in the Ship EJB's cruise CMR field or some other relationship (step 9).

Finally, when the ejbPostCreate() processing is complete, the bean is ready to service client requests. The EJB object
stub is created and returned to the client application, which will use it to invoke business methods on the bean (step
10).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2.4 Using ejbLoad() and ejbStore() in Container-Managed Persistence

The process of ensuring that the database record and the entity bean instance are equivalent is called synchronization.
In container-managed persistence, the bean's CMP fields are automatically synchronized with the database. Persistence
in container-managed beans is fairly straightforward, so in most cases we will not need the ejbLoad() and ejbStore()
methods.

Leveraging the ejbLoad() and ejbStore() callback methods in container-managed beans, however, can be useful if
custom logic is needed when synchronizing CMP fields. Data intended for the database can be reformatted or
compressed to conserve space; data just retrieved from the database can be used to calculate derived values for
nonpersistent fields.

Imagine a hypothetical bean class that includes some binary value you want to store in the database. The binary value
may be very large (an image, for example), so you may need to compress it before storing it away. Using the ejbLoad()
and ejbStore() methods in a container-managed bean allows the bean instance to reformat the data as appropriate for
the state of the bean and the structure of the database. Here's how this might work:

import java.util.zip.Inflater;

import java.util.zip.Deflater;

public abstract class HypotheticalBean implements javax.ejb.EntityBean {

 // Instance variable

 public byte [] inflatedImage;

 // CMP field methods

 public abstract void setImage(byte [] image);

 public abstract byte [] getImage();

 // Business methods. Used by client.

 public byte [] getImageFile() {

 if(inflatedImage == null) {

 Inflater unzipper = new Inflater();

 byte [] temp = getImage();

 unzipper.setInput(temp);

 unzipper.inflate(inflatedImage);

 }

 return inflatedImage;

 }

 public void setImageFile(byte [] image) {

 inflatedImage = image;

 }

 // callback methods

 public void ejbLoad() {

 inflatedImage = null;

 }

 public void ejbStore() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ejbStore() {

 if(inflatedImage != null) {

 Deflater zipper = new Deflater();

 zipper.setInput(inflatedImage);

 byte [] temp = new byte[inflatedImage.length];

 int size = zipper.deflate(temp);

 byte [] temp2 = new byte[size];

 System.arraycopy(temp, 0, temp2, 0, size);

 setImage(temp2);

 }

 }

}

Just before the container synchronizes the state of entity bean with the database, it calls the ejbStore() method. This
method uses the java.util.zip package to compress the image file, if it has been modified, before writing it to the
database.

Just after the container updates the fields of the HypotheticalBean with fresh data from the database, it calls ejbLoad(),
which reinitializes the inflatedImage instance variable to null. Decompression is preformed lazily, so it's done only when it
is needed. Compression is performed by ejbStore() only if the image was accessed; otherwise, the image field is not
modified.

10.2.5 Using ejbLoad() and ejbStore() in Bean-Managed Persistence

In bean-managed persistence, the ejbLoad() and ejbStore() methods are called by the container when it's time to read
from or write to the database. The ejbLoad() method is invoked after the start of a transaction, but before the entity
bean can service a method call. The ejbStore() method is usually called after the business method is called, but it must
be called before the end of the transaction.

While the entity bean is responsible for reading and writing its state from and to the database, the container is
responsible for managing the scope of the transaction. This means that the entity bean developer need not worry about
committing operations on database-access APIs, provided the resource is managed by the container. The container will
take care of committing the transaction and persisting the changes at the appropriate times.

If a BMP entity bean uses a resource that is not managed by the container system, the entity bean must manage the
scope of the transaction manually, using operations specific to the API. Examples of how to use the ejbLoad() and
ejbStore() methods in BMP are shown in detail in Chapter 9.

10.2.6 ejbPassivate() and ejbActivate()

The ejbPassivate() method notifies the bean developer that the entity bean instance is about to be pooled or otherwise
disassociated from the entity bean identity. This gives the entity bean developer an opportunity to do some last-minute
cleanup before the bean is placed in the pool, where it will be reused by some other EJB object. In real-world
implementations, the ejbPassivate() method is rarely used, because most resources are obtained from the JNDI ENC and
are managed automatically by the container.

The ejbActivate() method notifies the bean developer that the entity bean instance has just returned from the pool and is
now associated with an EJB object and has been assigned an identity. This gives the entity bean developer an
opportunity to prepare the entity bean for service, for example by obtaining some kind of resource connection.

As with the ejbPassivate() method, it's difficult to see why this method would be used in practice. It is best to secure
resources lazily (i.e., as needed). The ejbActivate() method suggests that some kind of eager preparation can be
accomplished, but this is rarely done in practice.

Even in EJB containers that do not pool entity bean instances, the value of ejbActivate() and
ejbPassivate() is questionable. It's possible that an EJB container may choose to evict
instances from memory between client invocations and create a new instance for each new
transaction. While this may appear to hurt performance, it's a reasonable design, provided
that the container system's Java Virtual Machine has an extremely efficient garbage
collection and memory allocation strategy. Hotspot is an example of a JVM that has made
some important advances in this area. Even in this case, however, ejbActivate() and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

some important advances in this area. Even in this case, however, ejbActivate() and
ejbPassivate() provide little value because the setEntityContext() and unsetEntityContext()
methods can accomplish the same thing.

One of the few practical reasons for using ejbActivate() is to reinitialize nonpersistent instance fields of the bean class
that may have become "dirty" while the instance serviced another client.

Regardless of their general usefulness, these callback methods are at your disposal if you need them. In most cases,
you are better off using setEntityContext() and unsetEntityContext(), since these methods will execute only once in the life
cycle of a bean instance.

10.2.7 ejbRemove()

The component interfaces (remote, local, remote home, and local home) define remove methods that can be used to
delete an entity from the system. When a client invokes one of the remove methods, as shown in the following code,
the container must delete the entity's data from the database:

CustomerHomeRemote customerHome;

CustomerRemote customer;

customer.remove();

// or

customerHome.remove(customer.getPrimaryKey());

The data deleted from the database includes all the CMP fields. So, for example, when you invoke a remove method on
a Customer EJB, the corresponding record in the CUSTOMER table is deleted.

In CMP, the remove method also removes the link between the CUSTOMER record and the ADDRESS record. However, the
ADDRESS record associated with the CUSTOMER record will not be automatically deleted. The address data will be deleted
along with the customer data only if a cascade delete is specified. A cascade delete must be declared explicitly in the
XML deployment descriptor, as explained in Chapter 7.

The ejbRemove() method in container-managed persistence notifies the entity bean that it's about to be removed and its
data is about to be deleted. This notification occurs after the client invokes one of the remove methods defined in a
component interface but before the container actually deletes the data. It gives the bean developer a chance to do
some last-minute cleanup before the entity is removed. Any cleanup operations that might ordinarily be done in the
ejbPassivate() method should also be done in the ejbRemove() method, because the bean will be pooled after the
ejbRemove() method completes without having its ejbPassivate() method invoked.

In bean-managed persistence, the bean developer is responsible for implementing the logic that deletes the entity
bean's data from the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 ejbHome()
CMP and BMP entity beans can declare home methods that perform operations related to the EJB component but that
are not specific to an entity bean instance. A home method must have a matching implementation in the bean class
with the signature ejbHome<METHOD-NAME>().

For example, the Cruise EJB might define a home method that calculates the total revenue in bookings for a specific
Cruise:

public interface CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public CruiseLocal create(String name, ShipLocal ship);

 public double totalReservationRevenue(CruiseLocal cruise);

}

Every home method declared by the home interfaces must have a corresponding ejbHome<METHOD-NAME>() in the bean
class. For example, the CruiseBean class would have an ejbHomeTotalReservationRevenue() method, as shown in the
following code:

public abstract class CruiseBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(String name, ShipLocal ship) {

 setName(name);

 }

 ...

 public double ejbHomeTotalReservationRevenue(CruiseLocal cruise) {

 Set reservations = ejbSelectReservations(cruise);

 Iterator it = reservations.iterator();

 double total = 0;

 while(it.hasNext()) {

 ReservationLocal res = (ReservationLocal)it.next();

 total += res.getAmount();

 }

 return total;

 }

 public abstract ejbSelectReservations(CruiseLocal cruise);

 ...

}

The ejbHome() methods execute without an identity within the instance pool. This is why ejbHomeTotalReservationRevenue(
) required that a CruiseLocal EJB object reference be passed in to the method. This makes sense once you realize that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) required that a CruiseLocal EJB object reference be passed in to the method. This makes sense once you realize that
the caller is invoking the home method on the entity bean's EJB home object and not an entity bean reference directly.
The EJB home (local or remote) is not specific to any one entity identity.

The bean developer may implement home methods in both bean-managed and container-managed persistence
implementations. The ejbHome() methods of CMP entities typically rely on ejbSelect() methods, while the ejbHome()
methods of BMP implementations frequently use direct database access and find methods to query data and apply
changes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 EntityContext
The first method called by the container after a bean instance is created is setEntityContext(). This method passes the
bean instance a reference to its javax.ejb.EntityContext, which is really the instance's interface to the container.

The setEntityContext() method should be implemented by the entity bean developer so that it places the EntityContext
reference in an instance field of the bean where it will be kept for the life of the instance. The definition of EntityContext
is as follows:

public interface javax.ejb.EntityContext extends javax.ejb.EJBContext {

 public EJBLocalObject getEJBLocalObject() throws IllegalStateException

 public abstract EJBObject getEJBObject() throws IllegalStateException;

 public abstract Object getPrimaryKey() throws IllegalStateException;

}

As the bean instance is swapped from one EJB object to the next, the information obtainable from the EntityContext
changes to reflect the EJB object to which the instance is assigned. This change is possible because the EntityContext is
an interface, not a static class definition, so the container can implement the EntityContext with a concrete class that it
controls. As the entity bean instance is swapped from one EJB object to another, the information made available
through the EntityContext will also change.

The EntityContext.getEJBObject() method returns a remote reference to the bean instance's EJB object. The
EntityContext.getEJBLocalObject() method, on the other hand, returns a local reference to the bean instance's EJB object.

Session beans also define the getEJBObject() and getEJBLocalObject() methods in the SessionContext interface; their
behavior is exactly the same.

The EJB objects obtained from the EntityContext are the same kinds of references that might be used by an application
client, in the case of a remote reference, or another co-located bean, in the case of a local reference. The getEJBObject()
and getEJBLocalObject() methods allow the bean instance to get its own EJB object reference, which it can then pass to
other beans. Here is an example:

public class A_Bean extends EntityBean {

 public EntityContext context;

 public void someMethod() {

 B_BeanRemote b = ... // Get a remote reference to B_Bean.

 EJBObject obj = context.getEJBObject();

 A_BeanRemote mySelf = (A_BeanRemote)

 PortableRemoteObject.narrow(obj,A_BeanRemote.class);

 b.aMethod(mySelf);

 }

 ...

 }

It is illegal for a bean instance to pass a this reference to another bean; instead, it passes its remote or local EJB object
reference, which the bean instance gets from its EntityContext.

The ability of a bean to obtain an EJB object reference to itself is also useful when establishing relationships with other
beans in container-managed persistence. For example, the Customer EJB might implement a business method that
allows it to assign itself a Reservation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allows it to assign itself a Reservation:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public EntityContext context;

 public void assignToReservation(ReservationLocal reservation) {

 EJBLocalObject localRef = context.getEJBLocalObject();

 Collection customers = reservation.getCustomers();

 customers.add(localRef);

 }

 ...

}

The EntityContext.getPrimaryKey() method allows a bean instance to get a copy of the primary key to which it is currently
assigned. Use of this method outside of the ejbLoad() and ejbStore() methods of BMP entity beans is unusual, but the
EntityContext makes the primary key available for those unusual circumstances when it is needed.

As the context in which the bean instance operates changes, some of the information made available through the
EntityContext reference will be changed by the container. This is why the methods in the EntityContext throw the
java.lang.IllegalStateException. The EntityContext is always available to the bean instance, but the instance is not always
assigned to an EJB object. When the bean is between EJB objects (i.e., when it's in the pool), it has no EJB object or
primary key to return. If the getEJBObject(), getEJBLocalObject(), or getPrimaryKey() methods are invoked when the bean
is in the pool, they will throw an IllegalStateException. Appendix B provides tables of allowed operations for each bean
type describing which EJBContext methods can be invoked at what times.

10.4.1 EJBContext

The EntityContext extends the javax.ejb.EJBContext class, which is also the base class for the SessionContext session beans
use. EJBContext defines several methods that provide useful information to a bean at runtime.

Here is the definition of the EJBContext interface:

package javax.ejb;

public interface EJBContext {

 // EJB 2.1 only: TimerService

 public TimerService getTimerService()

 throws java.lang.IllegalStateException;

 // EJB home methods

 public EJBHome getEJBHome()

 java.lang.IllegalStateException;

 public EJBLocalHome getEJBLocalHome()

 java.lang.IllegalStateException;

 // security methods

 public java.security.Principal getCallerPrincipal();

 public boolean isCallerInRole(java.lang.String roleName);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean isCallerInRole(java.lang.String roleName);

 // transaction methods

 public javax.transaction.UserTransaction getUserTransaction()

 throws java.lang.IllegalStateException;

 public boolean getRollbackOnly()

 throws java.lang.IllegalStateException;

 public void setRollbackOnly()

 throws java.lang.IllegalStateException;

 // deprecated methods

 public java.security.Identity getCallerIdentity();

 public boolean isCallerInRole(java.security.Identity role);

 public java.util.Properties getEnvironment();

}

The EJBContext.getTimerService() method (EJB 2.1 only) returns a reference to the container's Time Service, which allows
the entity to set up notifications for itself of timed events. In other words, an entity can set alarms so that the container
will call it when a specific date arrives, or some interval of time has passed. For example, an entity bean might set a
timer as follows:

public class CustomerBean implements EntityBean, TimedObject {

 EntityContext ejbContext;

 ...

 public void scheduleAppointment(Date date, String description){

 TimerService timerService = ejbContext.getTimerServcie();

 timerService.createTimer(date, description);

 }

 public void ejbTimeout(Timer timer){

 // do something when the timer goes off

 }

 ...

}

The scheduleAppointment() method is a business method that's made available to remote clients via the remote interface.
A client can call this method passing in a date and description of an event, which are in turn used to create a timer; to
register the entity for a timed event. In order for an entity to be notified of a timed event it must implement the
javax.ejb.TimedObject interface, which defines one method: ejbTimeout(). When the date of a timed event arrives, the
Timer Service, which is part of the EJB container, will call the ejbTimeout() method. The entity can get details of the
timed event from the javax.ejb.Timer object, including the description. The Timer Service is covered in detail in Chapter
13.

The EJBContext.getEJBHome() and EJBContext.getEJBLocalHome() methods return a reference to the bean's EJB home. This
is useful if the bean needs to create or find entity beans of its own type. Access to the EJB home may be more useful in
BMP entity beans than in CMP entity beans, which have select methods and CMR fields.

As an example, if all of the employees in Titan's system (including managers) are represented by BMP Employee beans,
a manager who needs access to subordinate employees can use the getEJBLocalHome() method to get beans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a manager who needs access to subordinate employees can use the getEJBLocalHome() method to get beans
representing the appropriate employees:

public class EmployeeBean implements EntityBean {

 EntityContext ejbContext;

 ...

 public EmployeeLocal createSubordinate() {

 EmployeeLocal mySelf = (EmployeeLocal)ejbContext.getEJBLocalObject();

 EmployeeHomeLocal home = (EmployeeHomeLocal)ejbContext.getEJBLocalHome();

 EmployeeLocal subordinate = home.createSubordinateTo(mySelf);

 return subordinate;

 }

 ...

}

The EJBContext.getCallerPrincipal() method is used to obtain the java.security.Principal object representing the client that is
currently accessing the bean. The Principal object can, for example, be used by the BMP Ship EJB to track the identities
of clients making updates:

public class ShipBean implements EntityBean {

 String lastModifiedBy;

 EntityContext context;

 ...

 public void setTonnage(double tons) {

 tonnage = tons;

 Principal principal = context.getCallerPrincipal();

 String modifiedBy = principal.getName();

 ...

 }

 ...

}

The EJBContext.isCallerInRole() method tells you whether the client accessing the bean is a member of a specific role,
identified by a role name. This method is useful when more access control is needed than simple method-based access
control can provide. In a banking system, for example, you might allow the Teller role to make most withdrawals but
only the Manager role to make withdrawals of over $10,000. This kind of fine-grained access control cannot be
addressed through EJB's security attributes because it involves a business logic problem. Therefore, we can use the
isCallerInRole() method to augment the automatic access control provided by EJB. First, let's assume that all managers
are also tellers. The business logic in the withdraw() method uses isCallerInRole() to make sure that only the Manager role
can withdraw sums over $10,000.00:

public class AccountBean implements EntityBean {

 int id;

 double balance;

 EntityContext context;

 public void withdraw(Double withdraw) throws AccessDeniedException {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (withdraw.doubleValue() > 10000) {

 boolean isManager = context.isCallerInRole("Manager");

 if (!isManager) {

 // Only Managers can withdraw more than 10k.

 throw new AccessDeniedException();

 }

 }

 balance = balance - withdraw.doubleValue();

 }

 ...

}

The EJBContext contains some methods that were used in EJB 1.0 but were deprecated in EJB 1.1 and have been
abandoned in EJB 2.0 and EJB 2.1. Support for these deprecated methods were optional for EJB 2.0 containers, they
are not supported by EJB 2.1. EJB containers that do not support the deprecated security methods will throw a
RuntimeException. The deprecated security methods are based on EJB 1.0's use of the Identity object instead of the
Principal object. The semantics of the deprecated methods are basically the same but, because Identity is an abstract
class, it has proven to be too difficult to use. Even if your EJB 2.0 vendor supports these deprecated methods, you
should never use them for new entity beans. They should only be used if you are continuing to support legacy EJB 1.0
entities—a fairly rare occurence.

The getEnvironment() method has been replaced by the JNDI environment naming context, which is discussed later in
this book. EJB 2.0 containers may optionally support this method for backward compatibly with legacy EJB 1.0
components, but EJB 2.1 containers do not support this method at all and will throw a RuntimeException if its called. The
transactional methods—getUserTransaction(), setRollbackOnly(), and getRollbackOnly()—are described in detail in Chapter
15.

The material on the EJBContext covered in this section applies equally well to session and message-driven beans. There
are some exceptions, however, and these differences are covered in Chapter 11 and Chapter 12.

10.4.2 JNDI ENC

Starting with EJB 1.1, the bean-container contract for entity and stateful beans was expanded beyond the EJBContext
using the Java Naming and Directory Interface (JNDI). A special JNDI name space, which is referred to as the
environment naming context (ENC), was added to allow any enterprise bean to access environment entries, other
beans, and resources (such as JDBC DataSource objects) specific to that enterprise bean.

The JNDI ENC continues to be an extremely important part of the bean-container contract. Although we used the JNDI
ENC to access JDBC in the bean-managed persistence chapter (Chapter 9), it's not specific to entity beans. The JNDI
ENC is used by session, entity, and message-driven beans alike. To avoid unnecessary duplication, a detailed discussion
of this important facility is left for Chapter 11. What you learn about using the JNDI ENC in Chapter 11 applies equally
well to session, entity, and message-driven beans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 The Life Cycle of an Entity Bean
To understand how to best develop entity beans, it is important to understand how the container manages them. The
EJB specification defines just about every major event in an entity bean's life, from the time it is instantiated to the time
it is garbage collected. This is called the life cycle, and it provides the bean developer and EJB vendors with all the
information they need to develop beans and EJB servers that adhere to a consistent protocol. To understand the life
cycle, we will follow an entity instance through several life-cycle events and describe how the container interacts with
the entity bean during these events. Figure 10-2 illustrates the life cycle of an entity instance.

Figure 10-2. Entity bean life cycle

This section identifies the points at which the container calls each of the methods described in the EntityBean interface as
well as the find methods and the select and home methods. Bean instances must implement the EntityBean interface,
which means that invocations of the callback methods are invocations on the bean instance itself.

At each stage of the entity bean's life cycle, the bean container provides varying levels of access. For example, the
EntityContext.getPrimaryKey() method will not work if it is invoked in the ejbCreate() method, but it does work when called
in the ejbPostCreate() method. Other EJBContext methods have similar restrictions, as does the JNDI ENC.

10.5.1 Does Not Exist

The entity bean begins life as a collection of files. Included in that collection are the bean's deployment descriptor,
component interfaces, and all the supporting classes generated at deployment time. At this stage, no instance of the
bean exists.

10.5.2 The Pooled State

When the EJB server is started, it reads the EJB's files and instantiates several instances of the entity bean's bean class,
which it places in a pool. The instances are created by calling the Class.newInstance() method on the bean class. The
newInstance() method creates an instance using the default constructor, which has no arguments.[2] This means that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newInstance() method creates an instance using the default constructor, which has no arguments.[2] This means that
the persistence fields of the bean instances are set at their default values; the instances themselves do not represent
any data in the database.

[2] Constructors should never be defined in the bean class. The default no-argument constructor, which is implicit if
no other constructors are declared, must be available to the container.

Immediately following the creation of an instance, and just before it is placed in the pool, the container assigns the
instance its EntityContext. The EntityContext is assigned by calling the setEntityContext() method of the EntityBean interface,
which is implemented by the bean class. After the instance has been assigned its context, it is entered into the instance
pool.

In the instance pool, the bean instance is available to the container as a candidate for servicing client requests. Until it
is requested, however, the bean instance remains inactive unless it is used to service a query method (i.e., find or
select method) or ejbHome() request. Bean instances in the Pooled state typically are used to service query and
ejbHome() requests, which makes perfectly good sense because they aren't busy and these methods don't rely on the
bean instance's state. All instances in the Pooled state are equivalent. None of the instances are assigned to an EJB
object, and none of them has meaningful state.

10.5.3 The Ready State

When a bean instance is in the Ready state, it can accept client requests. A bean instance moves to the Ready state
when the container assigns it to an EJB object. This occurs under two circumstances: when a new entity bean is being
created, or when the container is activating an entity.

10.5.3.1 Transitioning from the Pooled state to the Ready state via creation

When a client application invokes a create() method on an EJB home, several operations must take place before the EJB
container can return a remote or local reference (EJB object) to the client. First, an EJB object must be created on the
EJB server.[3] Once the EJB object is created, an entity bean instance is taken from the instance pool and assigned to
the EJB object. Next, the create() method, invoked by the client, is delegated to its corresponding ejbCreate() method on
the bean instance. After the ejbCreate() method completes, a primary key is created.

[3] This is only a conceptual model. In reality, an EJB container and the EJB object may be the same thing, or a
single EJB object may provide a multiplexing service for all entities of the same type. The implementation details
are not as important as understanding the life-cycle protocol.

When the ejbCreate() method is done, the ejbPostCreate() method on the entity bean instance is called. Finally, after the
successful completion of the ejbPostCreate() method, the home is allowed to return a remote or local reference—an EJB
object—to the client. The bean instance and EJB object are now ready to service method requests from the client. This
is one way that the bean instance can move from the Pooled state to the Ready state.

10.5.3.2 Transitioning from the Pooled state to the Ready state via a query
method

When a query method is executed, each EJB object that is found as a result of the query will be realized by transitioning
an instance from the Pooled state to the Ready state. When an entity bean is found, it is assigned to an EJB object and
its EJB object reference is returned to the client. A found bean follows the same protocol as a passivated bean; it is
activated when the client invokes a business method, and will move into the Ready state through activation, as
described in the next section.

In many cases (depending on the EJB vendor), found entity beans don't actually migrate into the Ready state until they
are accessed by the client. So, for example, if a find method returns a collection of entity beans, the entity beans may
not be activated until they are obtained from the collection or accessed directly by the client. Resources are saved by
activating entity beans lazily (as needed).

10.5.3.3 Transitioning from the Pooled state to the Ready state via activation

The activation process can also move an entity bean instance from the Pooled state to the Ready state. Activation
facilitates resource management by allowing a few bean instances to service many EJB objects. Activation was
explained in Chapter 3, but we will revisit the process here as it relates to the entity bean instance's life cycle.
Activation presumes that the entity bean has previously been passivated. More is said about this state transition later;
for now, suffice it to say that when a bean instance is passivated, it frees any resources that it does not need and
leaves the EJB object for the instance pool. When the bean instance returns to the pool, the EJB object is left without an
instance to which to delegate client requests. The EJB object maintains its stub connection on the client, so as far as the
client is concerned, the entity bean hasn't changed. When the client invokes a business method on the EJB object, the
EJB object must obtain a bean instance. This is accomplished by activating a bean instance.

When a bean instance is activated, it leaves the instance pool (the Pooled state) to be assigned to an EJB object. Once
assigned to the proper EJB object, the ejbActivate() method is called—the instance's EntityContext can now provide

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assigned to the proper EJB object, the ejbActivate() method is called—the instance's EntityContext can now provide
information specific to the EJB object, but it cannot provide security or transactional information. The ejbActivate()
callback method can be used in the bean instance to reobtain resources or perform any other necessary work before
servicing the client.

When an entity bean instance is activated, nonpersistent instance fields of the bean instance may contain arbitrary
(dirty) values and should be reinitialized in the ejbActivate() method.

In container-managed persistence, container-managed fields are automatically synchronized with the database after
ejbActivate() is invoked and before a business method can be serviced by the bean instance. The order in which these
things happen in CMP entity beans is:

1. ejbActivate() is invoked on the bean instance.

2. Persistence fields are synchronized automatically.

3. ejbLoad() notifies the bean that its persistence fields have been synchronized.

4. Business methods are invoked as needed.

In bean-managed persistence, persistence fields are synchronized by the ejbLoad() method after ejbActivate() has been
called and before a business method can be invoked. Here is the order of operations in bean-managed persistence:

1. ejbActivate() is invoked on the bean instance.

2. ejbLoad() is called to let the bean synchronize its persistence fields.

3. Business methods are invoked as needed.

10.5.3.4 Transitioning from the Ready state to the Pooled state via passivation

A bean can move from the Ready state to the Pooled state via passivation, which is the process of disassociating a bean
instance from an EJB object when it is not busy. After a bean instance has been assigned to an EJB object, the EJB
container can passivate the instance at any time, provided that the instance is not currently executing a method. As
part of the passivation process, the ejbPassivate() method is invoked on the bean instance. This callback method can be
used by the instance to release any resources or perform other processing prior to leaving the EJB object. When
ejbPassivate() has completed, the bean instance is disassociated from the EJB object server and returned to the instance
pool. The bean instance is now back in the Pooled state.

A bean-managed entity instance should not try to save its state to the database in the ejbPassivate() method; this
activity is reserved for the ejbStore() method. The container will invoke ejbStore() to synchronize the bean instance's
state with the database prior to passivating the bean.

The most fundamental thing to remember is that, for entity beans, passivation is simply a notification that the instance
is about to be disassociated from the EJB object. Unlike stateful session beans, an entity bean instance's fields are not
serialized and held with the EJB object when the bean is passivated. Whatever values were held in the instance's
nonpersistent fields when the entity bean was assigned to the EJB object will be carried with it to its next assignment.

10.5.3.5 Transitioning from the Ready state to the Pooled state via removal

A bean instance also moves from the Ready state to the Pooled state when it is removed. This occurs when the client
application invokes one of the remove methods on the bean's EJB object or EJB home. With entity beans, invoking a
remove method deletes the entity's data from the database. Once the entity's data has been deleted from the
database, it is no longer a valid entity.

Once the ejbRemove() method has finished, the bean instance is moved back to the instance pool and out of the Ready
state. It is important that the ejbRemove() method release any resources that would normally be released by
ejbPassivate(), which is not called when a bean is removed. This can be done, if need be, by invoking the ejbPassivate()
method within the ejbRemove() method body.

In bean-managed persistence, the ejbRemove() method is implemented by the entity bean developer and includes code
to delete the entity bean's data from the database. The EJB container will invoke the ejbRemove() method in response to
a client's invocation of the remove() method on one of the component interfaces.

In container-managed persistence, the ejbRemove() method notifies the entity bean instance that its data is about to be
removed from the database. Immediately following the ejbRemove() call, the container deletes the entity bean's data.

In CMP the container also cleans up the entity bean's relationships with other entity beans in the database. If a cascade
delete is specified, it removes each entity bean in the cascade delete relationships. This involves activating each entity
bean and calling its ejbActivate() methods, loading each entity bean's state by calling its ejbLoad() method, calling the
ejbRemove() on all of the entity beans in the cascade-delete relationship, and then deleting their data. This process can
continue in a chain until all the cascade-delete operations of all the relationships have completed.

10.5.4 Life in the Ready State

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A bean is in the Ready state when it is associated with an EJB object and is ready to service requests from the client.
When the client invokes a business method, like Ship.getName(), on the bean's remote or local reference (EJB object),
the method invocation is received by the EJB server and delegated to the bean instance. The instance performs the
method and returns the results. As long as the bean instance is in the Ready state, it can service all the business
methods invoked by the client. Business methods can be called zero or more times, in any order.

In addition to servicing business methods, an entity bean in the Ready state can execute select methods, which are
called by the bean instance while servicing a business method.

The ejbLoad() and ejbStore() methods, which synchronize the bean instance's state with the database, can be called only
when the bean is in the Ready state. These methods can be called in any order, depending on the vendor's
implementation. Some vendors call ejbLoad() before every method invocation and ejbStore() after every method
invocation, depending on the transactional context. Other vendors call these methods less frequently.

In bean-managed persistence, the ejbLoad() method should always use the EntityContext.getPrimaryKey() method to
obtain data from the database and should not trust any primary key or other data that the bean has stored in its fields.
(This is how we implemented it in the bean-managed version of the Ship bean in Chapter 9.) It should be assumed,
however, that the state of the bean is valid when calling the ejbStore() method.

In container-managed persistence, the ejbLoad() method is always called immediately following the synchronization of
the bean's container-managed fields with the database—in other words, right after the container updates the state of
the bean instance with data from the database. This provides an opportunity to perform any calculations or reformat
data before the instance can service business-method invocations from the client. The ejbStore() method is called just
before the database is synchronized with the state of the bean instance—just before the container writes the container-
managed fields to the database. This provides the CMP entity bean instance with an opportunity to change the data in
the container-managed fields prior to their persistence to the database.

In bean-managed persistence, the ejbLoad() and ejbStore() methods are called when the container deems it appropriate
to synchronize the bean's state with the database. These are the only callback methods that should be used to
synchronize the bean's state with the database. Do not use ejbActivate(), ejbPassivate(), setEntityContext(), or
unsetEntityContext() to access the database for the purpose of synchronization. You should use the ejbCreate() and
ejbRemove() methods, however, to insert and delete (respectively) the entity's data into and from the database.

10.5.5 End of the Life Cycle

A bean instance's life cycle ends when the container decides to remove it from the pool and allow it to be garbage
collected. This happens under a few different circumstances. If the container decides to reduce the number of instances
in the pool—usually to conserve resources—it releases one or more bean instances and allows them to be garbage
collected. The ability to adjust the size of the instance pool allows the EJB server to manage its resources (the number
of threads, available memory, etc.) so that it can achieve the highest possible performance.

When an EJB server is shut down, most containers release all the bean instances so that they can be safely garbage
collected. Some containers may also decide to release any instances that are behaving unfavorably or that have
suffered from some kind of unrecoverable error that makes them unstable. For example, any time an entity bean
instance throws a type of RuntimeException from any of its methods, the EJB container will evict that instance from
memory and replace it with a stable instance from the instance pool.

When an entity bean instance leaves the instance pool to be garbage collected, the unsetEntityContext() method is
invoked by the container to alert the bean instance that it is about be destroyed. This callback method lets the bean
instance release any resources it maintains before being garbage collected. Once the bean's unsetEntityContext() method
has been called, it is garbage collected.

The bean instance's finalize() method may or may not be invoked following the unsetEntityContext() method. A bean
should not rely on its finalize() method, since each vendor handles evicting instances differently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. The Entity-Container Contract
Although CMP and BMP entities are programmed differently, their relationships to the container system at runtime is
very similar. This chapter covers the relationship between EJBs and their containers. It includes discussions of primary
keys, callback methods, and the entity bean life cycle. When differences between CMP and BMP are important, they will
be noted.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.1 The Stateless Session Bean
A stateless session bean is very efficient and relatively easy to develop. A session bean can be swapped freely between
EJB objects because it isn't dedicated to one client and doesn't maintain any conversational state. As soon as it is
finished servicing a method invocation it can be swapped to another EJB object. Because it does not maintain
conversational state, a stateless session bean does not require passivation or activation, further reducing the overhead
of swapping. In short, stateless session beans are lightweight and fast.

Saying that a stateless session bean doesn't maintain any conversational state means that every method invocation is
independent of previous invocations, and that everything the method needs to know has to be passed via the method's
parameters. Since stateless session beans can't remember anything from one method invocation to the next, they must
take care of an entire task in one method invocation. The only exception to this rule is information obtainable from the
SessionContext and the JNDI ENC. Stateless session beans are EJB's version of the traditional transaction-processing
applications, which are executed using a procedure call. The procedure executes from beginning to end and then
returns the result. Once the procedure is done, nothing about the data that was manipulated or the details of the
request are remembered.

These restrictions don't mean that a stateless session bean can't have instance variables or maintain any kind of
internal state. Nothing prevents you from keeping a variable that tracks the number of times a bean has been called or
that saves data for debugging. An instance variable can even hold a reference to a live resource, such as a URL
connection for logging, verifying credit cards, or anything else that might be useful—the resource should be obtained
from the JNDI ENC. However, it is important to remember that this state can never be visible to a client. A client can't
assume that the same bean instance will service all of its requests. Instance variables may have different values in
different bean instances, so their values can appear to change randomly as stateless session beans are swapped from
one client to another. Therefore, any resources you reference in instance variables should be generic. For example,
each bean instance might reasonably record debugging messages—that might be the only way to figure out what is
happening on a large server with many bean instances. The client doesn't know or care where debugging output is
going. However, it would clearly be inappropriate for a stateless bean to remember that it was in the process of making
a reservation for Madame X—the next time it is called, it may be servicing another client entirely.

Stateless session beans can be used for report generation, batch processing, or some stateless services such as
validating credit cards. Another good application might be a StockQuote EJB that returns a stock's current price. Any
activity that can be accomplished in one method call is a good candidate for the high-performance stateless session
bean.

11.1.1 The ProcessPayment EJB

Chapter 2 and Chapter 3 discussed the TravelAgent EJB, which has a business method called bookPassage() that uses
the ProcessPayment EJB. The next section develops a complete definition of the TravelAgent EJB, including the logic of
the bookPassage() method. At this point, however, we are primarily interested in the ProcessPayment EJB, which is a
stateless bean the TravelAgent EJB uses to charge the customer for the price of the cruise. Charging customers is a
common activity in Titan's business systems. Not only does the reservation system need to charge customers, but so do
Titan's gift shops, boutiques, and other related businesses. Because many different systems charge customers for
services, we've encapsulated the logic for charging customers in its own bean.

Payments are recorded in a special database table called PAYMENT. The PAYMENT data is batch processed for accounting
purposes and is not normally used outside of accounting. In other words, the data is only inserted by Titan's system; it
is not read, updated, or deleted. Because the process of making a charge can be completed in one method, and
because the data is not updated frequently or shared, we will use a stateless session bean for processing payments.
Several different forms of payment can be used: credit card, check, or cash. We will model these payment forms in our
stateless ProcessPayment EJB.

11.1.1.1 The database table (PAYMENT)

The ProcessPayment EJB accesses an existing table in Titan's system called the PAYMENT table. Create a table in your
database called PAYMENT with this definition:

CREATE TABLE PAYMENT

(

 customer_id INTEGER,

 amount DECIMAL(8,2),

 type CHAR(10),

 check_bar_code CHAR(50),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 check_bar_code CHAR(50),

 check_number INTEGER,

 credit_number CHAR(20),

 credit_exp_date DATE

)

11.1.1.2 The remote interface (ProcessPaymentRemote)

A stateless session bean, like an entity bean, may have a local or remote interface, or both. The remote interface
obviously needs a byCredit() method because the TravelAgent EJB uses it. We can also identify two other methods that
we'll need: byCash() for customers paying cash and byCheck() for customers paying with a personal check. Here is a
complete definition of the remote interface for the ProcessPayment EJB:

package com.titan.processpayment;

import java.rmi.RemoteException;

import com.titan.customer.CustomerRemote;

public interface ProcessPaymentRemote extends javax.ejb.EJBObject {

 public boolean byCheck(CustomerRemote customer, CheckDO check, double amount)

 throws RemoteException,PaymentException;

 public boolean byCash(CustomerRemote customer, double amount)

 throws RemoteException,PaymentException;

 public boolean byCredit(CustomerRemote customer, CreditCardDO card,

 double amount) throws RemoteException,PaymentException;

}

Remote interfaces in session beans follow the same rules as in entity beans. Here, we have defined the three business
methods byCheck(), byCash(), and byCredit(), which take information relevant to the form of payment used and return a
boolean value that indicates whether the payment succeeded. In addition to the required RemoteException, these methods
can throw an application-specific exception, the PaymentException. The PaymentException is thrown if any problems occur
while processing the payment, such as a low check number or an expired credit card. Notice, however, that nothing
about the ProcessPaymentRemote interface is specific to the reservation system. It could be used just about anywhere in
Titan's system. In addition, each method defined in the remote interface is completely independent of the others. All
the data that is required to process a payment is obtained through the method's arguments.

As an extension of the javax.ejb.EJBObject interface, the remote interface of a session bean inherits the remote interface
of an entity bean. However, the getPrimaryKey() method throws a RemoteException, since session beans do not have a
primary key to return:

public interface javax.ejb.EJBObject extends java.rmi.Remote {

 public abstract EJBHome getEJBHome() throws RemoteException;

 public abstract Handle getHandle() throws RemoteException;

 public abstract Object getPrimaryKey() throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract Object getPrimaryKey() throws RemoteException;

 public abstract boolean isIdentical(EJBObject obj) throws RemoteException;

 public abstract void remove() throws RemoteException, RemoveException;

}

The getHandle() method returns a serializable Handle object, just like the getHandle() method in the entity bean. A
stateless session bean can serialize and reuse this Handle at any time, as long as the stateless bean type is still available
in the container that generated the Handle. You can obtain a remote reference to the bean from the Handle by invoking
its getEJBObject() method:

public interface javax.ejb.Handle {

 public abstract EJBObject getEJBObject() throws RemoteException;

}

The ProcessPayment EJB has its own package, which means it has its own directory in our development tree,
dev/com/titan/processpayment. That's where we'll store all the code and class files for this bean.

11.1.1.3 Dependent objects (CreditCardDO and CheckDO classes)

The ProcessPayment EJB's remote interface uses two classes that are particularly interesting, CreditCardDO and CheckDO:

/* CreditCardDO.java */

package com.titan.processpayment;

import java.util.Date;

public class CreditCardDO implements java.io.Serializable {

 final static public String MASTER_CARD = "MASTER_CARD";

 final static public String VISA = "VISA";

 final static public String AMERICAN_EXPRESS = "AMERICAN_EXPRESS";

 final static public String DISCOVER = "DISCOVER";

 final static public String DINERS_CARD = "DINERS_CARD";

 public String number;

 public Date expiration;

 public String type;

 public CreditCardDO(String nmbr, Date exp, String typ) {

 number = nmbr;

 expiration = exp;

 type = typ;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

}

/* CheckDO.java */

package com.titan.processpayment;

public class CheckDO implements java.io.Serializable {

 public String checkBarCode;

 public int checkNumber;

 public CheckDO(String barCode, int number) {

 checkBarCode = barCode;

 checkNumber = number;

 }

}

CreditCardDO and CheckDO are dependent objects, a concept we explored with the Address EJB in Chapter 6. They are
simply serializable Java classes, not enterprise beans; they provide a convenient mechanism for transporting related
data. CreditCardDO, for example, collects all the credit card data together in one class, making it easier to pass the
information across the network as well as making our interfaces a little cleaner.

11.1.1.4 An application exception (PaymentException)

Any remote or local interface, whether it's for an entity bean or a session bean, can throw application exceptions.
Application exceptions should describe a business logic problem—in this case, a problem making a payment. Application
exceptions should be meaningful to the client, providing a brief and relevant identification of the error.

It is important to understand what exceptions to use and when to use them. The RemoteException indicates subsystem-
level problems and is used by the RMI facility. Likewise, exceptions such as javax.naming.NamingException and
java.sql.SQLException are thrown by other Java subsystems; usually these should not be thrown explicitly by your beans.
You must use try/catch blocks to capture checked exceptions like these.

The EJBException indicates that the container ran into problems processing a local interface invocation. EJBException is
unchecked, so you won't get a compile error if you don't catch it. However, under certain circumstances it is a good
idea to catch EJBException, and in other circumstances it should be propagated.

When a bean method catches a checked exception from a subsystem (JDBC, JNDI, JMS, etc.), it should be rethrown as
either an EJBException or an application exception. You would rethrow a checked exception as an EJBException if it
represented a system-level problem; use an application exception if the original exception resulted from business logic
problems. Your beans incorporate your business logic; if a problem occurs in the business logic, that problem should be
represented by an application exception. When the enterprise bean throws an EJBException or some other type of
RuntimeException, the exception is first processed by the container, which discards the bean instance and replaces it with
another. After the container processes the exception, it propagates an exception to the client. For remote clients, the
container throws a RemoteException; for local clients (co-located enterprise beans), the container rethrows the original
EJBException or RuntimeException thrown by the bean instance.

The PaymentException describes a specific business problem, so it is an application exception. Application exceptions
extend java.lang.Exception. Any instance variables you include in these exceptions should be serializable. Here is the
definition of the PaymentException:

package com.titan.processpayment;

public class PaymentException extends java.lang.Exception {

 public PaymentException() {

 super();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 super();

 }

 public PaymentException(String msg) {

 super(msg);

 }

}

11.1.1.5 The home interface (ProcessPaymentHomeRemote)

The home interface of a stateless session bean must declare a single create() method with no arguments. This is a
requirement of the EJB specification. It is illegal to define create() methods with arguments, because stateless session
beans do not maintain conversational state that needs to be initialized. There are no find methods in session beans
either, because session beans do not represent data in the database. Unlike stateful session beans and entity beans,
stateless session beans may not define any create<SUFFIX>() methods. This restriction has to do with the life cycle of
stateless session beans, which is explained later in this chapter. Here is the definition of the remote home interface for
the ProcessPayment EJB:

package com.titan.processpayment;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

public interface ProcessPaymentHomeRemote extends javax.ejb.EJBHome {

 public ProcessPaymentRemote create() throws RemoteException, CreateException;

}

The CreateException is mandatory, as is the RemoteException. The CreateException can be thrown by the bean itself to
indicate an application error in creating the bean. A RemoteException is thrown when other system errors occur—for
example, when there is a problem with network communication or when an unchecked exception is thrown from the
bean class.

The ProcessPaymentHomeRemote interface, as an extension of the javax.ejb.EJBHome, offers the same EJBHome methods as
entity beans. The only difference is that remove(Object primaryKey) does not work, because session beans do not have
primary keys; if this method is called, it throws a RemoteException. Here is the definition of the javax.ejb.EJBHome
interface:

public interface javax.ejb.EJBHome extends java.rmi.Remote {

 public abstract HomeHandle getHomeHandle() throws RemoteException;

 public abstract EJBMetaData getEJBMetaData() throws RemoteException;

 public abstract void remove(Handle handle) throws RemoteException,

 RemoveException;

 public abstract void remove(Object primaryKey) throws RemoteException,

 RemoveException;

}

The home interface of a session bean can return the EJBMetaData for the bean, just like an entity bean. EJBMetaData is a
serializable object that provides information about the bean's interfaces. The only difference between the EJBMetaData
for a session bean and an entity bean is that calling getPrimaryKeyClass() on the session bean's EJBMetaData throws a
java.lang.RuntimeException:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.lang.RuntimeException:

public interface javax.ejb.EJBMetaData {

 public abstract EJBHome getEJBHome();

 public abstract Class getHomeInterfaceClass();

 public abstract Class getPrimaryKeyClass();

 public abstract Class getRemoteInterfaceClass();

 public abstract boolean isSession();

 public abstract boolean isStateless(); // EJB 1.0 only

}

11.1.1.6 The bean class (ProcessPaymentBean)

The ProcessPayment EJB accesses data that is not generally shared by other parts of the system, so it is an excellent
candidate for a stateless session bean. This bean really represents a set of independent operations—another indication
that it is a good candidate for a stateless session bean. Here is the definition of the ProcessPaymentBean class:

package com.titan.processpayment;

import com.titan.customer.*;

import java.sql.*;

import java.rmi.RemoteException;

import javax.ejb.SessionContext;

import javax.naming.InitialContext;

import javax.sql.DataSource;

import javax.ejb.EJBException;

import javax.naming.NamingException;

public class ProcessPaymentBean implements javax.ejb.SessionBean {

 final public static String CASH = "CASH";

 final public static String CREDIT = "CREDIT";

 final public static String CHECK = "CHECK";

 public SessionContext context;

 public void ejbCreate() {

 }

 public boolean byCash(CustomerRemote customer, double amount)

 throws PaymentException{

 return process(getCustomerID(customer), amount, CASH, null, -1, null, null);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return process(getCustomerID(customer), amount, CASH, null, -1, null, null);

 }

 public boolean byCheck(CustomerRemote customer, CheckDO check, double amount)

 throws PaymentException{

 int minCheckNumber = getMinCheckNumber();

 if (check.checkNumber > minCheckNumber) {

 return process(getCustomerID(customer), amount, CHECK,

 check.checkBarCode, check.checkNumber, null, null);

 }

 else {

 throw new PaymentException("Check number is too low.

 Must be at least "+minCheckNumber);

 }

 }

 public boolean byCredit(CustomerRemote customer, CreditCardDO card,

 double amount) throws PaymentException {

 if (card.expiration.before(new java.util.Date())) {

 throw new PaymentException("Expiration date has passed");

 }

 else {

 return process(getCustomerID(customer), amount, CREDIT, null,

 -1, card.number, new java.sql.Date(card.expiration.getTime()));

 }

 }

 private boolean process(Integer customerID, double amount, String type,

 String checkBarCode, int checkNumber, String creditNumber,

 java.sql.Date creditExpDate) throws PaymentException {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = getConnection();

 ps = con.prepareStatement

 ("INSERT INTO payment (customer_id, amount, type,"+

 "check_bar_code,check_number,credit_number,"+

 "credit_exp_date) VALUES (?,?,?,?,?,?,?)");

 ps.setInt(1,customerID.intValue());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ps.setInt(1,customerID.intValue());

 ps.setDouble(2,amount);

 ps.setString(3,type);

 ps.setString(4,checkBarCode);

 ps.setInt(5,checkNumber);

 ps.setString(6,creditNumber);

 ps.setDate(7,creditExpDate);

 int retVal = ps.executeUpdate();

 if (retVal!=1) {

 throw new EJBException("Payment insert failed");

 }

 return true;

 } catch(SQLException sql) {

 throw new EJBException(sql);

 } finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbRemove() {}

 public void setSessionContext(SessionContext ctx) {

 context = ctx;

 }

 private Integer getCustomerID(CustomerRemote customer) {

 try {

 return (Integer)customer.getPrimaryKey();

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

 }

 private Connection getConnection() throws SQLException {

 // Implementations shown below

 }

 private int getMinCheckNumber() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private int getMinCheckNumber() {

 // Implementations shown below

 }

}

The three payment methods all use the private helper method process(), which does the work of adding the payment to
the database. This strategy reduces the possibility of programmer error and makes the bean easier to maintain. The
process() method simply inserts the payment information into the PAYMENT table. The JDBC connection is obtained from
the getConnection() method:

private Connection getConnection() throws SQLException {

 try {

 InitialContext jndiCntx = new InitialContext();

 DataSource ds = (DataSource)

 jndiCntx.lookup("java:comp/env/jdbc/titanDB");

 return ds.getConnection();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

The byCheck() and byCredit() methods contain some logic to validate the data before processing it. byCredit() verifies
that the credit card's expiration date does not precede the current date. If it does, a PaymentException is thrown. byCheck(
) verifies that the serial number of the check is above a certain minimum, which is determined by a property that is
defined when the bean is deployed. If the check number is below this value, a PaymentException is thrown. The property
is obtained from the getMinCheckNumber() method, which uses the JNDI ENC to read the value of the minCheckNumber
property:

private int getMinCheckNumber() {

 try {

 InitialContext jndiCntx = new InitialContext();

 Integer value = (Integer)

 jndiCntx.lookup("java:comp/env/minCheckNumber");

 return value.intValue();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

It is a good idea to capture thresholds and other limits in the bean's environment properties, rather than hardcoding
them: it gives you greater flexibility. If, for example, Titan decided to raise the minimum check number, you would
need to change the bean's deployment descriptor only, not the class definition. (You could also obtain this type of
information directly from the database.)

11.1.1.7 Accessing environment properties (JNDI ENC)

In EJB, the bean container contract includes the JNDI environment naming context (JNDI ENC). The JNDI ENC is a JNDI
namespace that is specific to each bean type. This namespace can be referenced from within any bean, not just entity
beans, using the name "java:comp/env". The enterprise naming context provides a flexible, yet standard mechanism for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

beans, using the name "java:comp/env". The enterprise naming context provides a flexible, yet standard mechanism for
accessing properties, other beans, and resources from the container.

We've already seen the JNDI ENC several times. In Chapter 9, we used it to access a resource factory, the DataSource.
The ProcessPaymentBean also uses the JNDI ENC to access a DataSource in the getConnection() method. Furthermore, it
uses the JNDI ENC to access an environment property in the getMinCheckNumber() method. This section examines the
use of the JNDI ENC to access environment properties.

Named properties can be declared and their values defined in a bean's deployment descriptor. The bean accesses these
properties at runtime by using the JNDI ENC. Properties can be of type String or one of several primitive wrapper types,
including Integer, Long, Double, Float, Byte, Boolean, and Short. By setting the values of the relevant properties, the bean
deployer can change the bean's behavior without changing its code. As we've seen in the ProcessPayment EJB, we could
change the minimum check number that we're willing to accept by modifying the minCheckNumber property at
deployment.

Here's how to declare a named property:

<ejb-jar ...>

 <enterprise-beans>

 <session>

 <env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

 </env-entry>

 ...

 </session>

 ...

 </enterprise-beans>

 ...

</ejb-jar>

11.1.1.8 The ProcessPayment EJB's deployment descriptor

Deploying the ProcessPayment EJB presents no significant problems. It is essentially the same as deploying an entity
bean, except that the ProcessPayment EJB has no primary key or persistence fields. Here is the XML deployment
descriptor for the ProcessPayment EJB in EJB 2.1:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <description>

 A service that handles monetary payments.

 </description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </description>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

 <ejb-class>

 com.titan.processpayment.ProcessPaymentBean

 </ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

 </env-entry>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the ProcessPayment EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>ProcessPaymentEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The deployment descriptor for EJB 2.0 is exactly the same, except it's based on a DTD instead of an XML Schema, so it
uses a document declaration and has a simpler <ejb-jar> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 ...

Exercise 11.1 in the Workbook shows how to deploy these examples.

11.1.1.9 Local component interfaces

Like entity beans, stateless session beans can define local component interfaces. Local interfaces allow other beans in
the same container to use the stateless session bean more efficiently. The process of defining local interfaces for a
stateless or stateful session bean is the same as for entity beans. The local interfaces extend javax.ejb.EJBLocalObject (for
business methods) and javax.ejb.EJBLocalHome (for the home interfaces). These interfaces are then defined in the XML
deployment descriptor in the <local> and <local-home> elements.

For the sake of brevity, we will not define local interfaces for either the stateless ProcessPayment EJB or the stateful
TravelAgent EJB developed later in this chapter. Your experience creating local interfaces for entity beans in Chapter 5,
Chapter 6, and Chapter 7 can be applied easily to any kind of session bean.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.2 The Life Cycle of a Stateless Session Bean
The life cycle of a stateless session bean is very simple. It only has two states: Does Not Exist and Method-Ready Pool.
The Method-Ready Pool is similar to the instance pool used for entity beans. This is an important difference between
stateless and stateful session beans; stateless beans define instance pooling in their life cycle and stateful beans do
not.[1] Figure 11-1 illustrates the states and transitions a stateless session bean instance goes through in its lifetime.

[1] Some vendors may not pool stateless instances, but may instead create and destroy instances with each
method invocation. This is an implementation-specific decision that shouldn't affect the specified life cycle of the
stateless bean instance.

Figure 11-1. Stateless session bean life cycle

11.2.1 Does Not Exist

When a bean is in the Does Not Exist state, it is not an instance in the memory of the system. In other words, it has not
been instantiated yet.

11.2.2 The Method-Ready Pool

Stateless bean instances enter the Method-Ready Pool as the container needs them. When the EJB server is first
started, it may create a number of stateless bean instances and enter them into the Method-Ready Pool. (The actual
behavior of the server depends on the implementation.) When the number of stateless instances servicing client
requests is insufficient, more can be created and added to the pool.

11.2.2.1 Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three operations are performed
on it. First, the bean instance is instantiated by invoking the Class.newInstance() method on the stateless bean class.
Second, the bean instance's setSessionContext(SessionContext context) method is invoked. This is when the instance
receives its reference to the EJBContext. The SessionContext reference may be stored in a nontransient instance field of
the stateless session bean. Finally, the bean's no-argument ejbCreate() method is invoked. Remember that a stateless
session bean has only one ejbCreate() method, which takes no arguments. ejbCreate() is invoked only once in the life
cycle of the stateless session bean.

Entity, session, and message-driven beans must never define constructors. Take care of
initialization within ejbCreate() and other callback methods. The container instantiates
instances of the bean class using Class.newInstance(), which requires a no-argument
constructor. If no constructors are defined, the no-augment constructor is implicit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constructor. If no constructors are defined, the no-augment constructor is implicit.

Stateless session beans are not subject to activation, so they can maintain open connections to resources for their
entire life cycles.[2] The ejbRemove() method should close any open resources before the stateless session bean is
evicted from memory at the end of its life cycle. You'll read more about ejbRemove() later in this section.

[2] The duration of a stateless bean instance's life is assumed to be very long. However, some EJB servers may
actually destroy and create instances with every method invocation, making this strategy less attractive. Consult
your vendor's documentation for details on how your EJB server handles stateless instances.

11.2.2.2 Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to service client requests. When a client invokes a business
method on an EJB object, the method call is delegated to any available instance in the Method-Ready Pool. While the
instance is executing the request, it is unavailable for use by other EJB objects. Once the instance has finished, it is
immediately available to any EJB object that needs it. This is slightly different from the instance pool for entity beans
described in Chapter 10. In the entity instance pool, a bean instance might be swapped in to service an EJB object for
several method invocations. Stateless session instances are typically dedicated to an EJB object only for the duration of
a single method call.

When an instance is swapped in, its SessionContext changes to reflect the context of the EJB object and the client
invoking the method. The bean instance may be included in the transactional scope of the client's request and it may
access SessionContext information specific to the client request: for example, the security and transactional methods.
Once the instance has finished servicing the client, it is disassociated from the EJB object and returned to the Method-
Ready Pool.

Stateless session beans are not subject to activation and never have their ejbActivate() or ejbPassivate() callback
methods invoked. The reason is simple: stateless instances have no conversational state to be preserved. (Stateful
session beans depend on activation, as we'll see later.)

Clients that need a remote or local reference to a stateless session bean begin by invoking the create() method on the
bean's EJB home:

Object ref = jndiConnection.lookup("ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote home = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

ProcessPaymentRemote pp = home.create();

Unlike the entity bean and stateful session bean, invoking the create() method does not result in a call to the bean's
ejbCreate() method. In stateless session beans, calling the EJB home's create() method results in the creation of an EJB
object for the client, but that is all. ejbCreate() is invoked only once in the life cycle of an instance: when it is
transitioning from the Does Not Exist state to the Method-Ready Pool. It is not reinvoked every time a client requests a
remote reference to the bean. Stateless session beans are limited to a single no-argument create() method because
there is no way for the container to anticipate which create() method the client will invoke.

11.2.2.3 Transitioning out of the Method-Ready Pool: The death of a stateless
bean instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when the server no longer needs them; that
is, when the server decides to reduce the total size of the Method-Ready Pool by evicting one or more instances from
memory. The process begins by invoking the ejbRemove() method on the instance. At this time, the bean instance
should perform any cleanup operations, such as closing open resources. As with ejbCreate(), ejbRemove() is invoked only
once: when the bean is about to transition to the Does Not Exist state. When a client invokes one of a stateless session
bean's remove methods, the bean's stub is invalidated, and the container is notified that the bean is no longer needed,
but the bean itself is not removed. The container itself invokes ejbRemove() on the stateless instance at the end of the
instance's life cycle—when it decides it no longer needs to maintain this instance in the pool. Again, this is different
from both stateful session beans and entity beans, which suffer more destructive consequences when the client invokes
a remove method. During the ejbRemove() method, the SessionContext and access to the JNDI ENC are still available to
the bean instance. Following the execution of the ejbRemove() method, the bean is dereferenced and eventually garbage
collected.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.3 The Stateful Session Bean
Each stateful session bean is dedicated to one client for the life of the bean instance; it acts on behalf of that client as
its agent. Stateful session beans are not swapped among EJB objects or kept in an instance pool like entity and
stateless session bean instances. Once a stateful session bean is instantiated and assigned to an EJB object, it is
dedicated to that EJB object for its entire life cycle.[3]

[3] This is a conceptual model. Some EJB containers may actually use instance swapping with stateful session
beans but make it appear as if the same instance is servicing all requests. Conceptually, however, the same
stateful session bean instance services all requests.

Stateful session beans maintain conversational state, which means that the instance variables of the bean class can
maintain data specific to the client between method invocations. This makes it possible for methods to be
interdependent, so that changes made to the bean's state in one method call can affect the results of subsequent
method invocations. Therefore, every method call from a client must be serviced by the same instance (at least
conceptually), so the bean instance's state can be predicted from one method invocation to the next. In contrast,
stateless session beans don't maintain client-specific data from one method call to the next, so any instance can be
used to service any method call from any client.

Although stateful session beans maintain conversational state, they are not themselves persistent like entity beans.
Entity beans represent data in the database; their persistence fields are written directly to the database. Stateful
session beans can access the database but do not represent data in the database. In addition, stateful beans are not
used concurrently like entity beans. If you have an entity EJB object that wraps an instance of the ship called Paradise,
for example, all client requests for that ship will be coordinated through the same EJB object.[4] With stateful session
beans, the EJB object is dedicated to one client—stateful session beans are not used concurrently.

[4] This is also a conceptual model. Some EJB containers may use separate EJB objects for concurrent access to the
same entity, relying on the database to control concurrency. Conceptually, however, the end result is the same.

Stateful session beans are often considered extensions of the client. This makes sense if you think of a client as being
made up of operations and state. Each task may rely on some information gathered or changed by a previous
operation. A GUI client is a perfect example: when you fill in the fields on a GUI client you are creating conversational
state. Pressing a button executes an operation that might fill in more fields, based on the information you entered
previously. The information in the fields is conversational state.

Stateful session beans allow you to encapsulate some of the business logic and conversational state of a client and
move it to the server. Moving this logic to the server thins the client application and makes the system as a whole
easier to manage. The stateful session bean acts as an agent for the client, managing processes or taskflow to
accomplish a set of tasks; it manages the interactions of other beans in addition to direct data access over several
operations to accomplish a complex set of tasks. By encapsulating and managing taskflow on behalf of the client,
stateful beans present a simplified interface that hides the details of many interdependent operations on the database
and other beans from the client.

11.3.1 Getting Set Up for the TravelAgent EJB

The TravelAgent EJB will make use of the Cabin, Cruise, Reservation, and Customer beans developed in Chapter 6 and
Chapter 7. It will coordinate the interaction of these entity beans to book a passenger on a cruise. We'll modify the
Reservation EJB that was used in Chapter 7 so that it can be created with all its relationships identified right away. To
do so, we overload its ejbCreate() method:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(CustomerRemote customer, CruiseLocal cruise,

 CabinLocal cabin, double price, Date dateBooked) {

 setAmountPaid(price);

 setDate(dateBooked);

 return null;

 }

 public void ejbPostCreate(CustomerRemote customer, CruiseLocal cruise,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ejbPostCreate(CustomerRemote customer, CruiseLocal cruise,

 CabinLocal cabin, double price, Date dateBooked)

 throws javax.ejb.CreateException {

 setCruise(cruise);

 // add Cabin to collection-based CMR field

 Set cabins = new HashSet();

 cabins.add(cabin);

 this.setCabins(cabins);

 try {

 Integer primKey = (Integer)customer.getPrimaryKey();

 javax.naming.Context jndiContext = new InitialContext();

 CustomerHomeLocal home = (CustomerHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CustomerHomeLocal");

 CustomerLocal custL = home.findByPrimaryKey(primKey);

 // add Customer to collection-based CMR field

 Set customers = new HashSet();

 customers.add(custL);

 this.setCustomers(customers);

 } catch (RemoteException re) {

 throw new CreateException("Invalid Customer");

 } catch (FinderException fe) {

 throw new CreateException("Invalid Customer");

 } catch (NamingException ne) {

 throw new CreateException("Invalid Customer");

 }

 }

Relationship fields use local EJB object references, so we must convert the CustomerRemote reference to a CustomerLocal
reference in order to set the Reservation EJB's customer relationship field. To do this, you can either use the JNDI ENC to
locate the local home interface and then execute the findByPrimaryKey() method, or implement an ejbSelect() method in
the Reservation EJB to locate the CustomerLocal reference.

11.3.2 The TravelAgent EJB

The TravelAgent EJB, which we have already seen, is a stateful session bean that encapsulates the process of making a
reservation on a cruise. We will develop this bean further to demonstrate how stateful session beans can be used as
taskflow objects. We won't develop a local interface for the TravelAgent EJB, partly because it is designed to be used by
remote clients (and therefore doesn't require local component interfaces), and partly because the rules for developing
local interfaces for stateful session beans are the same as those for stateless session and entity beans.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local interfaces for stateful session beans are the same as those for stateless session and entity beans.

11.3.2.1 The remote interface (TravelAgent)

In Chapter 4, we developed an early version of the TravelAgentRemote interface that contained a single business method,
listCabins(). We are now going to remove the listCabins() method and redefine the TravelAgent EJB so that it behaves
like a taskflow object. Later in this chapter, we will add a modified listing method for obtaining a more specific list of
cabins for the user.

As a stateful session bean that models taskflow, the TravelAgent EJB manages the interactions between several other
beans while maintaining conversational state. Here's the modified TravelAgentRemote interface:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

import com.titan.processpayment.CreditCardDO;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(Integer cruise)

 throws RemoteException, FinderException;

 public void setCabinID(Integer cabin)

 throws RemoteException, FinderException;

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws RemoteException,IncompleteConversationalState;

}

The purpose of the TravelAgent EJB is to make cruise reservations. To accomplish this task, the bean needs to know
which cruise, cabin, and customer make up the reservation. Therefore, the client using the TravelAgent EJB needs to
gather this kind of information before making the booking. The TravelAgentRemote interface provides methods for setting
the IDs of the cruise and cabin that the customer wants to book. We can assume that the cabin ID comes from a list
and that the cruise ID comes from some other source. The customer is set in the create() method of the home interface
—more about this later.

Once the customer, cruise, and cabin are chosen, the TravelAgent EJB is ready to process the reservation. This
operation is performed by the bookPassage() method, which needs the customer's credit card information and the price
of the cruise. bookPassage() is responsible for charging the customer's account, reserving the chosen cabin in the right
ship on the right cruise, and generating a ticket for the customer. How this is accomplished is not important to us at
this point; when we are developing the remote interface, we are concerned only with the business definition of the
bean. We will discuss the implementation when we talk about the bean class.

Note that the bookPassage() method throws an application-specific exception, IncompleteConversationalState. This exception
is used to communicate business problems encountered while booking a customer on a cruise. The
IncompleteConversationalState exception indicates that the TravelAgent EJB did not have enough information to process
the booking. Here's the IncompleteConversationalState class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the booking. Here's the IncompleteConversationalState class:

package com.titan.travelagent;

public class IncompleteConversationalState extends java.lang.Exception {

 public IncompleteConversationalState(){super();}

 public IncompleteConversationalState(String msg){super(msg);}

}

11.3.2.2 Dependent object (TicketDO)

Like the CreditCardDO and CheckDO classes used in the ProcessPayment EJB, the TicketDO class is defined as a pass-by-
value object. One could argue that a ticket should be an entity bean since it is not dependent and may be accessed
outside the context of the TravelAgent EJB. However, determining how a business object is used can also dictate
whether it should be a bean or simply a class. The TicketDO object, for example, could be digitally signed and emailed to
the client as proof of purchase. This would not be feasible if the TicketDO object were an entity bean, because enterprise
beans are referenced only through their component interfaces and are never passed by value.

The constructor for TicketDO uses the local interfaces of creating a new TicketDO object:

package com.titan.travelagent;

import com.titan.cruise.CruiseLocal;

import com.titan.cabin.CabinLocal;

import com.titan.customer.CustomerRemote;

public class TicketDO implements java.io.Serializable {

 public Integer customerID;

 public Integer cruiseID;

 public Integer cabinID;

 public double price;

 public String description;

 public TicketDO(CustomerRemote customer, CruiseLocal cruise,

 CabinLocal cabin, double price) throws javax.ejb.FinderException,

 RemoteException, javax.naming.NamingException {

 description = customer.getFirstName()+

 " " + customer.getLastName() +

 " has been booked for the "

 + cruise.getName() +

 " cruise on ship " +

 cruise.getShip().getName() + ".\n" +

 " Your accommodations include " +

 cabin.getName() +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cabin.getName() +

 " a " + cabin.getBedCount() +

 " bed cabin on deck level " + cabin.getDeckLevel() +

 ".\n Total charge = " + price;

 customerID = (Integer)customer.getPrimaryKey();

 cruiseID = (Integer)cruise.getPrimaryKey();

 cabinID = (Integer)cabin.getPrimaryKey();

 this.price = price;

 }

 public String toString() {

 return description;

 }

}

11.3.2.3 The home interface (TravelAgentHomeRemote)

Starting with the TravelAgentHomeRemote interface we developed in Chapter 4, we can modify the create() method to
take a remote reference to the customer who is making the reservation:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import com.titan.customer.CustomerRemote;

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgentRemote create(CustomerRemote cust)

 throws RemoteException, CreateException;

}

The create() method in this home interface requires that a remote reference to a Customer EJB be used to create the
TravelAgent EJB. Because there are no other create() methods, you cannot create a TravelAgent EJB if you do not know
who the customer is. The Customer EJB reference provides the TravelAgent EJB with some of the conversational state it
will need to process the bookPassage() method.

11.3.2.4 Taking a peek at the client view

Before settling on definitions for your component interfaces, it is a good idea to figure out how clients will use the bean.
Imagine that the TravelAgent EJB is used by a Java application with GUI fields. These fields capture the customer's
preference for the type of cruise and cabin. We start by examining the code used at the beginning of the reservation
process:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CustomerHomeRemote");

CustomerHomeRemote customerHome =(CustomerHomeRemote)

 PortableRemoteObject.narrow(ref, CustomerHomeRemote.class);

String ln = tfLastName.getText();

String fn = tfFirstName.getText();

String mn = tfMiddleName.getText();

CustomerRemote customer = customerHome.create(nextID, ln, fn, mn);

ref = jndiContext.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref, TravelAgentHomeRemote.class);

TravelAgentRemote agent = home.create(customer);

This code creates a new Customer EJB based on information the travel agent gathered over the phone. The
CustomerRemote reference is then used to create a TravelAgent EJB. Next, we gather the cruise and cabin choices from
another part of the applet:

Integer cruise_id = new Integer(textField_cruiseNumber.getText());

Integer cabin_id = new Integer(textField_cabinNumber.getText());

agent.setCruiseID(cruise_id);

agent.setCabinID(cabin_id);

The travel agent chooses the cruise and cabin the customer wishes to reserve. These IDs are set in the TravelAgent
EJB, which maintains the conversational state for the whole process.

At the end of the process, the travel agent completes the reservation by processing the booking and generating a
ticket. Because the TravelAgent EJB has maintained the conversational state, caching the customer, cabin, and cruise
information, only the credit card and price are needed to complete the transaction:

String cardNumber = textField_cardNumber.getText();

Date date = dateFormatter.parse(textField_cardExpiration.getText());

String cardBrand = textField_cardBrand.getText();

CreditCardDO card = new CreditCardDO(cardNumber,date,cardBrand);

double price = double.valueOf(textField_cruisePrice.getText()).doubleValue();

TicketDO ticket = agent.bookPassage(card,price);

PrintingService.print(ticket);

This summary of how the client will use the TravelAgent EJB confirms that our remote interface and home interface
definitions are workable. We can now move ahead with development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3.2.5 TravelAgentBean: The bean class

We can now implement all of the behavior expressed in the new remote interface and home interface for the
TravelAgent EJB.[5] Here is a partial definition of the new TravelAgentBean class:

[5] If you are modifying the bean developed in Chapter 4, remember to delete the listCabin() method. We will add
a new implementation of that method later in this chapter.

import com.titan.reservation.*;

import java.sql.*;

import javax.sql.DataSource;

import java.util.Vector;

import java.rmi.RemoteException;

import javax.naming.NamingException;

import javax.ejb.EJBException;

import com.titan.processpayment.*;

import com.titan.cruise.*;

import com.titan.customer.*;

import com.titan.cabin.*;

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 public CruiseLocal cruise;

 public CabinLocal cabin;

 public javax.ejb.SessionContext ejbContext;

 public javax.naming.Context jndiContext;

 public void ejbCreate(CustomerRemote cust) {

 customer = cust;

 }

 public void setCabinID(Integer cabinID) throws javax.ejb.FinderException {

 try {

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 cabin = home.findByPrimaryKey(cabinID);

 } catch(RemoteException re) {

 throw new EJBException(re);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new EJBException(re);

 }

 }

 public void setCruiseID(Integer cruiseID) throws javax.ejb.FinderException {

 try {

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 cruise = home.findByPrimaryKey(cruiseID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

 }

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)

 {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup("java:comp/env/ejb/

 ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer, cruise, cabin, price);

 return ticket;

 } catch(Exception e) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 public void ejbRemove() {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void setSessionContext(javax.ejb.SessionContext cntx)

 {

 ejbContext = cntx;

 try {

 jndiContext = new javax.naming.InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

 }

}

This is a lot of code to digest, so we will approach it in small pieces. First, let's examine the ejbCreate() method:

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 ...

 public javax.ejb.SessionContext ejbContext;

 public javax.naming.Context jndiContext;

 public void ejbCreate(CustomerRemote cust) {

 customer = cust;

 }

When the bean is created, the remote reference to the Customer EJB is passed to the bean instance and maintained in
the customer field. The customer field is part of the bean's conversational state. We could have obtained the customer's
identity as an integer ID and constructed the remote reference to the Customer EJB in the ejbCreate() method.
However, we passed the reference directly to demonstrate that remote references to beans can be passed from a client
application to a bean. They can also be returned from the bean to the client and passed between beans on the same
EJB server or between EJB servers.

References to the SessionContext and JNDI context are held in fields called ejbContext and jndiContext. The "ejb" and "jndi"
prefixes help to avoid confusion between the different content types.

When a bean is passivated, the JNDI ENC must be maintained as part of the bean's conversational state. This means
that the JNDI context should not be transient. Once a field is set to reference the JNDI ENC, the reference remains valid
for the life of the bean. In the TravelAgentBean, we set the jndiContext field when the SessionContext is set, at the beginning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for the life of the bean. In the TravelAgentBean, we set the jndiContext field when the SessionContext is set, at the beginning
of the bean's life cycle:

public void setSessionContext(javax.ejb.SessionContext cntx) {

 ejbContext = cntx;

 try {

 jndiContext = new InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

The EJB container makes special accommodations for references to the SessionContext, the JNDI ENC, references to
other beans (remote and home interface types), and the JTA UserTransaction type (discussed in Chapter 15). The
container must maintain any instance fields that reference objects of these types as part of the conversational state,
even if they are not serializable. All other fields must be serializable or null when the bean is passivated.

The TravelAgent EJB has methods for setting the desired cruise and cabin. These methods take Integer IDs as
arguments and retrieve references to the appropriate Cruise or Cabin EJB from the appropriate home interface. These
references are also part of the TravelAgent EJB's conversational state. Here's how setCabinID() and getCabinID() are
defined:

public void setCabinID(Integer cabinID)

 throws javax.ejb.FinderException {

 try {

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 cabin = home.findByPrimaryKey(cabinID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

}

public void setCruiseID(Integer cruiseID)

 throws javax.ejb.FinderException {

 try {

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 cruise = home.findByPrimaryKey(cruiseID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

}

It may seem strange that we set these values using Integer IDs, but we keep them in the conversational state as entity
bean references. Using Integer IDs is simpler for the client, which does not work with their entity bean references. In the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bean references. Using Integer IDs is simpler for the client, which does not work with their entity bean references. In the
client code, we get the cabin and cruise IDs from text fields. Why make the client obtain a bean reference to the Cruise
and Cabin EJBs when an ID is simpler? In addition, using the IDs is cheaper (i.e., requires less network traffic) than
passing a remote reference. We need the EJB object references to these bean types in the bookPassage() method, so we
use their IDs to obtain actual entity bean references. We could have waited until the bookPassage() method was invoked
before reconstructing the remote references, but this strategy keeps the bookPassage() method simple.

11.3.2.6 JNDI ENC and EJB references

You can use the JNDI ENC to obtain a reference to the home interfaces of other beans. Using the ENC lets you avoid
hardcoding vendor-specific JNDI properties into the bean. In other words, the JNDI ENC allows EJB references to be
network and vendor independent.

In the TravelAgentBean, we used the JNDI ENC to acquire both the remote home interface of the ProcessPayment EJB
and the local home interfaces of the Cruise and Cabin EJBs. The EJB specification recommends that all EJB references
be bound to the "java:comp/env/ejb" context, which is the convention followed here. In the TravelAgent EJB, we append
the name of the home object to "java:comp/env/ejb", giving a result like "java:comp/env/ejb/CruiseHomeLocal".

11.3.2.7 Remote EJB references in the JNDI ENC

The deployment descriptor provides a special set of tags for declaring remote EJB references. Here's how the <ejb-ref>
tag and its subelements are used:

<ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

</ejb-ref>

These elements define a name for the bean within the ENC, declare the bean's type, and give the names of its remote
and home interfaces. When a bean is deployed, the deployer maps the <ejb-ref> elements to actual beans in a way
specific to the vendor. The <ejb-ref> elements can also be linked by the application assembler to beans in the same
deployment (a subject covered in detail in Chapter 17). However, you should try to use local component interfaces for
beans located in the same deployment and container.

11.3.2.8 Local EJB references in the JNDI ENC

The deployment descriptor also provides a special set of tags, the <ejb-local-ref> elements, to declare local EJB
references: enterprise beans that are co-located in the same container and deployed in the same EJB JAR file. The <ejb-
local-ref> elements are declared immediately after the <ejb-ref> elements:

<ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cruise.CruiseHomeLocal

 </local-home>

 <local>

 com.titan.cruise.CruiseLocal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 com.titan.cruise.CruiseLocal

 </local>

 <ejb-link>CruiseEJB</ejb-link>

</ejb-local-ref>

<ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.CabinHomeLocal

 </local-home>

 <local>

 com.titan.cabin.CabinLocal

 </local>

 <ejb-link>CabinEJB</ejb-link>

</ejb-local-ref>

The <ejb-local-ref> element defines a name for the bean within the ENC, declares the bean's type, and gives the names
of its local component interfaces. These elements should be linked explicitly to other co-located beans using the <ejb-
link> element, although linking them is not strictly required at this stage—the application assembler or deployer can do
it later. The value of the <ejb-link> element within the <ejb-local-ref> must be the same as the <ejb-name> of the
appropriate bean in the same JAR file.

At deployment time the EJB container's tools map the local references declared in the <ejb-local-ref> elements to entity
beans that are co-located in the same container system.

11.3.2.9 The bookPassage() method

The last point of interest in our bean definition is the bookPassage() method. This method makes use of the
conversational state accumulated by the ejbCreate(), setCabinID(), and setCruiseID() methods to process a reservation for
a customer. Here's how the bookPassage() method is defined:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup("java:comp/env/ejb/

 ProcessPaymentHomeRemote");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

This method deomonstrates the concept of taskflow. It uses several beans, including the Reservation, ProcessPayment,
Customer, Cabin, and Cruise EJBs, to accomplish one task: booking a customer on a cruise. Deceptively simple, this
method encapsulates several interactions that ordinarily might have been performed on the client. For the price of one
bookPassage() call from the client, the TravelAgent EJB performs many operations:

1. Looks up and obtains a reference to the Reservation EJB's home.

2. Creates a new Reservation EJB.

3. Looks up and obtains a remote reference to the ProcessPayment EJB's home.

4. Creates a new ProcessPayment EJB.

5. Charges the customer's credit card using the ProcessPayment EJB.

6. Generates a new TicketDO with all the pertinent information describing the customer's purchase.

From a design standpoint, encapsulating the taskflow in a stateful session bean means a less complex interface for the
client and more flexibility for implementing changes. We could easily change bookPassage() to check for overlapped
booking (when a customer books passage on two cruises with overlapping dates). This type of enhancement does not
change the remote interface, so the client application does not need modification. Encapsulating taskflow in stateful
session beans allows the system to evolve without impacting clients.

In addition, the type of clients used can change. One of the biggest problems with two-tier architectures—besides
scalability and transactional control—is that the business logic is intertwined with the client logic. As a result, it is
difficult to reuse the business logic in a different kind of client. With stateful session beans this is not a problem,
because stateful session beans are an extension of the client but are not bound to the client's presentation. Let's say
that our first implementation of the reservation system used a Java applet with GUI widgets. The TravelAgent EJB
would manage conversational state and perform all the business logic while the applet focused on the GUI presentation.
If, at a later date, we decide to go to a thin client (HTML generated by a Java servlet, for example), we would simply
reuse the TravelAgent EJB in the servlet. Because all the business logic is in the stateful session bean, the presentation
(Java applet or servlet or something else) can change easily.

The TravelAgent EJB also provides transactional integrity for processing the customer's reservation. If any of the
operations within the body of the bookPassage() method fails, all the operations are rolled back so that none of the
changes are accepted. If the credit card cannot be charged by the ProcessPayment EJB, the newly created Reservation
EJB and its associated record are not created. The transactional aspects of the TravelAgent EJB are explained in detail
in Chapter 15.

The remote and local EJB references can be used within the same taskflow. For example, the bookPassage() method
uses local references when accessing the Cruise and Cabin beans, but remote references when accessing the
ProcessPayment and Customer EJBs. This usage is totally appropriate. The EJB container ensures that the transaction is
atomic, i.e., that failures in either the remote or local EJB reference will affect the entire transaction.

11.3.2.10 Why use a Reservation entity bean?

If we have a Reservation EJB, why do we need a TravelAgent EJB? The TravelAgent EJB uses the Reservation EJB to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we have a Reservation EJB, why do we need a TravelAgent EJB? The TravelAgent EJB uses the Reservation EJB to
create a reservation, but it also has to charge the customer and generate a ticket. These activities are not specific to
the Reservation EJB, so they need to be captured in a stateful session bean that can manage taskflow and transactional
scope. In addition, the TravelAgent EJB provides listing behavior, which spans concepts in Titan's system. It would have
been inappropriate to include any of these other behaviors in the Reservation entity bean.

11.3.2.11 Listing behavior (listAvailableCabins())

As promised, we are going to bring back the cabin-listing behavior we played around with in Chapter 4. This time we
are not going to use the Cabin EJB to get the list; instead, we will access the database directly. Accessing the database
directly is a double-edged sword. On one hand, we don't want to access the database directly if entity beans exist that
can access the same information. Entity beans provide a safe and consistent interface for a particular set of data. Once
an entity bean has been tested and proven, it can be reused throughout the system, substantially reducing data-
integrity problems. The Reservation EJB is an example of that kind of usage. Entity beans can also pull together
disjointed data and apply additional business logic such as validation, limits, and security to ensure that data access
follows the business rules.

But entity beans cannot define every possible data access needed, and they shouldn't. One of the biggest problems with
entity beans is that they tend to become bloated over time. Huge entity beans containing dozens of methods are a sure
sign of poor design. Entity beans should be focused on providing data access to a very limited, but conceptually bound,
set of data. You should be able to update, read, and insert records or data. Data access that spans concepts, like listing
behavior, should not be encapsulated in an entity bean.

Systems always need listing behavior to present clients with choices. In the reservation system, for example, customers
need to choose a cabin from a list of available cabins. The word available is key to the definition of this behavior. The
Cabin EJB can provide us with a list of cabins, but it does not know whether any given cabin is available. As you may
recall, the Cabin-Reservation relationship we defined in Chapter 7 was unidirectional: the Reservation was aware of its
Cabin relationships, but the reverse was not true. The question of whether a cabin is available is relevant to the process
using it—in this case, the TravelAgent EJB—but may not be relevant to the cabin itself. As an analogy, an automobile
entity would not care what road it is on; it is concerned only with characteristics that describe its state and behavior. An
automobile-tracking system, on the other hand, would be concerned with the locations of individual automobiles.

To get availability information, we need to compare the list of cabins on our ship to the list of cabins that have already
been reserved. The listAvailableCabins() method does exactly that. It uses an SQL query to produce a list of cabins that
have not yet been reserved for the cruise chosen by the client:

public String [] listAvailableCabins(int bedCount)

 throws IncompleteConversationalState {

 if (cruise == null)

 throw new IncompleteConversationalState();

 Connection con = null;

 PreparedStatement ps = null;;

 ResultSet result = null;

 try {

 Integer cruiseID = (Integer)cruise.getPrimaryKey();

 Integer shipID = (Integer)cruise.getShip().getPrimaryKey();

 con = getConnection();

 ps = con.prepareStatement(

 "select ID, NAME, DECK_LEVEL from CABIN "+

 "where SHIP_ID = ? and BED_COUNT = ? and ID NOT IN "+

 "(SELECT CABIN_ID FROM RESERVATION "+" WHERE CRUISE_ID = ?)");

 ps.setInt(1,shipID.intValue());

 ps.setInt(2, bedCount);

 ps.setInt(3,cruiseID.intValue());

 result = ps.executeQuery();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result = ps.executeQuery();

 Vector vect = new Vector();

 while(result.next()) {

 StringBuffer buf = new StringBuffer();

 buf.append(result.getString(1));

 buf.append(',');

 buf.append(result.getString(2));

 buf.append(',');

 buf.append(result.getString(3));

 vect.addElement(buf.toString());

 }

 String [] returnArray = new String[vect.size()];

 vect.copyInto(returnArray);

 return returnArray;

 } catch (Exception e) {

 throw new EJBException(e);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se){se.printStackTrace();}

 }

}

As you can see, the SQL query is complex. It could have been defined using a method like Cabin.findAvailableCabins(Cruise
cruise) in the Cabin EJB. However, this method would be difficult to implement because the Cabin EJB would need to
access the Reservation EJB's data. It's also easy to imagine cluttering an entity bean with lots of fairly specific find
methods that are tied to particular situations. Such clutter isn't necessary or desirable. To avoid adding find methods for
every possible query, you can instead use direct database access as shown in the listAvailableCabins() method. Direct
database access generally has less impact on performance because the container does not have to manifest EJB object
references, but it is also less reusable. When you are deciding whether to add a find method to an entity bean or to
make a direct query in a session bean, keep in mind the tradeoff between reusability, performance, and clarity.

The listAvailableCabins() method returns an array of String objects. We could have opted to return a collection of remote
Cabin references, but we didn't because we want to keep the client application as lightweight as possible. A list of String
objects is much more lightweight than a collection of remote references; this way, the client doesn't have to work with
a group of stubs, each with its own connection to EJB objects on the server. By returning a lightweight String array, we
reduce the number of stubs on the client, which keeps the client simple and conserves resources on the server.

To make this method work, you need to create a private getConnection() method for obtaining a database connection.
This method becomes part of the TravelAgentBean:

private Connection getConnection() throws SQLException {

 try {

 DataSource ds = (DataSource)jndiContext.lookup(

 "java:comp/env/jdbc/titanDB");

 return ds.getConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return ds.getConnection();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

Change the remote interface for TravelAgent EJB to include the listAvailableCabins() method:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

import com.titan.processpayment.CreditCard;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(Integer cruise) throws RemoteException, FinderException;

 public void setCabinID(Integer cabin) throws RemoteException, FinderException;

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws RemoteException,IncompleteConversationalState;

 public String [] listAvailableCabins(int bedCount)

 throws RemoteException, IncompleteConversationalState;

}

11.3.2.12 The TravelAgent deployment descriptor

Here's an abbreviated version of the XML deployment descriptor used for the TravelAgent EJB. It defines not only the
TravelAgent EJB, but also the Customer, Cruise, Cabin, and Reservation EJBs. The ProcessPayment EJB is not defined in
this deployment descriptor because it is assumed to be deployed in a separate JAR file, or possibly even a separate EJB
server on a different network node:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 </ejb-local-ref>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </session>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </session>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <description>This role represents everyone</description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The deployment descriptor for EJB 2.0 is exactly the same, except it's based on a DTD instead of an XML Schema, so it
uses a document declaration and has a simpler <ejb-jar> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 ...

Once you have generated the deployment descriptor, jar the TravelAgent EJB and deploy it in your EJB server. You will
also need to deploy the Reservation, Cruise, and Customer EJBs you downloaded earlier. Based on the business
methods in the remote interface of the TravelAgent EJB and your past experiences with the Cabin, Ship, and
ProcessPayment EJBs, you should be able to create your own client application to test this code.

Exercise 11.2 in the Workbook shows how to deploy the examples in this section.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.4 The Life Cycle of a Stateful Session Bean
The biggest difference between the stateful session bean and the other bean types is that stateful session beans do not
use instance pooling. Stateful session beans are dedicated to one client for their entire lives, so swapping or pooling of
instances isn't possible.[6] When they are idle, stateful session bean instances are simply evicted from memory. The
EJB object remains connected to the client, but the bean instance is dereferenced and garbage collected during inactive
periods. This means that each stateful bean must be passivated before it is evicted in order to preserve the
conversational state of the instance, and it must be activated to restore its state when the EJB object becomes active
again.

[6] Some vendors use pooling with stateful session beans, but that is a proprietary implementation and should not
affect the specified life cycle of the stateful session bean.

The bean's perception of its life cycle depends on whether it implements a special interface called
javax.ejb.SessionSynchronization. This interface defines an additional set of callback methods that notify the bean of its
participation in transactions. A bean that implements SessionSynchronization can cache database data across several
method calls before making an update. We have not discussed transactions in detail yet; we will consider this part of
the bean's life cycle in Chapter 15. This section describes the life cycle of stateful session beans that do not implement
the SessionSynchronization interface.

The life cycle of a stateful session bean has three states: Does Not Exist, Method-Ready, and Passivated. This sounds a
lot like a stateless session bean, but the Method-Ready state is significantly different from the Method-Ready Pool of
stateless beans. Figure 11-2 shows the state diagram for stateful session beans.

Figure 11-2. Stateful session bean life cycle

11.4.1 Does Not Exist State

A stateful bean instance in the Does Not Exist state has not been instantiated yet. It doesn't exist in the system's
memory.

11.4.2 Method-Ready State

The Method-Ready state is the state in which the bean instance can service requests from its clients. This section
explores the instance's transition into and out of the Method-Ready state.

11.4.2.1 Transitioning to the Method-Ready state

When a client invokes the create() method on an EJB home of a stateful session bean, the bean's life cycle begins. When
the create() method is received by the container, the container invokes newInstance() on the bean class, creating a new
instance of the bean. Next, the container invokes setSessionContext() on the instance, handing it its reference to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance of the bean. Next, the container invokes setSessionContext() on the instance, handing it its reference to the
SessionContext, which it must maintain for life. At this point, the bean instance is assigned to its EJB object. Finally, the
container invokes the ejbCreate() method on the instance that matches the create() method invoked by the client. Once
ejbCreate() has completed, the container returns the EJB object's reference to the client. Note that there can be
different, overloaded versions of ejbCreate(), unlike stateless session beans. The instance is now in the Method-Ready
state and is ready to service business methods invoked by the client on the bean's remote reference.

11.4.2.2 Life in the Method-Ready state

While in the Method-Ready state, the bean instance is free to receive method invocations from the client, which may
involve controlling the taskflow of other beans or accessing the database directly. During this time, the bean can
maintain conversational state and open resources in its instance variables.

11.4.2.3 Transitioning out of the Method-Ready state

Bean instances leave the Method-Ready state to enter either the Passivated state or the Does Not Exist state.
Depending on how the client uses the stateful bean, the EJB container's load, and the passivation algorithm used by the
vendor, a bean instance may be passivated (and activated) several times in its life or not at all. If the bean is removed,
it enters the Does Not Exist state. A client application can remove a bean by invoking one of the remove() methods on
the client API, or the container can choose to remove the bean.

The container can also move the bean instance from the Method-Ready state to the Does Not Exist state if the bean
times out. Timeouts are declared at deployment time in a vendor-specific manner. When a timeout occurs in the
Method-Ready state, the container may, but is not required to, call the ejbRemove() method. A stateful bean cannot
timeout while a transaction is in progress.

11.4.3 Passivated State

During the lifetime of a stateful session bean, there may be periods of inactivity when the bean instance is not servicing
methods from the client. To conserve resources, the container can passivate the bean instance by preserving its
conversational state and evicting the bean instance from memory. A bean's conversational state may consist of
primitive values, objects that are serializable, and the following special types:

javax.ejb.SessionContext
javax.ejb.EJBHome (remote home interface types)
javax.ejb.EJBObject (remote interface types)
javax.jta.UserTransaction (bean transaction interface)
javax.naming.Context (only when it references the JNDI ENC)
javax.ejb.EJBLocalHome (local home interface types)
javax.ejb.EJBLocalObject (local interface types)
References to managed resource factories (e.g., javax.sql.DataSource)

The types in this list (and their subtypes) are handled specially by the passivation mechanism. They do not need to be
serializable; they will be maintained through passivation and restored automatically when the bean instance is
activated.

When a bean is about to be passivated, its ejbPassivate() method is invoked, alerting the bean instance that it is about
to enter the Passivated state. At this time, the bean instance should close any open resources and set all nontransient,
nonserializable fields to null. This prevents problems from occurring when the bean is serialized. Transient fields are
simply ignored.

How does the container store the bean's conversational state? It's largely up to the container. Containers can use
standard Java serialization to preserve the bean instance, or some other mechanism that achieves the same result.
Some vendors, for example, simply read the values of the fields and store them in a cache. The container is required to
preserve remote references to other beans with the conversational state. When the bean is activated, the container
must restore any bean references automatically. The container must also restore any references to the special types
listed earlier.

When the client makes a request on an EJB object whose bean is passivated, the container activates the instance. This
involves deserializing the bean instance and reconstructing the SessionContext reference, bean references, and managed
resource factories held by the instance before it was passivated. When a bean's conversational state has been
successfully restored, the ejbActivate() method is invoked. The bean instance should open any resources that cannot be
passivated and initialize the values of any transient fields within the ejbActivate() method. Once ejbActivate() is complete,
the bean is back in the Method-Ready state and available to service client requests delegated by the EJB object.

The activation of a bean instance follows the rules of Java serialization, regardless of how the bean's state was actually
stored. The exception to this is transient fields. In Java serialization, transient fields are set to their default values when
an object is deserialized; primitive numbers become zero, Boolean fields false, and object references null. In EJB,
transient fields can contain arbitrary values when the bean is activated. The values held by transient fields following
activation are unpredictable across vendor implementations, so do not depend on them to be initialized. Instead, use
ejbActivate() to reset their values.

The container can also move the bean instance from the Passivated state to the Does Not Exist state if the bean times
out. When a timeout occurs in the Passivated state, the ejbRemove() method is not invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

out. When a timeout occurs in the Passivated state, the ejbRemove() method is not invoked.

11.4.3.1 System exceptions

Whenever a system exception is thrown by a bean method, the container invalidates the EJB object and destroys the
bean instance. The bean instance moves directly to the Does Not Exist state and the ejbRemove() method is not
invoked.

A system exception is any unchecked exception, including EJBException. Checked exceptions thrown from subsystems
are usually wrapped in an EJBException and rethrown as system exceptions. A checked exception thrown by a subsystem
does not need to be handled this way if the bean can safely recover from the exception. In most cases, however, the
subsystem exception should be rethrown as an EJBException.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11. Session Beans
Entity beans provide an object-oriented model that makes it easier for developers to create, modify, and delete data
from the database. They allow developers to be more productive by encouraging reuse, thus reducing development
costs. For example, once a bean has been defined to represent a concept like a Ship, that bean can be reused
throughout a business system without redefining, recoding, or retesting the business logic and data access.

However, entity beans are not the entire story. We have seen another kind of enterprise bean: the session bean.
Session beans fill the gaps left by entity beans. They are useful for describing interactions between other beans
(taskflow) and for implementing particular tasks. Unlike entity beans, session beans do not represent shared data in the
database, but they can access shared data. This means that we can use session beans to read, update, and insert data.
For example, we might use a session bean to provide lists of information, such as a list of all available cabins.
Sometimes we might generate the list by interacting with entity beans, like the cabin list we developed in the
TravelAgent EJB in Chapter 4. More frequently, session beans will generate lists by accessing the database directly.

When do you use an entity bean and when do you use a session bean? As a rule of thumb, an entity bean should
provide a safe and consistent interface to a set of shared data that defines a concept. This data may be updated
frequently. Session beans access data that spans concepts, is not shared, and is usually read-only.

In addition to accessing data directly, session beans can represent taskflow. Taskflow means all the steps required to
accomplish a particular task, such as booking passage on a ship or renting a video. Session beans frequently manage
the interactions between entity beans, describing how they work together to accomplish a specific task. The relationship
between session beans and entity beans is like the relationship between a script for a play and the actors that perform
the play. Actors are pointless without a script; they may represent something, but they can't tell a story. Similarly,
entities represented in a database aren't meaningful unless you can have interactions between entities. It makes no
sense to have a database full of cabins, ships, customers, and such if we can't create interactions between them, such
as booking a customer for a cruise.

Session beans are divided into two basic types: stateless and stateful. A stateless session bean is a collection of related
services, each represented by a method; the bean maintains no state from one method invocation to the next. When
you invoke a method on a stateless session bean, it executes the method and returns the result without knowing or
caring what other requests have gone before or might follow. Think of a stateless session bean as a set of procedures
or batch programs that execute a request based on some parameters and return a result.

A stateful session bean is an extension of the client application. It performs tasks on behalf of a client and maintains
state related to that client. This state is called conversational state because it represents a continuing conversation
between the stateful session bean and the client. Methods invoked on a stateful session bean can write and read data to
and from this conversational state, which is shared among all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might have been captured in the client application of a two-tier
system.

Depending on the vendor, stateful session beans may have a timeout period. If the client fails to use the stateful bean
before it times out, the bean instance is destroyed and the EJB object reference is invalidated. This prevents the
stateful session bean from lingering long after a client has shut down or otherwise finished using it. After all, clients can
crash, and users can walk away from their desks and forget what they're doing; we don't want stateful session beans
associated with dead clients or forgetful users cluttering up our server forever. A client can also explicitly remove a
stateful session bean by calling one of its remove methods.

Stateless session beans have longer lives because they do not retain any conversational state and are not dedicated to
one client. As soon as a stateless session bean has finished a method invocation, it can be reassigned to service a new
client. Stateless session beans may also have a timeout period and can be removed by the client, but the impact of a
bean timeout or removal is different than with a stateful session bean. A timeout or remove operation simply invalidates
the EJB object reference for that client; the bean instance is not destroyed and is free to service other client requests.

Whether they are stateful or stateless, session beans are not persistent like entity beans. In other words, session beans
don't represent persistent date and are not saved to the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.1 JMS and Message-Driven Beans
All EJB 2.0 vendors must support a JMS provider. Most vendors have a JMS provider built in, but some may also support
other JMS providers. EJB 2.1 vendors can support any JMS provider that complies with the J2EE Connector Architecture
1.5. However, regardless of whether your vendor has its own JMS provider, or allows you to integrate some other
provider, a JMS provider is an absolute necessity for supporting message-driven beans. By forcing the adoption of JMS,
Sun has guaranteed that EJB developers can expect to have a working JMS provider on which messages can be both
sent and received.

12.1.1 JMS as a Resource

JMS is a vendor-neutral API that can be used to access enterprise messaging systems. Enterprise messaging systems
(a.k.a. message-oriented middleware) facilitate the exchange of messages between software applications over a
network. The role of JMS isn't unlike the role of JDBC: just as JDBC provides a common API for accessing many
different relational databases, JMS provides vendor-independent access to enterprise messaging systems. Although
messaging products aren't as familiar as database products, there's no shortage of messaging systems that support
JMS, including IBM's MQSeries, BEA's WebLogic JMS service, Sun Microsystems' Sun ONE Message Queue, and Sonic's
SonicMQ. Software applications that use the JMS API for sending or receiving messages are portable from one JMS
vendor to another.

Applications that use JMS are called JMS clients, and the messaging system that handles routing and delivery of
messages is called the JMS provider. A JMS application is a business system composed of many JMS clients and,
generally, one JMS provider. A JMS client that sends a message is called a producer, while a JMS client that receives a
message is called a consumer. A single JMS client can be both a producer and a consumer.

In EJB, enterprise beans of all types can use JMS to send messages. The messages are consumed by other Java
applications or message-driven beans. JMS facilitates sending messages from enterprise beans using a messaging
service, sometimes called a message broker or router. Message brokers have been around for a couple of decades—the
oldest and most established is IBM's MQSeries—but JMS is fairly new, and specifically designed to deliver a variety of
message types from one Java application to another.

12.1.1.1 Reimplementing the TravelAgent EJB with JMS

We can modify the TravelAgent EJB developed in Chapter 11 so that it uses JMS to alert some other Java application
that a reservation has been made. The following code shows how to modify the bookPassage() method so that the
TravelAgent EJB sends a simple text message based on a description obtained from the TicketDO object:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

String ticketDescription = ticket.toString();

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/TicketTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(ticketDescription);

 publisher.publish(textMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

While all the code we added may look a little overwhelming, the basics of JMS are not all that complicated.

12.1.1.2 TopicConnectionFactory and Topic

In order to send a JMS message, we need a connection to the JMS provider and a destination address for the message.
A JMS connection factory makes the connection to the provider possible; the destination address is identified by a Topic
object. Both the connection factory and the Topic object are obtained from the TravelAgent EJB's JNDI ENC:

TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

Topic topic = (Topic) jndiContext.lookup("java:comp/env/jms/TicketTopic");

The TopicConnectionFactory is similar to a DataSource in JDBC. Just as the DataSource provides a JDBC connection to a
database, the TopicConnectionFactory provides a JMS connection to a message router.[1]

[1] This analogy is not perfect. One might also say that the TopicSession is analogous to the DataSource, since both
represent transaction-resources connections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

represent transaction-resources connections.

The Topic object itself represents a network-independent destination to which the message will be addressed. In JMS,
messages aren't sent directly to applications; they're sent to topics or queues. A topic is analogous to an email list or
newsgroup; any application with the proper credentials can receive messages from and send messages to a topic. When
a JMS client receives messages from a topic, the client is said to subscribe to that topic. JMS decouples applications by
allowing them to send messages to each other through a destination, which serves as virtual channel. A queue is
another type of destination that we'll discuss in detail later.

12.1.1.3 TopicConnection and TopicSession

The TopicConnectionFactory is used to create a TopicConnection, which is an actual connection to the JMS provider:

TopicConnection connect = factory.createTopicConnection();

TopicSession session = connect.createTopicSession(true,0);

Once you have a TopicConnection, you can use it to create a TopicSession. A TopicSession allows you to group the actions of
sending and receiving messages. In this case, you need only a single TopicSession. Using multiple TopicSessions is helpful
if you wish to produce and consume messages in different threads. Session objects use a single-threaded model, which
prohibits concurrent access to a single Session from multiple threads. The thread that creates a TopicSession is usually the
thread that uses that Session's producers and consumers (i.e., TopicPublisher and TopicSubscriber objects). If you wish to
produce and consume messages using multithreading, you must create a different Session object for each thread.

The createTopicSession() method has two parameters:

createTopicSession(boolean transacted, int acknowledgeMode)

According to the EJB specifications, these arguments are ignored at runtime because the EJB container manages the
transaction and acknowledgment mode of any JMS resource obtained from the JNDI ENC. The specification recommends
that developers use the arguments true for transacted and 0 for acknowledgeMode, but since they are supposed to be
ignored, it should not matter what you use. Unfortunately, not all vendors adhere to this part of the specification. Some
vendors ignore these parameters; others do not.

It's good programming practice to close a TopicConnection after it has been used:

TopicConnection connect = factory.createTopicConnection();

...

connect.close();

12.1.1.4 TopicPublisher

The TopicSession is used to create a TopicPublisher, which sends messages from the TravelAgent EJB to the destination
specified by the Topic object. Any JMS clients that subscribe to that topic will receive a copy of the message:

TopicPublisher publisher = session.createPublisher(topic);

TextMessage textMsg = session.createTextMessage();

textMsg.setText(ticketDescription);

publisher.publish(textMsg);

12.1.1.5 Message types

In JMS, a message is a Java object with two parts: a header and a message body. The header is composed of delivery
information and metadata, while the message body carries the application data, which can take several forms: text,
serializable objects, byte streams, etc. The JMS API defines several message types (TextMessage, MapMessage,
ObjectMessage, and others) and provides methods for delivering messages to and receiving messages from other
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applications.

For example, we can change the TravelAgent EJB so that it sends a MapMessage instead of a TextMessage:

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

...

TopicPublisher publisher = session.createPublisher(topic);

MapMessage mapMsg = session.createMapMessage();

mapMsg.setInt("CustomerID", ticket.customerID.intValue());

mapMsg.setInt("CruiseID", ticket.cruiseID.intValue());

mapMsg.setInt("CabinID", ticket.cabinID.intValue());

mapMsg.setDouble("Price", ticket.price);

publisher.publish(mapMsg);

The attributes of the MapMessage (CustomerID, CruiseID, CabinID, and Price) can be accessed by name from those JMS
clients that receive it. As an alternative, the TravelAgent EJB could be modified to use the ObjectMessage type, which
would allow us to send the entire TicketDO object as the message using Java serialization:

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

...

TopicPublisher publisher = session.createPublisher(topic);

ObjectMessage objectMsg = session.createObjectMessage();

ObjectMsg.setObject(ticket);

publisher.publish(objectMsg);

In addition to the TextMessage, MapMessage, and ObjectMessage, JMS provides two other message types: StreamMessage
and BytesMessage. StreamMessage can take the contents of an I/O stream as its payload. BytesMessage can take any array
of bytes, which it treats as opaque data.

12.1.1.6 XML deployment descriptor

JMS resources must be declared in the bean's EJB deployment descriptor. The declaration is different in EJB 2.1 and EJB
2.0, so they are shown separately.

12.1.2 EJB 2.1: Declaring a JMS Resource

In EJB 2.1, a JMS resource is declared in a manner similar to the JDBC resource used by the Ship EJB in Chapter 9:

<enterprise-beans>

 <session>

 <ejb-name>TravelAgentBean</ejb-name>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

<message-destination-ref>

 <message-destination-ref-name>

 jms/TicketTopic

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Topic</message-destination-type>

 <message-destination-usage>Produces</message-destination-usage>

 </message-destination-ref>

 ...

 </session>

</enterprise-beans>

The <resource-ref> for the JMS TopicConnectionFactory is similar to the <resource-ref> declaration for the JDBC DataSource: it
declares the JNDI ENC name, interface type, and authorization protocol. In addition to the <resource-ref>, the
TravelAgent EJB must also declare the <message-destination-ref>.

The <message-destination-ref> element is new in EJB 2.1. It describes the destination to which the EJB sends messages.
The <message-destination-ref-name> declares the JNDI ENC name used to access the destination. The <message-destination-
type> declares the type of destination (javax.jms.Topic or javax.jms.Queue) and the <message-destination-usage> tells
whether the destination is used to send or receive messages; it can have one of the following values: Consumes,
Produces, or ConsumesProduces. Consumes indicates that the JMS client only receives message from the destination,
Produces indicates that it only sends messages to the destination, and ConsumesProduces indicates that the client uses the
same destination to both send and receive messages. At deployment time, the deployer maps the JMS
TopicConnectionFactory and Topic declared by the <resource-ref> and <message-destination-ref> elements to a JMS provider
and a topic.

Although any EJB can send and receive messages, in most cases, it's best that only MDBs receive JMS messages. In
this case, we declare the Topic used for sending a ticket message.

12.1.3 EJB 2.0: Declaring a JMS Resource

In EJB 2.0, a JMS resource is declared in a manner similar to the JDBC resource used by the Ship EJB in Chapter 9:

<enterprise-beans>

 <session>

 <ejb-name>TravelAgentBean</ejb-name>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

 </resource-env-ref>

 ...

 </session>

The <resource-ref> for the JMS TopicConnectionFactory is similar to the <resource-ref> declaration for the JDBC DataSource: it
declares the JNDI ENC name, interface type, and authorization protocol. In addition to the <resource-ref>, the
TravelAgent EJB must also declare the <resource-env-ref>, which lists any "administered objects" associated with a
<resource-ref> entry. In this case, we declare the Topic used for sending a ticket message. At deployment time, the
deployer maps the JMS TopicConnectionFactory and Topic declared by the <resource-ref> and <resource-env-ref> elements to
a JMS factory and topic.

12.1.4 JMS Application Client

To get a better idea of how JMS is used, we can create a Java application whose sole purpose is receiving and
processing reservation messages. This application is a simple JMS client that prints a description of each ticket as it
receives the messages. We'll assume that the TravelAgent EJB is using the TextMessage to send a description of the
ticket to the JMS clients. Here's how the JMS application client might look:

import javax.jms.Message;

import javax.jms.TextMessage;

import javax.jms.TopicConnectionFactory;

import javax.jms.TopicConnection;

import javax.jms.TopicSession;

import javax.jms.Topic;

import javax.jms.Session;

import javax.jms.TopicSubscriber;

import javax.jms.JMSException;

import javax.naming.InitialContext;

public class JmsClient_1 implements javax.jms.MessageListener {

 public static void main(String [] args) throws Exception {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(args.length != 2)

 throw new Exception("Wrong number of arguments");

 new JmsClient_1(args[0], args[1]);

 while(true){Thread.sleep(10000);}

 }

 public JmsClient_1(String factoryName, String topicName) throws Exception {

 InitialContext jndiContext = getInitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("TopicFactoryNameGoesHere");

 Topic topic = (Topic)jndiContext.lookup("TopicNameGoesHere");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session =

 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 TopicSubscriber subscriber = session.createSubscriber(topic);

 subscriber.setMessageListener(this);

 connect.start();

 }

 public void onMessage(Message message) {

 try {

 TextMessage textMsg = (TextMessage)message;

 String text = textMsg.getText();

 System.out.println("\n RESERVATION RECIEVED:\n"+text);

 } catch(JMSException jmsE) {

 jmsE.printStackTrace();

 }

 }

 public static InitialContext getInitialContext() {

 // create vendor-specific JNDI context here

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The constructor of JmsClient_1 obtains the TopicConnectionFactory and Topic from the JNDI InitialContext. This context is
created with vendor-specific properties so that the client can connect to the same JMS provider as the one used by the
TravelAgent EJB. For example, here's how the getInitialContext() method for the WebLogic application server would be
coded:[2]

[2] JNDI also allows the properties to be set in a jndi.properties file, which contains the property values for the
InitialContext and can be discovered dynamically at runtime. In this book, I chose to set the properties explicitly.

public static InitialContext getInitialContext() {

 Properties env = new Properties();

 env.put(Context.SECURITY_PRINCIPAL, "guest");

 env.put(Context.SECURITY_CREDENTIALS, "guest");

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 env.put(Context.PROVIDER_URL, "t3://localhost:7001");

 return new InitialContext(env);

}

Once the client has the TopicConnectionFactory and Topic, it creates a TopicConnection and a TopicSession in the same way as
the TravelAgent EJB. The main difference is that the TopicSession object is used to create a TopicSubscriber instead of a
TopicPublisher. The TopicSubscriber is designed to process incoming messages that are published to its Topic:

TopicSession session =

 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

connect.start();

The TopicSubscriber can receive messages directly, or it can delegate message processing to a javax.jms.MessageListener.
We chose to have JmsClient_1 implement the MessageListener interface so that it can process the messages itself.
MessageListener objects implement a single method, onMessage(), which is invoked every time a new message is sent to
the subscriber's topic. In this case, every time the TravelAgent EJB sends a reservation message to the topic, the JMS
client's onMessage() method is invoked to receive and process a copy of the message:

public void onMessage(Message message) {

 try {

 TextMessage textMsg = (TextMessage)message;

 String text = textMsg.getText();

 System.out.println("\n RESERVATION RECIEVED:\n"+text);

 } catch(JMSException jmsE) {

 jmsE.printStackTrace();

 }

}

Exercise 12.1 in the Workbook shows how to deploy these examples in JBoss.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1.5 JMS Is Asynchronous

One of the principal advantages of JMS messaging is that it's asynchronous. In other words, a JMS client can send a
message without having to wait for a reply. Contrast this flexibility with the synchronous messaging of Java RMI. Each
time a client invokes a bean's method, it blocks the current thread until the method completes execution. This lock-step
processing makes the client dependent on the availability of the EJB server, resulting in a tight coupling between the
client and the enterprise bean. JMS clients send messages asynchronously to a destination (topic or queue), from which
other JMS clients can also receive messages. When a JMS client sends a message, it doesn't wait for a reply; it sends
the message to a router, which is responsible for forwarding the message to other clients. There's no effect on the
client if one or more recipients are unavailable; it just goes ahead with its work. It's the router's responsibility to make
sure that the message eventually reaches its destination. Clients sending messages are decoupled from the clients
receiving them; senders are not dependent on the availability of receivers.

The limitations of RMI make JMS an attractive alternative for communicating with other applications. Using the standard
JNDI environment-naming context, an enterprise bean can obtain a JMS connection to a JMS provider and use it to
deliver asynchronous messages to other Java applications. For example, a TravelAgent session bean can use JMS to
notify other applications that a reservation has been processed, as shown in Figure 12-1.

Figure 12-1. Using JMS with the TravelAgent EJB

In this case, the applications receiving JMS messages from the TravelAgent EJB may be message-driven beans, other
Java applications in the enterprise, or applications in other organizations that benefit from being notified that a
reservation has been processed. Examples might include business partners who share customer information or an
internal marketing application that adds customers to a catalog mailing list.

Because messaging is inherently decoupled and asynchronous, the transactions and security contexts of the sender are
not propagated to the receiver. For example, when the TravelAgent EJB sends the ticket message, the JMS provider
may authenticate it, but the message's security context won't be propagated to the JMS client that received the
message. When a JMS client receives the message from the TravelAgent EJB, the client has no idea about the security
context under which the message was sent. This is how it should be, because the sender and receiver often operate in
environments with different security domains.

Similarly, transactions are never propagated from the sender to the receiver. For one thing, the sender has no idea who
the receivers of the message will be. If the message is sent to a topic, there could be one receiver or thousands;
managing a distributed transaction under such ambiguous circumstances is not tenable. In addition, the clients
receiving the message may not get it for a long time after it is sent; there may be a network problem, the client may be
down, or there may be some other problem. Transactions are designed to be executed quickly because they lock up
resources, and applications can't tolerate the possibility of a long transaction with an unpredictable end.

A JMS client can, however, have a distributed transaction with the JMS provider so that it manages the send or receive
operation in the context of a transaction. For example, if the TravelAgent EJB's transaction fails for any reason, the JMS
provider discards the ticket message sent by the TravelAgent EJB. Transactions and JMS are covered in more detail in
Chapter 15.

12.1.6 JMS Messaging Models

JMS provides two types of messaging models: publish-and-subscribe and point-to-point. The JMS specification refers to
these as messaging domains. In JMS terminology, publish-and-subscribe and point-to-point are frequently shortened to
pub/sub and p2p (or PTP), respectively. This chapter uses both the long and short forms throughout.

In the simplest sense, publish-and-subscribe is intended for a one-to-many broadcast of messages, while point-to-point
is intended for one-to-one delivery of messages (see Figure 12-2).

Figure 12-2. JMS messaging domains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-2. JMS messaging domains

Each messaging domain (i.e., pub/sub and p2p) has its own set of interfaces and classes for sending and receiving
messages. This results in two different APIs, which share some common types. JMS 1.1, the most recent version
(supported by EJB 2.1), introduced a Unified API that allows developers to use a single set of interfaces and classes for
both messaging domains.

12.1.6.1 Publish-and-subscribe

In publish-and-subscribe messaging, one producer can send a message to many consumers through a virtual channel
called a topic. Consumers can choose to subscribe to a topic. Any messages addressed to a topic are delivered to all the
topic's consumers. The pub/sub messaging model is by and large a push-based model, in which messages are
automatically broadcast to consumers without the consumers having to request or poll the topic for new messages.

In the pub/sub messaging model, the producer sending the message is not dependent on the consumers receiving the
message. JMS clients that use pub/sub can establish durable subscriptions that allow consumers to disconnect and later
reconnect and collect messages that were published while they were disconnected. The TravelAgent EJB in this chapter
uses the pub/sub programming model with a Topic object as a destination.

12.1.6.1.1 Point-to-point

The point-to-point messaging model allows JMS clients to send and receive messages both synchronously and
asynchronously via virtual channels known as queues. The p2p messaging model has traditionally been a pull- or
polling-based model, in which messages are requested from the queue instead of being pushed to the client
automatically.[3] A queue may have multiple receivers, but only one receiver may receive each message. As shown
earlier in Figure 12-2, the JMS provider takes care of doling out the messages among JMS clients, ensuring that each
message is consumed by only one JMS client. The JMS specification does not dictate the rules for distributing messages
among multiple receivers.

[3] The JMS specification does not specifically state how the p2p and pub/sub models must be implemented. Either
model can use push or pull—but conceptually, pub/sub is push and p2p is pull.

The messaging API for p2p is similar to the one used for pub/sub. The following code shows how the TravelAgent EJB
could be modified to use the queue-based p2p API instead of the topic-based pub/sub model:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 ...

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 String ticketDescription = ticket.toString();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 Queue queue = (Queue)

 jndiContext.lookup("java:comp/env/jms/TicketQueue");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session = connect.createQueueSession(true,0);

 QueueSender sender = session.createSender(queue);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(ticketDescription);

 sender.send(textMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

12.1.6.2 Which messaging model should you use?

The rationale behind the two models lies in the origin of the JMS specification. JMS started out as a way of providing a
common API for accessing existing messaging systems. At the time of its conception, some messaging vendors had a
p2p model and some had a pub/sub model. Hence, JMS needed to provide an API for both models to gain wide industry
support.

Almost anything that can be done with the pub/sub model can be done with point-to-point, and vice versa. An analogy
can be drawn to developers' programming language preferences. In theory, any application that can be written with
Pascal can also be written with C. Anything that can be written in C++ can also be written in Java. In some cases, it
comes down to a matter of preference, or which model you are already familiar with.

In most cases, the decision about which model to use depends on which model is a better fit for the application. With
pub/sub, any number of subscribers can be listening on a topic, and they will all receive copies of the same message.
The publisher may not care if everybody is listening, or even if nobody is listening. For example, consider a publisher
that broadcasts stock quotes. If any particular subscriber is not currently connected and misses out on a great quote,
the publisher is not concerned. In contrast, a point-to-point session is likely to be intended for a one-on-one
conversation with a specific application at the other end. In this scenario, every message really matters. The range and
variety of the data the messages represent can be a factor as well. Using pub/sub, messages are dispatched to the
consumers based on filtering that is provided through the use of specific topics. Even when messaging is being used to
establish a one-on-one conversation with another known application, it can be advantageous to use pub/sub with
multiple topics to segregate different kinds of messages. Each kind of message can be dealt with separately through its
own unique consumer and onMessage() listener.

Point-to-point is more convenient when you want a particular receiver to process a given message once. This is perhaps
the most critical difference between the two models: p2p guarantees that only one consumer processes each message.
This ability is extremely important when messages need to be processed separately but in tandem.

12.1.7 EJB 2.1: The Unified JMS API

Although the two messaging models (i.e., pub/sub and p2p) are distinct, JMS 1.1 provides a third Unified API that can
be used for both pub/sub and p2p messaging. It's important to understand that the Unified API does not represent a
new messaging model. The publish/subscribe and point-to-point messaging models are the only two messaging models
you have to choose from. The Unified API simply provides a third set of interfaces that allow developers to use the
same API for both models. There is, however, another important advantage to the Unified API. It allows p2p and
pub/sub messaging operations be part of the same transaction. In JMS 1.0.x, you could not use topic and queue-based
APIs in the same transaction. The Unified API does away with this restriction.

Here's how the TravelAgent EJB could be modified to use the Unified API instead of the pub/sub or p2p models:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how the TravelAgent EJB could be modified to use the Unified API instead of the pub/sub or p2p models:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 ...

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 String ticketDescription = ticket.toString();

 ConnectionFactory factory = (ConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/ConnectionFactory");

 Destination destination= (Destination)

 jndiContext.lookup("java:comp/env/jms/TicketDestination");

 Connection connect = factory.createConnection();

 Session session = connect.createSession(true,0);

 MessageProducer prodcuer = session.createProducer(destination);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(ticketDescription);

 producer.send(textMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

12.1.8 Entity and Session Beans Should Not Receive Messages

JmsClient_1 was designed to consume messages produced by the TravelAgent EJB. Can another entity or session bean
receive those messages also? The answer is yes, but it's a really bad idea.

Entity and session beans respond to Java RMI calls from EJB clients and cannot be programmed to respond to JMS
messages as do message-driven beans. It's impossible to write a session or entity bean that is driven by incoming
messages. It is possible to develop an entity or session bean that can consume a JMS message from a business
method, but an EJB client must call the method first. For example, when the business method on the Hypothetical EJB
is called, it sets up a JMS session and then attempts to read a message from a queue:

public class HypotheticalBean implements javax.ejb.SessionBean {

 InitialContext jndiContext;

 public String businessMethod() {

 try{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 Queue topic = (Queue)

 jndiContext.lookup("java:comp/env/jms/Queue");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session = connect.createQueueSession(true,0);

 QueueReceiver receiver = session.createReceiver(queue);

 TextMessage textMsg = (TextMessage)receiver.receive();

 connect.close();

 return textMsg.getText();

 } catch(Exception e) {

 throws new EJBException(e);

 }

 }

 ...

}

The QueueReceiver, which is a message consumer, is used to proactively fetch a message from the queue. While this
operation has been programmed correctly, it is a dangerous because a call to the QueueReceiver.receive() method blocks
the thread until a message becomes available. If a message is never delivered, the thread is blocked indefinitely! If no
one ever sends a message to the queue, the QueueReceiver just sits there waiting, forever.

To be fair, there are other receive() methods that are less dangerous. For example, receive(long timeout) allows you to
specify a time after which the QueueReceiver should stop blocking the thread and give up waiting for a message. There is
also receiveNoWait(), which checks for a message and returns null if there are none waiting, thus avoiding a prolonged
thread block. However, this operation is still dangerous. There is no guarantee that the less risky receive() methods will
perform as expected, and the risk of programmer error (e.g., using the wrong receive() method) is too great.

The moral of the story is simple: don't write convoluted code trying to force entity and session beans to receive
messages. If you need to receive messages, use a message-driven bean; MDBs are specially designed to consume JMS
messages.

12.1.9 Learning More About JMS

JMS (and enterprise messaging in general) represents a powerful paradigm in distributed computing. While this chapter
has provided a brief overview of JMS, it has presented only enough material to prepare you for the discussion of
message-driven beans in the next section. To understand JMS and how it is used, you will need to study it
independently.[4] Taking the time to learn JMS is well worth the effort.

[4] For a detailed treatment of JMS, see Java Message Service by Richard Monson-Haefel and David Chappell
(O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.2 JMS-Based Message-Driven Beans
Message-driven beans (MDBs) are stateless, server-side, transaction-aware components for processing asynchronous
messages delivered via the Java Message Service. While a message-driven bean is responsible for processing
messages, its container manages the component's environment, including transactions, security, resources,
concurrency, and message acknowledgment. It's particularly important to note that the container manages
concurrency. The thread-safety provided by the container gives MDBs a significant advantage over traditional JMS
clients, which must be custom-built to manage resources, transactions, and security in a multithreaded environment.
An MDB can process hundreds of JMS messages concurrently because numerous instances of the MDB can execute
concurrently in the container.

A message-driven bean is a complete enterprise bean, just like a session or entity bean, but there are some important
differences. While a message-driven bean has a bean class and EJB deployment descriptor, it does not have EJB object
or home interfaces. These interfaces are absent because the message-driven bean is not accessible via the Java RMI
API; it responds only to asynchronous messages.

12.2.1 The ReservationProcessor EJB

The ReservationProcessor EJB is a message-driven bean that receives JMS messages notifying it of new reservations.
The ReservationProcessor EJB is an automated version of the TravelAgent EJB that processes reservations sent via JMS.
These messages might come from another application in the enterprise or from an application in some other
organization—perhaps another travel agent. When the ReservationProcessor EJB receives a message, it creates a new
Reservation EJB (adding it to the database), processes the payment using the ProcessPayment EJB, and sends out a
ticket. This process is illustrated in Figure 12-3.

Figure 12-3. The ReservationProcessor EJB processing reservations

12.2.2 The ReservationProcessorBean Class

Here is a partial definition of the ReservationProcessorBean class. Some methods are left empty; they will be filled in later.
Notice that the onMessage() method contains the business logic; it is similar to the business logic developed in the
bookPassage() method of the TravelAgent EJB in Chapter 11. Here's the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bookPassage() method of the TravelAgent EJB in Chapter 11. Here's the code:

package com.titan.reservationprocessor;

import javax.jms.Message;

import javax.jms.MapMessage;

import com.titan.customer.*;

import com.titan.cruise.*;

import com.titan.cabin.*;

import com.titan.reservation.*;

import com.titan.processpayment.*;

import com.titan.travelagent.*;

import java.util.Date;

public class ReservationProcessorBean implements javax.ejb.MessageDrivenBean,

 javax.jms.MessageListener {

 MessageDrivenContext ejbContext;

 Context jndiContext;

 public void setMessageDrivenContext(MessageDrivenContext mdc) {

 ejbContext = mdc;

 try {

 jndiContext = new InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

 }

 public void ejbCreate() {}

 public void onMessage(Message message) {

 try {

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 double price = reservationMsg.getDouble("Price");

 // get the credit card

 Date expirationDate =

 new Date(reservationMsg.getLong("CreditCardExpDate"));

 String cardNumber = reservationMsg.getString("CreditCardNum");

 String cardType = reservationMsg.getString("CreditCardType");

 CreditCardDO card = new CreditCardDO(cardNumber,

 expirationDate, cardType);

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 deliverTicket(reservationMsg, ticket);

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 public void deliverTicket(MapMessage reservationMsg, TicketDO ticket) {

 // send it to the proper destination

 }

 public CustomerRemote getCustomer(Integer key)

 throws NamingException, RemoteException, FinderException {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws NamingException, RemoteException, FinderException {

 // get a remote reference to the Customer EJB

 }

 public CruiseLocal getCruise(Integer key)

 throws NamingException, FinderException {

 // get a local reference to the Cruise EJB

 }

 public CabinLocal getCabin(Integer key)

 throws NamingException, FinderException {

 // get a local reference to the Cabin EJB

 }

 public void ejbRemove() {

 try {

 jndiContext.close();

 ejbContext = null;

 } catch(NamingException ne) { /* do nothing */ }

 }

}

12.2.2.1 MessageDrivenBean interface

The message-driven bean class is required to implement the javax.ejb.MessageDrivenBean interface, which defines callback
methods similar to those in entity and session beans. Here is the definition of the MessageDrivenBean interface:

package javax.ejb;

public interface MessageDrivenBean extends javax.ejb.EnterpriseBean {

 public void setMessageDrivenContext(MessageDrivenContext context)

 throws EJBException;

 public void ejbRemove() throws EJBException;

}

The setMessageDrivenContext() method is called at the beginning of the MDB's life cycle and provides the MDB instance
with a reference to its MessageDrivenContext:

MessageDrivenContext ejbContext;

Context jndiContext;

public void setMessageDrivenContext(MessageDrivenContext mdc) {

 ejbContext = mdc;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ejbContext = mdc;

 try {

 jndiContext = new InitialContext();

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

The setMessageDrivenContext() method in the ReservationProcessorBean class sets the ejbContext instance field to the
MessageDrivenContext, which was passed into the method. It also obtains a reference to the JNDI ENC, which it stores in
the jndiContext. MDBs may have instance fields that are similar to a stateless session bean's instance fields. These
instance fields are carried with the MDB instance for its lifetime and may be reused every time it processes a new
message. Like stateless session beans, MDBs do not have conversational state and are not specific to a single JMS
client; MDB instances process messages from many different clients. Instead, they are tied to the specific topic or
queue from which they receive messages.

ejbRemove() provides the MDB instance with an opportunity to clean up any resources it stores in its instance fields. In
this case, we use it to close the JNDI context and set the ejbContext field to null. These operations are not absolutely
necessary, but they illustrate the kind of work that an ejbRemove() method might do. Note that ejbRemove() is called at
the end of the MDB's life cycle, before it is garbage collected. It may not be called if the EJB server hosting the MDB
fails or if an EJBException is thrown by the MDB instance in one of its other methods. When an EJBException (or any
RuntimeException type) is thrown by any method in the MDB instance, the instance is immediately removed from memory
and the transaction is rolled back.

12.2.2.2 MessageDrivenContext

The MessageDrivenContext simply extends the EJBContext; it does not add any new methods. The EJBContext is defined as:

package javax.ejb;

public interface EJBContext {

 // transaction methods

 public javax.transaction.UserTransaction getUserTransaction()

 throws java.lang.IllegalStateException;

 public boolean getRollbackOnly() throws java.lang.IllegalStateException;

 public void setRollbackOnly() throws java.lang.IllegalStateException;

 // EJB home methods

 public EJBHome getEJBHome();

 public EJBLocalHome getEJBLocalHome();

 // security methods

 public java.security.Principal getCallerPrincipal();

 public boolean isCallerInRole(java.lang.String roleName);

 // deprecated methods

 public java.security.Identity getCallerIdentity();

 public boolean isCallerInRole(java.security.Identity role);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean isCallerInRole(java.security.Identity role);

 public java.util.Properties getEnvironment();

}

Only the transactional methods that MessageDrivenContext inherits from EJBContext are available to message-driven
beans. The home methods—getEJBHome() and getEJBLocalHome()—throw a RuntimeException if invoked, because MDBs do
not have home interfaces or EJB home objects. The security methods—getCallerPrincipal() and isCallerInRole()—also throw
a RuntimeException if invoked on a MessageDrivenContext. When an MDB services a JMS message, there is no "caller," so
there is no security context to be obtained from the caller. Remember that JMS is asynchronous and doesn't propagate
the sender's security context to the receiver—that wouldn't make sense, since senders and receivers tend to operate in
different environments.

MDBs usually execute in a container-initiated or bean-initiated transaction, so the transaction methods allow the MDB to
manage its context. The transaction context is not propagated from the JMS sender; it is either initiated by the
container or by the bean explicitly using javax.jta.UserTransaction. The transaction methods in the EJBContext are explained
in more detail in Chapter 15.

Message-driven beans also have access to their own JNDI environment naming contexts (ENCs), which provide the MDB
instances access to environment entries, other enterprise beans, and resources. For example, the ReservationProcessor
EJB takes advantage of the JNDI ENC to obtain references to the Customer, Cruise, Cabin, Reservation, and
ProcessPayment EJBs as well as a JMS QueueConnectionFactory and Queue for sending out tickets.

12.2.2.3 MessageListener interface

In addition to the MessageDrivenBean interface, MDBs implement the javax.jms.MessageListener interface, which defines the
onMessage() method. This method processes the JMS messages received by a bean.

package javax.jms;

public interface MessageListener {

 public void onMessage(Message message);

}

It's interesting to consider why the MDB implements the MessageListener interface separately from the MessageDrivenBean
interface. Why not just put the onMessage() method, MessageListener's only method, in the MessageDrivenBean interface so
that there is only one interface for the MDB class to implement? This was the solution taken by an early, proposed
version of EJB 2.0. However, the developers quickly realized that message-driven beans could, in the future, process
messages from other types of systems, not just JMS. To make the MDB open to other messaging systems, it was
decided that the MDB should implement the javax.jms.MessageListener interface separately, thus separating the concept of
the message-driven bean from the types of messages it can process. It turns out that this was a good plan. As we'll see
later in this chapter, EJB 2.1 lets you use MDBs with non-JMS messaging systems that use a different messaging
interface.

12.2.2.4 Taskflow and integration for B2B (onMessage())

The onMessage() method is where all the business logic goes. As messages arrive, the container passes them to the
MDB via the onMessage() method. When the method returns, the MDB is ready to process a new message. In the
ReservationProcessor EJB, the onMessage() method extracts information about a reservation from a MapMessage and
uses that information to create a reservation in the system:

public void onMessage(Message message) {

 try {

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 // get the credit card

 Date expirationDate =

 new Date(reservationMsg.getLong("CreditCardExpDate"));

 String cardNumber = reservationMsg.getString("CreditCardNum");

 String cardType = reservationMsg.setString("CreditCardType");

 CreditCardDO card = new CreditCardDO(cardNumber,

 expirationDate, cardType);

JMS is frequently used as an integration point for business-to-business applications, so it's easy to imagine the
reservation message coming from one of Titan's business partners (perhaps a third-party processor or branch travel
agency).

The ReservationProcessor EJB needs to access the Customer, Cruise, and Cabin EJBs in order to process the
reservation. The MapMessage contains the primary keys for these entities; the ReservationProcessor EJB uses helper
methods (getCustomer(), getCruise(), and getCabin()) to look up the entity beans and obtain EJB object references to
them:

public void onMessage(Message message) {

 ...

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

 ...

}

public CustomerRemote getCustomer(Integer key)

 throws NamingException, RemoteException, FinderException {

 Object ref = jndiContext.lookup("java:comp/env/ejb/CustomerHomeRemote");

 CustomerHomeRemote home = (CustomerHomeRemote)

 PortableRemoteObject.narrow(ref, CustomerHomeRemote.class);

 CustomerRemote customer = home.findByPrimaryKey(key);

 return customer;

}

public CruiseLocal getCruise(Integer key)

 throws NamingException, FinderException {

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 CruiseLocal cruise = home.findByPrimaryKey(key);

 return cruise;

}

public CabinLocal getCabin(Integer key)

 throws NamingException, FinderException{

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 CabinLocal cabin = home.findByPrimaryKey(key);

 return cabin;

}

Once the information is extracted from the MapMessage, it is used to create a reservation and process the payment. This
is basically the same taskflow that was used by the TravelAgent EJB in Chapter 11. A Reservation EJB is created that
represents the reservation itself, and a ProcessPayment EJB is created to process the credit card payment:

ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

Object ref = jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow (ref, ProcessPaymentHomeRemote.class);

ProcessPaymentRemote process = ppHome.create();

process.byCredit(customer, card, price);

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

deliverTicket(reservationMsg, ticket);

Like a session bean, the MDB can access any other entity or session bean and use that bean to complete a task. An
MDB can manage a process and interact with other beans as well as resources. For example, it is commonplace for an
MDB to use JDBC to access a database based on the contents of the message it is processing.

12.2.2.5 Sending messages from a message-driven bean

An MDB can also send messages using JMS. The deliverTicket() method sends the ticket information to a destination
defined by the sending JMS client:

public void deliverTicket(MapMessage reservationMsg, TicketDO ticket)

 throws NamingException, JMSException{

 Queue queue = (Queue)reservationMsg.getJMSReplyTo();

 QueueConnectionFactory factory = (QueueConnectionFactory)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session = connect.createQueueSession(true,0);

 QueueSender sender = session.createSender(queue);

 ObjectMessage message = session.createObjectMessage();

 message.setObject(ticket);

 sender.send(message);

 connect.close();

}

Every message type has two parts: a message header and a message body (a.k.a. the payload). The message header
contains routing information and may also have properties for message filtering and other attributes. One of these
attributes may be JMSReplyTo. The message's sender may set the JMSReplyTo attribute to any destination accessible to
its JMS provider.[5] In the case of the reservation message, the sender set the JMSReplyTo attribute to the queue to
which the resulting ticket should be sent. Another application can access this queue to read tickets and distribute them
to customers or store the information in the sender's database.

[5] In EJB 2.0, if the destination identified by the JMSReplyTo attribute is of type Queue, the point-to-point (queue-
based) messaging model must be used. If the destination type identified by the JMSReplyTo attribute is Topic, the
publish-and-subscribe (topic-based) messaging model must be used. In EJB 2.1, you can use the Unified API for
both publish-and-subscribe and point-to-point messaging.

You can also use the JMSReplyTo address to report business errors. For example, if the Cabin is already reserved, the
ReservationProcessor EJB might send an error message to the JMSReplyTo queue explaining that the reservation could
not be processed. Including this type of error handling is left as an exercise for the reader.

12.2.3 XML Deployment Descriptor

MDBs are described in EJB deployment descriptors the same as entity and session beans. They can be deployed alone,
but it's more often deployed with the other enterprise beans that it references. For example, the ReservationProcessor
EJB uses the local interfaces of the Customer, Cruise, and Cabin beans, so all four beans would have to be deployed in
the same JAR.

12.2.3.1 EJB 2.1: Deployment descriptor for MDBs

The way EJB 2.1 defines the properties of message processing for MDB is significantly different than in EJB 2.0. EJB 2.0
defined a few JMS-specific elements, which have been abandoned in EJB 2.1 so that the MDB deployment descriptor can
represent Connector-based MDBs as well as JMS-based MDBs. Since Connector-based MDBs don't necessarily use JMS
as the message service, the <activation-config> element was introduced to describe the bean's messaging properties. The
<activation-config> elements are shown in bold in the following listing.

<enterprise-beans>

 ...

 <message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <ejb-class>

 com.titan.reservationprocessor.ReservationProcessorBean

 </ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Container</transaction-type>

 <message-destination-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <message-destination-type>

 javax.jms.Queue

 </message-destination-type>

 <activation-config>

 <activation-property>

 <activation-config-property-name>destinationType

 </activation-config-property-name>

 <activation-config-property-value>javax.jms.Queue

 </activation-config-property-value>

 <activation-property>

 <activation-property>

 <activation-config-property-name>messageSelector

 </activation-config-property-name>

 <activation-config-property-value>MessageFormat = 'Version 3.4'

 </activation-config-property-value>

 <activation-property>

 <activation-property>

 <activation-config-property-name>acknowledgeMode

 </activation-config-property-name>

 <activation-config-property-value>Auto-acknowledge

 </activation-config-property-value>

 <activation-property>

 </activation-config>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 </ejb-local-ref>

 <security-identity>

 <run-as>

 <role-name>everyone</role-name>

 </run-as>

 </security-identity>

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </message-driven>

 ...

</enterprise-beans>

The property names and values used in the <activation-config> to describe the messaging service vary depending on the
type of message service used, but EJB 2.1 defines a set of fixed properties for JMS-based message-driven beans. These
properties are acknowledgeMode, messageSelector, destinationType, and subscriptionDurablity. These properties are also used
by EJB 2.0 deployment descriptors, so we'll discuss them in the next section.

In addition to the <activation-config> element, EJB 2.1 introduces the <messaging-type> and <message-destination-type>
elements. An MDB is declared in a <message-driven> element within the <enterprise-beans> element, alongside <session>
and <entity> beans. Similar to <session> bean types, it defines an <ejb-name>, <ejb-class>, and <transaction-type>, but
does not define component interfaces (local or remote). MDBs do not have remote or local interfaces, so these
definitions aren't needed.

12.2.3.2 EJB 2.0: Deployment descriptor for MDBs

Here is the deployment descriptor for MDBs in EJB 2.0:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is the deployment descriptor for MDBs in EJB 2.0:

<enterprise-beans>

 ...

 <message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <ejb-class>

 com.titan.reservationprocessor.ReservationProcessorBean

 </ejb-class>

 <transaction-type>Container</transaction-type>

 <message-selector>MessageFormat = 'Version 3.4'</message-selector>

 <acknowledge-mode>Auto-acknowledge</acknowledge-mode>

 <message-driven-destination>

 <destination-type>javax.jms.Queue</destination-type>

 </message-driven-destination>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 </ejb-local-ref>

 <security-identity>

 <run-as>

 <role-name>everyone</role-name>

 </run-as>

 </security-identity>

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </message-driven>

 ...

</enterprise-beans>

An MDB is declared in a <message-driven> element within the <enterprise-beans> element, alongside <session> and
<entity> beans. Like session beans, an MDB defines an <ejb-name>, <ejb-class>, and <transaction-type>; unlike other kinds
of beans, an MDB never defines local or remote component interfaces. MDBs do not have remote or local interfaces, so
these definitions aren't needed.

12.2.3.3 Message selector

An MDB can declare a message selector. Message selectors allow an MDB to be more selective about the messages it
receives from a particular topic or queue. Message selectors use Message properties as criteria in conditional
expressions.[6] These conditional expressions use Boolean logic to declare which messages should be delivered. In EJB
2.1, a message selector is declared using standard property name, messageSelector, in an activation configuration
element:

[6] Message selectors are also based on message headers, which are outside the scope of this chapter.

<activation-property>

 <activation-config-property-name>messageSelector

 </activation-config-property-name>

 <activation-config-property-value>MessageFormat = 'Version 3.4'

 </activation-config-property-value>

<activation-property>

In EJB 2.0, a message selector is declared using the <message-selector> element:

<message-selector>MessageFormat = 'Version 3.4'</message-selector>

Message selectors are based on message properties. Message properties are additional headers that can be assigned to
a message; they allow vendors and developers to attach information to a message that isn't part of the message's
body. The Message interface provides several methods for reading and writing properties. Properties can have a String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

body. The Message interface provides several methods for reading and writing properties. Properties can have a String
value or one of several primitive values (boolean, byte, short, int, long, float, double). The naming of properties, together
with their values and conversion rules, is strictly defined by JMS.

The ReservationProcessor EJB uses a message selector filter to select messages of a specific format. In this case the
format is "Version 3.4"; this is a string Titan uses to identify messages of type MapMessage that contain the name values
CustomerID, CruiseID, CabinID, CreditCard, and Price. In other words, adding a MessageFormat to each reservation message
allows us to write MDBs that are designed to process different kinds of reservation messages. If a new business partner
needs to use a different type of Message object, Titan would use a new message version and an MDB to process it.

Here's how a JMS producer would go about setting a MessageFormat property on a Message:

Message message = session.createMapMessage();

message.setStringPropery("MessageFormat","Version 3.4");

// set the reservation named values

sender.send(message);

The message selectors are based on a subset of the SQL-92 conditional expression syntax that is used in the WHERE
clauses of SQL statements. They can become fairly complex, including the use of literal values, Boolean expressions,
unary operators, and so on.

12.2.3.4 Acknowledge mode

A JMS acknowledgment means that the JMS client notifies the JMS provider (message router) when a message is
received. In EJB, it's the MDB container's responsibility to send an acknowledgment when it receives a message.
Acknowledging a message tells the JMS provider that an MDB container has received and processed the message.
Without an acknowledgment, the JMS provider does not know whether the MDB container has received the message,
and unwanted redeliveries can cause problems. For example, once we have processed a reservation message using the
ReservationProcessor EJB, we don't want to receive the same message again.

In EJB 2.1, the acknowledgment mode is set using the standard acknowledgeMode activation configuration property, as
shown in the following XML snippet:

<activation-property>

 <activation-config-property-name>acknowledgeMode

 </activation-config-property-name>

 <activation-config-property-value>Auto-acknowledge

 </activation-config-property-value>

<activation-property>

In EJB 2.0, the acknowledgment mode is set using a special <acknowledge-mode> element, as shown in the following
XML snippet:

<acknowledge-mode>Auto-acknowledge</acknowledge-mode>

Two values can be specified for acknowledgment mode: Auto-acknowledge and Dups-ok-acknowledge. Auto-acknowledge tells
the container that it should send an acknowledgment to the JMS provider soon after the message is given to an MDB
instance to process. Dups-ok-acknowledge tells the container that it doesn't have to send the acknowledgment
immediately; any time after the message is given to the MDB instance will be fine. With Dups-ok-acknowledge, it's
possible for the MDB container to delay acknowledgment so long that the JMS provider assumes that the message was
not received and sends a "duplicate" message. Obviously, with Dups-ok-acknowledge, your MDBs must be able to handle
duplicate messages correctly.

Auto-acknowledge avoids duplicate messages because the acknowledgment is sent immediately. Therefore, the JMS
provider won't send a duplicate. Most MDBs use Auto-acknowledge to avoid processing the same message twice. Dups-ok-
acknowledge exists because it can allow a JMS provider to optimize its use of the network. In practice, though, the
overhead of an acknowledgment is so small, and the frequency of communication between the MDB container and JMS
provider is so high, that Dups-ok-acknowledge doesn't have a big impact on performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provider is so high, that Dups-ok-acknowledge doesn't have a big impact on performance.

Having said all of this, the acknowledgement mode is ignored most of the time—in fact, it is ignored unless the MDB
executes with bean-managed transactions, or with the container-managed transaction attribute NotSupported (see
Chapter 15). In all other cases, transactions are managed by the container, and acknowledgment takes place within the
context of the transaction. If the transaction succeeds, the message is acknowledged. If the transaction fails, the
message is not acknowledged. When using container-managed transactions with a Required transaction attribute, the
acknowledgment mode is usually not specified; however, it is included in the deployment descriptor for the sake of
discussion.

12.2.3.5 EJB 2.1: <messaging-type>

The <messaging-type> element declares the messaging interfaces used by the MDB:

<messaging-type>javax.jms.MessageListener</messaging-type>

For JMS-based MDBs, the messaging interface is always going to be javax.jms.MessageListener, but for other Connector-
based MDBs it might be something completely different. If the <messaging-type> element is omitted, the type is assumed
to be javax.jms.MessageListener.

12.2.3.6 EJB 2.1: <message-destination-type>

The <message-destination-type> element indicates the type of destination from which the MDB receives messages. The
allowed values for JMS-based MDBs are javax.jms.Queue and javax.jms.Topic. A Connector-based MDB might use some
other type. The value must always be a fully qualified class name.

In the ReservationProcessor EJB, this value is set to javax.jms.Queue, indicating that the MDB is getting its messages via
the p2p messaging model from a queue:

<message-destination-type>

 javax.jms.Queue

</message-destination-type>

When the MDB is deployed, the deployer maps the MDB so that it listens to a real queue on the network.

You may have noticed that the <message-destination-type> and the destinationType configuration property specify the same
thing. This seems redundant, and it is for JMS-based MDBs—but for Connector-based MDBs, it is not. That's because
Connector-based MDBs have completely different activation configuration properties than a JMS-based MDB. It's
important that the <message-destination-type> be specified for both JMS-based and Connector-based MDBs.

12.2.3.7 EJB 2.0: <message-driven-destination>

The <message-driven-destination> element indicates the type of destination from which the MDB receives messages. The
allowed values for this element are javax.jms.Queue and javax.jms.Topic. In the ReservationProcessor EJB, this value is set
to javax.jms.Queue, indicating that the MDB is getting its messages via the point-to-point messaging model from a
queue:

<message-driven-destination>

 <destination-type>javax.jms.Queue</destination-type>

</message-driven-destination>

When the MDB is deployed, the deployer maps the MDB so that it listens to a real queue on the network.

12.2.3.8 Subscription durability

In EJB 2.1 and EJB 2.0, when a JMS-based MDB uses a javax.jms.Topic, the deployment descriptor must declare whether
the subscription is Durable or NonDurable. A Durable subscription outlasts an MDB container's connection to the JMS
provider, so if the EJB server suffers a partial failure, shuts down, or otherwise disconnects from the JMS provider, the
messages that it would have received are not lost. The provider stores any messages that are delivered while the
container is disconnected; the messages are delivered to the container (and from there, to the MDB) when the
container reconnects. This behavior is commonly referred to as store-and-forward messaging. Durable MDBs are tolerant

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container reconnects. This behavior is commonly referred to as store-and-forward messaging. Durable MDBs are tolerant
of disconnections, whether intentional or the result of a partial failure.

If the subscription is NonDurable, any messages the bean would have received while it was disconnected are lost.
Developers use NonDurable subscriptions when it is not critical for all messages to be processed. Using a NonDurable
subscription improves the performance of the JMS provider but significantly reduces the reliability of the MDBs.

In EJB 2.1, durability is declared using the standard subscriptionDurability activation configuration property:

<activation-property>

<activation-config-property-name>subscriptionDurability

</activation-config-property-name>

<activation-config-property-value>Durable

</activation-config-property-value>

<activation-property>

In EJB 2.0, durability is declared by the <subscription-durability> element within the <message-driven-destination> element:

<message-driven-destination>

 <destination-type>javax.jms.Topic</destination-type>

 <subscription-durability>Durable</subscription-durability>

</message-driven-destination>

When the destination type is javax.jms.Queue, as is the case in the ReservationProcessor EJB, durability is not a factor
because of the nature of queue-based messaging systems. With a queue, messages may be consumed only once and
remain in the queue until they are distributed to one of the queue's listeners.

The rest of the elements in both the EJB 2.1 and EJB 2.0 deployment descriptors should already be familiar. The <ejb-
ref> element provides JNDI ENC bindings for a remote EJB home object, while the <ejb-local-ref> elements provide JNDI
ENC bindings for local EJB home objects. Note that the <resource-ref> element that defined the JMS
QueueConnectionFactory used by the ReservationProcessor EJB to send ticket messages is not accompanied by a
<resource-env-ref> element. The queue to which the tickets are sent is obtained from the JMSReplyTo header of the
MapMessage itself, and not from the JNDI ENC.

12.2.4 The ReservationProcessor Clients

In order to test the ReservationProcessor EJB, we need to develop two new client applications: one to send reservation
messages and the other to consume ticket messages produced by the ReservationProcessor EJB.

12.2.4.1 The reservation message producer

The JmsClient_ReservationProducer sends 100 reservation requests very quickly. The speed with which it sends these
messages forces many containers to use multiple MDB instances to process them. The code for
JmsClient_ReservationProducer looks like this:

import javax.jms.Message;

import javax.jms.MapMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.Queue;

import javax.jms.QueueSender;

import javax.jms.JMSException;

import javax.naming.InitalContext;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import javax.naming.InitalContext;

import java.util.Date;

import com.titan.processpayment.CreditCardDO;

public class JmsClient_ReservationProducer {

 public static void main(String [] args) throws Exception {

 InitialContext jndiContext = getInitialContext();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("QueueFactoryNameGoesHere");

 Queue reservationQueue = (Queue)

 jndiContext.lookup("QueueNameGoesHere");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session =

 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

 QueueSender sender = session.createSender(reservationQueue);

 Integer cruiseID = new Integer(1);

 for(int i = 0; i < 100; i++){

 MapMessage message = session.createMapMessage();

 message.setStringProperty("MessageFormat","Version 3.4");

 message.setInt("CruiseID",1);

 message.setInt("CustomerID",i%10);

 message.setInt("CabinID",i);

 message.setDouble("Price", (double)1000+i);

 // the card expires in about 30 days

 Date expirationDate = new Date(System.currentTimeMillis()+43200000);

 message.setString("CreditCardNum", "923830283029");

 message.setLong("CreditCardExpDate", expirationDate.getTime());

 message.setString("CreditCardType", CreditCardDO.MASTER_CARD);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 message.setString("CreditCardType", CreditCardDO.MASTER_CARD);

 sender.send(message);

 }

 connect.close();

 }

 public static InitialContext getInitialContext()

 throws JMSException {

 // create vendor-specific JNDI context here

 }

}

Note that the JmsClient_ReservationProducer sets the CustomerID, CruiseID, and CabinID as primitive int values, but the
ReservationProcessorBean reads these values as java.lang.Integer types. This is not a mistake. The MapMessage automatically
converts any primitive to its proper wrapper if that primitive is read using MapMessage.getObject(). So, for example, a
named value that is loaded into a MapMessage using setInt() can be read as an Integer using getObject(). For example, the
following code sets a value as a primitive int and then accesses it as a java.long.Integer object:

MapMessage mapMsg = session.createMapMessage();

mapMsg.setInt("TheValue",3);

Integer myInteger = (Integer)mapMsg.getObject("TheValue");

if(myInteger.intValue() == 3)

 // this will always be true

12.2.4.2 The ticket message consumer

The JmsClient_TicketConsumer is designed to consume all the ticket messages delivered by ReservationProcessor EJB
instances to the queue. It consumes the messages and prints out the descriptions:

import javax.jms.Message;

import javax.jms.ObjectMessage;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueConnection;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.Queue;

import javax.jms.QueueReceiver;

import javax.jms.JMSException;

import javax.naming.InitalContext;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import com.titan.travelagent.TicketDO;

public class JmsClient_TicketConsumer

 implements javax.jms.MessageListener {

 public static void main(String [] args) throws Exception {

 new JmsClient_TicketConsumer();

 while(true){Thread.sleep(10000);}

 }

 public JmsClient_TicketConsumer() throws Exception {

 InitialContext jndiContext = getInitialContext();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup("QueueFactoryNameGoesHere");

 Queue ticketQueue = (Queue)jndiContext.lookup("QueueNameGoesHere");

 QueueConnection connect = factory.createQueueConnection();

 QueueSession session =

 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

 QueueReceiver receiver = session.createReceiver(ticketQueue);

 receiver.setMessageListener(this);

 connect.start();

 }

 public void onMessage(Message message) {

 try {

 ObjectMessage objMsg = (ObjectMessage)message;

 TicketDO ticket = (TicketDO)objMsg.getObject();

 System.out.println("********************************");

 System.out.println(ticket);

 System.out.println("********************************");

 } catch(JMSException jmsE) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(JMSException jmsE) {

 jmsE.printStackTrace();

 }

 }

 public static InitialContext getInitialContext() throws JMSException {

 // create vendor-specific JNDI context here

 }

}

To make the ReservationProcessor EJB work with the two client applications, JmsClient_ReservationProducer and
JmsClient_TicketConsumer, you must configure your EJB container's JMS provider so that it has two queues: one for
reservation messages and another for ticket messages.

Exercise 12.2 in the Workbook shows how to deploy these examples in the JBoss EJB container.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.3 The Life Cycle of a Message-Driven Bean
Just as the entity and session beans have well-defined life cycles, so does the MDB bean. The MDB instance's life cycle
has two states: Does Not Exist and Method-Ready Pool. The Method-Ready Pool is similar to the instance pool used for
stateless session beans.[7] Figure 12-4 illustrates the states and transitions that an MDB instance goes through in its
lifetime.

[7] Some vendors may not pool MDB instances, but may instead create and destroy instances with each new
message. This is an implementation-specific decision that should not affect the specified life cycle of the stateless
bean instance.

Figure 12-4. MDB life cycle

12.3.1 Does Not Exist

When an MDB instance is in the Does Not Exist state, it is not an instance in the memory of the system. In other words,
it has not been instantiated yet.

12.3.2 The Method-Ready Pool

MDB instances enter the Method-Ready Pool as the container needs them. When the EJB server is first started, it may
create a number of MDB instances and enter them into the Method-Ready Pool. (The actual behavior of the server
depends on the implementation.) When the number of MDB instances handling incoming messages is insufficient, more
can be created and added to the pool.

12.3.3 Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three operations are performed
on it. First, the bean instance is instantiated when the container invokes the Class.newInstance() method on the MDB
class. Second, the setMessageDrivenContext() method is invoked by the container providing the MDB instance with a
reference to its EJBContext. The MessageDrivenContext reference may be stored in an instance field of the MDB.

Finally, the no-argument ejbCreate() method is invoked by the container on the bean instance. The MDB has only one
ejbCreate() method, which takes no arguments. The ejbCreate() method is invoked only once in the life cycle of the MDB.

MDBs are not subject to activation, so they can maintain open connections to resources for their entire life cycles.[8]

The ejbRemove() method should close any open resources before the MDB is evicted from memory at the end of its life
cycle.

[8] The duration of an MDB instance's life is assumed to be very long. However, some EJB servers may actually

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[8] The duration of an MDB instance's life is assumed to be very long. However, some EJB servers may actually
destroy and create instances with every new message, making this strategy less attractive. Consult your vendor's
documentation for details on how your EJB server handles stateless instances.

12.3.4 Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to handle incoming messages. When a message is delivered to
an MDB, it is delegated to any available instance in the Method-Ready Pool. While the instance is executing the request,
it is unavailable to process other messages. The MDB can handle many messages simultaneously, delegating the
responsibility of handling each message to a different MDB instance. When a message is delegated to an instance by
the container, the MDB instance's MessageDrivenContext changes to reflect the new transaction context. Once the
instance has finished, it is immediately available to handle a new message.

12.3.5 Transitioning Out of the Method-Ready Pool: The Death of an MDB
Instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when the server no longer needs them. This
occurs when the server decides to reduce the total size of the Method-Ready Pool by evicting one or more instances
from memory. The process begins by invoking the ejbRemove() method on the instance. At this time, the bean instance
should perform any necessary cleanup operations, such as closing open resources. The ejbRemove() method is invoked
only once in the life cycle of an MDB instance—when it is about to transition to the Does Not Exist state. During the
ejbRemove() method, the MessageDrivenContext and access to the JNDI ENC are still available to the bean instance.
Following the execution of the ejbRemove() method, the bean is dereferenced and eventually garbage collected.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.4 Connector-Based Message-Driven Beans
Although the JMS-based MDB has proven very useful, it has limitations. Perhaps the most glaring limitation is that EJB
vendors are only able to support a small number of JMS providers (usually only one). In fact, most EJB 2.0 vendors only
support their own JMS provider, no others. Obviously, this limits your choices: if your company or a partner company
uses a JMS provider that is not supported by your EJB vendor, you will not be able to process messages from that JMS
provider.[9]

[9] A workaround is to use a JMS Gateway, which routs messages from one JMS provider to another, but this is a
custom solution outside the EJB specification.

The root of the problem is complex and requires a fairly deep understanding of transaction management. In a nutshell,
the delivery of the message by the JMS provider to the MDB, and all the work performed by the MDB (e.g., using JDBC,
invoking methods on other beans, etc.), must be part of the same transaction, which is initiated by the EJB container.
This requires that the EJB container have prior knowledge that message delivery is imminent, so that it can initiate a
transaction before the message is actually delivered. Unfortunately, the JMS API doesn't support this kind of
functionality. So an EJB 2.0 container requires special code to coordinate transactions with each JMS provider. Custom
integration is expensive, so EJB 2.0 vendors generally choose to integrate with very few JMS providers.

Another limitation of MDBs in EJB 2.0 is that they only support the JMS programming model; no other messaging
systems are supported. While JMS is very useful, it's not the only messaging system available. SOAP, email, CORBA
Messaging, proprietary messaging systems used in ERP systems (SAP, PeopleSoft, etc.), and legacy messaging systems
are examples of other non-JMS messaging systems.

EJB 2.1 supports an expanded, more open definition of message-driven beans that allows them to service any kind of
messaging system from any vendor. The only requirement is that new types of message-driven beans implement the
javax.ejb.MessageDrivenBean interface and adhere to the message-driven bean life cycle. While EJB 2.1 vendors can build
custom code to support a new messaging system (something other than JMS), they must also support any message-
driven bean type that's based on the J2EE Connector Architecture 1.5.

The J2EE Connector Architecture provides a standard Service Provider Interface (SPI) that allows any Enterprise
Information System (EIS) to plug into any J2EE container system. Version 1.0 of the connector architecture applies only
to request/reply resources in which the J2EE component (EJB or Servlet/JSP) initiates the request. The current version
of the connector architecture (1.5), which is required by J2EE 1.4, is much more general, and can work with
asynchronous messaging systems. In such systems, the J2EE component waits for messages to arrive, instead of
initiating an interaction with an EIS; the EIS initiates the interaction by delivering a message.

J2EE Connectors 1.5 defines a messaging contract specifically tailored to message-driven beans. It defines the contracts
between an EJB container and an asynchronous Connector so that message-driven beans automatically process
incoming messages from the EIS. MDBs based on an asynchronous Connector implement the standard
javax.ejb.MessageDrivenBean interface, as well as a specific messaging interface defined by the Connector itself. Instead of
implementing the javax.jms.MessageListener interface, the MDB implements some other type of interface that is specific to
the EIS.

For example, Chapter 3 introduced a hypothetical Email Connector that allows MDBs to process email—similar to how
JMS-based MDBs process JMS messages. The Email Connector is purchased from Vendor X and delivered in a JAR file
called a RAR (Resource ARchive). The RAR contains all the Connector code and deployment descriptors necessary to
plug into the EJB container system. It also defines a messaging interface that the developer uses to create an Email
MDB. Here is the hypothetical Email messaging interface that must be implemented by an Email MDB.

package com.vendorx.email;

public interface EmailListener {

 public void onMessage(javax.mail.Message message);

}

The bean class that implements this interface also implements the javax.ejb.MessageDrivenBean interface and is
responsible for processing email messages delivered by the Email Connector. The following code shows a MDB that
implements the EmailListener interface and processes email:

package com.titan.email;

public class EmailBean

 implements javax.ejb.MessageDrivenBean, com.vendorx.email.EmailListener {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 implements javax.ejb.MessageDrivenBean, com.vendorx.email.EmailListener {

 MessageDrivenContext ejbContext;

 public void setMessageDrivenContext(MessgeDrivenContext mdc){

 ejbContext = mdc;

 }

 public void ejbCreate(){}

 public void onMessage(javax.mail.Message message){

 javax.mail.internet.MimeMessage msg =

 (javax.mail.internet.MimeMessage) message;

 Address [] addresses = msg.getFrom();

 // continue processing Email message

 }

 public void ejbRemove(){}

}

In this example, the container calls onMessage() to deliver a JavaMail Message object, which represents an email
message including MIME attachments. However, the messaging interfaces used by a Connector-based MDB don't have
to use onMessage(). The method name and method signature can be whatever is appropriate to the EIS; it can even
have a return types. For example, a Connector might be developed to handle request/reply style messaging for SOAP.
This connector might use the ReqRespListener defined by the JAXM (Java API for XML Messaging), which is a SOAP
messaging API defined by Sun Microsystems that is not a part of the J2EE platform:

package javax.xml.messaging;

import javax.xml.soap.SOAPMessage;

public interface ReqRespListener {

 public SOAPMessage onMessage(SOAPMessage message);

}

In this interface, onMessage() has a return type of SOAPMessage. This means the EJB container and Connector are
responsible for coordinating the reply message back to the sender (or some destination defined in the deployment
descriptor). In addition to supporting different method signatures, the messaging interface may have several methods
for processing different kinds of messages using the same MDB.

There's no limit to the new kinds of message-driven beans that EJB 2.1 containers systems can support. The real
beauty of all this is that Connector-based MDBs are completely portable across EJB 2.1 vendors—because all vendors
must support them. If you use a Connector-based MDB with EJB 2.1 vendor A, and later change to EJB 2.1 vendor B,
you can continue to use the same Connector-based MDB with no portability problems.

The activation configuration properties used with non-JMS-based MDBs depend on the type of Connector and its
requirements. For example, the <message-driven> element of the deployment descriptor for the Email MDB might look
something like this:

 <enterprise-beans>

 ...

 <message-driven>

 <ejb-name>EmailEJB</ejb-name>

 <ejb-class>

 com.titan.email.EmailBean

 </ejb-class>

 <messaging-type>com.vendorx.email.EmailListener</messaging-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <messaging-type>com.vendorx.email.EmailListener</messaging-type>

 <transaction-type>Bean</transaction-type>

 <activation-config>

 <activation-property>

 <activation-config-property-name>mailServer

 </activation-config-property-name>

 <activation-config-property-value>mail.ispx.com

 </activation-config-property-value>

 </activation-property>

 <activation-property>

 <activation-config-property-name>serverType

 </activation-config-property-name>

 <activation-config-property-value>POP3

 </activation-config-property-value>

 </activation-property>

 <activation-property>

 <activation-config-property-name>messageFilter

 </activation-config-property-name>

 <activation-config-property-value>to='submit@titan.com'

 </activation-config-property-value>

 </activation-property>

 </activation-config>

 <security-identity>

 <run-as>

 <role-name>Admin</role-name>

 </run-as>

 </security-identity>

 </message-driven>

 ...

</enterprise-beans>

Unfortunately, as of this writing there are no Connector-based MDBs commercially available, which is why all examples
(like the Email EJB) are hypothetical. It's likely that new Connector-based MDBs will start popping up after EJB 2.1
servers have been around for a short while.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.5 EJB 2.1: Message Linking
Message linking is a new feature to EJB 2.1 that allows the messages being sent by any enterprise bean to be routed to
a specific message-driven bean in the same deployment. By using message linking, you can orchestrate a flow of
messages between components in the same application. For example, in the beginning of this chapter, the TravelAgent
EJB from Chapter 11 was re-implemented so that it sent a JMS message with the ticket information to a Topic
destination. Here's a different implementation of the TravelAgent EJB's bookPassage() method, this time using an
ObjectMessage type:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/TicketTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 ObjectMessage objectMsg = session.createObjectMessage();

 objectMsg.setObject(ticket);

 publisher.publish(objectMsg);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 publisher.publish(objectMsg);

 connect.close();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

When we discussed this method earlier in the chapter, we never really mentioned where the ticket message was being
sent. It could go to the reservation agent or some other department of Titan Cruises. However, message linking makes
sure that the message goes directly to a message-driven bean that we deploy.

For example, we might deploy a message driven bean, the TicketDistributor EJB, that is responsible for distributing
ticket information to several different targets such as legacy databases, partner organizations, marketing, etc. Figure
12-5 shows how the TicketDistributor EJB (an MDB) works with the TravelAgent EJB to distribute ticket information to
several different targets.

Figure 12-5. Message flow with message linking

The TicketDistributor distributes the ticket information to a variety of disparate targets, including a separate relational
database using JDBC, a legacy system (e.g., IMS, CICS, etc.) using a J2EE Connector, and email using JavaMail. The
TravelAgent EJB could have handled this type of distribution directly, but defining a separate MDB to do distribution
provides more flexibility and better performance.

The TicketDistributor MDB is more flexible because the routing for the message can be changed without modifying the
TravelAgent EJB. The TravelAgent EJB always sends messages to the same JMS topic; it's the responsibility of the
TicketDistributor to distribute the ticket information to other sources. The TicketDistributor also improves performance,
because the TicketAgent doesn't have to wait on the various targets (a separate database, legacy system, and email) to
accept and process the message before finishing the reservation. The TicketAgent just sends the ticket information and
forgets about it. It's the responsibility of the TicketDistribution MDB to distribute the ticket information to the
appropriate parities. In addition, the TravelAgent EJB doesn't have to coordinate a distributed transaction across
different resources, which can create significant bottlenecks and affect throughput.

In order to link the outgoing messages sent by the TravelAgent EJB with the incoming messages consumed and
processed by the TicketDistribution MDB, we need to define <message-destination-link> elements in the deployment
descriptor. The <message-destination-link> element is defined by the <message-destination-ref> element of the TravelAgent
EJB. The TicketDistributor EJB also declares the <message-destination-link> element. Both elements reference the same
logical destination declared in the assembly descriptor:

<ejb-jar ...>

 <enterprise-beans>

 ...

 <session>

 <ejb-name>TravelAgentBean</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <message-destination-ref>

 <message-destination-ref-name>

 jms/TicketTopic

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Topic</message-destination-type>

 <message-destination-usage>Produces</message-destination-usage>

 <message-destination-link>

 Distributor

 </message-destination-link>

 </message-destination-ref>

 ...

 </session>

 <message-driven>

 <ejb-name>TicketDistributorEJB</ejb-name>

 <ejb-class>

 com.titan.distributor.TicketDistributorBean

 </ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Bean</transaction-type>

 <message-destination-type>

 javax.jms.Topic

 </message-destination-type>

 <message-destination-link>

 Distributor

 </message-destination-link>

 ...

 </message-driven>

 ...

 </enterprise-beans>

 <assembly-descriptor>

 ...

 <message-destination>

 <message-destination-name>Distributor</message-destination-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <message-destination-name>Distributor</message-destination-name>

 </message-destination>

 ...

 </assembly-descriptor>

</ejb-jar>

As you know, a <message-destination-ref> element declares the destination to which an enterprise beans sends or
receives messages. When the <message-destination-ref> includes a <message-destination-link> element, it means that
message senders and receivers will be sharing a logical destination described in the assembly-descriptor. In the
example above, the TravelAgent EJB's <message-destination-ref> declares a <message-destination-link>, which points to the
<message-destination> element in the <assembly-descriptor> that has the name Distributor. The <message-destination-link>
defined by the TicketDistributor MDB points to the same <message-destination> element. This means the messages sent
by the TravelAgent EJB to the Distributor message destination will go to the TicketDistributor MDB.

Message-driven beans always consume messages from the destination defined by the <message-destination-link> element
defined directly under the <message-bean> element. However, they can also produce messages that are sent to a logical
message destination if they use the message API described by their own <message-destination-ref> element. The
following listing shows that the TicketDistributor consumes messages from the Distributor destination, but also uses the
JMS to send messages to a completely different destination, called Partner:

<ejb-jar ...>

 <enterprise-beans>

 ...

 <message-driven>

 <ejb-name>TicketDistributorEJB</ejb-name>

 <ejb-class>

 com.titan.distributor.TicketDistributorBean

 </ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Bean</transaction-type>

 <message-destination-type>

 javax.jms.Topic

 </message-destination-type>

 <message-destination-link>

 Distributor

 </message-destination-link>

 ...

 <message-destination-ref>

 <message-destination-ref-name>

 jms/PartnerCompany

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Topic</message-destination-type>

 <message-destination-usage>Produces</message-destination-usage>

 <message-destination-link>

 Partner

 </message-destination-link>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </message-destination-link>

 </message-destination-ref>

 ...

 </message-driven>

 ...

 </enterprise-beans>

 <assembly-descriptor>

 ...

 <message-destination>

 <message-destination-name>Distributor</message-destination-name>

 </message-destination>

 <message-destination>

 <message-destination-name>Partner</message-destination-name>

 </message-destination>

 ...

 </assembly-descriptor>

</ejb-jar>

At deployment time, each of the <message-destination> elements are mapped to a real messaging destination in the
target environment. In most cases, this will be a JMS topic or queue, but it could be a destination of some other type of
messaging system.

The J2EE application server doesn't have to route the messages through an actual destination. It can asynchronously
send them from the sender to the receiver; in this case, from the TravelAgent EJB to the TicketDistributor MDB.
However, if the application server handles message delivery itself, rather than going through a messaging provider, it
must follow the semantics of the messaging system. For JMS, transactions, persistence, durability, security, and
acknowledgments should be handled correctly whether the message is sent directly from one component to another, or
via a JMS provider.

Although any enterprise bean can consume (receive) messages from a logical destination as well as produce (send)
messages, only MDBs should consume messages. The reasons for this limitation were discussed earlier in this chapter
(see "Entity and Session Beans Should Not Receive Messages").

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 12. Message-Driven Beans
The Message-Driven Bean was introduced in EJB 2.0 to support the processing of asynchronous messages from a Java
Message Service (JMS) provider. EJB 2.1 expanded the definition of the message-driven bean so that it can support any
messaging system, not just JMS. This chapter examines both JMS-based message-driven beans, which all EJB 2.0 and
EJB 2.1 vendors must support, as well as the expanded message-driven bean model available to EJB 2.1 developers.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.1 Titan's Maintenance Timer
Titan Cruises has a policy of performing regular maintenance on its ships. For example, the engines require extensive
and varied maintenance activities throughout the year, as does navigation equipment, communications, sewer and
water systems, etc. In fact, there are literally thousands of maintenance functions to be performed on a ship
throughout the year. To manage all these items, Titan uses the EJB Timer Service to alert the proper maintenance
crews when an item needs to be serviced. In this chapter, we modify the Ship EJB to manage its own maintenance
schedule. Titan's Health and Safety department can use business methods on the Ship EJB to schedule and cancel
maintenance items, and the Ship EJB will take care of alerting the correct maintenance crew when an item needs to be
serviced.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.2 Timer Service API
The Timer Service enables an enterprise bean to be notified when a specific date has arrived, when some period of time
has elapsed, or at recurring intervals. To use the Timer Service, an enterprise bean must implement the
javax.ejb.TimedObject interface, which defines a single callback method, ejbTimeout():

package javax.ejb;

public interface TimedObject {

 public void ejbTimeout(Timer timer) ;

}

When the scheduled time is reached or the specified interval has elapsed, the container system invokes the enterprise
bean's ejbTimeout() method. The enterprise bean can then perform any processing it needs to respond to the timeout,
such as run reports, audit records, modify the states of other beans, etc. For example, the Ship EJB can be modified to
implement the TimedObject interface, as shown:

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 public Integer ejbCreate(Integer primaryKey,String name,double tonnage) {

 setId(primaryKey);

 setName(name);

 setTonnage(tonnage);

 return null;

 }

 public void ejbPostCreate(Integer primaryKey,String name,double tonnage) {}

 public abstract void setId(Integer id);

 public abstract Integer getId();

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setTonnage(double tonnage);

 public abstract double getTonnage();

 public void unsetEntityContext(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbLoad(){}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void ejbLoad(){}

 public void ejbStore(){}

 public void ejbRemove(){}

}

An enterprise bean schedules itself for a timed notification using a reference to the TimerService, which it obtains from
the EJBContext. The TimerService allows a bean to register itself for notification on a specific date, after some period of
time, or at recurring intervals. The following code shows how a bean would register for notification exactly 30 days from
now:

// Create a Calendar object that represents the time 30 days from now.

Calendar time = Calendar.getInstance(); // the current time.

time.add(Calendar.DATE, 30); // add 30 days to the current time.

Date date = time.getTime();

// Create a timer that will go off 30 days from now.

EJBContext ejbContext = // ...: get EJBContext object from somewhere.

TimerService timerService = ejbContext.getTimerService();

timerService.createTimer(date, null);

This example creates a Calendar object that represents the current time, then increments this object by 30 days so that
it represents the time 30 days from now. The code obtains a reference to the container's TimerService and calls the
TimerService.createTimer() method, passing it the java.util.Date value of the Calendar object, thus creating a timer that will
go off after 30 days.

We can add a method, scheduleMaintenance(), to the Ship EJB that allows a client to schedule a maintenance item. When
the method is called, the client passes in a description of the maintenance item and the date on which it is to be
performed. For example, a client could schedule a maintenance item for the cruise ship Valhalla on April 2, 2004, as
shown in the following code snippet:

InitialContext jndiCntxt = new InitialContext();

ShipHomeRemote shipHome =

 (ShipHomeRemote) jndiCntxt.lookup("java:comp/env/ejb/ShipHomeRemote");

ShipRemote ship = shipHome.findByName("Valhalla");

Calendar april2nd = Calendar.getInstance();

april2nd.set(2004, Calendar.APRIL, 2);

String description = "Stress Test: Test Drive Shafts A & B ...";

ship.scheduleMaintenance(description, april2nd.getTime());

The ShipBean implements the scheduleMaintenance() method and takes care of scheduling the event using the Timer
Service, as shown below:

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(dateOf, description);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

}

As you can see, the Ship EJB is responsible for obtaining a reference to the Timer Service and scheduling its own
events. When April 2, 2004, rolls around, the Timer Service calls the ejbTimeout() method on the Ship EJB representing
the Valhalla. When the ejbTimeout() method is called, the Ship EJB sends a JMS message containing the description of
the test to the Health and Safety department at Titan Cruises, alerting them that a stress test is required. Here's how
the implementation of ejbTimeout() looks:

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(dateOf, description);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 try{

 String description = (String)timer.getInfo();

 InitialContext jndiContext = new InitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/MaintenanceTopic");

 TopicConnection connect = factory.createTopicConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(description);

 publisher.publish(textMsg);

 connect.close();

 }catch(Exception e){

 throw new EJBException(e);

 }

 }

}

13.2.1 The TimerService Interface

The TimerService interface provides an enterprise bean with access to the EJB container's Timer Service so that new
timers can be created and existing timers can be listed. The TimerService interface is a part of the javax.ejb package in
EJB 2.1 and has the following definition:

package javax.ejb;

import java.util.Date;

import java.io.Serializable;

public interface TimerService {

 // Create a single-action timer that expires on a specified date.

 public Timer createTimer(Date expiration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Create a single-action timer that expires after a specified duration.

 public Timer createTimer(long duration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Create an interval timer that starts on a specified date.

 public Timer createTimer(

 Date initialExpiration, long intervalDuration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Create an interval timer that starts after a specified durration.

 public Timer createTimer(

 long initialDuration, long intervalDuration, Serializable info)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long initialDuration, long intervalDuration, Serializable info)

 throws IllegalArgumentException,IllegalStateException,EJBException;

 // Get all the active timers associated with this bean

 public java.util.Collection getTimers()

 throws IllegalStateException,EJBException;

}

Each of the four TimerService.createTimer() methods establishes a timer with a different type of configuration. There are
essentially two types of timers: single-action and interval. A single-action timer expires once, while an interval timer
expires many times, at specified intervals. When a timer expires, the Timer Service calls the bean's ejbTimeout()
method.

Here's how each of the four createTimer() methods works. At this point, we are only discussing the expiration and duration
parameters and their uses. The Serializable info parameter is discussed later in this chapter.

createTimer(Date expiration, Serializable info)

Creates a single-action timer that expires once. The timer expires on the date set for the expiration parameter.
Here's how to set a timer that expires on July 4, 2004:

Calendar july4th = Calendar.getInstance();

july4th.set(2004, Calendar.JULY, 4);

timerService.createTimer(july4th.getTime(), null);

createTimer(long duration, Serializable info)

Creates a single-action timer that only expires once. The timer expires after duration time (measured in
milliseconds) has elapsed. Here's how to set a timer that expires in 90 days:

long ninetyDays = 1000 * 60 * 60 * 24 * 90; // 90 days

timerService.createTimer(ninetyDays, null);

createTimer(Date initialExpiration, long intervalDuration, Serializable info)

Creates an interval timer that expires many times. The timer first expires on the date set for the initialExpiration
parameter. After the first expiration, subsequent expirations occur at intervals equal to the intervalDuration
parameter (in milliseconds). Here's how to set a timer that expires on July 4, 2004 and continues to expire
every three days after that date:

Calendar july4th = Calendar.getInstance();

july4th.set(2004, Calendar.JULY, 4);

long threeDaysInMillis = 1000 * 60 * 60 * 24 * 3; // 3 days

timerService.createTimer(july4th.getTime(), threeDaysInMillis, null);

createTimer(long initialDuration, long intervalDuration, Serializable info)

Creates an interval timer that expires many times. The timer first expires after the period given by initialDuration
has elapsed. After the first expiration, subsequent expirations occur at intervals given by the intervalDuration
parameter. Both initialDuration and intervalDuration are in milliseconds. Here's how to set a timer that expires in 10
minutes and continues to expire every hour thereafter:

long tenMinutes = 1000 * 60 * 10; // 10 minutes

long oneHour = 1000 * 60 * 60; // 1 hour

timerService.createTimer(tenMinutes, oneHour, null);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a timer is created, the Timer Service makes it persistent in some type of secondary storage, so it will survive
system failures. If the server goes down, the timers are still active when the server comes back up. While the
specification isn't clear, it's assumed that any timers that expire while the system is down will go off when it comes
back up again. If an interval timer expires many times while the server is down, it may go off multiple times when the
system comes up again. Consult your vendors' documentation to learn how they handle expired timers following a
system failure.

The TimerService.getTimers() method returns all the timers that have been set for a particular enterprise bean. For
example, if this method is called on the EJB representing the cruise ship Valhalla, it returns only the timers that are set
for the Valhalla, not timers set for other ships. The getTimers() method returns a java.util.Collection, an unordered
collection of zero or more javax.ejb.Timer objects. Each Timer object represents a different timed event that has been
scheduled for the bean using the Timer Service.

The getTimers() method is often used to manage existing timers. A bean can look through the Collection of Timer objects
and cancel any timers that are no longer valid or need to be rescheduled. For example, the Ship EJB defines the
clearSchedule() method, which allows a client to cancel all of the timers on a specific ship. Here's the implementation of
clearSchedule():

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void clearSchedule(){

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while(timers.hasNext()){

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 timer.cancel();

 }

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 // code for scheduling timer goes here

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

}

The logic here is simple. After getting a reference to the TimerService, we get an iterator that contains all of the Timers.
Then we work through the iterator, cancelling each timer as we go. The Timer objects implement a cancel() method,
which removes the timed event from the Timer Service so that it never expires.

13.2.1.1 Exceptions

The TimerService.getTimers() method can throw an IllegalStateException or an EJBException. All of the createTimer() methods
declare these two exceptions, plus a third exception, the IllegalArgumentException. The reasons that the TimerService
methods would throw these exceptions are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.lang.IllegalArgumentException

The duration and expiration parameters must have valid values. This exception is thrown if a negative number
is used for one of the duration parameters or a null value is used for the expiration parameter, which is of type
java.util.Date.

java.lang.IllegalStateException

This exception is thrown if the enterprise bean attempts to invoke one of the TimerService methods from a
method where it's not allowed. Each enterprise bean type (i.e., entity, stateless session, and message-driven)
defines its own set of allowed operations. However, in general the TimerService methods can be invoked from
anywhere except the EJBContext methods (i.e., setEntityContext(), setSessionContext(), and setMessageDrivenContext(
)).

javax.ejb.EJBException

This exception is thrown when some type of system-level exception occurs in the Timer Service.

13.2.2 The Timer

A Timer is an object that implements the javax.ejb.Timer interface. It represents a timed event that has been scheduled
for an enterprise bean using the Timer Service. Timer objects are returned by the TimerService.createTimer() and
TimerService.getTimers() methods, and a Timer is the only parameter of the TimedObject.ejbTimeout() method. The Timer
interface is:

package javax.ejb;

public interface Timer {

 // Cause the timer and all its associated expiration

 // notifications to be canceled

 public void cancel()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 // Get the information associated with the timer at the time of creation.

 public java.io.Serializable getInfo()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 // Get the point in time at which the next timer

 // expiration is scheduled to occur.

 public java.util.Date getNextTimeout()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 // Get the number of milliseconds that will elapse

 // before the next scheduled timer expiration

 public long getTimeRemaining()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public long getTimeRemaining()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

 //Get a serializable handle to the timer.

 public TimerHandle getHandle()

 throws IllegalStateException,NoSuchObjectLocalException,EJBException;

}

A Timer instance represents exactly one timed event and can be used to cancel the timer, obtain a serializable handle,
obtain the application data associated with the timer, and find out when the timer's next scheduled expiration will occur.

13.2.2.1 Cancelling timers

The previous section used the Timer.cancel() method. It's used to cancel a specific timer: remove the timed event from
the Timer Service so that it never expires. It is useful if a particular timer needs to be removed completely or simply
rescheduled. To reschedule a timed event, cancel the timer and create a new one. For example, when one of the ship's
components fails and is replaced, that component must have its maintenance rescheduled: it doesn't make sense to
perform a yearly overhaul on an engine in June if it was replaced in May. The scheduleMaintenance() method can be
modified so that it can add a new maintenance item or replace an existing one by canceling it and adding the new one.

 public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(String description, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while(timers.hasNext()){

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 String timerDesc = (String) timer.getInfo();

 if(description.equals(timerDesc)){

 timer.cancel();

 }

 }

 timerService.createTimer(dateOf, description);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

The scheduleMaintenance() method first obtains a Collection of all timers defined for the Ship. It then compares the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scheduleMaintenance() method first obtains a Collection of all timers defined for the Ship. It then compares the
description of each timer to the description passed into the method. If there is a match, it means a timer for that
maintenance item was already scheduled and should be canceled. After the while loop, the new Timer is added to the
Timer Service.

13.2.2.2 Identifying timers

Of course, comparing descriptions is a fairly unreliable way of identifying timers, since descriptions tend to vary over
time. What is really needed is a far more robust information object that can contain both a description and a precise
identifier.

All of the TimeService.createTimer() methods declare an info object as their last parameter. The info object is application
data that is stored with by the Timer Service and delivered to the enterprise bean when its ejbTimeout() method is
called. The serializable object used as the info parameter can be anything, as long it implements the java.io.Serializable
interface and follows the rules of serialization.[1] The info object can be put to many uses, but one obvious use is to
associate the timer with some sort of identifier.

[1] In the most basic cases, all an object needs to do to be serializable is implement the java.io.Serializable interface
and make sure any nonserializable fields (e.g., JDBC connection handle) are marked as transient.

To get the info object from a timer, call the timer's getInfo() method. This method returns a serializable object, which
you'll have to cast to an appropriate type. So far, we've been using strings as info objects, but there are much more
elaborate (and reliable) possibilities. For example, rather than compare maintenance descriptions to find duplicate
timers, Titan decided to use unique Maintenance Item Numbers (MINs). MINs and maintenance descriptions can be
combined into a new MaintenanceItem object:

public class MaintenanceItem implements java.io.Serializable {

 private long maintenanceItemNumber;

 private String description;

 public MaintenanceItem(long min, String desc){

 maintenanceItemNumber = min;

 description = desc;

 }

 public long getMIN(){

 return maintenanceItemNumber;

 }

 public String getDescription(){

 return description;

 }

}

Using the MaintenanceItem type, we can modify the scheduleMaintenance() method to be more precise, as shown below
(changes are in bold):

public abstract class ShipBean

 implements javax.ejb.EntityBean, javax.ejb.TimedObject {

 javax.ejb.EntityContext ejbContext;

 public void setEntityContext(javax.ejb.EntityContext ctxt){

 ejbContext = ctxt;

 }

 public void scheduleMaintenance(

 MaintenanceItem maintenanceItem, Date dateOfTest){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MaintenanceItem maintenanceItem, Date dateOfTest){

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while(timers.hasNext()){

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 MaintenanceItem timerMainItem = (MaintenanceItem) timer.getInfo();

 if(maintenanceItem.getMIN() == timerMainItem.getMIN()){

 timer.cancel();

 }

 }

 timerService.createTimer(dateOf, maintenanceItem);

 }

 public void ejbTimeout(javax.ejb.Timer timer) {

 // business logic for timer goes here

 }

 ...

The MaintenanceInfo class contains information about the maintenance work that is to be done and is sent to the
maintenance system using JMS. When one of the timers expires, the Timer Service calls the ejbTimeout() method on the
Ship EJB. When the ejbTimeout() method is called, the info object is obtained from the Timer object and used to
determine which timer logic should be executed.

Exercise 13.1 in the Workbook shows how to deploy these examples in JBoss.

13.2.2.3 Retrieving other information from timers

The Timer.getNextTimeout() method simply returns the date—represented by a java.util.Date instance—on which the timer
will expire next. If the timer is a single-action timer, the Date returned is the time at which the timer will expire. If,
however, the timer is an interval timer, the Date returned is the time remaining until the next expiration. Oddly, there is
no way to determine subsequent expirations or the interval at which an interval timer is configured. The best way to
handle this is to put that information into your info object.

The Timer.getTimeRemaining() method returns the number of milliseconds before the timer will next expire. Like the
getNextTimeout() method, this method only provides information about the next expiration.

13.2.2.4 The TimerHandle object

The Timer.getHandle() method returns a TimerHandle. The TimerHandle is similar to the javax.ejb.Handle and
javax.ejb.HomeHandle discussed in Chapter 5. It's a reference that can be saved to a file or some other resource, then
used later to regain access to the Timer. The TimerHandle interface is simple:

package javax.ejb;

public interface TimerHandle extends java.io.Serializable {

 public Timer getTimer() throws NoSuchObjectLocalException, EJBException;

}

The TimerHandle is only valid as long as the timer has not expired (if it's a single-action timer) or been canceled. If the
timer no longer exists, calling the TimerHandle.getTimer() method throws a javax.ejb.NoSuchObjectException.

TimerHandle objects are local, which means they cannot be used outside the container system that generated them.
Passing the TimerHandle as an argument to a remote or endpoint interface method is illegal. However, a TimerHandle can
be passed between local enterprise beans using their local interface, because local enterprise beans must be co-located
in the same container system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the same container system.

13.2.2.5 Exceptions

All the methods defined in the Timer interface declare two exceptions:

javax.ejb.NoSuchObjectLocalException

This exception is thrown if you invoke any method on an expired single-action timer or a canceled timer.

javax.ejb.EJBException

This exception is thrown when some type of system level exception occurs in the Timer Service.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.3 Transactions
When a bean calls createTimer(), the operation is performed in the scope of the current transaction. If the transaction
rolls back, the timer is undone: it's not created (or, more precisely, uncreated). For example, if the Ship EJB's
scheduleMaintenance() method has a transaction attribute of RequiresNew, a new transaction will be created when the
method is called. If an exception is thrown by the method, the transaction rolls back and the new timer event is not
created.

In most cases, the ejbTimeout() method on beans should have a transaction attribute of RequiresNew. This ensures that
the work performed by the ejbTimeout() method is in the scope of container-initiated transactions. Transactions are
covered in more detail in Chapter 16.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.4 Entity Bean Timers
Entity beans set timers on a specific type of entity bean (e.g., Ship, Customer, Reservation, etc.) with a specific primary
key. When a timer goes off, the container uses the primary key associated with the timer to load the entity bean with
proper data. Once the entity bean is in the ready state—its data is loaded and it's ready to service requests—the
ejbTimeout() method is invoked. The container associates the primary key with the timer implicitly.

Using timers with entity beans allows entity beans to manage their own timed events. As we've seen, it makes sense
for a Ship to manage its own maintenance schedule. The maintenance schedule is unique for each ship and required in
order to keep the ship sailing, so it could be considered intrinsic to the definition of a ship. If, however, the timed event
is not a part of the entity's definition, it's best to put the timer into a taskflow bean (i.e., stateless session or message-
driven) that represents the scenario, instead of placing the logic in the entity bean. This avoids entity bloat, in which an
entity bean's definition becomes huge from attempting to manage every possible application of the entity bean. It's the
same reason we move taskflow logic out of entity beans and into session beans.

A serious concern with entity beans is the possibility of timer attack, which occurs when too many timers expire at the
same time. A timer attack is not caused by malicious intent, but rather poor design. For example, if all the Customer
beans in Titan system had timers set to expire five days before a cruise (perhaps to send email reminders to
customers), it's possible that thousands of timers would expire simultaneously. This scenario could lead to a timer
attack. A timer attack causes congestion and competition for resources that can overwhelm the EJB server to the point
where it cannot handle other requests. The timer attack can be exacerbated by timer rollbacks, which occur when a
timer fails to execute properly. As timers fight for resources and fail, they are re-executed, prolonging the strain on the
system. Good design and intelligent containers are the only safeguard against a timer attack. Be aware of the types of
timers you are creating and the possibility of many timers executing simultaneously.

The entity bean can access the TimerService from the EntityContext in any business method or callback method, except
the seEntityContext() method. The timers associated with an entity bean are canceled automatically when the entity is
removed, so there is no need to explicitly cancel timers in the ejbRemove() method.

When an entity bean implements the TimedObject interface, its life cycle changes to accommodate timed events. When a
bean's timer expires, the container transitions a bean instance to the Ready state, calling its ejbActivate() and then
ejbLoad() methods after loading the bean's persistent fields. When the ejbTimeout() method returns, the container calls
the bean's ejbStore() method, stores changes to the database, calls the bean's ejbPassivate() method, and returns the
bean to the Pooled state. Figure 13-1 shows the life cycle of the entity bean that implements the TimedObject interface.

Figure 13-1. Entity bean life cycle with TimedObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.5 Stateless Session Bean Timers
Stateless session bean timers can be used for auditing or batch processing. As an auditing agent, a stateless session
timer can monitor the state of the system to ensure that tasks are being completed and that data is consistent. This
type of work spans entities and possibly data sources. Such EJBs can also perform batch processing work such as
database clean up, transfer of records, etc. Stateless session bean timers can also be deployed as agents that perform
some type of intelligent work on behalf of the organization they serve. An agent can be thought of as an extension of an
audit: it monitors the system but it also fixes problems automatically.

While entity timers are associated with a specific entity bean and primary key, stateless session bean timers are
associated only with a specific type of session bean. When a timer for a stateless session bean goes off, the container
selects an instance of that stateless bean type from the instance pool and calls its ejbTimeout() method. This makes
sense, because all stateless session beans in the instance pool are logically equivalent. Any instance can serve any
client, including the container itself.

Stateless session timers are often used to manage taskflow or when the timed event applies to a collection of entities
instead of just one. For example, stateless session timers might be used to audit all maintenance records to ensure that
they meet state and federal guidelines: at specific intervals, a timer notifies the bean to look up the maintenance
records from all the Ships and generate a report. In contrast, a timer for an entity bean helps that entity manage its
own state. A stateless session timer can also be used to do something like send notifications to all the passengers for a
particular cruise, thus avoiding the timer attack problem.

The stateless session bean can access the TimerService from the SessionContext in the ejbCreate(), ejbRemove(), or any
business method, but it cannot access the timer service from the setSessionContext() method. This means a client must
call some method on a stateless session bean (either create, or a business method) in order for a timer to be set. This
is the only way to guarantee that the timer is set.

Setting a timer on the ejbCreate() method is problematic. First, there is no guarantee that ejbCreate() will ever be called.
The ejbCreate() method's stateless session bean is called sometime after the bean is instantiated, before it enters the
Method Ready Pool. However, a container might not create a pool of instances until the first client accesses that bean,
so if a client (remote or otherwise) never attempts to access the bean, ejbCreate() may never be called and the timer
will never be set. Another problem with using ejbCreate() is that it's called on every instance before it enters the pool;
you have to prevent subsequent instances (instances created after the first instance) from setting the timer—the first
instance created would have already done this. It's tempting to use a static variable to avoid recreating timers (below),
but it can cause problems.

public class StatelessTimerBean

 implements javax.ejb.SessionBean, javax.ejb.TimedObject {

 static boolean isTimerSet = false;

 public void ejbCreate(){

 if(isTimerSet == false) {

 TimerService timerService = ejbContext.getTimerService();

 InitialContext jndiContext = new InitialContext();

 Long expirationDate = (Long)

 jndiContext.lookup("java:comp/env/expirationDate");

 timerService.createTimer(expirationDate.longValue(), null);

 isTimerSet = true;

 }

 }

While this may seem like a good solution, it only works when your application is deployed within a single server with
one VM and one classloader. If you are using a clustered system, a single server with multiple VMs, or multiple
classloaders (very common), it won't work because bean instances that are not instantiated in the same VM with the
same classloader will not have access to the same static variable. In this scenario, it's easy to end up with multiple
timers doing the same thing. An alternative is to have ejbCreate() access and remove all preexisting timers to see if the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

timers doing the same thing. An alternative is to have ejbCreate() access and remove all preexisting timers to see if the
timer is already established, but this can affect performance because it's likely that new instances will be created and
added to the pool many times, resulting in many calls to ejbCreate() and therefore many calls to TimerService.getTimers().
Also, there is no requirement that the timer service work across a cluster, so timers set on one node in a cluster may
not be visible to timers set on some other node in the cluster.

With stateless session beans, you should never use the ejbRemove() method to cancel or create timers. The ejbRemove()
method is called on individual instances before they are evicted from memory. It is not called in response to client calls
to the remote or local remove method. Also, the ejbRemove() method doesn't correspond to an un-deployment of a
bean; it's only specific to a single instance. As a result, you cannot determine anything meaningful about the EJB as a
whole from a call to the ejbRemove() method and you should not use it to create or cancel timers.

When a stateless session bean implements the javax.ejb.TimedObject interface, its life cycle changes to include the
servicing of timed events. The Timer Service pulls an instance of the bean from the instance pool when a timer expires;
if there are no instances in the pool, the container creates one. Figure 13-2 shows the life cycle of a stateless session
bean that implements the TimedOut interface.

Figure 13-2. Stateless session bean life cycle with TimedObject

13.5.1 Using a Stateless Session Timer

The InactiveCustomer EJB is a stateless session timer that periodically cleans inactive customer records from the
database. It activates every 30 days and deletes records for customers who were created between 4 and 5 months ago,
and who have never booked a cruise. Titan discovered that it accumulated a lot of these inactive customer records
because customers would occasionally book a cruise, then cancel the reservation, and never return for more business.
Once it's deployed and activated, the InactiveCustomer EJB continues to work automatically until canceled. It's a
schedule-and-forget-it type of agent. Here's the bean class definition for the InactiveCustomer EJB:

public class InactiveCustomerBean

 implements javax.ejb.SessionBean, javax.ejb.TimedObject {

 final long THIRTY_DAYS = 1000 * 60 * 60 * 24 * 30;// Thirty Days in Milliseconds

 SessionContext ejbContext;

 public void setSessionContext(javax.ejb.SessionContext cntx){

 ejbContext = cntx;

 }

 public void ejbCreate(){}

 public void schedule(Date begin){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void schedule(Date begin){

 TimerService timerService = ejbContext.getTimerService();

 TimerService.createTimer(begin, THIRTY_DAYS);

 }

 public void ejbTimeout() throws EJBException {

 try{

 Calendar calendar = Calendar.getInstance();

 calendar.add(Calendar.DATE, -120);

 Date date_120daysAgo = calendar.getTime();

 calendar = Calendar.getInstance();

 calendar.add(Calendar.DATE, -150);

 Date date_150daysAgo = calendar.getTime();

 InitialContext jndiEnc = new InitialContext();

 CustomerHomeLocal home = (CustomerHomeLocal)

 jndiEnc.lookup("java:comp/env/ejb/CustomerHomeLocal");

 Iterator customers = home.findCustomersWithNoReservations().iterator();

 while(customers.hasNext()){

 CustomerLocal customer = (CustomerLocal)customers.next();

 Date dateCreated = customer.getDateCreated()

 if(dateCreated.after(date_150daysAgo) &&

 dateCreated.before(date_120daysAgo)){

 customer.remove();

 }

 }

 }catch(Exception e){ // exception handle logic goes here }

 }

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbRemove(){}

}

The InactiveCustomer EJB has a single business method, schedule(), that starts the timer, setting it to expire first on the
given date, and every 30 days thereafter. In order for the InactiveCustomer EJB to function, a client application must
call schedule() and pass in a start date. It's probably best to develop a strategy similar to this one, in which the timer is
scheduled only after an explicit call is made by a client, rather than attempting to design a stateless session bean timer
that somehow automatically schedules itself when it's deployed. The following code shows how an InvalidCustomer EJB
is scheduled by a client:

InvalidCustomerHomeRemote invalidCustomer =

 jndiEnc.lookup("java:comp/env/ejb/InvalidCustomerHomeRemote");

invalidCustomer.schedule(new Date());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invalidCustomer.schedule(new Date());

The ejbTimeout() method is hardcoded to fetch all the customers created between four and five months ago who never
made reservations. These customers are removed from the system.

There are a number of improvements that could be made to this strategy. For example, the time window could be
configured in the deployment descriptor or passed into the bean by the client. In addition, the schedule() method should
remove any existing timers so that we don't schedule multiple timers for the same task. These types of changes are left
as an exercise for you to develop if you are interested.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.6 Message-Driven Bean Timers
Message-driven bean timers are similar to stateless session bean timers in several ways: timers are associated only
with the type of bean. When a timer expires, a message-driven bean instance is selected from a pool to execute the
ejbTimeout() method. In addition, message-driven beans can be used for performing audits or other types of batch jobs.
The primary difference between a message-driven bean timer and a stateless session bean timer is the way in which
they're initiated: timers are created in response to an incoming message or, if the container supports it, from a
configuration file.

In order to initialize a message-driven bean timer from an incoming message, simply put the call to the
TimerService.createTimer() method in the message-handling method. For a JMS-based message-driven bean, the method
call goes in the onMessage() method:

public class JmsTimerBean

 implements javax.ejb.MessageDrivenBean, javax.ejb.TimedObject {

 public void onMessage(Message message){

 MapMessage mapMessage = (MapMessage)message;

 long expirationDate = mapMessage.getLong("expirationDate");

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(expirationDate, null);

 }

 public void ejbTimeout(){

 // put timeout logic hear

 }

The incoming JMS message should contain information about the timer: the beginning (start) date, duration, or even
the serializable info object. Combining JMS with the Timer Service can offer some powerful design options for
implementing audits, batch processing, and agent-like solutions.

Although it's not standardized, it is possible that vendors will allow message-driven bean timers to be configured at
deployment time. This would require a proprietary solution, since standard configuration options for message-driven
bean timers do not exist. The advantage of configured timers is that they do not require a client to initiate some action
to start the timer. When the bean is deployed, its timer is set automatically. This capability makes message-driven bean
timers more like Unix cron jobs, which are preconfigured and then run. Consult your vendor to see if they offer a
proprietary configuration for message-driven bean timers.

As was the case for stateless session beans, the TimedObject interface changes the life cycle of the message-driven bean
slightly (see Figure 13-3). When a timed event occurs, the container must pull a message-driven bean instance from
the pool. If there are no instances in the pool, then an instance must be moved from the Does Not Exist state to the
Method Ready Pool before it can receive the timed event.

Figure 13-3. Message-driven bean life cycle with TimedObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6.1 Problems with the Timer Service

The Timer Service is an excellent addition to the EJB platform, but it's limited. A lot can be learned from cron, the Unix
scheduling utility that's been around for years. Here are some proposals for improving the service. If you are only
interested in learning how timers work now, as opposed to how they may be improved, feel free to skip the rest of this
chapter—it's not required reading. That said, understanding how timers can be improved helps you understand their
limitations. If you have some time and want to expand your understanding of timers, keep reading.

13.6.1.1 A very little bit about cron

Cron is a Unix program that allows you to schedule scripts (similar to batch files in DOS), commands, and other
programs to run at specified dates and times. Unlike the EJB Timer Service, cron allows for flexible calendar-based
scheduling. Cron jobs (anything cron runs is called a job) can be scheduled to run at intervals, including a specific
minute of the hour, hour of the day, day of the week, day of the month, and month of the year.

For example, you can schedule a cron job to run every Friday at 12:15 p.m., or every hour, or the first day of every
month. While this level of refinement may sound complicated, it is actually very easy to specify. Cron uses a simple text
format of five fields of integer values, separated by spaces or tabs, to describe the intervals at which scripts should be
run. Figure 13-4 shows the field positions and their meanings.

Figure 13-4. Cron date and time format

The order of the fields is significant, since each specifies a different calendar designator: minute, hour, day, month, and
day of the week. The following examples show how to schedule cron jobs:

20 * * * * ---> 20 minutes after every hour. (00:20, 01:20, etc.)

 5 22 * * * ---> Every day at 10:05 p.m.

 0 8 1 * * ---> First day of every month at 8:00 a.m.

 0 8 4 7 * ---> The fourth of July at 8:00 a.m.

15 12 * * 5 ---> Every Friday at 12:15 p.m.

An asterisk indicates that all values are valid. For example, if you use an asterisk for the minute field, you're scheduling
cron to execute the job every minute of the hour. You can define more complex intervals by specifying multiple values,
separated by commas, for a single field. In addition, you can specify ranges of time using the hyphen:

0 8 * * 1,3,5 ---> Every Monday, Wednesday, and Friday at 8:00 a.m.

0 8 1,15 * * ---> The first and 15th of every month at 8:00 a.m.

0 8-17 * * 1-5 ---> Every hour from 8 a.m. through 5 p.m., Mon-Fri.

Cron jobs are scheduled using crontab files, which are simply text files in which you configure the date/time fields and a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cron jobs are scheduled using crontab files, which are simply text files in which you configure the date/time fields and a
command—usually a command to run a script.

13.6.1.2 Improving the Timer Service

The cron date/time format provides a lot more flexibility than is currently offered by the EJB Timer Service. The Timer
Service requires you to designate intervals in exact milliseconds, which is a bit awkward to work with (you have to
convert days, hours, and minutes to milliseconds), but more importantly, it's not flexible enough for many real-world
scheduling needs. For example, there is no way to schedule a timer to expire on the first and 15th of every month, or
every hour between 8 a.m. and 5 p.m., Monday through Friday. You can derive some of the more complex intervals,
but only at the cost of adding logic to your bean code to calculate them, and in more complicated scenarios, you'll need
multiple timers for the same task.

Cron is not perfect either. Scheduling jobs is like setting a timer on a VCR: everything is scheduled according to the
clock and calendar. You can specify that cron run a job at specific times of the day on specific days of the year, but you
can't have it run a job at relative intervals from an arbitrary starting point. For example, cron's date/time format
doesn't let you schedule a job to run every 10 minutes, starting now. You have to schedule it to run at specific minutes
of the hour (e.g., 0, 10, 20, 30, 40, 50). Cron is also limited to scheduling recurring jobs; you can't set up a single-
action timer, and you can't set a start date. A problem with both cron and the EJB Timer Service is that you can't
program a stop date—a date on which the timer will automatically cancel itself.

You also may have noticed that cron granularity is to the minute rather than the millisecond. At first glance this looks
like a weakness, but in practice it's perfectly acceptable. For calendar-driven scheduling, more precision simply isn't
very useful.

The Timer Service interface would be improved if it could handle a cron-like date/time format, with a start date and end
date. Rather than discard the current createTimer() calls (which are useful, especially for single-action timers and
arbitrary millisecond intervals), it would be preferable simply to add a new method with cron-like semantics. Instead of
using 0-6 to designate the day of the week, it would be better to use the values Sun, Mon, Tue, Wed, Thu, Fri, and Sat (as
in the Linux version of cron). For example, code to schedule a timer that would run every weekday at 11:00 p.m.
starting October 1, 2003, and ending May 31, 2004, would look like this:

TimerService timerService = ejbContext.getTimerService();

Calendar start = Calendar.getInstance().set(2003, Calendar.OCTOBER, 1);

Calendar end = Calendar.getInstance().set(2004, Calendar.MAY, 31);

String dateTimeString = "23 * * * Mon-Fri";

timerService.createTimer(dateTimeString, start, end, null);

This proposed change to the Timer Service retains the millisecond-based createTimer() methods, because they are very
useful. While cron-like configuration is powerful, it's not a silver bullet. If you need to schedule a timer to go off every
30 seconds starting now (or any arbitrary point in time), you need to use one of the existing createTimer() methods.
True millisecond accuracy is difficult; first of all, normal processing and thread contention tend to delay response time,
and secondly, a server clock must be properly synchronized with the correct time (i.e., UTC)[2] to the millisecond, and
most are not.

[2] Coordinated Universal Time (UTC) is the international standard reference time. Servers can be coordinated with
UTC using the Network Time Protocol (NTP) and public time servers. Coordinated Universal Time is abbreviated
UTC as a compromise among standardizing nations. A full explanation is provided by the National Institute of
Standards and Technology's FAQ on UTC at http://www.boulder.nist.gov/timefreq/general/misc.htm#Anchor-
14550.

13.6.1.3 Message-driven bean timers: Standard configuration properties

There is enormous potential for using message-driven beans as cron-like jobs that are configured at deployment and
run automatically. Unfortunately, there is no standard way to configure a message-driven bean timer at deployment
time. Some vendors may support this, while others do not. Preconfigured message-driven bean timers are going to be
in high demand by developers who want to schedule message-driven beans to perform work at specific dates and
times. Without support for deployment-time configuration, the only reliable way to program an enterprise bean timer is
to have a client call a method or send a JMS message. This is not an acceptable solution. Developers need deployment-
time configuration and it should be added to the next version of the specification.

Building on the cron-like semantics proposed in the previous subsection, it would be easy to devise standard activation
properties for configuring message-driven bean timers at deployment time. For example, the following code configures
a message-driven bean, the Audit EJB, to run at 11 p.m., Monday through Friday, starting October 1, 2003, and ending
May 31, 2004 (start and end dates are not required):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

May 31, 2004 (start and end dates are not required):

<activation-config>

 <description>Run Monday through Friday at 11:00 p.m.

 Starting on Oct 1st,2003 until May 31st, 2004</description>

 <activation-config-property>

 <activation-config-property-name>dateTimeFields

 </activation-config-property-name>

 <activation-config-property-value> 23 * * * Mon-Fri

 </activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>startDate</activation-config-property-name>

 <activation-config-property-value>October 1, 2003

 </activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>endDate</activation-config-property-name>

 <activation-config-property-value>May 31, 2004

 </activation-config-property-value>

 </activation-config-property>

</activation-config>

This type of configuration would be fairly easy for providers to implement if they supported enhanced cron-like
semantics. In addition, you could configure message-driven beans to use the millisecond-based timers EJB 2.1 already
supports.

13.6.1.4 Other problems with Timer API

The semantics of the Timer object convey little information about the object itself. There is no way to determine whether
a timer is a single-action timer or an interval timer. If it's an interval timer, there is no way to determine the configured
interval, or whether the timer has executed its first expiration. To solve these problems, additional methods should be
added to the Timer interface that provide this information. As a stopgap, it's a good idea to place this information in the
info object so it can be accessed by applications that need it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.7 Final Words
Whether the changes outlined in this chapter are adopted is a matter for the EJB expert group, which should be
responsive to the EJB developer community. It's likely that others will find ways to improve on these proposed changes.
Regardless of the outcome, the limited semantics of the Timer Service and the lack of support for configurable
message-driven bean timers are problems. As you develop timers, you will quickly discover the need for a much richer
way of describing expirations, and some way to configure timers at deployment time, rather than having to use a client
application to initiate a scheduled event.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 13. Timer Service
Business systems frequently use scheduling systems to run programs at specified times. Scheduling systems typically
run applications that generate reports, reformat data, or do audit work at night. In other cases, scheduling systems
provide callback APIs that can alert subsystems of events such as due dates, deadlines, etc. Scheduling systems often
run batch jobs (a.k.a. scheduled jobs), which perform routine work automatically at a prescribed time. Users in the Unix
world frequently run scheduled jobs using cron, a simple but useful scheduling system that runs programs listed in a
configuration file. Other job-scheduling systems include the OMG's COS Timer Event Service, which is a CORBA API for
timed events, as well as commercial products.

Regardless of the software, scheduling systems are used in many different scenarios:

In a credit card processing system, credit card charges are processed in batches so that all the charges made
for an entire day are settled together instead of separately. This work is scheduled to be done in the evening to
reduce the impact of processing on the system.

In a hospital or clinical system, Electronic Data Interface (EDI) software is used to send medical claims to
various HMOs. Each HMO has its own processing requirements, but they are all routine, so jobs are scheduled
to gather claim data, put it in the proper format, and transfer it to the HMO.

In just about any company, managers need specific reports run on a regular basis. A scheduling system can be
configured to run those reports automatically and deliver them via email to managers.

Scheduling systems are also common in workflow applications, which are systems that manage document processing
that typically spans days or months, and involves many systems and lots of human intervention. In workflow
applications, scheduling is employed for auditing tasks that periodically take inventory of the state of an application,
invoice, sales order, etc., in order to ensure everything is proceeding as scheduled. The scheduling system maintains
timers and delivers events to alert applications and components when a specified date and time is reached, or when
some period has expired. Here are some examples of workflow scheduling:

In a mortgage system, a lot of tasks have to be completed (i.e., appraisal, rate lock-in, closing appointment,
etc.) before the mortgage can be closed. Timers can be set on mortgage applications to perform periodic audits
that ensure everything is proceeding on schedule.

In a healthcare claims processing system, claims must be processed within 90 days according to terms
negotiated by in-network physicians and clinics. Each claim could have a timer set to go off seven days before
the deadline.

In a stockbroker system, buy-at-limit orders can be created for a specific number of shares, but only at a
specified price or lower. These buy-at-limit orders typically have a time limit. If the stock price falls below the
specified price before the time limit, the buy-at-limit order is carried out. If the stock price does not fall below
the specified price before the time limit, the timer expires and the buy-at-limit order is canceled.

In the EJB world, there has been a general interest in scheduling systems that can work directly with enterprise beans.
However, prior to EJB 2.1, there has been no standard J2EE scheduling system. Enterprise JavaBeans 2.1 introduces a
standardized but limited scheduling system called the Timer Service.

The Java 2 Platform, Standard Edition includes the class java.util.Timer, which allows threads
to schedule tasks for future execution in a background thread. This facility is useful for a
variety of applications, but it's too limited to be used in enterprise computing. Note,
however, that the scheduling semantics of java.util.Timer are similar to those of the EJB
Timer Service.

The Timer Service is a facility of the EJB container system that provides a timed-event API, which can be used to
schedule timers for specified dates, periods, and intervals. A timer is associated with the enterprise bean that set it, and
calls that bean's ejbTimeout() method when it goes off. The rest of this chapter describes the EJB Timer Service API and
its use with entity, stateless session, and message-driven beans, as well as providing some criticism of and suggested
improvements for the Timer Service.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.1 Web Services Overview
The term web service means different things to different people, but thankfully the definition is fairly straightforward for
EJB developers because the J2EE platform has adopted a rather narrow view of web services. Specifically, a web service
is a remote application described using WSDL (Web Service Description Language) and accessed using SOAP (Simple
Object Access Protocol) according to the rules defined by the WS-I Basic Profile 1.0. The WS-I (Web Services
Integration Organization) is group of vendors (Microsoft, IBM, BEA, Sun Microsystems, Oracle, HP, and others) that
have banded together to ensure web services are interoperable across all platforms. To do this, they have created a
recommendation called the Basic Profile 1.0, which defines a set of rules for using XML, SOAP, and WSDL together to
create interoperable web services.

In order to understand SOAP and WSDL, you must understand XML Schema and XML Namespaces. The rest of this
chapter conducts a whirlwind tour of XML, SOAP, and WSDL. Although it's not the purpose of this book to cover these
subjects in depth, you should be able to understand the basics. For more in-depth coverage, you can turn to J2EE Web
Services (Addison-Wesley) by the author of this book, Richard Monson-Haefel, or Java Web Services by David A.
Chappell and Tyler Jewell (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.2 XML Schema and XML Namespaces
We'll start with the basics of XML Schemas and XML Namespaces. It's assumed that you already understand how to use
basic XML elements and attributes. If you don't, you should probably read a primer on XML before proceeding. I
recommend the book Learning XML by Erik T. Ray (O'Reilly). If you already understand how XML Schema and XML
Namespaces work, skip ahead to the section on SOAP.

14.2.1 XML Schema

An XML Schema is similar in purpose to a DTD (Document Type Definition), which validates the structure of an XML
document. To illustrate some of the basic concepts of XML Schema, let's start with an XML document with address
information:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>

<address>

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

</address>

In order to ensure that the XML document contains the proper type of elements and data, the Address information must
be evaluated for correctness. There are two ways that the correctness of an XML document can be measured: if it is
well formed and if it is valid. To be well formed, an XML document must obey the syntactic rules of the XML markup
language: it must use proper attribute declarations, the correct characters to denote the start and end of elements, and
so on. Most XML parsers based on standards like SAX and DOM detect documents that aren't well formed automatically.

In addition to being well formed, it's sometimes important to check that the document uses the right types of elements
and attributes in the correct order and structure. A document that meets these criteria is called valid. However, the
criteria for validity have nothing to do with XML itself; they have more to do with application in which the document is
used. For example, the Address document would not be valid if it didn't include the Zip code or state elements. In order
to validate an XML document, you need a way to represent these application-specific constraints.

The XML Schema for the Address XML document looks like this:

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <element name="address" type="titan:AddressType"/>

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </sequence>

 </complexType>

</schema>

The first thing to focus on in this XML Schema is the <complexType> element, which declares a type of element in much
the same way that a Java class declares a type of object. The <complexType> element explicitly declares the names,
types, and order of elements that an AddressType element may contain. In this case, it may contain five elements of
type string in the following order: street, city, state, and zip. Validation is pretty strict, so any XML document that claims
conformance with this XML Schema must contain exactly the right elements with the right data types, in the correct
order.

There are about two dozen simple data types that are automatically supported by XML Schema, called built-in types.
Built-in types are a part of the XML Schema language and are automatically supported by any XML Schema-compliant
parser. Table 14-1 shows a short list of some of the built-in types. It also shows Java types that correspond to each
built-in type. (Table 14-1 presents only a subset of all the XML Schema (XSD) built-in types, but it's more than enough
for this book.)

Table 14-1. XML Schema built-in types and their corresponding Java types
XML Schema built-in type Java primitive type

byte byte

boolean boolean

short short

int int

long long

float float

double double

string java.lang.String

dateTime java.util.Calendar

integer java.math.BigInteger

decimal java.math.BigDecimal

By default, each element declared by a <complexType> must occur once in an XML document, but you can specify that
an element is optional or that it must occur more than once by using the occurrence attributes. For example, we can
say that the street element must occur once but may occur two times:

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string" maxOccurs="2" minOccurs="1" />

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

By default, the maxOccurs and minOccurs attributes are always 1, indicating that the element must occur exactly once.
Setting the maxOccurs to "2" allows an XML document to have two street elements or just one. You can also set the
maxOccurs to "unbounded", which means the element may occur as many times as needed. Setting minOccurs to "0"
means the element is optional and can be omitted.

The <element> declarations are nested under a <sequence> element, which indicates that the elements must occur in the
order they are declared. You can also nest the elements under an <all> declaration, which allows the elements to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

order they are declared. You can also nest the elements under an <all> declaration, which allows the elements to
appear in any order. The following shows the AddressType declared with an <all> element instead of a <sequence>
element:

<complexType name="AddressType">

 <all>

 <element name="street" type="string" maxOccurs="2" minOccurs="1" />

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </all>

 </complexType>

In addition to declaring elements of XSD built-in types, you can declare elements based on complex types. This is
similar to how Java class types declare fields that are other Java class types. For example, we can define a CustomerType
that makes use of the AddressType:

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <element name="customer" type="titan:CustomerType"/>

<complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="titan:AddressType"/>

 </sequence>

 </complexType>

<complexType name="AddressType">

 <sequence>

 <element name="street" type="string" />

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

This XSD tells us that an element of CustomerType must contain a <last-name> and <first-name> element of built-in type
string, and an element of type AddressType. This is pretty straightforward, except for the titan: prefix on AddressType. That
prefix identifies the XML Namespace of the AddressType; we'll discuss namespaces later in the chapter. For now, just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prefix identifies the XML Namespace of the AddressType; we'll discuss namespaces later in the chapter. For now, just
think of it as declaring that the AddressType is a custom type defined by Titan Cruises; it's not a standard XSD built-in
type. An XML document that conforms to the Customer XSD would look like this:

<?xml version='1.0' encoding='UTF-8' ?>

<customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address>

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

</customer>

Building on what you've learned so far, we can create a Reservation schema, using the CustomerType and the
AddressType, and a new CreditCardType:

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <element name="reservation" type="titan:ReservationType"/>

 <complexType name="ReservationType">

 <sequence>

 <element name="customer" type="titan:CustomerType"/>

 <element name="cruise-id" type="int"/>

 <element name="cabin-id" type="int"/>

 <element name="price-paid" type="double"/>

 </sequence>

 </complexType>

 <complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="titan:AddressType"/>

 <element name="credit-card" type="titan:CreditCardType"/>

 </sequence>

 </complexType>

 <complexType name="CreditCardType">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <complexType name="CreditCardType">

 <sequence>

 <element name="exp-date" type="dateTime"/>

 <element name="number" type="string"/>

 <element name="name" type="string"/>

 <element name="organization" type="string"/>

 </sequence>

 </complexType>

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

An XML document that conforms to the Reservation XSD would include information describing the customer (name and
address), credit card information, and the identity of the cruise and cabin that is being reserved. This document might
be sent to Titan Cruises from a travel agency that cannot access the TravelAgent EJB to make reservations. Here's an
XML document that conforms to the Reservation XSD:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation>

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address>

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </credit-card>

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

At runtime, the XML parser compares the document to its Schema, ensuring that the document conforms to the rules
set down by the Schema. If the document doesn't adhere to the Schema, it is considered invalid, and the parser
produces error messages. An XML Schema checks that XML documents received by your system are properly
structured, so you won't encounter errors while parsing the documents and extracting the data. For example, if
someone sent your application a Reservation document that omitted the credit-card element, the XML parser could
reject the document as invalid before your code even sees it: you don't have to worry about errors in your code caused
by missing information in the document.

This brief overview represents only the tip of the iceberg. XML Schema is a very rich XML typing system and can only
be given sufficient attention in a text dedicated to the subject. For an in-depth and insightful coverage of XML Schema,
read XML Schema: The W3C's Object-Oriented Descriptions for XML by Eric van der Vlist (O'Reilly) or read the XML
Schema specification, starting with the primer at the W3C (World Wide Web Consortium) web site
(http://www.w3.org/TR/xmlschema-0/).

14.2.2 XML Namespaces

The Reservation schema defines an XML markup language that describes the structure of a specific kind of XML
document. Just as a Class is a type of Java object, an XML markup language, defined by an XML Schema, is a type of
XML document. In some cases, it's convenient to combine two or more XML markup languages into a single document,
so that the elements from each markup language can be validated separately using different XML Schemas. This is
especially useful when you want to reuse a markup language in many difference contexts. For example, the AddressType
defined in the previous section is useful in a variety of contexts, not just the Reservation XSD, so it could be defined as
a separate markup language in its own XML Schema.

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.titan.com/Address">

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

In order to use different markup languages in the same XML document, you must clearly identify the markup language
to which each element belongs. Here is an XML document for a reservation, but this time we are using XML
Namespaces to separate the address information from the reservation information:

<?xml version='1.0' encoding='UTF-8' ?>

<res:reservation xmlns:res="http://www.titan.com/Reservation" >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<res:reservation xmlns:res="http://www.titan.com/Reservation" >

 <res:customer>

 <res:last-name>Jones</res:last-name>

 <res:first-name>Sara</res:first-name>

 <addr:address xmlns:addr="http://www.titan.com/Address">

 <addr:street>3243 West 1st Ave.</addr:street>

 <addr:city>Madison</addr:city>

 <addr:state>WI</addr:state>

 <addr:zip>53591</addr:zip>

 </addr:address>

 <res:credit-card>

 <res:exp-date>09-2005</res:exp-date>

 <res:number>0394029302894028930</res:number>

 <res:name>Sara Jones</res:name>

 <res:organization>VISA</res:organization>

 </res:credit-card>

 </res:customer>

 <res:cruise-id>123</res:cruise-id>

 <res:cabin-id>333</res:cabin-id>

 <res:price-paid>6234.55</res:price-paid>

</res:reservation>

All the elements for the address information are prefixed with characters addr:, and all the reservation elements are
prefixed with res:. These prefixes allow parsers to identify and separate the elements that belong to the Address
markup from those that belong to the Reservation markup. As a result, the address elements can be validated against
the Address XSD while the reservation elements are validated against the Reservation XSD. The prefixes are assigned
using XML Namespace declarations, which are shown in bold in the previous listing. An XML Namespace declaration
follows this format:

xmlns:prefix="URI"

The prefix can be anything you like, as long as it does not include blanks or any special characters. We use prefixes that
are abbreviations for the name of the markup language: res stands for Reservation XSD and addr stands for Address
XSD. This is the convention that most XML documents follow, but it's not a requirement; you could use prefixes like foo
or bar or anything else you fancy.

While the prefix can be any arbitrary token, the URI must be very specific. A URI (Universal Resource Identifier) is an
identifier that is a superset of the URL (Universal Resource Locator) that you use every day to look up web pages. In
most cases, people use the stricter URL format for XML Namespaces because URLs are familiar and easy to understand.
The URI used in the XML Namespace declaration identifies the exact markup language that is employed. It doesn't have
to point at a web page or an XML document; it just needs to be unique to that markup language. For example, the XML
Namespace used by the Address markup is different from the URL used for the Reservation markup.

xmlns:addr="http://www.titan.com/Address"

xmlns:res="http://www.titan.com/Reservation"

The URI in the XML Namespace declaration should match the target namespace declared by an XML Schema. Here is
the Address XSD with the target namespace declaration shown in bold. The URL value of the targetNamespace attribute is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Address XSD with the target namespace declaration shown in bold. The URL value of the targetNamespace attribute is
identical to the URL assigned to the add: prefix in the reservation document, shown earlier.

<?xml version='1.0' encoding='UTF-8' ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.titan.com/Address">

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

</schema>

The targetNamespace attribute identifies the unique URI of the markup language; it is the permanent identifier for that
XML Schema. Whenever elements from the Address XSD are used in some other document, the document must use an
XML Namespace declaration to identify those elements as belonging to the Address markup language.

Prefixing every element in an XML document with its namespace identifier is a bit tedious, so XML Namespace allows
you to declare a default namespace that applies to all elements that are not prefixed. The default namespace is simply
an XML Namespace declaration that has no prefix (xmlns="URL"). For example, we can use a default name in the
reservation document for all Reservation elements:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation" >

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <addr:address xmlns:addr="http://www.titan.com/Address">

 <addr:street>3243 West 1st Ave.</addr:street>

 <addr:city>Madison</addr:city>

 <addr:state>WI</addr:state>

 <addr:zip>53591</addr:zip>

 </addr:address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

 </customer>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

None of the Reservation elements names are prefixed. Any nonprefixed element belongs to the default namespace. The
Address elements do not belong to the Reservation namespace, so they are prefixed to indicate which namespace they
belong to. The default namespace declaration has scope; in other words, it applies to the element in which it is declared
(if that element has no namespace prefix), and to all nonprefixed elements nested under that element. We can use the
scoping rules of namespace to further simplify the Reservation document by allowing the Address elements to override
the default namespace with their own default namespace.

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation" >

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address xmlns="http://www.titan.com/Address">

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

The Reservation default namespace applies to the <reservation> element and all of its children except for the Address
elements. The <address> element and its children have defined their own default namespace, which overrides the
default namespace of the <reservation> element.

Default namespaces do not apply to attributes. As a result, any attributes used in an XML document should be prefixed
with a namespace identifier. The only exceptions to this rule are attributes defined by the XML language itself, such as
the xmlns attribute, which establishes an XML Namespace declaration. This attribute doesn't need to be prefixed
because it is part of XML language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because it is part of XML language.

XML Namespaces are just URIs that uniquely identify a namespace, but do not actually point at a resource. In other
words, you don't normally use the URI of a XML Namespace to look something up. It's usually just an identifier.
However, you might want to indicate the location of the XML Schema associated with an XML Namespace so that a
parser can upload it and use it in validation. This is accomplished using the schemaLocation attribute:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xsi:schemaLocation="http://www.titan.com/Reservation

 http://www.titan.com/schemas/reservation.xsd">

 <customer>

 <last-name>Jones</last-name>

 <first-name>Sara</first-name>

 <address xmlns="http://www.titan.com/Address"

 xsi:schemaLocation="http://www.titan.com/Address

 http://www.titan.com/schemas/address.xsd">

 <street>3243 West 1st Ave.</street>

 <city>Madison</city>

 <state>WI</state>

 <zip>53591</zip>

 </address>

 <credit-card>

 <exp-date>09-2005</exp-date>

 <number>0394029302894028930</number>

 <name>Sara Jones</name>

 <organization>VISA</organization>

 </credit-card>

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

</reservation>

The schemaLocation attribute provides a list of values as Namespace-Location value pairs. The first value is the URI of
the XML Namespace; the second is the physical location (URL) of the XML Schema. The following schemaLocation
attribute states that all elements belonging to the Reservation Namespace (http://www.titan.com/Reservation) can be
validated against a XML Schema located at the URL http://www.titan.com/reservation.xsd:

xsi:schemaLocation="http://www.titan.com/Reservation

 http://www.titan.com/schemas/reservation.xsd">

The schemaLocation attribute is not a part of the XML language, so we'll actually need to prefix it with the appropriate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The schemaLocation attribute is not a part of the XML language, so we'll actually need to prefix it with the appropriate
namespace in order to use it. The XML Schema specification defines a special namespace that can be used for
schemaLocation (as well as other attributes). That namespace is http://www.w3.org/2001/XMLSchema-Instance. In order to
properly declare the schemaLocation attribute, declare its XML namespace and prefix it with the identifier for that
namespace as shown in the following snippet:

<?xml version='1.0' encoding='UTF-8' ?>

<reservation xmlns="http://www.titan.com/Reservation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xsi:schemaLocation="http://www.titan.com/Reservation

 http://www.titan.com/schemas/reservation.xsd">

A namespace declaration only needs to be defined once; it applies to all elements nested under the element in which
it's declared. The convention is to use the prefix xsi for the XML Schema Instance namespace
(http://www.w3.org/2001/XMLSchema-Instance).

XML Schemas also use XML Namespaces. Let's look at XML Schema for the Address markup language with a new focus
on the use of XML Namespaces:

<?xml version='1.0' encoding='UTF-8' ?>

<schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.titan.com/Address"

 xmlns:addr="http://www.titan.com/Address" >

 <element name="address" type="addr:AddressType"/>

 <complexType name="AddressType">

 <sequence>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="string"/>

 <element name="zip" type="string"/>

 </sequence>

 </complexType>

In this file, namespaces are used in three separate declarations. The first namespace declaration states that the default
namespace is http://www.w3c.org/2001/XMLSchema, which is the namespace of the XML Schema specification. This
declaration makes it easier to read the XSD because most of the elements do not need to be prefixed. The second
declaration states that the target namespace of the XML Schema is the namespace of the Address markup. This tells us
that all the types and elements defined in this XSD belong to that namespace. Finally, the third namespace declaration
assigns the prefix addr to the target namespace so that types can be referenced exactly. For example, the top level
<element> definition uses the name addr:AddressType to say that the element is of type AddressType, belonging to the
namespace http://www.titan.com/Address.

Why do you have to declare a prefix for the target namespace? The reason is clearer when you examine the XSD for
the Reservation XSD:

<?xml version='1.0' encoding='UTF-8' ?>

<schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xmlns:addr="http://www.titan.com/Address"

 xmlns:res="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

 <import namespace="http://www.titan.com/Address"

 xsi:schemaLocation="http://www.titan.com/Address.xsd" />

 <element name="reservation" type="res:ReservationType"/>

 <complexType name="ReservationType">

 <sequence>

 <element name="customer" type="res:CustomerType"/>

 <element name="cruise-id" type="int"/>

 <element name="cabin-id" type="int"/>

 <element name="price-paid" type="double"/>

 </sequence>

 </complexType>

 <complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="addr:AddressType"/>

 <element name="credit-card" type="res:CreditCardType"/>

 </sequence>

 </complexType>

 <complexType name="CreditCardType">

 <sequence>

 <element name="exp-date" type="dateTime"/>

 <element name="number" type="string"/>

 <element name="name" type="string"/>

 <element name="organization" type="string"/>

 </sequence>

 </complexType>

</schema>

The Reservation XSD imports the Address XSD so that the AddressType can be used to define the CustomerType. You can
see the use of namespaces in the definition of the CustomerType, which references types from both the Reservation and
Address namespace, prefixed by addr and res:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Address namespace, prefixed by addr and res:

<?xml version='1.0' encoding='UTF-8' ?>

<schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"

 xmlns:addr="http://www.titan.com/Address"

 xmlns:res="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

...

 <complexType name="CustomerType">

 <sequence>

 <element name="last-name" type="string"/>

 <element name="first-name" type="string"/>

 <element name="address" type="addr:AddressType"/>

 <element name="credit-card" type="res:CreditCardType"/>

 </sequence>

 </complexType>

Assigning a prefix to the Reservation namespace allowed us to distinguish between elements that are defined as
Reservation types (e.g., credit-card) and elements that are defined as Address types (e.g., address). All the type attributes
that reference built-in types string and int also belong to the XML Schema namespace, so we don't need to prefix them.
We could, though, for clarity. That is, we'd replace string and int with xsd:string and xsd:int. The prefix xsd references the
XML Schema namespace; using it allows us to identify built-in types defined as XML Schema more clearly. It's not a
problem that the default namespace is the same as the namespace prefixed by xsd. By convention, the xsd prefix is the
one used in most XML schemas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.3 SOAP 1.1
SOAP 1.1 is simply a distributed object protocol like DCOM, CORBA IIOP, and Java RMI-JRMP. The most significant
difference between SOAP 1.1 and other distributed object protocols is that SOAP 1.1 is based on XML.

EJB 2.1 and the J2EE 1.4 platform are standardized on SOAP 1.1. At the time of this
writing, SOAP 1.2 (the latest version of SOAP) has just been released, but it is not
supported by J2EE 1.4/EJB 2.1. From this point forward, we'll only talk about SOAP 1.1,
which we'll simply call SOAP.

SOAP is defined by its own XML Schema and relies heavily on the use of XML Namespaces. Every SOAP message that is
sent across the wire is an XML document that consists of standard SOAP elements and application data. The use of
namespaces differentiates the standard SOAP elements from the application data. Here's a SOAP request message that
might be sent from a client to a server:

<?xml version='1.0' encoding='UTF-8' ?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header />

 <env:Body>

 <reservation xmlns="http://www.titan.com/Reservation>

 <customer>

 <!-- customer info goes here -->

 </customer>

 <cruise-id>123</cruise-id>

 <cabin-id>333</cabin-id>

 <price-paid>6234.55</price-paid>

 </reservation>

 </env:Body>

</env:Envelope>

The standard SOAP elements are shown in bold while the application data, the Reservation XML document fragment, is
shown in regular text. SOAP's primary purpose is to establish a standard XML framework for packaging application data
that is exchanged between different software platforms, such as Java and Perl, or Java and .NET. To do this, SOAP
defines a set of elements, each of which is designed to carry different data. The <Envelope> element is the root of the
SOAP message; all other elements are contained by it. Within the <Envelope> element are two direct children: the
<Header> element and the <Body> element.

The <Header> element is generally used for carrying infrastructure data such as security tokens, transaction IDs,
routing information, and so on. In the previous example, the <Header> element is empty, which is not unusual for basic
web services. In many cases, we are only interested in exchanging information and not in more advanced issues, such
as those relating to security and transactions. Although the <Body> element is required, the <Header> element is not.
From this point forward, the <Header> element will be omitted from examples.

The <Body> element carries the application information that is being exchanged. In the previous example, the <Body>
element contains a <reservation> element, which is the application data. It's an XML document fragment based on the
Reservation XSD developed earlier in this chapter. It's called a "fragment" because it's embedded inside a SOAP
message, rather than standing alone.

14.3.1 SOAP Messaging Modes

The SOAP message we just looked at is a Document/Literal message, which means that the message carries an XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SOAP message we just looked at is a Document/Literal message, which means that the message carries an XML
document fragment that may be validated against an XML Schema.

The schemaLocation attribute could have been included; it's omitted because we assume that the receiver is already
familiar with the schema used for that type of SOAP message.

The other messaging mode allowed by the WS-I Basic Profile 1.0 and supported by EJB 2.1 is RPC/Literal. RPC/Literal
represents SOAP messages as RPC calls, with parameters and return values, rather than arbitrary XML document
fragments. The following Java interface defines a single method called makeReservation():

public interface TravelAgent extends java.rmi.Remote {

 public void makeReservation(int cruiseID, int cabinID,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

The makeReservation() method can be modeled as a SOAP message using the RPC/Literal messaging style:

<env:Envelope

 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:titan="http://www.titan.com/TravelAgent"/>

 <env:Body>

 <titan:makeReservation xmlns="http://www.titan.com/TravelAgent" >

 <cruiseId>23</cruiseId>

 <cabinId>144</cabinId>

 <customerId>9393</cusotmerId>

 <price>5677.88</price>

 </titan:makeReservation>

 </env:Body>

</env:Envelope

The first element within the <Body> identifies the web service operation being invoked. In this case, it's the
makeReservation operation. Directly under the <titan:makeReservation> element are the parameters of the RPC call, each of
which is represented by an element with a value.

EJB 2.1, but not the WS-I Basic Profile 1.0, supports the RPC/Encoded mode of SOAP messaging. Most SOAP
applications used RPC/Encoded when web services were first created. However, the web services industry has moved
toward Document/Literal and RPC/Literal, primarily because interoperability between platforms using RPC/Encoded
proved to be less than perfect, and sometimes downright difficult. While RPC/Encoded SOAP messages rely on SOAP
defined types for Arrays, Enumeration, Union, Lists, and the like, RPC/Literal and Document/Literal depend only on XML
Schema for their data types, which seems to provide a better system for interoperability across programming
languages. Although EJB 2.1 supports RPC/Encoded messaging, it's really not a very good option to use in web services.
RPC/Encoded messaging will not be addressed in this book.

14.3.2 Exchanging SOAP Messages with HTTP

SOAP messages are network protocol-agnostic, which means that a SOAP message is not aware of or dependent on the
type of network or protocol used to carry it. That said, SOAP is primarily exchanged using HTTP. The reason for using
HTTP is simple. Most Internet products, including web servers, application servers, and wireless devices, are designed
to handle the HTTP protocol. The widespread support for HTTP provides an instant infrastructure for SOAP messaging.
The fact that SOAP can leverage the ubiquity of HTTP is one of the reasons it has become so popular so quickly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The fact that SOAP can leverage the ubiquity of HTTP is one of the reasons it has become so popular so quickly.

Another advantage of using HTTP is that SOAP messages can slip through firewalls without any hassles. If you have
ever tried to support internal or external customers who are separated from you by a firewall (yours or theirs), you
know the headaches a firewall can create. Unless you have direct control over the firewall, your chances of
communicating with arbitrary clients using anything but HTTP or SMTP (email) are slim to none. However, because
SOAP can be transmitted with HTTP, it slips through the firewall unnoticed. This ability makes life a lot simpler for the
application developer, but it's a point of contention with the security folks. Understandably, the security community is a
bit irked about the idea of application developers circumventing their defenses. Using HTTP to carry an application
protocol like SOAP is commonly called HTTP tunneling. In the past, support for tunneling by vendors of other distributed
object protocols (CORBA IIOP, DCOM, and so on) was sporadic and proprietary, making interoperability extremely
difficult. With SOAP, tunneling over HTTP is built into the SOAP 1.1 specification—which means interoperability is no
longer a problem. As just about every application server vendor rapidly adopts SOAP, SOAP-HTTP tunneling is becoming
ubiquitous.

You can use SOAP 1.1 with other protocols, such as SMTP, FTP, and even raw TCP/IP, but HTTP is the only protocol for
which a binding is currently specified. As a result, EJB 2.1 and J2EE 1.4 require support for SOAP 1.1 over HTTP 1.1,
but not other protocols.

14.3.3 Now You See It, Now You Don't

All this talk about SOAP is designed to give you a better idea of what is going on under the hood, but in practice, you
are unlikely to interact with the protocol directly. Like most protocols, SOAP is designed to be produced and consumed
by software and is usually encapsulated by a developer API. In EJB 2.1, the API you will use to exchange SOAP
messages is JAX-RPC (Java API for XML-based RPC), which hides the details of SOAP messaging so you can focus on
developing and invoking web services. While using JAX-RPC, you will rarely have to deal with the SOAP protocol, which
is nice because it makes you a lot more productive. JAX-RPC is covered in Chapter 15.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.4 WSDL 1.1
WSDL (Web Service Description Language) is an XML markup language used to describe a web service. WSDL is
programming language-, platform-, and protocol-agnostic. The fact that WSDL is protocol-agnostic means it can
describe web services that use protocols other than SOAP and HTTP. This ability makes WSDL very flexible, but it has
the nasty side effect of making WSDL abstract and difficult to understand. Fortunately, the WS-I Basic Profile 1.0
endorses only SOAP 1.1 over HTTP, so we'll discuss WSDL as if that's the only combination of protocols supported.

Imagine that you want to develop a web service component that implements the following interface:

public interface TravelAgent extends java.rmi.Remote {

 public String makeReservation(int cruiseID, int cabinID,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

Any application should be able to invoke this method using SOAP, regardless of the language in which it was written or
the platform on which it is running. Since other programming languages don't understand Java, we have to describe the
web service in a language they do understand: XML. Using XML, and specifically the WSDL markup language, we can
describe the type of SOAP messages that must be sent to invoke the makeReservation() method. A WSDL document that
describes the makeReservation() method might look like this:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="makeReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </output>

 </operation>

</binding>

<!-- service element tells us the Internet address of a web service -->

<service name="TravelAgentService">

 <port name="TravelAgentPort" binding="titan:TravelAgentBinding">

 <soap:address location="http://www.titan.com/webservices/TravelAgent" />

 </port>

</service>

</definitions>

If you find the previous WSDL listing indecipherable, don't despair. Most people can't understand a WSDL document the
first time they see one. Like many things that are complicated, the best approach to understanding WSDL is to study it
in pieces. And fortunately, modern web services platforms like Axis generate (and read) WSDL for you. WSDL should be
something you only need to look at when things break. At this point, things still break fairly often, so it's helpful to be
familiar with WSDL: it will show you what the server expects when a method is called. But don't think that you'll be
called on to write a WSDL document by yourself.

14.4.1 The <definitions> Element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The root element of a WSDL document is the <definitions> element. Usually, a WSDL document declares all the XML
namespaces used in the root element. In the previous example, the <definitions> element makes four XML Namespace
declarations:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

The default namespace (xmlns="http://schemas.xmlsoap.org/wsdl/") is the WSDL namespace. The xsd prefix is assigned to
the XML Schema namespace. It is used primarily to identify simple data types such as xsd:string, xsd:int, and xsd:dateTime
in <message> elements:

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

The titan prefix is assigned to a Titan Cruise URL, which indicates that it's an XML Namespace that belongs to Titan
Cruises. This namespace is also the value of the targetNamespace attribute. This attribute is similar to the one used in
XML Schemas. For example, the <portType> references <message> elements, and the <binding> element references a
<portType> using the target namespace:

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 ...

</binding>

As you can see, the different WSDL types reference each other by name, and a named WSDL type automatically takes
on the namespace declared by the targetNamespace attribute.

14.4.2 The <portType> and <message> Elements

The <message> and <portType> elements are the immediate children of the <definitions> element. Here's what they look
like:

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

The <portType> element describes the web service operations (Java methods) that are available. An operation can have
input, output, and fault messages. An input message describes the type of SOAP message a client should send to the
web service. An output message describes the type of SOAP message a client should expect to get back. A fault
message (not shown in the example) describes any SOAP error messages that the web service might send back to the
client. A fault message is similar to a Java exception.

JAX-RPC, and therefore EJB 2.1, supports two styles of web service messaging: request-response and one-way. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAX-RPC, and therefore EJB 2.1, supports two styles of web service messaging: request-response and one-way. You
know you are dealing with request-response if the <operation> element contains a single <input> element, followed by a
single <output> element, and, optionally, zero or more <fault> elements. The TravelAgent <portType> is an example of
the request-response messaging style:

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgent">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

The one-way message style, on the other hand, is implied by the presence of a single <input> element but no <output>
or <fault> messages. Here is a web service that supports one-way messaging:

<!-- portType element describes the abstract interface of a web service -->

<portType name="ReservationProcessor">

 <operation name="submitReservation">

 <input message="titan:ReservationMessage"/>

 </operation>

</portType>

The request-response style of messaging is the kind you expect in RPC programming: you send a message and get a
response. The one-way style tends to be used for asynchronous messaging; you send a message but do not expect a
response. In addition, one-way messaging is frequently used to deliver XML documents, like Reservation, rather than
parameters and return values. However, both request-response and one-way messaging styles can be used with either
RPC or document-style messaging.

WSDL also supports two other messaging styles: notification (a single <output> and no <input>) and solicitation (a single
<output> followed by a single <input>). While WSDL makes these messaging styles available, they are not supported by
the WS-I Basic Profile 1.0 or JAX-RPC.

14.4.3 The <types> Element

If your service needs any custom types, they are defined in the <types> element, which is the first child of the
<definitions> element. The complete WSDL document shown earlier did not include a <types> element because it didn't
define any new types (it used XML Schema built-in types). The <types> element allows us to declare more complex XML
types. For example, instead of declaring each of the parameters of the makeReservation operation as individual parts,
they can be combined into a single structure that serves as the parameter of the operation:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

<!-- types element describes complex XML data types -->

<types>

 <xsd:schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsd:schema

 targetNamespace="http://www.titan.com/TravelAgent">

 <xsd:complexType name="ReservationType">

 <xsd:sequence>

 <xsd:element name="cruiseId" type="xsd:int"/>

 <xsd:element name="cabinId" type="xsd:int"/>

 <xsd:element name="customerId" type="xsd:int"/>

 <xsd:element name="price-paid" type="xsd:double"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

<!-- message elements describe the paramters and return values -->

<message name="RequestMessage">

 <part name="reservation" type="titan:ReservationType" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

The <types> element is frequently used with document-oriented messaging. For example, the following WSDL binding
defines an XML Schema for the Reservation markup so that Reservation documents can be submitted to Titan as one-
way messages. The schema is embedded within the WSDL document, as the content of the <types> element.

<?xml version="1.0"?>

<definitions name="Reservation"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/Reservation"

 targetNamespace="http://www.titan.com/Reservation">

<!-- types element describes complex XML data types -->

<types>

 <xsd:schema

 targetNamespace="http://www.titan.com/Reservation">

 <xsd:element name="reservation" type="titan:ReservationType"/>

 <xsd:complexType name="ReservationType">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsd:sequence>

 <xsd:element name="customer" type="titan:CustomerType"/>

 <xsd:element name="cruise-id" type="xsd:int"/>

 <xsd:element name="cabin-id" type="xsd:int"/>

 <xsd:element name="price-paid" type="xsd:double"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CustomerType">

 <xsd:sequence>

 <xsd:element name="last-name" type="xsd:string"/>

 <xsd:element name="first-name" type="xsd:string"/>

 <xsd:element name="address" type="titan:AddressType"/>

 <xsd:element name="credit-card" type="titan:CreditCardType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CreditCardType">

 <xsd:sequence>

 <xsd:element name="exp-date" type="xsd:dateTime"/>

 <xsd:element name="number" type="xsd:string"/>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="organization" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="AddressType">

 <xsd:sequence>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

<!-- message elements describe the paramters and return values -->

<message name="ReservationMessage">

 <part name="inmessage" element="titan:reservation" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <part name="inmessage" element="titan:reservation" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="ReservationProcessor">

 <operation name="submitReservation">

 <input message="titan:ReservationMessage"/>

 </operation>

</portType>

<!-- binding tells us which protocols and encoding styles are used -->

<binding name="ReservationProcessorBinding" type="titan:ReservationProcessor">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="submitReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"/>

 </input>

 </operation>

</binding>

<!-- service tells us the Internet address of a web service -->

<service name="ReservationProcessorService">

 <port name="ReservationProcessorPort" binding="titan:ReservationProcessorBinding">

 <soap:address location="http://www.titan.com/webservices/Reservation" />

 </port>

</service>

</definitions>

14.4.4 The <binding> and <service> elements

In addition to the <portType> and <message> elements, a WSDL document also defines <binding> and <service>
elements. These elements are used by JAX-RPC to generate marshalling and network communication code used to send
and receive messages.

The <binding> element describes the type of encoding used to send and receive messages as well as the protocol on
which the SOAP messages are carried. The <binding> definition for the TravelAgent port type looks like this:

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="makeReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </output>

 </operation>

</binding>

A binding element is always interlaced with protocol-specific elements—usually, the elements describe the SOAP
protocol binding. (In fact, this is the only binding that is allowed by the WS-I Basic Profile 1.0.) Because J2EE web
services must support SOAP with attachments, the MIME binding is also supported when attachments (images,
documents, and so on) are sent with SOAP messages. However, that subject is a bit involved and is outside the scope
of this book.

The <binding> element contains <operation>, <input>, <output>, and <fault> elements, similar to the <portType> element.
In fact, a binding is specific to a particular <portType>: its <operation>, <input>, and <output> elements describe the
implementation details of the corresponding <portType>. The previous example used the HTTP protocol with RPC/Literal-
style messaging. The WSDL binding for Document/Literal style messaging would be different:

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgent">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="submitReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal/"/>

 </input>

 </operation>

</binding>

The <binding> element describes a one-way web service that accepts an XML document fragment. The <portType>
associated with this <binding> also defines a single input message (consistent with one-way messaging) within an
operation called submitReservation:

<!-- portType element describes the abstract interface of a web service -->

<portType name="ReservationProcessor">

 <operation name="submitReservation">

 <input message="titan:ReservationMessage"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <input message="titan:ReservationMessage"/>

 </operation>

</portType>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.5 UDDI 2.0
UDDI (Universal Description, Discovery and Integration) is a specification that describes a standard for publishing and
discovering web services on the Internet. It's essentially a repository with a rigid data structure that describes
companies and the web services that they provide. UDDI is not as fundamental to web services and XML, SOAP, and
WSDL, but it is considered a basic constituent of web services in J2EE.

The analogy normally used to describe UDDI is that it provides electronic White, Yellow, and Green pages for companies
and their web services. You can look up companies by name or identifier (White pages) or by business or product
category (Yellow pages). You can also discover information about web services hosted by a company by examining the
technical entities of a UDDI registry (Green pages). In other words, UDDI is an electronic directory that allows
organizations to advertise their business and web services and to locate other organizations and web services.

Not only does a UDDI registry provide information about web services and their hosts, a UDDI repository is itself a web
service. You can search, access, add, update, and delete information in a UDDI registry using a set of standard SOAP
messages. All UDDI registry products must support the standard UDDI data structures and SOAP messages, which
means you can access any UDDI-compliant registry using the same standard set of SOAP messages.

Although organizations can set up private UDDI registries, there is a free UDDI registry anyone can use, called the UBR
(Universal Business Registry). This registry is accessed at one of four sites hosted by Microsoft, IBM, SAP, and NTT. If
you publish information about your company in any one of these sites, the data will be replicated to the each of the
other four. You can find out more about the UBR and the sites that host it at http://www.uddi.org.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.6 From Standards to Implementation
Understanding the fundamental web service standards (XML, SOAP, and WSDL) is essential to becoming a competent
web services developer. However, you'll also need to understand how to implement web services in software. There are
numerous web service platforms that allow you to build production systems based on the web service standards,
including .NET, Perl, Apache Axis, and J2EE. The focus of this book is obviously the J2EE platform, and specifically
support for web services in EJB. The next chapter explains how JAX-RPC is used to support web services in Enterprise
JavaBeans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 14. EJB 2.1: Web Service Standards
Web services have taken the enterprise computing industry by storm in the past couple of years, and for good reason.
They present the opportunity for real interoperability across hardware, operating systems, programming languages, and
applications. Based on XML, SOAP, and WSDL standards, web services have enjoyed widespread adoption by pretty
much all the major enterprise players, including Microsoft, IBM, BEA, Oracle, Hewlett Packard, and others. Sun
Microsystems has integrated web services into the J2EE platform; specifically, Sun and the Java Community Process
have introduced several web service APIs, including JAX-RPC (Java API for XML-based RPC), SAAJ (SOAP with
Attachments API for Java), and JAXR (Java API for XML Registries). These web service APIs have been integrated into
J2EE 1.4 and are supported by EJB 2.1.

This chapter provides an overview of the technologies that are the foundation of web services: XML Schema and
Namespaces, SOAP 1.1, and WSDL 1.1. Chapter 15 provides an overview of JAX-RPC, the most important web services
API.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.1 Accessing Web Services with JAX-RPC
JAX-RPC provides a client-side programming model based on Java RMI that allows you to access web services on other
platforms from your EJBs. In other words, by using JAX-RPC, EJBs can access web services across the network hosted
on Java and non-Java platforms (Perl, .NET, C++, and so on) alike. There are three APIs for accessing web services:
generated stubs, dynamic proxies, and the DII (Dynamic Invocation Interface). Of these three APIs, the one you are
most likely to use is the Generated Stubs programming model, which is the primary focus of this chapter.

Generated stubs are based on the classic Java RMI programming model, where the client accesses a remote service via
a Java RMI remote interface implemented by a network stub. The stub translates calls made on the remote interface
into network messages sent to the remote service. It's pretty much the same as using an EJB remote reference, except
the protocol is SOAP over HTTP rather than CORBA IIOP. Figure 15-1 illustrates the RMI loop executed with a JAX-RPC
generated stub.

Figure 15-1. The JAX-RPC RMI Loop

The RMI loop in JAX-RPC is basically the same as any other RMI loop. In step 1, the client invokes a method on the
JAX-RPC generated stub. The method invocation is transformed into a SOAP message that is sent to the server in step
2. In step 3 the web service process the request and send the results back as a SOAP response message in step 4. In
step 5, the SOAP response messages is transformed into either a return value or an exception (if it was a SOAP Fault)
and returned to the client.

15.1.1 Generating JAX-RPC Stubs from WSDL

Generated stubs get their name because the remote interface, called an endpoint interface, and the network stub are
generated at deployment time. A JAX-RPC-compliant compiler generates the endpoint interface and stub from a WSDL
document. The WSDL <portType> is used to create an endpoint interface, while the WSDL <binding> and <port>
definitions are used to create the stub. The WSDL document is provided by the organization that hosts the web service.
The JAX-RPC compiler reads the WSDL document and translates it into an endpoint interface and stub that you can use
at runtime to send and receive SOAP messages.

Imagine that Titan Cruises subcontracts a company, Charge-It, Inc., to process payments made by customers using
credit cards. Charge-It runs a system based on .NET and exposes its credit card processing application to clients via a
web service. The web service is described by a WSDL document. The WSDL document for Charge-It's web service looks
like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://charge-it.com/Processor"

 targetNamespace="http://charge-it.com/Processor">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 targetNamespace="http://charge-it.com/Processor">

<message name="chargeRequest">

 <part name="name" type="xsd:string"/>

 <part name="number" type="xsd:string"/>

 <part name="exp-date" type="xsd:dateTime"/>

 <part name="card-type" type="xsd:string"/>

 <part name="amount" type="xsd:float"/>

</message>

<message name="chargeResponse">

 <part name="return" type="xsd:int"/>

</message>

<portType name="Processor">

 <operation name="charge">

 <input message="tns:chargeRequest"/>

 <output message="tns:chargeResponse"/>

 </operation>

</portType>

<binding name="ProcessorSoapBinding" type="tns:Processor">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="charge">

 <soap:operation soapAction="" style="rpc"/>

 <input>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </output>

 </operation>

</binding>

<service name="ProcessorService">

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">

 <soap:address

 location="http://www.charge-it.com/ProcessorService"/>

 </port>

</service>

</definitions>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</definitions>

The endpoint interface is based on the WSDL <portType> and its corresponding <message> definitions. Based on these
definitions, a JAX-RPC compiler would generate the following interface:

package com.charge_it;

public interface Processor extends java.rmi.Remote {

 public int charge(String name, String number, java.util.Calendar expDate,

 String cardType, float amount)

 throws java.rmi.RemoteException;

}

An endpoint interface is a Java RMI remote interface that extends the java.rmi.Remote type. Its methods must throw the
java.rmi.RemoteException and, optionally, application exceptions. The interface name, method names, parameters, and
exceptions are all derived from the WSDL document. Figure 15-2 shows the mapping between the <portType> and
<message> definitions and the endpoint interface.

Figure 15-2. Mapping a WSDL <portType> to a JAX-RPC endpoint interface

The name of the endpoint interface comes from the name of the <portType>, which is Processor. The methods defined by
the endpoint interface are derived from the <operation> elements declared by the WSDL <portType>. In this case, there
is one <operation> element, which maps a single method, charge(). The parameters of the charge() method are derived
from <operation> element's input message. For each <part> element of the input message, there will be a corresponding
parameter in the charge() method. The output message, in this case, declares a single <part> element, which maps to
the return type of the charge() method.

The JAX-RPC specification defines an exact mapping between many of the XML Schema built-in types and Java. This is
how the XML Schema types declared by the WSDL <part> elements are mapped to the parameters and the return type
of an endpoint method. Table 15-1 shows the mapping between XML Schema built-in types and Java primitives and
classes.

Table 15-1. XML Schema built-in types and their corresponding Java types
XML Schema built-in type Java type

xsd:byte byte

xsd:boolean boolean

xsd:short short

xsd:int int

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsd:long long

xsd:float float

xsd:double double

xsd:string java.lang.String

xsd:dateTime java.util.Calendar

xsd:integer java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:QName java.xml.namespace.QName

xsd:base64Binary byte []

xsd:hexBinary byte []

JAX-RPC also maps nillable types (types that can be null), based on XML Schema built-in types, to Java primitive
wrappers. For example, a nillable xsd:int type would map to a java.lang.Integer type and a nillable xsd:double would map to
a java.lang.Long type.

In addition, JAX-RPC defines a mapping between complex types defined in the WSDL <types> element and Java bean
classes. Complex types are addressed later in this chapter.

The stub, which implements the endpoint interface, is generated from the <binding> and <port> definitions. The JAX-RPC
compiler translates the messaging style specified by the <binding> definition into a marshalling algorithm for converting
method calls made on the endpoint stub into SOAP request and reply messages. Charge-It's WSDL document defines
the following <binding> element:

<binding name="ProcessorSoapBinding" type="tns:Processor">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="charge">

 <soap:operation soapAction="" style="rpc"/>

 <input>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://charge-it.com/Processor"/>

 </output>

 </operation>

</binding>

According to the <binding> element, the web service employs RPC/Literal SOAP 1.1 messages with a request-response
style operation. When the JAX-RPC compiler reads this <binding>, it generates a corresponding stub that implements
the endpoint interface. The stub is responsible for converting method calls made on the endpoint interface into SOAP
messages sent to the web service. It's also responsible for converting SOAP response messages sent back to the stub
into a return value—or, if it's a SOAP fault message, into an exception thrown by the endpoint method.

The stub is also based on a particular <port> definition, which declares the Internet address where the web service is
located. The Charge-It WSDL document defines the following <port> element:

<service name="ProcessorService">

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">

 <soap:address

 location="http://www.charge-it.com/ProcessorService"/>

 </port>

</service>

Based on this <port> definition, the JAX-RPC compiler generates the stub that exchanges SOAP messages with the URL
indicated by the address attribute (http://www.charge-it.com/ProcessorService). Figure 15-3 illustrates how the Processor
endpoint interface and stub are used to access the Charge-It credit card processing web service.

Figure 15-3. The JAX-RPC RMI loop for the Charge-It web service

In addition to the endpoint interface and its stub, the JAX-RPC compiler also creates a Service interface, which is used
to get an instance of the generated stub at runtime. The Service interface is based on the <service> element of the
WSDL document and declares methods for obtaining a live endpoint stub. Here's the definition of the ProcessorService
interface generated from Charge-It's WSDL document:

package com.charge_it;

public interface ProcessorService extends javax.xml.rpc.Service {

 public com.charge_it.Processor getProcessorPort()

 throws javax.xml.rpc.ServiceException;

 public java.lang.String getProcessorPortAddress();

 public com.charge_it.Processor getProcessorPort(java.net.URL portAddress)

 throws javax.xml.rpc.ServiceException;

}

The getProcessorPort() method returns a live endpoint stub that is ready to invoke methods on the web service. The
getProcessPortAddress() method returns the URL that the stub accesses by default. The getProcessorPort(URL) method
allows you to create an endpoint stub that accesses a URL that is different from the default URL defined in the WSDL
document.

The JAX-RPC compiler also generates a class that implements the Service interface. This class is tightly bound to the
EJB Container system and manufactures endpoint stubs at runtime.

15.1.2 Using JAX-RPC Generated Stubs

Just like other resources (JDBC, JMS, and so on) the JAX-RPC Service is bound to a specific namespace in the JNDI ENC
at deployment time. To get a reference to a stub at runtime, therefore, the EJB requests a specific JAX-RPC Service
from the JNDI ENC. The stub is then used to execute operations on the remote web service.

To illustrate how stubs are used by EJBs, we will modify the bookPassage() method of the TravelAgentBean defined in
Chapter 11. Instead of using the ProcessPayment EJB to process credit cards, the TravelAgent EJB will use the Charge-
It's Processor web service. The following code shows the changes to the TravelAgentBean class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's Processor web service. The following code shows the changes to the TravelAgentBean class:

package com.titan.travelagent;

import com.charge_it.ProcessorService;

import com.charge_it.Processor;

...

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 public CruiseLocal cruise;

 public CabinLocal cabin;

 public javax.naming.Context jndiContext;

 ...

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)

 {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 ProcessorService webService = (ProcessorService) jndiContext.lookup(

 "java:comp/env/service/ChargeItProcessorService");

 Processor endpointStub = webService.getProcessorPort();

 String customerName = customer.getFirstName()+" "+

 customer.getLastName();

 java.util.Calandar expDate = new Calandar(card.date);

 endpointStub.charge(customerName, card.number,

 expDate, card.type, price);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 expDate, card.type, price);

 TicketDO ticket = new TicketDO(customer, cruise, cabin, price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

}

As you can see, the EJB uses the JAX-RPC endpoint stub much like it would any other resource. It obtains a reference
to a resource factory from the JNDI ENC, uses that to obtain the stub, and uses the stub to invoke operations on the
web service—in this case, Charge-It's Processor web service.

The stub, however, presents some problems in a transactional environment. If the stub encounters a networking
problem or SOAP processing error, it throws a JAXRPCException, which is caught and rethrown as an EJBException, causing
the entire transaction to roll back. However, if an error occurs after the web service has executed but before the EJB
method successfully returns, a partial rollback occurs: the reservation would be rolled back, but the charge made using
the Charge-It web service would not.

15.1.3 The <service-ref> Deployment Element

EJB 2.1 includes a new element, <service-ref>, which binds a JAX-RPC Service to the JNDI ENC. The modified
TravelAgent EJB declares a <service-ref> element that looks like this:

<?xml version='1.0' encoding='UTF-8' ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:chargeIt="http://charge-it.com/Processor"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 ...

 <service-ref>

 <service-ref-name>service/ChargeItProcessorService</service-ref-name>

 <service-interface>com.charge_it.ProcessorService</service-interface>

 <wsdl-file>META-INF/wsdl/ChargeItProcessor.wsdl</wsdl-file>

 <jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>

 <service-qname>chargeIt:ProcessorService</service-qname>

 </service-ref>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </service-ref>

 ...

 </session>

 </enterprise-beans>

 ...

</ejb-jar>

The <service-ref-name> element declares the name of the JAX-RPC Service in the JNDI ENC—it's always relative to the
"java:comp/env" context. The <service-interface> identifies the JAX-RPC Service interface, which is implemented by a JAX-
RPC service object. The <wsdl-file> identifies the location of the WSDL document that describes the Charge-It web
service. The WSDL document must be packaged in the same EJB-JAR file as the EJB that is making the web service call.
The path is always relative to the root of the EJB-JAR file. In this case, a copy of the Charge-It WSDL document,
ChargeItProcessor.wsdl, is stored in the META-INF directory of the EJB-JAR file. The <jaxrpc-mapping-file> identifies the
location of the JAX-RPC mapping file relative to the root of the EJB-JAR file. In this case, it's also located in the META-
INF directory. (The JAX-RPC mapping file is an additional deployment file that helps the EJB container system
understand the mapping between the WSDL document and the endpoint service interfaces.) The <service-qname>
identifies the fully qualified XML name of the WSDL <service> definition to which this reference pertains. The qualified
service name is relative to the WSDL document identified by the <wsdl-file> element.

15.1.4 The JAX-RPC Mapping File

A JAX-RPC mapping file is required if an EJB is to use JAX-RPC to access web services. The mapping file conforms to a
specific XML Schema defined by the Web Services for J2EE 1.1 specification. This file helps the deployment tools and
EJB container understand the relationship between a JAX-RPC service and endpoint interfaces, and their corresponding
WSDL document, allowing the deployment tools to generate a proper stub: one that uses the correct protocols and
messaging modes.

At a bare minimum, the JAX-RPC mapping file must specify the mapping between the WSDL XML namespace of a
<service> element and a Java package name. Example 15-1 is a perfectly legal JAX-RPC mapping file for the <service-
ref> used by the TravelAgent EJB.

Example 15-1. EJB 2.1: Lightweight JAX-RPC mapping file

<?xml version='1.0' encoding='UTF-8' ?>

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

version="1.1">

 <package-mapping>

 <package-type>com.charge_it</package-type>

 <namespaceURI>http://charge-it.com/Processor</namespaceURI>

 </package-mapping>

</java-wsdl-mapping>

The JAX-RPC mapping shown in the previous listing is as simple as it gets. Only under very specific conditions can a
JAX-RPC mapping file be this simple; the TravelAgent EJB happens to use a web service that qualifies. Here's a brief list
of the attributes a WSDL document must have in order to qualify for a package-only JAX-RPC mapping file:

1. It has only one <service> element, which contains one <port> element.

2. The <service>, <binding>, <portType>, and all custom XML types (complexType and simpleType) have unique
names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The <binding> definition uses the RPC messaging style (style="rpc") and SOAP 1.1 Encoding
(encodingStyle="http://schemas.xmlsoap.org/soap/encoding/") for all input, output, and fault message parts.

4. No header blocks or header faults are specified in the <binding> definition; the parts attribute of input and output
elements must be omitted or, if the parts attribute is declared, it must list all parts.

5. Each <operation> within a <portType> definition must:

Have a unique name.

Include exactly one <input> element, zero or one <output> elements, and zero or more <fault>
elements.

Omit the parameterOrder attribute. If the parameterOrder is declared, the <operation> must specify all parts
from the input message in the order they are originally declared in the corresponding <message>
definition.

6. A fault <message> definition has one part named "message" of type "xsd:string".

7. The input <message> definition may declare zero or more <part> elements, and the output <message> definition
may declare zero or one <part> elements.

8. Every <part> definition is defined with a name attribute and a type attribute; the element attribute is not used.
The type attribute may be one of the following:

A standard XML Schema built-in type

An XML Schema-based complex type, which uses either the xsd:sequence or xsd:all compositor and can
be easily mapped to Java beans according to the JAX-RPC specifications

A WSDL-restricted SOAP Encoded array

The ChargeItProcessor.wsdl document meets all these requirements; as a result, it only needs to have a package
mapping. It's not difficult to create WSDL documents that meet these requirements; however, if you are attempting to
access a web service defined by someone else, you're likely to run into WSDL documents that do not adhere to the
criteria for a lightweight mapping file. In that case, you'll have to create a heavyweight mapping file. Example 15-2 is a
heavyweight mapping file for the ChargeItProcessor.wsdl document.

Example 15-2. Heavyweight JAX-RPC mapping file

<?xml version='1.0' encoding='UTF-8' ?>

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:chargeIt="http://charge-it.com/Processor"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

 version="1.1">

 <package-mapping>

 <package-type>com.charge_it</package-type>

 <namespaceURI>http://charge-it.com/Processor</namespaceURI>

 </package-mapping>

 <service-interface-mapping>

 <service-interface>com.charge_it.ProcessorService</service-interface>

 <wsdl-service-name>chargeIt:ProcessorService</wsdl-service-name>

 <port-mapping>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <port-mapping>

 <port-name>chargeIt:ProcessorPort</port-name>

 <java-port-name>ProcessorPort</java-port-name>

 </port-mapping>

 </service-interface-mapping>

 <service-endpoint-interface-mapping>

 <service-endpoint-interface>com.charge_it.Processor

 </service-endpoint-interface>

 <wsdl-port-type>chargeIt:Processor</wsdl-port-type>

 <wsdl-binding>chargeIt:ProcessorSoapBinding</wsdl-binding>

 <service-endpoint-method-mapping>

 <java-method-name>charge</java-method-name>

 <wsdl-operation>chargeIt:charge</wsdl-operation>

 <method-param-parts-mapping>

 <param-position>0</param-position>

 <param-type>java.lang.String</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>name</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>1</param-position>

 <param-type>java.lang.String</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>number</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>2</param-position>

 <param-type>java.util.Calandar</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>exp-date</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>3</param-position>

 <param-type>java.lang.String</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>card-type</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <method-param-parts-mapping>

 <param-position>4</param-position>

 <param-type>float</param-type>

 <wsdl-message-mapping>

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>

 <wsdl-message-part-name>amount</wsdl-message-part-name>

 <parameter-mode>IN</parameter-mode>

 </wsdl-message-mapping>

 </method-param-parts-mapping>

 <wsdl-return-value-mapping>

 <method-return-value>int</method-return-value>

 <wsdl-message>chargeIt:chargeResponse</wsdl-message>

 <wsdl-message-part-name>return</wsdl-message-part-name>

 </wsdl-return-value-mapping>

 </service-endpoint-method-mapping>

 </service-endpoint-interface-mapping>

</java-wsdl-mapping>

The complete JAX-RPC mapping file is too complicated to discuss in detail. Suffice it to say, the heavyweight mapping
file is complex and provides elements for mapping every aspect of the service and endpoint interfaces to a WSDL
document. The service interface is mapped to a WSDL <service> element, the endpoint interface is mapped to a WSDL
<portType>, each method is mapped to a WSDL <operation>, and every parameter and return value is mapped to a
specific WSDL <part> of a specific WSDL <message> definition.

It seems to me that a JAX-RPC compiler should be able to interpret a far broader set of WSDL definitions than the very
narrow criteria required for a lightweight mapping. The Web Services for J2EE specification requires a complete
mapping for any JAX-RPC resource that strays even a little from the minimum criteria for a lightweight mapping. In my
opinion, the criteria should be broadened. Only the nonconforming aspects of the WSDL document should be mapped;
conforming elements should not require documentation in the mapping file.

Exercise 15.1 in the Workbook shows how to deploy these examples.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.2 EJB Endpoints
An EJB endpoint is a stateless session bean that serves as a web service. Basically, the endpoint exposes a stateless
session bean through a new component interface, called the endpoint interface; remote clients use SOAP 1.1 to access
the methods defined in this interface. Because an EJB endpoint is simply a SOAP-accessible stateless session bean, it
has the same advantages as other EJBs. An EJB endpoint runs in the EJB container that automatically manages
transactions and security and provides access to other EJBs and resources via the JNDI ENC.

To illustrate how an EJB endpoint is developed, we'll create a new version of the TravelAgent EJB. The revised
TravelAgent will use the same logic as the TravelAgent EJB developed in Chapter 11 and the ReservationProcessor
developed in Chapter 12, but it will be deployed as a stateless session bean with an endpoint interface. The TravelAgent
endpoint is based on the WSDL document shown earlier in this chapter.

15.2.1 The WSDL Document

Every EJB endpoint must have a WSDL document that describes the web service. The <portType> declared by the WSDL
document must be aligned with the endpoint interface of the web service. In other words, the mapping between the
WSDL <portType> and the endpoint interface must be correct according to the JAX-RPC specification. One way to
accomplish this is to create the WSDL document first, and then use it to generate the endpoint interface:

<?xml version="1.0"?>

<definitions name="TravelAgent"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:titan="http://www.titan.com/TravelAgent"

 targetNamespace="http://www.titan.com/TravelAgent">

<!-- message elements describe the parameters and return values -->

<message name="RequestMessage">

 <part name="cruiseId" type="xsd:int" />

 <part name="cabinId" type="xsd:int" />

 <part name="customerId" type="xsd:int" />

 <part name="price" type="xsd:double" />

</message>

<message name="ResponseMessage">

 <part name="reservationId" type="xsd:string" />

</message>

<!-- portType element describes the abstract interface of a web service -->

<portType name="TravelAgentEndpoint">

 <operation name="makeReservation">

 <input message="titan:RequestMessage"/>

 <output message="titan:ResponseMessage"/>

 </operation>

</portType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- binding element tells us which protocols and encoding styles are used -->

<binding name="TravelAgentBinding" type="titan:TravelAgentEndpoint">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="makeReservation">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </input>

 <output>

 <soap:body use="literal"

 namespace="http://www.titan.com/TravelAgent"/>

 </output>

 </operation>

</binding>

<!-- service element tells us the Internet address of a web service -->

<service name="TravelAgentService">

 <port name="TravelAgentPort" binding="titan:TravelAgentBinding">

 <soap:address location="http://www.titan.com/webservices/TravelAgent" />

 </port>

</service>

</definitions>

15.2.2 The Endpoint Interface

Based on this WSDL document, we can generate a JAX-RPC endpoint interface, which will be implemented by our EJB
endpoint. The endpoint interface is generated from the <portType> and <message> definitions (and <types>, if present).
The endpoint interface looks like this:

package com.titan.webservice;

public interface TravelAgentEndpoint extends java.rmi.Remote {

 public java.lang.String makeReservation(int cruiseId, int cabinId,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The endpoint interface defines the business methods that will be accessible as SOAP operations. The interface extends
java.rmi.Remote—there is no EJBObject interface—and defines one or more business methods, each of which must throw
a java.rmi.RemoteException. The types that can be used as parameters and return types are the same types that can be
used with JAX-RPC generated endpoints (see Table 15-1). You can also use simple Java bean types for holding complex
data.

15.2.3 No Home Interface

An EJB endpoint does not define a home interface; there is no EJB home object for creating or locating EJB endpoints.
An EJB endpoint cannot be created or located; it's a truly stateless service, both semantically and physically. The only
time an EJB would have a home interface is if the EJB defined remote or local interfaces in addition to the endpoint
interface. In other words, a single EJB can be local, remote, and an endpoint.

15.2.4 The Stateless Bean Class

The bean class defined for the TravelAgent endpoint must implement the methods defined by the endpoint interface. A
stateless bean class can implement the endpoint interface directly—something that's not recommended for the local or
remote interfaces. That's because the endpoint interface is a direct descendent of java.rmi.Remote, and doesn't define
any EJBObject methods. Here's the new definition for the TravelAgent bean class:

package com.titan.webservice;

import com.titan.reservation.*;

import com.titan.cruise.*;

import com.titan.customer.*;

import com.titan.cabin.*;

import com.titan.processpayment.*;

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

import javax.naming.NamingException;

import javax.ejb.EJBException;

import java.util.Date;

import java.util.Calendar;

public class TravelAgentBean

 implements TravelAgentEndpoint, javax.ejb.SessionBean {

 public javax.naming.Context jndiContext;

 public void ejbCreate() {}

 public String makeReservation(int cruiseId, int cabinId,

 int customerId, double price){

 try {

 CruiseLocal cruise = this.getCruise(cruiseId);

 CabinLocal cabin = this.getCabin(cabinId);

 CustomerRemote customer = this.getCustomer(customerId);

 CreditCardDO card = this.getCreditCard(customerId);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CreditCardDO card = this.getCreditCard(customerId);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price, new Date());

 Object ref = jndiContext.lookup(

 "java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 return reservation.getPrimaryKey().toString();

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 public CustomerRemote getCustomer(int customer_id) throws Exception {

 Integer customerID = new Integer(customer_id);

 CustomerHomeRemote home = (CustomerHomeRemote)

 jndiContext.lookup("java:comp/env/ejb/CustomerHomeRemote");

 return home.findByPrimaryKey(customerID);

 }

 public CreditCardDO getCreditCard(int customer_id) throws Exception{

 Integer customerID = new Integer(customer_id);

 CustomerHomeLocal home = (CustomerHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CustomerHomeLocal");

 CustomerLocal customer = home.findByPrimaryKey(customerID);

 CreditCardLocal card = customer.getCreditCard();

 return new CreditCardDO(card.getNumber(),card.getExpirationDate(),

 card.getCreditOrganization());

 }

 public CabinLocal getCabin(int cabin_id) throws Exception {

 Integer cabinID = new Integer(cabin_id);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 return home.findByPrimaryKey(cabinID);

 }

 public CruiseLocal getCruise(int cruise_id) throws Exception {

 Integer cruiseID = new Integer(cruise_id);

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHomeLocal");

 return home.findByPrimaryKey(cruiseID);

 }

 public void ejbRemove() {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void setSessionContext(javax.ejb.SessionContext cntx){

 try {

 jndiContext = new javax.naming.InitialContext();

 }catch(NamingException ne) {

 throw new EJBException(ne);

 }

 }

}

The TravelAgentBean class is not that different from the TravelAgent EJB developed earlier in this chapter (the version
that uses the Charge-It credit card processing web service). The primary difference is that it responds to web service
calls, rather than remote or local calls.

15.2.5 The Deployment Files

The TravelAgent endpoint requires four deployment files: a standard ejb-jar.xml deployment descriptor, a WSDL file, a
JAX-RPC mapping file, and a webservices.xml file.

15.2.5.1 ejb-jar.xml file

An EJB endpoint is deployed using the same ejb-jar.xml elements as a regular stateless session bean. The endpoint
declares a single component interface element, the <service-endpoint>. This element can be used only with stateless
session beans that are deployed as EJB endpoints. A single EJB can actually support remote, local, and endpoint
interfaces simultaneously. Here, we'll keep it simple and limit the TravelAgent endpoint to web services. Other than the
<service-endpoint> element, the rest of the deployment descriptor is pretty much the same as a regular stateless session
bean:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bean:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <description>

 A Web Service reservation service

 </description>

 <ejb-name>TravelAgentEjbEndpoint</ejb-name>

 <service-endpoint>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint>

 <ejb-class>

 com.titan.webservice.TravelAgentBean

 </ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 </ejb-ref>

 ...

 </session>

 ...

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

The value for the <ejb-name> element can be anything you choose; in this book, we use the suffix "Endpoint" to denote
an EJB endpoint component.

You cannot declare the transaction attribute of any method of an endpoint as mandatory, because doing so implies that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You cannot declare the transaction attribute of any method of an endpoint as mandatory, because doing so implies that
the Enterprise Bean method must be enrolled in the calling client's transaction. Since transaction propagation is not
standardized in web services, it's assumed that the client will not be propagating a transaction.

15.2.5.2 WSDL file

The WSDL file used to generate the endpoint interface must be packaged with the EJB endpoint. Normally, the WSDL
document is placed in the META-INF directory of the JAR file, but it can go anywhere as long as it's in the same JAR file
as the EJB endpoint.

15.2.5.3 JAX-RPC mapping file

EJB endpoints, like JAX-RPC generated stubs, require you to define a JAX-RPC mapping file. The mapping file can have
any name, but it should be descriptive, and the file type should be XML. It's common to name this file mapping.xml or
travelagent_mapping.xml, or something along those lines. Here's a lightweight JAX-RPC mapping file for the
TravelAgent endpoint:

<?xml version='1.0' encoding='UTF-8' ?>

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

 version="1.1">

 <package-mapping>

 <package-type>com.titan.webservice</package-type>

 <namespaceURI>http://www.titan.com/TravelAgent</namespaceURI>

 </package-mapping>

</java-wsdl-mapping>

The JAX-RPC mapping file was covered earlier in this chapter, in the section entitled "The JAX-RPC Mapping File."
Basically, this deployment descriptor maps a Java package to the XML Namespace of the WSDL <port> and other
elements, helping the container to understand which packaged classes are associated with which WSDL definitions.

15.2.5.4 webservices.xml file

The webservices.xml file is the baling wire that ties the separate deployment files together. It defines the relationships
between the ejb-jar.xml, the WSDL file, and the JAX-RPC mapping file:

<?xml version='1.0' encoding='UTF-8' ?>

<webservices

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:titan="http://www.titan.com/TravelAgent"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"

 version="1.1">

 <webservice-description>

 <webservice-description-name>TravelAgentService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <webservice-description-name>TravelAgentService

 </webservice-description-name>

 <wsdl-file>/META-INF/travelagent.wsdl</wsdl-file>

 <jaxrpc-mapping-file>/META-INF/travelagent_mapping.xml

 </jaxrpc-mapping-file>

 <port-component>

 <port-component-name>TravelAgentEndpoint</port-component-name>

 <wsdl-port>titan:TravelAgentPort</wsdl-port>

 <service-endpoint-interface>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>TravelAgentEjbEndpoint</ejb-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

The <webservice-description> element describes an EJB endpoint: there may be one or more of these elements in a single
webservices.xml file.[1] The <webservice-description-name> is a unique name assigned to the web service description. It
can be anything you like. The <wsdl-file> element points to the WSDL document of the EJB endpoint. Each EJB endpoint
has exactly one WSDL document, which is usually located in the META-INF directory of the EJB-JAR file. When the EJB
endpoint is deployed, your deployment tool will probably provide you with the option of copying the WSDL document to
some type of public URL or registry so that others can discover the web service. The <jaxrpc-mapping-file> element
indicates the location of the JAX-RPC mapping file that is associated with the EJB endpoint and the WSDL document. It,
too, is usually located in the META-INF directory of the EJB JAR file.

[1] The <webservice-description> element can also describe a JAX-RPC service endpoint, which is a servlet-based
web service that is outside the scope of this book.

The <port-component> element maps a stateless session bean declared in the ejb-jar.xml file to a specific <port> in the
WSDL document. The <port-component-name> is the logical name you assign the EJB endpoint. It can be anything. The
<wsdl-port> element maps the EJB endpoint deployment information to a specific WSDL <port> element in the WSDL
document. The <service-endpoint-interface> is the fully qualified name of the endpoint interface—it must be the same
interface declared by the <service-endpoint> element for the EJB in the ejb-jar.xml file. The <service-impl-bean> and its
<ejb-link> element link the <port-component> to a specific EJB in the ejb-jar.xml. The value of the <ejb-link> must match
the value of the <ejb-name> in the ejb-jar.xml file.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 15. EJB 2.1 and Web Services
Support for web services in EJB 2.1 is based on the web services for the J2EE 1.1 (WS-J2EE) specification. This
specification includes the Java API for XML-based RPC (JAX-RPC), SOAP with Attachments API for Java (SAAJ), and the
Java API for XML Registries (JAXR). JAX-RPC is basically Java RMI over SOAP; SAAJ is an API for manipulating the
structure of a SOAP message; and JAXR allows you to access web service registries, usually UDDI (Universal
Description, Discovery and Integration).

While this chapter and the one before it provide you with a launching pad for learning about web services in J2EE
(specifically EJB), the subject is too huge to cover in a book about EJB. In order to cover J2EE web services
comprehensively we would have needed another 500 pages—since you'll need to lift this book to read it, I wrote a
lighter approach to the subject. This chapter provides you with an introduction to JAX-RPC, but it should not be
considered a comprehensive guide to the API.

If you are interested in learning more about the standard web services technologies (XML, SOAP 1.1, WSDL, and UDDI)
and J2EE APIs (JAX-RPC, SAAJ, and JAXR), you might want to read J2EE Web Services (Addison-Wesley) by the author
of this book, for a complete and thorough coverage of these topics.

The main purpose of JAX-RPC is to describe the relationship between WSDL 1.1, XML, SOAP 1.1, and Java. JAX-RPC
provides EJB with a client-side programming model for accessing remote web services, as well as a server-side
programming model for deploying EJBs as web services.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.1 ACID Transactions
To understand how transactions work, we will revisit the TravelAgent EJB, the stateful session bean developed in
Chapter 11 that encapsulates the process of making a cruise reservation for a customer. The TravelAgent EJB's
bookPassage() method looks like this:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup

 ("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

The TravelAgent EJB is a fairly simple session bean, and its use of other EJBs is typical of business-object design and
taskflow. Unfortunately, good business-object design is not enough to make these EJBs useful in an industrial-strength
application. The problem is not with the definition of the EJBs or the taskflow; the problem is that a good design does
not, in and of itself, guarantee that the TravelAgent EJB's bookPassage() method represents a good transaction. To
understand why, we will take a closer look at what a transaction is and what criteria a transaction must meet to be
considered reliable.

In business, a transaction usually involves an exchange between two parties. When you purchase an ice cream cone,
you exchange money for food; when you work for a company, you exchange skill and time for money (which you use to
buy more ice cream). When you are involved in these exchanges, you monitor the outcome to ensure that you don't get
"ripped off." If you give the ice cream vendor a $20 bill, you don't want him to drive off without giving you your
change; likewise, you want to make sure that your paycheck reflects all the hours you worked. By monitoring these
commercial exchanges, you are attempting to ensure the reliability of the transactions; you are making sure that each
transaction meets everyone's expectations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transaction meets everyone's expectations.

In business software, a transaction embodies the concept of a commercial exchange. A business system transaction
(transaction for short) is the execution of a unit-of-work that accesses one or more shared resources, usually
databases. A unit-of-work is a set of activities that relate to each other and must be completed together. The
reservation process is a unit-of-work made up of several activities: recording a reservation, debiting a credit card, and
generating a ticket together make up a unit-of-work.

The object of a transaction is to execute a unit-of-work that results in a reliable exchange. Here are some types of
business systems that employ transactions:

ATM

The ATM (automatic teller machine) you use to deposit, withdraw, and transfer funds executes these units-of-
work as transactions. In an ATM withdrawal, for example, the ATM checks to make sure you don't overdraw and
then debits your account and spits out some money.

Online book order

You've probably purchased many of your Java books—maybe even this book—from an online bookseller. This
type of purchase is also a unit-of-work that takes place as a transaction. In an online book purchase, you
submit your credit card number, it is validated, and a charge is made for price of the book. Then an order to
ship you the book is sent to the bookseller's warehouse.

Medical system

In a medical system, important data—some of it critical—is recorded about patients every day, including
information about clinical visits, medical procedures, prescriptions, and drug allergies. The doctor prescribes the
drug, then the system checks for allergies, contraindications, and appropriate dosages. If all tests pass, the
drug can be administered. These tasks make up a unit-of-work. A unit-of-work in a medical system may not be
financial, but it's just as important. Failure to identify a drug allergy in a patient could be fatal.

As you can see, transactions are often complex and usually involve the manipulation of a lot of data. Mistakes in data
can cost money, or even a life. Transactions must therefore preserve data integrity, which means that the transaction
must work perfectly every time or not be executed at all. This is a pretty tall order. As difficult as this requirement is,
however, when it comes to commerce, there is no room for error. Units-of-work involving money or anything of value
always require the utmost reliability, because errors impact the revenues and the well-being of the parties involved.

To give you an idea of the accuracy required by transactions, think about what would happen if a transactional system
suffered from seemingly infrequent errors. ATMs provide customers with convenient access to their bank accounts and
represent a significant percentage of the total transactions in personal banking. The transactions handled by ATMs are
simple but numerous, providing us with a great example of why transactions must be error-proof. Let's say that a bank
has 100 ATMs in a metropolitan area, and each ATM processes 300 transactions (deposits, withdrawals, or transfers) a
day, for a total of 30,000 transactions per day. If each transaction, on average, involves the deposit, withdrawal, or
transfer of about $100, about 3 million dollars will move through the ATM system per day. In the course of a year,
that's a little over a billion dollars:

365 days 100 ATMs 300 transactions $100.00 = $1,095,000,000.00

How well do the ATMs have to perform to be considered reliable? For the sake of argument, let's say that ATMs execute
transactions correctly 99.99% of the time. This seems to be more than adequate: after all, only one out of every ten
thousand transactions executes incorrectly. But over the course of a year, if you do the math, that could result in over
$100,000 in errors!

$1,095,000,000.00 .01% = $109,500.00

Obviously, this example is an oversimplification of the problem, but it illustrates that even a small percentage of errors
is unacceptable in high-volume or mission-critical systems. For this reason, experts have identified four characteristics
of a transaction that must be met for a system to be considered safe. Transactions must be atomic, consistent, isolated,
and durable (ACID)—the four horsemen of transaction services. Here's what each term means:

Atomic

An atomic transaction must execute completely or not at all. This means that every task within a unit-of-work
must execute without error. If any of the tasks fails, the entire unit-of-work or transaction is aborted, meaning
that any changes to the data are undone. If all the tasks execute successfully, the transaction is committed,
which means that the changes to the data are made permanent or durable.

Consistent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consistency is a transactional characteristic that must be enforced by both the transactional system and the
application developer. Consistency refers to the integrity of the underlying data store. The transactional system
fulfills its obligation for consistency by ensuring that a transaction is atomic, isolated, and durable. The
application developer must ensure that the database has appropriate constraints (primary keys, referential
integrity, and so forth) and that the unit-of-work, the business logic, doesn't result in inconsistent data (i.e.,
data that is not in harmony with the real world it represents). In an account transfer, for example, a debit to
one account must equal the credit to another account.

Isolated

A transaction must be allowed to execute without interference from other processes or transactions. In other
words, the data that a transaction accesses cannot be affected by any other part of the system until the
transaction or unit-of-work is completed.

Durable

Durability means that all the data changes made during the course of a transaction must be written to some
type of physical storage before the transaction is successfully completed. This ensures that the changes are not
lost if the system crashes.

To get a better idea of what these principles mean, we will examine the TravelAgent EJB in terms of the four ACID
properties.

16.1.1 Is the TravelAgent EJB Atomic?

Our first measure of the TravelAgent EJB's reliability is its atomicity: does it ensure that the transaction executes
completely or not at all? What we are really concerned with are the critical tasks that change or create information. In
the bookPassage() method, a Reservation EJB is created, the ProcessPayment EJB debits a credit card, and a TicketDO
object is created. All of these tasks must be successful for the entire transaction to be successful.

To understand the importance of the atomic characteristic, imagine what would happen if even one of the subtasks
failed to execute. If, for example, the creation of a Reservation EJB failed but all other tasks succeeded, your customer
would probably end up getting bumped from the cruise or sharing the cabin with a stranger. As far as the travel agent
is concerned, the bookPassage() method executed successfully because a TicketDO was generated. If a ticket is
generated without the creation of a reservation, the state of the business system becomes inconsistent with reality,
because the customer paid for a ticket but the reservation was not recorded. Likewise, if the ProcessPayment EJB fails
to charge the customer's credit card, the customer gets a free cruise. He may be happy, but management won't be.
Finally, if the TicketDO is never created, the customer will have no record of the transaction and probably will not be
allowed onto the ship.

So the only way bookPassage() can be completed is if all the critical tasks execute successfully. If something goes
wrong, the entire process must be aborted. Aborting a transaction requires more than simply not finishing the tasks; in
addition, all the tasks that did execute within the transaction must be undone. If, for example, the creation of the
Reservation EJB and ProcessPayment.byCredit() method succeeded but the creation of the TicketDO failed, throwing an
exception from the constructor, the reservation record and payment records must not be added to the database.

16.1.2 Is the TravelAgent EJB Consistent?

In order for a transaction to be consistent, the business system must make sense after the transaction has completed.
In other words, the state of the business system must be consistent with the reality of the business. This requires that
the transaction enforce the atomic, isolated, and durable characteristics of the transaction, and it also requires diligent
enforcement of integrity constraints by the application developer. If, for example, the application developer fails to
include the credit card charge operation in the bookPassage() method, the customer will be issued a ticket but will never
be charged. The data will be inconsistent with the expectation of the business—a customer should be charged for
passage.

In addition, the database must be set up to enforce integrity constraints. For example, it should not be possible for a
record to be added to the RESERVATION table unless the CABIN_ID, CRUISE_ID, and CUSTOMER_ID foreign keys map to
corresponding records in the CABIN, CRUISE, and CUSTOMER tables, respectively. If a CUSTOMER_ID that does not map to
a CUSTOMER record is used, referential integrity should cause the database to throw an error message.

16.1.3 Is the TravelAgent EJB Isolated?

If you are familiar with the concept of thread synchronization in Java or row-locking schemes in relational databases,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are familiar with the concept of thread synchronization in Java or row-locking schemes in relational databases,
isolation will be a familiar concept. To be isolated, a transaction must protect the data it is accessing from other
transactions. This is necessary to prevent other transactions from interacting with data that is in transition. In the
TravelAgent EJB, the transaction is isolated to prevent other transactions from modifying the EJBs that are being
updated. Imagine the problems that would arise if separate transactions were allowed to change any entity bean at any
time—transactions would walk all over each other. You could easily have several customers book the same cabin
because their travel agents happened to make their reservations at the same time.

The isolation of data accessed by EJBs does not mean that the entire application shuts down during a transaction. Only
those entity beans and data directly affected by the transaction are isolated. In the TravelAgent EJB, for example, the
transaction isolates only the Reservation EJB created. There can be many Reservation EJBs in existence; there's no
reason these other EJBs can't be accessed by other transactions.

16.1.4 Is the TravelAgent EJB Durable?

To be durable, the bookPassage() method must write all changes and new data to a permanent data store before it can
be considered successful. While this may seem like a no-brainer, often it is not what happens in real life. In the name of
efficiency, changes are often maintained in memory for long periods of time before being saved on a disk drive. The
idea is to reduce disk accesses—which slow systems down—and only periodically write the cumulative effect of data
changes. While this approach is great for performance, it is also dangerous because data can be lost when the system
goes down and memory is wiped out. Durability requires the system to save all updates made within a transaction as
the transaction successfully completes, thus protecting the integrity of the data.

In the TravelAgent EJB, this means that the new RESERVATION and PAYMENT records inserted are made persistent before
the transaction can complete successfully. Only when the data is made durable are those specific records accessible
through their respective EJBs from other transactions. Hence, durability also plays a role in isolation. A transaction is
not finished until the data is successfully recorded.

Ensuring that transactions adhere to the ACID principles requires careful design. The system has to monitor the
progress of a transaction to ensure that it does all its work, that the data is changed correctly, that transactions do not
interfere with each other, and that the changes can survive a system crash. Engineering all this functionality into a
system is a lot of work, and not something you would want to reinvent for every business system on which you work.
Fortunately, EJB is designed to support transactions automatically, making the development of transactional systems
easier. The rest of this chapter examines how EJB supports transactions implicitly (through declarative transaction
attributes) and explicitly (through the Java Transaction API).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.2 Declarative Transaction Management
One of the primary advantages of Enterprise JavaBeans is that it allows for declarative transaction management.
Without this feature, transactions must be controlled using explicit transaction demarcation, which involves the use of
fairly complex APIs like the OMG's Object Transaction Service (OTS) or its Java implementation, the Java Transaction
Service (JTS). At best, explicit demarcation is difficult to use, particularly if you are new to transactional systems. In
addition, explicit transaction demarcation requires that the transactional code be written within the business logic,
which reduces the clarity of the code and, more importantly, creates inflexible distributed objects. Once transaction
demarcation is hardcoded into the business object, changes in transaction behavior require changes to the business
logic itself. We talk more about explicit transaction management and EJB later in this chapter.

With declarative transaction management, the transactional behavior of EJBs can be controlled using the deployment
descriptor, which sets transaction attributes for individual enterprise bean methods. This means that the transactional
behavior of an EJB can be changed without changing the EJB's business logic. In addition, an EJB deployed in one
application can be defined with different transactional behavior than the same EJB deployed in a different application.
Declarative transaction management reduces the complexity of transactions for EJB developers and application
developers and makes it easier to create robust transactional applications.

16.2.1 Transaction Scope

Transaction scope is a crucial concept for understanding transactions. In this context, transaction scope means those
EJBs—both session and entity—that are participating in a particular transaction. In the bookPassage() method of the
TravelAgent EJB, all the EJBs involved are part of the same transaction scope. The scope of the transaction starts when
a client invokes the TravelAgent EJB's bookPassage() method. Once the transaction scope has started, it is propagated to
both the newly created Reservation EJB and the ProcessPayment EJB.

As you know, a transaction is a unit-of-work made up of one or more tasks. In a transaction, all the tasks that make up
the unit-of-work must succeed for the entire transaction to succeed; in other words, the transaction must be atomic. If
any task fails, the updates made by all the other tasks in the transaction will be rolled back or undone. In EJB, tasks are
expressed as enterprise bean methods, and a unit-of-work consists of every enterprise bean method invoked in a
transaction. The scope of a transaction includes every EJB that participates in the unit-of-work.

It is easy to trace the scope of a transaction by following the thread of execution. If the invocation of the bookPassage()
method begins a transaction, then logically, the transaction ends when the method completes. The scope of the
bookPassage() transaction would include the TravelAgent, Reservation, and ProcessPayment EJBs—every EJB touched by
the bookPassage() method. A transaction is propagated to an EJB when that EJB's method is invoked and included in the
scope of that transaction.

A transaction can end if an exception is thrown while the bookPassage() method is executing. The exception can be
thrown from one of the other EJBs or from the bookPassage() method itself. An exception may or may not cause a
rollback, depending on its type. We'll discuss exceptions and transactions in more detail later.

The thread of execution is not the only factor that determines whether an EJB is included in the scope of a transaction;
the EJB's transaction attributes also play a role. Determining whether an EJB participates in the transaction scope of
any unit-of-work is accomplished implicitly, using the EJB's transaction attributes, or explicitly, using the Java
Transaction API (JTA).

16.2.2 Transaction Attributes

As an application developer, you don't normally need to control transactions explicitly when using an EJB server. EJB
servers can manage transactions implicitly, based on the transaction attributes established at deployment time. When
an EJB is deployed, you can set its runtime transaction attribute in the deployment descriptor to one of several values.
Here are the XML attribute values used to specify transaction attributes:

NotSupported
Supports
Required
RequiresNew
Mandatory
Never

You can set a transaction attribute for the entire EJB (in which case it applies to all methods) or you can set different
transaction attributes for individual methods. The former method is much simpler and less error-prone, but setting
attributes at the method level offers more flexibility. The code in the following sections shows how to set the default
transaction attribute of an EJB in the EJB's deployment descriptor.

16.2.2.1 Setting a transaction attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2.2.1 Setting a transaction attribute

In the XML deployment descriptor, a <container-transaction> element specifies the transaction attributes for the EJBs
described in the deployment descriptor:

<ejb-jar ...>

 ...

 <assembly-descriptor>

 ...

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name> * </method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>listAvailableCabins</method-name>

 </method>

 <trans-attribute>Supports</trans-attribute>

 </container-transaction>

 ...

 </assembly-descriptor>

 ...

</ejb-jar>

This deployment descriptor specifies the transaction attributes for the TravelAgent EJB. Each <container-transaction>
element specifies a method and that method's transaction attribute. The first <container-transaction> element specifies
that all methods have a transaction attribute of Required by default; the * is a wildcard that indicates all the methods of
the TravelAgent EJB. The second <container-transaction> element overrides the default setting to specify that the
listAvailableCabins() method has a Supports transaction attribute. Note that we have to specify which EJB we are referring
to with the <ejb-name> element; an XML deployment descriptor can cover many EJBs.

16.2.2.2 Transaction attributes defined

Here are the definitions of the transaction attributes listed earlier. In a few of the definitions, the client transaction is
described as suspended. This means the transaction is not propagated to the enterprise bean method being invoked;
propagation of the transaction is temporarily halted until the enterprise bean method returns. To make things easier,
we will talk about attribute types as if they were bean types: for example, we'll say a "Required EJB" as shorthand for
"an enterprise bean with the Required transaction attribute." The attributes are:

NotSupported

Invoking a method on an EJB with this transaction attribute suspends the transaction until the method is
completed. This means that the transaction scope is not propagated to the NotSupported EJB or any of the EJBs it
calls. Once the method on the NotSupported EJB is done, the original transaction resumes its execution.

Figure 16-1 shows that a NotSupported EJB does not propagate the client transaction when one of its methods is
invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-1. NotSupported attribute

Supports

This attribute means that the enterprise bean method will be included in the transaction scope if it is invoked
within a transaction. In other words, if the EJB or client that invokes the Supports EJB is part of a transaction
scope, the Supports EJB and all EJBs accessed by it become part of the original transaction. However, the
Supports EJB doesn't have to be part of a transaction and can interact with clients and other EJBs that are not
included in a transaction scope.

Figure 16-2 (a) shows the Supports EJB being invoked by a transactional client and propagating the transaction.
Figure 16-2 (b) shows the Supports EJB being invoked by a nontransactional client.

Figure 16-2. Supports attribute

Required

This attribute means that the enterprise bean method must be invoked within the scope of a transaction. If the
calling client or EJB is part of a transaction, the Required EJB is automatically included in its transaction scope. If,
however, the calling client or EJB is not involved in a transaction, the Required EJB starts its own new
transaction. The new transaction's scope covers only the Required EJB and all other EJBs accessed by it. Once
the method invoked on the Required EJB is done, the new transaction's scope ends.

Figure 16-3 (a) shows the Required EJB being invoked by a transactional client and propagating the transaction.
Figure 16-3 (b) shows the Required EJB being invoked by a nontransactional client, which causes it to start its
own transaction.

Figure 16-3. Required attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RequiresNew

This attribute means that a new transaction is always started. Regardless of whether the calling client or EJB is
part of a transaction, a method with the RequiresNew attribute begins a new transaction when invoked. If the
calling client is already involved in a transaction, that transaction is suspended until the RequiresNew EJB's
method call returns. The new transaction's scope covers only the RequiresNew EJB and all the EJBs accessed by
it. Once the method invoked on the RequiresNew EJB is done, the new transaction's scope ends and the original
transaction resumes.

Figure 16-4 (a) shows the RequiresNew EJB being invoked by a transactional client. The client's transaction is
suspended while the EJB executes under its own transaction. Figure 16-4 (b) shows the RequiresNew EJB being
invoked by a nontransactional client; the RequiresNew EJB executes under its own transaction.

Figure 16-4. RequiresNew attribute

Mandatory

This attribute means that the enterprise bean method must always be made part of the transaction scope of the
calling client. The EJB may not start its own transaction; the transaction must be propagated from the client. If
the calling client is not part of a transaction, the invocation will fail, throwing a
javax.transaction.TransactionRequiredException to remote clients or a javax.ejb.TransactionRequiredLocalException to local
EJB clients.

Figure 16-5 (a) shows the Mandatory EJB being invoked by a transactional client and propagating the
transaction. Figure 16-5 (b) shows the Mandatory EJB being invoked by a nontransactional client; the method
throws a TransactionRequiredException to remote clients or a TransactionRequredLocalException to local EJB clients,
because there is no transaction scope.

Figure 16-5. Mandatory attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Never

This attribute means that the enterprise bean method must not be invoked within the scope of a transaction. If
the calling client or EJB is part of a transaction, the Never EJB will throw a RemoteException to remote clients or
an EJBException to local EJB clients. However, if the calling client or EJB is not involved in a transaction, the Never
EJB will execute normally without a transaction.

Figure 16-6 (a) shows the Never EJB being invoked by a nontransactional client. Figure 16-6 (b) shows the Never
EJB being invoked by transactional client; the method throws a RemoteException to remote clients or an
EJBException to local EJB clients, because a client or EJB that is included in a transaction can never invoke the
method.

Figure 16-6. Never attribute

16.2.2.3 Container-managed persistence and transaction attributes

The EJB specification strongly advises that CMP entity beans use only the Required, RequiresNew, and Mandatory
transaction attributes. This restriction ensures that all database access occurs in the context of a transaction, which is
important when the container is automatically managing persistence. While the specification requires that these three
transaction attributes be supported for CMP, support for the Never, Supports, and NotSupported transaction attributes is
optional. If a vendor wishes to support these attributes (which allow the bean to execute without a transaction) they
may do so, but it's not recommended. Consult your vendor's documentation to determine if they support the optional
transaction attributes. This book recommends that you use only Required, RequiresNew, or Mandatory with EJB container-
managed persistence entity beans.

16.2.2.4 Message-driven beans and transaction attributes

Message-driven beans may declare only the NotSupported or Required transaction attributes. The other transaction
attributes don't make sense in message-driven beans because they apply to client-initiated transactions. The Supports,
RequiresNew, Mandatory, and Never attributes are all relative to the transaction context of the client. For example, the
Mandatory attribute requires the client to have a transaction in progress before calling the enterprise bean. This is
meaningless for a message-driven bean, which is decoupled from the client.

The NotSupported transaction attribute indicates that the message will be processed without a transaction. The Required
transaction attribute indicates that the message will be processed with a container-initiated transaction.

16.2.2.5 EJB endpoints and transaction attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2.2.5 EJB endpoints and transaction attributes

The Mandatory transaction attribute cannot be used with EJB endpoints, because an EJB endpoint does not propagate a
client transaction. Perhaps when web service transactions become standardized this will change, but for now using
Mandatory with an EJB endpoint method is prohibited.

16.2.3 Transaction Propagation

To illustrate the impact of transaction attributes, we'll look once again at the bookPassage() method of the TravelAgent
EJB. In order for bookPassage() to execute as a successful transaction, both the creation of the Reservation EJB and the
charge to the customer must be successful. This means both operations must be included in the same transaction. If
either operation fails, the entire transaction fails. We could have specified the Required transaction attribute as the
default for all the EJBs involved, because that attribute enforces our desired policy that all EJBs must execute within a
transaction and thus ensures data consistency.

As a transaction monitor, an EJB server watches each method call in the transaction. If any of the updates fail, all the
updates to all the EJBs will be reversed or rolled back. A rollback is like an undo command. If you have worked with
relational databases, the concept of a rollback should be familiar to you. Once an update is executed, you can either
commit the update or roll it back. A commit makes the changes requested by the update permanent; a rollback aborts
the update and leaves the database in its original state. Making EJBs transactional provides the same kind of
rollback/commit control. For example, if the Reservation EJB cannot be created, the charge made by the
ProcessPayment EJB is rolled back. Transactions make updates an all-or-nothing proposition. This ensures that the unit-
of-work, like the bookPassage() method, executes as intended, and it prevents inconsistent data from being written to
databases.

In cases in which the container implicitly manages the transaction, the commit and rollback decisions are handled
automatically. When transactions are managed explicitly within an enterprise bean or by the client, the responsibility
falls on the enterprise bean or application developer to commit or roll back a transaction. Explicit demarcation of
transactions is covered in detail later in this chapter.

Let's assume that the TravelAgent EJB is created and used on a client as follows:

TravelAgent agent = agentHome.create(customer);

agent.setCabinID(cabin_id);

agent.setCruiseID(cruise_id);

try {

 agent.bookPassage(card,price);

} catch(Exception e) {

 System.out.println("Transaction failed!");

}

Furthermore, let's assume that the bookPassage() method has been given the transaction attribute RequiresNew. In this
case, the client that invokes the bookPassage() method is not itself part of a transaction. When bookPassage() is invoked
on the TravelAgent EJB, a new transaction is created, as dictated by the RequiresNew attribute. This means the
TravelAgent EJB registers itself with the EJB server's transaction manager, which will manage the transaction
automatically. The transaction manager coordinates transactions, propagating the transaction scope from one EJB to
the next to ensure that all EJBs touched by a transaction are included in the transaction's unit-of-work. That way, the
transaction manager can monitor the updates made by each enterprise bean and decide, based on the success of those
updates, whether to commit all changes made by all enterprise beans to the database or roll them all back. If a system
exception is thrown by the bookPassage() method, the transaction is automatically rolled back. We talk more about
exceptions later in this chapter.

When the byCredit() method is invoked within the bookPassage() method, the ProcessPayment EJB registers with the
transaction manager under the transactional context that was created for the TravelAgent EJB; the transactional
context is propagated to the ProcessPayment EJB. When the new Reservation EJB is created, it is also registered with
the transaction manager under the same transaction. When all the EJBs are registered and their updates are made, the
transaction manager checks to ensure that their updates will work. If all the updates will work, the transaction manager
allows the changes to become permanent. If one of the EJBs reports an error or fails, any changes made by either the
ProcessPayment or Reservation EJB are rolled back by the transaction manager. Figure 16-7 illustrates the propagation
and management of the TravelAgent EJB's transactional context.

Figure 16-7. Managing the TravelAgent EJB's transactional context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-7. Managing the TravelAgent EJB's transactional context

In addition to managing transactions in its own environment, an EJB server can coordinate with other transactional
systems. If, for example, the ProcessPayment EJB actually came from a different EJB server than the TravelAgent EJB,
the two EJB servers would cooperate to manage the transaction as one unit-of-work. This is called a distributed
transaction.[1] A distributed transaction requires what is called a two-phase commit (2-PC or TPC). 2-PC allows
transactions to be managed across different servers and resources (e.g., databases and JMS providers). The details of a
2-PC are beyond the scope of this book, but a system that supports it will not require any extra operations by an EJB or
application developer. If distributed transactions are supported, the protocol for propagating transactions, as discussed
earlier, will be supported. In other words, as an application or EJB developer, you should not notice a difference
between local and distributed transactions.

[1] Not all EJB servers support distributed transactions.

There are a number of books on transaction processing and 2-PC. Perhaps the best books
on the subject are Principles of Transaction Processing (Morgan Kaufmann 1997) and
Transaction Processing: Concepts and Techniques (Morgan Kaufmann 1993). A much
lighter resource is the series of "XA Exposed" articles (I, II, and III) by Mike Spielle, which
you can find at http://jroller.com/page/pyrasun/?anchor=xa_exposed.

16.2.4 Collection-Based Relationships and Transactions

In EJB container-managed persistence, collection-based relationships may only be accessed within a single transaction.
In other words, it's illegal to obtain a Collection object from a collection-based relationship field in one transaction and
then use it in another. For example, if an enterprise bean accesses another's collection-based relationship field through
its local interface, the Collection returned from the accessor method can be used only within the same transaction:

public class HypotheticalBean implements javax.ejb.EntityBean {

 public void methodX(CustomerLocal customer) {

 Collection reservations = customer.getReservations();

 Iterator iterator = reservations.iterator;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Iterator iterator = reservations.iterator;

 while(iterator.hasNext()){

 ...

 }

 }

}

If the Customer EJB's getReservations() method was declared with a transaction attribute of RequiresNew, attempting to
invoke any methods on the Collection, including the iterator() method, will result in a java.lang.IllegalStateException. This
exception is thrown because the Collection object was created within the scope of the getReservations() transaction, not in
the scope of methodX()'s transaction. The transaction context of methodX() is different from the transaction context of
the getReservations() method.

The Collection from an entity bean can be used by another co-located bean only if it is obtained and accessed in the
same transaction context. As long as the Customer EJB's getReservations() method propagates the transaction context of
methodX(), the Collection can be used without any problems. This can be accomplished by changing the getReservations()
method so that it declares its transaction attribute as Required or Mandatory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.3 Isolation and Database Locking
Transaction isolation (the "I" in ACID) is a critical part of any transactional system. This section explains isolation
conditions, database locking, and transaction isolation levels. These concepts are important when deploying any
transactional system.

16.3.1 Dirty, Repeatable, and Phantom Reads

Transaction isolation is defined in terms of isolation conditions called dirty reads, repeatable reads, and phantom reads.
These conditions describe what can happen when two or more transactions operate on the same data.[2] To illustrate
these conditions, let's think about two separate client applications using their own instances of the TravelAgent EJB to
access the same data—specifically, a cabin record with the primary key of 99. These examples revolve around the
RESERVATION table, which is accessed by both the bookPassage() method (through the Reservation EJB) and the
listAvailableCabins() method (through JDBC). (It might be a good idea to go back to Chapter 11 and review how the
RESERVATION table is accessed through these methods. This will help you to understand how two transactions executed
by two different clients can impact each other.) Assume that both methods have a transaction attribute of Required.

[2] Isolation conditions are covered in detail by the ANSI SQL-92 Specification, Document Number: ANSI X3. 135-
1992 (R1998).

16.3.1.1 Dirty reads

A dirty read occurs when a transaction reads uncommitted changes made by a previous transaction. If the first
transaction is rolled back, the data read by the second transaction becomes invalid because the rollback undoes the
changes. The second transaction will not be aware that the data it has read has become invalid. Here's a scenario
showing how a dirty read can occur (illustrated in Figure 16-8):

1. Time 10:00:00: Client 1 executes the TravelAgent.bookPassage() method. Along with the Customer and Cruise
EJBs, Client 1 had previously chosen Cabin 99 to be included in the reservation.

2. Time 10:00:01: Client 1's TravelAgent EJB creates a Reservation EJB within the bookPassage() method. The
Reservation EJB's create() method inserts a record into the RESERVATION table, which reserves Cabin 99.

3. Time 10:00:02: Client 2 executes TravelAgent.listAvailableCabins(). Client 1 has reserved Cabin 99, so it is not in
the list of available cabins that is returned from this method.

4. Time 10:00:03: Client 1's TravelAgent EJB executes the ProcessPayment.byCredit() method within the
bookPassage() method. The byCredit() method throws an exception because the expiration date on the credit
card has passed.

5. Time 10:00:04: The exception thrown by the ProcessPayment EJB causes the entire bookPassage() transaction
to be rolled back. As a result, the record inserted into the RESERVATION table when the Reservation EJB was
created is not made durable (i.e., it is removed). Cabin 99 is now available.

Figure 16-8. A dirty read

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client 2 is now using an invalid list of available cabins because Cabin 99 is available but is not included in the list. This
omission would be serious if Cabin 99 was the last available cabin, because Client 2 would inaccurately report that the
cruise was booked. The customer would presumably try to book a cruise on a competing cruise line.

16.3.1.2 Repeatable reads

A repeatable read occurs when the data read is guaranteed to look the same if read again during the same transaction.
Repeatable reads are guaranteed in one of two ways: either the data read is locked against changes or the data read is
a snapshot that doesn't reflect changes. If the data is locked, it cannot be changed by any other transaction until the
current transaction ends. If the data is a snapshot, other transactions can change the data, but these changes will not
be seen by this transaction if the read is repeated. Here's an example of a repeatable read (illustrated in Figure 16-9):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking for a list of available cabins that have
two beds. Cabin 99 is in the list of available cabins.

3. Time 10:00:02: Client 2 is working with an interface that manages Cabin EJBs. Client 2 attempts to change the
bed count on Cabin 99 from 2 to 3.

4. Time 10:00:03: Client 1 re-executes TravelAgent.listAvailableCabins(2). Cabin 99 is still in the list of available
cabins.

Figure 16-9. Repeatable read

This example is somewhat unusual because it uses javax.transaction.UserTransaction. This class is covered in more detail
later in this chapter; essentially, it allows a client application to control the scope of a transaction explicitly. In this case,
Client 1 places transaction boundaries around both calls to listAvailableCabins(), so that they are a part of the same
transaction. If Client 1 didn't do this, the two listAvailableCabins() methods would have executed as separate transactions
and our repeatable read condition would not have occurred.

Although Client 2 attempted to change the bed count for Cabin 99 to 3, Cabin 99 still shows up in the Client 1 call to
listAvailableCabins() when a bed count of 2 is requested. Either Client 2 was prevented from making the change (because
of a lock) or Client 2 was able to make the change, but Client 1 is working with a snapshot of the data that doesn't
reflect that change.

A nonrepeatable read is when the data retrieved in a subsequent read within the same transaction can return different
results. In other words, the subsequent read can see the changes made by other transactions.

16.3.1.3 Phantom reads

A phantom read occurs when new records added to the database are detectable by transactions that started prior to the
insert. Queries will include records added by other transactions after their transaction has started. Here's a scenario
that includes a phantom read (illustrated in Figure 16-10):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking for a list of available cabins that have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking for a list of available cabins that have
two beds. Cabin 99 is in the list of available cabins.

3. Time 10:00:02: Client 2 executes bookPassage() and creates a Reservation EJB. The reservation inserts a new
record into the RESERVATION table, reserving Cabin 99.

4. Time 10:00:03: Client 1 re-executes TravelAgent.listAvailableCabins(2). Cabin 99 is no longer in the list of available
cabins.

Figure 16-10. Phantom read

Client 1 places transaction boundaries around both calls to listAvailableCabins(), so that they are part of the same
transaction. In this case, the reservation was made between the listAvailableCabins() queries in the same transaction.
Therefore, the record inserted in the RESERVATION table did not exist when the first listAvailableCabins() method was
invoked, but it did exist and was visible when the second listAvailableCabins() method was invoked. The record inserted is
called a phantom record.

16.3.2 Database Locks

Databases, especially relational databases, normally use several different locking techniques. The most common are
read locks, write locks, and exclusive write locks. (I've taken the liberty of adding "snapshots," although this isn't a
formal term.) These locking mechanisms control how transactions access data concurrently. Locking mechanisms
impact the read conditions just described. These types of locks are simple concepts that are not directly addressed in
the EJB specification. Database vendors implement these locks differently, so you should understand how your database
addresses these locking mechanisms to best predict how the isolation levels described in this section will work.

The four types of locks are:

Read locks

Read locks prevent other transactions from changing data read during a transaction until the transaction ends,
thus preventing nonrepeatable reads. Other transactions can read the data but not write to it. The current
transaction is also prohibited from making changes. Whether a read lock locks only the records read, a block of
records, or a whole table depends on the database being used.

Write locks

Write locks are used for updates. A write lock prevents other transactions from changing the data until the
current transaction is complete but allows dirty reads by other transactions and by the current transaction itself.
In other words, the transaction can read its own uncommitted changes.

Exclusive write locks

Exclusive write locks are used for updates. An exclusive write lock prevents other transactions from reading or
changing the data until the current transaction is complete. An exclusive write lock prevents dirty reads by
other transactions. Other transactions are not allowed to read the data while it is exclusively locked. Some
databases do not allow transactions to read their own data while it is exclusively locked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

databases do not allow transactions to read their own data while it is exclusively locked.

Snapshots

Some databases get around locking by providing every transaction with its own snapshot of the data. A
snapshot is a frozen view of the data that is taken when the transaction begins. Snapshots can prevent dirty
reads, nonrepeatable reads, and phantom reads. They can be problematic because the data is not real-time; it
is old the instant the snapshot is taken.

16.3.3 Transaction Isolation Levels

Transaction isolation is defined in terms of the isolation conditions (dirty reads, repeatable reads, and phantom reads).
Isolation levels are commonly used in database systems to describe how locking is applied to data within a
transaction.[3] The following terms are used to discuss isolation levels:

[3] Isolation conditions are covered in detail by ANSI SQL-92 Specification, Document Number: ANSI X3.135- 1992
(R1998).

Read Uncommitted

The transaction can read uncommitted data (i.e., data changed by a different transaction that is still in
progress). Dirty reads, nonrepeatable reads, and phantom reads can occur. Bean methods with this isolation
level can read uncommitted changes.

Read Committed

The transaction cannot read uncommitted data; data that is being changed by a different transaction cannot be
read. Dirty reads are prevented; nonrepeatable reads and phantom reads can occur. Bean methods with this
isolation level cannot read uncommitted data.

Repeatable Read

The transaction cannot change data that is being read by a different transaction. Dirty reads and nonrepeatable
reads are prevented; phantom reads can occur. Bean methods with this isolation level have the same
restrictions as Read Committed and can execute only repeatable reads.

Serializable

The transaction has exclusive read and update privileges to data; different transactions can neither read nor
write to the same data. Dirty reads, nonrepeatable reads, and phantom reads are prevented. This isolation level
is the most restrictive.

These isolation levels are the same as those defined for JDBC. Specifically, they map to the static final variables in the
java.sql.Connection class. The behavior modeled by the isolation levels in the connection class is the same as the behavior
described here.

The exact behavior of these isolation levels depends largely on the locking mechanism used by the underlying database
or resource. How the isolation levels work depends in large part on how your database supports them.

In EJB, the deployer sets transaction isolation levels in a vendor-specific way if the container manages the transaction.
The EJB developer sets the transaction isolation level if the enterprise bean manages its own transactions. Up to this
point, we have discussed only container-managed transactions; we will discuss bean-managed transactions later in this
chapter.

16.3.4 Balancing Performance Against Consistency

Generally speaking, as the isolation levels become more restrictive, the performance of the system decreases because
more restrictive isolation levels prevent transactions from accessing the same data. If isolation levels are very
restrictive, like Serializable, then all transactions, even simple reads, must wait in line to execute. This can result in a
system that is very slow. EJB systems that process a large number of concurrent transactions and need to be very fast
will therefore avoid the Serializable isolation level where it is not necessary.

Isolation levels, however, also enforce consistency of data. More restrictive isolation levels help ensure that invalid data
is not used for performing updates. The old adage "garbage in, garbage out" applies. The Serializable isolation level
ensures that data is never accessed concurrently by transactions, thus ensuring that the data is always consistent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ensures that data is never accessed concurrently by transactions, thus ensuring that the data is always consistent.

Choosing the correct isolation level requires some research about the database you are using and how it handles
locking. You must also balance the performance needs of your system against consistency. This is not a cut-and-dried
process, because different applications use data differently.

Although there are only three ships in Titan's system, the entity beans that represent them are included in most of
Titan's transactions. This means that many, possibly hundreds, of transactions will be accessing these Ship EJBs at the
same time. Access to Ship EJBs needs to be fast or a bottleneck will occur, so we do not want to use a restrictive
isolation level. At the same time, the ship data also needs to be consistent; otherwise, hundreds of transactions will be
using invalid data. Therefore, we need to use a strong isolation level when making changes to ship information. To
accommodate these conflicting requirements, we can apply different isolation levels to different methods.

Most transactions use the Ship EJB's get methods to obtain information. This is read-only behavior, so the isolation level
for the get methods can be very low—such as Read Uncommitted. The set methods of the Ship EJB are almost never
used; the name of the ship probably will not change for years. However, the data changed by the set methods must be
isolated to prevent dirty reads by other transactions, so we will use the most restrictive isolation level, Serializable, on
the ship's set methods. By using different isolation levels on different business methods, we can balance consistency
against performance.

16.3.4.1 Controlling isolation levels

Different EJB servers allow different levels of granularity for isolation levels; some servers defer this responsibility to
the database. Most EJB servers control the isolation level through the resource access API (e.g., JDBC and JMS) and
may allow different resources to have different isolation levels, but will generally require that access to the same
resource within a single transaction use a consistent isolation level. Consult your vendor's documentation to find out the
level of control your server offers.

Bean-managed transactions in session beans and message-driven beans, however, allow you to specify the transaction
isolation level using the database's API. The JDBC API, for example, provides a mechanism for specifying the isolation
level of the database connection. For example:

DataSource source = (javax.sql.DataSource)

 jndiCntxt.lookup("java:comp/env/jdbc/titanDB");

Connection con = source.getConnection();

con.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

You can have different isolation levels for different resources within the same transaction, but all enterprise beans that
use the same resource in a transaction should use the same isolation level.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.4 Nontransactional Beans
Beans outside of a transaction's scope normally provide some kind of stateless service that does not manipulate data in
a data store. While these types of enterprise beans may be necessary as utilities during a transaction, they do not need
to meet the ACID requirements. Consider a nontransactional stateless session bean, the Quote EJB, that provides live
stock quotes. This EJB may respond to a request from an EJB involved in a stock purchase transaction. The success or
failure of the stock purchase, as a transaction, will not impact the state or operations of the Quote EJB, so it does not
need to be part of the transaction. Beans that are involved in transactions are subjected to the isolated ACID property,
which means that their services cannot be shared during the life of the transaction. Making an enterprise bean
transactional can be expensive at runtime. Declaring an EJB to be nontransactional (i.e., NotSupported) leaves it out of
the transaction scope, which may improve the performance and availability of that service.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.5 Explicit Transaction Management

Although this section covers JTA, it is strongly recommended that you do not attempt to
manage transactions explicitly. Through transaction attributes, Enterprise JavaBeans
provides a comprehensive and simple mechanism for delimiting transactions at the method
level and propagating transactions automatically. Only developers with a thorough
understanding of transactional systems should attempt to use JTA with EJB.

EJB provides implicit transaction management on the method level: we can define transactions that are delimited by the
scope of the method being executed. This is one of the primary advantages of EJB over cruder distributed object
implementations: it reduces complexity and therefore programmer error. In addition, declarative transaction
demarcation, as used in EJB, separates the transactional behavior from the business logic; a change to transactional
behavior does not require changes to the business logic. In rare situations, however, it may be necessary to take
control of transactions explicitly.

Explicit management of transactions is normally accomplished using the OMG's Object Transaction Service (OTS) or the
Java implementation of OTS, the Java Transaction Service (JTS). OTS and JTS provide APIs that allow developers to
work with transaction managers and resources (e.g., databases and JMS providers) directly. While the JTS
implementation of OTS is robust and complete, it is not the easiest API to work with; it requires clean and intentional
control over the bounds of enrollment in transactions.

Enterprise JavaBeans supports a much simpler API, the Java Transaction API (JTA), for working with transactions. This
API is implemented by the javax.transaction package. JTA actually consists of two components: a high-level transactional
client interface and a low-level X/Open XA interface. We are concerned with the high-level client interface, since it is
accessible to enterprise beans and is also recommended for client applications. The low-level XA interface is used by the
EJB server and container to coordinate transactions with resources such as databases.

Your use of explicit transaction management will probably focus on one simple interface: javax.transaction.UserTransaction.
UserTransaction allows you to manage the scope of a transaction explicitly. Here's how explicit demarcation might be
used in an EJB or client application:

Object ref = getInitialContext().lookup("TravelAgentHomeRemote");

TravelAgentHome home = (TravelAgentHome)

 PortableRemoteObject.narrow(ref, TravelAgentHome.class);

TravelAgent tr1 = home.create(customer);

tr1.setCruiseID(cruiseID);

tr1.setCabinID(cabin_1);

TravelAgent tr2 = home.create(customer);

tr2.setCruiseID(cruiseID);

tr2.setCabinID(cabin_2);

javax.transaction.UserTransaction tran = ...; // Get the UserTransaction.

tran.begin();

tr1.bookPassage(visaCard,price);

tr2.bookPassage(visaCard,price);

tran.commit();

The client application needs to book two cabins for the same customer—in this case, the customer is purchasing a cabin
for himself and his children. The customer does not want to book either cabin unless he can get both, so the client
application is designed to include both bookings in the same transaction. Explicitly marking the transaction's boundaries
through the use of the javax.transaction.UserTransaction object does this. Each enterprise bean method invoked by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through the use of the javax.transaction.UserTransaction object does this. Each enterprise bean method invoked by the
current thread between the UserTransaction.begin() and UserTransaction.commit() methods is included in the same
transaction scope, according to the transaction attributes of the enterprise bean methods invoked.

Obviously, this example is contrived, but the point it makes is clear. Transactions can be controlled directly, instead of
depending on method scope to delimit them. The advantage of using explicit transaction demarcation is that it gives the
client control over the bounds of a transaction. The client, in this case, may be a client application or another enterprise
bean.[4] In either case, the same javax.transaction.UserTransaction is used, but it is obtained from different sources
depending on whether it is needed on the client or in an enterprise bean.

[4] Only beans declared as managing their own transactions (bean-managed transaction beans) can use the
UserTransaction interface.

Java 2 Enterprise Edition (J2EE) specifies how a client application can obtain a UserTransaction object using JNDI. Here's
how a client obtains a UserTransaction object if the EJB container is part of a J2EE system (J2EE and its relationship with
EJB is covered in more detail in Chapter 18):

Context jndiCntx = new InitialContext();

UserTransaction tran = (UserTransaction)

 jndiCntx.lookup("java:comp/UserTransaction");

utx.begin();

...

utx.commit();

Enterprise beans can also manage transactions explicitly. Only session beans and message-driven beans with the
<transaction-type> value of Bean can manage their own transactions. Enterprise beans that manage their own
transactions are frequently referred to as bean-managed transaction (BMT) beans. Entity beans can never be BMT
beans. BMT beans do not declare transaction attributes for their methods. Here's how a session bean declares that it
will manage transactions explicitly:

<ejb-jar>

 <enterprise-beans>

 ...

 <session>

 ...

 <transaction-type>Bean</transaction-type>

 ...

To manage its own transaction, an enterprise bean needs to obtain a UserTransaction object. An enterprise bean obtains
a reference to the UserTransaction from the EJBContext:

public class HypotheticalBean extends SessionBean {

 SessionContext ejbContext;

 public void someMethod() {

 try {

 UserTransaction ut = ejbContext.getUserTransaction();

 ut.begin();

 // Do some work.

 ut.commit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ut.commit();

 } catch(IllegalStateException ise) {...}

 catch(SystemException se) {...}

 catch(TransactionRolledbackException tre) {...}

 catch(HeuristicRollbackException hre) {...}

 catch(HeuristicMixedException hme) {...}

An enterprise bean can also access the UserTransaction from the JNDI ENC. The enterprise bean performs the lookup
using the "java:comp/env/UserTransaction" context:

InitialContext jndiCntx = new InitialContext();

UserTransaction tran = (UserTransaction)

 jndiCntx.lookup("java:comp/env/UserTransaction");

16.5.1 Transaction Propagation in Bean-Managed Transactions

With stateless session beans, transactions that are managed using UserTransaction must be started and completed within
the same method. In other words, UserTransaction transactions cannot be started in one method and ended in another.
This makes sense because stateless session bean instances are shared across many clients; while one stateless
instance may service a client's first request, a completely different instance may service a subsequent request by the
same client. With stateful session beans, however, a transaction can begin in one method and be committed in another
because a stateful session bean is used by only one client. Therefore, a stateful session bean can associate itself with a
transaction across several different client-invoked methods. As an example, imagine the TravelAgent EJB as a BMT
bean. In the following code, the transaction is started in the setCruiseID() method and completed in the bookPassage()
method. This allows the TravelAgent EJB's methods to be associated with the same transaction. The definition of the
TravelAgentBean class looks like this:

import com.titan.reservation.*;

import java.sql.*;

import javax.sql.DataSource;

import java.util.Vector;

import java.rmi.RemoteException;

import javax.naming.NamingException;

import javax.ejb.EJBException;

public class TravelAgentBean implements javax.ejb.SessionBean {

 ...

 public void setCruiseID(Integer cruiseID)

 throws javax.ejb.FinderException {

 try {

 ejbContext.getUserTransaction().begin();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ejbContext.getUserTransaction().begin();

 CruiseHomeLocal home = (CruiseHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CruiseHome");

 cruise = home.findByPrimaryKey(cruiseID);

 } catch(RemoteException re) {

 throw new EJBException(re);

 }

 }

 public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 try {

 if (ejbContext.getUserTransaction().getStatus() !=

 javax.transaction.Status.STATUS_ACTIVE) {

 throw new EJBException("Transaction is not active");

 }

 } catch(javax.transaction.SystemException se) {

 throw new EJBException(se);

 }

 if (customer == null || cruise == null || cabin == null)

 {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price);

 Object ref =

 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 ejbContext.getUserTransaction().commit();

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

}

Repeated calls to the EJBContext.getUserTransaction() method return a reference to the same UserTransaction object. The
container is required to retain the association between the transaction and the stateful bean instance across multiple
client calls until the transaction terminates.

In the bookPassage() method, we can check the status of the transaction to ensure that it is still active. If the
transaction is no longer active, we throw an exception. The use of getStatus() is covered in more detail later in this
chapter.

When a client that is already involved in a transaction invokes a bean-managed transaction method, the client's
transaction is suspended until the method returns. This suspension occurs regardless of whether the BMT bean explicitly
started its own transaction within the method or the transaction was started in a previous method invocation. The client
transaction is always suspended until the BMT method returns.

Transaction control across methods is strongly discouraged because it can result in
improperly managed transactions and long-lived transactions that lock up resources.

16.5.1.1 Message-driven beans and bean-managed transactions

Message-driven beans also have the option of managing their own transactions. In the case of MDBs, the scope of the
transaction must begin and end within the onMessage() method—it is not possible for a bean-managed transaction to
span onMessage() calls.

You can transform the ReservationProcessor EJB you created in Chapter 12 into a BMT bean simply by changing its
<transaction-type> value to Bean:

<ejb-jar>

 <enterprise-beans>

 ...

 <message-driven>

 ...

 <transaction-type>Bean</transaction-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <transaction-type>Bean</transaction-type>

 ...

In this case, the ReservationProcessorBean class would be modified to use javax.transaction.UserTransaction to mark the
beginning and end of the transaction:

public class ReservationProcessorBean implements javax.ejb.MessageDrivenBean,

 javax.jms.MessageListener {

 MessageDrivenContext ejbContext;

 Context jndiContext;

 public void onMessage(Message message) {

 try {

 ejbContext.getUserTransaction().begin();

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 //get the credit card

 Date expirationDate =

 new Date(reservationMsg.getLong("CreditCardExpDate"));

 String cardNumber = reservationMsg.getString("CreditCardNum");

 String cardType = reservationMsg.getString("CreditCardType");

 CreditCardDO card =

 new CreditCardDO(cardNumber,expirationDate,cardType);

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 Object ref =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Object ref =

 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 deliverTicket(reservationMsg,ticket);

 ejbContext.getUserTransaction.commit();

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

It is important to understand that in a BMT, the message consumed by the MDB is not part of the transaction. When an
MDB uses container-managed transactions, the message it is handling is a part of the transaction, so if the transaction
is rolled back, the consumption of the message is also rolled back, forcing the JMS provider to redeliver the message.
But with bean-managed transactions, the message is not part of the transaction, so if the BMT transaction is rolled
back, the JMS provider will not be aware of the transaction's failure. However, all is not lost, because the JMS provider
can still rely on message acknowledgment to determine if the message was successfully delivered.

The EJB container will acknowledge the message if the onMessage() method returns successfully. If, however, a
RuntimeException is thrown by the onMessage() method, the container will not acknowledge the message and the JMS
provider will suspect a problem and probably attempt to redeliver the message. If redelivery of a message is important
when a transaction fails, your best course of action is to ensure that the onMessage() method throws an EJBException, so
that the container will not acknowledge the message received from the JMS provider.

Vendors use proprietary (declarative) mechanisms to specify the number of times to
redeliver messages to BMT/NotSupported MDBs that "fail" to acknowledge receipt. The JMS-
MDB provider may provide a "dead message" area into which such messages will be placed
if they cannot be successfully processed according to the retry count. Administrators can
monitor the dead message area, and delivered messages can be detected and handled
manually.

Although the message is not part of the transaction, everything else between the UserTransaction.begin() and
UserTransaction.commit() methods is part of the same transaction. This includes creating a new Reservation EJB and
processing the credit card using the ProcessPayment EJB. If a transaction failure occurs, these operations will be rolled
back. The transaction also includes the use of the JMS API in the deliverTicket() method to send the ticket message. If a
transaction failure occurs, the ticket message will not be sent.

16.5.2 Heuristic Decisions

Transactions are normally controlled by a transaction manager (often the EJB server) that manages the ACID
characteristics across several enterprise beans, databases, and servers. The transaction manager uses a two-phase
commit (2-PC) to manage transactions. 2-PC is a protocol for managing transactions that commits updates in two
stages. 2-PC is complex, but basically it requires that servers and databases cooperate through an intermediary—the
transaction manager—in order to ensure that all the data is made durable together. Some EJB servers support 2-PC,
while others do not, and the value of this transaction mechanism is a source of some debate. The important point to
remember is that a transaction manager controls the transaction; based on the results of a poll against the resources
(databases, JMS providers, and other resources), it decides whether all the updates should be committed or rolled back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(databases, JMS providers, and other resources), it decides whether all the updates should be committed or rolled back.
A heuristic decision takes place when one of the resources makes a unilateral decision to commit or roll back without
permission from the transaction manager. When a heuristic decision has been made, the atomicity of the transaction is
lost and data-integrity errors can occur.

UserTransaction, discussed in the next section, throws a few different exceptions related to heuristic decisions; these are
included in the following discussion.

16.5.3 UserTransaction

EJB servers are required to support UserTransaction, but not required to support the rest of JTA, nor are they required to
use JTS for their transaction service. The UserTransaction is defined as:

public interface javax.transaction.UserTransaction {

 public abstract void begin() throws IllegalStateException, SystemException;

 public abstract void commit() throws IllegalStateException, SystemException,

 TransactionRolledbackException, HeuristicRollbackException,

 HeuristicMixedException;

 public abstract int getStatus();

 public abstract void rollback() throws IllegalStateException, SecurityException,

 SystemException;

 public abstract void setRollbackOnly() throws IllegalStateException,

 SystemException;

 public abstract void setTransactionTimeout(int seconds) throws SystemException;

}

Here's what the methods defined in this interface do:

begin()

Invoking the begin() method creates a new transaction. The thread that executes the begin() method is
immediately associated with the new transaction, which is then propagated to any EJB that supports existing
transactions. The begin() method can throw one of two checked exceptions. An IllegalStateException is thrown
when begin() is called by a thread that is already associated with a transaction. You must complete any
transactions associated with that thread before beginning a new transaction. A SystemException is thrown if the
transaction manager (i.e., the EJB server) encounters an unexpected error condition.

commit()

The commit() method completes the transaction that is associated with the current thread. When commit() is
executed, the current thread is no longer associated with a transaction. This method can throw several checked
exceptions. An IllegalStateException is thrown if the current thread is not associated with a transaction. A
SystemException is thrown if the transaction manager (the EJB server) encounters an unexpected error condition.
A TransactionRolledbackException is thrown when the entire transaction is rolled back instead of committed; this
can happen if one of the resources was unable to perform an update or if the UserTransaction.rollBackOnly()
method was called. A HeuristicRollbackException indicates that heuristic decisions were made by one or more
resources to roll back the transaction. A HeuristicMixedException indicates that heuristic decisions were made by
resources to both roll back and commit the transaction; that is, some resources decided to roll back while
others decided to commit.

rollback()

The rollback() method is invoked to roll back the transaction and undo updates. The rollback() method can throw
one of three different checked exceptions. A SecurityException is thrown if the thread using the UserTransaction
object is not allowed to roll back the transaction. An IllegalStateException is thrown if the current thread is not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object is not allowed to roll back the transaction. An IllegalStateException is thrown if the current thread is not
associated with a transaction. A SystemException is thrown if the transaction manager (the EJB server)
encounters an unexpected error condition.

setRollbackOnly()

The setRollbackOnly() method is invoked to mark the transaction for rollback. This means that, whether or not
the updates executed within the transaction succeed, the transaction must be rolled back when completed. This
method can be invoked by any BMT EJB participating in the transaction or by the client application. The
setRollBackOnly() method can throw one of two checked exceptions: an IllegalStateException is thrown if the
current thread is not associated with a transaction; a SystemException is thrown if the transaction manager (the
EJB server) encounters an unexpected error condition.

setTransactionTimeout(int seconds)

The setTransactionTimeout(int seconds) method sets the lifespan of a transaction; i.e., how long it will live before
timing out. The transaction must complete before the transaction timeout is reached. If this method is not
called, the transaction manager (EJB server) automatically sets the timeout. If this method is invoked with a
value of 0 seconds, the default timeout of the transaction manager will be used. This method must be invoked
after the begin() method. A SystemException is thrown if the transaction manager (EJB server) encounters an
unexpected error condition.

getStatus()

The getStatus() method returns an integer that can be compared to constants defined in the
javax.transaction.Status interface. A sophisticated programmer can use this method to determine the status of a
transaction associated with a UserTransaction object. A SystemException is thrown if the transaction manager (EJB
server) encounters an unexpected error condition.

16.5.4 Status

Status is a simple interface that contains no methods, only constants. Its sole purpose is to provide a set of constants
that describe the current status of a transactional object—in this case, the UserTransaction:

interface javax.transaction.Status

{

 public final static int STATUS_ACTIVE;

 public final static int STATUS_COMMITTED;

 public final static int STATUS_COMMITTING;

 public final static int STATUS_MARKED_ROLLBACK;

 public final static int STATUS_NO_TRANSACTION;

 public final static int STATUS_PREPARED;

 public final static int STATUS_PREPARING;

 public final static int STATUS_ROLLEDBACK;

 public final static int STATUS_ROLLING_BACK;

 public final static int STATUS_UNKNOWN;

}

The value returned by getStatus() tells the client using the UserTransaction the status of a transaction. Here's what the
constants mean:

STATUS_ACTIVE

An active transaction is associated with the UserTransaction object. This status is returned after a transaction has
been started and prior to a transaction manager beginning a two-phase commit. (Transactions that have been
suspended are still considered active.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

suspended are still considered active.)

STATUS_COMMITTED

A transaction is associated with the UserTransaction object; the transaction has been committed. It is likely that
heuristic decisions have been made; otherwise, the transaction would have been destroyed and the
STATUS_NO_TRANSACTION constant would have been returned instead.

STATUS_COMMITTING

A transaction is associated with the UserTransaction object; the transaction is in the process of committing. The
UserTransaction object returns this status if the transaction manager has decided to commit but has not yet
completed the process.

STATUS_MARKED_ROLLBACK

A transaction is associated with the UserTransaction object; the transaction has been marked for rollback,
perhaps as a result of a UserTransaction.setRollbackOnly() operation invoked somewhere else in the application.

STATUS_NO_TRANSACTION

No transaction is currently associated with the UserTransaction object. This occurs after a transaction has
completed or if no transaction has been created. This value is returned rather than throwing an
IllegalStateException.

STATUS_PREPARED

A transaction is associated with the UserTransaction object. The transaction has been prepared, which means that
the first phase of the two-phase commit process has completed.

STATUS_PREPARING

A transaction is associated with the UserTransaction object; the transaction is in the process of preparing, which
means that the transaction manager is in the middle of executing the first phase of the two-phase commit.

STATUS_ROLLEDBACK

A transaction is associated with the UserTransaction object; the outcome of the transaction has been identified as
a rollback. It is likely that heuristic decisions have been made; otherwise, the transaction would have been
destroyed and the STATUS_NO_TRANSACTION constant would have been returned.

STATUS_ROLLING_BACK

A transaction is associated with the UserTransaction object; the transaction is in the process of rolling back.

STATUS_UNKNOWN

A transaction is associated with the UserTransaction object; its current status cannot be determined. This is a
transient condition and subsequent invocations will ultimately return a different status.

16.5.5 EJBContext Rollback Methods

Only BMT beans have access to the UserTransaction from the EJBContext and JNDI ENC. Container-managed transaction
(CMT) beans cannot use the UserTransaction. CMT beans use the setRollbackOnly() and getRollbackOnly() methods of the
EJBContext to interact with the current transaction instead.

The setRollbackOnly() method gives an enterprise bean the power to veto a transaction. This power can be used if the
enterprise bean detects a condition that would cause inconsistent data to be committed when the transaction
completes. Once an enterprise bean invokes the setRollbackOnly() method, the current transaction is marked for rollback
and cannot be committed by any other participant in the transaction—including the container.

The getRollbackOnly() method returns true if the current transaction has been marked for rollback. This information can
be used to avoid executing work that would not be committed anyway. If, for example, an exception is thrown and
captured within an enterprise bean method, getRollbackOnly() can be used to determine whether the exception caused

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

captured within an enterprise bean method, getRollbackOnly() can be used to determine whether the exception caused
the current transaction to be rolled back. If it did, there is no sense in continuing the processing. If it did not, the EJB
has an opportunity to correct the problem and retry the task that failed. Only expert EJB developers should attempt to
retry tasks within a transaction. Alternatively, if the exception did not cause a rollback (getRollbackOnly() returns false), a
rollback can be forced using the setRollbackOnly() method.

BMT beans must not use the setRollbackOnly() and getRollbackOnly() methods of the EJBContext. BMT beans should use the
getStatus() and rollback() methods on the UserTransaction object to check for rollback and force a rollback, respectively.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.6 Exceptions and Transactions
Exceptions have a large impact on the outcome of transactions.

16.6.1 System Exceptions Versus Application Exceptions

System exceptions are java.lang.RuntimeException and its subtypes, including EJBException. An application exception is any
exception that does not extend java.lang.RuntimeException or java.rmi.RemoteException.

An application exception must never extend the RuntimeException, the RemoteException, or one of
their subtypes.

Transactions are automatically rolled back if a system exception is thrown from an enterprise bean method. Transactions are
not automatically rolled back if an application exception is thrown. If you remember these two rules, you will be well prepared to
deal with exceptions and transactions in EJB. The bookPassage() method illustrates how to use application exceptions:

public TicketDO bookPassage(CreditCardDO card, double price)

 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHomeLocal");

 ReservationLocal reservation =

 resHome.create(customer, cruise, cabin, price);

 Object ref =

 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer, card, price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

16.6.1.1 System exceptions

System exceptions include RuntimeException and its subclasses. The EJBException is a subclass of the RuntimeException, so it is
considered a system exception.

System exceptions always cause a transaction to roll back when they are thrown from an enterprise bean method. Any
RuntimeException (EJBException, NullPointerException, IndexOutOfBoundsException, and so on) thrown within the bookPassage() method
is handled by the container automatically and results in a transaction rollback. In Java, RuntimeException types do not need to be
declared in the throws clause of the method signature or handled using try/catch blocks; they are automatically thrown from the
method.

The container handles system exceptions automatically; it will always:

Roll back the transaction.

Log the exception to alert the system administrator.

Discard the EJB instance.

When a system exception is thrown from the callback methods (ejbLoad(), ejbActivate(), and so on) are treated the same as
exceptions thrown from business methods.

While EJB requires system exceptions must be logged, it does not specify how exceptions should be logged or the format of the
log file. The exact mechanism for recording exceptions and reporting them to the system administrator is left to the vendor.

When a system exception occurs, the EJB instance is discarded, which means that it is dereferenced and garbage collected. The
container assumes that the EJB instance may have corrupt variables or otherwise be unstable and is therefore unsafe to use.

The impact of discarding an EJB instance depends on the enterprise bean's type. In the case of stateless session beans and
entity beans, the client does not notice that the instance was discarded. These instance types are not dedicated to a particular
client; they are swapped in and out of an instance pool, so any instance can service a new request. With stateful session beans,
however, the impact on the client is severe. Stateful session beans are dedicated to a single client and maintain conversational
state. Discarding a stateful bean instance destroys the instance's conversational state and invalidates the client's reference to
the EJB. When stateful session instances are discarded, subsequent invocations of the EJB's methods by the client result in a
NoSuchObjectException, a subclass of the RemoteException.[5]

[5] Although the instance is always discarded with a RuntimeException, the impact on the remote reference may vary
depending on the vendor.

With message-driven beans, a system exception thrown by the onMessage() method or one of the callback methods (ejbCreate()
or ejbRemove()) will cause the bean instance to be discarded. If the MDB was a BMT bean, the message it was handling may or
may not be redelivered, depending on when the EJB container acknowledges delivery. In the case of container-managed
transactions, the container will roll back the transaction, so the message will not be acknowledged and may be redelivered.

In session and entity beans, when a system exception occurs and the instance is discarded, a RemoteException is always thrown
to remote clients—that is, clients using the beans' remote component interfaces. If the client started the transaction, which was
then propagated to the EJB, a system exception (thrown by the enterprise bean method) will be caught by the container and
rethrown as a javax.transaction.TransactionRolledbackException. The TransactionRolledbackException is a subtype of the RemoteException
it is a more explicit indication to the client that a rollback occurred.

In EJB session and entity beans, when a system exception occurs and the instance is discarded, an EJBException is always thrown
to any local enterprise bean clients (i.e., clients using the enterprise bean's local component interfaces). If the client started the
transaction and it was then propagated to the EJB, a system exception (thrown by the enterprise bean method) will be caught
by the container and rethrown as a javax.ejb.TransactionRolledbackLocalException. The TransactionRolledbackLocalException is a subtype
of the EJBException; it is a more explicit indication to the client that a rollback occurred. In all other cases, whether the EJB is
container-managed or bean-managed, a RuntimeException thrown from within the enterprise bean method will be caught by the
container and rethrown as an EJBException.

An EJBException should generally be thrown when a subsystem throws an exception, such as JDBC throwing a SQLException or JMS
throwing a JMSException. In some cases, however, the bean developer may attempt to handle the exception and retry an
operation rather then throw an EJBException. This should be done only when the exceptions thrown by the subsystem and their
repercussions on the transaction are well understood. As a rule of thumb, rethrow subsystem exceptions as EJBExceptions and
allow the EJB container to roll back the transaction and discard the bean instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allow the EJB container to roll back the transaction and discard the bean instance.

The callback methods defined in the javax.ejb.EntityBean and javax.ejb.SessionBean interfaces declare
the java.rmi.RemoteException in their throws clauses. This is left over from EJB 1.0 and has been
deprecated since EJB 1.1. You should never throw RemoteExceptions from callback methods or any
other bean class methods.

16.6.1.2 Application exceptions

An application exception is normally thrown in response to a business-logic error, as opposed to a system error. Application
exceptions are always delivered directly to the client, without being repackaged as RemoteException or EJBException types. They
do not typically cause transactions to roll back; the client usually has an opportunity to recover after an application exception is
thrown. For example, the bookPassage() method throws an application exception called IncompleteConversationalState; this is an
application exception because it does not extend RuntimeException or RemoteException. The IncompleteConversationalState exception
is thrown if one of the arguments passed into the bookPassage() method is null. (Application errors are frequently used to report
validation errors like this.) In this case, the exception is thrown before tasks are started and is clearly not the result of a
subsystem failure (e.g., JDBC, JMS, Java RMI, JNDI).

Because it is an application exception, throwing an IncompleteConversationalState exception does not result in a transaction
rollback. The exception is thrown before any work is done, avoiding unnecessary processing by the bookPassage() method and
providing the client (the enterprise bean or application that invoked the bookPassage() method) with an opportunity to recover
and possibly retry the method call with valid arguments.

Business methods defined in the remote and local interfaces can throw any kind of application exception. These application
exceptions must be declared in the method signatures of the remote and local interfaces and in the corresponding methods in
the enterprise EJB classes.

The EJB create, find, and remove methods can also throw several exceptions defined in the javax.ejb package: CreateException
DuplicateKeyException, FinderException, ObjectNotFoundException, and RemoveException. These exceptions are considered application
exceptions: they are delivered to the client as-is, without being repackaged as RemoteExceptions. Furthermore, these exceptions
don't necessarily cause a transaction to roll back, giving the client the opportunity to retry the operation. These exceptions may
be thrown by the EJBs themselves; in the case of container-managed persistence, the container can also throw any of these
exceptions while handling the EJB's create, find, or remove methods (ejbCreate(), ejbFind(), and ejbRemove()). The container
might, for example, throw a CreateException if it encounters a bad argument while attempting to insert a record for a container-
managed EJB. You can always choose to throw a standard application exception from the appropriate method regardless of how
persistence is managed.

Here is a detailed explanation of the five standard application exceptions and the situations in which they are thrown:

CreateException

CreateException is thrown by the create() method in the remote interface. The container can throw this exception if the
container is managing persistence, or it can be thrown explicitly by the EJB developer in the ejbCreate() or ejbPostCreate()
methods. It indicates that an application error (invalid arguments, etc.) occurred while the EJB was being created. If the
container throws this exception, it may or may not roll back the transaction. Explicit transaction methods must be used
to determine the outcome. Bean developers should roll back the transaction before throwing this exception only if data
integrity is a concern.

DuplicateKeyException

DuplicateKeyException is a subtype of CreateException; it is thrown by the create() method in the remote interface. The
container can throw this exception if the container is managing persistence, or it can be thrown explicitly by the EJB
developer in the ejbCreate() method. It indicates that an EJB with the same primary key already exists in the database.
The EJB provider or container typically does not roll the transaction back before throwing this exception.

FinderException

FinderException is thrown by the find methods in the home interface. The container can throw this exception if the
container is managing persistence, or it can be thrown explicitly by the EJB developer in the ejbFind() methods. It
indicates that an application error (invalid arguments, etc.) occurred while the container was attempting to find the
EJBs. Do not use this method to indicate that entities were not found. Multi-entity find methods return an empty
collection if no entities were found; single-entity find methods throw an ObjectNotFoundException to indicate that no object
was found. The EJB provider or container typically does not roll the transaction back before throwing this exception.

ObjectNotFoundException

ObjectNotFoundException is thrown from a single-entity find method to indicate the container could not find the requested

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ObjectNotFoundException is thrown from a single-entity find method to indicate the container could not find the requested
entity. This exception can be thrown either by the container (if the container is managing persistence) or explicitly by
the EJB developer in the ejbFind() methods. It shouldn't be thrown to indicate a business-logic error (invalid arguments,
etc.). Use the FinderException to indicate business-logic errors in single-entity find methods. The ObjectNotFoundException
thrown by single-entity find methods only to indicate that the entity requested was not found. Find methods that return
multiple entities should return an empty collection if nothing is found. The EJB provider or container typically does not
roll the transaction back before throwing this exception.

RemoveException

The RemoveException is thrown from the remove() methods in the remote and home interfaces. The container can throw
this exception if the container is managing persistence, or it can be thrown explicitly by the EJB developer in the
ejbRemove() method. It indicates that an application error has occurred while the EJB was being removed. The
transaction may or may not have been rolled back by the container before throwing this exception. Explicit transaction
methods must be used to determine the outcome. Bean developers should roll back the transaction before throwing the
exception only if data integrity is a concern.

Table 16-1 summarizes the interactions between different types of exceptions and transactions in session and entity beans.

Table 16-1. Exception summary for session and entity beans

Transaction
scope

Transaction
type

attributes

Exception
thrown Container's action Client's view

Client-
initiated
transaction.

The
transaction
is started by
the client
(application
or EJB) and
propagated
to the
enterprise
bean
method.

transaction-
type
=Container

transaction-
attribute =
Required |
Mandatory
|Supports

Application
exception

If the EJB invoked setRollbackOnly(),
mark the client's transaction for
rollback.

Rethrow the application exception.

Receives the application exception. The
client's transaction may or may not have
been marked for rollback.

 System
exception

Mark the client's transaction for rollback.

Log the error.

Discard the instance.

Rethrow the JTA
TransactionRolledbackException to remote
clients or the
javax.ejb.TransactionRolledbackLocalException
to EJB local clients.

Remote clients receive the JTA
TransactionRolledbackException; local clients
receive the
javax.ejb.TransactionRolledbackLocalException

The client's transaction has been rolled
back.

Container-
mangaged
transaction.

The
transaction
started when
the EJB's
method was
invoked and
will end
when the
method
completes.

transaction-
type
=Container

transaction-
attribute =
Required |
RequiresNew

Application
exception

If the EJB invoked setRollbackOnly(), roll
back the transaction and rethrow the
application exception.

If the EJB did not explicitly roll back the
transaction, attempt to commit the
transaction and rethrow the application
exception.

Receives the application exception. The
EJB's transaction may or may not have
been rolled back. The client's transaction
is not affected.

 System
exception

Roll back the transaction.

Log the error.

Discard the instance.

Rethrow the RemoteException to remote
clients or the EJBException to EJB local
clients.

Remote clients receive the
RemoteException; local EJB clients receive
the EJBException.

The EJB's transaction was rolled back.

The client's transaction may marked for
rollback, depending on the vendor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bean is
not part of a
transaction.

The EJB was
invoked but
doesn't
propagate
the client's
transaction
and doesn't
start its own
transaction.

transaction-
type
=Container

transaction-
attribute =
Never |
NotSupported
| Supports |

Application
exception Rethrow the application exception.

Receives the application exception.

The client's transaction is not affected.

 System
exception

Log the error.

Discard the instance.

Rethrow the RemoteException to remote
clients or the EJBException to EJB local
clients.

Remote clients receive the
RemoteException; local EJB clients receive
the EJBException.

The client's transaction may or may not
be marked for rollback, depending on the
vendor.

Bean-
managed
transaction.

The stateful
or stateless
session EJB
uses the
EJBContext to
explicitly
manage its
own
transaction.

transaction-
type = Bean

transaction-
attribute =
Bean-
managed
transaction
EJBs do not
use
transaction
attributes.

Application
exception Rethrow the application exception.

Receives the application exception.

The client's transaction is not affected.

 System
exception

Roll back the transaction.

Log the error.

Discard the instance.

Rethrow the RemoteException to remote
clients or the EJBException to EJB local
clients.

Remote clients receive the
RemoteException; local EJB clients receive
the EJBException.

The client's transaction is not affected.

Table 16-2 summarizes the interactions between different types of exceptions and transactions in message-driven beans.

Table 16-2. Exception summary for message-driven beans

Transaction scope Transaction type attributes Exception
thrown

Container's
action

Container-initiated transaction.

The transaction started before the onMessage()
method was invoked and will end when the method
completes.

transaction-type =Container

transaction-attribute = Required
System
exception

Roll back
the
transaction.

Log the
error.

Discard the
instance.

Container-initiated transaction.

No transaction was started.

transaction-type =Container

transaction-attribute = NotSupported
System
exception

Log the
error.

Discard the
instance.

Bean-managed transaction.

The message-driven bean uses the EJBContext to
explicitly manage its own transaction.

transaction-type = Bean

transaction-attribute = Bean-managed
transaction EJBs do not use transaction
attributes.

System
exception

Roll back
the
transaction.

Log the
error.

Discard the
instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

16.7 Transactional Stateful Session Beans
Session beans can interact directly with the database as easily as they can manage the taskflow of other enterprise
beans. The ProcessPayment EJB, for example, makes inserts into the PAYMENT table when the byCredit() method is
invoked, and the TravelAgent EJB queries the database directly when the listAvailableCabins() method is invoked.
Stateless session beans such as the ProcessPayment EJB have no conversational state, so each method invocation must
make changes to the database immediately. With stateful session beans, however, we may not want to make changes
to the database until the transaction is complete. Remember, a stateful session bean can be one of many participants in
a transaction, so it may be advisable to postpone database updates until the entire transaction is committed or to avoid
updates if it is rolled back.

There are several different scenarios in which a stateful session bean might cache changes before applying them to the
database. For example, think of a shopping cart implemented by a stateful session bean that accumulates several items
for purchase. If the stateful bean implements SessionSynchronization, it can cache the items and write them to the
database only when the transaction is complete.

The javax.ejb.SessionSynchronization interface allows a session bean to receive additional notification of the session's
involvement in transactions. The addition of these transaction callback methods by the SessionSynchronization interface
expands the EJB's awareness of its life cycle to include a new state, the Transactional Method-Ready state. This third
state, although not discussed in Chapter 11, is always a part of the life cycle of a transactional stateful session bean.
Implementing the SessionSynchronization interface simply makes it visible to the EJB. Figure 16-11 shows the stateful
session bean with the additional state.

Figure 16-11. Life cycle of a stateful session bean

The SessionSynchronization interface is defined:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SessionSynchronization interface is defined:

package javax.ejb;

public interface javax.ejb.SessionSynchronization {

 public abstract void afterBegin() throws RemoteException;

 public abstract void beforeCompletion() throws RemoteException;

 public abstract void afterCompletion(boolean committed) throws RemoteException;

}

When a method of the SessionSynchronization bean is invoked outside of a transaction scope, the method executes in the
Method-Ready state, as discussed in Chapter 11. However, when a method is invoked within a transaction scope (or
creates a new transaction), the EJB moves into the Transactional Method-Ready state.

16.7.1 The Transactional Method-Ready State

The SessionSynchronization methods are called in the Transactional Method-Ready state.

16.7.1.1 Transitioning into the Transactional Method-Ready state

When a transactional method is invoked on a SessionSynchronization bean, the stateful bean becomes part of the
transaction, causing the afterBegin() callback method defined in the SessionSynchronization interface to be invoked. This
method should take care of reading any data from the database and storing the data in the bean's instance fields. The
afterBegin() method is called before the EJB object delegates the business-method invocation to the EJB instance.

16.7.1.2 Life in the Transactional Method-Ready state

When the afterBegin() callback method completes, the business method originally invoked by the client is executed on
the EJB instance. Any subsequent business methods invoked within the same transaction will be delegated directly to
the EJB instance.

Once a stateful session bean is a part of a transaction—whether it implements SessionSynchronization or not—it cannot be
accessed by any other transactional context. This is true regardless of whether the client tries to access the EJB with a
different context or the EJB's own method creates a new context. If, for example, a method with a transaction attribute
of RequiresNew is invoked, the new transactional context causes an error to be thrown. Since the NotSupported and Never
attributes specify a different transactional context (no context), invoking a method with these attributes also causes an
error. A stateful session bean cannot be removed while it is involved in a transaction. This means that invoking
ejbRemove() while the SessionSynchronization bean is in the middle of a transaction will cause an error to be thrown.

At some point, the transaction in which the SessionSynchronization bean has been enrolled will come to an end. If the
transaction is committed, the SessionSynchronization bean will be notified through its beforeCompletion() method. At this
time, the EJB should write its cached data to the database. If the transaction is rolled back, the beforeCompletion()
method will not be invoked, avoiding the pointless effort of writing changes that won't be committed to the database.

The afterCompletion() method is always invoked, whether the transaction ended successfully with a commit or
unsuccessfully with a rollback. If the transaction was a success—which means that beforeCompletion() was invoked—the
committed parameter of the afterCompletion() method will be true. If the transaction was unsuccessful, committed will be
false.

It may be desirable to reset the stateful session bean's instance variables to some initial state if the afterCompletion()
method indicates that the transaction was rolled back.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 16. Transactions
Section 16.1. ACID Transactions

Section 16.2. Declarative Transaction Management

Section 16.3. Isolation and Database Locking

Section 16.4. Nontransactional Beans

Section 16.5. Explicit Transaction Management

Section 16.6. Exceptions and Transactions

Section 16.7. Transactional Stateful Session Beans

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.1 Servlets
The servlet specification defines a server-side component model that can be implemented by web server vendors.
Servlets provide a simple but powerful API for generating web pages dynamically. (Although servlets can be used for
many different request-response protocols, they are predominantly used to process HTTP requests for web pages.)

Servlets are developed in the same fashion as enterprise beans; they are Java classes that extend a base component
class and have a deployment descriptor. Once a servlet is developed and packaged in a JAR file, it can be deployed in a
web server. When a servlet is deployed, it is assigned to handle requests for a specific web page or to assist other
servlets in handling page requests. The following servlet, for example, might be assigned to handle any request for the
helloworld.html page on a web server:

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse response)

 throws ServletException,java.io.IOException {

 try {

 ServletOutputStream writer = response.getWriter();

 writer.println("<HTML><BODY>");

 writer.println("<h1>Hello World!!</h1>");

 writer.println("</BODY></HTML>");

 } catch(Exception e) {

 // handle exception

 }

 ...

}

When a browser sends a request for the page to the web server, the server delegates the request to the appropriate
servlet instance by invoking the servlet's doGet() method.[1] The servlet is provided with information about the request
in the HttpServletRequest object and can use the HttpServletResponse object to reply to the request. This simple servlet
sends a short HTML document (including the text "Hello World") back to the browser, which displays it. Figure 17-1
illustrates how a request is sent by a browser and serviced by a servlet running in a web server.

[1] HttpServlets also have a doPost() method that handles requests for forms.

Figure 17-1. Servlet servicing an HTTP request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Servlets are similar to session beans because they both perform a service and can directly access backend resources
(e.g., databases) through JDBC, but they do not represent persistent data. Servlets do not, however, have support for
container-managed transactions and are not composed of business methods. Servlets deal with very specific (usually
HTTP) requests and respond by writing to an output stream.

The servlet specification is extensive and robust but also simple and elegant. Learn more about servlets by reading Java
Servlet Programming by Jason Hunter (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.2 JavaServer Pages
JavaServer Pages is an extension of the servlet component model that simplifies the process of generating HTML
dynamically. JSP essentially allows you to incorporate Java directly into an HTML page as a scripting language. In J2EE,
the Java code in a JSP page can access the JNDI ENC, just like the code in a servlet. In fact, JSP pages (text
documents) are translated and compiled into Java servlets, which are then run in a web server just like any other
servlet—some servers do the compilation automatically at runtime. You can also use JSP to generate XML documents
dynamically. If you want to learn more about JSP, take a look at JavaServer Pages by Hans Bergsten (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.3 Web Components and EJB
Together, servlets and JSP provide a powerful platform for generating web pages dynamically. Servlets and JSP, which
are collectively called web components, can access resources like JDBC and enterprise beans. Because web components
can access databases using JDBC, they allow an enterprise to expose its business systems to the Web through an HTML
interface. HTML interfaces have several advantages over more conventional client interfaces. The most important
advantages have to do with distribution and firewalls. Conventional clients need to be installed and distributed on client
machines: they require additional work for deployment and maintenance. Applets, which are dynamically downloaded,
can eliminate the headache of installation, but applets have their own limitations—such as sandbox restrictions and
lengthy downloads. In contrast, HTML is extremely lightweight, does not require prior installation, and does not suffer
from security restrictions. In addition, HTML interfaces can be modified and enhanced at their source without having to
update the clients.

Firewalls present another significant problem in e-commerce. HTTP, the protocol over which web pages are requested
and delivered, can pass through most firewalls without a problem, but protocols such as IIOP or JRMP cannot. This
limitation is extremely important. It means that a client usually cannot access a server using IIOP or JRMP without
modifications to the firewall. And the firewall is usually not under the control of the groups who need the application to
run. HTTP does not suffer from this limitation, since practically all firewalls allow HTTP to pass unhindered.

The problems with distribution and firewalls have led most of the EJB industry to adopt an architecture based on web
components (servlets/JSP) and Enterprise JavaBeans. Web components provide the presentation logic for generating
web pages; EJB supplies a middle tier for business logic. Web components access enterprise beans using the same API
as application clients. Each technology is doing what it does best: servlets and JSP are excellent components for
generating dynamic HTML, while EJB is an excellent platform for business logic. Figure 17-2 illustrates how the
architecture works.

Figure 17-2. Using servlets/JSP and EJB together

This web component-EJB architecture is so widely accepted that it begs the question, "Should there be a united
platform?" The J2EE specification answers this question. J2EE defines a single application server platform that focuses
on the interaction between servlets, JSP, and EJB. J2EE is important because it provides a specification for the
interaction of web components with enterprise beans, making solutions more portable across vendors that support both
component models.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.4 Filling in the Gaps
The J2EE specification attempts to fill the gaps between the web components and Enterprise JavaBeans by defining how
these technologies come together to form a complete platform. One of the ways in which J2EE adds value is by creating
a consistent programming model across web components and enterprise beans through the use of the JNDI ENC and
XML deployment descriptors. A servlet in J2EE can access JDBC DataSource objects, environment entries, and references
to enterprise beans through a JNDI ENC in exactly the same way that enterprise beans use the JNDI ENC. To support
the JNDI ENC, web components have their own XML deployment descriptor that declares elements for the JNDI ENC
(<ejb-ref>, <resource-ref>, <env-entry>) as well as security roles and other elements specific to web components. In
J2EE, web components are packaged along with their XML deployment descriptors and deployed in JAR files with the
extension .war, which stands for web archive. A .war file can contain several servlets and JSP documents that share an
XML deployment descriptor. The use of the JNDI ENC, deployment descriptors, and JAR files in web components makes
them consistent with the EJB programming model and unifies the entire J2EE platform.

Use of the JNDI ENC makes it much simpler for web components to access Enterprise JavaBeans. The web component
developer does not need to be concerned with the network location of enterprise beans; the server will map the <ejb-
ref> elements listed in the deployment descriptor to the enterprise beans at deployment time.

Optionally, J2EE vendors can allow web components to access the EJB local component interfaces of enterprise beans.
This strategy makes a lot of sense if the web component and the bean are located in the same Java Virtual Machine,
because the Java RMI-IIOP semantics can improve performance. It's expected that most J2EE vendors will support this
option.

The JNDI ENC also supports access to a javax.jta.UserTransaction object, as is the case in EJB. The UserTransaction object
allows the web component to manage transactions explicitly. The transaction context must be propagated to any
enterprise beans accessed within the scope of the transaction (according to the transaction attribute of the enterprise
bean method). J2EE also defines an .ear file (enterprise archive), which is a JAR file for packaging EJB JAR files and web
component JAR files (.war files) together into one complete deployment, called a J2EE application. A J2EE application
has its own XML deployment descriptor that points to the EJB and web component JAR files (called modules) as well as
other elements such as icons, descriptions, and the like. When a J2EE application is created, interdependencies such as
<ejb-ref> and <ejb-local-ref> elements can be resolved and security roles can be edited to provide a unified view of the
entire web application. Figure 17-3 illustrates the file structure of a J2EE archive file.

Figure 17-3. Contents of a J2EE .ear file

17.4.1 J2EE Application Client Components

In addition to integrating web and enterprise bean components, J2EE introduces a new component model: the
application client component. An application client component is a Java application that resides on a client machine and
accesses enterprise bean components on the J2EE server. Client components also have access to a JNDI ENC that
operates the same way as the JNDI ENC for web and enterprise bean components. The client component includes an
XML deployment descriptor that declares the <env-entry>, <ejb-ref>, and <resource-ref> elements of the JNDI ENC in
addition to a <description>, <display-name>, and <icon> that can be used to represent the component in a deployment
tool.

A client component is simply a Java program that uses the JNDI ENC to access environment properties, enterprise
beans, and resources (JDBC, JavaMail, and so on) made available by the J2EE server. Client components reside on the
client machine, not the J2EE server. Here is an extremely simple component:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

client machine, not the J2EE server. Here is an extremely simple component:

public class MyJ2eeClient {

 public static void main(String [] args) {

 InitialContext jndiCntx = new InitialContext();

 Object ref = jndiCntx.lookup("java:comp/env/ejb/ShipBean");

 ShipHome home = (ShipHome)

 PortableRemoteObject.narrow(ref,ShipHome.class);

 Ship ship = home.findByPrimaryKey(new ShipPK(1));

 String name = ship.getName();

 System.out.println(name);

 }

}

MyJ2eeClient illustrates how a client component is written. Notice that the client component did not need to use a
network-specific JNDI InitialContext. In other words, we did not have to specify the service provider in order to connect
to the J2EE server. This is the real power of the J2EE application client component: location transparency. The client
component does not need to know the exact location of the Ship EJB or choose a specific JNDI service provider; the
JNDI ENC takes care of locating the enterprise bean.

When application components are developed, an XML deployment descriptor is created that specifies the JNDI ENC
entries. At deployment time, a vendor-specific J2EE tool generates the class files needed to deploy the component on
client machines. A client component is packaged into a JAR file with its XML deployment descriptor and can be included
in a J2EE application. Once a client component is included in the J2EE application deployment descriptor, it can be
packaged in the .ear file with the other components, as Figure 17-4 illustrates.

Figure 17-4. Contents of a J2EE .ear file with application component

17.4.2 Guaranteed Services

The J2EE specifications require application servers to support a specific set of protocols and Java enterprise extensions,
ensuring a consistent platform for deploying J2EE applications. J2EE application servers must provide the following
"standard" services:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"standard" services:

Java Virtual Machine

J2EE 1.4 products must support Java 2, SDK 1.4. J2EE 1.3 products must support Java 2, SDK 1.3.

Enterprise JavaBeans

J2EE 1.4 products must support EJB 2.1. J2EE 1.3 products must support EJB 2.0.

Servlets

J2EE 1.4 products must support Servlets 2.4. J2EE 1.3 products must support Servlets 2.3.

JavaServer Pages

J2EE 1.4 products must support JSP 2.0. J2EE 1.3 products must support JSP 1.2.

HTTP and HTTPS

Web components in a J2EE server service both HTTP and HTTPS requests. The J2EE product must be capable of
advertising HTTP 1.0 and HTTPS (HTTP 1.0 over SSL 3.0) on ports 80 and 443, respectively. Components must
have full access to HTTP/HTTPS client APIs.

Java RMI-IIOP

Support for Java RMI-IIOP is required. However, the vendor may also use other protocols, as long as they are
compatible with Java RMI-IIOP semantics.

Java RMI-JRMP.

J2EE components can be native Java RMI (JRMP) clients.

JavaIDL

Web components and enterprise beans must be able to access CORBA services hosted outside the J2EE
environment using JavaIDL, a standard part of the Java 2 platform.

JDBC

J2EE 1.4 requires support for JDBC 3.0. J2EE 1.3 requires support for the JDBC 2.0 and some parts of the JDBC
2.0 Extension.

Java Naming and Directory Interface (JNDI) 1.2

Web and enterprise bean components must have access to the JNDI ENC, to access things like the EJBHome
objects, JTA UserTransaction objects, JDBC DataSource objects, Java Message Service ConnectionFactory objects,
and JAX-RPC ConnectionFactory objects.

JavaMail and JAF

J2EE 1.4 products must support JavaMail 1.3, including access to a message store. J2EE 1.3 products must
support JavaMail 1.2. Both platforms must support JAF (Java Activation Framework) 1.0; it's needed to support
different MIME types and required for support of JavaMail.

Java Message Service (JMS)

J2EE 1.4 products must support JMS 1.1. J2EE 1.3 products must support JMS 1.0.2. J2EE products must
provide support for both point-to-point (p2p) and publish-and-subscribe (pub/sub) messaging models. J2EE 1.4
must also support the Unified messaging model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must also support the Unified messaging model.

Java API for XML Parsing (JAXP)

J2EE 1.4 products must support JAXP 1.2, which includes XML Schema validation, while J2EE 1.3 products must
support JAXP 1.1.

J2EE Connector Architecture (J2CA)

J2EE 1.4 products must support J2CA 1.5, which includes asynchronous messaging. J2EE 1.3 products must
support J2CA 1.0.

Java Authentication and Authorization Service (JAAS)

J2EE 1.4 and 1.3 products must support the use of JAAS 1.0, as described in the J2CA specifications.

Java Transaction API 1.0.1

J2EE 1.4 and 1.3 products must support JTA 1.0 and must have access to the UserTransaction objects via the
JNDI ENC.

Web Services for J2EE (WS-J2EE)

J2EE 1.4 must support Web Services for J2EE 1.1 The specification includes JAX-RPC 1.1, JAXR 1.0, and SAAJ
1.2.

Java Logging API

J2EE 1.4 products must support the logging of events using the java.util.logging package, which is part of the
J2SDK 1.4 core.

J2EE Management API

J2EE 1.4 products must support the J2EE Management API 1.0, including support for some features of JMX 1.2.

J2EE Deployment API

J2EE 1.4 products must support the J2EE Deployment API 1.1. Vendors must support the plug-in component for
tool vendors.

Java Authorization Service Provider Contract (JACC)

J2EE 1.4 must support the JACC 1.0, which defines a contract between a J2EE application server and an
authorization policy provider.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

17.5 Fitting the Pieces Together
To illustrate how a J2EE platform might function, imagine using a J2EE server in Titan's reservation system. To build
this system, we would use the TravelAgent, Cabin, ProcessPayment, Customer, and other enterprise beans we defined
in this book, along with web components that would provide an HTML interface. The web components would access the
enterprise beans in the same way that any Java client would, using the enterprise beans' remote and home interfaces.
The web components would generate HTML to represent the reservation system.

Figure 17-5 shows a web page generated by a servlet or JSP page for the Titan reservation system. This web page was
generated by web components on the J2EE server. When this page appears, the person using the reservation system
has been guided through a login page, a customer selection page, and a cruise selection page, and is about to choose
an available cabin for a reservation.

Figure 17-5. HTML interface to the Titan reservation system

The list of available cabins is obtained from the TravelAgent EJB, whose listAvailableCabins() method is invoked by the
servlet that generated the web page. The list of cabins creates an HTML list box in a web page that is loaded into the
user's browser. When the user chooses a cabin and submits the selection, an HTTP request is sent to the J2EE server.
The J2EE server receives the request and delegates it to the ReservationServlet, which invokes the TravelAgent.bookPassage(
) method to do the actual reservation. The ticket information returned by the bookPassage() method is then used to
create another web page, which is sent back to the user's browser. Figure 17-6 shows how the different components
work together to process the request.

Figure 17-6. J2EE Titan reservation system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-6. J2EE Titan reservation system

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 17. J2EE
The specification for the Java 2 Enterprise Edition (J2EE) defines a platform for developing web-enabled applications
that includes Enterprise JavaBeans, servlets, and JavaServer Pages (JSP). J2EE products are application servers that
provide a complete implementation of the EJB, servlet, and JSP technologies. In addition, J2EE outlines how these
technologies work together to provide a complete solution for developing applications. To help you understand J2EE, we
must introduce servlets and JSP and explain the synergy between these technologies and Enterprise JavaBeans.

At the risk of spoiling the story, J2EE provides two kinds of "glue" to make it easier for components to interact. First,
the JNDI enviroment naming context (ENC) is used to standardize the way components look up resources they need.
We discussed the ENC in the context of enterprise beans; in this chapter, we will look briefly at how servlets, JSPs, and
even some clients can use the ENC to find resources. Second, the use of deployment descriptors—in particular, the use
of XML to define a language for deployment descriptors—is extended to servlets and JSP. Java servlets and JSP pages
can be packaged with deployment descriptors that define their relationships to their environment. Deployment
descriptors are also used to define entire assemblies of many components into applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.1 The ejb-jar File
The JAR file format is a platform-independent format for compressing, packaging, and delivering several files together.
Based on the Zip file format and the ZLIB compression standards, the JAR (Java archive) packages and tool were
originally developed to make downloads of Java applets more efficient. As a packaging mechanism, however, the JAR
file format is a convenient way to "shrink-wrap" components and other software for delivery to third parties. The
original JavaBeans component architecture depends on JAR files for packaging, as does Enterprise JavaBeans. The goal
in using the JAR file format is to package all the classes and interfaces associated with one or more beans, including the
deployment descriptor, into one file.

The JAR file is created using a vendor-specific tool, or using the jar utility that is part of the Java 2, Standard Edition
development kit. An ejb-jar file contains:

The XML deployment descriptors

The bean classes

The remote and home interfaces

The primary key class

Dependent classes and interfaces

All of the XML deployment descriptors (ejb-jar.xml, webservices.xml, WSDL, JAX-RPC Mapping) should be located in the
META-INF directory and must contain all the deployment information for all the beans in the ejb-jar file. For each bean
declared in the XML deployment descriptor, the ejb-jar file must contain its bean class, remote and home interfaces,
and dependent classes and interfaces. Dependent classes and interfaces are usually things like application-specific
exceptions, business interfaces, and other supertypes, and dependent objects that are used by the bean. In the ejb-jar
file for the TravelAgent bean, for example, we would include the IncompleteConversationalState application exception and
the Ticket and CreditCard classes, as well as the remote and home interfaces to other beans referenced by the
TravelAgent bean, such as the Customer and ProcessPayment beans.[1]

[1] The EJB 1.1 specification also allows remote and home interfaces of referenced beans to be named in the
manifest's Class-Path attribute, instead of including them in the JAR file. Use of the Class-Path entry in the JAR's
manifest is addressed in more detail in the Java 2, Standard Edition specification.

You can use the jar utility from the command line to package a bean in a JAR file. Here's an example of how the jar
utility was used to package the Cabin EJB in Chapter 4:

\dev % jar cf cabin.jar com/titan/cabin/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\cabin*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first, and copy ejb-jar.xml into that directory. The c option tells the jar
utility to create a new JAR file that contains the files indicated in subsequent parameters. It also tells the jar utility to
stream the resulting JAR file to standard output. The f option tells jar to redirect the standard output to a new file
named in the second parameter (cabin.jar). It is important to get the order of the option letters and the command-line
parameters to match. You can learn more about the jar utility and the java.util.zip package in Java in a Nutshell by David
Flanagan or Learning Java by Pat Niemeyer and Jonathan Knudsen, both published by O'Reilly.

The jar utility creates the file cabin.jar in the dev directory. If you are interested in looking at the contents of the JAR
file, you can use any standard ZIP application (WinZip, PKZIP, etc.) or the command jar tvf cabin.jar.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.2 The Contents of a Deployment Descriptor
We've discussed XML deployment descriptors throughout this book—you probably know enough to write deployment
descriptors on your own. However, it is still worthwhile to take a tour through a complete descriptor. Example 18-1 is a
complete deployment descriptor for the Cabin EJB, which we created in Chapter 4. Other than the type of schema used
(XSD or DTD) and the fact that EJB 2.1 uses XML namespaces, the elements are the same in EJB 2.1 and 2.0. The
Cabin EJB's deployment descriptor contains most of the tags that are needed to describe entity beans; session and
message-driven beans are not much different. The differences between the versions are small but significant. We'll use
this deployment descriptor to guide our discussion in the following sections.

Example 18-1. Cabin EJB deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>

...

<ejb-jar ...>

 <enterprise-beans>

 <entity>

 <description>

 This Cabin enterprise bean entity represents a cabin

 on a cruise ship.

 </description>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>com.titan.cabin.CabinPK</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Cabin</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>shipId</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the Cabin EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.3 The Document Headerand Schema Declarations
An XML document may start with a tag that specifies the version of XML in use:

<?xml version="1.0" encoding="UTF-8"?>

This tag identifies the document as an XML document that adheres to Version 1.0 of the XML specification and uses the
UTF-8 character encoding. EJB vendors usually support this character encoding.

In EJB 2.1, the element following the XML header (the <ejb-jar> element) is the root element of the deployment
descriptor. This element declares the document's XML namespace and the location of the XML schema that can be used
to validate its contents. A complete <ejb-jar> element looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

...

</ejb-jar>

In EJB 2.0, a DOCTYPE element follows the document header and specifies the DTD that defines the document's
contents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

...

</ejb-jar>

In both EJB 2.1 and 2.0, the schema definition provides a URL from which you (or, more importantly, tools processing
the deployment descriptor) can download the schema used to validate the XML document; this means that the EJB
server deploying the bean can download the XSD or DTD and use it to prove that your deployment descriptor is correct
(i.e., that it is organized correctly and uses the right tag names, and that all the tags and attributes have the
appropriate parameters).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.4 The Descriptor's Body
The body of any XML document begins and ends with the tag for the document's root element. For an EJB deployment
descriptor, the root element is named <ejb-jar>, and looks like this (EJB 2.1 includes XML namespace and schemaLocation
attributes not shown):

<ejb-jar ...>

... other elements ...

</ejb-jar>

All other elements must be nested within the <ejb-jar> element. You can place the following kinds of elements within
<ejb-jar>:

<description> (optional)

The <description> element provides a description of the deployment descriptor. This element can be used in
many contexts within a deployment descriptor: to describe the descriptor as a whole, to describe particular
beans, to describe particular security roles, and so on. The Cabin EJB deployment descriptor doesn't use a
<description> element for the deployment descriptor as a whole, but it does provide a description for the Cabin
EJB itself.

<display-name> (optional)

Tools (such as a deployment wizard) that are working with the deployment descriptor use the <display-name>
element to provide a convenient visual label for the entire JAR file and for individual bean components.

<small-icon> and <large-icon> (optional)

These elements point to files within the JAR file that provide icons a deployment wizard or some other tool can
use to represent the JAR file. Icons must be image files in either the JPEG or GIF format. Small icons must be
16 16 pixels; large icons must be 32 32 pixels. These icon elements are also used in the <entity>, <session>,
and <message-driven> elements to represent individual enterprise bean components.

<enterprise-beans> (one required)

The <enterprise-beans> element contains descriptions of one or more enterprise beans that are contained in the
JAR file. A deployment descriptor may have only one <enterprise-beans> element. Within this element, <entity>,
<session>, and <message-driven> elements describe the individual beans.

<relationships> (optional)

The <relationships> element describes the container-managed relationships of entity beans declared in the
deployment descriptor. The <relationships> element contains a number of other elements that describe the
participants, direction, and cardinality of each relationship.

<assembly-descriptor> (optional)

The application assembler or bean developer adds an <assembly-descriptor> element to the deployment
descriptor to define how the enterprise beans are used in an actual application. The <assembly-descriptor>
contains a number of elements that define the security roles used to access the bean, the method permissions
that govern which roles can call different methods, and the transaction attributes.

<ejb-client-jar> (optional)

The <ejb-client-jar> element provides the path of the client JAR, which normally contains all the classes
(including stubs, remote and home interface classes, and so on) the client will need in order to access the beans
defined in the deployment descriptor. How client JAR files are organized and delivered to the client is not
specified—consult your vendor's documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specified—consult your vendor's documentation.

These elements are quite simple, with the exception of the <enterprise-beans> and <assembly-descriptor> elements. These
two elements contain a lot of nested material. We'll look at the <enterprise-beans> element first.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.5 Describing Enterprise Beans
The enterprise beans contained in a JAR file are laid out within the deployment descriptor's <enterprise-beans> element.
So far, we have talked about deployment descriptors for a single enterprise bean, but it is possible to package several
enterprise beans in a JAR file and describe them all within a single deployment descriptor. We could, for example, have
deployed the TravelAgent, ProcessPayment, Cruise, Customer, Reservation, and ReservationProcessor EJBs in the same
JAR file. The deployment descriptor would look something like this:

<?xml version="1.0" encoding="UTF-8"?>

...

<ejb-jar...>

 <description>

 This Deployment includes all the beans needed to make a reservation:

 TravelAgent, ProcessPayment, Reservation, Customer, Cruise, and Cabin.

 </description>

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 ...

 </session>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <remote>com.titan.customer.CustomerRemote</remote>

 ...

 </entity>

 <session>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 ...

 </session>

 <message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 ...

 </message-driven>

 ...

 </enterprise-beans>

 <relationships>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </relationships>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

 ...

</ejb-jar>

In this descriptor, the <enterprise-beans> element contains two <session> elements, one <entity> element, and a
<message-driven> element describing the enterprise beans. Other elements within the <entity>, <session>, and <message-
driven> elements provide detailed information about the enterprise beans; as you can see, the <ejb-name> element
defines the enterprise bean's name. We will discuss all the things that can go into a bean's description later.

When CMP entity beans are deployed, all the beans that have relationships must be deployed in the same EJB-JAR file,
using the same deployment descriptor. The relationships are expressed in the <relationships> element, which follows the
<enterprise-beans> element.

All types of EJBs share assembly information, which is defined in the <assembly-descriptor> element that follows the
<relationships> element (if it's present). In other words, beans can share security and transactional declarations, making
it simpler to deploy them consistently. For example, deployment is easier if the same logical security roles control
access to all the beans, and it is easiest to guarantee that the roles are defined consistently if they are defined in one
place. This strategy also makes it easier to ensure that the transaction attributes are applied consistently to all the
beans, because you can declare them all at once.

18.5.1 Session and Entity Beans

The <session> and <entity> elements, which describe session and entity beans, usually contain many nested elements.
The lists of allowable subelements are similar, so we'll discuss the <session> and <entity> elements together.

Like the <ejb-jar> element, a <session> or <entity> element can optionally contain <description>, <display-name>, <small-
icon>, and <large-icon> elements. These are fairly self-explanatory and, in any case, have the same meanings as when
they appear in the <ejb-jar> element. The <description> lets you provide a comment that describes the enterprise bean;
the <display-name> is used by deployment tools to represent the enterprise bean; and the two icon elements are used to
represent the enterprise bean in visual environments. The icon elements must point to JPEG or GIF images within the
JAR file. The other elements are more interesting:

<ejb-name> (one required)

Specifies the name of the enterprise bean component. It is used in the <methodx> element to scope method
declarations to the correct enterprise bean. Throughout this book, we use a name of the form "NameEJB" as the
<ejb-name> for an enterprise bean. Other common conventions use names of the form "NameBean" or
"TheName".

<home> (optional)

Specifies the fully qualified class name of the enterprise bean's remote home interface.

<remote> (optional)

Specifies the fully qualified class name of the enterprise bean's remote interface.

<local-home> (optional)

Specifies the fully qualified class name of the enterprise bean's local home interface.

<local> (optional)

Specifies the fully qualified class name of the enterprise bean's local interface.

<service-endpoint> (EJB 2.1 only; optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<service-endpoint> (EJB 2.1 only; optional)

Identifies the JAX-RPC endpoint interface used with stateless session beans that are deployed as EJB Endpoints.
Web services and EJB are covered in detail in Chapter 14 and Chapter 15.

<ejb-class> (one required)

Specifies the fully qualified class name of the bean class.

<session-type> (one required; session beans only)

Declares that a session bean is either stateful or stateless. This element can have one of two values: Stateful or
Stateless.

<primkey-field> (optional; entity beans only)

Specifies the primary key field for entity beans that use container-managed persistence. This element's value is
the name of the field that is used as the primary key. It is not used if the bean has a compound primary key or
if the entity bean manages its own persistence. In the Cabin EJB, the <primkey-field> is the id CMP field. This
element is discussed in more detail in Specifying Primary Keys later in this chapter.

<prim-key-class> (one required; entity beans only)

Specifies the class of the primary key for entity beans. This element's value is the fully qualified name of the
primary key class; it makes no difference whether you are using a custom compound primary key or a simple
<primkey-field> such as an Integer, String, Date, etc. If you defer definition of the primary key class to the
deployer, specify the type as java.lang.Object in this element.

<persistence-type> (one required; entity beans only)

Declares that the entity bean uses either container-managed persistence or bean-managed persistence. This
element can have one of two values: Container or Bean.

<reentrant> (one required; entity beans only)

Declares that the bean either allows loopbacks (reentrant invocations) or does not. This element can have one
of two values: True or False. True means that the bean allows loopbacks; False means that the bean throws an
exception if a loopback occurs.

<cmp-version> (optional; entity beans only)

Describes the version of container-managed persistence for which the entity bean is deployed. EJB containers
must support EJB 2.1 CMP, EJB 2.0 CMP, and even EJB 1.1 CMP for backward compatibility. This element may
have one of two values: 2.x for EJB 2.1 and EJB 2.0 or 1.x for EJB 1.1.

<abstract-schema-name> (optional; entity beans only)

Uniquely identifies entity beans in a JAR file so that EJB QL statements can reference them. This method is
described in more detail in the section "Declaring EJB QL Elements."

<cmp-field> (zero or more; entity beans only)

Used in entity beans with container-managed persistence. A <cmp-field> element must exist for each container-
managed field in the bean class. Each <cmp-field> element may include a <description> element and must include
a <field-name> element. The <description> is an optional comment describing the field. The <field-name> is
required and must be the name of one of the bean's CMP fields. It must match the method name of the abstract
accessor method (e.g., deckLevel for getDeckLevel()/setDeckLevel()). The following portion of a descriptor shows
several <cmp-field> declarations for the Cabin EJB:

<cmp-field>

 <description>This is the primary key</description>

 <field-name>id</field-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <field-name>id</field-name>

</cmp-field>

<cmp-field>

 <field-name>name</field-name>

</cmp-field>

<cmp-field>

 <field-name>deckLevel</field-name>

</cmp-field>

<cmp-field>

 <field-name>shipId</field-name>

</cmp-field>

<cmp-field>

 <field-name>bedCount</field-name>

</cmp-field>

<env-entry> (zero or more)

Declares an environment entry that is available through the JNDI ENC. The use of environment entries in a
bean and a deployment descriptor is discussed further in the "Environment Entries" section.

<ejb-ref> (zero or more)

Declares a remote enterprise bean reference that is available through the JNDI ENC. The mechanism for making
bean references available through the ENC is described in more detail later, in References to Other Beans.

<ejb-local-ref> (zero or more)

Declares a local enterprise bean reference that is available through the JNDI ENC. The mechanism for making
bean references available through the ENC is described in more detail later, in References to Other Beans.

<security-role-ref> (zero or more)

Used to declare security roles in the deployment descriptor and map them into the security roles in effect for
the bean's runtime environment. This method is described in more detail in the "Security Roles" section.

<security-identity> (optional)

Specifies security identity under which a method will run. This element is described in more detail in the
"Specifying Security Roles and Method Permissions" section.

<resource-ref> (zero or more)

Declares a reference to a connection factory that is available through the JNDI ENC. An example of a resource
factory is the javax.sql.DataSource, which is used to obtain a connection to a database. This element is discussed
in detail in References to External Resources,

<resource-env-ref> (zero or more)

Describes additional "administered objects" required by the resource. The <resource-env-ref> element and
administered objects are explained in more detail in the References to External Resources, later in this chapter.

<message-destination-ref> (EJB 2.1 only: optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <message-destination-ref> element is new in EJB 2.1. It describes the type of destination the EJB will send
messages to. The <message-destination-ref-name> declares the JNDI ENC lookup name used by the EJB to access
the destination.

<transaction-type> (one required; session beans only)

Declares either that a session bean manages its own transactions or that the container manages its
transactions. This element can have one of two values: Bean or Container. A bean that manages its own
transactions will not have container-transaction declarations in the <assembly-descriptor> section of the
deployment descriptor.

<query> (zero or more; entity beans only)

Contains an EJB QL statement that is bound to a find or a select method. The EJB QL statement defines how the
find or select method should execute at runtime. This element is described in more detail later in Section 18.5.9

18.5.2 Message-Driven Beans

The <message-driven> element describes message-driven bean deployments. <message-driven> elements occur after
<entity> and <session> elements within the <enterprise-bean> element. Like the <entity> and <session> elements, the
<message-driven> element can optionally have <description>, <display-name>, <small-icon>, and <large-icon> elements.
These elements are used primarily by visual deployment tools to represent the message-driven bean. The <message-
driven> element also requires the declaration of the <ejb-name>, <ejb-class>, <transaction-type>, and <security-id-entity>
elements. In addition, it contains the standard JNDI ENC elements <env-entry>, <ejb-ref>, <ejb-local-ref>, <resource-ref>,
and <resource-env-ref>. These are fairly self-explanatory and have the same meaning as they did in the <entity> and
<session> elements.

The elements specific to the message-driven bean are different in EJB 2.1 and EJB 2.0.

18.5.2.1 EJB 2.1 elements

EJB 2.0 defined a few JMS specific elements, which have been abandoned in EJB 2.1 so that the MDB deployment
descriptor can represent JMS-based MDBs as well as Connector-based MDBs. The MDB elements and properties are
covered in detail in Chapter 12.

<messaging-type>

Declares the messaging interfaces used by the MDB. For JMS-based MDBs, the messaging interface is always
going to be javax.jms.MessageListener, but for other J2EE Connector-based MDBs it might be something different.
If this element is omitted, the type is assumed to be javax.jms.MessageListener.

<message-destination-type>

Designates the type of destination from which the MDB receives messages. The allowed values for JMS-based
MDBs are javax.jms.Queue and javax.jms.Topic. A J2EE Connector-based MDB might use some other type.

<activation-config>

Describes the messaging properties of the MDB. The property names and values used in <activation-config>
depend on the type of message service used, but EJB 2.1 defines a set of fixed properties for JMS-based
message-driven beans, including:

acknowledgeMode

The container considers this property only if the message-driven bean uses bean-managed
transactions; with container-managed transactions, it is ignored. It determines which type of
acknowledgment it uses; its value can be either Auto-acknowledge or Dups-ok-acknowledge. The first value
acknowledges messages immediately; the second can delay acknowledgment to benefit performance
but may result in duplicate or redelivered messages.

messageSelector

Message selectors allow an MDB to be more selective about the messages it receives from a particular
topic or queue. Message selectors use Message properties as criteria in conditional expressions.[2] These

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

topic or queue. Message selectors use Message properties as criteria in conditional expressions.[2] These
conditional expressions use Boolean logic to declare which messages should be delivered to a client. The
syntax of message selectors can cause problems with XML processing. See CDATA Sections later in this
chapter.

[2] Message selectors are also based on message headers, which are outside the scope of this
chapter.

destinationType

The <message-destination-type> and the destinationType activation configuration property are redundant for
JMS-based MDBs—but not for other types of J2EE Connector-based MDBs. That's because the activation
configuration properties of Connector-based MDBs and JMS-based MDBs are completely different. It's
important that the <message-destination-type> be specified for both JMS-based and Connector-based
MDBs.

subscriptionDurablity

When a JMS-based MDB uses a javax.jms.Topic, the subscription must be declared to be either Durable or
NonDurable. A Durable subscription outlasts an MDB container's connection to the JMS provider; if the EJB
server suffers a partial failure, shuts down, or otherwise disconnects from the JMS provider, the
messages that it would have received are not lost. A NonDurable subscription means that any messages
the bean would have received while it was disconnected are lost.

18.5.2.2 EJB 2.0 elements

EJB 2.0 supports only one type of Message Driven Bean, the JMS-based MDB. Since only one messaging API is
supported, EJB 2.0 defined JMS-specific elements, which were replaced in EJB 2.1 with JMS-specific properties.

<message-selector>

Message selectors allow an MDB to be more selective about the messages it receives from a particular topic or
queue. Message selectors use Message properties as criteria in conditional expressions. These conditional
expressions use Boolean logic to declare which messages should be delivered to a client. The syntax of message
selectors can cause problems with XML processing. See the "CDATA Sections" sidebar later in this chapter.

<acknowledge-mode>

The container considers this element only if the message-driven bean uses bean-managed transactions; with
container-managed transactions, it is ignored. It determines which type of acknowledgment it uses; its value
can be either Auto-acknowledge or Dups-ok-acknowledge. The first acknowledges messages immediately; the
second can delay acknowledgment to benefit performance, but may result in duplicate or redelivered messages.

<message-driven-destination>

This element designates the type of destination to which the MDB subscribes or listens. The allowed values for
this element are javax.jms.Queue and javax.jms.Topic.

<subscription-durability>

When a MDB uses a javax.jms.Topic, the subscription must be declared to be either Durable or NonDurable. A
Durable subscription outlasts an MDB container's connection to the JMS provider; if the EJB server suffers a
partial failure, shuts down, or otherwise disconnects from the JMS provider, the messages that it would have
received are not lost. A NonDurable subscription means that any messages the bean would have received while it
was disconnected are lost.

CDATA Sections
The <message-selector> elements used by message-driven beans and the <ejb-ql> elements often require
the use of characters that have special meanings in XML, like < and >. These characters cause parsing
errors unless CDATA sections are used.

The CDATA section takes the form <![CDATA[literal-text]]>. When an XML processor encounters a CDATA
section, it does not attempt to parse the contents enclosed by the CDATA section.

Here's how to use a CDATA section in a <message-selector> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how to use a CDATA section in a <message-selector> element:

<message-selector>

<![CDATA[

 TotalCharge >500.00 AND ((TotalCharge /ItemCount)>=75.00)

 AND State IN ('MN','WI','MI','OH')";]]>

</message-selector>

Here's how to use a CDATA section in an <ejb-ql> element:

<query>

 <query-method>

 ...

 </query-method>

 <ejb-ql>

 <![CDATA[

 SELECT OBJECT(r) FROM Reservation r

 WHERE r.amountPaid > 300.00

]]>

 </ejb-ql>

 </query>

18.5.3 Specifying Primary Keys

If a single field in the bean can serve naturally as a unique identifier, you can use that field as the primary key.
Optionally, a custom primary key can be used as a compound primary key. In the Cabin EJB, for example, the primary
key type could be the CabinPK, which is mapped to the bean class fields id and name, as shown here (the CabinBean is
using bean-managed persistence to better illustrate):

public class CabinBean implements javax.ejb.EntityBean {

 public int id;

 public String name;

 public int deckLevel;

 public int ship;

 public int bedCount;

 public CabinPK ejbCreate(int id, String name) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public CabinPK ejbCreate(int id, String name) {

 this.id = id;

 this.name = name;

 return null;

 }

 ...

}

In Chapter 4, we used the appropriate primitive wrapper, java.lang.Integer, instead of the custom CabinPK class, and
defined the CabinBean as:

public class CabinBean implements javax.ejb.EntityBean {

 public int id;

 public String name;

 public int deckLevel;

 public int ship;

 public int bedCount;

 public Integer ejbCreate(int id) {

 this.id = id;

 return null;

 }

 ...

}

This simplifies things a lot. Instead of taking the time to define a custom primary key like CabinPK, we simply use the
appropriate wrapper. To do this, we need to add a <primkey-field> element to the Cabin EJB's deployment descriptor, so
it knows which field to use as the primary key. We also need to change the <prim-key-class> element to state that the
Integer class is being used to represent the primary key. Here's how the Cabin EJB's deployment descriptor would need
to change to use Integer as the primary key field:

<entity>

 <description>

 This Cabin enterprise bean entity represents a cabin on

 a cruise ship.

 </description>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHome</home>

 <remote>com.titan.cabin.Cabin</remote>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <reentrant>False</reentrant>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>ship</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

</entity>

Simple primary key fields are not limited to the primitive wrapper classes (Byte, Boolean, Integer, and so on); any
container-managed field can be used as a primary key, as long as it is serializable. String types are probably the most
common, but other types, such as java.lang.StringBuffer, java.util.Date, or even java.util.Hashtable are also valid. Custom
types can also be primary keys, provided they are serializable. Use common sense when choosing a primary key: since
it is used as an index to the data in the database, it should be lightweight.

18.5.3.1 Deferring primary key definition

Container-managed persistence makes it possible for the bean developer to defer defining the primary key, leaving key
definition to the bean deployer. This feature might be needed if, for example, the primary key is generated by the
database and is not a container-managed field in the bean class. Containers that have a tight integration with database
or legacy systems that automatically generate primary keys might use this approach. It is also an attractive approach
for vendors that sell shrink-wrapped beans, because it makes the bean more portable. Here's how an entity bean using
container-managed persistence defers the definition of the primary key to the deployer:

// bean class for bean that uses a deferred primary key

public class HypotheticalBean implements javax.ejb.EntityBean {

 ...

 public java.lang.Object ejbCreate() {

 ...

 return null;

 }

 ...

}

// home interface for bean with deferred primary key

public interface HypotheticalHome extends javax.ejb.EJBHome {

 public Hypothetical create() throws ...;

 public Hypothetical findByPrimaryKey(java.lang.Object key) throws ...;

}

Here's the relevant portion of the deployment descriptor:

// primkey-field declaration for the Hypothetical bean

...

<entity>

 <ejb-name>HypotheticalEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Object</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-field><field-name>creationDate</field-name></cmp-field>

 ...

</entity>

Because the primary key is of type java.lang.Object, the client application's interaction with the bean's key is limited to
the Object type and its methods.

18.5.4 Environment Entries

A deployment descriptor can define environment entries, values similar to properties the bean can read when it is
running. The bean can use environment entries to customize its behavior, find out about how it is deployed, and so on.

The <env-entry> element is used to define environment entries. This element contains the subelements <description>
(optional), <env-entry-name> (required), <env-entry-type> (required), and <env-entry-value> (optional). Here is a typical
<env-entry> declaration:

<env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

</env-entry>

The <env-entry-name> is relative to the "java:comp/env" context. For example, the minCheckNumber entry can be accessed
using the path "java:comp/env/minCheckNumber" in a JNDI ENC lookup:

InitialContext jndiContext = new InitialContext();

Integer miniumValue = (Integer)

 jndiContext.lookup("java:comp/env/minCheckNumber");

The <env-entry-type> can be of type String or one of several primitive wrapper types, including Integer, Long, Double, Float,
Byte, Boolean, and Short.

The <env-entry-value> is optional. The value can be specified by the bean developer or deferred to the application
assembler or deployer.

18.5.5 References to Other Beans

In EJB, references to other beans can be local or remote. In EJB 2.1 you can also reference a web Service object that
provides access to an EJB endpoint (see Chapter 15 to learn more about EJB endpoints).

18.5.5.1 Remote references

The <env-ref> element defines references to other beans within the JNDI ENC. This makes it much easier for beans to
reference other beans; a bean can use JNDI to look up a reference to the home interface for any bean in which it is
interested.

The <env-ref> element contains the subelements <description> (optional), <ejb-ref-name> (required), <ejb-ref-type>
(required), <remote> (required), <home> (required), and <ejb-link> (optional). Here is a typical <env-ref> declaration:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(required), <remote> (required), <home> (required), and <ejb-link> (optional). Here is a typical <env-ref> declaration:

<ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentHomeRemote</remote>

</ejb-ref>

The <ejb-ref-name> is relative to the "java:comp/env" context. It is recommended but not required that the name be
placed under a subcontext of ejb/. Following this convention, the path used to access the ProcessPayment EJB's home
would be "java:comp/env/ejb/ProcessPaymentHomeRemote". Here's how a client bean would use this context to look up a
reference to the ProcessPayment EJB:

InitialContext jndiContext = new InititalContext();

Object ref = jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote home = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

The <ejb-ref-type> can have one of two values, Entity or Session, according to whether it is an entity or a session bean.

The <home> element specifies the fully qualified class name of the bean's home interface; the <remote> element
specifies the fully qualified class name of the bean's remote interface.

If the bean referenced by the <ejb-ref> element is deployed in the same deployment descriptor (i.e., it is defined under
the same <ejb-jar> element), the <ejb-ref> element can be linked to the bean's declaration using the <ejb-link> element.
If, for example, the TravelAgent bean uses a reference to the ProcessPayment EJB that is declared in the same
deployment descriptor, the <ejb-ref> elements for the TravelAgent bean can use an <ejb-link> element to map its <ejb-
ref> elements to the ProcessPayment EJB. The <ejb-link> value must match one of the <ejb-name> values declared in the
same deployment descriptor. Here's a portion of a deployment descriptor that uses the <ejb-link> element:

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 ...

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 <ejb-link>ProcessPaymentEJB</ejb-link>

 </ejb-ref>

 ...

 </session>

 <session>

 <ejb-name>ProcessPaymentEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 ...

 </session>

 ...

 </enterprise-beans>

 ...

</ejb-jar>

In most cases, you are better off using the <ejb-local-ref> element to obtain references to beans in the same JAR file,
unless the referenced enterprise bean does not have a set of local component interfaces. If that's the situation, use the
<ejb-link> element with the <ejb-ref> element to get a remote reference to the enterprise bean.

18.5.5.2 Local references

The deployment descriptor also provides a special set of tags, the <ejb-local-ref> elements, to declare local EJB
references, i.e., references to enterprise beans that are co-located in the same container and deployed in the same EJB
JAR file. The <ejb-local-ref> elements are declared immediately after the <ejb-ref> elements:

<ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 <ejb-link>CruiseEJB</ejb-link>

</ejb-local-ref>

<ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-link>CabinEJB</ejb-link>

</ejb-local-ref>

The <ejb-local-ref> element defines a name for the bean within the ENC, declares the bean's type, and gives the names
of its local component interfaces. These elements should be linked explicitly to other co-located beans using the <ejb-
link> element, but it's not required—the application assembler or deployer can do it later. The value of the <ejb-link>
element within the <ejb-local-ref> must equal the <ejb-name> of the appropriate bean in the same JAR file.

At deployment time, the EJB container's tools map the local references declared in the <ejb-local-ref> elements to entity
beans that are co-located in the same container system.

Enterprise beans declared in the <ejb-local-ref> elements are local enterprise beans and so do not require the use of the
PortableRemoteObject.narrow() method to narrow the reference. Instead, you can use a simple native cast operation:

InitialContext jndiContext = new InititalContext();

CabinHome home = (CabinHome)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5.6 References to External Resources

Enterprise beans also use the JNDI ENC to look up external resources, such as database connections, that they need to
access. The mechanism for doing this is similar to the mechanism used for referencing other beans and environment
entries: the external resources are mapped into a name within the JNDI ENC namespace. For external resources, the
mapping is performed by the <resource-ref> element.

The <resource-ref> element contains the <description> (optional), <res-ref-name> (required), <res-type> (required), and
<res-auth> (required) subelements.

Here is a <resource-ref> declaration used for a DataSource connection factory:

<resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

The <res-ref-name> is relative to the "java:comp/env" context. Although not a requirement, it is a good idea to place
connection factories under a subcontext that describes the resource type. For example:

jdbc/ for a JDBC DataSource factory

jms/ for a JMS QueueConnectionFactory or TopicConnectionFactory factory

mail/ for a JavaMail session factory

url/ for a javax.net.URL factory

Here is how a bean would use JNDI to look up a resource—in this case, a DataSource:

InitialContext jndiContext = new InitialContext();

DataSource source = (DataSource)

 jndiContext.lookup("java:comp/env/jdbc/titanDB");

The <res-type> element declares the fully qualified class name of the connection factory. In this example, the <res-type>
is javax.sql.DataSource.

The <res-auth> element tells the server who is responsible for authentication. It can have one of two values: Container or
Application. If Container is specified, the container will automatically perform authentication (sign-on or login) to use the
resource, as specified at deployment time. If Application is specified, the bean itself must perform authentication before
using the resource. Here's how a bean might sign on to a connection factory when Application is specified for <res-auth>:

InitialContext jndiContext = new InitialContext();

DataSource source = (DataSource)

 jndiContext.lookup("java:comp/env/jdbc/titanDB");

String loginName = ejbContext.getCallerPrincipal().getName();

String password = ...; // get password from somewhere

// use login name and password to obtain a database connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// use login name and password to obtain a database connection

java.sql.Connection con = source.getConnection(loginName, password);

18.5.6.1 Additional administered objects

In addition to the resource factory described in the <resource-ref> element, some resources may have other
administered objects that need to be obtained from the JNDI ENC. An administered object is a resource that is
configured at deployment time and managed by the EJB container at runtime. For example, to use JMS, the bean
developer must obtain both a JMS factory object and a destination object:

TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/ejb/TicketTopic");

Both the JMS factory and destination are administered objects that must be obtained from the JNDI ENC. The <resource-
ref> element declares the JMS factory, while the <resource-env-ref> element declares the destination:

<resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

<resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

<resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>

At deployment time, the deployer maps the JMS TopicConnectionFactory or QueueConnectionFactory and the Topic or Queue
declared by the <resource-ref> and <resource-env-ref> elements to a JMS factory and topic.

18.5.6.2 Shareable resources

When several enterprise beans in a unit-of-work or transaction all use the same resource, you will want to configure
your EJB server to share that resource. Sharing a resource means that each enterprise bean will use the same
connection to access the resource (e.g., database or JMS provider), a strategy that is more efficient than using separate
resource connections.

In the TravelAgent EJB, the bookPassage() method uses the ProcessPayment EJB and the Reservation EJB to book a
passenger on a cruise. If the enterprise beans use the same database, they should share their resource connection for
efficiency. Enterprise JavaBeans containers share resources by default, but resource sharing can be turned on or off
explicitly with the <resource-ref> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explicitly with the <resource-ref> element:

<resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

<res-sharing-scope> is an optional element that may be declared as either Shareable, indicating that connections should be
shared in local transactions, or Unshareable, indicating that they should not. If it is not specified, the default is Shareable.

Occasionally, advanced developers may run into situations where resource sharing is not desirable, and having the
option to turn off resource sharing is beneficial. Unless you have a good reason for turning off resource sharing, I
recommend that you use Shareable resources.

18.5.7 The <service-ref> Deployment Element (EJB 2.1)

EJB 2.1 includes a new element, <service-ref>, that is used to bind a JAX-RPC Service to the JNDI ENC. The modified
TravelAgent EJB declares a <service-ref> element that looks like this:

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:chargeIt="http://charge-it.com/Processor"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 ...

 <service-ref>

 <service-ref-name>service/ChargeItProcessorService</service-ref-name>

 <service-interface>com.charge_it.ProcessorService</service-interface>

 <wsdl-file>META-INF/wsdl/ChargeItProcessor.wsdl</wsdl-file>

 <jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>

 <service-qname>chargeIt:ProcessorService</service-qname>

 </service-ref>

 ...

 </session>

 </enterprise-beans>

 ...

</ejb-jar>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</ejb-jar>

The <service-ref-name> element declares the JNDI ENC lookup name of the JAX-RPC Service: it is always relative to the
"java:comp/env" context. For more details about various web service deployment descriptors, see Chapter 15.

18.5.8 Security Roles

The <security-role-ref> element defines the security roles that are used by a bean and maps them into the security roles
that are in effect for the runtime environment. It can contain three subelements: an optional <description>, a <role-
name> (required), and an optional <role-link>.

Here's how security roles are defined. When a role name is used in the EJBContext.isCallerInRole(String roleName) method,
the role name must be statically defined (it cannot be derived at runtime) and it must be declared in the deployment
descriptor using the <security-role-ref> element:

<-- security-role-ref declaration for Account bean -->

<entity>

 <ejb-name>AccountEJB</ejb-name>

 ...

 <security-role-ref>

 <description>

 The caller must be a member of this role in

 order to withdraw over $10,000

 </description>

 <role-name>Manager</role-name>

 <role-link>Administrator</role-link>

 </security-role-ref>

 ...

</entity>

The <role-name> defined in the deployment descriptor must match the role name used in the EJBContext.isCallerInRole()
method. Here is how the role name is used in the bean's code:

// Account bean uses the isCallerInRole() method

public class AccountBean implements EntityBean {

 int id;

 double balance;

 EntityContext context;

 public void withdraw(Double withdraw) throws AccessDeniedException {

 if (withdraw.doubleValue() > 10000) {

 boolean isManager = context.isCallerInRole("Manager");

 if (!isManager) {

 // only Managers can withdraw more than 10k

 throw new AccessDeniedException();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 }

 balance = balance - withdraw.doubleValue();

 }

 ...

}

The <role-link> element is optional; it can be used to map the role name used in the bean to a logical role defined in a
<security-role> element in the <assembly-descriptor> section of the deployment descriptor. If no <role-link> is specified, the
deployer must map the <security-role-ref> to an existing security role in the target environment.

18.5.9 Declaring EJB QL Elements

EJB QL statements are declared in <query> elements in an entity bean's deployment descriptor. In the following listing,
you can see that findByName() and ejbSelectShips() methods were declared in the <query> elements of the Cruise EJB
deployment descriptor:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 ...

 <abstract-schema-name>Ship</abstract-schema-name>

 ...

 </entity>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 ...

 <reentrant>False</reentrant>

 <abstract-schema-name>Cruise</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <primkey-field>id</primkey-field>

 <query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>

 <mehod-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1

 </ejb-ql>

 </query>

 <query>

 <query-method>

 <method-name>ejbSelectShips</method-name>

 <method-params></method-params>

 </query-method>

 <result-type-mapping>Remote</result-type-mapping>

 <ejb-ql>

 SELECT OBJECT(s) FROM Ship AS s

 </ejb-ql>

 </query>

 </entity>

 </enterprise-beans>

</ejb-jar>

The <query> element contains two primary elements; the <query-method> element identifies the find method of the
remote or local home interface, and the <ejb-ql> element declares the EJB QL statement. The <query> element binds
the EJB QL statement to the proper find method. The syntax of EJB QL may cause problems for the XML parser; you
may need to wrap the query in a CDATA section. See the sidebar "CDATA Sections" for more details.

When two find methods in the local and remote home interfaces have the same method name and parameters, the
query declaration applies to both methods. The container returns the proper type for each query method: queries that
use the remote home return one or more remote EJB objects, and queries that use the local home return one or more
local EJB objects. This feature allows you to define the behavior of both the local and remote home find methods using
a single <query> element—which is convenient if you want local clients to have access to the same find methods as
remote clients.

The <result-type-mapping> element can be used to declare whether a select method should return local or remote EJB
objects. The value Local indicates that a method should return local EJB objects; Remote indicates remote EJB objects. If
the <result-type-mapping> element is not declared, the default is Local. In the <query> element for the ejbSelectShips()
method, the <result-type-mapping> is declared as Remote, which means the query should return remote EJB object types
(i.e., remote references to the Ship EJB).

Every entity bean that is referenced in an EJB QL statement must have an abstract schema name, which is declared by
the <abstract-schema-name> element. No two entity beans may have the same abstract schema name. In the entity
element that describes the Cruise EJB, the abstract schema name is Cruise, while the Ship EJB's abstract schema name
is Ship. The <ejb-ql> element contains an EJB QL statement that uses this identifier in its FROM clause.

In Chapter 7, you learned that the abstract persistence schema of an entity bean is defined by its <cmp-field> and <cmr-
field> elements. The abstract schema name is also an important part of the abstract persistence schema. EJB QL
statements are always expressed in terms of the abstract persistence schemas of entity beans. EJB QL uses the
abstract schema names to identify entity bean types, the container-managed persistence (CMP) fields to identify
specific entity bean data, and the container-managed relationship (CMR) fields to create paths for navigating from one
entity bean to another.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.6 Describing Relationships
CMP entity bean classes are defined using abstract accessor methods that represent virtual persistence and relationship
fields. As discussed in Chapter 6, Chapter 7, and Chapter 8, the fields themselves are not declared in the entity classes.
Instead, the characteristics of these fields are described in the bean's deployment descriptor. The abstract persistence
schema is the set of XML elements in the deployment descriptor that describe the relationship and persistence fields. By
combining the abstract persistence schema with the abstract programming model (i.e., the abstract accessor methods)
and a little help from the deployer, the container tool has enough information to map the entity and its relationships
with other entity beans.

The relationships between entity beans are described in the <relationships> section of the XML deployment descriptor.
The <relationships> section falls between the <enterprise-beans> and <assembly-descriptor> sections. Within the
<relationships> element, each entity-to-entity relationship is defined in a separate <ejb-relation> element:

<ejb-jar>

 <enterprise-beans>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 ...

 </ejb-relation>

 <ejb-relation>

 ...

 </ejb-relation>

 </relationships>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

Defining relationship fields requires that an <ejb-relation> element be added to the XML deployment descriptor for each
entity-to-entity relationship. These <ejb-relation> elements complement the abstract programming model. For each pair
of abstract accessor methods that define a relationship field, there is an <ejb-relation> element in the deployment
descriptor. EJB requires that the entity beans in a relationship be defined in the same XML deployment descriptor.

Here is a partial listing of the deployment descriptor for the Customer and Address EJBs, emphasizing the elements that
define the relationship:

<ejb-jar>

 ...

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CustomerEJB</ejb-name>

 <local-home>com.titan.customer.CusomterLocalHome</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>AddressEJB</ejb-name>

 <local-home>com.titan.address.AddressLocalHome</local-home>

 <local>com.titan.address.AddressLocal</local>

 ...

 </entity>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

</ejb-jar>

All relationships between the Customer EJB and other entity beans, such as the CreditCard, Address, and Phone EJBs,
require that we define an <ejb-relation> element to complement the abstract accessor methods. Every relationship may
have a relationship name, which is declared in the <ejb-relation-name> element. This name is intended for people reading
the deployment descriptor or for deployment tools, but it is not required.

Every <ejb-relation> element has exactly two <ejb-relationship-role> elements, one for each participant in the relationship.
In the previous example, the first <ejb-relationship-role> declares the Customer EJB's role in the relationship. We know
this because the <relationship-role-source> element specifies the <ejb-name> as CustomerEJB, which is the <ejb-name> used
in the Customer EJB's original declaration in the <enterprise-beans> section. The <relationship-role-source> element's <ejb-
name> must always match an <ejb-name> element in the <enterprise-beans> section.

The <ejb-relationship-role> element also declares the cardinality, or multiplicity, of the role. The <multiplicity> element can
be either One or Many. In this case, the Customer EJB's <multiplicity> element has a value of One, which means that
every Address EJB has a relationship with exactly one Customer EJB. The Address EJB's <multiplicity> element also
specifies One, which means that every Customer EJB has a relationship with exactly one Address EJB. If the Customer
EJB had a relationship with many Address EJBs, the Address EJB's <multiplicity> element would be set to Many.

If the bean described by the <ejb-relationship-role> element maintains a reference to the other bean in the relationship,
that reference must be declared as a container-managed relationship field in the <cmr-field> element. The <cmr-field>
element is declared under the <ejb-relationship-role> element:

<ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

</ejb-relationship-role>

EJB requires that the <cmr-field-name> begin with a lowercase letter. For every relationship field defined by a <cmr-field>
element, the bean class must include a pair of matching abstract accessor methods. One method in this pair must be
defined with the method name set<cmr-field-name>(), and the first letter of the <cmr-field-name> must be changed to
uppercase. The other method is defined as get<cmr-field-name>(), also with the first letter of the <cmr-field-name> in
uppercase. In this example, the <cmr-field-name> is homeAddress, which corresponds to the getHomeAddress() and
setHomeAddress() methods defined in the CustomerBean class:

// bean class code

public abstract void setHomeAddress(AddressLocal address);

public abstract AddressLocal getHomeAddress();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract AddressLocal getHomeAddress();

// XML deployment descriptor declaration

<cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

</cmr-field>

The <cascade-delete> element requests cascade deletion; it can be used with one-to-one or one-to-many relationships. It
is always declared as an empty element: <cascade-delete/>. <cascade-delete> indicates that the lifetime of one entity
bean in a particular relationship depends upon the lifetime the other entity bean in the relationship. Here's how to
modify the relationship declaration for the Customer and Address EJBs to obtain a cascade delete:

<relationships>

 <ejb-relation>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

 <role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

 <cascade-delete/>

 <role-source>

 <dependent-name>Address</dependent-name>

 </role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

With this declaration, the Address EJB will be deleted automatically when the Customer EJB that refers to it is deleted.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

18.7 Describing Bean Assembly
At this point, we have said just about all that can be said about the bean itself. We are now ready to describe how the
beans are assembled into an application. That is, we are ready to talk about the other major element inside the <ejb-
jar> element: the <assembly-descriptor>.

The <assembly-descriptor> element is optional, though it is difficult to imagine a bean being deployed successfully without
one. When we say that the <assembly-descriptor> is optional, we really mean that a developer whose only role is to
create enterprise beans (for example, someone who is developing beans for use by another party and who has no role
in deploying the beans) can omit this part of the deployment descriptor. The descriptor is valid without it—but someone
will almost certainly have to fill in the assembly information before the bean can be deployed.

The <assembly-descriptor> serves three purposes: it describes the transaction attributes of the bean's methods; it
describes the logical security roles that are used in the method permissions; and it specifies the method permissions
(i.e., which roles are allowed to call each of the methods). To this end, an <assembly-descriptor> can contain three kinds
of elements, each of which is fairly complex in its own right. These are:

<container-transaction> (zero or more)

This element declares which transaction attributes apply to which methods. It contains an optional <description>
element, one or more <method> elements, and exactly one <trans-attribute> element. Entity beans must have
<container-transaction> declarations for all remote and home interface methods. Session beans that manage their
own transactions will not have <container-transaction> declarations. This element is discussed in more detail in
the next section.

<security-role> (zero or more)

This element defines the security roles that are used to access the bean. These security roles are used in the
<method-permission> element. A <security-role> element contains an optional description and one <role-name>.
This element and the <method-permission> element are described in more detail in the "Specifying Security Roles
and Method Permissions" section.

<method-permission> (zero or more)

This element specifies which security roles are allowed to call one or more of a bean's methods. It contains an
optional <description> element, one or more <role-name> elements, and one or more <method> elements. It is
discussed in more Specifying Security Roles and Method Permissions, along with the <security-role> element.

The <container-transaction> and <method-permission> elements both rely on the ability to identify particular methods. This
can be a complicated affair, given features of the Java language such as method overloading. The <method> element is
used within these tags to identify methods; it is described at length in the "Identifying Specific Methods" section.

18.7.1 Specifying a Bean's Transaction Attributes

The <container-transaction> elements are used to declare the transaction attributes for all the beans defined in the
deployment descriptor. A <container-transaction> element maps one or more bean methods to a single transaction
attribute, so each <container-transaction> specifies one transaction attribute and one or more bean methods.

The <container-transaction> element includes a single <trans-attribute> element, which can have one of six values:
NotSupported, Supports, Required, RequiresNew, Mandatory, and Never. These are the transaction attributes we discussed in
Chapter 14. In addition to <trans-attribute>, the <container-transaction> element includes one or more <method> elements.

The <method> element itself contains at least two subelements: an <ejb-name> element, which specifies the name of the
bean, and a <method-name> element, which specifies a subset of the bean's methods. The value of the <method-name>
can be a method name or an asterisk (*), which acts as wildcard for all the bean's methods. A lot more complexity is
involved in handling overloading and other special cases, but we'll discuss the rest later.

To see how the <container-transaction> element is typically used, let's look again at the Cabin EJB. Assume that we want
to give the transaction attribute Mandatory to the create() method; all other methods use the Required attribute:

<container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 </method>

 <trans-attribute>Mandatory</trans-attribute>

</container-transaction>

In the first <container-transaction>, we have a single <method> element that uses the wildcard character (*) to refer to all
of the Cabin EJB's methods. We set the transaction attribute for these methods to Required. Then, we have a second
<container-transaction> element that specifies a single method of the Cabin EJB: create(). We set the transaction attribute
for this method to Mandatory. This setting overrides the wildcard setting; in <container-transaction> elements, specific
method declarations always override more general declarations.

For entity beans, the following methods must be assigned transaction attributes:

All business methods defined in the remote interface (and all superinterfaces)

Create methods defined in the home interface

Find methods defined in the home interface

Home methods defined in the home interface

Remove methods defined in the EJBHome and EJBObject interfaces

And for session beans, the following methods must be assigned transactional attributes:

All business methods defined in the remote interface (and all superinterfaces)

For session beans, only the business methods have transaction attributes; the create and remove methods in session
beans do not have transaction attributes.

The ejbSelect() methods do not have their own transaction attributes. ejbSelect() methods always propagate the
transaction of the methods that call them.

18.7.2 Specifying Security Roles and Method Permissions

Two elements define logical security roles and specify which roles can call particular bean methods. The <security-role>
can contain an optional <description>, plus a single <role-name> that provides the name. An <assembly-descriptor> can
contain any number of <security-role> elements.

It is important to realize that the security role names are not derived from a specific security realm. These security role
names are logical; they are simply labels that can be mapped to real security roles in the target environment at
deployment time. For example, the following <security-role> declarations define two roles—everyone and administrator:

<security-role>

 <description>

 This role represents everyone who is allowed read/write access

 to existing Cabin EJBs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 to existing Cabin EJBs.

 </description>

 <role-name>everyone</role-name>

</security-role>

<security-role>

 <description>

 This role represents an administrator or manager who is allowed

 to create new Cabin EJBs. This role may also be a member

 of the everyone role.

 </description>

 <role-name>administrator</role-name>

</security-role>

These role names might not exist in the environment in which the beans will be deployed. There's nothing inherent in
everyone that gives it fewer (or greater) privileges than an administrator. It is up to the deployer to map one or more
roles from the target environment to the logical roles in the deployment descriptor. For example, the deployer may find
that the target environment has two roles, DBA (database administrator) and CSR (customer service representative),
which map to the administrator and everyone roles defined in the <security-role> element.

18.7.2.1 Assigning roles to methods

Security roles would not be worth much if you couldn't specify what the roles were allowed to do. That's where the
<method-permission> element comes in. This element maps the security roles to methods in the remote and home
interfaces of the bean. A <method-permission> is a flexible declaration that allows a many-to-many relationship between
methods and roles. It contains an optional <description>, one or more <method> elements, and one or more <role-name>
elements. The names specified in the <role-name> elements correspond to the roles that appear in the <security-role>
elements.

Here's one way to set method permissions for the Cabin EJB:

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

 </method>

</method-permission>

In this example, the administrator role has access to all methods in the Cabin EJB. The everyone role has access only to
the getDeckLevel() method—it cannot access any of the other methods of the Cabin EJB. Note that the specific method
permissions are combined to form a union. The getDeckLevel() method, for example, is accessible by both the
administrator and everyone roles. Once again, we still do not know what administrator and everyone mean. The person

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

administrator and everyone roles. Once again, we still do not know what administrator and everyone mean. The person
deploying the bean, who must map these logical security roles to real security roles defined in the target environment,
defines them.

All the methods defined in the remote or home interface and all superinterfaces, including the methods defined in the
EJBObject and EJBHome interfaces, can be assigned security roles in the <method-permission> elements. Any method that
is excluded will not be accessible by any security role.

18.7.2.2 Unchecked methods

A set of methods can be designated as unchecked, which means that security permissions are not checked before the
method is invoked. Any client can invoke an unchecked method, no matter what role it is using.

To designate a method or methods as unchecked, use the <method-permission> element and replace the <role-name>
element with an empty <unchecked> element:

<method-permission>

 <unchecked/>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

This declaration tells us that all the methods of the Cabin EJB, as well as the Customer EJB's findByPrimaryKey() method,
are unchecked. Although the second <method-permission> element gives the administrator permission to access all the
Cabin EJB's methods, this declaration is overridden by the unchecked method permission. Unchecked method
permissions always override all other method permissions.

18.7.2.3 The runAs security identity

In addition to specifying the Principals that have access to an enterprise bean's methods, the deployer can also specify
the runAs Principal for the entire enterprise bean. The runAs security identity was originally specified in EJB 1.0, but was
abandoned in EJB 1.1. It has been reintroduced in EJB 2.0 and modified so that it is easier for vendors to implement.

While the <method-permission> elements specify which Principals have access to the bean's methods, the <security-identity>
element specifies the Principal under which the method will run. In other words, the runAs Principal is used as the
enterprise bean's identity when it tries to invoke methods on other beans—and this identity isn't necessarily the same
as the identity that's currently accessing the bean. For example, the following deployment descriptor elements declare
that the create() method can be accessed only by JimSmith, but that the Cabin EJB always runs under the Administrator
security identity:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

security identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>EmployeeService</ejb-name>

 ...

 <security-identity>

 <run-as>

 <role-name>Administrator</role-name>

 </run-as>

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

<assembly-descriptor>

 <security-role>

 <role-name>Administrator</role-name>

 </security-role>

 <security-role>

 <role-name>JimSmith</role-name>

 </security-role>

 ...

 <method-permission>

 <role-name>JimSmith</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 </method>

 </method-permission>

 ...

</assembly-descriptor>

To specify that an enterprise bean will execute under the caller's identity, the <security-identity> role contains a single
empty element, <use-caller-identity/>. The following declarations specify that the Cabin EJB always executes under the
caller's identity, so if Jim Smith invokes the create() method, the bean will run under the JimSmith security identity:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

caller's identity, so if Jim Smith invokes the create() method, the bean will run under the JimSmith security identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>EmployeeService</ejb-name>

 ...

 <security-identity>

 <use-caller-identity/>

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

The use of <security-identity> applies to entity and stateless session beans. Message-driven beans have only a runAs
identity; they never execute under the caller identity, because there is no "caller." The messages that a message-driven
bean processes are not considered calls, and the clients that send them are not associated with the messages. With no
caller identity to propagate, message-driven beans must always have a runAs security identity specified.

18.7.2.4 Exclude list

The last element of the <assembly-descriptor> is the optional <exclude-list> element. The <exclude-list> element contains a
<description> and a set of <method> elements. Every method listed in the <exclude-list> should be considered uncallable,
which means that the deployer needs to set up security permissions for those methods so that all calls, from any client,
are rejected. Remote clients should receive a java.rmi.remoteException and local clients should receive a
javax.ejb.AccessLocalException:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <exclude-list>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

 </method>

 <method>

 ...

 </method>

 </exclude-list>

 </assembly-descriptor>

</ejb-jar>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.7.3 Identifying Specific Methods

The <method> element is used by the <method-permission> and <container-transaction> elements to specify a specific
group of methods in a particular bean. The <method> element always contains an <ejb-name> element that specifies the
bean's name and a <method-name> element that specifies the method. It may also include a <description> element,
<method-params> elements that specify which method parameters will be used to resolve overloaded methods, and a
<method-intf> element that specifies whether the method belongs to the bean's home, remote, local home, or local
interface. This last element takes care of the possibility that the same method name might be used in more than one
interface.

18.7.3.1 Wildcard declarations

The method name in a <method> element can be a simple wildcard (*). A wildcard applies to all methods of the bean's
home and remote interfaces. For example:

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

</method>

Although it's tempting to combine the wildcard with other characters, don't. The value get*, for example, is illegal. The
asterisk character can be used only by itself.

18.7.3.2 Named method declarations

Named declarations apply to all methods defined in the bean's remote and home interfaces that have the specified
name. For example:

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

</method>

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

</method>

These declarations apply to all methods with the given name in both interfaces. They do not distinguish between
overloaded methods. For example, if the home interface for the Cabin EJB is modified so that it has three overloaded
create() methods, as shown here, the previous <method> declaration would apply to all three methods:

public interface CabinHome javax.ejb.EJBHome {

 public Cabin create() throws CreateException, RemoteException;

 public Cabin create(int id) throws CreateException, RemoteException;

 public Cabin create(int id, Ship ship, double [][] matrix)

 throws CreateException, RemoteException;

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.7.3.3 Specific method declarations

Specific method declarations use the <method-params> element to pinpoint a specific method by listing its parameters,
allowing you to differentiate between overloaded methods. The <method-params> element contains zero or more
<method-param> elements that correspond, in order, to each parameter type (including multidimensional arrays)
declared in the method. To specify a method with no arguments, use a <method-params> element with no <method-
param> elements nested within it.

For example, let's look again at our Cabin EJB, to which we have added some overloaded create() methods. Here are
three <method> elements, each of which unambiguously specifies one of the create() methods by listing its parameters:

<method>

 <description>Method: public Cabin create(); </description>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 <method-params></method-params>

</method>

<method>

 <description>Method: public Cabin create(int id);</description>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 <method-params>

 <method-param>int</method-param>

 </method-params>

</method>

<method>

 <description>

 Method: public Cabin create(int id, Ship ship, double [][] matrix);

 </description>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 <method-params>

 <method-param>int</method-param>

 <method-param>com.titan.ship.Ship</method-param>

 <method-param>double [][]</method-param>

 </method-params>

</method>

18.7.3.4 Remote/home/local differentiation

There's one problem left. The same method name can be used in the home interface, the local home interface, the
remote interface, and the local interface. To resolve this ambiguity, add the <method-intf> element to a method
declaration as a modifier. Four values are allowed for a <method-intf> element: Remote, Home, LocalHome, Local, and
ServiceEndpoint.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ServiceEndpoint.

In practice, it is unlikely that a good developer would use the same method names in both home and remote interfaces:
it would lead to unnecessarily confusing code. However, you would expect to see the same names in the local, remote,
and possibly endpoint interfaces, or the home and local home interfaces. It is also likely that you will need the <method-
intf> element in a wildcarded declaration. For example, the following declaration specifies all the methods in the remote
interface of the Cabin EJB:

<method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 <method-intf>Remote</method-intf>

</method>

All these styles of method declarations can be used in any combination, within any element that uses the <method>
element. The <method-permission> elements are combined to form a union of role-to-method permissions. For example,
in the following listing the first <method-permission> element declares that the administrator has access to the Cabin EJB's
home methods (create and find methods). The second <method-permission> specifies that everyone has access to the
findByPrimaryKey() method. This means both roles (everyone and administrator) have access to the findByPrimaryKey()
method:

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 <method-intf>Home</method_intf>

 </method>

</method-permission>

<method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 18. XML Deployment Descriptors
This chapter teaches you how to write XML deployment descriptors for your beans. You may never need to write a
deployment descriptor by hand: most vendors of integrated development tools and EJB servers provide tools for
creating the descriptor automatically. Even if you have such a tool available, however, you must be familiar with
deployment descriptors: the ability to read a deployment descriptor is an essential skill. This chapter does not attempt
to teach you how to read or write correct XML. There are many books on the subject: XML Pocket Reference by Bob
Eckstein (O'Reilly) is a good quick reference; XML in a Nutshell, by Elliotte Rusty Harold and W. Scott Means (O'Reilly),
provides a more detailed treatment.

Very briefly, XML looks like HTML, but with different tag names and attributes inside the tags. You won't see <h1> and
<p> inside a deployment descriptor; instead, you'll see tags like <ejb-jar>. But if you're familiar with the structure of
HTML, you're most of the way towards reading XML. The tag names and attribute names for an XML document are
defined by a special document called an XML Schema Definition (XSD). (EJB 2.0 used an older kind of definition
document called a Document Type Definition (DTD)). An XSD or DTD defines the tags and attributes that can be used in
a deployment descriptor, as well; the XSDs for deployment descriptors in EJB 2.1 and the DTDs for EJB 2.0 are
available online at http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd (EJB 2.1) and http://java.sun.com/dtd/ejb-
jar_2_0.dtd (EJB 2.0).

There are other important differences between XML and HTML. XML is much more strict; many things that are
acceptable in HTML are errors in XML. This should not make a difference if you're just reading a deployment descriptor,
but if you're writing one, be careful. Two differences are particularly important. First, XML is case-sensitive: you cannot
mix uppercase and lowercase in your tag names. HTML does not care about the difference between <h1> and <H1>, but
XML does. All the tags and attributes used in deployment descriptors are lowercase. Second, XML will not forgive you if
you fail to supply closing tags. In HTML, you can write <p>...<p> without ever putting in a </p> to end the first
paragraph. But XML never allows you to be sloppy. Whenever you have an opening tag, you must also supply a closing
tag.

That's about it. These few paragraphs don't qualify as a real introduction to XML, but the basic ideas are very simple,
and they are all you need to get going.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.1 Pre-Design: Containers and Databases
Before you begin designing your application, it is essential that you consider the execution environment in which your
code is run. The execution environment includes your:

Hardware platform
Operating system
Java Virtual Machine (JVM) implementation
Application server (EJB container)
Database server

Each of these elements has a direct effect on your application design's success. We won't talk about hardware and
operating systems (about which you may have little choice, anyway), and we'll stay away from arguments about who
has a better JVM. We'll focus on the last two issues; they have the greatest effect on EJB application architecture.

19.1.1 Container Capabilities

Which EJB container you choose has a significant effect on your application's implementation and design. Regardless of
your application's functional requirements, spend some time familiarizing yourself with how your application server
works. Ideally, you'd develop that familiarity before choosing your application server.

When learning your container's capabilities, you are trying to find out how the application server's vendor has
implemented its key features. Here are the primary areas on which to focus:

What version of the EJB specification does it implement?

A container that implements the latest (2.1) EJB specification will offer more features (non-JMS MDBs, for
example). However, a container that implements the older (2.0) specification will be more mature.

What vendor-specific functionality or extensions does it implement?

Almost all EJB containers introduce some vendor-specific features. If you choose to use vendor-specific
features, your application will be tied to that vendor's container. Switching to another vendor later may be
costly. While this is often unavoidable (several popular development tools, for example, tie you closely to a
vendor's implementation), there are tools such as XDoclet[1] that help to alleviate some of the risk.

[1] XDoclet is an open source Java tool that allows for attribute-driven development. See
http://xdoclet.sourceforge.net/ for more information.

How does the container's design or implementation affect performance?

Because every vendor's implementation of the EJB spec is unique, containers from different vendors will
perform differently. If possible, research the performance of your various container options specifically for the
functionality you need before choosing.

Most vendors do a good job of implementing the specification, and it's relatively easy to move from one vendor to
another. But don't walk into the EJB arena with your eyes closed. Ask the same kinds of questions that you would ask
for any other major software purchase, and you'll be okay.

19.1.2 Database Capabilities

While we place a lot of emphasis on the EJB container, the database server is just as influential on the overall system.
Although the EJB container isolates you from the database, the database is still there, and every data-related function
depends on it.

The most critical function of a database is to ensure that data is available and consistent. Availability and consistency
are qualities that depend on how your application uses transactions and how the database implements transactions.[2]

When investigating how your database implements transactions, your primary concern should be the database's
locking, isolation levels, and other resource management. Here are some questions to ask:

[2] Transactions are discussed in Chapter 16.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What transaction isolation levels does the database support?

While most databases support the four isolation levels discussed in Chapter 16 (read uncommitted, read
committed, repeatable read, and serializable), there are some that do not. For example, PostgreSQL 7.3.x[3]

offers only read committed and serializable.

[3] The most recent version of PostgreSQL at the time this was written.

What are the lock types and lock scopes? What factors influence them?

Lock scope is the number of rows that are protected when a lock is enacted. Depending on the vendor, the
database may lock only the rows used by the transaction, blocks of rows (pages) that contain the rows used, or
the entire table. The more rows are protected, the more likely it is that another process won't be able to access
the data it needs. If such contention occurs, the other process will either fail or wait until the lock is released.

As for what factors influence lock types and lock scopes, the database may "promote" locks under certain
situations, such as if a query cannot use an index. This could mean that a nonexclusive write lock becomes an
exclusive write lock or that a row-specific lock becomes a table-wide lock, should an index on that table not be
usable in the write.

How are database resources handled within a transaction?

During a transaction, especially a multi-step transaction, the database has certain resources that it must
manage; a good example is the number of open cursors involved in executing the transaction. Depending on
how the database handles reclaiming those open cursors, a series of database operations that work fine outside
a transaction may not work at all when included in a transaction because needed cursors are left committed
until after the end of the last operation. In this case, large, multi-step, iterative processes ("batch" processes)
can hit the maximum number of open cursors and fail. Knowing how your database manages resources like
open cursors can help you plan your transaction structure to ensure success.

Obviously, there is more involved in the selection of a database server for your application/system than we've described
here. However, these issues all have direct ramifications on your EJB application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.2 Design
In this section, we go through the process of designing several EJBs. While the design process of an EJB application is
95% identical to the design process for a non-EJB application (maybe even 99% identical), there are some steps in this
process that require special attention.

To discuss design, we need to change our thinking a bit. Throughout this book, we have focused the details of EJBs and
how their individual components work. In this section, we consider the Titan EJB application as a system meeting a
business need, and not simply as a collection of fine-grained components. We will look at the design of such a system
from the ground up, taking the application—as a whole—rather than continuing to view only the EJB components
themselves (though we'll obviously pay special attention to those components, since this is a book on EJBs). Let's start
by looking at its requirements.

At a high level, the application will be used by:

Travel agents to sell reservations

The general public to view cruise details

Cruise administrators to manage the application's ship and cruise data

The application will be accessed via three mechanisms. The first two mechanisms are for "person" users (as opposed to
"system" users, described below):

Web interface (general public, travel agents, and cruise administrators)

Standalone Java application (travel agents)

The third access mechanism is for systems that need direct access to the business layer. For our application, this
includes access by:

External travel agency systems (which includes both travel agents not working for Titan and reservation
distribution services that act as clearing houses for cruise line availability)

Ship provisioning companies that need to know physical specifications for Titan's ships in order to provide auto-
ordering of provisions (ship capacity, fuel type, and so on)

All three communications mechanisms (web client, standalone application, and business-to-business) must allow only
secure actions to be executed by the users. Connectivity to the external travel agencies and to the ship provisioning
vendors is not guaranteed, so the communication mechanism will need to handle disconnects. Finally, we want to
generate reservation confirmations and other forms in PDF format. Figure 19-1 is a system diagram for our
requirements so far.

Figure 19-1. Application system diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.1 Business Entity Identification

Now that we know our application's requirements, at least at a high level, we can identify the key business entities the
application needs to represent. This is generally a lengthy process, and we will only go over some of the results here.
While in our example this is presented as a step-by-step, one-time process, it is really iterative. You will probably take a
first stab at identifying business entities, and then go through the process again and again before having a final list of
all your business entities.

Here are some of the business entities for the Titan application:

Reservation

Reservations are created by Travel Agents and belong to a Customer. They are associated with a Cruise and
zero or more Cabins. A Reservation has a financial subtotal.

Travel Agent

Travel Agents create and update Reservations and view Cruise information. Travel Agents are a kind of Person.

Customer

A Customer is also a kind of Person. Customers have zero or more Reservations.

Ship

A Ship has zero or more Cabins and belongs to zero or more Cruises.

Cruise

A Cruise has a Ship and a date period and is associated with zero or more Reservations.

Cabin

A Cabin belongs to a Ship and is associated with zero or more Reservations. All associated Reservations must
have a Cruise with a Ship that matches the Ship for the Cabin on the Reservation.

There's more structure to this list than is immediately apparent. It follows a number of guidelines that help reveal the
important aspects of each entity:

Capitalization

Business entities are capitalized, while simpler pieces of information (date period, subtotal) are not.

"Kind of," "belongs," "has," "is associated with"

These phrases indicate fundamental connections between two entities. We have guessed at specific connection
types for now, though the reality may change as we proceed. "Kind of" may indicate inheritance. "Has" and
"have" may indicate that an entity is the parent in a parent/child relationship, while "belongs" may indicate that
the entity is a child of another entity. "Is associated with" is a relationship too, but with a weaker sense of
ownership (i.e., not parent-child).

Concrete verbs

There are three concrete verbs (create, update, and view), all in the description of the Travel Agent business
entity. These verbs indicate processes or significant responsibilities handled by the entity.

Since we focus on the components that will end up being EJBs, our functional analysis is complete: selecting business
entities is the most important part of the EJB design process.[4]

[4] Business entity identification is part of a complete functional analysis. There is a great deal more involved in
functional analysis for an application: user interface comps, lists of fields or attributes for each entity, and
nonfunctional requirements (the number of users, usage patterns, and so on) are all examples of additional items
you may need to include in a functional analysis in order to design the complete application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you may need to include in a functional analysis in order to design the complete application.

The next step is to look at the technical architecture and its implications for our entities. We'll get to that in just a
moment. First, let's take a moment to diagram our business entities using UML so that we have a clear understanding
of their relationships. While the textual descriptions help define the business relationships, a UML diagram depicts them
more exactly. Figure 19-2 is a UML diagram of our business entities and their relationships.

Figure 19-2. UML diagram of the application's business entities

The UML diagram introduces a Person entity from which we will derive both the TravelAgent and Customer entities.
We've also introduced a mapping entity for mapping Reservation entities to Cabin entities. Otherwise, the UML diagram
states exactly what we described earlier in the text.

The next step is to consider which entities to implement as EJBs, and what types of EJBs to use. But first, it will help to
understand the architecture of the system as aspects of that technical architecture will have direct implications on our
entity implementation choices.

19.2.2 Technical Architecture

Earlier, we depicted our system in a high-level diagram (Figure 19-1). This diagram depicts relationships among various
entities and our system, but not much more. What else do we know about the various interactions of these entities and
our Titan application?

1. We know that connectivity between the external travel agencies and our system is not guaranteed. Since we
are working with a Java implementation of this system, we may want to consider JMS as the communication
mechanism between our system and theirs.

2. Furthermore, we know that communication between our application and external travel agencies will be two-
way (our application must be able to accept reservation requests), but communication between our application
and the shop provision entities need only be one way (we will tell them how many people are attending a
cruise, for example).

3. From our initial description we can infer that making reservations is transactional and involves the following
steps:

Reserve a Cabin for use by a Customer.

Reduce the total number of Cabins by one.

Increase the total number of Customers for whom the provisioning vendor must provide food.

4. These steps could involve up to three different database tables. At a minimum, this might involve the following
database objects and systems:

One to store Reservations.

One to store Cabin availability.

One to store Customer information for provisioning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One to store Customer information for provisioning.

While the complexity of these operations is not clearly defined, we can assume that reservations systems and
the management of cruise and ship data are probably of moderate to high complexity. When combined with the
need for transactional enforcement and the fact that only certain users will be able to execute certain actions
(implied), using EJBs to represent the entities is appropriate.

5. We know that customers and travel agents will be able to access the Titan application over the web. This
indicates that part of our system will involve controlling a user interface. EJBs are not well suited to user-
interface work, so we'll include the use of servlets and JSPs in our system view.

6. We also know that travel agents will be able to further access the system via a standalone Java application,
indicating that some of the communications with the business tier of our application might not come via the
Web.

Using this information, our technical system diagram can be amended as shown in Figure 19-3.

Figure 19-3. Amended system diagram

While it may not look like it at first, we've gotten much closer to identifying our EJBs. Between the new architecture
diagram and our business entity UML diagram, we have all we need to move forward.

19.2.3 EJB Identification

Not all of our business entities will turn out to be EJBs, so the next step in our design process is to identify which of
them should. Our understanding of the application's technical architecture helps. This is not a simple or well-defined
process, like completing a jigsaw puzzle or building a bridge. For all but the simplest of applications, the process of
identifying EJBs in the application's technical architecture presents ambiguity and conflicting requirements. It's not easy
to make the right choices. Fortunately, there are several rules of thumb that will help guide the process.

Let's quickly review the EJB types:

Entity beans

Represent records persisted in a database. Entity beans can often be used to represent the nouns or things
from our functional description. If a business entity has a real-world counterpart, it is probably an entity bean.

Session beans

Manage processes or tasks, often calling other EJBs and non-EJB business objects. Represent taskflows. They
are invoked locally or via RMI, both synchronous mechanisms.

Message-driven beans

Manage processes or tasks, like session beans, but are invoked asynchronously, via JMS or possibly another
messaging system. A message is received by the system and some function of the MDB is executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messaging system. A message is received by the system and some function of the MDB is executed.

19.2.3.1 Identifying entity beans

With these characteristics in mind, let's start out by identifying entity beans in our application.

Guideline #1

The description of entity beans gives us our first guideline: entity beans represent the entities (significant
nouns) from the functional requirements. They are rows in a database table.

Our class diagram was created from the list of business entities in our functional analysis, which are essentially the
things in our functional requirements. We know right away that the components in the diagram are all candidates for
implementation as entity beans. However, not all of them should be implemented as entity beans. Entities that are
read-only may be best implemented using one of the EJB alternatives, such as JDBC or JDO. Read-only entity beans
can take advantage of caching and other vendor-specific optimizations that your container may offer, but they really
don't need the transaction enforcement that EJB provides.

Other factors to bear in mind when making this decision are your team's skill set, the performance ramifications of the
options, and the relative amount of functionality implemented in the options.

You should also avoid logical inheritance with entity beans, in which one entity bean, Customer, is a subclass of another
entity bean, Person, and could be cast to the parent's type. While inheritance works all right for sharing common EJB
implementation code between different EJBs (see the "Base and Utility Classes" section below), never try to implement
logical inheritance with entity beans. The most important reason to avoid logical inheritance derives from the fact that
entity beans correspond to rows in a database table, and inheritance, as an object-oriented concept, is foreign to the
database world. You can't define tables CUSTOMER and TRAVEL_AGENT to inherit the attributes of a third PERSON table.
Moving back to our entity beans, our best option is to remove the inheritance relationship and replace it with a
composition relationship, which is functionally equivalent. Which brings us to the next guideline.

Guideline #2

Guideline #2 involves using composition between entity beans instead of logical inheritance. This means the
Customer and TravelAgent entity beans will have a corresponding Person entity bean. Figure 19-4 shows the
updated class diagram.

Figure 19-4. Updated class diagram

19.2.3.2 Identifying session beans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.3.2 Identifying session beans

While entity beans are the things in our application, session beans implement taskflow. They are the processors and
workhorses; they do stuff. We will identify them by considering the work that our application must do, and a good
starting place is the responsibilities depicted in the class diagram.

Looking over the class diagram, we see TravelAgent has the following responsibilities:

Views Cruises

Creates and updates Reservations

Creates and updates Customers

In any application, functionality seems to clump around one or more entities. Such a grouping of responsibilities often
indicates that a session bean is needed. And this gives us the next guideline.

Guideline #3

Each session bean encapsulates access to data that spans concepts as identified in the functional requirements
analysis and initial technical architecture. So, when we see the clumping, as we do with TravelAgent in our class
diagram, we know that a new session bean needs to be added to the design. However, the business entity (or
actor)—TravelAgent, in this case—will not become the session bean. It indicates where a session bean is needed.
The session bean represents the action the entity takes, not the entity itself. Think of the entity—implemented
as an entity bean—as the subject of a sentence and the session bean as the sentence's verb.[5]

[5] To extend the metaphor, the direct objects of the sentence will be the other entity beans (or possibly
even session beans) that will be used by the session bean when it executes. This approach is the starting
point from which we evolve the Session Façade design pattern, in which session beans encapsulate a
taskflow that uses one or more components.

As for the name for the session bean, a good way to think of it is to create a name that reflects a combination of the
target of the action and the action itself. For example, the TravelAgent creates and updates or "manages" Reservations, so
a good name for our session bean might be ReservationManager. The primary objective of the name is to communicate
what the session bean does. As the session bean encapsulates the responsibilities, each responsibility corresponds to a
method in the EJB. So, our ReservationManager session bean will initially have three methods: bookReservation,
updateReservation, and cancelReservation. These names are also named intuitively, to suggest what they do.

If we follow this line of reasoning, we may think we need to have a separate session bean called a CruiseManager.
However, the only interaction the TravelAgent has with a Cruise is to list it. Furthermore, it could be argued that in the
overwhelming majority of the cases, the TravelAgent will only list Cruises when making a Reservation. For these reasons, it
might make more sense to combine the Cruise functionality and simply add a new listCruises method to the
ReservationManager.

The listCruises method stands apart from the other methods a bit, both in effect (it reads data while the other methods
write data) and in direct object (it returns a collection of cruises while the other methods manipulate a single
reservation).This suggests Guideline #4.

Guideline #4

If a given session bean has a method that's almost always called in the context of another session bean's
function(s), combine the session beans or move the method.

We have now accounted for all the responsibilities depicted in the class diagram, but we haven't accounted for all the
functionality specified in the functional requirements. Creating the initial class diagram from the business entities
initially misses functionality that has no "source" entity. For example, we've focused only on the reservations and the
actions and entities around them. However, a reservation involves a Cruise that has certain characteristics. Some part
of our application must be available to administer these Cruises. Cruises are made up of Cabins and Ships. Our
administration functionality should focus on the management of all three entities: Cruise, Ship, and Cabin.

Our application revolves around travel agency functionality, but without the configuration of the cruises themselves, the
travel agency functionality (creation of reservations, and so on) would be meaningless. Let's add a general session bean
around this and other (to be determined) configuration chores. While we may need to break this into multiple session
beans later, we can start with one called ConfigurationManager.

Here too, we want to give it methods based on the functionality it encapsulates. Since no taskflows are detailed above,
we will assume that all three items need to be created, updated, and deactivated. Thus, these actions (for the three
entities) become nine initial methods:

addCruise

updateCruise

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updateCruise

cancelCruise

addShip

updateShip

inactivateShip

addCabin

updateCabin

inactivateCabin[6]

[6] Most developers would expect to see "deleted" instead of "inactivated," but we have found that it is
more prudent not to let the business tier delete configuration data (and possibly all application data).
Instead, data should be deactivated by the business tier, and deleted only during archival or export to a
data warehouse, according to an agreed upon process.

We can now expand our entity diagram into the class diagram of Figure 19-5.

Figure 19-5. Entity diagram expanded into a class diagram

19.2.3.3 Identifying message-driven beans

Now we need to look for the message-driven beans in the application. As our review of the EJB types reminds us,
message-driven beans (MDBs) implement taskflows like session beans but can be invoked asynchronously. Roughly put,
they are transactional message handlers.[7]

[7] EJB qualities such as object distribution and role-based security enforcement are irrelevant in this context,
because the MDB has no connection to the message sender.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the MDB has no connection to the message sender.

Guideline #5

Each message-driven bean encapsulates related functionality that must be invoked in a transactional manner
when an asynchronous message is received. So, in order to tell where we might want to use message-driven
beans—the same as with session beans—we look for groups of functionality. However, for MDBs the
functionality is usually initiated with the reception of an asynchronous message.

Here's where our system architecture diagram helps us. There are two places where messaging takes place between
our system and another (ostensibly external) system:

Between external travel agencies and the Titan application

Between ship provisioning vendors and the Titan application

As you can see from our functional requirements and the technical architecture diagram, our system receives messages
only from external travel agencies, so we'll focus on the travel agent functionality.

Since we've not been told anything to the contrary, we assume that external travel agent systems function like ours.
Thus, ours should include all the functionality incorporated into ReservationManager. Additionally, the external travel
agencies need some way to retrieve a list of ships and their cabins. This listing ability is included because the external
travel agency systems can only communicate via messaging. This suggests that one or more MDBs could be used to
implement this functionality.

For the Titan application, we will have two MDBs:

ReservationListener

The ReservationListener creates, updates, or cancels one or more reservation in response to a reservation
function message.

QueryListener

The QueryListener retrieves cruise and ship data in response to a query message.

The Naming of MDBs
MDB names, like session bean names, should suggest what the component does. A rule of thumb is to
combine a description of the kind of messages that the MDB receives with the word "Listener."
"Processor" is a common alternative to "Listener," but it is less definitive and thus easier to confuse.

Compare the responsibilities of ReservationListener with those of ReservationManager. The cruise-listing behavior and the
reservation-specific behavior are implemented in separate MDBs. Why? Guideline #4 tells us that if we are only going to
execute a given piece of functionality in the context of a given process, we should combine that function with the
others. This guideline is appropriate for session beans. To add another method to a session bean does not introduce
any complexity to the bean. It's just another method. However, in JMS-based MDB, you have only one onMessage
function. While you can certainly have many different types of messages coming into the queue on which the MDB is
listening, each message type must be processed separately. Each message type adds another significant condition to
the MDB's processing logic. Furthermore, the functionality represented by the various messages for the
ReservationListener will be largely the same, but messages representing queries for cruise information might be different.

While we're talking about JMS-based MDB, it makes sense to discuss the importance of message design. When a
message listener is invoked, the only information it has is the message that it has been passed. In many cases, the
message listener needs specific business information to do its work, and that information is packaged in the message.

Exactly how it is packaged depends on which message type you choose: javax.jms.Message or its subinterfaces
(BytesMessage, MapMessage, ObjectMessage, StreamMessage, and TextMessage). A general rule of thumb is to use
ObjectMessage for messaging between systems that are guaranteed to be Java-based and to use TextMessage for
messaging between potentially non-Java systems. Because ObjectMessage carries a full Java object, the data inside it is
already structured for easy access by the MDB, whereas all but the simplest data embedded in a TextMessage (and the
other types to varying extents) will generally have to be processed before it can be used (by a StringTokenizer, an XML
parser, Integer.parseInt, or something similar).

On the upside, TextMessage (and maybe BytesMessage) is the most universal message type—every messaging system
knows how to send and receive simple text (and also binary data). That said, you should investigate message types and
their trade-offs before making final decisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their trade-offs before making final decisions.

Because we need to accept messages from the greatest variety of external travel agency systems, we will use
TextMessage messages carrying XML payloads. While it requires a heavy XML parser when processing messages, it
provides interoperability benefits that fit our needs.

We've now identified all of the EJBs in our sample application. Figure 19-6 is an updated class diagram.

Figure 19-6. Updated class diagram

19.2.4 EJB Details

Now that we have identified the EJBs in our application along with some of their methods, we are about two-thirds done
with our design. So far, much of the design has flowed almost naturally from our business and technical requirements.
The remaining third of the design is more difficult and requires some hard decisions.

Much of the remaining design work centers on determining each bean's sub-type and interface type (remote or local).
Our application has the following EJBs:

Entity beans

Cabin, Cruise, Customer, Person, Reservation, Ship, TravelAgent

Session beans

ConfigurationManager, ReservationManager

Message-driven beans

QueryListener, ReservationListener

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QueryListener, ReservationListener

We can ignore the MDBs, because they do not have sub-types or interface types—other than javax.jms.MessageListener.
However, we must determine the sub-type and interface type for the remaining EJBs. The attributes are critical to your
application's design, as they dictate the overall usage and implementation of your core business components. For
example, implementing an EJB with a remote interface requires that all invocations of that EJB must catch a
RemoteException. It is not impossible to change these attributes later in your application's lifetime, but it can be difficult.
For example, if we change an EJB from a remote interface to a local interface, we need to review and possibly remove
all the code that was catching RemoteExceptions.

With this in mind, let's determine the sub-type and interface type of our session and entity beans. We start by listing
the decisions, and then discuss the reasoning in the following sections. After reviewing the business and technical
requirements, we implement the EJBs as indicated in Table 19-1.

Table 19-1. Types of session and entity beans
EJB name EJB type EJB sub-type Interface type

Cabin Entity CMP Local

ConfigurationManager Session Stateless Remote and local

Cruise Entity CMP Local

Customer Entity CMP Local

Person Entity CMP Local

Reservation Entity CMP Local

ReservationManager Session Stateless Remote and local

Ship Entity CMP Local

TravelAgent Entity CMP Local

You may have noticed that the two session beans are stateless with remote interfaces, and the entity beans are CMP
with local interfaces. Let's explore how this came about. First, we'll discuss the reasons a particular session bean might
be stateless or stateful.

19.2.4.1 Stateless versus stateful session beans

As their names indicate, the difference between the two sub-types of session beans is the maintenance of state. A
common source of confusion is that we use similar words when we talk about web session state, as with servlets and
other aspects of web-based applications. Session bean state is taskflow-related and should have little or no relation to
the web or presentation tiers of your application. Session bean state is a way of sharing information between multiple
methods of the same session bean. For example, the stateful version of ReservationManager contains the current
Customer, so that it is not passed into the bookReservation, updateReservation, and cancelReservation methods (Figure 19-7).

Figure 19-7. Stateful version of ReservationManager

Contrast that with the stateless version of ReservationManager, in which the current Customer is a parameter for those
methods (Figure 19-8).

Figure 19-8. Stateless version of ReservationManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-8. Stateless version of ReservationManager

The stateful session bean appears more elegant when we need to call bookReservation, updateReservation, or
cancelReservation multiple times. However, that elegance has a cost. Stateful session beans are slower and more
resource intensive than stateless session beans. This makes the choice of stateful session beans a trade-off rather than
a pure benefit.

Perhaps you're thinking, "That's a pretty balanced trade-off." Unfortunately, stateful session beans are not as useful as
they first appear. Remember that stateful session beans share information between multiple methods of the same
session bean. But the methods in the session bean's interface are coarse-grained enough that the application should
only be calling one at any given time. Why would your code call bookReservation and then cancelReservation?

In our example, we wouldn't. However, you will encounter situations where you will need to execute multiple methods
on the same EJB. In that case, you should apply the Session Façade design pattern.[8] In essence, the Session Façade
pattern manages a taskflow, and it can manage information just as a stateful session bean does. Even better, it offers
the same transaction and security management between multiple EJBs. Thus, stateless session beans with the Session
Façade pattern are preferable to stateful session beans.

[8] There are four design patterns that will often be used in the design of EJB applications: Session Façade, Data
Access Object, Transfer Object, and Business Delegate. We will not cover these in detail in this chapter. For more
information, see the Design Patterns section of the Sun Microsystems site at
http://java.sun.com/blueprints/corej2eepatterns/Patterns/.

19.2.4.2 Container-managed versus bean-managed persistence

The decision to use containter-managed or bean-managed persistence for an entity bean determines the bean's
persistence mechanism, affecting the bean's implementation. BMP beans must implement their data access, while CMP
beans are implemented by the container. BMP offers greater flexibility in the datastores your application can use and
how your application integrates with them. CMP beans can only use datastores that the container knows about, usually
those with JDBC drivers. The flexibility of BMP can be essential if you need to integrate with external systems, making a
good match with the Java Connector Architecture. BMP is also an option with entity beans that require complex data
operations, such as those spanning multiple datastores or multiple tables in one datastore.

However, this heightened flexibility has a cost: you must develop data access functionality yourself, rather than
depending on the container. This means that BMP beans require more effort to develop and maintain. CMP beans are
virtually guaranteed to integrate flawlessly with the container, while BMP beans may contain code that is not EJB safe.
BMP beans that integrate with external systems should hide the operational and semantic differences between EJB and
the external system's technology. Otherwise, the external system may cause all kinds of potentially serious side effects,
some subtle and unpredictable. Also, BMP code may not be portable—which makes sense for code that is specifically
written for complex data operations or integration with external systems.

CMP beans don't have these issues. Here are some considerations about CMP:

CMP is easy to build and maintain. It requires only the creation and maintenance of deployment descriptors and
the rest of the abstract persistence mechanism.

CMP can persist to any JDBC-capable datastore, which is sufficient for most applications.

CMP and CMR are fully capable of implementing simple to moderately complex data operations, which will
generally cover most of your needs.

CMP is fully integrated into the container, so there is less concern about dangerous code or unpredictable
external systems. This also allows you to take advantage of vendor-specific features more easily.

Don't use BMP beans unless the requirements supporting them are strong and clear-cut. If you are using BMP beans to
integrate with external datastores, locate or create as much documentation as possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integrate with external datastores, locate or create as much documentation as possible.

19.2.4.3 Local versus remote interfaces

Don't use remote interfaces unless you really have to: it can't be emphasized enough. Distributing your EJBs adds a
whole layer of complication that is often unnecessary. There are the basic, only somewhat irritating issues, such as
handling RemoteExceptions in your client code, and there are the complex, intractable issues, such as loss of performance
and reliability when your components must operate across a network. One big complication is that remote interfaces
(and the implementation they present) are often difficult to change, because the remote interface will be used by other
systems or applications that may be resistant to change.

Our application clearly needs to be distributed: it must support the standalone Java client that our internal travel agents
will use. In your application, take a long, hard look at any requirements that push you in the direction of distributed
components. Approach such requirements as with BMP:

Understand the requirements in detail and validate them.

Determine whether the requirements truly merit being implemented as distributed EJBs.

Document the detailed requirements before initiating development in order to ensure agreement and to prevent
scope creep.

If, after this process, you determine that you need distributed functionality, your next task is to identify which EJBs
should be implemented with remote interfaces and which should stay as local interfaces. In our application, travel
agents will use the standalone client to access the full range of application functionality. We already know that session
beans are the workhorses of our application—which is why we have exposed the session beans via remote interfaces.

However, none of our entity beans use remote interfaces. Why not? Remember that session beans encapsulate
taskflows that manage entity beans, especially when we make good use of the Session Façade pattern. If our session
beans are well designed, there should be no need to access entity beans remotely. Also, recall that CMR requires the
dependent entities have local interfaces. So we avoid remote interfaces for entity beans.

In that case, how do we pass the entity data, such as cruise information, across the remote interface? Good answers to
this question are provided in Returning Entity Data from EJBs. The Transfer Object pattern is preferable to the other
approaches when working with remote interfaces. Transfer Objects complement the strict interface of EJB components,
and most EJB applications will have Java clients.

In the EJB list above, we chose to implement both remote and local interfaces for our session beans. While this does
result in slightly more code to build and maintain, it is a good idea to use the local interfaces in the code that runs
inside the application server, such as servlets or JSPs. The small duplication is worth avoiding the remote interface.

Thus, our interface recommendations are:

Use remote interfaces only if you must, and only for session beans.

Insist that entity beans have only local interfaces.

Implement local interfaces for session beans if there will be code calling them from inside your application
server.

19.2.5 Fleshing Out the Design

Now that you've determined the major aspects of your EJBs, all that remains is to complete the design down to the
class and method level. This is the same task you would do for any application, so we will not cover it here. However,
this stage can undo or compromise a good EJB design if it is executed poorly. This section discusses the two most
critical lessons we have learned to keep an EJB design in good shape.

19.2.5.1 Minimize transaction scope

As you flesh out your EJBs, especially session beans, make sure that your transactions have the smallest scope
possible. By scope, we mean the number of operations executed and the number of components used. Operations
executed inside a transactional context require more container management than nontransactional operations, and this
management generally results in limitations and performance costs. The limitations depend on the container, database,
and other transactional components of your application. Exceeding these limitations can create problems that depend
greatly on the execution environment and the exact processing being done.

This variability often makes diagnosis and troubleshooting of transactional problems difficult, so the best approach is to
minimize transactional scope during design or early in coding. Here is how to identify possible transaction resource
problems:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Understand the transactional capabilities and constraints of your EJB container, your database, and other
subsystems. You should be concerned with what resources are limited during a transaction. Remember to check
both the vendor documentation and any specification documentation.

2. Identify the complex taskflows in your application. Focus on functionality that iterates through EJBs, aggregates
through data, or chains EJBs (where one EJB calls another, which calls another, and so on) inside a single
transaction.[9]

3. Estimate the amount of processing that the taskflows will perform. Consider the data entities used in the
taskflows, and determine the maximum number of each entity that your application will support.[10] This
knowledge can help you determine how many EJBs will be used. Also, consider non-EJB resources, such as
database cursors. Combine this data with the steps and dependencies of each taskflow to produce a list of
resources used.

4. Compare the list of resources used by each taskflow to the relevant setting or constraint. For example, the total
number of EJB instances is limited by the max-beans-in-pool deployment descriptor setting. Where the resources
used could exceed the available resources, you will need to minimize the transactional scope.

Repeat this evaluation if you make significant changes to your EJBs, especially after revisions that affect your session
beans.

19.2.5.2 Don't confuse EJB types

This may seem like a no-brainer, but don't try to make one EJB type behave like another. If you've been paying
attention throughout this book (you have, haven't you?), the differences between EJB types should be pretty clear in
your head. Session and message-driven beans manage processes (synchronously and asynchronously, respectively),
entity beans persist data, and everyone is happy. That's great! There are two possible wrinkles:

Not everyone has read this book; some people will have different understandings of how to design EJBs.

Your application will evolve, and the changes may alter your EJB design.

As a consequence, you may find some of the following in your application:

A custom JMS listener that calls a session bean.

Session beans presenting getters/setters for individual data items.

Entity beans containing complex business logic.[11]

[11] We once saw a BMP entity bean designed to retrieve and manage a hierarchical collection, a tree, of
key-value pairs. The entity bean contained data elements from the key table and the value table, all held
in multiple instances of the same kind of entity bean. The entity bean contained the necessary logic to
populate, traverse, and persist the entire tree of data.

These are all bad things.[12] If you see these or any similar misconceptions about what each kind of EJB does, do
everything you can to fix them ASAP. Depending on the exact circumstances, the consequences may be minor—an
additional class or two requiring creation and maintenance—or they may make the EJB nonfunctional or impossible to
maintain.

[12] Can you identify the kinds of EJBs the examples should be? Hint: a message-driven bean, an entity bean, and
a session bean.

19.2.6 Special Circumstances

Any application will have features that are best implemented by combining two or more technologies. We'll look at
several scenarios where EJB technology may need to be combined with other technologies and give some approaches to
melding them successfully.

19.2.6.1 Returning entity data from EJBs

In all but the simplest applications, you will need to return data from your EJBs. This data will be used by other
components, other tiers of the application, and maybe even other systems. While EJBs, specifically entity beans, could
fulfill this need, there are several reasons why entity beans should not be used outside the EJB container (see the
"Local versus remote interfaces" section, above).

The Transfer Object pattern is one solution to this problem. It provides lightweight objects specifically for sending data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Transfer Object pattern is one solution to this problem. It provides lightweight objects specifically for sending data
outside the EJB container. We can also use some other approaches to represent an entity's data, such as an array of
Strings, a Map of field-value pairs, a JDBC ResultSet, or XML. These approaches are generally more loosely coupled than
Transfer Objects, providing greater flexibility with commensurate costs. Here's a quick summary of the pros and cons of
each approach:

Transfer objects

The available data is set in code, which makes for a strict interface. The remote client must be Java-based.

Array of Strings

There is no metadata, so the data order of the array must be known ahead of time, which makes for a
unintuitive interface. The remote client does not need to be Java-based.

Map of field-value pairs

The field names in the Map provide some metadata, so data ordering is not a constraint. No type information is
provided, so that must be specified or not needed. (For example, by assuming everything is a string.) This may
handicap the interface for some complex business taskflows, but it is sufficient for most situations. The remote
client must be Java-based.

JDBC ResultSet

This provides full metadata, making it useful for even the most complex taskflows. On the downside, the remote
client must be Java-based.

XML

XML can express multiple levels of metadata and relationship complexity. Thus, it can be equivalent to the Map
approach, equivalent to the ResultSet approach, or even express a complete entity hierarchy. The remote client
does not need to be Java-based, but XML imposes some performance penalties. It is not very size-efficient,
resulting in higher memory usage and slower network transmission, and it must be parsed to be
programmatically accessed.

You have lots of freedom in how you choose to implement these approaches. For example, you could implement a Map-
like structure using arrays of Strings to get the benefits of the former while remaining platform-agnostic. However, the
benefits of that approach may be offset by the effort needed to build it.

One drawback to these approaches is that the data is a snapshot. If the underlying data changes, none of these
structures will know. Therefore, it's possible that changes to the underlying data could render the data contained in
these structures incorrect. This risk can be mitigated by the following data latency strategies:

Use the data only during a limited lifetime, say, during a single UI request. Then discard it.

Always validate your business preconditions and process inputs before executing a taskflow. Do not blindly
execute business logic. That way, you can always ensure that the right thing happens.

Buy or build a caching framework that integrates with your EJB code or your EJB container.

Of course, all of these strategies have downsides. You will need to balance the trade-offs of entity beans, these
"snapshot" approaches, and the above data latency strategies against your requirements.

19.2.6.2 Sequential processing with EJBs

Many applications, especially those focused on business operations, require sequential ("batch") processing, such as for
an end-of-day process. In these kinds of taskflows, a series of well-defined steps are executed, and many of these
steps involve processing a collection of entities. For example, our travel agent application might have an end-of-day
process wherein it iterates through all the Customers and generates an invoice record for any new Reservations.
Another step might populate reporting tables in a database. There are many other possible steps.

EJB makes implementing these features both easier and more difficult. It is easier because of the transactional
enforcement and the logical assignment of responsibilities. After all, the application will make multiple changes in each
step (at least one to each entity), and wrapping the changes in a transaction might save us from having to keep track
of which entities we've processed and which we haven't. It makes sense to put any processing logic in one place, such
as a session bean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as a session bean.

On the other hand, sequential processing can be challenging because of EJB's performance and resource overhead, and
the constraints of transaction enforcement (see the "Minimize transaction scope" section, above). The more steps
involved in your taskflow, the more likely you will be to exceed your system's capabilities. The same is true as more
EJBs (entity or session) are used in the taskflow: each additional EJB slows the processing that much more, perhaps
unacceptably. Additionally, a gargantuan transaction that takes a long time to complete can have extreme concurrency
ramifications.

The bottom line is EJB alone will probably not be successful here. A framework must be developed that incorporates EJB
but is not limited by EJB. The heart of the framework is a process controller that knows how to execute a series of
steps, each in its own transaction. Part of the process controller is implemented as a session bean. Then you can group
the logical tasks of the business process into separate transactional steps. Each of these steps is implemented as a plain
Java class that in turn calls the best feasible technology, and each class is called by the process controller. For example,
aggregating reporting data in a database might be best implemented as a database stored procedure. Figure 19-9
illustrates a rough UML diagram of the framework.

Figure 19-9. Rough UML diagram of the framework

In short, the sequential processing in your application will probably require some creative integration of EJB and other
technologies. Be willing to explore different technologies to serve your needs.

19.2.7 Exceptions

Exceptions are fundamental to error notification and management in Java. Understanding exceptions and how to handle
them is even more important in EJB because exceptions have a significant effect on transaction control. Be sure to
review the section on exceptions and transactions in Chapter 16.

Exception design for EJBs is essentially the same as general exception design. The most noticeable difference is that
EJB distinguishes between application and system exceptions rather than checked and unchecked exceptions. System
exceptions are the same as unchecked exceptions (java.lang.RuntimeException and its subclasses), and application
exceptions are checked exceptions—with one exclusion. That exclusion is java.rmi.RemoteException and its subclasses,
which is used to indicate an underlying problem with a remote EJB call, such as a communication failure. As such,
RemoteException appears in each EJB method in the interface, but not in the corresponding implementation.

There is an informal category of checked exceptions that deserve special treatment. We call them subsystem
exceptions. As the name indicates, subsystem exceptions are checked exceptions thrown by a subsystem of the JVM or
a resource, such as JDBC or JMS. For example, IOException is thrown by the I/O subsystem; JMSException is thrown by
JMS; SQLException is thrown by JDBC, and so on. When one EJB calls another (by its remote interface), you treat
RemoteException as a subsystem exception.

Here are the fundamental steps in exception design:

1. Determine what application exceptions are needed.

2. Design an exception hierarchy for the application exceptions.

3. Wrap subsystem exceptions.

4. Everything else will be system exceptions.

19.2.7.1 Identifying application exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.7.1 Identifying application exceptions

The first step is to determine the application exceptions. Application exceptions encapsulate business errors that
prevent the completion of a taskflow. The user should be notified, or the application should attempt to recover from the
error, or both. The essential criterion is that the error needs to be propagated several layers (at least) up the
application call stack. For example, the Titan application would throw an application exception if a reservation could not
be completed because the desired cruise was sold out, and this exception would cause the user interface to display an
error message. Avoid scenarios where application exceptions are used as costly if-then statements or other forms of
flow control. Exceptions are exceptional.[13]

[13] Because throwing exceptions is costly, your application should take reasonable steps to avoid predictable
exceptions. In other words, be sure to check the preconditions at the beginning of all taskflows and methods. This
also avoids performing part of a taskflow only to have to roll it back, which is a waste of time and resources. For
example, check if the cruise is sold out before attempting to create a reservation. While the cruise might sell out in
the split second between the check and the creation, it's unlikely 99% of the time.

Application exceptions can often be identified almost straight from your business requirements, so if the requirements
are fully defined, much of the work in this step is already done. The trick is to make sure your exceptions focus on error
conditions. Some developers have used exceptions for user interface control, which is bad. For example, if a query for
cabin information from the Titan application had no results, it is better to return an empty Collection than throw an
exception. Exceptions should be reserved for errors, and other mechanisms should be employed for controlling user
interaction.

19.2.7.2 Design the exception hierarchy

After you have determined what application exceptions you need, incorporate them into a class hierarchy. A hierarchy
provides at least two benefits:

Common functionality can be implemented in superclasses.

A package-specific superclass can be used in throws clauses instead of listing multiple subclasses. For example,
the signature can show InventoryException instead of CabinSoldOutException, DeckSoldOutException, and
CruiseSoldOutException.

Here are some specific steps to assist in creating the hierarchy:

1. Always have a base class, probably abstract, to contain general exception functionality. This can be called
AbstractException.

2. AbstractException should also contain code and attributes for passing at least two error codes: one for user
notification and another for developer notification. The codes should correspond to entries in a resource bundle
or other text localization mechanism. Short, mnemonic textual codes ("AVAILABLE_INVENTORY_EXCEEDED")
rather than numeric or otherwise cryptic codes ("I-01765") are preferable.

3. Create a subclass of AbstractException for each major package, e.g., InventoryException, GuestException.

4. Package-specific exceptions can be subclassed as necessary to indicate particular error conditions. As
mentioned above, CabinSoldOutException, DeckSoldOutException, and CruiseSoldOutException are possible subclasses
of InventoryException. Use as many subclasses as you need.

5. When designing the EJB interfaces, start out by listing all exceptions that each method can throw. A rule of
thumb is that if three or more exceptions thrown by a method are subclasses of the same package-level
exception, replace them with the package-level exception.

19.2.7.3 Wrap subsystem exceptions

Subsystem exceptions should not appear in your EJB method signatures. The EJB interface presents functionality and
data from a business perspective, while subsystems are implementation-specific. If you cannot recover from a
subsystem exception inside your EJB, always catch and rethrow it wrapped in an EJBException.

try {

 ...

} catch (SQLException se) {

 throw new EJBException("SQLException caught during processing: " +

 se.getMessage(), se);

} catch (RemoteException re) {

 throw new EJBException("RemoteException caught during processing: "

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new EJBException("RemoteException caught during processing: "

 + re.getMessage(), re);

}

19.2.8 Base and Utility Classes

As you design your EJBs, you will begin to spot areas of common functionality. For example, since several classes and
functions deal with reservations in the Titan application, several of the implementations may require the use of startDate
and endDate parameters. They may even be of similar type (i.e., java.util.Date or something similar). As another example,
suppose the DBA for your application's database decides that there will be a timestamp column named LAST_MODIFIED
in all database tables. Every single entity bean in your application will support this field. Furthermore, the
implementation of this field will have to remain consistent across all implementations of all entity beans in order to be
of use.

As a final example, consider the EJB implementation interfaces javax.ejb.EntityBean, javax.ejb.SessionBean, and
javax.ejb.MessageDrivenBean. All require that our EJBs implement various container callback methods, regardless of
whether they are actually implemented or not. For example, stateless session beans require but do not use ejbActivate()
and ejbPassivate().

Each one of these situations adds some amount of code to every EJB; code which must be written and maintained. To
avoid this development overhead, consider implementing this functionality in either base classes or utility classes, as
appropriate. While it might not make sense to build a unique base class for two separate EJBs, if you have 10, suddenly
the time investment in building the base class more than pays for itself.

As discussed here, a base class is generally declared abstract and inherited by your EJBs. They implement methods
needed by all or several EJBs. A utility class implements generalized, frequently used structures or functionality. Utility
classes are often used across several packages and really can't be assigned to a specific domain area.

19.2.8.1 Base classes

We will create base classes for our EJBs that contain empty implementations of the container callback methods as well
as methods for getting and setting the EJB context. Since the specific set of callback methods and the EJB context class
depend on the type of EJB, we will create three base classes: AbstractEntityBean, AbstractSessionBean, and
AbstractMessageDrivenBean. In addition, we will add support for the LAST_MODIFIED timestamp column, as it is a common
feature in EJB applications. This step requires that we incorporate two abstract methods (getLastModified() and
setLastModified()) into the AbstractEntityBean class.

This is the code for AbstractEntityBean:

package com.titan.common;

import javax.ejb.EntityContext;

import javax.ejb.EntityBean;

import java.sql.Timestamp;

public abstract class AbstractEntityBean implements EntityBean {

 private EntityContext entityContext = null;

 public void setEntityContext(EntityContext context) {

 entityContext = context;

 }

 public EntityContext getEntityContext() {

 if (null == entityContext) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (null == entityContext) {

 throw new IllegalStateException("The entity context has " +

 "not been set.");

 }

 return entityContext;

 }

 public void unsetEntityContext() {

 entityContext = null;

 }

 public void ejbActivate() {

 }

 public void ejbPassivate() {

 }

 public void ejbLoad() {

 }

 public void ejbStore() {

 }

 public void ejbRemove() {

 }

 public abstract Timestamp getLastModified();

 public abstract void setLastModified(Timestamp lastModified);

}

This is the code for AbstractSessionBean:

package com.titan.common;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

public abstract class AbstractSessionBean implements SessionBean {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private SessionContext sessionContext;

 public void setSessionContext(SessionContext context) {

 sessionContext = context;

 }

 public SessionContext getSessionContext() {

 if (null == sessionContext) {

 throw new IllegalStateException("The session context has " +

 "not been set.");

 }

 return sessionContext;

 }

 public void unsetSessionContext() {

 sessionContext = null;

 }

 public void ejbActivate() {

 }

 public void ejbPassivate() {

 }

 public void ejbCreate() {

 }

 public void ejbRemove() {

 }

}

And here's the code for AbstractMessageDrivenBean:

package com.titan.common;

import javax.ejb.MessageDrivenBean;

import javax.ejb.MessageDrivenContext;

public abstract class AbstractMessageDrivenBean implements MessageDrivenBean {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private MessageDrivenContext messageContext;

 public void setMessageDrivenContext(MessageDrivenContext context) {

 messageContext = context;

 }

 public MessageDrivenContext getMessageDrivenContext() {

 if (null == messageContext) {

 throw new IllegalStateException("The message context has " +

 "not been set.");

 }

 return messageContext;

 }

 public void unsetMessageDrivenContext() {

 messageContext = null;

 }

 public void ejbCreate() {

 }

 public void ejbRemove() {

 }

}

Empty implementations of ejbCreate() have been provided for the session and message-driven bean base classes. We
did not provide an ejbCreate() for the entity bean base class because each entity bean's ejbCreate() must return that
bean's primary key type.

Our bean implementation classes will now extend the appropriate base class, like so:

public abstract class CabinBean extends AbstractEntityBean {

 ...

}

public class ReservationProcessorBean extends AbstractMessageDrivenBean

implements javax.jms.MessageListener {

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

}

public class TravelAgentBean extends AbstractSessionBean {

 ...

}

MDBs must still implement the javax.jms.MessageListener interface.

With these changes, we have decreased the amount of code we have to write and maintain. During the implementation
phase, you will probably find additional code that can be moved into the base classes.

Using base classes in this way presents three pitfalls:

If you only have a few EJBs, you will spend more time creating and using the base classes than you will save.

You will gain no benefit if you have to override more than a few methods in the base classes. This is especially
likely with the container callback methods when you are creating stateful session beans.

You will not be able to inherit functionality from another class. If you need to do so, you will have to decide
whether to copy the base class methods to your EJB or to access the other class's functionality in another
manner, such as composition.[14]

[14] I have never seen a case where an EJB should subclass a class other than with a base class, and a
requirement like that is suspicious.

19.2.8.2 Utility classes

Now that we have taken care of the base classes, let's turn to the utility classes. Utility classes are hard to define
precisely, because they include generalized data-holding classes, such as a DateRange class that encapsulates a start
date and an end date, and non-data classes that contain infrastructure-related, library-like, and convenience methods.
Examples of non-data classes include a StringUtils class containing String manipulation functionality, an ObjectUtils class
containing various equality and comparison convenience methods, or a DatabaseUtils class containing primary key
generation and database connection functionality. Data-holding classes can be more ambiguous. Determining whether
they are utility classes or domain-specific types will depend on your particular application and design. For example, a
Money class that combines an amount and a currency could be considered a generalized, cross-package class or a
finance-specific class.

The primary benefit of utility classes is reducing code duplication, which makes it easier to fix or improve your
application without risking shotgun surgery.[15] Utility classes can also increase code readability.

[15] Shotgun surgery takes place "...when every time you make a kind of change, you have to make a lot of little
changes to a lot of different classes." (From Refactoring: Improving the Design of Existing Code by Martin Fowler,
published by Addison-Wesley.)

You will discover candidate utility classes as you implement your design. The biggest sign that you might need a utility
class is code duplication. If your code performs the same or very similar logic multiple times, or if two or more classes
always accompany each other in methods or method signatures, you have a possible utility class (more correctly, a
possible utility method or a possible utility class). Here's a method that might belong in a utility class:

 public static boolean isEmpty(String str) {

 return ((str == null) || (str.trim().equals("")));

 }

The isEmpty method is very simple, but implementing it in a utility class is worthwhile if you check for null or empty
Strings often enough—say, when validating method arguments. I would put this method in a StringUtils class.

Here's an example of a data-holding utility class: suppose you have a series of classes with method signatures that
require both a currency and an amount parameter every time:

public Ticket bookPassage(CreditCard card, double price, Integer currency)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Ticket bookPassage(CreditCard card, double price, Integer currency)

If you created a Money class, the modified method from the TravelAgent session bean would look like this:

public Ticket bookPassage(CreditCard card, Money amount)

A DateRange utility class is a common requirement in handling reservations. For example, say that we had added
startDate and endDate virtual persistence fields to the Cruise EJB:

public Date getStartDate();

public void setStartDate(Date start);

public Date getEndDate();

public void setEndDate(Date end);

Because travel agents will want to search for cruises by these fields, we have added a listMatchingCruises method to the
TravelAgent EJB:

public Collection listMatchingCruises(Date start, Date end) throws RemoteException;

After a DateRange class is created, this method changes to:

public Collection listMatchingCruises(DateRange range) throws RemoteException;

While reduced duplication is the most obvious benefit to implementing utility classes, an additional benefit is that
reduced duplication makes the interface more coherent: it's easier to understand a method signature with a date range
than a method signature with separate parameters for the start and end dates. Likewise, it's easier to understand a
Money parameter than separate price and currency parameters. Everyone who touches the revised bookPassage and
listMatchingCruises methods—their developers, the developers of any client code, or some college intern tasked with
maintaining the code a year or two down the line—will have a more intuitive grasp of what those methods expect.

Unfortunately, knowing when to implement this type of refactoring comes with experience. Fortunately, there is an
excellent book on refactoring: Martin Fowler's Refactoring: Improving the Design of Existing Code (Addison-Wesley).
Take a look for other ways to identify candidates for utility classes (and for other ways to refactor your code).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.3 Should You Use EJBs?
This book assumes that you've already made the decision to use EJBs. However, there are several instances where EJBs
are not the best solution to a problem. It makes sense, therefore to review where EJBs are strong and then discuss
situations in which EJBs don't make as much sense. There are several situations—even some enterprise database-
centric applications—in which EJBs are simply not the best choice. At the end of this section, we'll look at some of the
alternative approaches and where they might fit.

19.3.1 When to Use EJBs

Here's a list of situations where EJBs are strong; we haven't distinguished between different types of EJBs.

Single and multisystem business transactions

The ability to maintain transactional integrity for complex business entities is one of an EJB's key strengths.
EJBs aren't alone in providing straightforward transactional control over a single data repository. However, EJBs
shine where multiple resources (relational databases, messaging systems, etc.) are involved because they allow
transactions to spread across as many different resources as you like, so long as the resources support
distributed transactions.

Distributed functionality

Business services often live on a remote server. For example, a business enterprise will have many different
systems, ranging in degrees of inflexibility and entrenchment. One of these systems may need to access
another; EJBs, which are inherently distributed, are often the simplest way to distribute remote services. EJB
also allows you to provide business services to remote clients more easily than some alternatives. Remote
access through components is easier to maintain than direct database access, because the component code can
shield the client from database schema changes.

Portable components (not classes)

Until recently, if you wanted to share your business services with another application developer, you were
forced to share classes or at least packages. Java did not allow for the easy creation of enterprise components,
reusable software building blocks that can be assembled with other components to form an application. EJBs
allow you to package your business logic into a tidy, distributable unit that can be shared in a loosely coupled
fashion. The user of your component need only tweak a descriptor file for her environment.

Applications relying on asynchronous messaging

EJBs (specifically MDBs) provide a strong technology for handling asynchronous communication such as JMS-
based messaging or web services.

Security roles

If your application's business operations can be mapped to specific business roles in your enterprise, then EJBs
may be a good choice. So much is made of the transaction management capability of EJBs that their
deployment-descriptor-based security management features are overlooked. This capability is very powerful; if
your application's users fit into distinct roles and the rules for those roles dictate which users can write what
data, EJBs are a good choice.

19.3.2 When Not to Use EJBs

There are several situations in building a software application—even an "enterprise" software application—in which
using EJBs may actually be a barrier to meeting your business goals. The following list represents places where you
might not want to use EJBs:

Read-mostly applications

If your application requires only (or even mostly) database reads (as opposed to writes), then the added

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your application requires only (or even mostly) database reads (as opposed to writes), then the added
complexity and performance overhead of EJBs may be unwarranted. If your application is only reading and
presenting data, you should go with straight JDBC (see below) or another persistence mechanism. That said, if
your application's writes (database update and inserts) require transactional support (especially if those
transactions go over multiple systems), then EJBs may be the way to go—at least for the write portion of the
application.

Applications requiring thread control

If your application design requires extensive use of threads, then the EJB spec actually prevents you from using
EJBs (although some EJB container vendors may provide nonportable ways around this restriction). Container
systems manage resources, transactions, security, and other qualities of service using threads; threads you
create are outside of the container's control and can potentially cause system failures. Also, EJB containers may
distribute EJBs across multiple JVMs, preventing the synchronization of threads.

Performance

Because EJBs do so much more than plain Java classes, they are slower than plain Java classes. The EJB
container has to do a lot: maintain transactional integrity, manage bean instances and the bean pools, enforce
security roles, manage resources and resource pools, coordinate distributed operations, synchronize shared
services (if the vendor offers clustering capabilities), and so on. The security and transactional management
operations can have a significant impact on the performance of method calls (on both local and remote
interfaces). If you require real-time or near-real-time performance characteristics, EJB may not be your best
choice.

19.3.3 Alternatives to EJB

There are several alternatives to EJB; some of them are growing in popularity and maturity. EJBs still rank as the de
facto standard for enterprise transactional needs, but some of the alternatives, like JDO, are also available.

19.3.3.1 JDBC

The first (and likely most common) alternative to using EJB is to write straight JDBC functions. While EJB provides you
with many niceties, there are situations in which JDBC makes more sense. The simplest case is when your application is
only reading (and not writing) data from a database table in a row-column format (list displays, for example). In this
scenario, using EJB would not only be more complex but also quite a bit slower than straight JDBC.

If you are writing only simple rows of data without parent-child or foreign key relationships it may be better to use
JDBC—especially if your application is built for a single user working with a single database or multiple users using a
single database with little chance of contention while writing (relatively rare writes). This case is a little more
ambiguous, because you are writing as well as reading data. But if the way you're using the database is simple, JDBC
may end up being easier.

However, there is one scenario in which people often go with JDBC when EJB might make their lives easier. Say that
you have no need of transactional support and the data with which you are interacting does not involve parent-child or
foreign key relationships, but you still need to represent that data as an object (potentially in relation to other objects
that also represent data). To be more specific, suppose your application handles only contact management. The
application may not write data very often and there may be little need for the transactional support or security provided
by EJB. However, your application needs to represent contacts (and their affiliated phone numbers, addresses, and so
on) as business objects. The ease with which EJB can help you represent this data as business objects, specifically as
entity beans, may save a great deal of time.

The situations in which straight JDBC is preferable to EJB are not concrete. You should use straight JDBC when the need
for speed outweighs the need for transactional support or security provided by EJB. Here's a simple example that uses
JDBC:

import java.sql.*;

public class JDBCExample {

 public static void main(java.lang.String[] args) {

 try {

 // Load driver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Load driver

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 }

 catch (ClassNotFoundException e) {

 System.out.println("Cannot load driver.");

 return;

 }

 try {

 // Connect to database.

 Connection con = DriverManager.getConnection("jdbc:odbc:contactdb",

 "", "");

 // Create SQL Statement and execute.

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT name FROM contacts");

 // Display the SQL Results.

 while(rs.next()) {

 System.out.println(rs.getString("name"));

 }

 // Release database resources.

 rs.close();

 stmt.close();

 con.close();

 }

 catch (SQLException se) {

 // Display error message upon exception.

 System.out.println("SQL Exception: " + se.getMessage());

 se.printStackTrace(System.out);

 }

 }

}

JDBC is very straightforward; it allows you to access your data repository directly. However, you must understand a fair
amount of the underlying mechanics in order to use it (SQL, database connection properties, and so on). Now, in a
"real" application using JDBC, you centralize most of this code into a few classes, but you still must write all the SQL
yourself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3.3.2 Java Data Objects

Java Data Objects or JDO is a recent Sun specification for database persistence and access with Java. According to the
JDO specification (JSR 12), its objectives are:

...first, to provide application programmers a transparent Java-centric view of persistent information,
including enterprise data and locally stored data; and second, to enable pluggable implementations of
data stores into application servers.

This description sounds very similar to the objectives laid out for JDBC or EJB. Why another specification to allow for
database connectivity and use? For one thing, after setting up a mapping file, you need not deal with database
information again; you can access data as you would access Java objects. You can edit and delete data using a
"persistence manager" (more on this in a moment) that insulates you from having to deal directly with the SQL
involved.

But EJB does these things as well. Once you have set up your EJB and created a suitable descriptor file, you deal with
the data through the use of the objects representing the data (as opposed to through result sets as in JDBC, for
example). However, JDO allows for a simpler mapping (JDO mapping files are simpler than EJB descriptor files); in
addition, there's no mucking about with remote and home interfaces. JDO classes look like any other classes.

There are six basic steps to using JDO in your applications:

1. Create a Java class that represents the underlying database business entity.

2. Create a metadata file containing information about the fields of your Java class. This metadata file can contain
data about your already existing database, or not. If it does not, you can run a schema builder that looks at this
object and generates the SQL for the database generation.

3. Compile your Java to a .class file.

4. Run the JDO enhancer against your metadata file. The enhancer grabs your class name from the metadata file
and uses it to grab the compiled .class file. The enhancer then modifies the .class file—at the bytecode level—to
implement JDO's PresistenceCapable interface.[16]

5. Run the JDO schema builder[17] against your metadata file and the (now modified) .class file for your Java class.
The schema builder generates DDL SQL that you can use to create the database objects required for your newly
modified JDO class. (Optional)

6. Create an application that uses your Java class. This application will use the PersistenceManagerFactory and
PersistenceManager classes from your JDO implementation. These two classes are your handlers for interacting
with your newly created class file.

The best way to demonstrate this process is through a brief example. We'll create a very simple Contact class and uses
JDO to persist it to a database. We use the LIBeLIS LiDO JDO implementation (community edition). In this
implementation, the generation of a database schema involves the use of a separate application from the JDO
enhancer:

package com.oreilly.ejb.jdoexample;

public class SimpleContact {

 public String name;

 public String ssn;

 public AddressImpl(String pName, String pSsn){

 this.name = pName;

 this.ssn = pSsn;

 }

 public String getName() {

 return this.name;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public String getSsn() {

 return this.ssn;

 }

 public void setName(String pName) {

 this.name = pName;

 }

 public void setSsn(String pSsn) {

 this.ssn = pSsn;

 }

}

The SimpleContact class contains no details on how the information will be persisted to the database, nor the fact that it
will implement the PersistenceCapable interface.

Next, we create a metadata file for SimpleContact, called SimpleContact.jdo:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "file:/c:/work/jdo.dtd">

<jdo>

 <package name="com.oreilly.ejb.jdoexample">

 <class name="SimpleContact" identity-type="datastore">

 </class>

 </package>

</jdo>

This code is pretty straightforward. The metadata points to the location of the JDO DTD (which you can get from your
implementation), the package name for your class, and the name of the class itself.

We'll assume you compile your SimpleContact.java file to SimpleContact.class. Now you must "enhance" the
SimpleContact.class file so that it implements the JDO PersistenceCapable interface like so:

java com.libelis.lido.Enhance -metadata SimpleContact.jdo

This command reads the SimpleContact.jdo file, uses it to find SimpleContact.class, and modifies its bytecodes to
implement the JDO PersistenceCapable interface. Next, you can build a schema like this:[18]

[18] There are several details carefully ignored here so as not to interfere with the JDO example. For example, we
will not cover the setup of the MySQL JDBC driver or MySQL itself.

java com.libelis.lido.ds.jdbc.DefineSchema

 -driver org.gjt.mm.mysql.Driver

 -database jdbc:mysql://localhost/jdoexample

 -metadata metadata.jdo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -metadata metadata.jdo

This generates a series of SQL files (not shown) that you can use to generate the database for your SimpleContact data.
All that's left is to create an application that allows you to use your new persistent object. The following class allows you
add a new SimpleContact instance to the database:

package com.oreilly.ejb.jdoexample;

import javax.jdo.PersistenceManagerFactory;

import javax.jdo.PersistenceManager;

import javax.jdo.Transaction;

public class Test1 {

 public static final String DBURL = "jdbc:mysql://localhost/jdoexample";

 public static final String DBDRIVER = "org.gjt.mm.mysql.Driver";

 public static void main(String[] args) {

 try {

 // Use a factory class to generate PersistenceManager.

 // You are using the LIBeLIS JDO implementation

 // of the PersistenceManagerFactory and PersistenceManager

 // classes.

 PersistenceManagerFactory pmf = (PersistenceManagerFactory)

 Class.forName("com.libelis.lido.PersistenceManagerFactory")

 .newInstance();

 pmf.setConnectionURL(DBURL);

 pmf.setConnectionDriverName(DBDRIVER);

 PersistenceManager pm = pmf.getPersistenceManager();

 // Grab the current transaction.

 Transaction t = pm.currentTransaction();

 // Start a new transaction

 t.begin();

 SimpleContact a =

 new SimpleContact("Gern Blanston", "222334444");

 pm.makePersistent(a);

 // Commit the transaction.

 // All changes made between the begin and

 // commit are persisted to the DB.

 t.commit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 t.commit();

 pm.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

You start by instantiating a PersistenceManagerFactory, which then generates a PersistenceManager for your use. Finally, you
create an instance of our SimpleContact class and then tell the PersistenceManager to write it (by committing the
transaction begun earlier.

There is much more to JDO than this very simple example demonstrates (such as editing, deleting, and querying using
the JDO query language). For more information about JDO, see Java Data Objects, by David Jordan and Craig Russell
(O'Reilly). JDO is worth investigating, especially if you have no need for the extra transactional and security features
provided by EJB.

While JDO is an alternative to EJB, the context in which it is used must be seriously considered. EJB is designed for
high-traffic transaction-centric systems. These types of applications are not a very good fit for JDO because it doesn't
have the enterprise level support for transactions, security, clustering and sessions that EJB does. Smaller systems can
frequently be built using JDO, but really big systems are best left to EJB.

19.3.3.3 Others

There are, of course, other alternatives to EJB than straight JDBC and JDO. Here are a few worth reviewing for
suitability, should you determine that your application does not require EJB or that certain requirements (speed, for
example) demand an alternative approach.

Castor JDO[19] (http://www.exolab.org)

While Castor JDO contains the word "JDO," Exolabs built it independently from Sun's specification. Like JDO, its
primary function is to perform data binding. Castor generates Java class source files from an XML schema
document that describes the XML data model of an object. You can instantiate objects of these classes directly
from XML documents, if those documents conform to the original XML schema. However, the conversion of an
XML document into an object instance is only half of what Castor provides; it can also turn an object instance
back into an XML document. Conversion from object to XML document is called marshalling, and it's Castor's
original focus. In addition, Castor has the ability to map objects to database tables through mapping files very
similar to those for JDO.

Hibernate (http://www.hibernate.org)

Hibernate is another Java class-to-database table mapping project. While JDO is designed for mapping Java
objects to relational or object-oriented data stores, Hibernate is specifically designed for object relational (OR)
mapping. It allows you to create straight Java classes and a database-mapping file (by hand or automatically,
using XDoclet tags or something similar). The mechanics of interacting with the database are similar to those of
JDO, but with slightly different manager objects (sessions and connections instead of managers, etc.). This is
gross oversimplification of all that Hibernate will do, but suffice it to say that Hibernate is functionally equivalent
to something like JDO, which maps Java objects to database entities through an XML mapping file and handles
the persistence machinery for you. Take a look at Hibernate instead of EJB if you are considering JDO, as the
two are similar and fit in similar situations.

Prevayler (http://www.prevayler.org)

Prevayler approached data binding from a very different perspective, one that does not rely on mappings.
Prevayler is all about speed. It uses a fairly old idea: keep all your data in RAM throughout the life of your
application and write your data en masse to the database from time to time. This approach makes accessing
database information much faster (mostly because you are accessing RAM instead of the database after your
data is loaded into memory). Where would it make sense to use Prevayler? The most effective target for
something like Prevayler is a single-user database application when storage of database changes can be non-
realtime. It is also appropriate for read-only "static" systems in which the data is mostly unchanging.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

realtime. It is also appropriate for read-only "static" systems in which the data is mostly unchanging.

As you can see, there are several alternatives to EJB. If your application doesn't need the complexity or some of the
features of EJB, take a look around. Data persistence with Java has been around for some time and there is a wide
assortment of approaches.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

19.4 Wrapping Up
The main purpose of this book is to teach you how to use the Enterprise JavaBeans components and APIs as opposed to
design and architecture of enterprise systems. Although this chapter has focused on design considerations and
alternatives to EJB,it is not a comprehensive or complete treatment of architecture or design—that requires an entire
book dedicated to that subject.

There are a number of books that we feel complement this chapter and will extend your understanding of design and
architecture of EJB and J2EE systems. Chief among them is Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition by Deepak Alur, et al. (Addison-Wesley), and Patterns of Enterprise Application Architecture by Martin
Fowler (Addison-Wesley). These books are excellent resources for a more in-depth understanding of design and
architecture issues. That said, these books provide only shallow or no discussion of the EJB APIs, life cycles, deployment
and components. To master those topics, critical during development, you'll need this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 19. EJB Design in the Real World
EJB changed rapidly over the past couple of years. Best practices for using EJBs "in the real world" are only now
beginning to be documented, and there are already entire books on how to use EJBs. We cannot hope to cover
everything in a single chapter. However, we can hit the important topics in designing EJBs for use in real-world business
applications.

This chapter covers:

The questions you need to ask about your EJB container and database selections before you begin designing
your EJBs.

A step-by-step how-to for designing EJBs from functional requirements to completed EJB design, including the
identification of potential base classes and EJB-helper classes.

Alternatives to EJB. There are places where Enterprise JavaBeans are not the best choice. The last section in
this chapter helps you identify those places and introduces some alternatives.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 The Enterprise Bean Component
Enterprise JavaBeans server-side components come in three fundamentally different types: entity, session, and
message-driven beans. Both session and entity beans are RMI-based server-side components that are accessed using
distributed object protocols. Message-driven beans process messages from non-RMI systems like Java Message Service,
legacy systems, and web services. All EJB servers must at least support a JMS-based message driven bean, but they
may also support other types of message-driven bean.

A good rule of thumb is that entity beans model business concepts that can be expressed as nouns. For example, an
entity bean might represent a customer, a piece of equipment, an item in inventory, or even a place. In other words,
entity beans model real-world objects; these objects are usually persistent records in some kind of database. Our
hypothetical cruise line will need entity beans that represent cabins, customers, ships, etc.

Session beans are extensions of the client application that manage processes or tasks. A Ship bean provides methods
for doing things directly to a ship, but doesn't say anything about the context under which those actions are taken.
Booking passengers on the ship requires that we use a Ship bean, but it also requires a lot of things that have nothing
to do with the ship itself: we'll need to know about passengers, ticket rates, schedules, and so on. A session bean is
responsible for this kind of coordination. Session beans tend to manage particular kinds of activities, such as the act of
making a reservation. They have a lot to do with the relationships between different entity beans. A TravelAgent
session bean, for example, might make use of a Cruise, a Cabin, and a Customer—all entity beans—to make a
reservation.

Similarly, message-driven beans coordinate tasks involving other session and entity beans. Message-driven beans and
session beans differ primarily in how they are accessed. While a session bean provides a remote interface that defines
which methods can be invoked, a message-driven bean subscribes to or listens for messages. It responds by processing
the message and managing the actions that other beans take. For example, a ReservationProcessor message-driven
bean would receive asynchronous messages—perhaps from a legacy reservation system—from which it would
coordinate the interactions of the Cruise, Cabin, and Customer beans to make a reservation.

The activity that a session or message-driven bean represents is fundamentally transient: you start making a
reservation, you do a bunch of work, and then it's finished. The session and message-driven beans do not represent
things in the database. Obviously, session and message-driven beans have lots of side effects on the database; in the
process of making a reservation, you might create a new Reservation by assigning a Customer to a particular Cabin on
a particular Ship. All of these changes would be reflected in the database by actions on the respective entity beans.
Session and message-driven beans like TravelAgent and ReservationProcessor, which are responsible for making a
reservation on a cruise, can even access a database directly and perform reads, updates, and deletes to data. But
there's no TravelAgent or ReservationProcessor record in the database—once the bean has made the reservation, it
waits to process another.

What makes the distinction between the different types of beans difficult to understand is that it's extremely flexible.
The relevant distinction for Enterprise JavaBeans is that an entity bean has persistent state; session and message-
driven beans model interactions but do not have persistent state.

2.1.1 Classes and Interfaces

A good way to understand the design of enterprise beans is to look at how you'd go about implementing one. To
implement entity and session enterprise beans, you need to define the component interfaces,[1] a bean class, and a
primary key:

[1] There are basically three kinds of component interfaces: remote, local, and endpoint. The remote and local
interfaces are supported by both EJB 2.1 and 2.0, while the endpoint component interface is new in EJB 2.1 and is
not supported by EJB 2.0.

Remote interface

The remote interface defines the bean's business methods which can be accessed from applications outside the
EJB container: the business methods a bean presents to the outside world to do its work. The remote interface
extends javax.ejb.EJBObject, which in turn extends java.rmi.Remote. It is used by session and entity beans in
conjunction with the remote home interface.

Remote home interface

The home interface defines the bean's life-cycle methods which can be accessed from applications outside the
EJB container: the life-cycle methods for creating new beans, removing beans, and finding beans. The home
interface extends javax.ejb.EJBHome, which in turn extends java.rmi.Remote. It is used by session and entity beans
in conjunction with the remote interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in conjunction with the remote interface.

Local interface

The local interface for an enterprise bean defines business methods that can be used by other beans in the
same EJB container: the business methods a bean presents to other beans running in the same JVM. It allows
beans to interact without the overhead of a distributed object protocol, which improves their performance. The
local interface extends javax.ejb.EJBLocalObject. It is used by session and entity beans in conjunction with the
local home interface.

Local home interface

The local home interface defines life-cycle methods that can be used by other beans in the same EJB container;
that is, the life-cycle methods a bean presents to other beans running in the same JVM. It allows beans to
interact without the overhead of a distributed object protocol, which improves their performance. The local
home interface extends javax.ejb.EJBLocalHome. It is used by session and entity beans in conjunction with the
local interface.

Endpoint interface

The endpoint interface defines business methods that can be accessed from applications outside the EJB
container via SOAP. The endpoint interface is based on JAX-RPC (Java API for XML-RPC) and is designed to
adhere to the SOAP and WSDL standards. The endpoint interface extends java.rmi.Remote. It can be used only by
stateless session beans. There is no home interface associated with the endpoint interface.

Message interface

Message-driven beans implement the message interface, which defines the methods by which messaging
systems, such as Java Message Service, can deliver messages to the bean.

Bean class

The session and entity bean classes implement the bean's business and life-cycle methods. Note that the bean
class usually does not implement the remote or local component interfaces, but it may implement the endpoint
interface. However, the bean class must have methods matching the signatures of the methods defined in the
remote, local, and endpoint interfaces, and must have methods corresponding to some of the methods in both
the remote and local home interfaces. If this sounds perfectly confusing, it is. In addition, an entity bean must
implement javax.ejb.EntityBean; a session bean must implement javax.ejb.SessionBean. The EntityBean and
SessionBean extend javax.ejb.EnterpriseBean.

A message-driven bean implements one or more message delivery methods (e.g., onMessage()) defined in a
message interface. The container calls these methods when a new messages arrives. The message-driven bean
class must also implement javax.ejb.MessageDrivenBean. EJB 2.1 and 2.0 containers must support JMS-based
message-driven beans, which implement the javax.jms.MessageListener interface. EJB 2.1 also supports message-
driven beans that process messages from other types of messaging systems with their own message interfaces.
The MessageDrivenBean, like the EntityBean and the SessionBean, extends the javax.ejb.EnterpriseBean interface.

Primary key

The primary key is a class that provides a pointer into the database. Only entity beans need a primary key. The
principal requirement for this class is that it implements java.io.Serializable.

Local interfaces provide a way for beans in the same container to interact efficiently. Calls to methods in the local
interface don't involve RMI; the methods in the local interfaces don't need to declare that they throw RemoteException,
and so on. An enterprise bean isn't required to provide a local interface if you know when you're developing the bean
that it will interact only with remote or Web service clients. Likewise, an enterprise bean doesn't need to provide a
remote or an endpoint interface if you know it will be called only by enterprise beans in the same container. You can
provide any combination of local, remote, and endpoint interfaces.

The complexity comes about because enterprise beans exist in the middle—between some kind of client software and
some kind of database. The client never interacts with a bean class directly; it always uses the methods of the entity or
session bean's component interfaces to do its work, interacting with stubs that are generated automatically. (For that
matter, a bean that needs the services of another bean is just another client: it uses the same stubs, rather than
interacting with the bean class directly.) Although the local and local home interfaces do not involve RMI, they still
represent a stub or a proxy to the bean class. While there is no network, the stubs allow the container to monitor the
interactions between beans and to apply security and transactions as appropriate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interactions between beans and to apply security and transactions as appropriate.

It's important to note that message-driven beans don't support remote, local, or endpoint component interfaces, but
they may become the client of other session or entity beans and interact with those beans through their component
interfaces. The entity and session beans with which the message-driven bean interact may be located in the same
container, in which case the message-driven bean uses their local component interfaces, or they may be located in a
different address space and EJB container, in which case the remote or endpoint component interfaces are used.

There are also many interactions between an enterprise bean and its container (Many people use the terms "container"
and "server" interchangeably, which is understandable because the difference between the terms isn't clearly defined.)
The container is responsible for creating new instances of beans, making sure they are stored properly by the server,
and so on. Tools provided by the container's vendor do a tremendous amount of work behind the scenes. At least one
tool takes care of creating the mapping between entity beans and records in the database. Other tools generate code
based on the component interfaces and the bean class itself. The code generated does things like create the bean, store
it in the database, and so on.

2.1.1.1 Naming conventions

Before going on, let's establish some conventions. When we speak about an enterprise bean as a whole—its component
interfaces, bean class, and so forth—we will call it by its common business name, followed by EJB. For example, an
enterprise bean that is developed to model a cabin on a ship will be called the Cabin EJB. Notice that we don't use a
constant-width font for "Cabin," because we are referring to all the parts of the bean (the component interfaces, bean
class, etc.) as a whole, not just to one particular part, such as the remote interface or bean class. The term enterprise
bean or bean denotes any kind of bean, including entity, session, and message-driven beans. Entity bean denotes an
entity-type enterprise bean; session bean denotes a session-type enterprise bean; and message-driven bean denotes a
message driven-type enterprise bean. The acronym MDB is frequently used in place of the term "message-driven
bean."

We also use suffixes to distinguish between local, remote, and endpoint component interfaces. When we are talking
about the remote interface of the Cabin EJB, we will combine the common business name with the word Remote. For
example, the remote interface for the Cabin EJB is called the CabinRemote interface. The local interface of the Cabin EJB
would be the CabinLocal interface. The endpoint interface for the Cabin EJB-based web service would be CabinWS (WS
stands for Web Service). The home interfaces add the word Home to the mix. The remote and local home interfaces for
the Cabin EJB would be CabinHomeRemote and CabinHomeLocal, respectively.[2] The bean class is always the common
business name, followed by the word Bean. For example, the Cabin EJB's bean class would be named CabinBean.

[2] The endpoint interface does not have a corresponding home interface.

These naming conventions are used for clarity; they are not prescriptive or even recommended for use in production.
Once you understand the differences between the component interfaces and the different types of beans, you can use
any naming strategy you wish.

2.1.1.2 The remote interface

Having introduced the machinery, let's look at how to build an entity bean with remote component interfaces. In this
section, we examine the Cabin EJB, an entity bean that models a cabin on a cruise ship. Let's start with its remote
interface.

We'll define the remote interface for a Cabin bean using the CabinRemote interface, which defines business methods for
working with cabins. All remote interface types extend the javax.ejb.EJBObject interface:

import java.rmi.RemoteException;

public interface CabinRemote extends javax.ejb.EJBObject {

 public String getName() throws RemoteException;

 public void setName(String str) throws RemoteException;

 public int getDeckLevel() throws RemoteException;

 public void setDeckLevel(int level) throws RemoteException;

}

These are methods for naming the cabin and setting the cabin's deck level; you can probably imagine lots of other
methods that you'd need, but this is enough to get started. All of these methods declare that they throw
RemoteException, which is required of all methods on remote component interfaces. EJB requires the use of Java RMI-
IIOP conventions with remote component interfaces, although the underlying protocol can be CORBA IIOP, Java Remote
Method Protocol (JRMP), or some other protocol. Java RMI-IIOP will be discussed in more detail in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method Protocol (JRMP), or some other protocol. Java RMI-IIOP will be discussed in more detail in the next chapter.

2.1.1.3 The remote home interface

The remote home interface defines life-cycle methods used by clients of entity and session beans for locating enterprise
beans. The remote home interface extends javax.ejb.EJBHome. We'll call the home interface for the Cabin bean
CabinHomeRemote, and define it like this:

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer pk)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

}

The create() method is responsible for initializing an instance of our bean. If your application needs them, you can
provide other create() methods with different arguments. For example, you could provide a create() method that
initializes the cabin's deck and name.

The findByPrimaryKey() method, with a single argument, is required, and allows you to look up a particular Cabin given
its primary key. You are free to define other methods that provide convenient ways to look up Cabin beans—for
example, you might want to define a method called findByShip() that returns all the cabins on a particular ship. Find
methods like these are used in entity beans but not in session or message-driven beans.

2.1.1.4 The bean class

Now let's look at an actual entity bean. Here's the code for the CabinBean; it's a sparse implementation, but it shows
how the pieces fit together:

import javax.ejb.EntityContext;

public abstract class CabinBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer pk){

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer pk){

 // do nothing

 }

 public abstract String getName();

 public abstract void setName(String str);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract void setName(String str);

 public abstract int getDeckLevel();

 public abstract void setDeckLevel(int level);

 public abstract Integer getId();

 public abstract void setId(Integer pk);

 public void setEntityContext(EntityContext ctx){

 // empty implementation

 }

 public void unsetEntityContext(){

 // empty implementation

 }

 public void ejbActivate(){

 // empty implementation

 }

 public void ejbPassivate(){

 // empty implementation

 }

 public void ejbLoad(){

 // empty implementation

 }

 public void ejbStore(){

 // empty implementation

 }

 public void ejbRemove(){

 // empty implementation

 }

}

Notice that the CabinBean class is abstract, as are several of the methods that access or update the bean's persistent
state. Also notice that there are no instance fields to hold the state information these methods access. The abstract
methods (and the missing fields) are implemented by the container system automatically. Container-managed entity
beans are the only beans that are declared as abstract with abstract accessor methods. You won't see abstract classes
and methods in session or message-driven beans.

The set and get methods for the cabin's name and deck level are the CabinBean's business methods; they match the
business methods defined by the EJB's remote interface, CabinRemote. The business methods are the only methods
visible to the client application; the other methods are visible only to the EJB container or the bean class itself. For
example, the setId()and getId() methods are defined in the bean class but not in the remote interface, which means
they cannot be called by the entity bean's client. The other methods are required by the EJB component model and are
not part of the bean class's public business definition.

The ejbCreate() and ejbPostCreate() methods initialize the instance of the bean class when a new cabin record is ready to
be added to the database. The last seven methods in the CabinBean are defined in the javax.ejb.EntityBean interface.
These methods are life-cycle callback methods. The EJB container invokes these callback methods on the bean class
when important life-cycle events occur. The ejbRemove() method, for example, notifies an entity bean that its data is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when important life-cycle events occur. The ejbRemove() method, for example, notifies an entity bean that its data is
about to be deleted from the database. The ejbLoad() and ejbStore() methods notify the bean instance that its state is
being read or written to the database. The ejbActivate() and ejbPassivate() methods notify the bean instance that it is
about to be activated or deactivated, a process that conserves memory and other resources. setEntityContext() enables
the EJB container to give the bean information about itself and its surroundings. unsetEntityContext() is called by the EJB
container to notify the bean instance that it is about to be dereferenced for garbage collection.

All these callback methods provide the bean class with notifications when an action is about to be taken, or was just
taken, on the bean's behalf by the EJB server. These notifications simply inform the bean of an event; the bean doesn't
have to do anything about it. The callback notifications tell the bean where it is during its lifecycle, when it is about to
be loaded, removed, deactivated, and so on. Because the callback methods are defined in the javax.ejb.EntityBean
interface, the entity bean class must implement them, but it isn't required to do anything meaningful with the methods
if it doesn't need to. Our bean, the CabinBean, won't need to do anything when these callback methods are invoked, so
these methods are empty implementations. Details about these callback methods, when they are called, and how a
bean should react to them are covered in Chapter 10.

2.1.1.5 The primary key

The primary key is a pointer that helps locate data that describes a unique record or entity in the database; it is used in
the findByPrimaryKey() method of the home interface to locate a specific entity. Primary keys are defined by the bean
developer and must be some type of serializable object. The Cabin EJB uses a simple java.lang.Integer type as its primary
key. It's also possible to define custom primary keys, called compound primary keys, which represent complex primary
keys consisting of several different fields. Primary keys are covered in detail in Chapter 10.

2.1.1.6 What about session beans?

CabinBean is an entity bean, but a session bean wouldn't be all that different. It would extend SessionBean instead of
EntityBean and would have an ejbCreate() method that would initialize the bean's state, but no ejbPostCreate(). Session
beans do not have ejbLoad() or ejbStore() methods, because session beans are not persistent. While session beans have
a setSessionContext() method, they do not have an unsetSessionContext() method. Session beans have ejbActivate() and
ejbPassivate() methods, which are used by stateful session beans to manage conversational state. Finally, session beans
provide an ejbRemove() method, which notifies the bean that the client no longer needs it. However, this method
doesn't tell the bean that its data is about to be removed from the database, because a session bean doesn't represent
data.

Session beans don't have a primary key. That's because session beans are not persistent themselves, so there is no
need for a key that maps to the database. Session beans are covered in detail in Chapter 11.

2.1.1.7 What about message-driven beans?

Message-driven beans (MDBs) implement a message interface; they don't implement remote, local, endpoint, or home
interfaces. The message-driven bean defines a few callback methods and one or more message delivery methods. The
callback methods include the ejbCreate() method, which is called when the bean class is first created; the ejbRemove()
method, called when the bean instance is about to be discarded from the system (usually when the container doesn't
need it any longer); and the setMessageDrivenContext() method. The kind of message delivery methods implemented by
the MDB depend on the type of messaging service it supports. For example, a JMS-based MDB, which all EJB containers
must support, must implement the onMessage() method, which is called every time a new asynchronous JMS message is
delivered. The message-driven bean doesn't define the ejbPassivate(), ejbActivate(), ejbLoad(), or ejbStore() methods
because it doesn't need them.

Message-driven beans don't have a primary key, for the same reason that session beans don't. They are not persistent,
so there is no need for a key to the database. Message-driven beans are covered in detail in Chapter 12.

2.1.2 Deployment Descriptors and JAR Files

The interfaces and classes we have discussed don't address how beans are managed at runtime. We didn't talk about
how beans interact with security, transactions, naming, and other services common to distributed object systems.
These types of primary services are handled automatically by the EJB container, but that prompts the question, "How
does the EJB container know how to handle security, transactions, and so on?" The EJB container gets this kind of
runtime information from deployment descriptors.

Deployment descriptors allow us to customize an EJB's runtime behavior without having to change the software itself.
Deployment descriptors are also similar to the property sheets used in Visual Basic and PowerBuilder. Where property
sheets allow us to describe the runtime attributes of visual widgets (background color, font size, etc.), deployment
descriptors allow us to describe runtime attributes of server-side components (security, transactional context, etc.).

When a bean class and its interfaces have been defined, a deployment descriptor for the bean is created and populated
with data about the bean. Integrated development environments (IDEs) that support development of Enterprise
JavaBeans often allow developers to set up the deployment descriptors they need using visual utilities like property
sheets. After the developer has set all of the bean's properties, the deployment descriptor is saved to a file. Once the
deployment descriptor is completed and saved to a file, the bean can be packaged in a JAR file for deployment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAR (Java Archive) files are ZIP files that package Java classes and other resources that are ready to be used in some
type of application. JARs are used for packaging applets, Java applications, JavaBeans, web applications (servlets and
JSPs), and Enterprise JavaBeans. A JAR file containing one or more enterprise beans includes the bean classes,
component interfaces, and supporting classes for each bean. It also contains one deployment descriptor, which is used
for all the beans in the JAR file. When a bean is deployed, the JAR file's location is given to the container's deployment
tools.

When the container opens the JAR file, it reads the deployment descriptor to learn about the bean and how it should be
managed at runtime. The deployment descriptor tells the deployment tools what kind of beans are in the JAR file
(session, entity, or message-driven), how they should be managed in transactions, who has access to the beans at
runtime, and other information. The person deploying the bean can alter some of these settings, such as transactional
and security access attributes, to customize the bean for a particular application. Most container tools provide user-
friendly property sheets for reading and altering the deployment descriptor when the bean is deployed.

When Enterprise JavaBeans 1.0 was released, serializable classes were used for the deployment descriptor. Starting
with Enterprise JavaBeans 1.1, the serializable deployment descriptor classes used in EJB 1.0 were dropped in favor of
a more flexible file format based on the Extensible Markup Language (XML). The XML deployment descriptors are text
files structured according to a standard schema (XML Schema in EJB 2.1 and Document Type Definition (DTD) in EJB
2.0) that can be extended so the type of deployment information stored evolves as the specification evolves. Chapter
17 provides a detailed description of XML deployment descriptors. The following sections provide a brief overview of
XML deployment descriptors.

2.1.2.1 EJB 2.1: Deployment descriptor

The following descriptor might be used to describe the Cabin bean in EJB 2.1:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.CabinHomeRemote</home>

 <remote>com.titan.CabinRemote</remote>

 <ejb-class>com.titan.CabinBean </ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 </entity>

 </enterprise-beans>

</ejb-jar>

The first element in an EJB 2.1 deployment descriptor declares the document to be an XML document conformant with
XML Version 1.0, and the character encoding, normally UTF-8.

The root element is the ejb-jar element. It declares the namespace of the EJB 2.1 XML Schema as well as the schema's
location. In addition, the ejb-jar element declares the version of EJB supported, which in the case of EJB 2.1 is version
"2.1".

2.1.2.2 EJB 2.0: Deployment descriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1.2.2 EJB 2.0: Deployment descriptor

The following descriptor might be used to describe the Cabin bean in EJB 2.0:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD EnterpriseJavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.CabinHomeRemote</home>

 <remote>com.titan.CabinRemote</remote>

 <ejb-class>com.titan.CabinBean </ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 </entity>

 </enterprise-beans>

</ejb-jar>

The first element in an EJB 2.0 deployment descriptor is <!DOCTYPE>. This element describes the organization that
defined the DTD for the XML document, supplies the DTD's version, and provides a URL for the DTD. The DTD describes
how a particular XML document is structured.

2.1.2.3 EJB 2.1 and 2.0: Elements of the XML deployment descriptor

Now, let's look more closely at the information in the deployment descriptor. Note that the deployment descriptor for a
real bean would have a lot more information; this example simply illustrates the type of information you'll find in a
deployment descriptor. Here's what the individual elements mean:

<ejb-jar>

The root of the XML deployment descriptor. All other elements must be nested below this one. It must contain
one <enterprise-beans> element and may contain other optional elements.

<enterprise-beans>

Contains declarations for all the enterprise beans described by this XML document. It may contain <entity>,
<session>, or <message-driven> (EJB 2.0) elements, which describe entity, session, and message-driven
enterprise beans, respectively.

<entity>

Describes an entity bean and its deployment information. There must be one of these elements for every entity
bean described by the XML deployment descriptor. While this deployment descriptor describes a single entity
bean, the <session> element is used in the same way to describe a session bean. The <message-driven> element
is different, as it does not define any component interfaces.

<ejb-name>

The descriptive name of the enterprise bean. It is the name used for the enterprise bean in conversation, when
talking about the bean component as a whole.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

talking about the bean component as a whole.

<home>

The fully qualified class name of the remote home interface. This interface defines the life-cycle behaviors
(create, find, remove) of the enterprise bean to its clients outside the container system.

<remote>

The fully qualified class name of the remote interface. This interface defines the enterprise bean's business
methods to its clients outside the container system.

<ejb-class>

The fully qualified class name of the bean class. This class implements the business methods of the bean.

<prim-key-class>

The fully qualified class name of the enterprise bean's primary key. The primary key is used to find the bean
data in the database.

The <persistence-type> and <reentrant> elements express the persistence strategy and concurrency policies of the entity
bean. These elements are explained in more detail later in the book.

As you progress through this book, you will be introduced to the elements that describe concepts that have not been
covered yet, so don't worry about knowing all of the elements you might find in a deployment descriptor.

2.1.3 EJB Objects and EJB Home

The entity and session beans both declare the component interfaces that their clients use to access them. (Message-
driven beans are a very different kind of animal). In EJB 2.0, clients outside the container system always use the
enterprise bean's remote component interfaces. In EJB 2.1, clients outside the container system have the option of
accessing stateless session beans as Web services. For both EJB 2.1 and 2.0, clients within the same J2EE system (i.e.,
enterprise beans, Servlets, and JSPs) can use local component interfaces to interact. This section explains how the
component interfaces are connected to instances of the bean class at runtime.

Now that you have a basic understanding of some of an enterprise bean's parts (component interfaces, bean class, and
deployment descriptor), it's time to talk more precisely about how these parts come together inside an EJB container
system. Unfortunately, we can't talk as precisely as we'd like. There are a number of ways for an EJB container to
implement these relationships; we'll show some of the possibilities. Specifically, we'll talk about how the container
implements the component interface of entity and session beans, so that clients—either applications outside the
container or other co-located enterprise beans—can interact with and invoke methods on the bean class.

The two missing pieces are the EJB object itself and the EJB home. You will probably never see the EJB home and EJB
object classes because their class definitions are proprietary to the vendor's EJB implementation and are generally not
made public. This practice is useful because it represents a separation of responsibilities along areas of expertise. As an
application developer, you are intimately familiar with how your business environment works and needs to be modeled,
so you will focus on creating the applications and beans that describe your business. System-level developers, the
people who write EJB servers, don't understand your business, but they do understand how to develop CTMs and
support distributed objects. It makes sense for system-level developers to apply their skills to the mechanics of
managing distributed objects, but leave the business logic to you, the application developer. Let's talk briefly about the
EJB object and the EJB home so the missing pieces in the big picture are understandable.

2.1.3.1 The EJB object

This chapter has said a lot about a bean's remote and local interfaces, which extend the EJBObject and the EJBLocalObject
interfaces, respectively. Who implements these interfaces? Clearly, the stub does: we understand that much. But what
about the server side?

On the server side, an EJB object is an object that implements the remote and/or local interfaces of the enterprise
bean. The EJB object is generated by your EJB container and wraps the enterprise bean instance—that is, an instance of
the enterprise bean class you've created (in our example, the CabinBean) on the server—and expands its functionality to
include javax.ejb.EJBObject and/or javax.ejb.EJBLocalObject behavior. This object works with the container to apply
transactions, security, and other system-level operations to the bean at runtime.

We're forced to use "and/or" a lot when talking about which interface the EJB object implements. That's because
enterprise beans in EJB can declare the local interface, the remote interface, or both! In EJB 2.1, stateless session
beans can also implement an endpoint interface, which turns it into a Web service. (The endpoint interface and Web
services are addressed separately in Chapter 14.) Regardless of which interfaces the bean implements, we can think of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

services are addressed separately in Chapter 14.) Regardless of which interfaces the bean implements, we can think of
the EJB object as implementing both. In reality, there may be a special EJB object for the remote interface and another
special EJB object for the local interface of each enterprise bean; that depends on how the vendor chooses to
implement it. But that distinction, while it matters to EJB vendors, isn't visible to EJB developers.

A vendor can use a number of strategies to implement the EJB object. Figure 2-1 illustrates two possibilities using the
CabinRemote interface. The same implementation strategies apply to the CabinLocal and javax.ejb.EJBLocalObject interfaces.

Figure 2-1. Two ways to implement the EJB object

In Figure 2-1(a), the EJB object class actually extends the bean class, adding functionality specific to the EJB container.
In Figure 2-1(b), the bean class is no longer included in the model. In this case, the EJB object has both the proprietary
implementation required by the EJB container and bean class method implementations that were copied from the bean
class's definition.

The EJB object design shown in Figure 2-1(a) is perhaps the most common. But other implementations are used; it
shouldn't make a difference which one your vendor has chosen. The bottom line is that you never really know much
about the EJB object: its implementation is up to the vendor. Knowing that the EJB object exists answers a lot of
questions about how enterprise beans are structured. But everything a client (including other enterprise beans) needs
to know about an enterprise bean is described by the remote and home interfaces.

2.1.3.2 The EJB home

The EJB home is a lot like the EJB object. It's another class that's generated automatically when you install an
enterprise bean in a container. It implements all the methods defined by the home interfaces (local and/or remote) and
is responsible for helping the container manage the bean's life cycle. The EJB home is responsible for locating, creating,
and removing enterprise beans. These tasks may involve working with the EJB server's resource managers, instance
pooling, and persistence mechanisms, the details of which are hidden from the developer.

For example, when a create method is invoked on a home interface, the EJB home creates an instance of the EJB object
that references a bean instance of the appropriate type. Once the bean instance is associated with the EJB object, the
instance's matching ejbCreate() method is called. In the case of an entity bean, a new record is inserted into the
database. With session beans, the instance is simply initialized. Once the ejbCreate() method has completed, the EJB
home returns a remote or local reference (i.e., a stub) for the EJB object to the client. The client can then work with the
EJB object by invoking business methods. The stub relays the methods to the EJB object; in turn, the EJB object
delegates those method calls to the bean instance.

How does the EJB home know which type of EJB object reference (local or remote) to return? It depends on which
home interface is being used. If the client invokes a create() method on the remote home interface, the EJB home
returns a remote interface reference. If the client is working with a local home interface, the EJB home returns a
reference implementing the local interface. EJB requires that the return type of remote home interface methods be
remote interfaces and that the return type of local home interface methods be local interfaces:

// The Cabin EJB's remote home interface

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer pk)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws FinderException, RemoteException;

}

// The Cabin EJB's local home interface

public interface CabinHomeLocal extends javax.ejb.EJBLocalHome {

 public CabinLocal create(Integer pk)

 throws CreateException;

 public CabinLocal findByPrimaryKey(Integer id)

 throws FinderException;

}

Figure 2-2 illustrates the architecture of EJB with the EJB home and EJB object implementing the home interface and
remote or local interface. The bean class is wrapped by the EJB object. Remember, though, that this is only an
illustration. "EJB object" and "EJB home" are simply terms to describe the EJB container's responsibilities for supporting
the component interfaces. In reality, we have no idea how the vendor chose to implement the EJB object and EJB
home, since they are only logical constructs and may not have equivalent software counterparts.

Figure 2-2. EJB architecture

2.1.3.3 Deploying a bean

After the files that define the bean (the component interfaces and the bean classes) have been packaged into a JAR file,
the bean is ready to be deployed; that is, it can be added to an EJB container so it can be accessed as a distributed
component. During the deployment process, tools provided by the EJB container vendor generate the EJB object and
EJB home classes by examining the deployment descriptor and the other interfaces and classes in the JAR file.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Using Enterprise Beans
Let's look at how a client would use an enterprise bean to do something useful. We'll start with the Cabin EJB defined
earlier. A cabin is a thing or place with a description that is stored in a database. To make the example a little more
real, assume that there are other entity beans: Ship, Cruise, Ticket, Customer, Employee, and so on.

2.2.1 Getting Information from an Entity Bean

Imagine that a GUI client needs to display information about a particular cruise: the cruise name, the ship name, and a
list of cabins. Using the cruise ID obtained from a text field, we can use our beans to look up data about the cruise.
Here's the code:

CruiseHomeRemote cruiseHome = ... ; // use JNDI to get the home

// Get the cruise ID text field 1.

String cruiseID = textField1.getText();

// Create an EJB primary key from the cruise ID.

Integer pk = new Integer(cruiseID);

// Use the primary key to find the cruise.

CruiseRemote cruise = cruiseHome.findByPrimaryKey(pk);

// Set text field 2 to show the cruise name.

textField2.setText(cruise.getName());

// Get a remote reference to the ship that will be used

// for the cruise from the cruise bean.

ShipRemote ship = cruise.getShip();

// Set text field 3 to show the ship's name.

textField3.setText(ship.getName());

// Get all the cabins on the ship.

Collection cabins = ship.getCabins();

Iterator cabinItr = cabins.iterator();

// Iterate through the enumeration, adding the name of each cabin

// to a list box.

while(cabinItr.hasNext())

 CabinRemote cabin = (CabinRemote)cabinItr.next();

 listBox1.addItem(cabin.getName());

}

We start by getting a remote reference to the EJB home for an entity bean that represents a cruise. We need a remote
reference rather than a local one because the client is an application located outside the EJB container. It's not shown in
the example, but references to the EJB home are obtained using JNDI. JNDI is a powerful API for locating resources,
such as remote objects, on networks. JNDI lookups are covered in subsequent chapters.

We read a cruise ID from a text field, use it to create a primary key, and use that primary key together with the EJB
home to get a CruiseRemote reference. This reference implements the bean's business methods. Once we have the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

home to get a CruiseRemote reference. This reference implements the bean's business methods. Once we have the
appropriate Cruise EJB, we can ask the bean to give us a remote reference to a Ship EJB that represents the ship used
for the cruise. We can then call the ship.getCabins() method to get a Collection of remote Cabin EJB references from the
Ship EJB, and, with the Cabin EJBs in hand, we can retrieve and display the names of the Cabin EJBs.

2.2.2 Modeling Taskflow with Session Beans

Entity beans are useful for representing data and describing business concepts that can be expressed as nouns, but
they're not very good at representing a process or a task. A Ship bean provides methods and behavior for doing things
directly to a ship, but it does not define the context under which these actions are taken. The previous example
retrieved data about cruises and ships; we could also have modified this data. With enough effort, we could have
figured out how to book a passenger—perhaps by adding a Customer EJB to a Cruise EJB, or adding a customer to a list
of passengers maintained by the ship. We could try to shove methods for accepting payment and other tasks related to
booking into our GUI client application, or even into the Ship or Cabin EJBs, but that's a contrived and inappropriate
solution. We don't want business logic in the client application—that's why we went to a multitier architecture in the first
place. Similarly, we don't want this kind of logic in our entity beans that represent ships and cabins. Booking
passengers on a ship or scheduling a ship for a cruise are the types of activities or functions of the business, not the
Ship or the Cabin bean, and are therefore expressed in terms of a process or task.

Session beans act as agents that manage business processes or tasks for the client; they're the appropriate place for
business logic. A session bean is not persistent; nothing in a session bean maps directly into a database or is stored
between sessions. Session beans work with entity beans, data, and other resources to control taskflow. Taskflow is the
essence of any business system, because it expresses how entities interact to model the actual business. Session beans
control tasks and resources but do not themselves represent data.

The term "taskflow" was coined specifically for this book. It's derived from the term
"workflow," which is frequently used to describe the management of business processes
that may span several days with lots of human intervention. In contrast to workflow, the
term taskflow is used in this book to describe the interactions of beans within a single
transaction that takes only a few seconds to execute.

The following code demonstrates how a session bean designed to make cruise-line reservations might control the
taskflow of other entity and session beans. Imagine that a piece of client software, in this case a user interface, obtains
a remote reference to a TravelAgent session bean. Using the information entered into text fields by the user, the client
application books a passenger on a cruise:

// Get the credit card number from the text field.

String creditCard = textField1.getText();

int cabinID = Integer.parseInt(textField2.getText());

int cruiseID = Integer.parseInt(textField3.getText());

// Create a new Reservation session passing in a reference to a

// customer entity bean.

TravelAgent travelAgent = travelAgentHome.create(customer);

// Set cabin and cruise IDs.

travelAgent.setCabinID(cabinID);

travelAgent.setCruiseID(cruiseID);

// Using the card number and price, book passage.

// This method returns a Ticket object.

TicketDO ticket = travelAgent.bookPassage(creditCard, price);

This is a fairly coarse-grained abstraction of the process of booking a passenger: most of the details are hidden from
the client. Hiding the fine-grained details of taskflow is important because it provides the system with flexibility as it
evolves: we know that we will always want to book passengers, but the process for booking a passenger may change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

evolves: we know that we will always want to book passengers, but the process for booking a passenger may change.

Course-grained and fine-grained are terms that are sometimes used to describe the level
of detail exposed by the public interface of a component. A component whose public
interfaces exposes a lot of detail about how the component funtions is called fine-grained.
Components that provide a public interface but do not expose the details of its operation
are called coarse-grained. When dealing with remote clients, coarse-grained interfaces are
usally prefered because they are more flexible—the client doesn't have to be aware of all
the nitty-gritty details of how the component works.

The following listing shows some of the code for the TravelAgentBean. The bookPassage() method works with three entity
beans, the Customer, Cabin, and Cruise EJBs, and another session bean, the ProcessPayment EJB. The ProcessPayment
EJB provides several methods for making a payment, including check, cash, and credit card. In this case, we use the
ProcessPayment bean to make a credit card payment. Once payment has been made, a serializable TicketDO object is
returned to the client.

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;

 public CruiseRemote cruise;

 public CabinRemote cabin;

 public void ejbCreate(CustomerRemote cust){

 customer =cust;

 }

 public TicketDO bookPassage(CreditCardDO card,double price)

 throws IncompleteConversationalState {

 if (customer == null ||cruise == null ||cabin == null){

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeRemote resHome = (ReservationHomeRemote)

 getHome("ReservationHome",ReservationHomeRemote.class);

 ReservationRemote reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 getHome("ProcessPaymentHome",ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 }catch(Exception e){

 throw new EJBException(e);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 }

// More business methods and callback methods follow

}

This example leaves out some details, but it demonstrates the difference in purpose between a session bean and an
entity bean. Entity beans represent the behavior and data of a business object, while session beans model the taskflow.
The client application uses the TravelAgent EJB to perform a task using other beans. For example, the TravelAgent EJB
uses a ProcessPayment EJB and a Reservation EJB in the process of booking passage. The ProcessPayment EJB
processes the credit card, and the Reservation EJB records the actual reservation in the system. Session beans can also
be used to read, update, and delete data that can't be adequately captured in an entity bean. Session beans don't
represent records or data in the database, but they can access data.

All of the work performed by the TravelAgent session bean could have been coded in the client application. Having the
client interact directly with entity beans is a common but troublesome design approach because it ties the client directly
to the details of the business tasks. As a result, any changes in the way entity beans interact requires changes to the
client, and it's very difficult to reuse the code that models the taskflow.

Session beans allow clients to perform tasks without being concerned with the details that make up the task. A
developer can update the session bean, possibly changing the taskflow, without affecting the client code. In addition, if
the session bean is properly defined, other clients that perform the same tasks can reuse it. The ProcessPayment
session bean, for example, can be used in many areas besides reservations, including retail and wholesale sales. For
example, the ship's gift shop could use the ProcessPayment EJB to process purchases. As a client of the
ProcessPayment EJB, the TravelAgent EJB doesn't care how ProcessPayment works; it's only interested in the
ProcessPayment EJB's coarse-grained interface, which validates and records charges.

Moving taskflow logic into a session bean also simplifies the client application and reduces network traffic. Excessive
network traffic is a common problem for distributed object systems: it can overwhelm the server and clog the network,
hurting response time and performance. Session beans, if used properly, can reduce network traffic by limiting the
number of requests needed to perform a task. The user of session beans keeps the interaction between the beans
involved in a taskflow on the server. One method invocation on the client application results in many method
invocations on the server, but the network sees only the traffic produced by the client's call to the session bean. In the
TravelAgent EJB, the client invokes bookPassage(); in turn, bookPassage() makes several method invocations on other
enterprise beans. Furthermore, the TravelAgent bean may be in the same container as the other beans, and therefore
can use the local interfaces, further reducing network traffic. For the network cost of one method invocation, the client
gets several method invocations.

In addition, session beans reduce the number of network connections that the client needs. The cost of maintaining
many network connections can be high, so reducing the number of connections each client needs improves the
performance of the system as a whole. Figure 2-3 compares the network traffic and connections generated by a client
that uses only entity beans to those generated by a client that uses session beans.

Figure 2-3. Session beans reduce network traffic and thin down clients

Session beans also limit the number of stubs used on the client, which saves the client memory and processing cycles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Session beans also limit the number of stubs used on the client, which saves the client memory and processing cycles.
This may not seem like a big deal, but without the use of session beans, a client might be expected to manage
hundreds or even thousands of remote references at one time. In the TravelAgent EJB, for example, the bookPassage()
method works with several remote references, but the client is exposed only to the TravelAgent's remote reference.

2.2.2.1 Stateless and stateful session beans

Session beans can be either stateful or stateless. Stateful session beans maintain conversational state when used by a
client. Conversational state is not written to a database; it's information that is kept in memory while a client carries on
a conversation with an enterprise bean, and is lost when the conversation ends or if the EJB container crashes. For
example, a client making a reservation through the TravelAgent bean may call the methods that set cabin and cruise
IDs. These IDs are part of the session's conversational state, and affect the behavior of subsequent method calls, such
as the call to bookPassage() that makes the actual reservation. Conversational state is kept for only as long as the client
application is actively using the bean. Once the client shuts down or releases the TravelAgent EJB, the conversational
state is lost forever. Stateful session beans are not shared among clients; they are dedicated to the same client for the
life of the enterprise bean.

Stateless session beans do not maintain any conversational state. Each method is completely independent and uses
only data passed in its parameters. The ProcessPayment EJB is a perfect example of a stateless session bean: it doesn't
need to maintain any conversational state from one method invocation to the next. All the information needed to make
a payment is passed into the byCreditCard() method. Stateless session beans provide better performance and consume
fewer resources than entity and stateful session beans because a few stateless session bean instances can serve
hundreds and possibly thousands of clients. Chapter 11 talks more about stateless session beans.

2.2.3 Message-Driven Beans

Message-driven beans are integration points for other applications interested in working with EJB applications. Java
applications or legacy systems that need to access EJB applications can send messages to message-driven beans via
JMS. This bean processes those messages and performs the required tasks using other entity and session beans. EJB
2.1 is not limited to JMS-based message-driven beans: message-driven beans can support any messaging system that
implements the correct J2eeCA 1.5 (J2EE Connector Architecture Version 1.5) contracts. However, support for JMS-
based message-driven beans (JMS-MDBs) in EJB 2.1 is mandatory, so JMS-MDBs are the type of message-driven bean
addressed in this section.

In many ways, JMS-MDBs fulfill the same role as stateless session beans: they manage the taskflow of entity and
session beans. The task is initiated by an asynchronous message sent by an application using JMS. Unlike session
beans, which respond to business methods invoked on their component interfaces, a JMS-MDB responds to messages
delivered through its onMessage() method. Since the messages are asynchronous, the client that sends them doesn't
expect a reply. The messaging client simply sends the message and forgets about it.

As an example, we can recast the TravelAgent EJB developed earlier as the ReservationProcessor JMS message-driven
bean:

public class ReservationProcessorBean implements javax.ejb.MessageDrivenBean,

 javax.jms.MessageListener {

 public void onMessage(Message message) {

 try {

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)reservationMsg.getObject("CustomerID");

 Integer cruisePk = (Integer)reservationMsg.getObject("CruiseID");

 Integer cabinPk = (Integer)reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 CreditCardDO card = getCreditCard(reservationMsg);

 CustomerRemote customer = getCustomer(customerPk);

 CruiseLocal cruise = getCruise(cruisePk);

 CabinLocal cabin = getCabin(cabinPk);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 Object ref = jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 // More helper methods and callback methods follow

}

All the information about the reservation is obtained from the message delivered to the MDB. JMS messages can take
many forms; the javax.jms.MapMessage used in this example carries name-value pairs. Once the information is gathered
from the message and the enterprise bean references are obtained, the reservation is processed in the same way as it
was in the session bean. The only difference is that a TicketDO object isn't created and returned to the caller; message-
driven beans don't have to respond to the caller.

Regardless of the messaging system, message-driven beans do not maintain any conversational state. Each new
message is independent of the previous messages. The message-driven bean is explained in detail in Chapter 12.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 The Bean-Container Contract
The environment that surrounds the beans on the EJB server is often called the container. The container is more a
concept than a physical construct. It acts as an intermediary between the bean and the EJB server. It manages the EJB
objects and EJB homes and helps these constructs to manage bean resources and provide services such as
transactions, security, concurrency, and naming at runtime. The distinction between the container and the server is not
clearly defined, but the EJB specification defines the component model in terms of the container's responsibilities, so we
will follow that convention here.

Enterprise bean components interact with the EJB container through a well-defined component model. The EntityBean,
SessionBean, and MessageDrivenBean interfaces provide callback methods that notify the bean class of life-cycle events. At
runtime, the container invokes these methods on the bean instance when relevant events occur. For example, when the
container is about to write an entity bean instance's state to the database, it first calls the bean instance's ejbStore()
method. This call gives the bean instance an opportunity to do cleanup on its state before it's written to the database.
The ejbLoad() method is called just after the bean's fields are populated from the database, providing the bean
developer with an opportunity to manage the bean's state before the first business method is called.[3] Other callback
methods can be used by the bean class in a similar fashion. EJB defines when these various callback methods are
invoked and what can be done within their contexts.

[3] The ejbLoad() and ejbStore() behavior illustrated here is for container-managed persistence. With bean-
managed persistence, the behavior is slightly different. This distinction is examined in detail in Chapter 10.

While the bean interfaces require implementations of all the callback methods, those implementations don't have to be
meaningful. The method body of any or all of the callback methods can be left empty, and often is. Beans that
implement callback methods usually access resources that aren't managed by the EJB system. Enterprise beans that
wrap legacy systems often fall into this category.

javax.ejb.EJBContext is an interface implemented by the container and is also part of the bean-container contract. Entity
beans use a subclass of javax.ejb.EJBContext called javax.ejb.EntityContext. Session beans use a subclass called
javax.ejb.SessionContext. Message-driven beans use the subclass javax.ejb.MessageDrivenContext. These EJBContext types
provide the bean with information about its environment: its container, the client using the enterprise bean, and the
bean itself. The bean can use this information while processing requests from clients and callback methods from the
container.

An enterprise bean's interface with the container also includes a JNDI namespace, called the environment naming
context, which the bean can use to look up the resources it needs (including other beans). The JNDI environment
naming context and the EJBContext (and its subclasses) are described in more detail in Chapter 10, Chapter 11, and
Chapter 12.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Summary
This chapter covered a lot of ground describing the basic architecture of an EJB system. At this point, you should
understand that beans are business object components. The home interfaces define life-cycle methods for creating,
finding, and destroying beans, and the remote and local interfaces define the public business methods of the bean.
Message-driven beans do not have component interfaces. The bean class is where the state and behavior of the bean
are implemented.

There are three basic kinds of beans: entity, session, and message-driven. Entity beans are persistent and represent a
person, place, or thing. Session beans are extensions of the client and embody a process or a taskflow that defines how
other beans interact. Session beans are not persistent: they receive their state from the client, and they live only as
long as the client needs them. Message-driven beans are integration points that allow other applications to interact with
EJB applications using JMS or, in EJB 2.1, some other J2eeCA 1.5-compliant resource. Message-driven beans, like
stateless session beans, are not persistent and do not maintain conversational state.

The EJB object and EJB home are conceptual constructs that delegate method invocations to session and entity beans
from the client and help the container to manage the enterprise bean at runtime. The clients of entity and session
beans do not interact with the instances of the bean class directly. Instead, the client software interacts with stubs,
which are connected to the EJB object and EJB home. The EJB object implements the remote and/or local interface and
expands the bean class's functionality. The EJB home implements the home interface and works closely with the
container to create, locate, and remove beans.

Beans interact with their containers through the well-defined bean-container contract. This contract provides callback
methods, the EJBContext, and the JNDI environment-naming context. The callback methods notify the bean class that it
is involved in a life-cycle event. The EJBContext and JNDI environment-naming context provide the bean instance with
information about its environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Architectural Overview
In order to use Enterprise JavaBeans effectively, you need to understand the EJB architecture. This chapter explores
the core of the EJB architecture: how enterprise beans are distributed as business objects. Chapter 3 explores the
services and resource-management techniques supported by EJB.

In order to be truly versatile, the EJB component design had to be smart. For application developers, assembling
enterprise beans requires little or no expertise in the complex system-level issues that often plague three-tier
development efforts. While EJB makes the process easier for application developers, it also provides EJB server
developers with a great deal of flexibility in how they support the EJB specification.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

20.1 Contents of the JBoss Workbook
The workbook is divided into three sections:

JBoss Installation and Configuration

Walks you through downloading, installing, and configuring JBoss. Also provides a brief overview of the
structure of the JBoss installation.

Exercises

Contains step-by-step instructions for downloading, building, and running the example programs in Enterprise
JavaBeans, Fourth Edition (for brevity, this workbook calls it "the EJB book"). The text also walks through the
various deployment descriptors and source code to point out JBoss features and concerns.

Appendix

Provides useful information that did not fit neatly in the other sections, including a collection of XML snippets for
configuring a few popular JDBC drivers from various database vendors.

The workbook text for each exercise depends on the amount of configuration required for the example program, but
generally also include s instructions on:

Compiling and building the example code

Deploying the EJB components to the application server

Running the example programs and evaluating the results

The exercises were designed to be built and executed in order. Every effort was made to remove any dependencies
between exercises by including all components each one needs in the directory for that exercise, but some
dependencies still exist. The workbook text will guide you through these where they arise.

Also note that this workbook is not intended to be a course on database configuration or design. The exercises have
been designed to work out-of-the-box with the open-source database Hypersonic SQL, which is shipped with JBoss, and
the application server creates all database tables automatically, at run time.

20.1.1 Online Resources

This workbook is designed for use with the EJB book and with downloadable example code, both available from our web
site:

http://www.oreilly.com/catalog/entjbeans4/workbooks/index.html

We will post any errata here, and any updates required to support changes in specifications or products. This site also
contains links to many popular EJB-related sites on the Internet.

We hope you find this workbook useful in your study of Enterprise JavaBeans and the JBoss open source J2EE
implementation. Comments, suggestions, and error reports on the text of this workbook or the downloaded example
files are welcome and appreciated. Please post on the JBoss Forum:

http://www.jboss.org/index.html?module=bb&op=viewforum&f=152

In order to obtain more information about JBoss or the JBoss project, visit the project's web site:

http://www.jboss.org/

There you will find links to detailed JBoss documentation, online forums, and events happening in the JBoss community.
You will also be able to obtain detailed information on JBoss training, support, and consulting services.

JBoss, Inc. has also produced books on JBoss and other J2EE standards, among them JBoss Administration and
Development by Marc Fleury and Scott Stark, and JMX: Managing J2EE with Java Management Extensions by Marc
Fleury and Juha Lindfors.

20.1.2 Acknowledgments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We would like to thank Marc Fleury, the founder of JBoss, for recommending us for this book and Richard Monson-
Haefel for accepting the recommendation. We would also like to thank Greg Nyberg, the author of the WebLogic edition
in this series of workbooks. The example programs he provided in his workbook were a great starting place for us and
made our lives much easier.

Special thanks also go out to those who reviewed and critiqued this work: the members of JBoss Inc., Daniel Ruflé, and
Thomas Laresch. We would like to publicly recognize the series editor, Brian Christeson, for his courage and bravery for
digging so deeply in this book and relentlessly hunting down our anglish misthakes (especially Sacha's Franco-British
dialect).

Finally, Bill would like to thank his wife for putting up with all his whining and complaining, and Sacha promises Sophie
that he will no longer use the writing of this workbook as an excuse for being late for any of their rendezvous.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 20. Introduction
This workbook is designed to be a companion for O'Reilly's Enterprise JavaBeans, Fourth Edition, by Richard Monson-
Haefel, for users of JBoss™, an open-source J2EE™ application server. The goal of this workbook is to provide step-by-
step instructions for installing, configuring, and using JBoss, and for deploying and running the examples from
Enterprise JavaBeans.

This workbook is based on the production release of JBoss 4.0 and includes all the EJB 2.0 examples from the
Enterprise JavaBeans, Fourth Edition book. All the examples in this workbook will work properly with JBoss 4.0 and
above, but not with earlier versions of JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.1 About JBoss
JBoss is a collaborative effort of a worldwide group of developers to create an open source application server based on
the Java 2 Platform, Enterprise Edition (J2EE). With more than five million downloads in the last two years, JBoss is the
leading J2EE application server.

JBoss implements the full J2EE stack of services:

EJB (Enterprise JavaBeans)

JMS (Java Message Service)

JTS/JTA (Java Transaction Service/Java Transaction API)

Servlets and JSP (JavaServer Pages)

JNDI (Java Naming and Directory Interface)

It also provides advanced features such as clustering, JMX, web services, and IIOP (Internet Inter-ORB Protocol)
integration.

Because JBoss code is licensed under the LGPL (GNU Lesser General Public License, see
http://www.gnu.org/copyleft/lesser.txt), you can use it freely, at no cost, in any commercial application, or redistribute
it as is.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.2 Installing JBoss Application Server
Before going any further, make sure you have the J2SE JDK 1.4 or higher installed and correctly configured.

To download the JBoss binaries, go to the JBoss web site at http://www.jboss.org and follow the Downloads link. There
you will find all current binaries in both zip and tar.gz archive formats. Download the package that best meets your
needs.

Extract the downloaded archive in the directory of your choice. Under Windows, you can use the WinZip utility to
extract the archive content. Under Unix, you can use the following commands:

$ gunzip jboss-4.0.tar.gz

$ tar xf jboss-4.0.tar

Then change to the $JBOSS_HOME/bin directory and launch the run script that matches your OS:

Unix:

$ run.sh

Windows:

C:\jboss-4.0\bin>run.bat

That's it! You now have a fully working JBoss server!

21.2.1 Discovering the JBoss Directory Structure

Installing JBoss creates the directory structure shown in Figure 21-1.

Figure 21-1. JBoss directory structure

Table 21-1 describes the purposes of the various directories.

Table 21-1. JBoss directories
Directory Description

bin Scripts to start and shut down JBoss.

client Client-side Java libraries (JARs) required to communicate with JBoss.

docs Sample configuration files (for database configuration, etc.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

docs/dtd DTDs (Document Type Definitions) for the various XML files used in JBoss.

lib JARs loaded at startup by JBoss and shared by all JBoss configurations. (You won't put your
own libraries here.)

server
Various JBoss configurations. (Each configuration must be in a different subdirectory. The
name of the subdirectory represents the name of the configuration. As distributed, JBoss
contains three configurations: minimal, default, and all.)

server/all JBoss's complete configuration; starts all services, including clustering and IIOP.

server/minimal JBoss's minimal configuration; starts only very basic services; cannot be used to deploy EJBs.

server/default JBoss's default configuration; used when no configuration name is specified on JBoss
command line.

server/default/conf JBoss's configuration files. (You will learn more about the content of this directory in the next
section.)

server/default/data JBoss's database files (embedded database or JBossMQ, for example).

server/default/deploy JBoss's hot-deployment directory. (Any file or directory dropped in this directory is
automatically deployed in JBoss: EJBs, WARs, EARs, and even services.)

server/default/lib JARs that JBoss loads at startup when starting this particular configuration. (The all and
minimal configurations also have this directory and the next two.)

server/default/log JBoss's logfiles.

server/default/tmp JBoss's temporary files.

If you want to define your own configuration, create a new sub-directory under the server directory containing the
appropriate files. To start JBoss with a given configuration, use the -c parameter on the command line:

Windows:

C:\jboss-4.0 \bin> run.bat -c config-name

Unix:

$./run.sh -c config-name

21.2.2 JBoss Configuration Files

As the previous section described, JBoss's server directory can contain any number of directories, each representing a
different JBoss configuration.

The server/config-name/conf directory contains JBoss's configuration files. The purpose of the various files is discussed
in Table 21-2.

Table 21-2. JBoss configuration files
File Description

jacorb.properties JBoss IIOP configuration.

jbossmq-state.xml JBossMQ (JMS implementation) user configuration.

jboss-service.xml Definition of JBoss's services launched at startup (class loaders, JNDI, deployers, etc.).

log4j.xml Log4J logging configuration.

login-config.xml JBoss security configuration (JBossSX).

standardjaws.xml Default configuration for JBoss's legacy CMP 1.1 engine; contains JDBC-to-SQL mapping
information for various databases, default CMP settings, logging configuration, etc.

standardjboss.xml Default container configuration.

standardjbosscmp-
jdbc.xml Same as standardjaws.xml except that it is used for JBoss's CMP 2.0 engine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2.3 Deployment in JBoss

The deployment process in JBoss is straightforward. In each configuration, JBoss constantly scans a specific directory
for changes: $JBOSS_HOME/server/config-name/deploy. This directory is generally referred to informally as the deploy
directory.

You can copy to this directory:

Any JAR library (the classes it contains are automatically added to the JBoss classpath)

An EJB JAR

A WAR (Web Application aRrchive)

An EAR (Enterprise Application aRchive)

An XML file containing JBoss MBean definitions

A directory ending in .jar, .war, or .ear and containing respectively the extracted content of an EJB JAR, a WAR,
or an EAR

To redeploy any of the above files (JAR, WAR, EAR, XML, etc.), simply overwrite it with a more recent version. JBoss
will detect the change by comparing the files' timestamps, undeploy the previous files, and deploy their replacements.
To redeploy a directory, update its modification timestamp by using a command-line utility such as touch. To undeploy
a file, just remove it from the deploy directory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.3 A Quick Look at JBoss Internals
Since Version 3.0, JBoss has been built around a few very powerful concepts that allow users to customize and fine-
tune their servers for very specific needs, not limited to J2EE. This flexibility allows JBoss to be used in very different
environments, ranging from embedded systems to very large server clusters. The next few sections comment on some
of these concepts briefly.

21.3.1 Microkernel Architecture

JBoss is based on a microkernel design in which components can be plugged at runtime to extend its behavior.

This design fits particularly well with the J2EE platform, which is essentially a service-based platform. The platform
contains services for persistence, transactions, security, naming, messaging, logging, and so on.

Other application servers are generally built as monolithic applications containing all services of the J2EE platform at all
times. JBoss takes a radically different approach: each of the services is hot-deployed as a component running on top of
a very compact core, called the JBoss Server Spine (Figure W-2). Furthermore, users are encouraged to implement
their own services to run on top of JBoss.

Consequently, the JBoss application server is not limited to J2EE applications, and indeed
is frequently used to build any kind of application requiring a strong and reliable base. For
this reason, the JBoss core is also known as the WebOS.

Figure 21-2. JBoss Server Spine with some hot-deployed services

JBoss Server Spine itself is based on Sun's Java Management eXtensions (JMX) specification, making any deployed
component automatically manageable in a standard fashion. In the JMX terminology, a service deployed in JBoss is
called an a managed bean (MBean).

More information about the JMX specification can be found at the Sun web site,
http://java.sun.com/products/JavaManagement/.

21.3.2 Hot Deployment

Since Release 2.0, JBoss has been famous for being the first J2EE-based application server to support hot deployment
and redeployment of applications (EJB JAR, WAR, and EAR), while many application servers required a restart to update
an application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an application.

Thanks to its microkernel architecture and revolutionary Java class loader, JBoss 3.0 and later releases push this logic
further. Not only can they hot-deploy and -redeploy applications, but they can hot-(re)deploy any service and keep
track of dependencies between services. These features make JBoss usable in very demanding environments such as
telecommunications systems.

21.3.3 Net Boot

JBoss is able to boot itself and your applications from any network location just by pointing the JBoss Server Spine to a
simple URL. This allows you to manage the entire configuration of a cluster of JBoss nodes from one central web server.
This impressive flexibility makes deployment of new servers very easy (Figure 21-3).

Figure 21-3. A JBoss instance bootstrapping from three distinct netboot servers

JBoss's bootstrap code is approximately 50K, which makes it suitable for many embedded
systems.

21.3.4 Detached Invokers

JBoss completely detaches the protocol handlers on which invocations are received from the target service that
eventually serves the requests. Consequently, when a new handler (called an invoker in JBoss) for a given protocol is
deployed in JBoss, all existing services and applications can automatically be reached through this new invocation
transport. Figure 21-4 shows detached invokers.

JBoss 4.0 currently supports the following kinds of invokers:

RMI

RMI over HTTP

IIOP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IIOP

JMS

SOAP

HA-RMI (Clustering over RMI)

Figure 21-4. Detached invokers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

21.4 Exercise Code Setup and Configuration
You can download the example code for the exercises from
http://www.oreilly.com/catalog/entjbeans4/workbooks/index.html. Exercises that require a database will use JBoss's
default embedded database. Consequently, no additional database setup is required. This workbook includes an
Appendix that shows you how to configure JBoss to use a different database, if you want to.

21.4.1 Exercises Directory Structure

The example code is organized as a set of directories, one for each exercise (Figure 21-5). You'll find the code of each
exercise in the src/main subdirectory and the configuration files in src/resources.

Figure 21-5. Exercises directory structure

To build and run the exercises, you'll use the Ant tool. A build.xml is provided for each exercise. It contains the Ant
configuration needed to compile the classes, build the EJB JAR, deploy it to JBoss, and run the client test applications.
For this reason, the Ant tool is provided with the exercises and can be found in the ant directory.

You can find out more about Ant at the Apache Jakarta web site
http://jakarta.apache.org/ant/.

21.4.2 Environment Setup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the Ant scripts to work correctly, first set some environment variables in the shells you will use to run the exercises:

The JAVA_HOME environment variable must point to where your JDK is installed.

The JBOSS_HOME environment variable must point to where JBoss is installed.

The directory containing the Ant scripts must be in your path.

Depending on your platform, you'll have to execute commands like these:

Windows:

C:\workbook\ex04_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex04_1> set JBOSS_HOME=C:\jboss-4.0

C:\workbook\ex04_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

$ export PATH=../ant/bin:$PATH

In each chapter, you'll find detailed instructions on how to build, deploy, and run the exercises using Ant.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 21. JBoss Installation and Configuration
This chapter guides you through the steps required to install a fully working JBoss server. Along the way, you will learn
about JBoss 4.0's microkernel architecture, and the last section will show you how to install the code for the
forthcoming exercises. If you need more detailed information about JBoss configuration, visit the JBoss web site,
http://www.jboss.org, where you will find comprehensive online documentation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

22.1 Exercise 4.1: A Simple Entity Bean
The Cabin EJB demonstrates basic CMP 2.0 capability for a simple entity bean mapped to a single table. The following
sections outline the steps necessary to build, deploy, and execute the Cabin EJB example. Please note that because
you're using JBoss's default embedded database, you don't need to configure the database or create tables. The code
you'll see here mirrors the example code provided in Chapter 4 of the EJB book.

22.1.1 Start Up JBoss

Start up JBoss as described in the JBoss Installation and Configuration chapter at the beginning of this workbook.

22.1.2 Initialize the Database

The database table for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when the
EJB JAR is deployed.

22.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex04_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex04_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex04_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility

Windows:

C:\workbook\ex04_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant. Ant uses build.xml to figure out what to compile and how to build your JARs.

If you need to learn more about the Ant utility, visit the Ant project at the Jakarta web site at
http://jakarta.apache.org/ant/index.html.

Ant compiles the Java source code, builds the EJB JAR, and deploys the JAR simply by copying it to JBoss's deploy
directory. If you are watching the JBoss console window, you will notice that JBoss automatically discovers the EJB JAR
once it has been copied into the deploy directory, and automatically deploys the bean.

Another particularly interesting thing about building EJB JARs is that there is no special EJB compilation step. Unlike
other servers, JBoss does not generate code for client stubs. Instead, it has a lightweight mechanism that creates client
proxies when the EJB JAR is deployed, accelerating the development and deployment cycle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1.4 Deconstructing build.xml

The build.xml file provided for each workbook exercise gives the Ant utility information about how to compile and
deploy your Java programs and EJBs. The following build tasks can be executed by typing ant taskname :

The default task (just typing ant without a task name) compiles the code, builds the EJB JAR, and deploys the
JAR into JBoss. The deployment procedure is just a simple copy into the JBoss deploy directory.

ant compile compiles all the Java source files.

ant clean removes all .class and .jar files from the working directory and undeploys the JAR from JBoss by
deleting the file from JBoss's deploy directory.

ant clean.db provides you with a clean copy of the HypersonicSQL database used throughout the exercises. This
task works only with HypersonicSQL.

run.client_xxx runs a specific example program. Each exercise in this book will have a run.client rule for each
example program.

clean.db can be used only when JBoss is not running.

Here's a breakdown of what is contained in build.xml.

<project name="JBoss" default="ejbjar" basedir=".">

The default attribute defines the default target that ant will run if you type only ant on the command line. The basedir
attribute tells Ant what directory to run the build in:

 <property environment="env"/>

 <property name="src.dir" value="${basedir}/src/main"/>

 <property name="src.resources" value="${basedir}/src/resources"/>

 <property name="jboss.home" value="${env.JBOSS_HOME}"/>

 <property name="build.dir" value="${basedir}/build"/>

 <property name="build.classes.dir" value="${build.dir}/classes"/>

All the properties defined above are variables that Ant will use throughout the build process. You can see that the
JBOSS_HOME environment variable is pulled from the system environment and other directory paths defined:

 <path id="classpath">

 <fileset dir="${jboss.home}/client">

 <include name="**/*.jar"/>

 </fileset>

 <pathelement location="${build.classes.dir}"/>

 <pathelement location="${basedir}/jndi"/>

 </path>

To compile and run the example applications in this workbook, add all the JARS in $JBOSS_HOME/client to the Java
classpath. Also notice that build.xml inserts the ${basedir}/jndi directory into the classpath. A jndi.properties file in this
directory enables the example programs to find and connect to JBoss's JNDI server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directory enables the example programs to find and connect to JBoss's JNDI server:

 <property name="build.classpath" refid="classpath"/>

 <target name="prepare" >

 <mkdir dir="${build.dir}"/>

 <mkdir dir="${build.classes.dir}"/>

 </target>

The prepare target creates the directories where the Java compiler will place compiled classes:

 <target name="compile" depends="prepare">

 <javac srcdir="${src.dir}"

 destdir="${build.classes.dir}"

 debug="on"

 deprecation="on"

 optimize="off"

 includes="**">

 <classpath refid="classpath"/>

 </javac>

 </target>

The compile target compiles all the Java files under the src/main directory. Notice that it depends on the prepare target;
prepare will run before the compile target is executed:

<target name="ejbjar" depends="compile">

 <jar jarfile="build/titan.jar">

 <fileset dir="${build.classes.dir}">

 <include name="com/titan/cabin/*.class"/>

 </fileset>

 <fileset dir="${src.resources}/">

 <include name="**/*.xml"/>

 </fileset>

 </jar>

 <copy file="build/titan.jar"

 todir="${jboss.home}/server/default/deploy"/>

</target>

The ejbjar target creates the EJB JAR file and deploys it to JBoss simply by copying it to JBoss's deploy directory:

<target name="run.client_41a" depends="ejbjar">

 <java classname="com.titan.clients.Client_1" fork="yes" dir=".">

 <classpath refid="classpath"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <classpath refid="classpath"/>

 </java>

</target>

<target name="run.client_41b" depends="ejbjar">

 <java classname="com.titan.clients.Client_2" fork="yes" dir=".">

 <classpath refid="classpath"/>

 </java>

</target>

The run.client_xxx targets are used to run the example programs in this chapter:

<target name="clean.db">

 <delete dir="${jboss.home}/server/default/db/hypersonic"/>

</target>

The clean.db target cleans the default database used by JBoss for the example programs in this book. Remember, you
can only use it when JBoss is not running:

<target name="clean">

 <delete dir="${build.dir}"/>

 <delete file="${jboss.home}/server/default/deploy/titan.jar"/>

</target>

</project>

The clean target removes compiled classes and undeploys the EJB JAR from JBoss by deleting the JAR file in the deploy
directory.

22.1.5 Examine the JBoss-Specific Files

You do not need any JBoss-specific files to write a simple EJB. For an entity bean as simple as the Cabin EJB, JBoss
creates the appropriate database tables within its embedded database Hypersonic SQL by examining the ejb-jar.xml
deployment descriptor.

In later chapters, you will learn how to map entity beans to different data sources and pre-
existing database tables using JBoss-specific CMP deployment descriptors.

By default, JBoss uses the <ejb-name> from the bean's ejb-jar.xml deployment descriptor for the JNDI binding of the
bean's home interface. If you do not like this default, you can override it in a jboss.xml file. Clients use this name to
look up an EJB's home interface. For this example, CabinEJB is bound to CabinHomeRemote.

22.1.5.1 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1.5.1 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>

 </enterprise-beans>

</jboss>

22.1.6 Examine and Run the Client Applications

Two example programs implement the sample clients provided in the EJB book:

Client_1.java

Creates a single Cabin bean, populates each of its attributes, then queries the created bean with the primary
key.

Client_2.java

Creates 99 additional Cabins with a variety of different data that will be used in subsequent exercises.

22.1.6.1 Client_1.java

package com.titan.clients;

import com.titan.cabin.CabinHomeRemote;

import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

import java.rmi.RemoteException;

public class Client_1

{

 public static void main(String [] args)

 {

 try

 {

 Context jndiContext = getInitialContext();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin_1 = home.create(new Integer(1));

 cabin_1.setName("Master Suite");

 cabin_1.setDeckLevel(1);

 cabin_1.setShipId(1);

 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);

 CabinRemote cabin_2 = home.findByPrimaryKey(pk);

 System.out.println(cabin_2.getName());

 System.out.println(cabin_2.getDeckLevel());

 System.out.println(cabin_2.getShipId());

 System.out.println(cabin_2.getBedCount());

 }

 catch (java.rmi.RemoteException re){re.printStackTrace();}

 catch (javax.naming.NamingException ne){ne.printStackTrace();}

 catch (javax.ejb.CreateException ce){ce.printStackTrace();}

 catch (javax.ejb.FinderException fe){fe.printStackTrace();}

 }

 public static Context getInitialContext()

 throws javax.naming.NamingException

 {

 return new InitialContext();

 }

}

The getInitialContext() method creates an InitialContext with no properties. Because no properties are set, the Java library
that implements InitialContext searches the classpath for the file jndi.properties. Each example program in this workbook
will have a jndi directory that contains a jndi.properties file. You will be executing all example programs through Ant,
and it will set the classpath appropriately to refer to this properties file.

Run the Client_1 application by invoking ant run.client_41a at the command prompt. Remember to set your JBOSS_HOME
and PATH environment variables.

The output of Client_1 should look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output of Client_1 should look something like this:

C:\workbook\ex04_1>ant run.client_41a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_41a:

 [java] Master Suite

 [java] 1

 [java] 1

 [java] 3

Client_1 adds a row to the database representing the Cabin bean and does not delete it at the conclusion of the
program. You cannot run this program more than once unless you stop JBoss, clean the database by invoking the Ant
task clean.db and restarting JBoss. Otherwise, you will get the following error:

run.client_41a:

 [java] javax.ejb.DuplicateKeyException: Entity with primary key 1 already exists

 [java] at org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand.

execute(JDBCCreateEntityCommand.java:160)

 [java] at org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager.

createEntity(JDBCStoreManager.java:633)

 [java] at org.jboss.ejb.plugins.CMPPersistenceManager.

createEntity(CMPPersistenceManager.java:253)

 [java] at org.jboss.resource.connectionmanager.CachedConnectionInterceptor.

createEntity(CachedConnectionInterce

...

 [java] at org.jboss.invocation.InvokerInterceptor.invoke(InvokerInterceptor.

java:92)

 [java] at org.jboss.proxy.TransactionInterceptor.

invoke(TransactionInterceptor.java:77)

 [java] at org.jboss.proxy.SecurityInterceptor.invoke(SecurityInterceptor.

java:80)

 [java] at org.jboss.proxy.ejb.HomeInterceptor.invoke(HomeInterceptor.java:

175)

 [java] at org.jboss.proxy.ClientContainer.invoke(ClientContainer.java:82)

 [java] at $Proxy0.create(Unknown Source)

 [java] at com.titan.clients.Client_1.main(Client_1.java:22)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] at com.titan.clients.Client_1.main(Client_1.java:22)

Run the Client_2 application by invoking ant run.client_41b at the command prompt. Remember to set your JBOSS_HOME
and PATH environment variables.

The output of Client_2 should look something like this:

run.client_41b:

 [java] PK=1, Ship=1, Deck=1, BedCount=3, Name=Master Suite

 [java] PK=2, Ship=1, Deck=1, BedCount=2, Name=Suite 100

 [java] PK=3, Ship=1, Deck=1, BedCount=3, Name=Suite 101

 [java] PK=4, Ship=1, Deck=1, BedCount=2, Name=Suite 102

 [java] PK=5, Ship=1, Deck=1, BedCount=3, Name=Suite 103

 [java] PK=6, Ship=1, Deck=1, BedCount=2, Name=Suite 104

 [java] PK=7, Ship=1, Deck=1, BedCount=3, Name=Suite 105

 [java] PK=8, Ship=1, Deck=1, BedCount=2, Name=Suite 106

 ...

 [java] PK=90, Ship=3, Deck=3, BedCount=3, Name=Suite 309

 [java] PK=91, Ship=3, Deck=4, BedCount=2, Name=Suite 400

 [java] PK=92, Ship=3, Deck=4, BedCount=3, Name=Suite 401

 [java] PK=93, Ship=3, Deck=4, BedCount=2, Name=Suite 402

 [java] PK=94, Ship=3, Deck=4, BedCount=3, Name=Suite 403

 [java] PK=95, Ship=3, Deck=4, BedCount=2, Name=Suite 404

 [java] PK=96, Ship=3, Deck=4, BedCount=3, Name=Suite 405

 [java] PK=97, Ship=3, Deck=4, BedCount=2, Name=Suite 406

 [java] PK=98, Ship=3, Deck=4, BedCount=3, Name=Suite 407

 [java] PK=99, Ship=3, Deck=4, BedCount=2, Name=Suite 408

 [java] PK=100, Ship=3, Deck=4, BedCount=3, Name=Suite 409

Like Client_1, this example creates rows in the database and does not delete them when it finishes. Client_2 can be
executed only once without causing DuplicateKey exceptions.

22.1.7 Managing Entity Beans

Every EJB in JBoss is deployed and managed as a JMX MBean. You can view and manage EJBs deployed within JBoss
through your web browser by accessing the JMX management console available at http://localhost:8080/jmx-console/
(Figure 22-1).

Figure 22-1. The JMX management console

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click on the jndiName=CabinHomeRemote,service=EJB link shown in Figure 22-1. Entity beans have two management
functions. You can flush the entity bean's cache or view the number of cached objects for it. To flush, click on the
flushCache button. To view the number of cached beans, click on the getCacheSize button (Figure 22-2).

Figure 22-2. Managing entity beans from the console

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

22.2 Exercise 4.2: A Simple Session Bean
In this exercise, you will create and build the TravelAgent EJB. This simple bean illustrates the use of a stateless session
bean and mirrors the code shown in Chapter 4 of the EJB section of this book.

22.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter.

22.2.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from the previous
exercise, Client_1 and Client_2.

22.2.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex04_2 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex04_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex04_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility.

Windows:

C:\workbook\ex04_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

22.2.4 Examine the JBoss-Specific Files

In this example, the jboss.xml deployment descriptor overrides the default JNDI binding for the deployed EJBs. CabinEJB
is bound to CabinHomeRemote and TravelAgentEJB is bound to TravelAgentHomeRemote.

22.2.4.1 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2.4.1 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </ejb-ref>

 </session>

 </enterprise-beans>

</jboss>

The EJB book describes how you must use <ejb-ref> declarations when one EJB references another. The TravelAgent
EJB references the Cabin entity bean, so the following XML is required in ejb-jar.xml.

22.2.4.2 ejb-jar.xml

<ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

</ejb-ref>

If you have a <ejb-ref-name> declared in your ejb-jar.xml file, you must have a corresponding <ejb-ref> declaration in
your jboss.xml file that maps the portable JNDI name used by the TravelAgent EJB to the real JNDI name of the Cabin
EJB.

22.2.4.3 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <jndi-name>CabinHomeRemote</jndi-name>

 </entity>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 </ejb-ref>

 </session>

 </enterprise-beans>

</jboss>

22.2.5 Examine and Run the Client Application

The example program in this section invokes the TravelAgent EJB to list cabins that meet certain criteria.

22.2.5.1 Client_3.java

...

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote travelAgent = home.create();

// Get a list of all cabins on ship 1 with a bed count of 3.

String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

for(int i = 0; i < list.length; i++)

{

 System.out.println(list[i]);

}

...

The client code does a JNDI lookup for the TravelAgent home and does a simple create() method invocation to obtain a
reference to a TravelAgent EJB. The client then calls listCabins() and receives a list of cabin names that meet the
provided criteria.

Let's examine a little of the code in TravelAgent EJB's listCabins() method to see how it works.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's examine a little of the code in TravelAgent EJB's listCabins() method to see how it works.

22.2.5.2 TravelAgentBean.java

public String [] listCabins(int shipID, int bedCount)

{

 try

 {

 javax.naming.Context jndiContext = new InitialContext();

 Object obj =

 jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

 CabinHomeRemote home =

 ...

When a deployed EJB in JBoss wants to access JNDI, all that's needed is a simple new InitialContext(). JBoss will
automatically create an optimized, in-process reference to the JNDI server running inside the application server, to
avoid the overhead of a distributed network call when accessing it. The rest of listCabins() is pretty straightforward, so
you can just go on to running the client application.

Run the Client_3 application by invoking ant run.client_42 at the command prompt. Remember to set your JBOSS_HOME
and PATH environment variables.

The output of Client_3 should look something like this:

C:\workbook\ex04_2>ant run.client_42

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_42:

 [java] 1,Master Suite,1

 [java] 3,Suite 101,1

 [java] 5,Suite 103,1

 [java] 7,Suite 105,1

 [java] 9,Suite 107,1

 [java] 12,Suite 201,2

 [java] 14,Suite 203,2

 [java] 16,Suite 205,2

 [java] 18,Suite 207,2

 [java] 20,Suite 209,2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] 20,Suite 209,2

 [java] 22,Suite 301,3

 [java] 24,Suite 303,3

 [java] 26,Suite 305,3

 [java] 28,Suite 307,3

 [java] 30,Suite 309,3

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 22. Exercises for Chapter 4
Section 22.1. Exercise 4.1: A Simple Entity Bean

Section 22.2. Exercise 4.2: A Simple Session Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

23.1 Exercise 5.1: The Remote Component Interfaces
The example programs in Exercise 5.1 dive into some of the features of the home interface of an EJB, including the use
of the remove() method. They also show you how to obtain and use various metadata available through an EJB's API.

23.1.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter at the beginning of this workbook.

23.1.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from Exercise 4.1.

23.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex05_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex05_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex05_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex05_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

23.1.4 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

23.1.5 Examine and Run the Client Applications

Two example programs illustrate the concepts explained in the EJB book:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two example programs illustrate the concepts explained in the EJB book:

Client_51a.java

Illustrates the use of the remove() method on the Cabin EJB home interface.

Client _51b.java

Illustrates the use of bean metadata methods.

The example code for Client_51a and Client_51b is pulled directly from the EJB book. There is no need to go into this
code here because the EJB book already does a very good job of that.

Run Client_51a by invoking ant run.client_51a at the command prompt. Remember to set your JBOSS_HOME and PATH
environment variables. Run Client_51b the same way: ant run.client_51b. The output of Client_51a should be exactly as
described in the EJB book. The output of Client_51b is as follows:

C:\workbook\ex05_1>ant run.client_51b

Buildfile: build.xml

prepare:

compile:

run.client_51b:

 [java] com.titan.cabin.CabinHomeRemote

 [java] com.titan.cabin.CabinRemote

 [java] java.lang.Integer

 [java] false

 [java] Master Suite

Note that if you try to run Client_51a more than once, an exception will tell you that the entity you're attempting to
remove does not exist.

[java] java.rmi.NoSuchObjectException: Entity not found: primaryKey=30

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

23.2 Exercise 5.2: The EJBObject, Handle, and Primary Key
The example programs in Exercise 5.2 explore the APIs available through the EJBObject and EJBMetaData interfaces. They
also reveal how to use Handle and HomeHandle as persistent references to EJB objects and homes.

23.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter at the beginning of this workbook.

23.2.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from Exercise 4.1;
otherwise, this example will not work properly.

23.2.3 Build and Deploy the Example Programs

In the ex05_2 directory, build and deploy the examples as you did for Exercise 5.1.

23.2.4 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

23.2.5 Examine and Run the Client Applications

Three example programs illustrate the concepts explained in the EJB book:

Client_52a.java

Shows the use of EJBObject to retrieve an EJB's home interface.

Client _52b.java

Shows how to use isIdentical() to determine whether two EJB references are to the same object.

Client _52c.java

Shows how to use EJB handles as persistent bean references.

The example code is pulled directly from the EJB book and embellished somewhat to expand on introduced concepts.
The EJB book does a pretty good job of explaining the concepts illustrated in the example programs, so further
explanation of the code is not needed in this workbook.

Run Client_52a, Client_52b, and Client_52c by invoking the appropriate Ant task as you did in previous examples:
run.client_52a, run.client_52b, and run.client_52c. Remember to set your JBOSS_HOME and PATH environment variables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

23.3 Exercise 5.3: The Local Component Interfaces
The example program in Exercise 5.3 explores the use of local interfaces. The Cabin entity bean you created in Exercise
4.1 will be expanded to provide a local interface for use in the TravelAgent stateless session bean. This exercise also
describes how to modify your EJB deployment descriptors to enable local interfaces.

23.3.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter.

23.3.2 Initialize the Database

The database should contain the 100 rows created by a successful execution of the test programs from Exercise 4.1.

23.3.3 Build and Deploy the Example Programs

In the ex05_3 directory, build and deploy the examples as you did for Exercise 5.1.

23.3.4 Examine the JBoss-Specific Files

JBoss has a minor restriction. It requires that you use <ejb-link> when you want your bean to reference a local bean
through an <ejb-local-ref> tag.

23.3.4.1 ejb-jar.xml

<ejb-jar>

 <enterprise-beans>

 ...

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <!-- ejb-link is required by jboss for local-refs. -->

 <ejb-link>CabinEJB</ejb-link>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>

 ...

</ejb-jar>

If you examine the jboss.xml file for Exercise 5.3, you'll see that you must also declare the JNDI binding for the remote
home interface. The Cabin EJB's local home interface doesn't need a binding in jboss.xml, though, because the binding
information is contained in the <ejb-link> tag instead. JBoss will register both CabinHomeRemote and CabinHomeLocal into
the JNDI tree.

23.3.4.2 jboss.xml

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <jndi-name>CabinHomeRemote</jndi-name>

 <local-jndi-name>CabinHomeLocal</local-jndi-name>

 </entity>

TravelAgentEJB only tells JBoss under which JNDI name it should be bound:

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 </entity>

 </enterprise-beans>

</jboss>

23.3.5 Examine and Run the Client Applications

The example code for Client_53 is exactly the same as Client_3 from Exercise 4.2.

Run Client_53 by invoking the appropriate Ant task, as you did in previous examples: run.client_53. Remember to set
your JBOSS_HOME and PATH environment variables.

The output should look something like this:

C:\workbook\ex05_3>ant run.client_53

Buildfile: build.xml

prepare:

compile:

ejbjar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run.client_53:

 [java] 1,Master Suite,1

 [java] 3,Suite 101,1

 [java] 5,Suite 103,1

 [java] 7,Suite 105,1

 [java] 9,Suite 107,1

 [java] 12,Suite 201,2

 [java] 14,Suite 203,2

 [java] 16,Suite 205,2

 [java] 18,Suite 207,2

 [java] 20,Suite 209,2

 [java] 22,Suite 301,3

 [java] 24,Suite 303,3

 [java] 26,Suite 305,3

 [java] 28,Suite 307,3

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 23. Exercises for Chapter 5
Section 23.1. Exercise 5.1: The Remote Component Interfaces

Section 23.2. Exercise 5.2: The EJBObject, Handle, and Primary Key

Section 23.3. Exercise 5.3: The Local Component Interfaces

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

24.1 Exercise 6.1: Basic Persistence in CMP 2.0
This exercise begins walking you through the intricacies of CMP 2.0. In this chapter, you will learn more detailed JBoss
CMP 2.0 configuration mechanisms by creating the Customer EJB described in the EJB book.

24.1.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it. Otherwise, start it up as instructed in the JBoss
Installation and Configuration chapter.

24.1.2 Initialize the Database

The database table for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when the
EJB JAR is deployed.

24.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex06_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex06_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex06_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

24.1.4 Examine the JBoss-Specific Files

In this section, we introduce a new JBoss CMP 2.0 deployment descriptor, jbosscmp-jdbc.xml. This file provides more
detailed control of your bean's database mapping as well as more advanced performance-tuning options.

24.1.4.1 jbosscmp-jdbc.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1.4.1 jbosscmp-jdbc.xml

<jbosscmp-jdbc>

 <defaults>

 <datasource>java:/DefaultDS</datasource>

 <datasource-mapping>Hypersonic SQL</datasource-mapping>

 <create-table>true</create-table>

 <remove-table>true</remove-table>

 </defaults>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <table-name>Customer</table-name>

 <cmp-field>

 <field-name>id</field-name>

 <column-name>ID</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>lastName</field-name>

 <column-name>LAST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>firstName</field-name>

 <column-name>FIRST_NAME</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>hasGoodCredit</field-name>

 <column-name>HAS_GOOD_CREDIT</column-name>

 </cmp-field>

 </entity>

 </enterprise-beans>

</jbosscmp-jdbc>

24.1.4.2 The <defaults> section

The <datasource> configuration variable tells JBoss's CMP engine what database connection pool to use for the entity
beans defined in this JAR.

<datasource>java:/DefaultDS</datasource>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<datasource>java:/DefaultDS</datasource>

It is currently configured to use the default data source defined in $JBOSS_HOME/server/default/deploy/hsqldb-
service.xml, but you can change it to your own defined data sources. The workbook's Appendix goes into more detail on
how to configure your own data sources.

This variable describes the database mapping that CMP should use:

<datasource-mapping>Hypersonic SQL</datasource-mapping>

Here are some other mappings you could use (this list is not exhaustive):

<datasource-mapping>Oracle8</datasource-mapping>

<datasource-mapping>Oracle7</datasource-mapping>

<datasource-mapping>MS SQLSERVER</datasource-mapping>

<datasource-mapping>MS SQLSERVER2000</datasource-mapping>

For other available supported database mappings, please review JBoss's advanced documentation on its web site at
http://www.jboss.org.

When the <create-table> configuration variable is set to true, JBoss creates the database tables for each entity bean
defined in the deployment descriptor unless these tables already exist. This create action is triggered when the EJB JAR
is deployed:

<create-table>true</create-table>

When the <remove-table> configuration variable is set to true, JBoss drops the database tables for each entity bean
defined in the deployment descriptor. This remove action is triggered when the EJB JAR is redeployed or undeployed:

<remove-table>true</remove-table>

24.1.4.3 The <enterprise-beans> section

There's an XML fragment <entity></entity> for each entity bean defined in this EJB JAR. The <ejb-name> variable defines
the entity bean that is described in that section:

<ejb-name>CustomerEJB</ejb-name>

The <table-name> variable defines what database table this entity bean should map to:

<table-name>Customer</table-name>

Each <cmp-field> section describes the mapping between an entity bean's fields and the corresponding columns of the
database table. The <field-name> tag is the entity bean field's name, while the <column-name> defines the table column's
name:

<cmp-field>

 <field-name>id</field-name>

 <column-name>ID</column-name>

 </cmp-field>

24.1.5 Examine and Run the Client Applications

There is only one client application for this exercise, Client_61. It is modeled after the example in the EJB book. It

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is only one client application for this exercise, Client_61. It is modeled after the example in the EJB book. It
creates Customer EJBs in the database based on the command-line parameters.

To run the client, first set your JBOSS_HOME and PATH environment variables appropriately. Then invoke the provided
wrapper script to execute the program. For each customer, you must supply on the command line a set of values for
primary key, first name, and last name, as shown here:

Client_61 777 Bill Burke 888 Sacha Labourey

The output of this execution should be:

C:\workbook\ex06_1>client_61 777 Bill Burke 888 Sacha Labourey

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_61:

 [java] 777 = Bill Burke

 [java] 888 = Sacha Labourey

When it finishes, the example program removes the created beans, so no data remains in the database.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

24.2 Exercise 6.2: Dependent Value Classes in CMP 2.0
The example programs in Exercise 6.2 explore using a dependent value class to combine multiple CMP fields into a
single serializable object that can be passed in and out of entity-bean methods.

24.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

24.2.2 Initialize the Database

No database initialization is needed.

24.2.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_2 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex06_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex06_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex06_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

24.2.4 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

24.2.5 Examine and Run the Client Applications

The example program, Client_62, shows how the Name dependent value class is used with the Customer EJB. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example program, Client_62, shows how the Name dependent value class is used with the Customer EJB. The
example code is pulled directly from the EJB book and embellished somewhat to expand on introduced concepts. The
EJB book does a pretty good job of explaining the concepts illustrated in Client_62, so further explanation of the code is
not needed in this workbook.

The client application uses the new getName() and setName() methods of the Customer EJB to initialize, modify, and
display a newly created Customer bean using the Name dependent value class. This test bean is then removed from the
database before the application finishes.

To run Client_62, invoke the Ant task run.client_62. Remember to set your JBOSS_HOME and PATH environment variables.
The output should look something like this:

C:\workbook\ex06_2>ant run.client_62

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_62:

 [java] 1 = Richard Monson

 [java] 1 = Richard Monson-Haefel

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

24.3 Exercise 6.3: A Simple Relationship in CMP 2.0
The example program in Exercise 6.3 shows how to implement a simple CMP relationship between the Customer EJB
and the Address EJB. The client again uses dependent value classes, to pass address information along to the Customer
EJB.

24.3.1 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex06_3 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex06_3> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex06_3> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex06_3> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

24.3.2 Examine the JBoss-Specific Files

The Customer-Address relationship in this example can be mapped to a database table by defining the mapping in
jbosscmp-jdbc.xml.

24.3.2.1 jbosscmp-jdbc.xml

<jbosscmp-jdbc>

...

</enterprise-beans>

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <foreign-key-mapping/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <foreign-key-mapping/>

 <ejb-relationship-role>

 <ejb-relationship-role-name>Customer-has-a-Address

 </ejb-relationship-role-name>

 <key-fields/>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>HOME_ADDRESS</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

</jbosscmp-jdbc>

To define the mapping of a relationship to a database table, you must define <key-fields>. The <field-name> tag must be
the primary key field of the entity bean in the relationship. Thus above, the id <field-name> corresponds to the Address
EJB's primary key field. You can define the <column-name> field to be whatever the column name is in the database.
Based on the mappings defined in this file, the Customer table would look like this:

CREATE TABLE CUSTOMER

(ID INTEGER NOT NULL,

LAST_NAME VARCHAR(256),

FIRST_NAME VARCHAR(256),

HAS_GOOD_CREDIT BIT NOT NULL,

HOME_ADDRESS INTEGER,

CONSTRAINT PK_CUSTOMER PRIMARY KEY (ID))

For details on more complex optimizations and database-to-relationship mappings, please see the JBoss CMP 2.0
documentation available at http://www.jboss.org.

24.3.3 Examine and Run the Client Applications

The example program, Client_63, shows how to create a Customer EJB and set the Address relation on that customer.

24.3.3.1 AddressBean.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.3.3.1 AddressBean.java

public abstract class AddressBean implements javax.ejb.EntityBean

{

 private static final int IDGEN_START =

 (int)System.currentTimeMillis();

 private static int idgen = IDGEN_START;

 public Integer ejbCreateAddress (String street, String city,

 String state, String zip)

 throws CreateException

 {

 setId(new Integer(idgen++));

 setStreet(street);

 setCity(city);

 setState(state);

 setZip(zip);

 return null;

 }

 ...

}

JBoss CMP does have automatic primary-key generation. For this and subsequent examples, though, a very crude ID
generator has been created to provide a more predictable mechanism for creating keys. The code just takes the current
time in milliseconds at the load of the bean and increments it by one at every ejbCreate(). Crude, workable for these
examples, but not recommended for real applications.

In order to run Client_63, invoke the Ant task run.client_63. Remember to set your JBOSS_HOME and PATH environment
variables.

The output should look something like this:

C:\workbook\ex06_3>ant run.client_63

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_63:

 [java] Creating Customer 1..

 [java] Creating AddressDO data object..

 [java] Setting Address in Customer 1...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Setting Address in Customer 1...

 [java] Acquiring Address data object from Customer 1...

 [java] Customer 1 Address data:

 [java] 1010 Colorado

 [java] Austin,TX 78701

 [java] Creating new AddressDO data object..

 [java] Setting new Address in Customer 1...

 [java] Customer 1 Address data:

 [java] 1600 Pennsylvania Avenue NW

 [java] DC,WA 20500

 [java] Removing Customer 1...

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 24. Exercises for Chapter 6
Section 24.1. Exercise 6.1: Basic Persistence in CMP 2.0

Section 24.2. Exercise 6.2: Dependent Value Classes in CMP 2.0

Section 24.3. Exercise 6.3: A Simple Relationship in CMP 2.0

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

25.1 Exercise 7.1: Entity Relationships in CMP 2.0, Part 1
This exercise walks you through implementing a complex set of interrelated entity beans defined in Chapter 7 of the EJB
book.

25.1.1 Start Up JBoss

If JBoss is not running, start it up. If it's already running, there's no reason to restart it.

25.1.2 Initialize the Database

The database table for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when the
EJB JAR is deployed.

25.1.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex07_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex07_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex07_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

25.1.4 Examine the JBoss-Specific Files

This chapter introduces no new features in JBoss-specific files. Please review Exercise 6.1 to understand the JBoss-
specific files in this example. Also, this chapter implements nonperformance-tuned entity beans and relies on the CMP
2.0 engine to create all database tables. To learn about JBoss's extensive configuration options, please review the
advanced CMP 2.0 documentation at http://www.jboss.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.1.5 Examine and Run the Client Applications

From this chapter on, we no longer use remote entity bean interfaces (so the example code matches the code
illustrated in the EJB section of this book). Accordingly, the Customer EJB switches to local-only interfaces:

CustomerHomeRemote becomes CustomerHomeLocal.

CustomerRemote becomes CustomerLocal.

Bean interface methods no longer throw RemoteExceptions.

The ejb-jar.xml descriptor changes to use local interfaces. Thus:

<ejb-name>CustomerEJB</ejb-name>

<home>com.titan.customer.CustomerHomeRemote</home>

<remote>com.titan.customer.CustomerRemote</remote>

<ejb-class>com.titan.customer.CustomerBean</ejb-class>

changes to:

<ejb-name>CustomerEJB</ejb-name>

<local-home>com.titan.customer.CustomerHomeLocal</local-home>

<local>com.titan.customer.CustomerLocal</local>

<ejb-class>com.titan.customer.CustomerBean</ejb-class>

The JNDI binding in jboss.xml changes as well. Thus:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

 <jndi-name>CustomerHomeRemote</jndi-name>

</entity>

changes to:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

 <local-jndi-name>CustomerHomeLocal</local-jndi-name>

</entity>

Because interfaces are now local, the example programs no longer need to use dependent value classes to set up
relationships like Customer-Address. This change simplifies the code and allows you to pass local entity beans such as
Address, Credit Card, and Phone to Customer EJB methods directly.

Another consequence is that remote clients can no longer invoke business logic on the entity beans implemented in this
chapter. Instead, you'll implement all example business logic in the methods of a stateless session bean. Also, EJB
containers don't allow the manipulation of a relationship collection (including iteration through the collection) outside
the context of a transaction. In JBoss, all bean methods are Required by default, so all example test code will run within
a transaction. Chapter 16 in the EJB book discusses transactions in more detail.

To execute these examples from the command line, implement separate, distinct remote clients that get a reference to
the stateless test bean and invoke the appropriate test method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.1.5.1 Client_71a

The Client_71a example program reveals the unidirectional relationship between Customer and Address. The business
logic for this example is implemented in com.titan.test.Test71Bean in the test71a() method.

In test71a(), output is written to the PrintWriter created below. The method finishes by extracting a String from the
PrintWriter and passing it back to the remote client for display:

public String test71a() throws RemoteException

{

 String output = null;

 StringWriter writer = new StringWriter();

 PrintWriter out = new PrintWriter(writer);

 try

 {

The first part of test71a() simply fetches the home interfaces of Customer and Address from JNDI. It then creates both a
Customer and an Address:

InitialContext jndiContext = getInitialContext();

Object obj = jndiContext.lookup("CustomerHomeLocal");

CustomerHomeLocal customerhome = (CustomerHomeLocal)obj;

obj = jndiContext.lookup("AddressHomeLocal");

AddressHomeLocal addresshome = (AddressHomeLocal)obj;

out.println("Creating Customer 71");

Integer primaryKey = new Integer(71);

CustomerLocal customer = customerhome.create(primaryKey);

customer.setName(new Name("Smith","John"));

AddressLocal addr = customer.getHomeAddress();

if (addr==null)

{

 out.println("Address reference is NULL, Creating one and

 setting in Customer..");

 addr = addresshome.createAddress("333 North Washington"

 ,"Minneapolis"

 ,"MN","55401");

A call to customer.setHomeAddress() sets up the relationship:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A call to customer.setHomeAddress() sets up the relationship:

 customer.setHomeAddress(addr);

 }

 ...

Next, modify the address directly with new information. Calling the Address object's set methods is the correct way to
modify a unidirectional relationship that has already been set up.

addr.setStreet("445 East Lake Street");

addr.setCity("Wayzata");

addr.setState("MN");

addr.setZip("55432");

...

The next bit of code shows the wrong way to modify a unidirectional relationship that's already been created. Instead of
modifying the existing Address entity, it creates a new one. Passing the new one to customer.setHomeAddress() orphans
the old one, which thereafter just sits there in the database, unused and forgotten. The result is a database "leak:"

addr = addresshome.createAddress("700 Main Street"

 ,"St. Paul","MN","55302");

...

customer.setHomeAddress(addr);

Two different relationships can share the same entity. This code shares a single address between the Home Address
and Billing Address relationships:

addr = customer.getHomeAddress();

...

customer.setBillingAddress(addr);

AddressLocal billAddr = customer.getBillingAddress();

AddressLocal homeAddr = customer.getHomeAddress();

The Billing Address and Home Address now refer to the same bean:

if (billAddr.isIdentical(homeAddr))

{

 out.println("Billing and Home are the same!");

}

else

{

 out.println("Billing and Home are NOT the same!

 BUG IN JBOSS!");

}

}

 catch (Exception ex)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch (Exception ex)

 {

 ex.printStackTrace(out);

 }

Finally, test71a() closes the PrintWriter, extracts the output string, and returns it to the client for display:

 out.close();

 output = writer.toString();

 return output;

}

In order to run Client_71a, invoke the Ant task run.client_71a. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_1>ant run.client_71a

Buildfile: build.xml

prepare:

compile:

run.client_71a:

 [java] Creating Customer 71

 [java] Address reference is NULL, Creating one and setting in Customer..

 [java] Address Info: 333 North Washington Minneapolis, MN 55401

 [java] Modifying Address through address reference

 [java] Address Info: 445 East Lake Street Wayzata, MN 55432

 [java] Creating New Address and calling setHomeAddress

 [java] Address Info: 700 Main Street St. Paul, MN 55302

 [java] Retrieving Address reference from Customer via getHomeAddress

 [java] Address Info: 700 Main Street St. Paul, MN 55302

 [java] Setting Billing address to be the same as Home address.

 [java] Testing that Billing and Home Address are the same Entity.

 [java] Billing and Home are the same!

25.1.5.2 Client_71b

The Client_71b program illustrates a simple one-to-one bidirectional relationship between a Customer bean and a Credit
Card bean. The business logic for this example is implemented in com.titan.test.Test71Bean, in the test71b() method.
Examine the code for this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examine the code for this example.

You use the default JNDI context to obtain references to the local home interfaces of the Customer and Credit Card
EJBs. The code also creates an instance of a Customer EJB:

// obtain CustomerHome

InitialContext jndiContext = getInitialContext();

Object obj = jndiContext.lookup("CustomerHomeLocal");

CustomerHomeLocal customerhome = (CustomerHomeLocal)obj;

obj = jndiContext.lookup("CreditCardHomeLocal");

CreditCardHomeLocal cardhome = (CreditCardHomeLocal)obj;

Integer primaryKey = new Integer(71);

CustomerLocal customer = customerhome.create(primaryKey);

customer.setName(new Name("Smith","John"));

Next, create an instance of a Credit Card. Notice that you don't need to pass in a primary key; the crude algorithm
introduced in Exercise 6.3 generates one automatically:

// set Credit Card info

Calendar now = Calendar.getInstance();

CreditCardLocal card = cardhome.create(now.getTime(),

 "370000000000001", "John Smith", "O'Reilly");

Then you establish the one-to-one bidirectional relationship between Customer and Credit Card simply by calling the
Customer EJB's setCreditCard() method:

 customer.setCreditCard(card);

The following code illustrates the bidirectional nature of the relationship by navigating from a Credit Card to a Customer
and vice versa:

String cardname = customer.getCreditCard().getNameOnCard();

out.println("customer.getCreditCard().getNameOnCard()="

 + cardname);

Name name = card.getCustomer().getName();

String custfullname = name.getFirstName() + " " +

 name.getLastName();

out.println("card.getCustomer().getName()="+custfullname);

Finally, the code illustrates how to destroy the relationship between the Customer and Credit Card beans:

card.setCustomer(null);

CreditCardLocal newcardref = customer.getCreditCard();

if (newcardref == null)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (newcardref == null)

{

 out.println

 ("Card is properly unlinked from customer bean");

}

else

{

 out.println("Whoops, customer still thinks it has a

 card! BUG IN JBOSS!");

}

In order to run Client_71b, invoke the Ant task run.client_71b. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_1>ant run.client_71b

Buildfile: build.xml

prepare:

compile:

run.client_71b:

 [java] Finding Customer 71

 [java] Creating CreditCard

 [java] Linking CreditCard and Customer

 [java] Testing both directions on relationship

 [java] customer.getCreditCard().getNameOnCard()=John Smith

 [java] card.getCustomer().getName()=John Smith

 [java] Unlink the beans using CreditCard, test Customer side

 [java] Card is properly unlinked from customer bean

 [java]

25.1.5.3 Client_71c

The Client_71c program illustrates the proper use of a one-to-many unidirectional relationship between customers and
their phone numbers. The business logic for this example is implemented in com.titan.test.Test71Bean, in the test71c()
method.

First, the test code locates the Customer home interface through JNDI, then finds the Customer that needs new phone
numbers:

// obtain CustomerHome

InitialContext jndiContext = getInitialContext();

Object obj = jndiContext.lookup("CustomerHomeLocal");

CustomerHomeLocal home = (CustomerHomeLocal)obj;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CustomerHomeLocal home = (CustomerHomeLocal)obj;

// Find Customer 71

Integer primaryKey = new Integer(71);

CustomerLocal customer = home.findByPrimaryKey(primaryKey);

The next bit of code invokes the Customer helper method addPhoneNumber() to relate two phone numbers to the
customer and outputs the contents of the customer-phone relationship after each addition:

// Display current phone numbers and types

out.println("Starting contents of phone list:");

ArrayList vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

// add a new phone number

out.println("Adding a new type 1 phone number..");

customer.addPhoneNumber("612-555-1212",(byte)1);

out.println("New contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

// add a new phone number

out.println("Adding a new type 2 phone number..");

customer.addPhoneNumber("800-333-3333",(byte)2);

out.println("New contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This code uses the updatePhoneNumber() helper method to modify an existing phone number:

// update a phone number

out.println("Updating type 1 phone numbers..");

customer.updatePhoneNumber("763-555-1212",(byte)1);

out.println("New contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

{

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

Finally, this code illustrates how to remove a member of a one-to-many unidirectional relationship:

// delete a phone number

out.println("Removing type 1 phone numbers from this

 Customer..");

customer.removePhoneNumber((byte)1);

out.println("Final contents of phone list:");

vv = customer.getPhoneList();

for (int jj=0; jj<vv.size(); jj++)

 {

 String ss = (String)(vv.get(jj));

 out.println(ss);

}

Note that the phone entity hasn't been destroyed. It's still in the database; it's just no longer related to this customer
bean.

In order to run Client_71c, invoke the Ant task run.client_71c. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_1>ant run.client_71c

Buildfile: build.xml

prepare:

compile:

run.client_71c:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Starting contents of phone list:

 [java] Adding a new type 1 phone number..

 [java] New contents of phone list:

 [java] Type=1 Number=612-555-1212

 [java] Adding a new type 2 phone number..

 [java] New contents of phone list:

 [java] Type=1 Number=612-555-1212

 [java] Type=2 Number=800-333-3333

 [java] Updating type 1 phone numbers..

 [java] New contents of phone list:

 [java] Type=1 Number=763-555-1212

 [java] Type=2 Number=800-333-3333

 [java] Removing type 1 phone numbers from this Customer..

 [java] Final contents of phone list:

 [java] Type=2 Number=800-333-3333

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

25.2 Exercise 7.2:Entity Relationships in CMP 2.0, Part 2
The example programs in Exercise 7.2 illustrate the remaining four types of entity-bean relationship:

Many-to-one unidirectional (Cruise-Ship)

One-to-many bidirectional (Cruise-Reservation)

Many-to-many bidirectional (Customer-Reservation)

Many-to-many unidirectional (Cabin-Reservation)

25.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

25.2.2 Initialize the Database

No database is initialization needed; JBoss will create the needed tables at bean deployment.

25.2.3 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_2 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex07_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex07_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex07_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

25.2.4 Examine the JBoss-Specific Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No new concepts are introduced in the JBoss-specific deployment descriptors.

25.2.5 Examine and Run the Client Applications

This exercise uses six example programs to demonstrate the various relationships described in the corresponding
chapter of the EJB book. Note that you can rerun any of these examples as many times as you like because they clean
up after themselves by removing all the entities they create.

Client_72a

Demonstrates the many-to-one unidirectional Cruise-Ship relationship, as well as the sharing of a reference
between different beans.

Client_72b

Demonstrates the one-to-many bidirectional Cruise-Reservation relationship and how to use set methods to
modify reservations that are associated with a cruise.

Client_72c

Expands on the Cruise-Reservation relationship, using the addAll() method to modify the reservations associated
with a cruise.

Client_72d

Demonstrates the many-to-many bidirectional Customer-Reservation relationship.

Client_72e

Continues the demonstration of the Customer-Reservation relationship by showing how to use setCustomers() to
modify the Customers for a Reservation.

Client_72f

Demonstrates the many-to-many unidirectional Cabin-Reservation relationship.

25.2.5.1 Client_72a

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72a() method. Client_72a
models the many-to-one unidirectional Cruise-Ship relationships shown in Figure 7-12 of the EJB section of this book.

First, this code creates the relationships described in the top half of the figure. Cruises 1 to 3 embark on Ship A; Cruises
4 to 6 set sail on Ship B.

cruises[0] = cruisehome.create("Cruise 1", shipA);

cruises[1] = cruisehome.create("Cruise 2", shipA);

cruises[2] = cruisehome.create("Cruise 3", shipA);

cruises[3] = cruisehome.create("Cruise 4", shipB);

cruises[4] = cruisehome.create("Cruise 5", shipB);

cruises[5] = cruisehome.create("Cruise 6", shipB);

Next, the code switches Cruise 4 so that it is now handled by Ship A instead of Ship B. This relationship change is
illustrated in the bottom half of Figure 7-12:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

illustrated in the bottom half of Figure 7-12:

ShipLocal newship = cruises[0].getShip();

cruises[3].setShip(newship);

In order to run Client_72a, invoke the Ant task run.client_72a. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72a

Buildfile: build.xml

prepare:

compile:

run.client_72a:

 [java] Creating Ships

 [java] PK=1001 name=Ship A tonnage=30000.0

 [java] PK=1002 name=Ship B tonnage=40000.0

 [java] Creating Cruises

 [java] Cruise 1 is using Ship A

 [java] Cruise 2 is using Ship A

 [java] Cruise 3 is using Ship A

 [java] Cruise 4 is using Ship B

 [java] Cruise 5 is using Ship B

 [java] Cruise 6 is using Ship B

 [java] Changing Cruise 4 to use same ship as Cruise 1

 [java] Cruise 1 is using Ship A

 [java] Cruise 2 is using Ship A

 [java] Cruise 3 is using Ship A

 [java] Cruise 4 is using Ship A

 [java] Cruise 5 is using Ship B

 [java] Cruise 6 is using Ship B

 [java] Removing created beans

25.2.5.2 Client_72b

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72b() method. Client_72b
models the one-to-many bidirectional Cruise-Reservation relationships shown in Figure 7-14 of the EJB section of this
book.

First, this code creates the relationships described in the top half of the figure. Reservations 1 to 3 are for Cruise A;
Reservations 4 to 6 are for Cruise B:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reservations 4 to 6 are for Cruise B:

 for (int i = 0; i < 6; i++)

 {

 CruiseLocal cruise = (i < 3) ? cruiseA : cruiseB;

 reservations[i] = reservationhome.create(cruise,new ArrayList());

 reservations[i].setDate(date.getTime());

 reservations[i].setAmountPaid((i + 1) * 1000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 }

Next, the code sets the reservations of Cruise B to be the reservations of Cruise A. Those relationships actually move
from A to B. Afterward, Cruise A and Reservations 1-3 no longer have any Cruise-Reservation relationships, as you see
in the bottom half of Figure 7-14:

 Collection a_reservations = cruiseA.getReservations();

 cruiseB.setReservations(a_reservations);

To run Client_72b, invoke the Ant task run.client_72b. Remember to set your JBOSS_HOME and PATH environment
variables. The output will look something like this:

C:\workbook\ex07_2>ant run.client_72b

Buildfile: build.xml

prepare:

compile:

run.client_72b:

 [java] Creating Cruises

 [java] name=Cruise A

 [java] name=Cruise B

 [java] Creating Reservations

 [java] Reservation date=11/01/2002 is for Cruise A

 [java] Reservation date=11/08/2002 is for Cruise A

 [java] Reservation date=11/15/2002 is for Cruise A

 [java] Reservation date=11/22/2002 is for Cruise B

 [java] Reservation date=11/29/2002 is for Cruise B

 [java] Reservation date=12/06/2002 is for Cruise B

 [java] Testing CruiseB.setReservations(CruiseA.getReservations())

 [java] Reservation date=11/01/2002 is for Cruise B

 [java] Reservation date=11/08/2002 is for Cruise B

 [java] Reservation date=11/15/2002 is for Cruise B

 [java] Reservation date=11/22/2002 is for No Cruise!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/22/2002 is for No Cruise!

 [java] Reservation date=11/29/2002 is for No Cruise!

 [java] Reservation date=12/06/2002 is for No Cruise!

 [java] Removing created beans.

25.2.5.3 Client_72c

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72c() method. Client_72c
explores the use of Collection.addAll() in the Cruise-Reservation s shown in Figure 7-15 of the EJB section.

First, this code creates the relationships described in the top half of the figure. Reservations 1 to 3 are for Cruise A;
Reservations 4 to 6 are for Cruise B:

 for (int i = 0; i < 6; i++)

 {

 CruiseLocal cruise = (i < 3) ? cruiseA : cruiseB;

 reservations[i] = reservationhome.create(cruise,new ArrayList());

 reservations[i].setDate(date.getTime());

 reservations[i].setAmountPaid((i + 1) * 1000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 }

Then the code changes all reservations of Cruise A to be for Cruise B instead. The result of this action can be seen in
the bottom half of Figure 7-15:

 Collection a_reservations = cruiseA.getReservations();

 Collection b_reservations = cruiseB.getReservations();

 b_reservations.addAll(a_reservations);

In order to run Client_72c, invoke the Ant task run.client_72c. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72c

Buildfile: build.xml

prepare:

compile:

run.client_72c:

 [java] Creating Cruises

 [java] name=Cruise A

 [java] name=Cruise B

 [java] Creating Reservations

 [java] Reservation date=11/01/2002 is for Cruise A

 [java] Reservation date=11/08/2002 is for Cruise A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/08/2002 is for Cruise A

 [java] Reservation date=11/15/2002 is for Cruise A

 [java] Reservation date=11/22/2002 is for Cruise B

 [java] Reservation date=11/29/2002 is for Cruise B

 [java] Reservation date=12/06/2002 is for Cruise B

 [java] Testing using b_res.addAll(a_res) to combine reservations

 [java] Reservation date=11/01/2002 is for Cruise B

 [java] Reservation date=11/08/2002 is for Cruise B

 [java] Reservation date=11/15/2002 is for Cruise B

 [java] Reservation date=11/22/2002 is for Cruise B

 [java] Reservation date=11/29/2002 is for Cruise B

 [java] Reservation date=12/06/2002 is for Cruise B

25.2.5.4 Client_72d

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72d() method. Client_72d
explores the use of Collection.addAll() in the Customer-Reservation many-to-many bidirectional relationship shown in
Figure 7-17 of the EJB section.

First, two sets of customers are created:

 Set lowcustomers = new HashSet();

 Set highcustomers = new HashSet();

 CustomerLocal[] allCustomers = new CustomerLocal[6];

 for (int kk=0; kk<6; kk++)

 {

 CustomerLocal cust = customerhome.create(new Integer(kk));

 allCustomers[kk] = cust;

 cust.setName(new Name("Customer "+kk,""));

 if (kk<=2)

 {

 lowcustomers.add(cust);

 }

 else

 {

 highcustomers.add(cust);

 }

 out.println(cust.getName().getLastName());

 }

Next, the code creates six reservations and relates them to one of the customer sets, as shown in the top half of Figure
7-17. Customers 1 to 3 have Reservation A; Customers 4 to 6 have Reservation B.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7-17. Customers 1 to 3 have Reservation A; Customers 4 to 6 have Reservation B.

 reservations[0] = reservationhome.create(cruiseA, lowcustomers);

 reservations[0].setDate(date.getTime());

 reservations[0].setAmountPaid(4000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[1] = reservationhome.create(cruiseA, highcustomers);

 reservations[1].setDate(date.getTime());

 reservations[1].setAmountPaid(5000.0);

Finally, the code uses addAll() to relate Customers 4 to 6 with Reservation A. They now have a reservation for both
Cruise A and Cruise B. The bottom half of Figure 7-17 illustrates this result:

Set customers_a = reservations[0].getCustomers();

Set customers_b = reservations[1].getCustomers();

customers_a.addAll(customers_b);

In order to run Client_72d, invoke the Ant task run.client_72d. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72d

Buildfile: build.xml

prepare:

compile:

run.client_72d:

 [java] cruise.getName()=Cruise A

 [java] ship.getName()=Ship A

 [java] cruise.getShip().getName()=Ship A

 [java] Creating Customers 1-6

 [java] Customer 0

 [java] Customer 1

 [java] Customer 2

 [java] Customer 3

 [java] Customer 4

 [java] Customer 5

 [java] Creating Reservations 1 and 2, each with 3 customers

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2 Customer 1 Customer 0

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 5 Customer 4 Customer 3

 [java] Performing customers_a.addAll(customers_b) test

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2 Customer 1 Customer 0 Customer 5 Custo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2 Customer 1 Customer 0 Customer 5 Custo

mer 4 Customer 3

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 5 Customer 4 Customer 3

 [java] Removing created beans

25.2.5.5 Client_72e

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72e() method. Client_72e
explores the use of setCustomers() to share an entire collection, in the Customer-Reservation many-to-many
bidirectional relationship shown in Figure 7-18 of the EJB section.

First, four sets of customers are created:

Set customers13 = new HashSet();

Set customers24 = new HashSet();

Set customers35 = new HashSet();

Set customers46 = new HashSet();

CustomerLocal[] allCustomers = new CustomerLocal[6];

for (int kk=0; kk<6; kk++)

{

 CustomerLocal cust = customerhome.create(new Integer(kk));

 allCustomers[kk] = cust;

 cust.setName(new Name("Customer "+kk,""));

 if (kk<=2) { customers13.add(cust); }

 if (kk>=1 && kk<=3) { customers24.add(cust); }

 if (kk>=2 && kk<=4) { customers35.add(cust); }

 if (kk>=3) { customers46.add(cust); }

}

Next, the code sets up the relationships between Customers and Reservations shown in the top half of Figure 7-18:

reservations[0] = reservationhome.create(cruiseA, customers13);

reservations[0].setDate(date.getTime());

reservations[0].setAmountPaid(4000.0);

date.add(Calendar.DAY_OF_MONTH, 7);

reservations[1] = reservationhome.create(cruiseA, customers24);

reservations[1].setDate(date.getTime());

reservations[1].setAmountPaid(5000.0);

date.add(Calendar.DAY_OF_MONTH, 7);

reservations[2] = reservationhome.create(cruiseA, customers35);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reservations[2] = reservationhome.create(cruiseA, customers35);

reservations[2].setDate(date.getTime());

reservations[2].setAmountPaid(6000.0);

date.add(Calendar.DAY_OF_MONTH, 7);

reservations[3] = reservationhome.create(cruiseA, customers46);

reservations[3].setDate(date.getTime());

reservations[3].setAmountPaid(7000.0);

Finally, the code sets up the relationships shown in the bottom half of the figure:

Set customers_a = reservations[0].getCustomers();

 reservations[3].setCustomers(customers_a);

In order to run Client_72e, invoke the Ant task run.client_72e. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72e

Buildfile: build.xml

prepare:

compile:

run.client_72e:

 [java] Creating a Ship and Cruise

 [java] cruise.getName()=Cruise A

 [java] ship.getName()=Ship A

 [java] cruise.getShip().getName()=Ship A

 [java] Creating Customers 1-6

 [java] Creating Reservations 1-4 using three customers each

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2

Customer 1 Customer 0

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 3

Customer 2 Customer 1

 [java] Reservation date=11/15/2002 is for Cruise A with customers Customer 4

Customer 3 Customer 2

 [java] Reservation date=11/22/2002 is for Cruise A with customers Customer 5

Customer 4 Customer 3

 [java] Performing reservationD.setCustomers(customersA) test

 [java] Reservation date=11/01/2002 is for Cruise A with customers Customer 2

Customer 1 Customer 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Reservation date=11/08/2002 is for Cruise A with customers Customer 3

Customer 2 Customer 1

 [java] Reservation date=11/15/2002 is for Cruise A with customers Customer 4

Customer 3 Customer 2

 [java] Reservation date=11/22/2002 is for Cruise A with customers Customer 2

Customer 1 Customer 0

 [java] Removing created beans.

25.2.5.6 Client_72f

The business logic for this example is implemented in com.titan.test.Test72Bean, in the test72f() method. Client_72f
demonstrates removing beans in the many-to-many unidirectional Cabin-Reservation relationship, as shown in Figure
7-20 of the EJB section.

First, four sets of cabins are created:

 Set cabins13 = new HashSet();

 Set cabins24 = new HashSet();

 Set cabins35 = new HashSet();

 Set cabins46 = new HashSet();

 CabinLocal[] allCabins = new CabinLocal[6];

 for (int kk=0; kk<6; kk++)

 {

 CabinLocal cabin = cabinhome.create(new Integer(kk));

 allCabins[kk] = cabin;

 cabin.setName("Cabin "+kk);

 if (kk<=2) { cabins13.add(cabin); }

 if (kk>=1 && kk<=3) { cabins24.add(cabin); }

 if (kk>=2 && kk<=4) { cabins35.add(cabin); }

 if (kk>=3) { cabins46.add(cabin); }

 out.println(cabin.getName());

 }

Next, the code creates the initial relationships between Reservations and Cabins, shown in the top half of Figure 7-20:

 reservations[0] = reservationhome.create(cruiseA, null);

 reservations[0].setCabins(cabins13);

 reservations[0].setDate(date.getTime());

 reservations[0].setAmountPaid(4000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 reservations[1] = reservationhome.create(cruiseA, null);

 reservations[1].setCabins(cabins24);

 reservations[1].setDate(date.getTime());

 reservations[1].setAmountPaid(5000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[2] = reservationhome.create(cruiseA, null);

 reservations[2].setCabins(cabins35);

 reservations[2].setDate(date.getTime());

 reservations[2].setAmountPaid(6000.0);

 date.add(Calendar.DAY_OF_MONTH, 7);

 reservations[3] = reservationhome.create(cruiseA, null);

 reservations[3].setCabins(cabins46);

 reservations[3].setDate(date.getTime());

 reservations[3].setAmountPaid(7000.0);

Finally, the code removes some of the relationships, as shown in the bottom half of the figure:

 Set cabins_a = reservations[0].getCabins();

 Iterator iterator = cabins_a.iterator();

 while (iterator.hasNext())

 {

 CabinLocal cc = (CabinLocal)iterator.next();

 out.println("Removing "+cc.getName()+" from cabins_a");

 iterator.remove();

 }

In order to run Client_72f, invoke the Ant task run.client_72f. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

C:\workbook\ex07_2>ant run.client_72f

Buildfile: build.xml

prepare:

compile:

run.client_72f:

 [java] Creating a Ship and Cruise

 [java] cruise.getName()=Cruise A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] ship.getName()=Ship A

 [java] cruise.getShip().getName()=Ship A

 [java] Creating Cabins 1-6

 [java] Cabin 0

 [java] Cabin 1

 [java] Cabin 2

 [java] Cabin 3

 [java] Cabin 4

 [java] Cabin 5

 [java] Creating Reservations 1-4 using three cabins each

 [java] Reservation date=11/01/2002 is for Cruise A with cabins Cabin 2 Cabin 1

Cabin 0

 [java] Reservation date=11/08/2002 is for Cruise A with cabins Cabin 3 Cabin 2

Cabin 1

 [java] Reservation date=11/15/2002 is for Cruise A with cabins Cabin 4 Cabin 3

Cabin 2

 [java] Reservation date=11/22/2002 is for Cruise A with cabins Cabin 5 Cabin 4

Cabin 3

 [java] Performing cabins_a collection iterator.remove() test

 [java] Removing Cabin 2 from cabins_a

 [java] Removing Cabin 1 from cabins_a

 [java] Removing Cabin 0 from cabins_a

 [java] Reservation date=11/01/2002 is for Cruise A with cabins

 [java] Reservation date=11/08/2002 is for Cruise A with cabins Cabin 3 Cabin 2

Cabin 1

 [java] Reservation date=11/15/2002 is for Cruise A with cabins Cabin 4 Cabin 3

Cabin 2

 [java] Reservation date=11/22/2002 is for Cruise A with cabins Cabin 5 Cabin 4

Cabin 3

 [java] Removing created beans

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

25.3 Exercise 7.3: Cascade Deletes in CMP 2.0
This very short exercise demonstrates the use of the automatic cascade-delete feature of CMP 2.0 containers. It does
this with an example Customer bean and some other beans related to it.

25.3.1 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex07_3 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex07_3> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex07_3> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex07_3> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

25.3.2 Examine the JBoss-Specific Files

There are no new JBoss configuration files or components in this exercise.

25.3.3 Examine and Run the Client Applications

Client_73 is a simple example to demonstrate cascade-delete. The example code is pretty straightforward and needs no
explanation.

In order to run Client_73, invoke the Ant task run.client_73. Remember to set your JBOSS_HOME and PATH environment
variables. The output should look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\workbook\ex07_3>ant run.client_73

Buildfile: build.xml

prepare:

compile:

run.client_73:

 [java] Creating Customer 10078, Addresses, Credit Card, Phones

 [java] Creating CreditCard

 [java] customer.getCreditCard().getName()=Ringo Star

 [java] Creating Address

 [java] Address Info: 780 Main Street Beverly Hills, CA 90210

 [java] Creating Phones

 [java] Adding a new type 1 phone number..

 [java] Adding a new type 2 phone number.

 [java] New contents of phone list:

 [java] Type=1 Number=612-555-1212

 [java] Type=2 Number=888-555-1212

 [java] Removing Customer EJB only

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 25. Exercises for Chapter 7
Section 25.1. Exercise 7.1: Entity Relationships in CMP 2.0, Part 1

Section 25.2. Exercise 7.2:Entity Relationships in CMP 2.0, Part 2

Section 25.3. Exercise 7.3: Cascade Deletes in CMP 2.0

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

26.1 Exercise 8.1: Simple EJB QL Statements
The exercises in this section reveal some of the basic aspects of EJB QL programming and functionality. You'll explore
basic finder methods, ejbSelect methods, and the use of the IN operation in EJB QL queries.

26.1.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

26.1.2 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex08_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex08_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex08_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex08_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

26.1.3 Examine the JBoss-Specific Files

This exercise introduces no new features in JBoss-specific files. If you think you need to, review Exercise 6.1 of this
workbook to understand the JBoss-specific files in this example.

26.1.4 Initialize the Database

The database tables for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when
the EJB JAR is deployed. To initialize all the tables in this example, though, you must perform the Ant task run.initialize:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the EJB JAR is deployed. To initialize all the tables in this example, though, you must perform the Ant task run.initialize:

C:\workbook\ex08_1>ant run.initialize

Buildfile: build.xml

prepare:

compile:

run.initialize:

 [java] added Bill Burke

 [java] added Sacha Labourey

 [java] added Marc Fleury

 [java] added Jane Swift

 [java] added Nomar Garciaparra

As in the preceding exercise, all business logic is implemented within a stateless session bean. If you would like to see
the database initialization code, take a look at com.titan.test.Test81Bean's initialize() method, which creates all the entity
beans for this exercise.

26.1.5 Examine and Run the Client Applications

Each example method of Test81Bean implements the example code fragments shown in the EJB book. Each Test81Bean
method is invoked by a small, simple client application.

26.1.5.1 Client_81a

The Client_81a program demonstrates a few simple finder methods that are exposed through the Customer home
interface:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome

{

 ...

 public CustomerLocal findByName(String lastName,

 String firstName)

 throws FinderException;

 public Collection findByGoodCredit()

 throws FinderException;

 ...

}

The Customer EJB's deployment descriptor defines these finder methods as follows:

<query>

 <query-method>

 <method-name>findByName</method-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <method-name>findByName</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer c

 WHERE c.lastName = ?1 AND c.firstName = ?2

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>findByGoodCredit</method-name>

 <method-params/>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer c

 WHERE c.hasGoodCredit = TRUE

 </ejb-ql>

</query>

The example also demonstrates a few ejbSelect methods, defined in the Address EJB's deployment descriptor as follows:

<query>

 <query-method>

 <method-name>ejbSelectZipCodes</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT a.zip FROM Address AS a

 WHERE a.state = ?1

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectAll</method-name>

 <method-params/>

 </query-method>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-ql>

 SELECT OBJECT(a) FROM Address AS a

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectCustomer</method-name>

 <method-params>

 <method-param>com.titan.address.AddressLocal</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(C) FROM Customer AS c

 WHERE c.homeAddress = ?1

 </ejb-ql>

</query>

Because ejbSelect methods are private to the entity bean class, the Address home interface needs custom home
methods to wrap and invoke the private ejbSelect methods.

public interface AddressHomeLocal extends javax.ejb.EJBLocalHome

{

 ...

 public Collection queryZipCodes(String state)

 throws FinderException;

 public Collection queryAll()

 throws FinderException;

 public CustomerLocal queryCustomer(AddressLocal addr)

 throws FinderException;

}

These custom home methods need corresponding ejbHome methods defined in the Address bean class. All they do is
delegate to the ejbSelect methods they wrap.

public abstract class AddressBean implements javax.ejb.EntityBean

{

 ...

 public abstract Collection ejbSelectZipCodes(String state)

 throws FinderException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract Collection ejbSelectAll()

 throws FinderException;

 public abstract CustomerLocal ejbSelectCustomer

 (AddressLocal addr)

 throws FinderException;

 public Collection ejbHomeQueryZipCodes(String state)

 throws FinderException

 {

 return ejbSelectZipCodes(state);

 }

 public Collection ejbHomeQueryAll()

 throws FinderException

 {

 return ejbSelectAll();

 }

 public CustomerLocal ejbHomeQueryCustomer(AddressLocal addr)

 throws FinderException

 {

 return ejbSelectCustomer(addr);

 }

 ...

}

Custom home methods are described briefly in Chapter 5 of the EJB book and in more detail in Chapter 11. As you can
see, they are extremely useful in exposing private ejbSelect methods so that they can be invoked by test programs or
business logic. All the workbook example programs for Chapter 8 use the custom home methods for this purpose.

Client_81a invokes these queries and displays their output. To run it, invoke the Ant task run.client_81a. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_1>ant run.client_81a

Buildfile: build.xml

prepare:

compile:

run.client_81a:

 [java] FIND METHODS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] FIND METHODS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.lastName = ?1 AND c.firstName = ?2

 [java] Find Bill Burke using findByName

 [java] Found Bill Burke

 [java]

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.hasGoodCredit = TRUE

 [java] Find all with good credit. Sacha has bad credit!

 [java] Bill has good credit.

 [java] Marc has good credit.

 [java] Jane has good credit.

 [java] Nomar has good credit.

 [java]

 [java] SELECT METHODS

 [java] --------------------------------

 [java] SELECT a.zip FROM Address AS a

 [java] WHERE a.state = ?1

 [java] show ejbSelectZipCodes with queryZipCodes

 [java] 01821

 [java] 02115

 [java] 02116

 [java]

 [java] SELECT OBJECT(a) FROM Address AS a

 [java] show ejbSelectAll with queryAll

 [java] 123 Boston Road

 [java] Billerica, MA 01821

 [java]

 [java] Etwa Schweitzer Strasse

 [java] Neuchatel, Switzerland 07711

 [java]

 [java] Somewhere Dr.

 [java] Atlanta, GA 06660

 [java]

 [java] 1 Beacon Street

 [java] Boston, MA 02115

 [java]

 [java] 1 Yawkey Way

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] 1 Yawkey Way

 [java] Boston, MA 02116

 [java]

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] Somewhere

 [java] Atlanta, GA 06660

 [java]

 [java]

 [java] SELECT OBJECT(C) FROM Customer AS c

 [java] WHERE c.homeAddress = ?1

 [java] show ejbSelectCustomer using Bill's address.

 [java] The customer is:

 [java] Bill Burke

 [java] 123 Boston Road

 [java] Billerica, MA 01821

26.1.5.2 Client_81b

The Client_81b program gives you a chance to investigate some of the queries illustrated in the EJB book. For an
explanation of the details of the tested queries below, please refer to Section 8.3.2 in Chapter 8 of the EJB section of
this book. The business logic for this example is implemented in com.titan.test.Test81Bean, in the test81b() method.

All the EJB QL queries in this example are ejbSelect methods. Again, these ejbSelect methods are wrapped by custom
home methods. This example tests the following Customer EJB QL queries and home methods:

query: SELECT c.lastName FROM Customer AS c

ejbSelect method: ejbSelectLastNames()

custom home method: queryLastNames()

ejbHome method: ejbHomeQueryLastNames()

query: SELECT c.creditCard FROM Customer c

ejbSelect method: ejbSelectCreditCards()

custom home method: queryCreditCards()

ejbHome method: ejbHomeQueryCreditCards()

query: SELECT c.homeAddress.city FROM Customer c

ejbSelect method: ejbSelectCities()

custom home method: queryCities()

ejbHome method: ejbHomeQueryCities()

query: SELECT c.creditCard.creditCompany.address

 FROM Customer AS c

ejbSelect method: ejbSelectCreditCompanyAddresses()

custom home method: queryCreditCompanyAddresses()

ejbHome method: ejbHomeQueryCreditCompanyAddresses()

query: SELECT c.creditCard.creditCompany.address.city

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

query: SELECT c.creditCard.creditCompany.address.city

 FROM Customer AS c

ejbSelect method: ejbSelectCreditCompanyCities()

custom home method: queryCreditCompanyCities()

ejbHome method: ejbHomeQueryCreditCompanyCities()

Client_81b invokes these queries and displays their output. To run it, invoke the Ant task run.client_81b. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_1>ant run.client_81b

Buildfile: build.xml

prepare:

compile:

run.client_81b:

 [java] SIMPLE QUERIES with PATHS

 [java] --------------------------------

 [java] SELECT c.lastName FROM Customer AS c

 [java] Burke

 [java] Labourey

 [java] Fleury

 [java] Swift

 [java] Garciaparra

 [java]

 [java] SELECT c.creditCard FROM Customer c

 [java] 5324 9393 1010 2929

 [java] 5311 5000 1011 2333

 [java] 5310 5131 7711 2663

 [java] 5810 5881 7788 2688

 [java] 5450 5441 7448 2644

 [java]

 [java] SELECT c.homeAddress.city FROM Customer c

 [java] Billerica

 [java] Neuchatel

 [java] Atlanta

 [java] Boston

 [java] Boston

 [java]

 [java] SELECT c.creditCard.creditCompany.address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] FROM Customer AS c

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] West Broad Street

 [java] Richmond, VA 23233

 [java]

 [java] Somewhere

 [java] Atlanta, GA 06660

 [java]

 [java] Somewhere

 [java] Atlanta, GA 06660

 [java]

 [java]

 [java] SELECT c.creditCard.creditCompany.address.city

 [java] FROM Customer AS c

 [java] Richmond

 [java] Richmond

 [java] Richmond

 [java] Atlanta

 [java] Atlanta

26.1.5.3 Client_81c

The Client_81c program lets you investigate some more queries illustrated in the EJB book. For an explanation of the
details of the tested queries below, please refer to Section 8.3.3 in Chapter 8 of the EJB section. The business logic for
this example is implemented in com.titan.test.Test81Bean, in the test81c() method.

All the EJB QL queries in this example are ejbSelect methods. Again, these ejbSelect methods are wrapped by custom
home methods. This example tests the following Customer EJB QL queries and home methods:

query: SELECT OBJECT(r)

 FROM Customer AS c, IN(c.reservations) AS r

ejbSelect method: ejbSelectReservations()

custom home method: queryReservations()

ejbHome method: ejbHomeQueryReservations()

query: SELECT r.cruise

 FROM Customer AS c, IN(c.reservations) AS r

ejbSelect method: ejbSelectCruises()

custom home method: queryCruises()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ejbHome method: ejbHomeQueryCruises()

query: SELECT cbn.ship

 FROM Customer AS c, IN(c.reservations) AS r,

 IN(r.cabins) AS cbn

ejbSelect method: ejbSelectShips()

custom home method: queryShips()

ejbHome method: ejbHomeQueryShips()

Client_81c invokes these queries and displays their output. To run it, invoke the Ant task run.client_81c. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_1>ant run.client_81c

Buildfile: build.xml

prepare:

compile:

run.client_81c:

 [java] THE IN OPERATOR

 [java] --------------------------------

 [java] SELECT OBJECT(r)

 [java] FROM Customer AS c, IN(c.reservations) AS r

 [java] Reservation for Alaskan Cruise

 [java] Reservation for Alaskan Cruise

 [java] Reservation for Atlantic Cruise

 [java] Reservation for Atlantic Cruise

 [java] Reservation for Alaskan Cruise

 [java]

 [java] SELECT r.cruise

 [java] FROM Customer AS c, IN(c.reservations) AS r

 [java] Cruise Alaskan Cruise

 [java] Cruise Alaskan Cruise

 [java] Cruise Atlantic Cruise

 [java] Cruise Atlantic Cruise

 [java] Cruise Alaskan Cruise

 [java]

 [java] SELECT cbn.ship

 [java] FROM Customer AS c, IN(c.reservations) AS r,

 [java] IN(r.cabins) AS cbn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] IN(r.cabins) AS cbn

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Titanic

 [java] Ship Queen Mary

 [java] Ship Queen Mary

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

26.2 Exercise 8.2: Complex EJB QL Statements
The example programs in Exercise 8.2 delve deeper into the complexities of EJB QL. You will learn about arithmetic and
logic operators in WHERE clauses as well as other, more complex WHERE-clause constructs. The test programs of this
section demonstrate most of the example queries provided in Chapter 8 of the EJB book.

26.2.1 Start Up JBoss

If you already have JBoss running, there is no reason to restart it.

26.2.2 Build and Deploy the Example Programs

Build the examples for this exercise in the ex08_2 directory, following the same procedure as for earlier exercises.

26.2.3 Examine the JBoss-Specific Files

This exercise introduces no new features in JBoss-specific files. If you think you need to, review Exercise 6.1 of this
workbook to understand the JBoss-specific files in this example.

26.2.4 Initialize the Database

The database tables for this exercise will automatically be created in JBoss's default database, HypersonicSQL, when
the EJB JAR is deployed, but to initialize all database tables in this example, you must perform the Ant task run.initialize:

C:\workbook\ex08_2>ant run.initialize

Buildfile: build.xml

prepare:

compile:

run.initialize:

 [java] added Bill Burke

 [java] added Sacha Labourey

 [java] added Marc Fleury

 [java] added Jane Swift

 [java] added Nomar Garciaparra

 [java] added Richard Monson-Haefel

As in the preceding exercise, all example business logic is implemented within a stateless session bean—in this case,
com.titan.test.Test82Bean—and the database initialization code is in that bean's initialize() method, which creates all the
entity beans for this exercise.

26.2.5 Examine and Run the Client Applications

Each example method of Test82Bean implements the example code fragments shown in the EJB book. Each Test82Bean
method is invoked by a small, simple client application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method is invoked by a small, simple client application.

26.2.5.1 Client_82a

The Client_82a program implements the queries illustrated in the EJB section of this book, in the section of Chapter 8
called Section 8.3.4. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82a()
method.

The code demonstrates a Customer EJB finder query that returns duplicate responses, then invokes a finder query that
uses the DISTINCT keyword to filter out duplicates.

finder method: findAllCustomersWithReservations()

query: SELECT OBJECT(cust)

 FROM Reservation res, IN (res.customers) cust

finder method: findDistinctCustomersWithReservations()

query: SELECT DISTINCT OBJECT(cust)

 FROM Reservation res, IN (res.customers) cust

Client_82a invokes these queries and displays their output. To run it, invoke the Ant task run.client_82a. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_2>ant run.client_82a

Buildfile: build.xml

prepare:

compile:

run.client_82a:

 [java] USING DISTINCT

 [java] --------------------------------

 [java] Non-distinct:

 [java] SELECT OBJECT(cust)

 [java] FROM Reservation res, IN (res.customers) cust

 [java] Bill has a reservation.

 [java] Sacha has a reservation.

 [java] Nomar has a reservation.

 [java] Bill has a reservation.

 [java] Marc has a reservation.

 [java] Jane has a reservation.

 [java]

 [java] Distinct:

 [java] SELECT DISTINCT OBJECT(cust)

 [java] FROM Reservation res, IN (res.customers) cust

 [java] Bill has a reservation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Bill has a reservation.

 [java] Sacha has a reservation.

 [java] Marc has a reservation.

 [java] Jane has a reservation.

 [java] Nomar has a reservation.

26.2.5.2 Client_82b

The Client_82b program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.5. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82b() method.

Various Customer and Ship EJB finder queries show how to use string, numeric, and Boolean literals in EJB QL queries.

EJB: Customer

finder method: findByAmericanExpress()

query: SELECT OBJECT(c) FROM Customer AS c

 WHERE c.creditCard.organization = 'American Express'

EJB: Ship

finder method: findByTonnage100000 ()

query: SELECT OBJECT(s) FROM Ship AS s

 WHERE s.tonnage = 100000.0

EJB: Customer

finder method: findByGoodCredit()

query: SELECT OBJECT(c) FROM Customer AS c

 WHERE c.hasGoodCredit = TRUE

Client_82b invokes these queries and displays their output. To run it, invoke the Ant task run.client_82b. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82b

Buildfile: build.xml

prepare:

compile:

run.client_82b:

 [java] THE WHERE CLAUSE AND LITERALS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] WHERE c.creditCard.organization = 'American Express'

 [java] Jane has an American Express card.

 [java] Nomar has an American Express card.

 [java]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java]

 [java] SELECT OBJECT(s) FROM Ship AS s

 [java] WHERE s.tonnage = 100000.0

 [java] Ship Queen Mary as tonnage 100000.0

 [java]

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] WHERE c.hasGoodCredit = TRUE

 [java] Bill has good credit.

 [java] Marc has good credit.

 [java] Jane has good credit.

 [java] Nomar has good credit.

 [java] Richard has good credit.

26.2.5.3 Client_82c

The Client_82c program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.6. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82c() method.

The code demonstrates a Customer EJB ejbSelect query that uses strings as input parameters to the query and a Cruise
EJB finder method that uses a Ship EJB as an input parameter. As in previous sections, the ejbSelect query is wrapped in
a custom home method.

EJB: Customer

ejbSelect method: ejbSelectLastNames()

custom home method: queryLastNames()

ejbHome method: ejbHomeQueryLastNames()

query: SELECT OBJECT(c) FROM Customer AS c

 WHERE c.homeAddress.state = ?2

 AND c.homeAddress.city = ?1

EJB: Cruise

finder method: findByShip()

query: SELECT OBJECT(crs) FROM Cruise AS crs

 WHERE crs.ship = ?1

Client_82c invokes these queries and displays their output. To run it, invoke the Ant task run.client_82c. Remember to
set your JBOSS_HOME and PATH environment variables. The output should look something like this:

C:\workbook\ex08_2>ant run.client_82c

Buildfile: build.xml

prepare:

compile:

run.client_82c:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run.client_82c:

 [java] THE WHERE CLAUSE AND INPUT PARAMETERS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] WHERE c.homeAddress.state = ?2

 [java] AND c.homeAddress.city = ?1

 [java] Get customers from Billerica, MA

 [java] Bill is from Billerica.

 [java]

 [java] SELECT OBJECT(crs) FROM Cruise AS crs

 [java] WHERE crs.ship = ?1

 [java] Get cruises on the Titanic

 [java] Atlantic Cruise is a Titanic cruise.

26.2.5.4 Client_82d

The Client_82d example program implements the queries illustrated in the EJB book, in the section of Chapter 8 called
Section 8.3.8 The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82d() method.
The code demonstrates a Reservation EJB finder method that must be enclosed in an XML CDATA section because it
uses the > symbol in the query.

EJB: Reservation

finder method: findWithPaymentGreaterThan()

query: <![CDATA[

 OBJECT(r) FROM Rservation r

 WHERE r.amountPaid > ?1

]]>

Client_82d invokes this query and displays its output. To run it, invoke the Ant task run.client_82d. The output should
look something like this:

C:\workbook\ex08_2>ant run.client_82d

Buildfile: build.xml

prepare:

compile:

run.client_82d:

 [java] THE WHERE CLAUSE AND CDATA Sections

 [java] --------------------------------

 [java] ![CDATA[

 [java] SELECT OBJECT(r) FROM Rservation r

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] SELECT OBJECT(r) FROM Rservation r

 [java] WHERE r.amountPaid > ?1

 [java]]]>

 [java] found reservation with amount paid > 20000.0: 40000.0

26.2.5.5 Client_82e

The Client_82e program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.13. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82e() method. Two Ship
EJB finder methods demonstrate how to use the BETWEEN keyword in a WHERE clause.

EJB: Ship

finder method: findByTonnageBetween()

query: SELECT OBJECT(s) FROM Ship s

 WHERE s.tonnage BETWEEN 80000.00 and 130000.00

EJB: Ship

finder method: findByTonnageNotBetween()

query: SELECT OBJECT(s) FROM Ship s

 WHERE s.tonnage NOT BETWEEN 80000.00 and 130000.00

Client_82e invokes these queries and displays their output. To run it, invoke the Ant task run.client_82e. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82e

Buildfile: build.xml

prepare:

compile:

run.client_82e:

 [java] THE WHERE CLAUSE AND BETWEEN

 [java] --------------------------------

 [java] SELECT OBJECT(s) FROM Ship s

 [java] WHERE s.tonnage BETWEEN 80000.00 and 130000.00

 [java] Queen Mary has tonnage 100000.0

 [java]

 [java] SELECT OBJECT(s) FROM Ship s

 [java] WHERE s.tonnage NOT BETWEEN 80000.00 and 130000.00

 [java] Titanic has tonnage 200000.0

26.2.5.6 Client_82f

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.2.5.6 Client_82f

The Client_82f program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.14. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82f() method.

The code uses two Customer EJB finder methods. One queries for all customers living in Georgia or Massachusetts. The
other queries for all customers that do not live in these two states.

EJB: Customer

finder method: findInStates()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress.state IN ('GA', 'MA')

EJB: Customer

finder method: findNotInStates()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress.state NOT IN ('GA', 'MA')

Client_82f invokes these queries and displays their output. To run it, invoke the Ant task run.client_82f. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82f

Buildfile: build.xml

prepare:

compile:

run.client_82f:

 [java] THE WHERE CLAUSE AND IN

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress.state IN ('GA', 'MA')

 [java] Bill

 [java] Marc

 [java] Jane

 [java] Nomar

 [java]

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress.state NOT IN ('GA', 'MA')

 [java] Sacha

26.2.5.7 Client_82g

The Client_82g program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.15. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82g() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.15. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82g() method.

There are two Customer EJB finder methods. One selects all customers that have a null home address. The other selects
all customers that do not have a null address.

EJB: Customer

finder method: findHomeAddressIsNull()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress IS NULL

EJB: Customer

finder method: findHomeAddressIsNotNull()

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.homeAddress IS NOT NULL

Client_82g invokes these queries and displays their output. To run it, invoke the Ant task run.client_82g. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82g

Buildfile: build.xml

prepare:

compile:

run.client_82g:

 [java] THE WHERE CLAUSE AND IS NULL

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress IS NULL

 [java] Richard

 [java]

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.homeAddress IS NOT NULL

 [java] Bill

 [java] Sacha

 [java] Marc

 [java] Jane

 [java] Nomar

26.2.5.8 Client_82h

The Client_82h program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.16. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82h() method.

The code uses two Cruise EJB finder methods to illustrate the use of IS EMPTY. One returns all the Cruises that do not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code uses two Cruise EJB finder methods to illustrate the use of IS EMPTY. One returns all the Cruises that do not
have Reservations. The other method returns all Cruises that have Reservations.

EJB: Cruise

finder method: findEmptyReservations()

query: SELECT OBJECT(crs) FROM Cruise crs

 WHERE crs.reservations IS EMPTY

EJB: Cruise

finder method: findNotEmptyReservations()

query: SELECT OBJECT(crs) FROM Cruise crs

 WHERE crs.reservations IS NOT EMPTY

Client_82h invokes these queries and displays their output. To run it, invoke the Ant task run.client_82h. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82h

Buildfile: build.xml

prepare:

compile:

run.client_82h:

 [java] THE WHERE CLAUSE AND IS EMPTY

 [java] --------------------------------

 [java] SELECT OBJECT(crs) FROM Cruise crs

 [java] WHERE crs.reservations IS EMPTY

 [java]

 [java] SELECT OBJECT(crs) FROM Cruise crs

 [java] WHERE crs.reservations IS NOT EMPTY

 [java] Alaskan Cruise is not empty.

 [java] Atlantic Cruise is not empty.

26.2.5.9 Client_82i

The Client_82i program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.17. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82i() method.

Two Cruise EJB finder methods demonstrate how to use EJB QL to find whether or not an entity is a member of a
relationship.

EJB: Cruise

finder method: findMemberOf()

query: SELECT OBJECT(crs) FROM Cruise crs,

 IN (crs.reservations) res, Customer cust

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE cust = ?1 ANT cust MEMBER OF res.customers

EJB: Cruise

finder method: findNotMemberOf()

query: SELECT OBJECT(crs) FROM Cruise crs,

 IN (crs.reservations) res, Customer cust

 WHERE cust = ?1 ANT cust NOT MEMBER OF res.customers

Client_82i invokes these queries and displays their output. To run it, invoke the Ant task run.client_82i. The output
should look something like this:

C:\workbook\ex08_2>ant run.client_82i

Buildfile: build.xml

prepare:

compile:

run.client_82i:

 [java] THE WHERE CLAUSE AND MEMBER OF

 [java] --------------------------------

 [java] SELECT OBJECT(crs) FROM Cruise crs,

 [java] IN (crs.reservations) res, Customer cust

 [java] WHERE cust = ?1 ANT cust MEMBER OF res.customers

 [java] Use Bill Burke

 [java] Bill is member of Alaskan Cruise

 [java] Bill is member of Atlantic Cruise

 [java]

 [java] SELECT OBJECT(crs) FROM Cruise crs,

 [java] IN (crs.reservations) res, Customer cust

 [java] WHERE cust = ?1 ANT cust NOT MEMBER OF res.customers

 [java] Use Nomar Garciaparra

 [java] Nomar is not member of Atlantic Cruise

26.2.5.10 Client_82j

The Client_82j program implements the queries illustrated in the EJB book, in the section of Chapter 8 entitled Section
8.3.18. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82j() method.

One Customer EJB finder method is used to query all Customers with a hyphenated name.

EJB: Customer

finder method: findHyphenatedLastNames()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

query: SELECT OBJECT(c) FROM Customer c

 WHERE c.lastName LIKE '%-%'

Client_82j invokes this query and displays its output. To run it, invoke the Ant task run.client_82j. The output should look
something like this:

C:\workbook\ex08_2>ant run.client_82j

Buildfile: build.xml

prepare:

compile:

run.client_82j:

 [java] THE WHERE CLAUSE AND LIKE

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.lastName LIKE '%-%'

 [java] Monson-Haefel

26.2.5.11 Client_82k

The Client_82k program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.19. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82k() method.

One Customer EJB finder method demonstrates the use of a couple of functional expressions.

EJB: Customer

finder method: findByLastNameLength()

query: SELECT OBJECT(c) FROM Customer c

 WHERE LENGTH(c.lastName) > 6 AND

 LOCATE(c.lastName, 'Monson') > -1

Client_82k invokes this query and displays its output. To run it, invoke the Ant task run.client_82k. The output should
look something like this:

C:\workbook\ex08_2>ant run.client_82k

Buildfile: build.xml

prepare:

compile:

run.client_82k:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run.client_82k:

 [java] THE WHERE CLAUSE AND FUNCTIONAL EXPRESSIONS

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE LENGTH(c.lastName) > 6 AND

 [java] LOCATE(c.lastName, 'Monson') > -1

 [java] Labourey

 [java] Garciaparra

 [java] Monson-Haefel

26.2.5.12 Client_82m

The Client_82m program implements the queries illustrated in the EJB book, in the section of Chapter 8 called Section
8.3.19.2. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82m() method.

The first query finds the count of all customer Zip codes that are in the Boston, MA area. Most Zip codes in the Boston
area start with 0211, so a LIKE statement is used. A custom home method from the Customer EJB's home interface is
used to wrap the private ejbSelect queries defined in the same bean.

query: SELECT DISTINCT COUNT(c.homeAddress.zip)

 FROM Customer AS c

 WHERE c.homeAddress.zip LIKE '0211%'

ejbSelect method: ejbSelectCountOfBostonZips()

custom home method: countOfBostonZips()

ejbHome method: ejbHomeCountOfBostonZips()

The second gets the maximum value of the amountPaid field of all Reservation EJBs. A custom home method from
Reservation EJB is used to wrap the private ejbSelect queries that are declared within the bean class.

query: SELECT SELECT MAX(r.amountPaid)

 FROM Reservation As r

ejbSelect method: ejbSelectMaxAmountPaid()

custom home method: maxAmountPaid()

ejbHome method: ejbHomeMaxAmountPaid()

The third query gets the sum of all reservations paid based on a cruise passed in as a parameter. A custom home
method from Cruise EJB is used to wrap the private ejbSelect queries that are declared within the bean class.

query: SELECT SUM(r.amountPaid)

 FROM Cruise c, IN(c.reservations) AS r

 WHERE c = ?1

ejbSelect method: ejbSelectSumReservation(CruiseLocal cruise)

custom home method: sumReservation(CruiseLocal cruise)

ejbHome method: ejbHomeSumReservation(CruiseLocal cruise)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The final query takes the average of all reservations paid based on a cruise passed in as a parameter. A custom home
method from Cruise EJB is used to wrap the private ejbSelect queries that are declared within the bean class.

query: SELECT AVG(r.amountPaid)

 FROM Cruise c, IN(c.reservations) AS r

 WHERE c = ?1

ejbSelect method: ejbSelectAveragePaidReservation(CruiseLocal cruise)

custom home method: averagePaidReservation(CruiseLocal cruise)

ejbHome method: ejbHomeAveragePaidReservation(CruiseLocal cruise)

Client_82m invokes these queries and displays their output. To run it, invoke the Ant task run.client_82m. The output
should look something like this:

C:\workbook...x08_2>ant run.client_82m

Buildfile: build.xml

prepare:

compile:

run.client_82m:

 [java] EJB 2.1 Aggregate Functions

 [java] --------------------------------

 [java] SELECT DISTINCT COUNT(c.homeAddress.zip)

 [java] FROM Customer AS c

 [java] WHERE c.homeAddress.zip LIKE '0211%'

 [java] count of Boston zip codes: 2

 [java] --------------------------------

 [java] SELECT MAX(r.amountPaid)

 [java] FROM Reservation As r

 [java] max amount paid for a reservation: $40000.0

 [java] --------------------------------

 [java] SELECT SUM(r.amountPaid)

 [java] FROM Cruise c, IN(c.reservations) AS r

 [java] WHERE c = ?1

 [java] Sum of Alaskan Cruise reservations: $40000.0

 [java] --------------------------------

 [java] SELECT AVG(r.amountPaid)

 [java] FROM Cruise c, IN(c.reservations) AS r

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] FROM Cruise c, IN(c.reservations) AS r

 [java] WHERE c = ?1

 [java] Average of Atlantic Cruise reservations: $10000.0

26.2.5.13 Client_82n

The Client_82n program implements the queries illustrated in the EJB book, in the section of Chapter 8 entitled Section
8.3.20. The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82n() method.

One Customer EJB finder method demonstrates the use of ORDER BY with the DESC keyword.

EJB: Customer

finder method: findByOrderedLastName()

query: SELECT OBJECT(c) FROM Customer AS c

 ORDER BY c.lastName DESC

Client_82n invokes this query and displays its output. To run it, invoke the Ant task run.client_82n. The output should
look something like this:

C:\workbook...x08_2>ant run.client_82n

Buildfile: build.xml

prepare:

compile:

run.client_82n:

 [java] EJB 2.1 ORDER BY Clause

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer AS c

 [java] ORDER BY c.lastName DESC

 [java] Swift

 [java] Monson-Haefel

 [java] Labourey

 [java] Garciaparra

 [java] Fleury

 [java] Burke

26.2.6 JBoss Dynamic QL

One of the features seriously lacking in EJB QL is the ability to do dynamic queries at run time. This example shows how
you can do dynamic queries on Customer EJBs with JBoss CMP 2.0.

First, you must declare an ejbSelectGeneric() method that will invoke your dynamic queries and an ejbHome wrapper
method so that the test program can invoke it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method so that the test program can invoke it.

public abstract class CustomerBean implements javax.ejb.EntityBean

{

 public abstract Set ejbSelectGeneric(String jbossQl, Object[] arguments)

 throws FinderException;

 public Set ejbHomeDynamicQuery(String jbossQL, Object[] arguments)

 throws FinderException

 {

 return ejbSelectGeneric(jbossQL, arguments);

 }

Next, declare your ejbHome wrapper method in CustomerHomeLocal.java:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome

{

 ...

 public Set dynamicQuery(String jbossQl, Object[] arguments)

 throws FinderException;

}

The ejbSelectGeneric() method must be defined in the ejb-jar.xml deployment descriptor. Notice that the <ejb-ql> value is
empty.

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 ...

 <query>

 <query-method>

 <method-name>ejbSelectGeneric</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.Object[]</method-param>

 </method-params>

 </query-method>

 <ejb-ql></ejb-ql>

 </query>

Finally, in jbosscmp-jdbc.xml, tell JBoss that the ejbSelectGeneric() method is dynamic:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, in jbosscmp-jdbc.xml, tell JBoss that the ejbSelectGeneric() method is dynamic:

<jbosscmp-jdbc>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <query>

 <query-method>

 <method-name>ejbSelectGeneric</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.Object[]</method-param>

 </method-params>

 </query-method>

 <dynamic-ql/>

 </query>

 </entity>

 </enterprise-beans>

</jbosscmp-jdbc>

The business logic for this example is implemented in com.titan.test.Test82Bean, in the test82Dynamic() method.

public String test82Dynamic() throws RemoteException

{

 ...

 // obtain Home interfaces

 InitialContext jndiContext = getInitialContext();

 Object obj = jndiContext.lookup("CustomerHomeLocal");

 CustomerHomeLocal customerHome = (CustomerHomeLocal)obj;

 ...

 Object[] params = {};

 Set customers =

 customerHome.dynamicQuery("SELECT OBJECT(c) FROM Customer c " +

 "WHERE c.lastName LIKE 'B%'", params);

 ...

}

The test82Dynamic() method generates a dynamic query string and invokes the dynamicQuery() method defined in the
CustomerHomeLocal interface.

Client_82Dynamic invokes test82Dynamic() and displays its output. To run it, invoke the Ant task run.client_82dynamic.
The output should look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output should look something like this:

C:\workbook\ex08_2>ant run.client_82dynamic

Buildfile: build.xml

prepare:

compile:

run.client_82dynamic:

 [java] JBoss Dynamic Queries

 [java] --------------------------------

 [java] SELECT OBJECT(c) FROM Customer c

 [java] WHERE c.lastName LIKE 'B%'

 [java] Burke

26.2.6.1 Advanced JBoss QL

In Section 8.4 of Chapter 8, Richard Monson-Haefel talks about some of the limitations of EJB QL. In the JBoss CMP 2.0
implementation, EJB QL is just a subset of a larger JBoss query language. JBoss QL does a great job of filling in some of
the gaps in the EJB QL spec. Features such as the ability to use parameters within IN and LIKE clauses are just a few of
the enhancements JBoss has implemented. Please review the advanced CMP 2.0 documentation available at the JBoss
web site, http://www.jboss.org, for more information on these features.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 26. Exercises for Chapter 8
Section 26.1. Exercise 8.1: Simple EJB QL Statements

Section 26.2. Exercise 8.2: Complex EJB QL Statements

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

27.1 Exercise 9.1: A BMP Entity Bean
In this exercise, you will build and examine a simple EJB that uses bean-managed persistence (BMP) to synchronize the
state of the bean with a database. You will also build a client application to test this Ship BMP bean.

27.1.1 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

27.1.2 Initialize the Database

As in the CMP examples, the state of the entity beans will be stored in the database that is embedded in JBoss. JBoss
was able to create all tables for CMP beans, but it cannot do the same for BMP beans because the deployment
descriptors don't contain any persistence information (object-to-relational mapping, for example). The bean is in fact
the only one that knows how to load, store, remove, and find data. The persistence mapping is not described in a
configuration file, but embedded in the bean code instead.

One consequence is that the database environment for BMP must always be built explicitly. To make this task easier for
the BMP Ship example, Ship's home interface defines two helpful home methods.

Entity beans can define home methods that perform operations related to the EJB
component's semantics but that are not linked to any particular bean instance. As an
analogy, consider the static methods of a class: their semantics are generally closely
related to the class's semantics, but they're not associated with any particular class
instance. Don't worry if this is not totally clear: Chapter 10 of the EJB book, explains all
about home methods.

Here's a partial view of the Ship EJB's home interface:

public interface ShipHomeRemote extends javax.ejb.EJBHome

{

 ...

 public void makeDbTable () throws RemoteException;

 public void deleteDbTable () throws RemoteException;

}

It defines two home methods. The first creates the table needed by the Ship EJB in the JBoss-embedded database and
the second drops it.

The implementation of the makeDbTable() home method is essentially a CREATE TABLE SQL statement:

public void ejbHomeMakeDbTable () throws SQLException

{

 PreparedStatement ps = null;

 Connection con = null;

 try

 {

 con = this.getConnection ();

 System.out.println("Creating table SHIP...");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ps = con.prepareStatement ("CREATE TABLE SHIP (" +

 "ID INT PRIMARY KEY, " +

 "NAME CHAR (30), " +

 "TONNAGE DECIMAL (8,2), " +

 "CAPACITY INT" +

 ")");

 ps.execute ();

 System.out.println("...done!");

 }

 finally

 {

 try { if (ps != null) ps.close (); } catch (Exception e) {}

 try { if (con != null) con.close (); } catch (Exception e) {}

 }

}

The deleteDbTable() home method differs only by the SQL statement it executes:

 ...

 System.out.println("Dropping table SHIP...");

 ps = con.prepareStatement ("DROP TABLE SHIP");

 ps.execute ();

 System.out.println("...done!");

 ...

We explain how to call these methods in a subsequent section.

27.1.3 Examine the EJB Standard Files

The Ship EJB source code requires no modification to run in JBoss, so the standard EJB deployment descriptor is very
simple.

27.1.3.1 ejb-jar.xml (part I)

...

 <enterprise-beans>

 <entity>

 <description>

 This bean represents a cruise ship.

 </description>

 <ejb-name>ShipEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ship.ShipHomeRemote</home>

 <remote>com.titan.ship.ShipRemote</remote>

 <ejb-class>com.titan.ship.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <security-identity><use-caller-identity/></security-identity>

 <resource-ref>

 <description>DataSource for the Titan DB</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </entity>

 </enterprise-beans>

 ...

This first part of the deployment descriptor essentially tells the container that the Ship bean:

Is named ShipEJB.

Has a persistence type set to Bean because it's a BMP bean.

Declares a reference to a data source named jdbc/titanDB.

Because the bean directly manages the persistence logic, the deployment descriptor does not contain any persistence
information. In contrast, this information would have been mandatory for a CMP EJB.

The second part of the deployment descriptor declares the transactional and security attributes of the Ship bean.

27.1.3.2 ejb-jar.xml (part II)

...

<assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full

 access to the Ship EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <role-name>everyone</role-name>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

All methods of the Ship bean require a transaction. If no transaction is active when a method invocation enters the
container, a new one will be started.

In entity beans, transactions are always managed by the container, never directly by the
bean. Thus, all work done on transactional resources, such as databases, will implicitly be
part of the transactional context of the container.

27.1.4 Examine the JBoss-Specific Files

If you don't include a jboss.xml-specific deployment descriptor with your bean, JBoss will take the following actions at
deployment time. It will:

Bind the Ship bean in the public JNDI tree under /ShipEJB (which is the name given to the bean in its associated
ejb-jar.xml deployment descriptor).

Link the jdbc/titanDB data source expected by the bean to java:/DefaultDS, which is a default data source that
represents the embedded database.

Unless you require different settings, you don't need to provide a jboss.xml file. While this shortcut is generally useful
for quick prototyping, it will not satisfy more complex deployment situations. Furthermore, using a JBoss-specific
deployment descriptor enables you to fine-tune a container for a particular situation.

If you take a look at the $JBOSS_HOME/server/default/conf/standardjboss.xml file, you will find all the default
container settings that are predefined in JBoss (standard BMP, standard CMP, clustered BMP, and so on). In JBoss,
there's a one-to-one mapping between a bean and a container, and each container can be configured independently.

This mapping was a design decision made by the JBoss container developers and has not
been dictated by the EJB specification: other application servers may use another
mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mapping.

When you write a JBoss-specific deployment descriptor, you have three options:

Don't specify any container configuration. JBoss will use the default configuration found in standardjboss.xml.

Create a brand new container configuration. The default settings are not used at all. JBoss will configure the
container only as you specify in jboss.xml.

Modify an existing configuration. JBoss loads the default settings from the existing configuration found in
standardjboss.xml and overrides them with the settings you specify in the jboss.xml deployment descriptor.
This solution allows you to make minor modifications to the default container with minimal writing in your
deployment descriptor.

The Ship bean uses the last option in order to test its behavior with different commit options. As outlined below, this
new configuration defines only a single setting (<commit-option>). All others are inherited from the Standard BMP
EntityBean configuration declared in the standardjboss.xml file. We'll discuss commit options in a dedicated section at the
end of this chapter.

27.1.4.1 jboss.xml

<?xml version="1.0"?>

<!DOCTYPE jboss PUBLIC

 "-//JBoss//DTD JBOSS 4.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>

...

<container-configurations>

 <container-configuration>

 <container-name>Standard BMP EntityBean</container-name>

 <commit-option>A</commit-option>

 </container-configuration>

</container-configurations>

...

Because a single deployment descriptor may define multiple EJBs, the role of the <ejb-name> tag is to link the
definitions from the ejb-jar.xml and jboss.xml files. You can consider this tag to be the bean's identifier. The <jndi-
name> tag determines the name under which the client applications will be able to look up the EJB's home interface, in
this case ShipHomeRemote.

You can also see how the bean refers to a specific configuration, thanks to the <configuration-name> tag.

...

 <enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 <jndi-name>ShipHomeRemote</jndi-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <jndi-name>ShipHomeRemote</jndi-name>

 <configuration-name>Standard BMP EntityBean

 </configuration-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

 </entity>

 </enterprise-beans>

</jboss>

The Ship bean BMP implementation needs to establish a database connection explicitly. It's the getConnection() method
that manages the acquisition of this resource.

27.1.4.2 ShipBean.java

private Connection getConnection () throws SQLException

{

 try

 {

 Context jndiCntx = new InitialContext ();

 DataSource ds =

 (DataSource)jndiCntx.lookup ("java:comp/env/jdbc/titanDB");

 return ds.getConnection ();

 ...

The bean expects to find a data source bound to the java:comp/env/jdbc/titanDB JNDI name. That's why the ejb-jar.xml
file contains the following declaration.

27.1.4.3 ejb-jar.xml

...

<resource-ref>

 <description>DataSource for the Titan DB</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

...

Then jboss.xml maps the jdbc/titanDB data source name to the actual name defined in JBoss.

27.1.4.4 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.4.4 jboss.xml

...

<resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

</resource-ref>

...

In any default JBoss installation, java:/DefaultDS represents the embedded database.

27.1.5 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex9_1 directory created by the extraction process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex9_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex9_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex9_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

27.1.6 Examine the Client Application

In the Section 27.1.2 section earlier in this chapter, you saw how the bean implements the home methods that create
and drop the table in the database. Now you'll see how the client application calls these home methods.

27.1.6.1 Client_91.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.6.1 Client_91.java

public class Client_91

{

 public static void main (String [] args)

 {

 try

 {

 Context jndiContext = getInitialContext ();

 Object ref = jndiContext.lookup ("ShipHomeRemote");

 ShipHomeRemote home = (ShipHomeRemote)

 PortableRemoteObject.narrow (ref,ShipHomeRemote.class);

 // We check if we have to build the database schema...

 //

 if ((args.length > 0) &&

 args[0].equalsIgnoreCase ("CreateDB"))

 {

 System.out.println ("Creating database table...");

 home.makeDbTable ();

 }

 // ... or if we have to drop it...

 //

 else if ((args.length > 0) &&

 args[0].equalsIgnoreCase ("DropDB"))

 {

 System.out.println ("Dropping database table...");

 home.deleteDbTable ();

 }

 else

 ...

Depending on the first argument found on the command line (CreateDB or DropDB), the client application calls the
corresponding home method.

If nothing is specified on the command line, the client will test our BMP bean:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If nothing is specified on the command line, the client will test our BMP bean:

...

else

{

 // ... standard behavior

 //

 System.out.println ("Creating Ship 101..");

 ShipRemote ship1 = home.create (new Integer

 (101),"Edmund Fitzgerald");

 ship1.setTonnage (50000.0);

 ship1.setCapacity (300);

 Integer pk = new Integer (101);

 System.out.println ("Finding Ship 101 again..");

 ShipRemote ship2 = home.findByPrimaryKey (pk);

 System.out.println (ship2.getName ());

 System.out.println (ship2.getTonnage ());

 System.out.println (ship2.getCapacity ());

 System.out.println ("ship1.equals (ship2) == " +

 ship1.equals (ship2));

 System.out.println ("Removing Ship 101..");

 ship2.remove ();

}

...

The client application first creates a new Ship and calls some of its remote methods to set its tonnage and capacity.
Then it finds the bean again by calling findByPrimaryKey() and compares the bean references for equality. Because they
represent the same bean instance, they must be equal. We've omitted the exception handling because it deserves no
specific comments.

27.1.7 Run the Client Application

Testing the BMP bean is a three-step process that involves:

1. Creating the database table

2. Testing the bean (possibly many times)

3. Dropping the database table

For each of these steps, a different Ant target is available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.7.1 Creating the database table

To create the table, use the createdb_91 Ant target:

C:\workbook\ex9_1>ant createdb_91

Buildfile: build.xml

prepare:

compile:

createdb_91:

 [java] Creating database table...

On the JBoss side, the BMP bean displays the following lines:

...

12:31:42,584 INFO [STDOUT] Creating table SHIP...

12:31:42,584 INFO [STDOUT] ...done!

...

Once this step has been performed, the actual testing of the BMP bean can take place.

If you're having trouble creating the database, shut down JBoss, then run the Ant build
target clean.db. This removes all database files and allows you to start fresh.

27.1.7.2 Testing the BMP bean

To test the BMP bean, use the run.client_91 Ant target:

C:\workbook\ex9_1>ant run.client_91

Buildfile: build.xml

prepare:

compile:

run.client_101:

 [java] Creating Ship 101..

 [java] Finding Ship 101 again..

 [java] Edmund Fitzgerald

 [java] 50000.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] 50000.0

 [java] 300

 [java] ship1.equals (ship2) == true

 [java] Removing Ship 101..

27.1.7.3 Analyzing the effects of transactions and commit options

Even though it's not particularly related to BMP beans, let's focus on an interesting problem that arises when the client
first creates and initializes the bean:

ShipRemote ship1 = home.create (new Integer

 (101),"Edmund Fitzgerald");

ship1.setTonnage (50000.0);

ship1.setCapacity (300);

This piece of code generates three different transactions on the server side. The client does not implicitly start any
transaction in its code. The transaction starts only when the invocation enters the bean container and commits when
the invocation leaves the container. Thus, when the client performs three calls, each one is executed in its own
transactional context.

Look at the implications for the BMP bean:

14:36:31,730 INFO [STDOUT] ejbCreate() pk=101 name=Edmund Fitzgerald

14:36:31,780 INFO [STDOUT] ejbStore() pk=101

14:36:31,840 INFO [STDOUT] setTonnage()

14:36:31,840 INFO [STDOUT] ejbStore() pk=101

14:36:31,860 INFO [STDOUT] setCapacity()

14:36:31,860 INFO [STDOUT] ejbStore() pk=101

As you can see, ejbStore() is called at the end of each transaction! Consequently, these three lines of code cause the
bean to be stored three times. Worst of all, after any method invocation, the container has no way of knowing whether
the state of the bean has been modified, and thus, to be on the safe side, it triggers storage of the bean. Given that
there is no read-only method concept in EJBs, calls to get methods also trigger calls to ejbStore():

15:03:19,301 INFO [STDOUT] getName()

15:03:19,311 INFO [STDOUT] ejbStore() pk=101

15:03:19,331 INFO [STDOUT] getTonnage()

15:03:19,331 INFO [STDOUT] ejbStore() pk=101

15:03:19,371 INFO [STDOUT] getCapacity()

15:03:19,371 INFO [STDOUT] ejbStore() pk=101

In the execution of the test program, ejbStore() is called seven times.

You can see that transaction boundaries (i.e., where transactions are started and stopped) directly influence the
number of callbacks from the container to the Ship bean, and consequently have a direct effect on performance. We'll
now focus on another setting that also affects the set of callback methods the container will invoke on the bean: the
commit option. The commit option determines how an entity bean container can make use of its cache. Remember from
the container configuration section that the bean is currently using commit option A. Let's examine all the options and
their effects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their effects.

If you select commit option A, the entity bean container is allowed to cache any bean that it has loaded. Next time an
invocation targets a bean that is already in the application server cache,[1] the container will not have to make a costly
database access call to load it again.

[1] We are speaking about the application server cache, not the database cache. While database caches are critical
to performance, application server caches can improve it even further.

If you select commit option B or C, the entity bean container is allowed to cache a bean only if it loads that bean during
the lifetime of the currently running transaction. Once the transaction commits or rolls back, the container must remove
the bean from the cache. The next time an invocation targets the bean, the container will have to reload it from the
database.

That extra reloading is costly—but you must use B or C[2] whenever the data represented by the container can also be
modified by other means. Direct database access calls through a console, for example, will cause the container cache to
become unsychronized with the database, leading to incorrect computations and other dire results. A container must
not use commit option A unless it "owns" the database (or, more accurately, the specific tables it accesses).

[2] The difference between commit option B and C is very small: when a transaction commits, a container using
commit option C must effectively throw away the bean instance while a container using commit option B may keep
it and reuse it later. This distinction allows commit option B to be used for very specific container optimizations
(such as checking whether the data has really been modified in the database and reusing the instance if no
modification has occurred, instead of reloading the whole state).

Most of the time, this "black or white" approach isn't satisfactory: in real-world applications, commit option A can be
used only very rarely, and commit options B and C will preclude useful cache optimizations. To circumvent these
limitations, JBoss provides some proprietary optimizations: an additional commit option, distributed cache invalidations,
and even a distributed transactional cache with various locking policies (JBossCache). See the JBoss web site for more
information.

The JBoss-proprietary commit option D is a compromise between options A and C: The bean instance can be cached
across transactions, but a configurable timeout value indicates when this cached data is stale and must be reloaded
from the database. This option is very useful when you want some of the efficiency of commit option A, but want
cached entities to be updated periodically to reflect modifications by an external system.

Remember that each EJB deployed in JBoss has its own container. Consequently, for each
EJB, you can define the commit option that best fits its specific environment. For example,
a Zip code entity bean (with data that will most probably never change) could use commit
option A, whereas the Order EJB would use commit option C.

After this introduction to commit options, it becomes possible to guess that the container is currently using commit
option A without looking at its configuration. Two pieces of evidence lead us to this conclusion:

The findByPrimaryKey() call isn't displayed in the log. The container first checks whether the cache already
contains an instance for the given primary key. Because it does, there is no need to invoke the bean
implementation's ejbFindByPrimaryKey() method.

ejbLoad() isn't called for the bean. At the start of each new transaction, it's already in cache and there is no
need to reload it from the database.

Note that only direct access to a given bean (using its remote reference) or
findByPrimaryKey() calls can be resolved in cache. All other queries (findAll(), findByCapacity(
), and so on) must be resolved by the database directly (there is no way to perform
queries in the container cache directly).

To see how different commit options lead to different behavior, change the commit option in jboss.xml from A to C:

27.1.7.4 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27.1.7.4 jboss.xml

 ...

 <container-configurations>

 <container-configuration>

 <container-name>Standard BMP EntityBean</container-name>

 <commit-option>C</commit-option>

 </container-configuration>

 </container-configurations>

 ...

Run the tests again. You'll see:

14:41:29,798 INFO [STDOUT] ejbCreate() pk=101 name=Edmund Fitzgerald

14:41:30,449 INFO [STDOUT] ejbStore() pk=101

14:41:30,539 INFO [STDOUT] ejbLoad() pk=101

14:41:30,599 INFO [STDOUT] setTonnage()

14:41:30,609 INFO [STDOUT] ejbStore() pk=101

14:41:30,659 INFO [STDOUT] ejbLoad() pk=101

14:41:30,669 INFO [STDOUT] setCapacity()

14:41:30,679 INFO [STDOUT] ejbStore() pk=101

14:41:30,709 INFO [STDOUT] ejbFindByPrimaryKey() primaryKey=101

14:41:30,729 INFO [STDOUT] ejbLoad() pk=101

14:41:30,750 INFO [STDOUT] getName()

14:41:30,750 INFO [STDOUT] ejbStore() pk=101

14:41:30,780 INFO [STDOUT] ejbLoad() pk=101

14:41:30,790 INFO [STDOUT] getTonnage()

14:41:30,800 INFO [STDOUT] ejbStore() pk=101

14:41:30,840 INFO [STDOUT] ejbLoad() pk=101

14:41:30,850 INFO [STDOUT] getCapacity()

14:41:30,860 INFO [STDOUT] ejbStore() pk=101

14:41:30,880 INFO [STDOUT] ejbLoad() pk=101

14:41:30,900 INFO [STDOUT] ejbStore() pk=101

14:41:30,910 INFO [STDOUT] ejbRemove() pk=101

Now, in addition to the ejbStore() calls you've already seen, you see calls to ejbLoad() at the start of each new
transaction, and the call to ejbFindByPrimaryKey() as well, which reaches the bean implementation because it cannot be
resolved within the cache.

27.1.7.5 Possible optimizations

As you have seen during the execution of the client application, the Ship bean performs many ejbLoad() and ejbStore()
operations. There are two reasons behind this behavior:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operations. There are two reasons behind this behavior:

Many transactions are started.

The Ship bean BMP code is not optimized.

You can reduce the number of transactions in several ways:

Define less fine-grained methods that return all attributes of the bean in a single data object.

Add a new create method with many parameters, so a single call can create and initialize the bean.

Use the Façade pattern: create a stateless session bean that starts a single transaction, then performs all the
steps in that one transaction.

Start a transaction in the client application, using a UserTransaction object.

BMP code optimization is a wide topic. Here are some tricks that are frequently used:

Use an isModified flag in your bean. Set it to true each time the state of the bean changes (in set methods, for
example). In the implementation of ejbStore(), perform the actual database call only if isModified is true. Think
about the impact on the test application. All the ejbStore() calls resulting from invocations to get methods will
detect that no data has been modified and will not try to synchronize with the database.

Detect which fields are actually modified during a transaction and update only those particular fields in the
database. This tactic is especially useful for beans with lots of fields or with fields that contain large amounts of
data. Contrast with the Ship BMP bean as it's currently written, where each setXXX() call updates all fields of the
database even though only one actually changes.

Note that any decent CMP engine performs many of these optimizations by default.

27.1.7.6 Dropping the database table

Once you've run all the tests, clean the database environment associated with the BMP bean by removing the unused
table. Use the dropdb_91 target:

C:\workbook\ex9_1>ant dropdb_91

Buildfile: build.xml

prepare:

compile:

dropdb_101:

 [java] Dropping database table...

On the JBoss side, the BMP bean logs the following lines:

...

14:40:34,339 INFO [STDOUT] Dropping table SHIP...

14:40:34,349 INFO [STDOUT] ...done!

...

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 27. Exercises for Chapter 9
Section 27.1. Exercise 9.1: A BMP Entity Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

28.1 Exercise 11.1: A Stateless Session Bean
In this exercise, you will build and examine a stateless session bean, ProcessPaymentEJB, which writes payment
information to the database. You will also build a client application to test this ProcessPayment bean.

The bean inserts the payment information data directly into the database, without using an intermediary entity bean.

28.1.1 Examine the EJB

This example is based on the Customer and Address EJBs and their related data objects that you used in Exercise 6.3.
The present exercise leaves these EJBs unchanged, and focuses on the ProcessPayment stateless session bean.

The ProcessPayment bean has a very simple remote interface. It offers options to process a payment by check, cash, or
credit card. Each possibility is handled by a different method.

28.1.1.1 ProcessPaymentRemote.java

public interface ProcessPaymentRemote extends javax.ejb.EJBObject

{

 public boolean byCheck (CustomerRemote customer,

 CheckDO check,

 double amount)

 throws RemoteException, PaymentException;

 public boolean byCash (CustomerRemote customer,

 double amount)

 throws RemoteException, PaymentException;

 public boolean byCredit (CustomerRemote customer,

 CreditCardDO card,

 double amount)

 throws RemoteException, PaymentException;

 ...

}

Each method's third parameter is a simple transaction amount. The other two are more interesting.

The first is a CustomerRemote interface, which enables the ProcessPayment EJB to get any information it needs about the
customer.

It's possible to use EJB remote interfaces as parameters of other EJB methods because
they extend EJBObject, which in turn extends java.rmi.Remote. Objects implementing either
Remote or Serializable are perfectly valid RMI types. This choice of parameter type makes no
difference at all to the EJB container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second parameter conveys the details of the transaction in a data object with a type that reflects the form of
payment. A data object is a Serializable object that a client and a remote server can pass by value back and forth. Most
of the time it is a simple data container, with minimal behavior. For example, the CheckDO class contains the check's
number and bar code.

28.1.1.2 CheckDO.java

public class CheckDO implements java.io.Serializable

{

 public String checkBarCode;

 public int checkNumber;

 public CheckDO (String barCode, int number)

 {

 this.checkBarCode = barCode;

 this.checkNumber = number;

 }

Focus on the ProcessPayment EJB implementation for a little while. Each remote method first performs validity tests
appropriate to the type of payment. Eventually all of them call the same private method: process(), which inserts the
payment information into the database. For example, byCredit() implements this logic as shown.

28.1.1.3 ProcessPaymentBean.java

public boolean byCredit (CustomerRemote customer,

 CreditCardDO card,

 double amount)

throws PaymentException

{

 if (card.expiration.before (new java.util.Date ()))

 {

 throw new PaymentException ("Expiration date has passed");

 }

 else

 {

 return

 process (getCustomerID (customer),

 amount,

 CREDIT,

 null,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 null,

 -1,

 card.number,

 new java.sql.Date (card.expiration.getTime ()));

 }

}

If the credit card has expired, the method throws an application exception. If not, it simply delegates the chore of
inserting the payment information into the database to process(). Note that some parameters passed to process() are
meaningless. For example, the fourth parameter represents the check bar code, which means nothing in a credit card
payment, so byCredit() passes a dummy value.

The process() method is very similar to the ejbCreate() method of the BMP example in Chapter 10. It simply gets a data-
source connection, creates a PreparedStatement, and inserts the payment information into the PAYMENT table:

 ...

 con = getConnection ();

 ps = con.prepareStatement

 ("INSERT INTO payment (customer_id, amount, " +

 "type, check_bar_code, " +

 "check_number, credit_number, " +

 "credit_exp_date) "+

 "VALUES (?,?,?,?,?,?,?)");

 ps.setInt (1,customerID.intValue ());

 ps.setDouble (2,amount);

 ps.setString (3,type);

 ps.setString (4,checkBarCode);

 ps.setInt (5,checkNumber);

 ps.setString (6,creditNumber);

 ps.setDate (7,creditExpDate);

 int retVal = ps.executeUpdate ();

 if (retVal!=1)

 {

 throw new EJBException ("Payment insert failed");

 }

 return true;

 ...

Note that the returned value is not significant. The method either returns true or throws an application exception, so its
return type could as easily be void.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28.1.2 Examine the EJB Standard Deployment Descriptor

The ProcessPayment standard deployment descriptor is very similar to one you've already seen.

28.1.2.1 ejb-jar.xml

...

<session>

 <description>

 A service that handles monetary payments

 </description>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <home>com.titan.processpayment.ProcessPaymentHomeRemote</home>

 <remote>com.titan.processpayment.ProcessPaymentRemote</remote>

 <ejb-class>com.titan.processpayment.ProcessPaymentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <env-entry>

 <env-entry-name>minCheckNumber</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>2000</env-entry-value>

 </env-entry>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</session>

...

Note that the ProcessPaymentEJB's <session-type> tag is set to Stateless and its <transaction-type> tag is set to Container.
These settings ensure that the container will automatically manage the transactions and enlist any transactional
resources the bean uses. Chapter 16 of the EJB section of this book explains how these tasks can be handled by the EJB
itself (if it's a session bean or a message-driven bean).

The descriptor contains a reference to a data source it will use to store the payments. You use this data source the
same way you did in the BMP example in Chapter 10.

28.1.2.2 ProcessPaymentBean.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28.1.2.2 ProcessPaymentBean.java

private Connection getConnection () throws SQLException

{

 try

 {

 InitialContext jndiCntx = new InitialContext ();

 DataSource ds = (DataSource)

 jndiCntx.lookup ("java:comp/env/jdbc/titanDB");

 return ds.getConnection ();

 }

 catch(NamingException ne)

 {

 throw new EJBException (ne);

 }

}

The ejb-jar.xml file also specifies an environment property, minCheckNumber. Environment properties provide a very
flexible way to parameterize a bean's behavior at deployment time. The <env-entry> tag for minCheckNumber specifies
the property's type (java.lang.Integer) and a default value (2000). The ProcessPayment EJB accesses the value of this
property through its JNDI ENC.

28.1.2.3 ProcessPaymentBean.java

...

InitialContext jndiCntx = new InitialContext ();

Integer value = (Integer) jndiCntx.lookup

 ("java:comp/env/minCheckNumber");

...

One very interesting point to note is that although the ProcessPayment bean works with Customer beans (recall that
each remote method's first parameter is a Customer interface), the deployment descriptor doesn't declare any
reference to the Customer EJB. No <ejb-ref> or <ejb-local-ref> tag is needed because the ProcessPayment bean won't
find or create Customer beans through the CustomerRemoteHome interface, but instead receives Customer beans directly
from the client application. Thus, from the ProcessPayment EJB's point of view, the Customer is a standard remote Java
object.

28.1.3 Examine the JBoss Deployment Descriptors

The JBoss-specific deployment descriptor for the ProcessPayment bean is very simple. It only maps the data source to
the embedded database in Jboss.

28.1.3.1 jboss.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28.1.3.1 jboss.xml

<session>

 <ejb-name>ProcessPaymentEJB</ejb-name>

 <jndi-name>ProcessPaymentHomeRemote</jndi-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

</session>

The <res-ref-name> in jboss.xml maps to the same <res-ref-name> in ejb-jar.xml.

28.1.4 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

28.1.5 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex11_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex11_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex11_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex11_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

28.1.6 Initialize the Database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As in previous examples, you'll use the relational database that's embedded in JBoss to store payment information.
Because the deployment descriptor of a stateless session bean does not contain any information about the database
schema that the bean needs, JBoss can't automatically create the database table, as it does for CMP beans. Instead,
you will have to create the database schema for the PAYMENT table manually through JDBC. Use the createdb Ant target:

C:\workbook\ex11_1>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:

 [java] Looking up home interfaces...

 [java] Creating database table...

On the JBoss console, you'll see:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build target clean.db. This removes all
database files and allow you to start fresh.

A dropdb Ant target has been added as well, if you want to destroy the PAYMENT table:

C:\workbook\ex11_1>ant dropdb

Buildfile: build.xml

prepare:

compile:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

BUILD SUCCESSFUL

To implement the createdb and dropdb Ant targets, the JBoss version of the ProcessPayment bean introduced in the EJB
book defines two new methods: makeDbTable() and dropDbTable().

Here's a partial view of the ProcessPayment EJB's remote interface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's a partial view of the ProcessPayment EJB's remote interface:

public interface ProcessPaymentRemote extends javax.ejb.EJBObject

{

 public void makeDbTable () throws RemoteException;

 public void deleteDbTable () throws RemoteException;

}

It defines two home methods: the first creates the table needed by the ProcessPayment EJB in the JBoss embedded
database, and the second drops it.

The implementation of makeDbTable() is essentially a CREATE TABLE SQL statement:

public void makeDbTable ()

{

 PreparedStatement ps = null;

 Connection con = null;

 try

 {

 con = this.getConnection ();

 System.out.println("Creating table PAYMENT...");

 ps = con.prepareStatement

 ("CREATE TABLE PAYMENT (" + "CUSTOMER_ID INT, " +

 "AMOUNT DECIMAL (8,2), " + "TYPE CHAR (10), " +

 "CHECK_BAR_CODE CHAR (50), " + "CHECK_NUMBER INTEGER, " +

 "CREDIT_NUMBER CHAR (20), " + "CREDIT_EXP_DATE DATE" +

 ")");

 ps.execute ();

 System.out.println("...done!");

 }

 catch (SQLException sql)

 {

 throw new EJBException (sql);

 }

 finally

 {

 try { ps.close (); } catch (Exception e) {}

 try { con.close (); } catch (Exception e) {}

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The deleteDbTable() home method differs only in the SQL statement it executes:

public void dropDbTable ()

{

 ...

 System.out.println("Dropping table PAYMENT...");

 ps = con.prepareStatement ("DROP TABLE PAYMENT");

 ps.execute ();

 System.out.println("...done!");

 ...

}

28.1.7 Examine the Client Applications

This exercise includes two example clients. The first simply prepares and creates a single Customer bean, which the
second uses to insert data into the PAYMENT table.

28.1.7.1 Client_111a

Run the first application by invoking the run.client_111a Ant target:

C:\workbook\ex11_1>ant run.client_111a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_111a:

 [java] Creating Customer 1..

 [java] Creating AddressDO data object..

 [java] Setting Address in Customer 1...

 [java] Acquiring Address data object from Customer 1...

 [java] Customer 1 Address data:

 [java] 1010 Colorado

 [java] Austin,TX 78701

28.1.7.2 Client_111b

The code of the client application that actually tests the PaymentProcess EJB is much more interesting. First, it acquires
a reference to the remote home of the ProcessPayment EJB from a newly created JNDI context:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a reference to the remote home of the ProcessPayment EJB from a newly created JNDI context:

Context jndiContext = getInitialContext ();

System.out.println ("Looking up home interfaces..");

Object ref = jndiContext.lookup ("ProcessPaymentHomeRemote");

ProcessPaymentHomeRemote procpayhome = (ProcessPaymentHomeRemote)

PortableRemoteObject.narrow (ref,ProcessPaymentHomeRemote.class);

This home makes it possible to create a remote reference to the stateless session bean:

ProcessPaymentRemote procpay = procpayhome.create ();

Then the client acquires a remote home reference for the Customer EJB and uses it to find the Customer bean created
in the preceding example:

ref = jndiContext.lookup ("CustomerHomeRemote");

CustomerHomeRemote custhome = (CustomerHomeRemote)

PortableRemoteObject.narrow (ref,CustomerHomeRemote.class);

CustomerRemote cust = custhome.findByPrimaryKey (new Integer (1));

The ProcessPayment EJB can now be tested by executing payments of all three kinds: cash, check, and credit card.

System.out.println ("Making a payment using byCash()..");

procpay.byCash (cust,1000.0);

System.out.println ("Making a payment using byCheck()..");

CheckDO check = new CheckDO ("010010101101010100011", 3001);

procpay.byCheck (cust,check,2000.0);

System.out.println ("Making a payment using byCredit()..");

Calendar expdate = Calendar.getInstance ();

expdate.set (2005,1,28); // month=1 is February

CreditCardDO credit = new CreditCardDO ("370000000000002",

 expdate.getTime (),

 "AMERICAN_EXPRESS");

procpay.byCredit (cust,credit,3000.0);

Finally, to check the validation logic, the client tries to execute a payment with a check whose number is too low. The
ProcessPayment EJB should refuse the payment and raise an application exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProcessPayment EJB should refuse the payment and raise an application exception.

System.out.println ("Making a payment using byCheck() with a low

 check number..");

CheckDO check2 = new CheckDO ("111000100111010110101", 1001);

try

{

 procpay.byCheck (cust,check2,9000.0);

 System.out.println("Problem! The PaymentException has

 not been raised!"); }

catch (PaymentException pe)

{

 System.out.println ("Caught PaymentException: "+

 pe.getMessage ());

}

procpay.remove ();

You can launch this test by invoking the run.client_111b Ant target:

C:\workbook\ex11_1>ant run.client_111b

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_111b:

 [java] Looking up home interfaces..

 [java] Making a payment using byCash()..

 [java] Making a payment using byCheck()..

 [java] Making a payment using byCredit()..

 [java] Making a payment using byCheck() with a low check number..

 [java] Caught PaymentException: Check number is too low. Must be at least 2000

At the same time, the JBoss console will display:

INFO [STDOUT] process() with customerID=1 amount=1000.0

INFO [STDOUT] process() with customerID=1 amount=2000.0

INFO [STDOUT] process() with customerID=1 amount=3000.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INFO [STDOUT] process() with customerID=1 amount=3000.0

Once you've performed the tests, you can drop the table by invoking the dropdb Ant target:

C:\workbook\ex11_1>ant dropdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

The JBoss console displays:

INFO [STDOUT] Dropping table PAYMENT...

INFO [STDOUT] ...done!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

28.2 Exercise 11.2: A Stateful Session Bean
In this exercise, you will build and examine a stateful session bean, TravelAgent, which coordinates the work of booking
a trip on a ship. You will also build a client application to test this EJB.

Our version of this exercise does not follow the one in the EJB section strictly. Instead of simplifying the beans and their
relationships as the EJB section does, we use the beans implemented in Chapter 6 and Chapter 7 and thus take
advantage of the CMP 2.0 features of JBoss.

28.2.1 Examine the EJB

This exercise is based on the EJBs from Exercise 7.3 and doesn't contain much material that previous sections haven't
covered. Nevertheless, a few modifications have been made:

The Customer EJB again has a remote home and bean interfaces (as in Chapter 6) and exposes its relationship
with the Address EJB in the remote interface through a new data object, AddressDO.

The Cabin EJB has a new create method that takes several parameters.

The Reservation EJB has a new create method that takes several parameters, and has a local reference to the
Customer EJB.

The TravelAgent bean's role is to perform all activities needed to book a successful trip. Thus, as in the preceding
example, this session bean acts as a coordinator between different EJBs and groups several actions on different beans
in the same transaction. Here, though, the bean maintains a conversational state with the client; i.e., each client has a
dedicated bean on the server.

In the previous example featuring stateless session beans, the home create method was not allowed to have
parameters: providing initialization parameters would be useless, as the bean wouldn't be able to remember them for
forthcoming invocations. A stateful session bean, by contrast, maintains a conversational state, so its create methods
can have parameters to initialize the bean state. Indeed, the home interface can have several create methods. In this
example, however, the TravelAgent home interface declares only one:

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome

{

 public TravelAgentRemote create (CustomerRemote cust)

 throws RemoteException, CreateException;

}

Furthermore, if you take a look at the remote interface, you can see that methods are correlated around an identical
state:

public interface TravelAgentRemote extends javax.ejb.EJBObject

{

 public void setCruiseID (Integer cruise)

 throws RemoteException, FinderException;

 public void setCabinID (Integer cabin)

 throws RemoteException, FinderException;

 public TicketDO bookPassage (CreditCardDO card, double price)

 throws RemoteException, IncompleteConversationalState;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws RemoteException, IncompleteConversationalState;

 public String [] listAvailableCabins (int bedCount)

 throws RemoteException, IncompleteConversationalState;

}

If no conversational state between the client and the server existed, calling setCruiseId() would make no sense. The role
of this method is simply to populate this conversational state so that future calls can use this data in their processing.

Because this exercise is based on the beans implemented in Chapter 6 and Chapter 7, it needs a database schema that
includes all the relationships among them, and thus differs from the one in the EJB book. Because the listAvailableCabins(
) method performs direct SQL calls, it must be rewritten to take this new database schema into account:

...

Integer cruiseID = (Integer)cruise.getPrimaryKey ();

Integer shipID = (Integer)cruise.getShip ().getPrimaryKey ();

con = getConnection ();

ps = con.prepareStatement (

 "select ID, NAME, DECK_LEVEL from CABIN "+

 "where SHIP_ID = ? and BED_COUNT = ? and ID NOT IN "+

 "(SELECT RCL.CABIN_ID FROM RESERVATION_CABIN_LINK AS RCL,"+

 "RESERVATION AS R "+

 "WHERE RCL.RESERVATION_ID = R.ID " +

 "AND R.CRUISE_ID = ?)");

ps.setInt (1,shipID.intValue ());

ps.setInt (2,bedCount);

ps.setInt (3,cruiseID.intValue ());

result = ps.executeQuery ();

...

You may remember that in previous examples we added a method (either home or remote) to the EJB to be able to
initialize the test environment. As you can guess, this example uses the same trick. The TravelAgent EJB remote
interface has been extended with one method:

public interface TravelAgentRemote extends javax.ejb.EJBObject

{

 ...

 // Mechanism for building local beans for example programs.

 //

 public void buildSampleData () throws RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method removes any Customer, Cabin, Ship, Cruise, and Reservation EJBs from the database and recreates a basic
environment. You can follow this initialization step by step. First, the method acquires references to the remote home of
the Customer EJB, and to the local homes of the Cabin, Ship, Cruise, and Reservation EJBs:

public Collection buildSampleData ()

{

 Collection results = new ArrayList ();

 try

 {

 System.out.println ("TravelAgentBean::buildSampleData()");

 Object obj = jndiContext.lookup

 ("java:comp/env/ejb/CustomerHomeRemote");

 CustomerHomeRemote custhome = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow (obj,

 CustomerHomeRemote.class);

 CabinHomeLocal cabinhome =

 (CabinHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/CabinHomeLocal");

 ShipHomeLocal shiphome =

 (ShipHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/ShipHomeLocal");

 CruiseHomeLocal cruisehome =

 (CruiseHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/CruiseHomeLocal");

 ReservationHomeLocal reshome =

 (ReservationHomeLocal)jndiContext.lookup

 ("java:comp/env/ejb/ReservationHomeLocal");

Then any existing bean is deleted from the database:

// we first clean the db by removing any customer, cabin,

// ship, cruise and reservation beans.

//

removeBeansInCollection (custhome.findAll());

results.add ("All customers have been removed");

removeBeansInCollection (cabinhome.findAll());

results.add ("All cabins have been removed");

removeBeansInCollection (shiphome.findAll());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeBeansInCollection (shiphome.findAll());

results.add ("All ships have been removed");

removeBeansInCollection (cruisehome.findAll());

results.add ("All cruises have been removed");

removeBeansInCollection (reshome.findAll());

results.add ("All reservations have been removed");

The removeBeansInCollection() method is a simple one. It iterates through the specified collection and removes each
EJBObject or EJBLocalObject.

Two customers and two ships are created:

// We now set our new basic environment

//

System.out.println ("Creating Customers 1 and 2...");

CustomerRemote customer1 = custhome.create (new Integer (1));

customer1.setName (new Name ("Burke","Bill"));

results.add ("Customer with ID 1 created (Burke Bill)");

CustomerRemote customer2 = custhome.create (new Integer (2));

customer2.setName (new Name ("Labourey","Sacha"));

results.add("Customer with ID 2 created (Labourey Sacha)");

System.out.println ("Creating Ships A and B...");

ShipLocal shipA = shiphome.create (new Integer (101),

 "Nordic Prince", 50000.0);

results.add("Created ship with ID 101...");

ShipLocal shipB = shiphome.create (new Integer (102),

 "Bohemian Rhapsody", 70000.0);

results.add("Created ship with ID 102...");

The buildSampleData() method adds a message to the results collection after each significant step, and ultimately returns
results so the caller knows what's happened on the server. It then creates 10 cabins on each ship:

System.out.println ("Creating Cabins on the Ships...");

ArrayList cabinsA = new ArrayList ();

ArrayList cabinsB = new ArrayList ();

for (int jj=0; jj<10; jj++)

{

 CabinLocal cabinA = cabinhome.create (new Integer

 (100+jj),shipA,"Suite 10"+jj,1,1);

 cabinsA.add(cabinA);

 CabinLocal cabinB = cabinhome.create (new Integer

 (200+jj),shipB,"Suite 20"+jj,2,1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (200+jj),shipB,"Suite 20"+jj,2,1);

 cabinsB.add(cabinB);

}

results.add("Created cabins on Ship A with IDs 100-109");

results.add("Created cabins on Ship B with IDs 200-209");

The method quickly organizes some cruises for each ship:

CruiseLocal cruiseA1 = cruisehome.create ("Alaska Cruise", shipA);

CruiseLocal cruiseA2 = cruisehome.create ("Norwegian Fjords",

 shipA);

CruiseLocal cruiseA3 = cruisehome.create ("Bermuda or Bust", shipA);

results.add("Created cruises on ShipA with IDs

 "+cruiseA1.getId()+", "+cruiseA2.getId()+",

 "+cruiseA3.getId());

CruiseLocal cruiseB1 = cruisehome.create ("Indian Sea

 Cruise", shipB);

CruiseLocal cruiseB2 = cruisehome.create ("Australian Highlights",

 shipB);

CruiseLocal cruiseB3 = cruisehome.create ("Three-Hour Cruise",

 shipB);

results.add ("Created cruises on ShipB with IDs "+

 cruiseB1.getId ()+", "+cruiseB2.getId ()+",

 "+cruiseB3.getId ());

Finally, some reservations are made for these cruises:

 ReservationLocal res =

 reshome.create (customer1, cruiseA1,

 (CabinLocal)(cabinsA.get (3)),

 1000.0, new Date ());

 res = reshome.create (customer1, cruiseB3,

 (CabinLocal)(cabinsB.get (8)),

 2000.0, new Date ());

 res = reshome.create (customer2, cruiseA2,

 (CabinLocal)(cabinsA.get (5)),

 2000.0, new Date ());

 res = reshome.create (customer2, cruiseB3,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 res = reshome.create (customer2, cruiseB3,

 (CabinLocal)(cabinsB.get (2)),

 2000.0, new Date ());

 results.add ("Made reservation for Customer 1 on Cruise "+

 cruiseA1.getId ()+" for Cabin 103");

 results.add ("Made reservation for Customer 1 on Cruise "+

 cruiseB3.getId ()+" for Cabin 208");

 results.add ("Made reservation for Customer 2 on Cruise "+

 cruiseA2.getId ()+" for Cabin 105");

 results.add ("Made reservation for Customer 2 on Cruise "+

 cruiseB3.getId ()+" for Cabin 202");

 }

 ...

 return results;

}

Later, you'll see how to call this method to set up the environment.

28.2.2 Examine the EJB Standard Deployment Descriptor

Most of the ejb-jar.xml file comprises definitions you've seen in previous examples (entity beans, relationships, the
ProcessPayment stateless session bean, etc.). Only two things have been added.

28.2.2.1 ejb-jar.xml

First, the Customer EJB now has both local and remote interfaces:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

<home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <local-home>com.titan.customer.CustomerHomeLocal</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <cmp-field><field-name>hasGoodCredit</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

</entity>

Providing the second interface enables the Customer EJB to serve local clients as well as remote ones. Note that the
remote and local interfaces do not declare the same methods. For example, it's illegal for a remote interface to expose
entity relationships, so they're accessible only via the local interface.

The second addition is the new TravelAgent stateful session bean that is the heart of this exercise:

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>

 ...

As you can see, only the value of the <session-type> tag distinguishes the declaration of a stateful session bean from
that of a stateless bean.

The deployment descriptor then declares all the beans referenced by the TravelAgent EJB:

 ...

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

 <ejb-link>ProcessPaymentEJB</ejb-link>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>

 com.titan.customer.CustomerHomeRemote

 </home>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-link>CustomerEJB</ejb-link>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.CabinHomeLocal

 </local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ShipHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.ShipHomeLocal

 </local-home>

 <local>com.titan.cabin.ShipLocal</local>

 <ejb-link>ShipEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cruise.CruiseHomeLocal

 </local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 <ejb-link>CruiseEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.reservation.ReservationHomeLocal

 </local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 <ejb-link>ReservationEJB</ejb-link>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-link>ReservationEJB</ejb-link>

 </ejb-local-ref>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</session>

28.2.3 Examine the JBoss Deployment Descriptor

The jboss.xml deployment descriptor contains the JNDI name mapping found in the previous examples. The only new
entry is the TravelAgent EJB definition.

28.2.3.1 jboss.xml

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

</session>

This file defines the JNDI name for the TravelAgent, then maps the data source's JNDI ENC name to the embedded
database.

The listAvailableCabins() method uses this mapping to execute SQL statements directly against the database, so it must
know precisely the names of the tables and fields to use in each query. While jbosscmp-jdbc.xml already defines the
field-to-column mapping of all CMP beans, it doesn't define the fields and tables used by relationships between these
beans. If it doesn't have those definitions, JBoss will use arbitrary names for these tables—not good in this case. To
avoid this problem, extend jbosscmp-jdbc.xml, adding definitions that map the relationships into the desired tables and
columns exactly. For this exercise, we mapped only the relationships used in the SQL query: Cabin-Ship, Cabin-
Reservation, and Cruise-Reservation.

28.2.3.2 jbosscmp-jdbc.xml

Cabin-Reservation is a many-to-many relationship:

<ejb-relation>

 <ejb-relation-name>Cabin-Reservation</ejb-relation-name>

 <relation-table-mapping>

 <table-name>RESERVATION_CABIN_LINK</table-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <table-name>RESERVATION_CABIN_LINK</table-name>

 <create-table>true</create-table>

 <remove-table>true</remove-table>

 </relation-table-mapping>

 <ejb-relationship-role>

<ejb-relationship-role-name

 >Cabin-has-many-Reservations<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>CABIN_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 <ejb-relationship-role>

<ejb-relationship-role-name

 >Reservation-has-many-Cabins<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>RESERVATION_ID</column-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <column-name>RESERVATION_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

</ejb-relation>

...

Many-to-many relationships always need an intermediate table. The name of this table is defined in the <table-name>
tag. Then, for each role of the relationship, the <field-name> and <column-name> tags do the mapping between the CMR
field of the bean and the column in the table.

The last two mappings needed are for one-to-many relationships, Cabin-Ship and Cruise-Reservation:

...

<ejb-relation>

 <ejb-relation-name>Cabin-Ship</ejb-relation-name>

 <foreign-key-mapping/>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Ship-has-many-Cabins<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>SHIP_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Cabin-has-a-Ship<

 /ejb-relationship-role-name>

 <key-fields/>

 </ejb-relationship-role>

</ejb-relation>

<ejb-relation>

 <ejb-relation-name>Cruise-Reservation</ejb-relation-name>

 <foreign-key-mapping/>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Cruise-has-many-Reservations<

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 >Cruise-has-many-Reservations<

 /ejb-relationship-role-name>

 <key-fields>

 <key-field>

 <field-name>id</field-name>

 <column-name>CRUISE_ID</column-name>

 </key-field>

 </key-fields>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name

 >Reservation-has-a-Cruise<

 /ejb-relationship-role-name>

 <key-fields/>

 </ejb-relationship-role>

</ejb-relation>

For each relationship identified by an <ejb-relation-name> tag (the name must be the same as the one declared in ejb-
jar.xml), the mapping of the CMR field to a table column is defined by the <field-name> and <column-name> tags.

28.2.4 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

28.2.5 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex11_2 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex11_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex11_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex11_2> set PATH=..\ant\bin;%PATH%

Unix:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

28.2.6 Initialize the Database

Because the exercise uses the ProcessPayment EJB from the previous example, the database must contain the PAYMENT
table. The createdb and dropdb Ant targets, Java code, and clients here have been borrowed from Exercise 11.1.

If you have dropped the PAYMENT table after running the examples in Exercise 11.1, re-create it now by running the
createdb Ant target.

C:\workbook\ex11_2>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:

 [java] Looking up home interfaces..

 [java] Creating database table...

On the JBoss console, you'll see:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build
target clean.db. This removes all database files and allows you to start fresh.

The container manages the persistence of all other entity beans used in this exercise, so it will create the needed tables
for them automatically.

28.2.7 Examine the Client Applications

This exercise includes three example client applications.

28.2.7.1 Client_112a

The first client simply calls the TravelAgent bean's buildSampleData() method. To run this application, invoke the Ant
target run.client_112a:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

target run.client_112a:

C:\workbook\ex11_2>ant run.client_112a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112a:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

Now that you've prepared the environment, you can use the other two client applications. Client_112b allows you to
book a passage, while Client_112c gives you a list of the Cabins for a specific Cruise that have a specified number of
beds.

28.2.7.2 Client_112b

The second client starts by getting remote home interfaces to the TravelAgent and Customer EJBs:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second client starts by getting remote home interfaces to the TravelAgent and Customer EJBs:

public static void main(String [] args) throws Exception

{

 if (args.length != 4)

 {

 System.out.println

 ("Usage: java " +

 "com.titan.clients.Client_122b" +

 "<customerID> <cruiseID> <cabinID> <price>");

 System.exit(-1);

 }

 Integer customerID = new Integer(args[0]);

 Integer cruiseID = new Integer(args[1]);

 Integer cabinID = new Integer(args[2]);

 double price = new Double(args[3]).doubleValue();

 Context jndiContext = getInitialContext();

 Object obj = jndiContext.lookup("TravelAgentHomeRemote");

 TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

 TravelAgentHomeRemote.class);

 obj = jndiContext.lookup("CustomerHomeRemote");

 CustomerHomeRemote custhome = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

 CustomerHomeRemote.class);

With the home references in hand, it can now get a reference to the customer whose ID was given on the command
line. If no customer with this ID exists, an exception is thrown.

 // Find a reference to the Customer for which to book a cruise

 System.out.println("Finding reference to Customer "+customerID);

 CustomerRemote cust = custhome.findByPrimaryKey(customerID);

The application then creates a TravelAgent stateful session bean and gives it, as part of the transactional state, the
reference to the customer, the cruise ID, and the Cabin ID.

 // Start the Stateful session bean

 System.out.println("Starting TravelAgent Session...");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.println("Starting TravelAgent Session...");

 TravelAgentRemote tagent = tahome.create(cust);

 // Set the other bean parameters in agent bean

 System.out.println("Setting Cruise and Cabin information in TravelAgent..");

 tagent.setCruiseID(cruiseID);

 tagent.setCabinID(cabinID);

It can then book the passage, thanks to a dummy credit card:

 // Create a dummy CreditCard for this

 //

 Calendar expdate = Calendar.getInstance();

 expdate.set(2005,1,5);

 CreditCardDO card = new CreditCardDO("370000000000002",

 expdate.getTime(),

 "AMERICAN EXPRESS");

 // Book the passage

 //

 System.out.println("Booking the passage on the Cruise!");

 TicketDO ticket = tagent.bookPassage(card,price);

 System.out.println("Ending TravelAgent Session...");

 tagent.remove();

 System.out.println("Result of bookPassage:");

 System.out.println(ticket.description);

 }

Test this client application by booking Suite 201 for Mr. Bill Burke on the Three-Hour Cruise aboard the "Bohemian
Rhapsody."

Ant doesn't make it particularly easy to pass command-line parameters through to the client. To make this task easier,
use one of the scripts that accept command-line parameters in a more customary fashion, available in the ex11_2
directory.

To book a passage, use the BookPassage.bat (Windows) or the BookPassage script (Unix):

BookPassage.bat <customerID> <cruiseID> <cabinID> <price>

Or

./BookPassage <customerID> <cruiseID> <cabinID> <price>

C:\workbook\ex11_2>BookPassage 1 5 201 2000.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\workbook\ex11_2>BookPassage 1 5 201 2000.0

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112b:

 [java] Finding reference to Customer 1

 [java] Starting TravelAgent Session...

 [java] Setting Cruise and Cabin information in TravelAgent..

 [java] Booking the passage on the Cruise!

 [java] Ending TravelAgent Session...

 [java] Result of bookPassage:

 [java] Bill Burke has been booked for the Three-Hour Cruise cruise on ship Bohemian Rhapsody.

 [java] Your accommodations include Suite 201 a 2 bed cabin on deck level 1.

 [java] Total charge = 2000.0

BUILD SUCCESSFUL

28.2.7.3 Client_112c

The last application gives you a list of available cabins for a specific cruise that have a desired number of beds. First,
the application verifies that it's been given the correct number of command-line arguments and gets a remote home
reference to the TravelAgent EJB:

public static void main(String [] args) throws Exception

{

 if (args.length != 2)

 {

 System.out.println("Usage: java " +

 "com.titan.clients.Client_122c" +

 " <cruiseID> <bedCount>");

 System.exit(-1);

 }

 Integer cruiseID = new Integer(args[0]);

 int bedCount = new Integer(args[1]).intValue();

 Context jndiContext = getInitialContext();

 Object obj = jndiContext.lookup("TravelAgentHomeRemote");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

 TravelAgentHomeRemote.class);

Because the session bean is not really dedicated to a specific instance of Customer, but is instead making an SQL query
in the database, the client creates a TravelAgent bean with a dummy Customer reference, which will never be used.
Then it supplies the Cruise ID:

 // Start the Stateful session bean

 System.out.println("Starting TravelAgent Session...");

 TravelAgentRemote tagent = tahome.create(null);

 // Set the other bean parameters in agent bean

 System.out.println

 ("Setting Cruise information in TravelAgent..");

 tagent.setCruiseID(cruiseID);

Finally, the application asks for a list of all available cabins with a desired number of beds on a particular cruise and
displays the result, if any:

 String[] results = tagent.listAvailableCabins(bedCount);

 System.out.println("Ending TravelAgent Session...");

 tagent.remove();

 System.out.println("Result of listAvailableCabins:");

 for (int kk=0; kk<results.length; kk++)

 {

 System.out.println(results[kk]);

 }

 }

To launch this application, you can use the ListCabins.bat (Windows) or ListCabins (Unix) script:

ListCabins.bat <cruiseID> <bedCount>

Or

./ListCabins <cruiseID> <bedCount>

Ask the system for a list of the two-bed cabins that are available on the Three-Hour Cruise, the one Mr. Bill Burke
chose:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chose:

C:\workbook\ex11_2>ListCabins 5 2

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112c:

 [java] Starting TravelAgent Session...

 [java] Setting Cruise information in TravelAgent..

 [java] Ending TravelAgent Session...

 [java] Result of listAvailableCabins:

 [java] 200,Suite 200,1

 [java] 203,Suite 203,1

 [java] 204,Suite 204,1

 [java] 205,Suite 205,1

 [java] 206,Suite 206,1

 [java] 207,Suite 207,1

 [java] 209,Suite 209,1

BUILD SUCCESSFUL

Suite 201 has two beds but is not shown as available. This omission is correct, because Mr. Bill Burke has booked that
suite.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 28. Exercises for Chapter 11
Section 28.1. Exercise 11.1: A Stateless Session Bean

Section 28.2. Exercise 11.2: A Stateful Session Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

29.1 Exercise 12.1: JMS as a Resource
This exercise is entirely based on the beans implemented in Exercise 11.2. You'll modify the TravelAgent EJB so it
publishes a text message to a JMS topic when it completes a reservation.

You'll learn how to create a new JMS topic in JBoss, and configure your bean to use JMS as a resource. You'll also build
a client application that will subscribe to this topic and display any published message. To complete new reservations,
you'll use one of the client applications created for the preceding example.

29.1.1 Start Up JBoss

If JBoss is already running there is no reason to restart it.

29.1.2 Initialize the Database

Because the exercise uses the ProcessPayment EJB used in recent exercises, the database must contain the PAYMENT
table. The createdb and dropdb Ant targets, Java code, and clients here have been borrowed from Exercise 11.1.

If you haven't already dropped the PAYMENT table after running the examples in Exercise 11.2, do so now by running
the dropdb Ant target.

C:\workbook\ex12_1>ant dropdb

Buildfile: build.xml

prepare:

compile:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

BUILD SUCCESSFUL

Then re-create the PAYMENT database table by running the createdb Ant target

C:\workbook\ex12_1>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

createdb:

 [java] Looking up home interfaces..

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] Looking up home interfaces..

 [java] Creating database table...

On the JBoss console, the following lines are displayed:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build
target clean.db. This will remove all database files and allow you to start fresh.

The persistence of all other entity beans used in this exercise is managed by the container (CMP), so JBoss will create
the needed tables for them automatically.

29.1.3 Create a New JMS Topic

Because the TravelAgent EJB will publish messages in a JMS topic, you'll have to create this new topic in JBoss. This
exercise walks you through two different ways to create a new JMS topic: through an XML configuration file and through
the JBoss JMX HTTP connector.

29.1.3.1 Adding a JMS Topic through a configuration file

The most common way to set up a JMS topic is to use an XML configuration file. As you learned in the installation
chapter, every component in JBoss is a JMX MBean that can be hot-deployed. This part of the exercise shows you how
to write a JMX MBean definition for a new JMS topic.

You can find the JMX configuration file in the ex12_1/src/resources/services directory.

29.1.3.2 jbossmq-titantopic-service.xml

<server>

 <mbean code="org.jboss.mq.server.jmx.Topic"

 name="jboss.mq.destination:service=Topic,

 name=titan-TicketTopic">

 <depends optional-attribute-name="DestinationManager"

 >jboss.mq:service=DestinationManager</depends>

 </mbean>

</server>

Each set of MBeans in a JMX configuration file must be defined within a <server> tag. An MBean itself is declared in an
<mbean> tag. The only MBean declaration in this file defines the actual JMS topic you'll use for the example code in this
chapter. Each MBean is uniquely identified by its name, called an ObjectName. JMX ObjectNames can include any
number of key-value parameters to describe the MBean further. In our case, the MBean class representing the JMS
topic is declared first (org.jboss.mq.server.jmx.Topic), along with its JMX ObjectName (jboss.mq.destination:service=Topic,
name=titan-TicketTopic). For JMS topic MBeans, a single parameter is useful: name. This is where the name of the JMS
topic is defined (titan-TicketTopic).

One thing to note is that the application server must deploy the DestinationManager MBean before any queue or topic is
deployed. This dependency is declared in jbossmq-titantopic-service.xml's depends tag. JBoss will take care of satisfying
this dependency and make sure the titan-TicketTopic isn't started until the DestinationManager MBean has finished

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this dependency and make sure the titan-TicketTopic isn't started until the DestinationManager MBean has finished
initializing and is ready to provide services to new queues and topics. Copying this file into the JBoss deploy directory
will hot-deploy the JMS topic and make it ready for use.

We've defined a make-topic Ant target for deploying the topic bean. Run this target to copy jbossmq-titantopic-
service.xml into JBoss's deploy directory:

C:\workbook\ex12_1>ant make-topic

Buildfile: build.xml

make-topic:

 [copy] Copying 1 file to C:\jboss-4.0\server\default\deploy

On the server side, the following line is displayed:

[titan-TicketTopic] Bound to JNDI name: topic/titan-TicketTopic

29.1.3.3 Adding a JMS Topic through the JMX HTTP connector

An XML configuration file is the preferred means to deploy a JMS topic permanently, but for quick tests and such an
alternative approach that uses JBoss's JMX HTTP connector and the DestinationManager is sometimes better, because the
topic lives in JBoss only until the application server is shut down. First open your browser and go to
http://localhost:8080/jmx-console/, where you can browse through all deployed JBoss JMX MBeans. Scroll down to the
jboss.mq section and find in it the MBean service DestinationManager (Figure 29-1).

Figure 29-1. Finding the DestinationManager

Click on the service=DestinationManager link and you get a list of the MBean's attributes and operations. One of the
operations, createTopic(), allows you to create a new JMS topic (Figure 29-2).

Figure 29-2. Naming a new JMS topic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-2. Naming a new JMS topic

Type the name of the new JMS topic in the text area, and click on the Invoke button associated with the createTopic()
operation. The Destination Manager will create the JMS topic and display a status message (Figure 29-3).

Figure 29-3. Confirming topic creation

To see your new JMS topic MBean, go back to the home page of the JMX HTTP connector and search for the
jboss.mq.destination domain. You should be able to see your new topic MBean (Figure 29-4).

Figure 29-4. Finding the new topic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that you can use the JMX HTTP connector to see the status of your topics and queues even if you create then in an
XML configuration file.

29.1.4 Examine the EJB Standard Files

The ejb-jar.xml deployment descriptor is equivalent to the one for Exercise 11.2 except for the TravelAgent EJB. The
definition for this bean has been extended to reference the JMS topics you just created.

29.1.4.1 ejb-jar.xml

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>

 ...

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <res-type>javax.jms.TopicConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

 </resource-env-ref>

</session>

A reference to a TopicConnectionFactory is declared in the same way as a reference to a DataSource. The definition contains
the name of the resource (jms/TopicFactory), the class of the resource (javax.jms.TopicConnectionFactory), and whether the
container or the bean performs the authentication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container or the bean performs the authentication.

29.1.5 Examine the JBoss-Specific Files

The TravelAgentEJB definition in jboss.xml must be modified as well, to describe the JMS topic references declared in
ejb-jar.xml.

29.1.5.1 jboss.xml

...

<session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <jndi-name>TravelAgentHomeRemote</jndi-name>

 <resource-ref>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>java:/DefaultDS</jndi-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jms/TopicFactory</res-ref-name>

 <jndi-name>java:/JmsXA</jndi-name>

 </resource-ref>

 <resource-env-ref>

 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>

 <jndi-name>topic/titan-TicketTopic</jndi-name>

 </resource-env-ref>

</session>

...

The <resource-ref> entry from ejb-jar.xml is mapped in the jboss.xml file to the JNDI name java:/JmsXA. If you take a
look at the JBossMQ default configuration file in $JBOSS_HOME/server/default/deploy/jms/jms-ds.xml, you'll see that
the XA connection manager is bound to this name by default.

The last part of the TravelAgent EJB descriptor in jboss.xml maps the jms/TicketTopic name from the JNDI ENC of the
bean to the topic/titan-TicketTopic JNDI name. This name corresponds to the JMS topic you just created.

29.1.6 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex12_1 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex12_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex12_1> set JBOSS_HOME=C:\jboss-4.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex12_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

You will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the application server.

29.1.7 Examine the Client Applications

This exercise includes two client applications. You can find the code for them in the ex12_1/src/main/com/titan/clients
directory.

The first application is the one used in Exercise 11.2 to make a reservation. The Ant target run.client_112b hasn't
changed, and needs no review.

The second application is new. JmsClient_1 subscribes to the titan-TicketTopic JMS topic and displays all messages
published on it.

The application first gets an InitialContext, and looks up its TopicConnectionFactory and Topic.

29.1.7.1 JmsClient_1.java

...

Context jndiContext = getInitialContext();

TopicConnectionFactory factory = (TopicConnectionFactory)

 jndiContext.lookup("ConnectionFactory");

Topic topic = (Topic)

 jndiContext.lookup("topic/titan-TicketTopic");

The name of the JMS topic is the same as the one you created in Exercise 11.1, but the name of the
TopicConnectionFactory is not the same as the one used by the TravelAgent EJB.

Remember that the java:/JmsXA connection factory used by the EJB was in the private JNDI space of the JBoss JVM
(indicated by the java: prefix). Thus, the client application cannot look up this name from its JVM. For external
applications, JBoss binds a set of connection factories within the public JNDI tree, each dedicated to a particular
message transport protocol.

JBossMQ supports several different kinds of message invocation layers. Each layer has its own ConnectionFactory that is
bound in JNDI, as shown in Table 29-1.

Table 29-1. JBossMQ message invocation layers
Invocation Layer JNDI name

JVM java:/ConnectionFactory
and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hyperefficient invocation layer using standard Java method invocation, used for in-JVM
JMS clients; external clients cannot use this invocation layer

and

java:/XAConnectionFactory
(with XA support)

RMI

RMI-based invocation layer

RMIConnectionFactory and

RMIXAConnectionFactory
(with XA support)

OIL (Optimized Invocation Layer)

Uses custom TCP/IP sockets to obtain good network performance with a small memory
footprint

ConnectionFactory and

XAConnectionFactory (with
XA support)

UIL2

Used by client applications that cannot accept network connections originating from the
server

UIL2ConnectionFactory and

UIL2XAConnectionFactory
(with XA support)

We strongly suggest to use the UIL2 invocation layer; it is the most robust and efficient layer currently available.

TopicConnection connect = factory.createTopicConnection();

TopicSession session =

 connect.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

System.out.println

 ("Listening for messages on topic/titan-TicketTopic...");

connect.start();

The end of the client application code is the same as in the EJB book.

29.1.8 Run the Client Applications

When you redeployed titan.jar, JBoss dropped and recreated the database tables, destroying any existing content. For
this reason, you must have Ant execute the run.client_112a target to repopulate the database.

The run.client_112a target originated in Exercise 11.2, but we've duplicated it in the ex12_1
directory to facilitate your work.

Here's the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the output:

C:\workbook\ex12_1>ant run.client_112a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112a:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

BUILD SUCCESSFUL

For your new application to receive the message published on the JMS topic, you have to start it first:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For your new application to receive the message published on the JMS topic, you have to start it first:

C:\workbook\ex12_1>ant run.client_121

Buildfile: build.xml

prepare:

compile:

ejbjar:

client_121:

 [java] Listening for messages on topic/titan-TicketTopic...

The last line of the output confirms that the client application has successfully subscribed to the topic and is waiting for
messages.

Now you need to make some reservations exactly as you did in Exercise 11.2. Open a new shell and use the
BookPassage script to make a reservation for Bill Burke on the Three-Hour Cruise for cabin 101 at $3,000.00:

C:\workbook\ex12_1>BookPassage 1 5 101 3000.0

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112b:

 [java] Finding reference to Customer 1

 [java] Starting TravelAgent Session...

 [java] Setting Cruise and Cabin information in TravelAgent..

 [java] Booking the passage on the Cruise!

 [java] Ending TravelAgent Session...

 [java] Result of bookPassage:

 [java] Bill Burke has been booked for the Three-Hour Cruise cruise on ship

Bohemian Rhapsody.

 [java] Your accommodations include Suite 101 a 1 bed cabin on deck level 1.

 [java] Total charge = 3000.0

In the JMS subscriber window you started, the following lines should appear:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the JMS subscriber window you started, the following lines should appear:

[java] Listening for messages on topic/titan-TicketTopic...

[java]

[java] RESERVATION RECEIVED:

[java] Bill Burke has been booked for the Three-Hour Cruise cruise on ship

Bohemian Rhapsody.

[java] Your accommodations include Suite 101 a 1 bed cabin on deck level 1.

[java] Total charge = 3000.0

Remember from the EJB section of this book that our client application uses a nondurable subscription to the topic.
Consequently, all the messages sent while the subscriber client application is not running are lost. That would not be
the case if we had used a durable subscription to the topic.

To see the "many-to-many" nature of JMS topics, launch several JMS listener applications at the same time. They will
all receive the messages sent to the topic.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

29.2 Exercise 12.2: The Message-Driven Bean
This exercise is an extension of the preceding one. You'll add a message-driven bean (MDB), ReservationProcessor, which
plays the same role as the TravelAgent EJB but receives its booking orders through a JMS queue instead of synchronous
RMI invocations.

To test the MDB, you'll build a new client application that makes multiple reservations in batch, using a JMS queue
that's bound to the MDB. You'll also build a second client application that listens on another queue to receive booking
confirmations.

Along the way, you'll learn how to create a new JMS queue in JBoss and configure a message-driven bean (MDB).

29.2.1 Start Up JBoss

If JBoss is already running, there is no reason to restart it.

29.2.2 Initialize the Database

Because the exercise uses the ProcessPayment EJB used in recent exercises, the database must contain the PAYMENT
table. The createdb and dropdb Ant targets, Java code, and clients here have been borrowed from exercise 12_1.

If you haven't already dropped the PAYMENT table after running the examples in Exercise 12.1, do so now by running
the dropdb Ant target.

C:\workbook\ex12_2>ant dropdb

Buildfile: build.xml

prepare:

compile:

dropdb:

 [java] Looking up home interfaces..

 [java] Dropping database table...

BUILD SUCCESSFUL

Then re-create the PAYMENT database table by running the createdb Ant target:

C:\workbook\ex12_2>ant createdb

Buildfile: build.xml

prepare:

compile:

ejbjar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createdb:

 [java] Looking up home interfaces..

 [java] Creating database table...

On the JBoss console, the following lines are displayed:

INFO [STDOUT] Creating table PAYMENT...

INFO [STDOUT] ...done!

If you're having trouble creating the database, shut down JBoss. Then run the Ant build
target clean.db. This will remove all database files and allow you to start fresh.

The persistence of all other entity beans used in this exercise is managed by the container, so it will create the needed
tables for them automatically.

29.2.3 Create a New JMS Queue

This exercise requires two different JMS queues, one for the ReservationProcessor MDB and one to receive booking
confirmations.

Adding new JMS queues to JBoss is much like adding new JMS topics. As in the preceding exercise, you have two
options, one involving a configuration file, the other the JMX HTTP connector.

29.2.3.1 Adding a JMS queue through a configuration file

The most common way to set up a JMS queue is to use an XML configuration file. This part of the exercise shows you
how to write a JMX MBean definition for a new JMS queue. You can find the JMX configuration file in
ex12_2/src/resources/services.

29.2.3.2 jbossmq-titanqueues-service.xml

<server>

 <mbean code="org.jboss.mq.server.jmx.Queue"

 name="jboss.mq.destination:service=Queue,

 name=titan-ReservationQueue">

 <depends optional-attribute-name="DestinationManager"

 >jboss.mq:service=DestinationManager</depends>

 </mbean>

<mbean code="org.jboss.mq.server.jmx.Queue"

 name="jboss.mq.destination:service=Queue,

 name=titan-TicketQueue">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name=titan-TicketQueue">

 <depends optional-attribute-name="DestinationManager"

 >jboss.mq:service=DestinationManager</depends>

 </mbean>

</server>

Recall that each set of MBeans must be defined within a <server> tag and each MBean declared in an <mbean> tag.
Because this exercise requires two different queues, we've defined two MBeans. The MBean class that represents a JMS
queue is org.jboss.mq.server.jmx.Queue. Its name property specifies the name of the JMS queue to be created, such as
titan-ReservationQueue and titan-TicketQueue.

Remember also that the application server must deploy the DestinationManager MBean before any queue or topic is
deployed. This dependency is declared within the <depends> tag in jbossmq-titanqueues-service.xml. JBoss will take
care of satisfying this dependency and make sure the titan-ReservationQueue and titan-TicketQueue will not be started until
the DestinationManager MBean has finished initializing and is ready to provide services to new queues and topics. Copying
this file into the JBoss deploy directory will hot-deploy these JMS queues and make them ready for use.

To deploy jbossmq-titanqueues-service.xml, run the make-queues Ant target:

C:\workbook\ex12_2>ant make-queues

Buildfile: build.xml

make-queues:

 [copy] Copying 1 file to C:\jboss-4.0\server\default\deploy

On the server side, the following lines are displayed:

[titan-ReservationQueue] Bound to JNDI name: queue/titan-ReservationQueue

[titan-TicketQueue] Bound to JNDI name: queue/titan-TicketQueue

You must deploy the XML file containing the queues before you deploy the JAR containing
your beans (see below). If you deploy your EJB JAR first, JBoss detects that the MDB's
expected queue does not exist and creates it dynamically. Then, when you try to deploy
the XML file that contains the queues, an exception arises, and you'll be told you're trying
to create a queue that already exists.

29.2.3.3 Adding a JMS queue through the JMX HTTP connector

Add each of the new JMS queues through the JMX HTTP connector the same way you added the JMS topic in the
preceding exercise, with one obvious difference: instead of using the createTopic() operation of the JBossMQ server, use
the createQueue() operation.

Remember that queues and topics created in the JMX HTTP Connector live only until the application server is shut
down.

29.2.4 Examine the EJB Standard Files

The ejb-jar.xml file for this exercise is based on the one for Exercise 12.1. The only notable difference is the addition of
the new ReservationProcessor MDB.

29.2.4.1 ejb-jar.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

29.2.4.1 ejb-jar.xml

<message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <ejb-class

 >com.titan.reservationprocessor.ReservationProcessorBean<

 /ejb-class>

 <transaction-type>Container</transaction-type>

 <message-selector>MessageFormat = 'Version 3.4'</message-selector>

 <acknowledge-mode>auto-acknowledge</acknowledge-mode>

 <message-driven-destination>

 <destination-type>javax.jms.Queue</destination-type>

 </message-driven-destination>

The MDB descriptor specifies container-managed transactions and automatic acknowledgement of messages, and that
messages will be received from a queue rather than a topic. The descriptor also contains a <message-selector> tag that
allows the MDB to receive only those messages that conform to a specified format. Then a set of <ejb-ref> entries
identifies all the beans that ReservationProcessor beans will use during their execution:

 <ejb-ref>

 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote

 </home>

 <remote>

 com.titan.processpayment.ProcessPaymentRemote

 </remote>

 <ejb-link>ProcessPaymentEJB</ejb-link>

 </ejb-ref>

 <ejb-ref>

 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>

 com.titan.customer.CustomerHomeRemote

 </home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-link>CustomerEJB</ejb-link>

 </ejb-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <local-home>

 com.titan.cruise.CruiseHomeLocal

 </local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 <ejb-link>CruiseEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.cabin.CabinHomeLocal

 </local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-link>CabinEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref>

 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>

 com.titan.reservation.ReservationHomeLocal

 </local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 <ejb-link>ReservationEJB</ejb-link>

 </ejb-local-ref>

 <security-identity>

 <run-as><role-name>everyone</role-name></run-as>

 </security-identity>

Because the MDB will send a confirmation message to a queue once the booking has been successful, it needs a
reference to a javax.jms.QueueConnectionFactory, specified in the <resource-ref> at the end of the MDB descriptor:

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</message-driven>

Note this difference from the preceding exercise: while this bean does send messages to a queue, its descriptor does
not contain a <resource-env-ref> entry that refers to the destination queue. Why not? In Exercise 12.1, the destination

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not contain a <resource-env-ref> entry that refers to the destination queue. Why not? In Exercise 12.1, the destination
was fixed at deployment time, but in this exercise the destination is not fixed and not even known by the MDB. It is the
client application that knows the destination, and transmits it to the MDB by serializing the JMS queue object as part of
the JMS message.

29.2.5 Examine the JBoss-Specific Files

No modifications have been made to the CMP entity beans, so the jbosscmp-jdbc.xml file is unchanged.

The jboss.xml file does need modification to take the new ReservationProcessor EJB into account.

29.2.5.1 jboss.xml

<message-driven>

 <ejb-name>ReservationProcessorEJB</ejb-name>

 <destination-jndi-name

 >queue/titan-ReservationQueue<

 /destination-jndi-name>

 <resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <jndi-name>java:/JmsXA</jndi-name>

 </resource-ref>

</message-driven>

The <destination-jndi-name> tag maps the MDB to an existing JMS destination in the deployment environment. You should
recognize the name of one of the two JMS queues you just created: titan-ReservationQueue.

By default, each MDB EJB deployed in JBoss can serve up to 15 concurrent messages.

The <resource-ref> tag maps the ConnectionFactory name used by the ReservationProcessor EJB to an actual factory in
the deployment environment. This mapping is identical to the one in the exercise for the TravelAgent EJB.

29.2.6 Build and Deploy the Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex12_2 directory created by the extraction
process

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex12_2> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex12_2> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path.

Windows:

C:\workbook\ex12_2> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. Perform the build by typing ant.

As in the last exercise, you will see titan.jar rebuilt, copied to the JBoss deploy directory, and redeployed by the
application server.

29.2.7 Examine the Client Applications

In this exercise, you'll use two client applications at the same time. The producer generates large numbers of JMS
messages reporting passage bookings, destined for the ReservationProcessor MDB EJB. The consumer listens to a JMS
queue for messages confirming the bookings, and displays them as they come in.

The producer first gets the cruise ID and the number of bookings from the command line.

29.2.7.1 JmsClient_ReservationProducer.java

public static void main (String [] args) throws Exception

{

 if (args.length != 2)

 throw new Exception

 ("Usage: java JmsClient_ReservationProducer <CruiseID> <count>");

 Integer cruiseID = new Integer (args[0]);

 int count = new Integer (args[1]).intValue ();

The producer then looks up a QueueConnectionFactory and two JMS queues from the JBoss naming service. The first
queue is the one bound to the ReservationProcessor MDB, to which passage booking messages will be sent. The second
is not used directly, as you'll see later.

QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup ("ConnectionFactory");

Queue reservationQueue = (Queue)

 jndiContext.lookup ("queue/titan-ReservationQueue");

Queue ticketQueue = (Queue)

 jndiContext.lookup ("queue/titan-TicketQueue");

QueueConnection connect = factory.createQueueConnection ();

QueueSession session = connect.createQueueSession

 (false,Session.AUTO_ACKNOWLEDGE);

QueueSender sender = session.createSender (reservationQueue);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QueueSender sender = session.createSender (reservationQueue);

The client application is now ready to send count booking messages in batch. Among other chores, it has looked up the
ticket queue, the JMS queue that the ReservationProcessor MDB will use to send confirmation messages.

For each booking, it then creates a JMS MapMessage, assigns the ticket queue into the message's JMSReplyTo property,
and sets the booking data: Cruise ID, Customer ID, Cabin ID, price, credit card number, and expiration date, and so on.
Note that only basic data types such as String and int can be stored in a MapMessage:

 for (int i = 0; i < count; i++)

 {

 MapMessage message = session.createMapMessage ();

 // Used in ReservationProcessor to send Tickets back out

 message.setJMSReplyTo (ticketQueue);

 message.setStringProperty ("MessageFormat", "Version 3.4");

 message.setInt ("CruiseID", cruiseID.intValue ());

 // either Customer 1 or 2, all we've got in database

 message.setInt ("CustomerID", i%2 + 1);

 // cabins 100-109 only

 message.setInt ("CabinID", i%10 + 100);

 message.setDouble ("Price", (double)1000 + i);

 // the card expires in about 30 days

 Date expDate = new Date (System.currentTimeMillis () +

 30*24*60*60*1000L);

 message.setString ("CreditCardNum", "5549861006051975");

 message.setLong ("CreditCardExpDate", expDate.getTime ());

 message.setString ("CreditCardType",

 CreditCardDO.MASTER_CARD);

 System.out.println ("Sending reservation message #" + i);

 sender.send (message);

 }

 connect.close ();

}

One interesting property that's set in the JMS message header is MessageFormat. Recall that the <message-selector> tag in
the MDB deployment descriptor used this property to specify a constraint on the messages the MDB is to receive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the MDB deployment descriptor used this property to specify a constraint on the messages the MDB is to receive.

Once all messages are sent, the application closes the connection and terminates. Because messages are sent
asynchronously, the application may terminate before the ReservationProcessor EJB has processed all of the messages
in the batch.

The consumer application is very similar to the client application in Exercise 12.1. This time, though, it will subscribe not
to a topic but to a queue.

29.2.7.2 JmsClient_TicketConsumer.java

To receive JMS messages, the client application class implements the javax.jms.MessageListener interface, which defines
the onMessage() method. The main method simply creates an instance of the class and uses a trick to make the main
thread wait indefinitely:

public class JmsClient_TicketConsumer

 implements javax.jms.MessageListener

{

 public static void main (String [] args) throws Exception

 {

 new JmsClient_TicketConsumer ();

 while(true) { Thread.sleep (10000); }

 }

The constructor is very simple JMS code that subscribes the client application to the JMS queue and waits for incoming
messages:

 public JmsClient_TicketConsumer () throws Exception

 {

 Context jndiContext = getInitialContext ();

 QueueConnectionFactory factory = (QueueConnectionFactory)

 jndiContext.lookup ("ConnectionFactory");

 Queue ticketQueue = (Queue)

 jndiContext.lookup ("queue/titan-TicketQueue");

 QueueConnection connect = factory.createQueueConnection ();

 QueueSession session =

 connect.createQueueSession (false,Session.AUTO_ACKNOWLEDGE);

 QueueReceiver receiver = session.createReceiver (ticketQueue);

 receiver.setMessageListener (this);

 System.out.println ("Listening for messages on titan-

 TicketQueue...");

 connect.start ();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

When a message arrives in the queue, the consumer's onMessage() method is called. The method simply displays the
content of the ticket:

 public void onMessage (Message message)

 {

 try

 {

 ObjectMessage objMsg = (ObjectMessage)message;

 TicketDO ticket = (TicketDO)objMsg.getObject ();

 System.out.println ("********************************");

 System.out.println (ticket);

 System.out.println ("********************************");

 }

 catch (JMSException displayed)

 {

 displayed.printStackTrace ();

 }

 }

29.2.8 Run the Client Applications

When you redeployed titan.jar, JBoss dropped and recreated the database tables, destroying any existing content, so
you must repopulate the database. Have Ant execute the run.client_112a target.

The run.client_112a target originated in Exercise 11.2, but we've duplicated it in the ex12_2 directory for your
convenience.

C:\workbook\ex12_2>ant run.client_112a

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_112a:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

BUILD SUCCESSFUL

At this point, you're going to launch both the client that sends booking messages and the client that receives the tickets
as passage confirmations. Launch the consumer first by invoking the Ant target run.client_122:

C:\workbook\ex12_2>ant run.client_122

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client_122:

 [java] Listening for messages on titan-TicketQueue...

Now start the producer, adhering to the following usage:

BookInBatch <cruiseID> <count>

where cruiseID is the ID of a Cruise in the database (created when you invoked the run.client_112a Ant target) and count

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where cruiseID is the ID of a Cruise in the database (created when you invoked the run.client_112a Ant target) and count
is the number of passages to book.

Book 100 passages on the Alaskan Cruise:

C:\workbook\ex12_2>BookInBatch 0 100

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.bookinbatch:

 [java] Sending reservation message #0

 [java] Sending reservation message #1

 [java] Sending reservation message #2

 [java] Sending reservation message #3

 ...

 [java] Sending reservation message #98

 [java] Sending reservation message #99

Shortly after the producer starts, the consumer, which has been patiently listening to its JMS queue for booking
confirmations, will display:

run.client_122:

 [java] Listening for messages on titan-TicketQueue...

 [java] ********************************

 [java] Bob Smith has been booked for the Alaska Cruise cruise

 on ship Nordic Prince.

 [java] Your accommodations include Suite 100 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1000.0

 [java] ********************************

 [java] ********************************

 [java] Joseph Stalin has been booked for the Alaska Cruise

 cruise on ship Nordic Prince.

 [java] Your accommodations include Suite 101 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1001.0

 [java] ********************************

 [java] ********************************

 [java] Bob Smith has been booked for the Alaska Cruise cruise

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 on ship Nordic Prince.

 [java] Your accommodations include Suite 102 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1002.0

 [java] ********************************

 ...

 [java] ********************************

 [java] Joseph Stalin has been booked for the Alaska Cruise

 cruise on ship Nordic Prince.

 [java] Your accommodations include Suite 109 a 1 bed cabin on

 deck level 1.

 [java] Total charge = 1099.0

 [java] ********************************

Note that because the booking confirmation messages are queued, you could start the consumer much later than the
producer, rather than before. The confirmation messages sent by the ReservationProcessor MDB would then be stored
on the server until the client application starts and begins to listen to the queue.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 29. Exercises for Chapter 12
Section 29.1. Exercise 12.1: JMS as a Resource

Section 29.2. Exercise 12.2: The Message-Driven Bean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Resource Management
A large business system with many users can easily require thousands of objects—even millions of objects—to be in use
simultaneously. As the number of interactions among these objects increases, concurrency and transactional concerns
can degrade the system's response time and frustrate users. EJB servers increase performance by synchronizing object
interactions and sharing resources.

There is a relationship between the number of clients and the number of distributed objects that are required to service
them. Not surprisingly, the larger the client population, the more distributed objects are needed. At some point, the
increase in clients affects performance and diminishes throughput. EJB explicitly supports two mechanisms that make it
easier to manage large numbers of beans at runtime: instance pooling and activation. In addition, EJB supports the use
of the J2EE Connector Architecture (J2EE Connectors) for managing resource connections. As the number of distributed
objects and clients increase, the number of resource connections also increases. J2EE Connectors work with the EJB
container to manage connections to databases, enterprise messaging, ERP, legacy systems, and other types of
resources.

3.1.1 Instance Pooling

The concept of pooling resources is nothing new. It's common to pool database connections so that the business objects
in the system can share database access. This trick reduces the number of database connections needed, which reduces
resource consumption and increases throughput. The J2EE Connector Architecture (J2eeCA) is frequently the
mechanism employed by EJB containers when pooling connections to databases and other resources, and is covered a
little later. Most EJB containers also apply resource pooling to server-side components; this technique is called instance
pooling. Instance pooling reduces the number of component instances—and therefore resources—needed to service
client requests. In general, it is also less expensive to reuse pooled instances than to create and destroy instances.

As you already know, clients of session and entity beans interact with the beans through the remote and local interfaces
implemented by EJB objects. Client applications never have direct access to the actual bean. Similarly, JMS clients
never interact with JMS-based message-driven beans (JMS-MDBs) directly. They send messages that are routed to the
EJB container system. The EJB container then delivers these messages to the proper message-driven instance.

Instance pooling is possible because clients never access beans directly. Therefore, there's no fundamental reason to
keep a separate copy of each enterprise bean for each client. The server can keep a much smaller number of enterprise
beans around to do the work, reusing each enterprise bean instance to service different requests. Although this sounds
like a resource drain, when done correctly, it greatly reduces the resources required to service all the client requests.

3.1.1.1 The entity bean life cycle

To understand how instance pooling works, let's examine the life cycle of an entity bean. Entity beans exist in one of
three states:

No state

When a bean instance is in this state, it has not yet been instantiated. We identify this state to provide a
beginning and an end for the life cycle of a bean instance.

Pooled state

When an instance is in this state, it has been instantiated by the container but has not yet been associated with
an EJB object.

Ready state

When a bean instance is in this state, it has been associated with an EJB object and is ready to respond to
business method invocations.

Each EJB vendor implements instance pooling differently, but all instance-pooling strategies attempt to manage
collections of bean instances so that they are quickly accessible at runtime. To set up an instance pool, the EJB
container creates several instances of a bean class and holds them until needed. As clients make business-method
requests, bean instances from the pool are assigned to the EJB objects associated with the clients. When the EJB object
doesn't need the instance, it's returned to the instance pool. An EJB server maintains instance pools for every type of
bean deployed. Every instance in an instance pool is equivalent—they are treated equally. Instances are selected
arbitrarily from the instance pool and assigned to EJB objects as needed.

After the bean instance is placed in the pool, it gets a reference to a javax.ejb.EJBContext. The EJBContext provides an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After the bean instance is placed in the pool, it gets a reference to a javax.ejb.EJBContext. The EJBContext provides an
interface that the bean can use to communicate with the EJB environment. This EJBContext becomes more useful when
the bean instance moves to the Ready state. When a client uses an EJB home to obtain a remote or local reference to a
bean, the container responds by creating an EJB object. Once created, the EJB object is assigned a bean instance from
the instance pool. When a bean instance is assigned to an EJB object, it officially enters the Ready state. From the
Ready state, a bean instance can receive requests from the client and callbacks from the container. Figure 3-1 shows
the sequence of events that results in an EJB object wrapping a bean instance and servicing a client.

Figure 3-1. A bean moves from the instance pool to the Ready state

When a bean instance moves into the Ready state, the EJBContext takes on new meaning. The EJBContext provides
information about the client that is using the bean. It also provides the instance with access to its own EJB home and
EJB object, which is useful when the bean needs to pass references to itself or to other enterprise beans, or when it
needs to create, locate, or remove beans of its own class. So the EJBContext is not a static class; it is an interface to the
container, and its state changes as the instance is assigned to different EJB objects.

When the client is finished with a bean's remote reference, either the remote reference passes out of scope or one of
the bean's remove methods is called.[1] At this point, the bean instance is disassociated from the EJB object and
returned to the instance pool. Bean instances can also be returned to the pool during lulls between client requests. If a
client request is received and no bean instance is associated with the EJB object, an instance is retrieved from the pool
and assigned to the EJB object. This is called instance swapping. After the bean instance returns to the instance pool, it
is again available to service a new client request. Figure 3-2 illustrates the life cycle of a bean instance.

[1] The EJBHome, EJBLocalHome, EJBObject, and EJBLocalObject interfaces all define methods that can be used to
remove a bean.

Figure 3-2. Life cycle of a bean instance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The number of instances in the pool fluctuates as instances are assigned to EJB objects and returned to the pool. The
container can also manage the number of instances in the pool, increasing the count when client activity increases and
lowering the count during less active periods.

3.1.1.2 Instance swapping

Stateless session beans offer a particularly powerful opportunity to leverage instance pooling. Because a stateless
session bean does not maintain any state between method invocations, every method invocation operates
independently, performing its task without relying on instance variables. This means that any stateless session instance
can service requests for any EJB object of the proper type. The container can therefore swap bean instances in and out
between method invocations.

Figure 3-3 illustrates instance swapping between stateless session bean method invocations. In Figure 3-3 (a), instance
A is servicing a business method invocation delegated by EJB object 1. Once instance A has serviced the request, it
moves back to the instance pool (Figure 3-3 (b)). When a business method invocation on EJB object 2 is received,
instance A is associated with that EJB object for the duration of the operation (Figure 3-3 (c)). While instance A is
servicing EJB object 2, another method invocation is received by EJB object 1 from the client and is serviced by instance
B (Figure 3-3 (d)).

Figure 3-3. Stateless session beans in a swapping strategy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using this swapping strategy allows a few stateless session bean instances to serve hundreds of clients, because the
amount of time it takes to perform most method invocations is typically much shorter than the pauses between method
invocations. When a bean instance is finished servicing a request for an EJB object, it is immediately made available to
any other EJB object that needs it. This allows fewer stateless session instances to service more requests, which
decreases resource consumption and improves performance.

Stateless session beans are declared "stateless" in the deployment descriptor. Nothing in the class definition marks a
session bean as being stateless or stateful. Once a bean class is deployed as stateless, the container assumes that no
conversational state is maintained between method invocations. So a stateless bean can have instance variables, but
because bean instances can be servicing several different EJB objects, they should not be used to maintain
conversational state.

3.1.1.3 Message-driven beans and instance pooling

Message-driven beans, like stateless session beans, do not maintain state specific to a client request, which makes
them excellent candidates for instance pooling.

In most EJB containers, each type of message-driven bean has its own instance pool that services incoming messages.
JMS-MDBs subscribe to a specific message destination, which is a kind of address used when sending and receiving
messages. When a JMS client sends an asynchronous message to a destination, the message is delivered to the EJB
containers of the beans that subscribe to the destination. The EJB container determines which JMS-MDB subscribes to
that destination, then chooses an instance of that type from the instance pool to process the message. Once the JMS-
MDB instance has finished processing the message (when the onMessage() method returns), the EJB container returns
the instance to its instance pool. Figure 3-4 illustrates how client requests are processed by an EJB container.

Figure 3-4. JMS-MDB instance pooling

In Figure 3-4 (a), the top JMS client delivers a message to Destination A and the bottom JMS client delivers a message
to Destination B. The EJB container chooses an instance of MessageDrivenBean_1 to process the message intended for
Destination A and an instance of MessageDrivenBean_2 to process the message intended for Destination B. The bean
instances are removed from the pool and used to process the messages.

A moment later in Figure 3-4 (b), the middle JMS client sends a message to Destination B. At this point, the first two
messages have already been processed and the container is returning the instances to their respective pools. As the
new message comes in, the container chooses a new instance of MessageDrivenBean_2 to process the message.

JMS-MDBs are always deployed to process messages from a specific destination. In the above example, instances of
MessageDrivenBean_1 process messages only for Destination A, while instances of MessageDrivenBean_2 process
messages only for Destination B. Several messages for the same destination can be processed at the same time. If, for
example, a hundred messages for Destination A arrive at the same time, the EJB container simply chooses a hundred
instances of MessageDrivenBean_1 to process the incoming messages; each instance is assigned a message.

EJB 2.1 has expanded the role of message-driven beans beyond JMS so that they can support other messaging services
and APIs. This opens the message-driven bean up to just about any kind of resource, including messaging systems
other than JMS, ERP systems like SAP, and legacy systems like IMS. Regardless of the type of resource represented by
the message-driven bean, the instances of the bean type will be pooled in the same way as the JMS-MDBs.

3.1.2 The Activation Mechanism

Unlike other enterprise beans, stateful session beans maintain state between method invocations. Conversational state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike other enterprise beans, stateful session beans maintain state between method invocations. Conversational state
represents the continuing conversation with the stateful session bean's client. The integrity of this conversational state
needs to be maintained for the life of the bean's service to the client. Stateful session beans, unlike stateless session,
entity, and message-driven beans, do not participate in instance pooling. Instead, stateful session beans use activation
to conserve resources. When an EJB server needs to conserve resources, it can evict stateful session beans from
memory. When a bean is evicted, its conversational state is serialized to a secondary storage. When a client invokes a
method on the EJB object, a new stateful instance is instantiated and populated with the state from the initial bean.

Passivation is the act of disassociating a stateful bean instance from its EJB object and saving its state. Passivation
requires that the bean instance's state be held relative to its EJB object. After the bean has been passivated, it is safe
to remove the bean instance from the EJB object and evict it from memory. Clients are unaware of the deactivation
process. Remember that the client uses the bean's remote reference, which is implemented by an EJB object, and
therefore does not directly communicate with the bean instance. As a result, the client's connection to the EJB object
can be maintained while the bean is passivated.

Activating a bean is the act of restoring a stateful bean instance's state relative to its EJB object. When a method on the
passivated EJB object is invoked, the container automatically creates a new instance and sets its fields equal to the data
stored during passivation. The EJB object can then delegate the method invocation to the bean as normal. Figure 3-5
shows activation and passivation of a stateful bean. In Figure 3-5 (a), the bean is being passivated. The state of
instance B is read and held relative to the EJB object it was serving. In Figure 3-5 (b), the bean has been passivated
and its state preserved. Here, the EJB object is not associated with a bean instance. In Figure 3-5 (c), the bean is being
activated. A new instance, instance C, has been instantiated and associated with the EJB object and is in the process of
having its state populated with the state held relative to the EJB object.

Figure 3-5. The passivation and activation processes

The exact mechanism for activating and passivating stateful beans is up to the vendor. Each stateful bean is serializable
and thus provides at least one way of preserving its state, but vendors are free to choose other serialization techniques.
Note that the transient property is not treated as you might expect when activating a passivated bean. In Java
serialization, transient fields are always set to the initial value for that field type when the object is deserialized. Integers
are set to 0, Booleans to false, object references to null, and so on. In EJB, transient fields are not necessarily set back to
their initial values but can maintain their original values, or any arbitrary value, after being activated. Take care when
using transient fields, since their state following activation is implementation-specific.

The activation process is supported by the life-cycle callback methods discussed in Chapter 2. The ejbActivate() method i
activation callback methodss called immediately following the successful activation of a bean instance, and can be used
to reset transient fields to an initial value. ejbPassivate() is called immediately prior to passivation of the bean instance.
These two methods are especially helpful if the bean instance maintains connections to resources that need to be closed
or freed prior to passivation and reobtained following activation. Because the stateful bean instance is evicted from
memory, open connections to resources are not maintained. The exceptions are remote references to other beans and
the SessionContext, which must be maintained with the serialized state of the bean and reconstructed when the bean is
activated. EJB also requires that the references to the JNDI environment context, component interfaces, and the
UserTransaction object be maintained through passivation.

Unlike stateful beans, entity beans do not have conversational state; instead, the state of each entity bean instance is
saved in the database. However, the activation callback methods (ejbActivate() and ejbPassivate()) are used to notify the
instance when it's about to be swapped in or out of the instance pool. The ejbActivate() method is invoked immediately
after the bean instance is swapped into the EJB object, and the ejbPassivate() method is invoked just before the instance
is swapped out.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is swapped out.

3.1.3 J2EE Connector Architecture

The J2EE Connector Architecture defines an interface between Enterprise Information Systems (EISs) and J2EE
container systems (i.e., EJB and Servlet containers). EIS is a generic term for any information system, including
relational database servers, message-oriented middleware (e.g., MQSeries and SonicMQ), CORBA, ERP systems (e.g.,
SAP, PeopleSoft, and JD Edwards), and legacy systems (e.g., IMS and CICS).

J2EE defines a number of standard enterprise APIs, including JDBC, JMS, JNDI, Java IDL, and JavaMail, in addition to
EJB. Each of these APIs provides a vendor-neutral API for a specific kind of enterprise information system. JDBC is used
to exchange information with relational databases; JMS is for message-oriented middleware; JNDI is for naming and
directory services; JavaMail is for electronic mail systems; and Java IDL is for CORBA. Requiring support for these APIs
ensures that the enterprise beans that use them are portable across EJB vendors.

Although the enterprise APIs are vendor-agnostic, the products behind the APIs are always proprietary. When an
enterprise bean uses the enterprise APIs, it's the responsibility of the EJB container to pool and maintain the EIS
connections, enroll the EIS in transactions, propagate security credentials, etc. These tasks often require the EJB
container to interact with the underlying EIS in ways not addressed by the generic APIs. In effect, each J2EE vendor
had to write proprietary code to manage each brand of EIS. Faced with this situation, J2EE vendors chose which EISs
they would support for each standard API. This situation had a significant impact on the brands of EIS an EJB vendor
could be expected to support: for example, vendor A might support JDBC connectivity to Oracle, while vendor B
supports only DB2.

3.1.3.1 J2EE Connectors 1.0 for EJB 2.0 and 2.1

EJB 2.0 required support for the new J2EE Connector Architecture, which went a long way to solving this problem. The
J2eeCA defines an interface between enterprise information systems and EJB containers. It establishes a set of Java
interfaces that the EIS must implement in order to be J2EE Connector-compliant. These interfaces define a very general
and portable Service Provider Interface (SPI) for creating EIS connections, managing connections in a pool, enrolling
connections into transactions, and exchanging security information. The J2eeCA essentially hides the differences
between proprietary infrastructures so that EJB container vendors can develop one set of code to manage all J2eeCA-
compliant EISs.

While the J2eeCA standardizes the SPI, it has little or no impact on the APIs that you, the developer, use. A JDBC
provider (a.k.a. driver) that is J2eeCA-compliant has the same API as one that's not. From the perspective of the
application developer, nothing's changed, but under the hood of the EJB container, a single set of code can be used to
manage all EISs. The benefit is that you can plug any J2eeCA-compliant EIS into your EJB container system. You don't
have to worry about the EIS vendor you choose: as long as its API is J2EE Connector-compliant, it will work with any
EJB 2.0 or 2.1 vendor.

While Version 1.0 of the J2EE Connector Architecture solved some important problems, it didn't support the push model
for messaging. Several EISs push data to clients, without the clients explicitly making a request—for example, JMS. JMS
allows clients to receive messages by subscribing to a destination. In this case, the EIS, the message-oriented
middleware, is pushing messages to the clients.

3.1.3.2 J2EE Connectors 1.5 for EJB 2.1

EJB 2.1 requires support for J2EE Connector Architecture 1.5, which also supports the push model. To support the push
model, J2eeCA 1.5 uses the message-driven bean programming model. Specifically, it defines a container-connector
interface that allows incoming messages, sent asynchronously from the EIS, to be processed by message-driven beans.
For example, vendor X could develop a J2EE Connector for a Mail Delivery Agent (MDA), which is software that delivers
Internet email. Vendor X defines a message-listening interface, the EmailListener, that can be implemented to create an
Email Message-Driven Bean (Email-MDB) for processing email. As the MDA receives email from the Internet, it pushes
them to the EJB container, which delegates each message to an instance of the Email-MDB. The application developer
then writes an Email-MDB that implements the javax.ejb.MessageDrivenBean interface as well as the
com.xvendor.EmailListener interface. Once the Email-MDB is created and deployed, it can process incoming messages.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Primary Services
Many value-added services are available for distributed applications. This book looks at eight value-added services
called the primary services because they are required to complete the Enterprise JavaBeans platform. The primary
services include concurrency, transactions, persistence, distributed objects, asynchronous messaging, timer, naming,
and security. EJB servers automatically manage all the primary services. This capability relieves the application
developers from the task of mastering these complicated services. Instead, developers can focus on defining the
business logic that describes the system and leave the system-level concerns to the EJB server. The following sections
describe each of the primary services and explain how they are supported by EJB.

3.2.1 Concurrency

Concurrency is important to all the bean types, but it has different meanings for each type.

3.2.1.1 Concurrency with session and entity beans

Session beans do not support concurrent access. This limitation makes sense if you consider the nature of stateful and
stateless session beans. A stateful bean is an extension of one client and serves only that client. It doesn't make sense
to make stateful beans concurrent if they are used only by the clients that created them. Stateless session beans don't
need to be concurrent because they don't maintain state that needs to be shared. The scope of the operations
performed by a stateless bean is limited to the scope of each method invocation. Because neither stateful nor stateless
session beans represent shared data, there is no need for concurrency.

Entity beans represent data that is shared and may be accessed concurrently. Entity beans are shared components. In
Titan's EJB system, for example, there are three ships: Paradise, Utopia, and Valhalla. At any given moment the Ship
entity bean that represents the Utopia might be accessed by hundreds of clients. To make concurrent access to entity
beans possible, the EJB container needs to protect the data represented by the shared bean, while allowing many
clients to access the bean simultaneously.

In a distributed object system, problems arise when you attempt to share distributed objects among clients. If two
clients are both using the same EJB object, how do you keep one client from writing over the changes of the other? If,
for example, one client reads the state of an instance just before a different client makes a change to the same
instance, the data the first client read becomes invalid. Figure 3-6 shows two clients sharing the same EJB object.

Figure 3-6. Clients sharing access to an EJB object

EJB addresses the dangers associated with concurrency in entity beans by prohibiting concurrent access to bean
instances. In other words, several clients can be connected to one EJB object, but only one client thread can access the
bean instance at a time. If, for example, one of the clients invokes a method on the EJB object, no other client can
access that bean instance until the method invocation is complete. In fact, if the method is part of a larger transaction,
the bean instance cannot be accessed at all, except within the same transactional context, until the entire transaction is
complete.

Since EJB servers handle concurrency, a bean's methods do not have to be made thread-safe. In fact, the EJB
specification prohibits use of the synchronized keyword. Prohibiting the use of the thread synchronization primitives
prevents developers from thinking that they control synchronization and enhances the performance of bean instances at
runtime. In addition, the EJB specification explicitly prohibits beans from creating their own threads. In other words, as
a bean developer, you cannot create a thread within a bean. The EJB container has to maintain complete control over
the bean in order to properly manage concurrency, transactions, and persistence. Allowing the bean developer to create
arbitrary threads would compromise the container's ability to track what the bean is doing and make it impossible for
the container to manage the primary services.

3.2.1.2 Reentrance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.1.2 Reentrance

When talking about concurrency in entity beans, we need to discuss the related concept of reentrance. Reentrance is
when a thread of control attempts to reenter a bean instance; for example, bean A calls bean B, which in turn calls
bean A. In EJB, entity-bean instances are nonreentrant by default, which means that loopbacks like the one just
described are not allowed.

Remember that entity and session beans interact using objects that implement each other's remote and local interfaces,
and do not interact directly. In other words, when bean A operates on bean B, it does so the same way an application
client would: by using B's remote or local interface as implemented by an EJB object. This allows the EJB container to
interpose between method invocations from one bean to the next in order to apply security and transaction services.

While most bean-to-bean interactions take place using local reference of enterprise beans that are in the same
container, occasionally beans interact using remote references. When interactions between beans take place using
remote references, the beans can be relocated—possibly to a different server—with little or no impact on the rest of the
application. Regardless of whether remote or local interfaces are used, from the perspective of the bean servicing the
call, all clients are created equal. Figure 3-7 shows that, from a bean's point of view, only clients perform business
method invocations. When a business method is invoked on a bean instance, it cannot tell the difference between a
remote application client and a bean client.

Figure 3-7. Beans access each other through EJB objects

A loopback occurs when bean A invokes a method on bean B that then attempts to make a call back to bean A. In
Figure 3-8, client 1 invokes a method on bean A. In response to the method invocation, bean A invokes a method on
bean B. At this point, there is no problem because client 1 controls access to bean A, and bean A is the client of bean B.
If, however, bean B attempts to call a method on bean A, it is blocked because the thread has already entered bean A.
By calling its caller, bean B is performing a loopback. This is illegal by default, because EJB doesn't allow a thread of
control to reenter a bean instance.

Figure 3-8. A loopback scenario

Session beans can never be reentrant, and throw an exception if a loopback is attempted. Entity beans can be
configured to allow reentrance, although it is discouraged by the specification.

Reentrance is not relevant to message-driven beans because they do not respond to RMI calls, as session and entity
beans do. Furthermore, EJB 2.1 endpoint interfaces may only be implemented by stateless session beans, which may
not be reentrant.

The problem with reentrance is that client access to a bean is synchronized so that only one client can access any given
bean at a time. Reentrance addresses a thread of control—initiated by a client request—that attempts to reaccess a
bean instance. The problem with reentrant code is that the EJB object, which intercepts and delegates method
invocations, cannot differentiate between reentrant code and multithreaded access within the same transactional
context. (You'll read more about transactional context in Chapter 14.) If you permit reentrance, you also permit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

context. (You'll read more about transactional context in Chapter 14.) If you permit reentrance, you also permit
multithreaded access to the bean instance. Multithreaded access to a bean instance can result in corrupted data
because threads affect each other's work when they try to accomplish their separate tasks.

It's important to remember that reentrant code is different from a bean instance that simply invokes its own methods at
an instance level. In other words, method foo() on a bean instance can invoke its own public, protected, default, or
private methods directly as much as it wants. Here is an example of intra-instance method invocation that is perfectly
legal:

public HypotheticalBean extends EntityBean {

 public int x;

 public double foo() {

 int i = this.getX();

 return this.boo(i);

 }

 public int getX() {

 return x;

 }

 private double boo(int i) {

 double value = i * Math.PI;

 return value;

 }

}

The business method foo() invokes getX() and then a private method, boo(). The method invocations within the body of
foo() are intra-instance invocations and are not considered reentrant.

3.2.1.3 Concurrency with message-driven beans

In message-driven beans, concurrency refers to the processing of more than one message at a time. If message-driven
beans could process only a single message at time, they would be practically useless in a real-world application because
they couldn't handle heavy message loads. As Figure 3-9 illustrates, if three messages are delivered to a specific
destination from three different clients at the same time, three instances of a single JMS-MDB that subscribes or listens
to that destination can be used to process the messages simultaneously.

Figure 3-9. Concurrent processing with message-driven beans

Message-driven beans that implement APIs other than JMS benefit from the same concurrency controls as JMS-MDBs.
Message-driven beans of all kinds are pooled and used to process incoming messages concurrently so that hundreds,
possibly thousands, of messages can be handled simultaneously.[2]

[2] In reality, it's very difficult to process anything simultaneously without multiple processors, but conceptually this
statement is true. Multiple threads in the same VM or multiple VMs on the same processor (computer chip) imitate
simultaneous processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.2 Transactions

A transaction is a unit-of-work or a set of tasks executed together. Transactions are atomic; in other words, all the
tasks in a transaction must be completed together for the transaction to be considered a success. In the previous
chapter, we used the TravelAgent bean to describe how a session bean controls the interactions of other beans. Here is
a code snippet showing the bookPassage() method described in Chapter 2:

public TicketDO bookPassage(CreditCardDO card,double price)

 throws IncompleteConversationalState {

 if (customer == null ||cruise == null ||cabin == null) {

 throw new IncompleteConversationalState();

 }

 try {

 ReservationHomeRemote resHome = (ReservationHomeRemote)

 getHome("ReservationHome",ReservationHomeRemote.class);

 ReservationRemote reservation =

 resHome.create(customer,cruise,cabin,price,new Date());

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)

 getHome("ProcessPaymentHome",ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();

 process.byCredit(customer,card,price);

 TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

 return ticket;

 } catch(Exception e) {

 throw new EJBException(e);

 }

}

The bookPassage() method consists of two tasks that must be completed together: the creation of a new Reservation
EJB and the processing of the payment. When the TravelAgent EJB is used to book a passenger, the charges to the
passenger's credit card and the creation of the reservation must both be successful. It would be inappropriate for the
ProcessPayment EJB to charge the customer's credit card if the creation of a new Reservation EJB fails. Likewise, you
can't make a reservation if the customer credit card is not charged. An EJB server monitors the transaction to ensure
that all the tasks are completed successfully.

Transactions are managed automatically; as a bean developer, you don't need to use any APIs to manage a bean's
involvement in a transaction. Simply declaring the transactional attribute at deployment time tells the EJB server how to
manage the bean at runtime. EJB does provide a mechanism that allows beans to manage transactions explicitly, if
necessary. Setting the transactional attributes during deployment is discussed in Chapter 14, as is explicit management
of transactions and other transactional topics.

3.2.3 Persistence

Entity beans represent the behavior and data associated with real-world people, places, or things. Unlike session and
message-driven beans, entity beans are persistent, which means that the state of an entity is saved in a database.
Persistence allows entities to be durable, so that both their behavior and their data can be accessed at any time without
concern that the information will be lost because of a system failure.

When a bean's state is automatically managed by a persistence service, the container is responsible for synchronizing
the entity bean's instance fields with the data in the database. This automatic persistence is called container-managed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the entity bean's instance fields with the data in the database. This automatic persistence is called container-managed
persistence. When a bean is designed to manage its own state, as is often the case when dealing with legacy systems,
it is called bean-managed persistence.

Each vendor gets to choose its own mechanism for implementing container-managed persistence, but the vendor's
implementation must support the EJB callback methods and transactions. The most common mechanisms used in
persistence by EJB vendors are object-to-relational persistence and object database persistence.

3.2.3.1 Object-to-relational persistence

Object-to-relational persistence is the most common persistence mechanism used in EJB servers today. Object-to-
relational persistence involves mapping an entity bean's state to relational database tables and columns.

In Titan's system, the CabinBean models the concept of a ship's cabin. The CabinBean defines three fields: name, deckLevel,
and id. The abbreviated definition of the CabinBean looks like this:

public abstract class CabinBean implements javax.ejb.EntityBean {

 public abstract String getName();

 public abstract void setName(String str);

 public abstract int getDeckLevel();

 public abstract void setDeckLevel(int level);

 public abstract Integer getId();

 public abstract void setId(Integer id);

}

The abstract accessor methods represent the entity bean's container-managed fields. When an entity bean is deployed,
the container implements these "virtual" fields for the bean, so it is convenient to think of the abstract accessor
methods as describing persistent fields. For example, when talking about the state represented by the setName(
)/getName() abstract accessor method, we refer to it as the name field. Similarly, getId()/setId() represents the id field,
and getDeckLevel()/setDeckLevel() represents the deckLevel field.

With object-to-relational database mapping, the fields of an entity bean correspond to columns in a relational database.
The Cabin's name field, for example, maps to the column labeled NAME in a table called CABIN in Titan's relational
database. Figure 3-10 shows a graphical depiction of this type of mapping.

Figure 3-10. Object-to-relational mapping of entity beans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many EJB systems provide wizards or administrative interfaces for mapping relational database tables to the fields of
entity-bean classes. Using these wizards, mapping entities to tables is fairly straightforward and usually takes place at
deployment time. Figure 3-11 shows Pramati Application Server's object-to-relational mapping wizard.

Figure 3-11. Pramati object-to-relational mapping wizard

Once a bean's fields are mapped to the relational database, the container takes over the responsibility of keeping the
state of an entity-bean instance consistent with the corresponding tables in the database. This process is called
synchronizing the state of the bean instance. In the case of CabinBean, bean instances map one-to-one to rows in the
CABIN table of the relational database. When a change is made to a Cabin EJB, it is written to the appropriate row in the
database. Sometimes, bean types map to more than one table. These are more complicated mappings, often requiring
a SQL join and multiple updates.

In addition, container-managed persistence defines entity-bean relationship fields, which allow entity beans to have
one-to-one, one-to-many, and many-to-many relationships with other beans. Entity beans can maintain collections of
other entity beans or single references. The container-managed persistence model is covered in Chapter 6, Chapter 7,
and Chapter 8.

In addition to synchronizing the state of an entity, EJB provides mechanisms for creating and removing entities. Calls to
the EJB home to create and remove entities result in the insertion or deletion of records in the database. Because each
entity stores its state in a database table, new records (and therefore bean identities) can be added to tables from
outside the EJB system. In other words, inserting a record into the CABIN table—whether done by EJB or by direct
access to the database—creates a new Cabin entity. It's not created in the sense of instantiating a Java object, but
rather in the sense that the data that describes a Cabin entity has been added to the system.

3.2.3.2 Object database persistence

Object-oriented databases are designed to preserve object types and object graphs, and therefore are a good match for
components written in an object-oriented language such as Java. They offer a cleaner mapping between entity beans
and the database than a traditional relational database. However, container-managed persistence provides a
programming model that can accommodate both object-to-relational mapping and object databases.

While object databases perform well when it comes to very complex object graphs, they are still not as standardized as
relational databases, making it more difficult to migrate from one database to another. In addition, fewer third-party
products (such as products for reporting and data warehousing) exist that support object databases.

3.2.3.3 Legacy persistence

EJB can be used to put an object wrapper on legacy systems, systems that are based on mainframe applications, or
nonrelational databases. Container-managed persistence in such an environment requires an EJB container designed
specifically for legacy data access. Vendors might, for example, provide mapping tools that allow beans to be mapped
to IMS, CICS, b-trieve, or some other legacy application.

3.2.3.4 Container-managed versus bean-managed persistence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.3.4 Container-managed versus bean-managed persistence

Regardless of the type of legacy system, container-managed persistence is preferable to bean-managed persistence.
With container-managed persistence, the bean's state is managed automatically, a process that is more efficient at
runtime and more productive during bean development. Many projects, however, require that beans obtain their states
from legacy systems that are not supported by the EJB vendor. In these cases, developers must use bean-managed
persistence, which means the developer doesn't use the automatic persistence service of the EJB server. BMP is also
used by third-party persistence providers that support nontraditional database systems. These third-party products will
generate BMPs automatically and use J2eeCA to obtain transactionally safe access to a database not normally supported
by the EJB vendor. Chapter 6 through Chapter 9 describe container-managed and bean-managed persistence in detail.

3.2.4 Distributed Objects

When we discuss the component interfaces and other EJB interfaces and classes used on the client, we are talking
about the client's view of the EJB system. The EJB client view doesn't include the EJB objects, the EJB container,
instance swapping, or any of the other implementation specifics. As far as a remote client is concerned, a bean is
defined by its remote interface and home interface or endpoint interface. Everything else is invisible, including the
mechanism used to support distributed objects. As long as the EJB server supports the EJB client view, any distributed
object protocol can be used. EJB 2.0 requires that every EJB server support Java RMI-IIOP, but it doesn't limit the
protocols an EJB server can support to just Java RMI-IIOP (the Java RMI API using the CORBA IIOP protocol). EJB 2.1
also requires support for SOAP 1.1 via the JAX-RPC API.

Regardless of the protocol, the server must support Java clients using the Java EJB client API, which means that the
protocol must map to the Java RMI-IIOP or the JAX-RPC programming model. Figure 3-12 illustrates the Java language
EJB API supported by different distributed object protocols.

Figure 3-12. Java EJB client view supported by various protocols

EJB also allows servers to support access to beans by clients written in languages other than Java. An example of this
capability is the EJB-to-CORBA mapping defined by Sun.[3] This document describes the CORBA Interface Definition
Language (IDL) that can be used to access enterprise beans from CORBA clients. A CORBA client can be written in any
language, including C++, Smalltalk, Ada, and even COBOL. The mapping also includes details about supporting the Java
EJB client view, as well as details on mapping the CORBA naming system to EJB servers and distributed transactions
across CORBA objects and beans. Another example is the EJB-to-SOAP mapping based on JAX-RPC. It allows SOAP
client applications written in languages such as VisualBasic.NET, C#, and Perl to access stateless session beans. Figure
3-13 illustrates the possibilities for accessing an EJB server from different distributed object clients.

[3] Sun Microsystems' Enterprise JavaBeans to CORBA Mapping, Version 1.1, by Sanjeev Krishnan..

Figure 3-13. EJB accessed from different distributed clients

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.5 Asynchronous Enterprise Messaging

Prior to EJB 2.0, support for asynchronous enterprise messaging was not considered a primary service because it wasn't
necessary in order to have a complete EJB platform. However, with the introduction of message-driven beans in EJB
2.0, asynchronous enterprise messaging with JMS has become so important that it has been elevated to the status of a
primary service.

Support for enterprise messaging requires that the EJB container reliably route messages from JMS clients to JMS-
MDBs. This involves more than the simple delivery semantics associated with email or even the JMS API. With
enterprise messaging, messages must be reliably delivered, which means that a failure while delivering the message
may require the JMS provider to attempt redelivery.[4] What's more, enterprise messages may be persistent, which
means they are stored to disk or to a database until they can be properly delivered to their intended clients. Persistent
messages also must survive system failures; if the EJB server crashes, these messages must still be available for
delivery when the server comes back up. Most importantly, enterprise messaging is transactional. That means if a JMS-
MDB fails while processing a message, that failure will abort the transaction and force the EJB container to redeliver the
message to another message-driven bean instance.

[4] Most EJB vendors will place a limit on the number of times a message can be redelivered. If redelivery is
attemped too many times, the message might be placed in a "dead message" repository, where it can be reviewed
by an administrator.

In addition message-driven beans, stateless session beans and entity beans can also send JMS messages. Sending
messages can be as important to Enterprise JavaBeans as delivery of messages to JMS-MDB—support for both facilities
tends to go hand in hand.

In EJB 2.0, supporting JMS-MDBs required tight coupling between the EJB container and the JMS message router; as a
result, many EJB container systems could only support a limited number of JMS providers. This changed in EJB 2.1,
which requires support for Java Connector API Version 1.5. J2EE Connectors provides better support for asynchronous
communication systems such as JMS, which means that JMS-MDBs have become more of a pluggable service in the EJB
platform. Any JMS provider that supports the J2eeCA can send messages to a JMS message-driven bean.

3.2.6 EJB 2.1 : Timer Service

Enterprise JavaBeans 2.1 introduced a new primary service, the Timer Service. The Timer Service can be used to
schedule notifications that are sent to enterprise beans at specific times. Timers are useful in many different
applications. For example, a banking system may set timers on mortgage accounts to check for past-due payments. A
stock-trading system might allow timers to be set on "buy limit orders." A medical claims system may set timers for
automatic fraud audits of individual medical records. Timers can also be used in applications like self-auditing systems
and batch processing.

Timers can be set on entity, stateless session, and message-driven beans. With session and entity beans, the bean sets
the timers itself. For example, when a mortgage loan is created, the entity bean that represents the loan might set a
past-due timer when the loan is created, and reset the timer whenever a payment is made. Some EJB container
systems may support message-driven bean timers, which are configured at deployment time and perform batch
processing at regular intervals. The Timer Service is covered in detail in Chapter 13.

3.2.7 Naming

All naming services do essentially the same thing: they provide clients with a mechanism for locating distributed objects
or resources. To accomplish this, a naming service must provide two things: object binding and a lookup API. Object
binding is the association of a distributed object with a natural language name or identifier. The CabinHomeRemote
object, for example, might be bound to the name "CabinHomeRemote" or "room." A binding is really a pointer or an
index to a specific distributed object. A lookup API provides the client with an interface to the naming system. Simply
put, lookup APIs allow clients to connect to a distributed service and request a remote reference to a specific object.

Enterprise JavaBeans mandates the use of JNDI as a lookup API on Java clients. JNDI (Java Naming and Directory
Interface) supports just about any kind of naming and directory service. Although JNDI can become extraordinarily
complex, the way it's used in J2EE applications is usually fairly simple. Java client applications can use JNDI to initiate a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

complex, the way it's used in J2EE applications is usually fairly simple. Java client applications can use JNDI to initiate a
connection to an EJB server and to locate a specific EJB home. The following code shows how the JNDI API might be
used to locate and obtain a reference to the EJB home CabinHomeRemote:

javax.naming.Context jndiContext = new javax.naming.InitialContext();

Object ref = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

CabinHomeRemote cabinHome = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Cabin cabin = cabinHome.create(382, "Cabin 333",3);

cabin.setName("Cabin 444");

cabin.setDeckLevel(4);

The properties passed into the constructor of InitialContext tell the JNDI API where to find the EJB server and what JNDI
service provider (driver) to load. The Context.lookup() method tells the JNDI service provider the name of the object to
return from the EJB server. In this case, we are looking for the home interface to the Cabin EJB. Once we have the
Cabin EJB's home interface, we can use it to create new cabins and access existing cabins.

There are many different kinds of directory and naming services; EJB vendors can choose the one that best meets their
needs, but all vendors must support the CORBA naming service in addition to any other directory services they choose
to support.

3.2.8 Security

Enterprise JavaBeans servers can support as many as three kinds of security:

Authentication

Simply put, authentication validates the identity of the user. The most common kind of authentication is a
simple login screen that requires a username and a password. Once users have successfully passed through the
authentication system, they are free to use the system. Authentication can also be based on secure ID cards,
swipe cards, security certificates, and other forms of identification. While authentication is the primary
safeguard against unauthorized access to a system, it is fairly crude because it doesn't police an authorized
user's access to resources within the system.

Access control

Access control (a.k.a. authorization) applies security policies that regulate what a specific user can and cannot
do. Access control ensures that users access only those resources for which they have been given permission.
Access control can police a user's access to subsystems, data, and business objects, or it can monitor more
general behavior. Certain users, for example, may be allowed to update information while others are allowed
only to view the data.

Secure communication

Communication channels between a client and a server are frequently the focus of security concerns. A channel
of communication can be secured by encrypting the communication between the client and the server. When
communication is secured by encryption, the messages passed are encoded so that they cannot be read or
manipulated by unauthorized individuals. This normally involves the exchange of cryptographic keys between
the client and the server. The keys allow the receiver of the message to decode the message and read it.

Most EJB servers support secure communication—usually through the Secure Sockets Layer (SSL) protocol—and some
mechanism for authentication, but Enterprise JavaBeans specifies only access control in its server-side component
models. Authentication may be specified in subsequent versions, but secure communication will probably never be
specified because it is independent of the EJB specification and the distributed object protocol.

Although authentication is not specified in EJB, it is often accomplished using the JNDI API. For example, a client using
JNDI can provide authenticating information using the JNDI API to access a server or resources in the server. This
information is frequently passed when the client attempts to initiate a JNDI connection to the EJB server. The following
code shows how the client's password and username are added to the connection properties used to obtain a JNDI
connection to the EJB server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection to the EJB server:

properties.put(Context.SECURITY_PRINCIPAL, userName);

properties.put(Context.SECURITY_CREDENTIALS, userPassword);

javax.naming.Context jndiContext = new javax.naming.InitialContext(properties);

Object ref= jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote cabinHome = (CabinHome)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

EJB specifies that every client application accessing an EJB system must be associated with a security identity. The
security identity represents the client as either a user or a role. A user might be a person, security credential,
computer, or even a smart card. Normally, the user is a person whose identity is assigned when she logs in. A role
represents a grouping of identities and might be something like "manager," which is a group of user identities that are
considered managers at a company.

When a remote client logs on to the EJB system, it is associated with a security identity for the duration of that session.
The identity is found in a database or directory specific to the platform or EJB server. This database or directory is
responsible for storing individual security identities and their memberships to groups. Once a remote client application
has been associated with a security identity, it is ready to use beans to accomplish some task. When a client invokes a
method on a bean, the EJB server implicitly passes the client's identity with the method invocation. When the EJB object
or EJB home receives the method invocation, it checks the identity to ensure that the client is allowed to invoke that
method.

3.2.8.1 Role-driven access control

In Enterprise JavaBeans, the security identity is represented by a java.security.Principal object. The Principal acts as a
representative for users, groups, organizations, smart cards, and so on to the EJB access-control architecture.
Deployment descriptors include tags that declare which logical roles are allowed to access which bean methods at
runtime. The security roles are considered logical roles because they do not directly reflect users, groups, or any other
security identities in a specific operational environment. Instead, security roles are mapped to real-world user groups
and users when the bean is deployed. This mapping allows a bean to be portable; every time the bean is deployed in a
new system, the roles can be mapped to the users and groups specific to that operational environment.

Here is a portion of the Cabin EJB's deployment descriptor that defines two security roles, ReadOnly and Administrator:

<security-role>

 <description>

 This role is allowed to execute any method on the bean

 and to read and change any cabin bean data.

 </description>

 <role-name>

 Administrator

 </role-name>

</security-role>

<security-role>

 <description>

 This role is allowed to locate and read cabin info.

 This role is not allowed to change cabin bean data.

 </description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <role-name>

 ReadOnly

 </role-name>

</security-role>

The role names in this descriptor are not reserved or special names with predefined meanings; they are simply logical
names chosen by the bean assembler. In other words, the role names can be anything you want.[5] Once the <security-
role> tags are declared, they can be associated with methods in the bean using <method-permission> tags. Each <method-
permission> tag contains one or more <method> tags, which identify the bean methods associated with one or more
logical roles identified by the <role-name> tags. The <role-name> tags must match the names defined by the <security-
role> tags:

[5] For a complete understanding of XML, including specific rules for tag names and data, see Learning XML by Erik
Ray (O'Reilly).

<method-permission>

 <role-name>Administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>ReadOnly</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getName</method-name>

 </method>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>getDeckLevel</method-name>

 </method>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

In the first <method-permission>, the Administrator role is associated with all methods on the Cabin EJB, which is denoted
by specifying the wildcard character (*) in the <method-name> of the <method> tag. In the second <method-permission>,
the ReadOnly role is limited to accessing only three methods: getName(), getDeckLevel(), and findByPrimaryKey(). Any
attempt by a ReadOnly role to access a method that is not listed in the <method-permission> results in an exception. This
kind of access control makes for a fairly fine-grained authorization system.

Since a single deployment descriptor can describe more than one enterprise bean, the tags used to declare method
permissions and security roles are defined in a special section of the deployment descriptor. This allows several beans
to share the same security roles. The location of these tags and their relationship to other sections of the deployment
descriptor is covered in more detail in Chapter 17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

descriptor is covered in more detail in Chapter 17.

The person who deploys the bean must examine the <security-role> information and map each logical role to a user
group. The deployer need not be concerned with what roles go to which methods; rely on the descriptions given in the
<security-role> tags to determine matches based on the description of the logical role. This relieves the deployer, who
may not be a developer, from having to understand how the bean works in order to deploy it. Figure 3-14 shows the
same enterprise bean deployed in two different environments (labeled X and Z). In each environment, the user groups
are mapped to their logical roles in the XML deployment descriptor so that specific user groups have access privileges to
specific methods on specific enterprise beans. The ReadOnly role is mapped to those groups that should be limited to the
get accessor methods and the find method. The Administrator role is mapped to those user groups that should have
privileges to invoke any method on the Cabin EJB.

Figure 3-14. Mapping roles in the operational environment to logical roles in the
deployment descriptor

The access control described here is implicit; once the bean is deployed, the container takes care of checking that users
access only those methods for which they have permission. When a client invokes a method on a bean, the client's
Principal is checked to see if it is a member of a role mapped to that method. If it's not, an exception is thrown and the
client is denied permission to invoke the method. If the client is a member of a privileged role, the method is invoked.

A client's Principal is propagated from one bean invocation to the next, ensuring that its access is controlled whether or
not it invokes a bean method directly. For example, propagation prevents a user in a ReadOnly role from legitimately
invoking a method on some bean, which in turn invokes a method that is prohibited to a ReadOnly user. This
propagation can be overridden by specifying that the enterprise bean executes under a different security identity, called
the runAs security identity (discussed later in this chapter).

3.2.8.2 Unchecked methods

In EJB, a set of methods can be designated as unchecked, which means that the security permissions are not checked
before the method is invoked. An unchecked method can be invoked by any client, no matter what role it is using. To
designate a method or methods as unchecked, use the <method-permission> element and replace the <role-name>
element with an empty <unchecked> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element with an empty <unchecked> element:

<method-permission>

 <unchecked/>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>findByPrimaryKey</method-name>

 </method>

</method-permission>

<method-permission>

 <role-name>administrator</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

</method-permission>

This declaration tells us that all the methods of the Cabin EJB, as well as the Customer EJB's findByPrimaryKey() method,
are unchecked. Although the second <method-permission> element gives the administrator permission to access all the
Cabin EJB's methods, this declaration is overridden by the unchecked method permission. Unchecked method
permissions always override all other method permissions.

3.2.8.3 The runAs security identity

In addition to specifying the Principals that have access to an enterprise bean's methods, the deployer can also specify
the runAs Principal for the entire enterprise bean. The runAs security identity was originally specified in EJB 1.0,
abandoned in EJB 1.1, and then reintroduced in EJB 2.0 and modified so that it is easier for vendors to implement.

While the <method-permission> elements specify which Principals have access to the bean's methods, the <security-identity>
element specifies under which Principal the method will run. In other words, the runAs Principal is used as the enterprise
bean's identity when it tries to invoke methods on other beans—however, this identity isn't necessarily the same as the
identity that's currently accessing the bean. For example, the following deployment descriptor elements declare that the
create() method can be accessed only by JimSmith but that the Cabin EJB always runs under the Administrator security
identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 ...

 <security-identity>

 <run-as>

 <role-name>Administrator</role-name>

 </run-as>

 </security-identity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

<assembly-descriptor>

<security-role>

 <role-name>Administrator</role-name>

</security-role>

<security-role>

 <role-name>JimSmith</role-name>

</security-role>

...

<method-permission>

 <role-name>JimSmith</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>create</method-name>

 </method>

</method-permission>

...

</assembly-descriptor>

This kind of configuration is useful when the enterprise beans or resources accessed in the body of the method require
a Principal that is different from the one used to gain access to the method. For example, the create() method might call
a method in enterprise bean X that requires the Administrator security identity. If we want to use enterprise bean X in
the create() method, but we want only Jim Smith to create new cabins, we would use the <security-identity> and
<method-permission> elements together to give us this kind of flexibility: the <method-permission> for create() would
specify that only Jim Smith can invoke the method, and the <security-identity> element would specify that the enterprise
bean always runs under the Administrator security identity. To specify that an enterprise bean will execute under the
caller's identity, the <security-identity> role contains a single empty element, the <use-caller-identity> element. For
example, the following declarations specify that the Cabin EJB always executes under the caller's identity, so if Jim
Smith invokes the create() method, the bean will run under the JimSmith security identity:

<enterprise-beans>

...

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 ...

 <security-identity>

 <use-caller-identity/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <use-caller-identity/>

 </security-identity>

 ...

 </entity>

...

</enterprise-beans>

Figure 3-15 illustrates how the runAs Principal can change in a chain of method invocations. Notice that the runAs
Principal is the Principal used to test for access in subsequent method invocations.

Figure 3-15. runAs identity

Here's what's going on in Figure 3-15:

1. The client, who is identified as BillJones, invokes the method foo() on enterprise bean A.

2. Before servicing the method, enterprise bean A checks to see if BillJones is included in the <method-permission>
elements for foo(). It is.

3. The <security-identity> of enterprise bean A is declared as <use-caller-identity>, so the foo() method executes
under the caller's Principal; in this case, it's BillJones.

4. While foo() is executing, it invokes method bar() on enterprise bean B using the BillJones security identity.

5. Enterprise bean B checks the foo() method's Principal (BillJones) against the allowed identities for method bar().
BillJones is included in the <method-permission> elements, so the method bar()is allowed to execute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Enterprise bean B specifies the <security-identity> to be the runAs Principal of Administrator.

7. While bar() is executing, enterprise bean B invokes the method boo() on enterprise bean C.

8. Enterprise bean C checks whether bar()'s runAs Principal (Administrator) is included in the <method-permission>
elements for method boo(). It is.

9. The <security-identity> for enterprise bean C specifies a runAs Principal of System, the identity under which the boo(
) method executes.

This protocol applies to entity and stateless session beans equally. Message-driven beans have only a runAs identity;
they will never execute under the caller identity, because there is no "caller." Message-driven beans process messages,
and incoming messages don't have a meaningful identity. These messages are not considered RMI calls, and the JMS
clients that send them are not directly associated with the messages. With no caller security identity to propagate,
message-driven beans must always have a runAs security identity specified, and always execute under that runAs
Principal.

3.2.9 Primary Services and Interoperability

Interoperability is a vital part of EJB. The specification includes the required support for Java RMI-IIOP for remote
method invocation, and provides for transaction, naming, and security interoperability. EJB 2.1 also requires support for
JAX-RPC, which itself requires support for SOAP 1.1 and WSDL 1.1; these are the standards of the web services
industry.

3.2.9.1 IIOP

EJB requires vendors to provide an implementation of Java RMI that uses the CORBA 2.3.1 IIOP protocol. The goal of
this requirement is that J2EE servers will be able to interoperate, so that J2EE components (enterprise beans,
applications, servlets, and JSPs) in one J2EE server can access enterprise beans in a different J2EE server. The Java
RMI-IIOP specification standardizes the transfer of parameters, return values, and exceptions, as well as the mapping
of interfaces and value objects to the CORBA IDL.

Vendors may support protocols other than Java RMI-IIOP, as long as the semantics of the RMI interfaces adhere to the
types allowed in RMI-IIOP. This constraint ensures that a client's view of EJB is consistent, regardless of the protocol
used in remote invocations.

Transaction interoperability between containers for two-phase commits is an optional but important feature of EJB. It
ensures that transactions started by a J2EE web component propagate to enterprise beans in other containers. The EJB
specifications detail how two-phase commits are handed across EJB containers as well as how transactional containers
interact with nontransactional containers.

EJB also addresses the need for an interoperable naming service for looking up enterprise beans. It specifies CORBA
CosNaming as the interoperable naming service, defining how the service must implement the IDL interfaces of beans
in the CosNaming module and how EJB clients use the service over IIOP.

EJB provides security interoperability by specifying how EJB containers establish trust relationships and how containers
exchange security credentials when J2EE components access enterprise beans across containers. EJB containers are
required to support the Secure Sockets Layer (SSL 3.0) protocol and the related IETF-standard Transport Layer
Security (TLS 1.0) protocol for secure connections between clients and enterprise beans.

While IIOP has been around for a long time and offers interoperability in a number of areas, the truth is it hasn't been
very successful. There are a variety of reasons why IIOP has not been the silver bullet it was intended to be, but
perhaps the biggest reason is complexity. Although IIOP is platform-independent, it's not trivial for vendors to
implement. In addition, there appear to be numerous gaps in the IIOP and other CORBA protocols, which cause
interoperability problems when actually deployed in a production environment. It's rare to hear of real-world systems
that have successfully deployed interoperating EJB systems based on IIOP. The solution the industry seems to have
latched onto is web services, which depend on SOAP and WSDL as the bases for interoperability.

3.2.9.2 SOAP and WSDL

SOAP (Simple Object Access Protocol) is the primary protocol used by web services today. It's based on XML and can be
used for both RPC and document (asynchronous) style messaging. The fact that SOAP is based on XML means that it's
fairly easy to support. Any platform (operating system, programming language, software application, etc.) that can
create HTTP network connections and parse XML can handle the SOAP protocol. This is why SOAP has gained
widespread acceptance in a short period of time. There are over 70 SOAP toolkits (code libraries) available today for
just about every modern programming environment, including Java, .NET, JavaScript, C, C++, VisualBasic, Delphi, Perl,
Python, Ruby, SmallTalk, and others.

WSDL (Web Service Description Language) is the IDL of the web services. A WSDL document is an XML file that
describes what web services a company supports, as well as the protocols, message formats, and network addresses of
those web services. WSDL documents are highly structured, so that they can be used to autogenerate RPC stubs and
other software interfaces for communicating with web services. Although WSDL documents are open enough to describe
any type of service, they are typically used to describe web services that use the SOAP protocol.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any type of service, they are typically used to describe web services that use the SOAP protocol.

WSDL and SOAP are normally used in combination. They form the building blocks for other interoperability standards
covering security, transaction, orchestration, enterprise messaging, and a cornucopia of other topics. There is a lot of
overlap among different groups that are developing infrastructure protocols based on SOAP and WSDL, and as a result,
there are a lot of conflicting and immature standards. SOAP and WSDL have a lot of promise, but it's still too soon to
say whether web services will solve the interoperability problems that have plagued enterprise computing since the
beginning. It's likely that SOAP, WSDL, and the infrastructure protocols based on these standards will go further than
IIOP, DCOM, and other predecessors, but they won't be a silver bullet. Web services are covered in more detail in
Chapter 14.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 What's Next?
The first three chapters of this book gave you a foundation on which to develop Enterprise JavaBeans components and
applications. While we haven't gone into detail, we've shown you most of the topics that you'll be dealing with.
Beginning with Chapter 4, you will develop your own beans and learn how to apply them in EJB applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Resource Management and the Primary
Services
Chapter 2 discussed the basic architecture of Enterprise JavaBeans, including the relationship between the bean class,
the component interfaces, the EJB object and EJB home, and the EJB container. These artifacts define a common model
for distributed server-side components. But the common model for distributed objects isn't enough to make EJB
interesting or even particularly useful. EJB servers also manage the resources used by beans, and can manage
thousands, even millions of distributed objects simultaneously. They must manage how distributed objects use memory,
threads, database connections, processing power, and more. Furthermore, the EJB specification defines interfaces that
help developers take advantage of these common practices.

In particular, EJB servers support six primary services: concurrency, transaction management, persistence, object
distribution, naming, and security. These services provide the kind of infrastructure that is necessary for a successful
three-tier system. Enterprise JavaBeans also supports two additional services: asynchronous messaging and a timer
service.

This chapter discusses the resource-management facilities and the primary services that are available to Enterprise
JavaBeans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

30.1 Exercise 13.1: EJB Timer Service
In this exercise, you will learn how to use work with the EJB Timer Service. The examples in this chapter match the
modifications made to the Ship EJB to enable Timers. This exercise builds off the code within Exercise 12.1, so
initialization and deployment should be around the same.

30.1.1 Clean the Database

You need to clean and refresh the database. To do this, shutdown JBoss if you have it running and run ant clean.db. Then
restart JBoss.

30.1.2 Build and Deploy Example Programs

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex13_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex13_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex13_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility.

Windows:

C:\workbook\ex13_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

4. The exercise uses a JMS Topic. Deploy the topic using the following Ant target.

$ ant make-topic

5. Build the EJBs used in this example.

$ ant

You will see titan.jar copied to the JBoss deploy directory and redeployed by the application server.

6. Initialize the database.You will see a bunch of entity beans being created.

$ ant createdb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

30.1.3 Examine the Service Code

The scheduleMaintenance, clearSchedule, and ejbTimeout methods from the EJB book have been added to Ship EJB to
show the EJB Timer Service in action.

30.1.3.1 ShipBean.java

public void scheduleMaintenance(String descr, Date dateOf) {

 TimerService timerService = ejbContext.getTimerService();

 timerService.createTimer(dateOf, description);

}

public void clearSchedule() {

 TimerService timerService = ejbContext.getTimerService();

 java.util.Iterator timers = timerService.getTimers().iterator();

 while (timers.hasNext()) {

 System.out.println("Cancelling maintenance on ship: " + getName());

 javax.ejb.Timer timer = (javax.ejb.Timer) timers.next();

 timer.cancel();

 }

}

public void ejbTimeout(javax.ejb.Timer timer) {

 String description = (String) timer.getInfo();

 try {

 InitialContext jndiContext = new InitialContext();

 TopicConnectionFactory factory =(TopicConnectionFactory)

 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)

 jndiContext.lookup("java:comp/env/jms/MaintenanceTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session = connect.createTopicSession(true, 0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();

 textMsg.setText(getName() + " " + description);

 publisher.publish(textMsg);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 publisher.publish(textMsg);

 session.close();

 connect.close();

 } catch (Exception e){

 throw new EJBException(e);

 }

}

A stateless session bean has been added to the ship package so that the Ship EJB methods can be called remotely. The
scheduleMaintenance and clearSchedule methods look up a Ship EJB and call those methods on that particular entity
bean.

30.1.3.2 ShipMaintenanceBean.java

public void scheduleMaintenance(int shipId, int secs, String desc) {

 try {

 ShipHomeLocal shiphome =(ShipHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ShipHomeLocal");

 ShipLocal ship =

 shiphome.findByPrimaryKey(new Integer(shipId));

 Date dateOfTest = new Date(System.currentTimeMillis()

 + (secondsToSchedule * 1000));

 ship.scheduleMaintenance(description, dateOfTest);

 } catch (NamingException e){

 throw new EJBException(e);

 } catch (javax.ejb.FinderException e){

 throw new EJBException(e);

 }

}

public void clearSchedule(int shipId) {

 try {

 ShipHomeLocal shiphome =(ShipHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/ShipHomeLocal");

 ShipLocal ship =

 shiphome.findByPrimaryKey(new Integer(shipId));

 Date dateOfTest = new Date(System.currentTimeMillis()

 + (secondsToSchedule * 1000));

 ship.clearSchedule();

 } catch (NamingException e){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch (NamingException e){

 throw new EJBException(e);

 } catch (javax.ejb.FinderException e){

 throw new EJBException(e);

 }

}

30.1.4 Examine the Client Code

There are four client programs used to run the examples. The programs are in the com.titan.clients package. InitDB.java
calls code in TravelAgentEJB to create all the entity beans needed for this example. JmsClient_1.java listens on the
MaintenanceTopic for published messages from the ejbTimeout method in ShipEJB. MaintenanceScheduler.java initiates
a call to the ShipMaintenance EJB to schedule maintenance. CancelMaintenance.java initiates a call to the
ShipMaintenance EJB to clear the maintenance schedule. We don't walk through the code for these programs because
they are a quite straightforward example of invoking on a stateless session bean.

30.1.5 Run the Example

The first thing you must do to run the example is start up the JMS client that listens for maintenance messages. Launch
another console window and initialize its environment as described above. Start the JMS client by executing the
following Ant target:

C:\workbook\ex13_1>ant run.watcher

You should see the following displayed on the console:

C:\workbook\ex13_1>ant run.watcher

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.watcher:

 [java] Listening for messages on topic/titan-MaintenanceTopic...

Next, you can schedule maintenance to a ship by running the ScheduleMaintenance script. There is one provided for both
Windows and Unix. To run this script, you need to provide a ship ID (101 or 102), the time in seconds for when you
want the maintenance scheduled, and finally a description of the maintenance that will be scheduled:

C:\workbook\ex13_1>ScheduleMaintenance 101 5 propellar

After five seconds, you should see the JMS client console window show up with the scheduled maintenance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After five seconds, you should see the JMS client console window show up with the scheduled maintenance:

C:\jboss\workbook\ex13_1>ant run.watcher

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.watcher:

 [java] Listening for messages on topic/titan-MaintenanceTopic...

 [java] MAINTENANCE SCHEDULED:

 [java] Nordic Prince propeller

You can cancel any maintenance by running the CancelMaintenance script before the ejbTimeout executes. There is one
provided for both Windows and Unix. To run this script, you need to provide a ship ID (101 or 102):

C:\workbook\ex13_1>CancelMaintenance 101

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 30. Exercises for Chapter 13
Section 30.1. Exercise 13.1: EJB Timer Service

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

31.1 Exercise 15.1: Web Services and EJB 2.1
In this exercise, you will learn how to use JAX-RPC's client and server-side programming model with EJB 2.1. You will
expose a stateless session bean as a web service. You will also investigate how to connect to and invoke on an existing
web service from within EJB code. The stateless session bean that is exposed models the TravelAgentEndpoint in
Chapter 15 of the EJB book. The supporting code for the rest of this exercise is borrowed from the exercises for Chapter
11 (Workbook 8). This exercise also introduces another stateless session bean that acts as a JAX-RPC client to the
TravelAgentEndpoint EJB.

31.1.1 Initialize Your Environment

Perform the following steps:

1. Open a command prompt or shell terminal and change to the ex15_1 directory created by the extraction
process.

2. Set the JAVA_HOME and JBOSS_HOME environment variables to point to where your JDK and JBoss 4.0 are
installed. Examples:

Windows:

C:\workbook\ex15_1> set JAVA_HOME=C:\jdk1.4.2

C:\workbook\ex15_1> set JBOSS_HOME=C:\jboss-4.0

Unix:

$ export JAVA_HOME=/usr/local/jdk1.4.2

$ export JBOSS_HOME=/usr/local/jboss-4.0

3. Add ant to your execution path. Ant is the build utility.

Windows:

C:\workbook\ex15_1> set PATH=..\ant\bin;%PATH%

Unix:

$ export PATH=../ant/bin:$PATH

31.1.2 Clean the Database

You need to clean and refresh the database. To do this, first shutdown JBoss if you have it running and then run the ant
clean.db.

31.1.3 Build and Deploy Example Programs

JBoss implements web services integration using the Apache Axis project http://ws.apache.org/axis/. One of the more
annoying things about web services and EJB is creating a WSDL document based on a Service Endpoint interface. To
alleviate this work, Axis has a nice tool called Java2WSDL that allows you to automatically generate a WSDL document
based on a plain Java interface. If you examine the build.xml file, you can see an ant target devoted to invoking this
utility.

31.1.3.1 build.xml

 <target name="wsdl" depends="compile">

 <java classname="org.apache.axis.wsdl.Java2WSDL" fork="yes" dir=".">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <java classname="org.apache.axis.wsdl.Java2WSDL" fork="yes" dir=".">

 <classpath refid="classpath"/>

 <arg value="-lhttp://localhost:8080/ws4ee/services/TravelAgentService"/>

 <arg value="-uLITERAL"/>

 <arg value="-sTravelAgentEndpoint"/>

 <arg value="-o${src.resources}/META-INF/travelagent.wsdl"/>

 <arg value="com.titan.webservice.TravelAgentEndpoint"/>

 </java>

 <copy file="${src.resources}/META-INF/travelagent.wsdl" todir="${src.resources}/client/META-INF/" />

 </target>

The -l switch tells Java2WSDL the default service location URL that will be used by a client connection. The -uLITERAL
switch tells Axis to generate WSDL with RPC/Literal messaging. No one takes the default RPC/Encoded messaging
seriously anymore as it doesn't interoperate very well. The -o switch just specifies where the WSDL file should be
generated. The class name of the Service Endpoint Interface (it can be any Java interface) must be specified as an
argument and must also be within the classpath.

In this exercise there are two EJB jar files. One is titan.jar, which contains TravelAgentEndpoint and other supporting
EJBs; the other is titan-client.jar, which contains the EJB that will be connecting to TravelAgentEndpoint as a JAX-RPC
client. Both of these jars require the travelagent.wsdl file to do their things.

To do the build, perform the following steps:

1. Generate the WSDL documents:

$ ant wsdl

2. Compile and deploy the ejb jars:

$ ant ejbjar

You will see titan.jar and titan-client.jar built, copied to the JBoss deploy directory, and redeployed by the application
server.

So where's the JAX-RPC stub generation? The spirit of JBoss has always been to avoid any precompilation step. If you
have run any of the other examples in this book, you will have seen that there is not any stub generation for EJBs
either. At deployment time, JBoss automatically generates dynamic proxies to handle all web service communication
both with clients and services.

31.1.4 Examine the Server Model

To illustrate how to expose a stateless session bean, the TravelAgentEJB from Exercise 4.2 has been extended. This
first thing to be done was to define a Service Endpoint interface the web service will implement. This interface is defined
in src/main/com/titan/travelagent.

31.1.4.1 TravelAgentEndpoint.java

package com.titan.webservice;

public interface TravelAgentEndpoint extends java.rmi.Remote {

 String makeReservation(int cruiseId, int cabinId,

 int customerId, double price)

 throws java.rmi.RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This interface is taken directly from Chapter 15 of the EJB book. Next, you have to define all the deployment
descriptors. These files reside in src/resources/META-INF.

31.1.4.2 ejb-jar.xml

<session>

 <description>

 A Web Service reservation service

 </description>

 <ejb-name>TravelAgentEjbEndpoint</ejb-name>

 <service-endpoint>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint>

 <ejb-class>

 com.titan.webservice.TravelAgentBean

 </ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

...

This XML is taken directly from Chapter 15 of the EJB book and added to the definition of the other supporting EJBs.

31.1.4.3 travelagent_mapping.xml

<java-wsdl-mapping

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

 version="1.1">

 <package-mapping>

 <package-type>com.titan.webservice</package-type>

 <namespaceURI>

 http://webservice.titan.com/TravelAgentEndpoint

 </namespaceURI>

 </package-mapping>

</java-wsdl-mapping>

The endpoint we are exposing follows the guidelines for a simple mapping file. The namespaceURI element is a little

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The endpoint we are exposing follows the guidelines for a simple mapping file. The namespaceURI element is a little
different from Chapter 15 of the EJB book because it should match the generated WSDL document.

31.1.4.4 webservices.xml

<webservices

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:titan="http://www.titan.com/TravelAgent"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"

 version="1.1">

<webservice-description>

 <webservice-description-name>

 TravelAgentService

 </webservice-description-name>

 <wsdl-file>META-INF/travelagent.wsdl</wsdl-file>

 <jaxrpc-mapping-file>

 META-INF/travelagent_mapping.xml

 </jaxrpc-mapping-file>

 <port-component>

 <port-component-name>TravelAgentEndpoint</port-component-name>

 <wsdl-port>titan:TravelAgentEndpoint</wsdl-port>

 <service-endpoint-interface>

 com.titan.webservice.TravelAgentEndpoint

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>TravelAgentEjbEndpoint</ejb-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

This is a standard webservices.xml descriptor. It links the WSDL file, mapping file, Service Endpoint interface, and
TravelAgentEndpoint EJB all together. The important part of this file as it pertains to Jboss is the <webservice-description-
name>. JBoss binds all deployed web services under the /ws4ee/services/<webservice-description-name> URL. For this
example, it would be under /ws4ee/services/TravelAgentEndpoint. You can also view all endpoints by going to the base
URL /ws4ee/services (Figure 31-1).

Figure 31-1. Listing the deployed services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-1. Listing the deployed services

31.1.5 Examine the Client Model

TravelAgentClientEJB is a stateless session bean that illustrates how to invoke a web service from within EJB code. It
simply exposes the same interface as TravelAgentEndpoint EJB and implements it by delegating to the
TravelAgentEndpoint interface, invoking over the wire via a SOAP invocation.

31.1.5.1 TravelAgentClientBean.java

public String makeReservation(int cruiseId, int cabinId,

 int customerId, double price)

 throws java.rmi.RemoteException {

 try {

 javax.naming.Context jndiContext = new InitialContext();

 Object obj =

 jndiContext.lookup("java:comp/env/service/TravelAgent");

 javax.xml.rpc.Service svc = (javax.xml.rpc.Service) obj;

 TravelAgentEndpoint endpoint = (TravelAgentEndpoint)

 svc.getPort(TravelAgentEndpoint.class);

 return endpoint.makeReservation(cruiseId, cabinId,

 customerId, price);

 } catch (Exception e) {

 e.printStackTrace();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.printStackTrace();

 throw new EJBException("failed");

 }

}

Since the spirit of JBoss is to avoid stub generation, the preferred method for clients is the Dynamic Proxy API as JBoss
will automatically set up all proxies at deploy time. TravelAgentClientBean.makeReservation is an example of this. A generic
proxy is registered for the service reference and you can get a proxy to any endpoint interface you want by passing in a
Java Class parameter to the getPort method.

31.1.5.2 ejb-jar.xml

<session>

 <ejb-name>TravelAgentClientEJB</ejb-name>

...

 <service-ref>

 <service-ref-name>service/TravelAgent</service-ref-name>

 <service-interface>

 javax.xml.rpc.Service

 </service-interface>

 <wsdl-file>META-INF/travelagent.wsdl</wsdl-file>

 <jaxrpc-mapping-file>

 META-INF/travelagent_mapping.xml

 </jaxrpc-mapping-file>

 </service-ref>

 </session>

The <service-ref> element is standard. One thing to note is that the <service-qname> element can be left out if the WSDL
file contains only one service definition. The other deployment descriptors are the same descriptors as in the server
model.

31.1.5.3 travelagent.wsdl

<wsdl:service name="TravelAgentEndpointService">

 <wsdl:port name="TravelAgentEndpoint"

 binding="impl: TravelAgentEndpointSoapBinding">

 <wsdlsoap:address location="http://localhost:8080/ws4ee/services/

 TravelAgentService"/>

 </wsdl:port>

</wsdl:service>

The address location in the TravelAgentEJB.wsdl file is the URL used by the Dynamic Proxy created in the listCabins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The address location in the TravelAgentEJB.wsdl file is the URL used by the Dynamic Proxy created in the listCabins
method.

31.1.6 Run the Client Application

The client application is made up of two clients. The first client initializes the entity beans and database tables that are
needed for this exercise.

C:\workbook\ex15_1>ant createdb

Buildfile: build.xml

prepare:

compile:

createdb:

 [java] Calling TravelAgentBean to create sample data..

 [java] All customers have been removed

 [java] All cabins have been removed

 [java] All ships have been removed

 [java] All cruises have been removed

 [java] All reservations have been removed

 [java] Customer with ID 1 created (Burke Bill)

 [java] added credit card: 4300000000000000 for Bill

 [java] Customer with ID 2 created (Labourey Sacha)

 [java] Created ship with ID 101...

 [java] Created ship with ID 102...

 [java] Created cabins on Ship A with IDs 100-109

 [java] Created cabins on Ship B with IDs 200-209

 [java] Created Alaska Cruise with ID 0 on ShipA

 [java] Created Norwegian Fjords Cruise with ID 1 on ShipA

 [java] Created Bermuda or Bust Cruise with ID 2 on ShipA

 [java] Created Indian Sea Cruise with ID 3 on ShipB

 [java] Created Australian Highlights Cruise with ID 4 on ShipB

 [java] Created Three-Hour Cruise with ID 5 on ShipB

 [java] Made reservation for Customer 1 on Cruise 0 for Cabin 103

 [java] Made reservation for Customer 1 on Cruise 5 for Cabin 208

 [java] Made reservation for Customer 2 on Cruise 1 for Cabin 105

 [java] Made reservation for Customer 2 on Cruise 5 for Cabin 202

 [java] Creating database table...

The second client is a MakeReservation script that can be run from the command line. There is a script provided for
both Unix and Windows. The arguments for the script are a cruise ID, cabin ID, a customer ID, and finally a price for
the reservation. You can pull three of the arguments from the output of run.createdb:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the reservation. You can pull three of the arguments from the output of run.createdb:

C:\workbook\ex15_1>MakeReservation 1 106 1 5000.00

Buildfile: build.xml

prepare:

compile:

ejbjar:

run.client:

 [java] reservation 5 completed.

Here we are, back at the dock, our "EJB on JBoss" cruise complete! We really hope you've enjoyed the voyage and that
we'll soon meet you on JBoss's forums for some more exciting adventures.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 31. Exercises for Chapter 15
Section 31.1. Exercise 15.1: Web Services and EJB 2.1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Choosing and Setting Up an EJB Server
The EJB server you choose should provide a utility for deploying enterprise beans. It doesn't matter whether the utility
is command-line oriented or graphical, as long as it does the job. The deployment utility should allow you to work with
prepackaged enterprise beans, i.e., enterprise beans that have already been developed and archived in a JAR file.
Finally, the EJB server must support an SQL-standard relational database that is accessible using JDBC. For the
database, you should have privileges sufficient for creating and modifying a few simple tables in addition to normal
read, update, and delete capabilities. If you have chosen an EJB server that does not support a SQL-standard relational
database, you may need to modify the examples to work with the product you are using.

This book does not say very much about how to install and deploy enterprise beans. That task is largely server-
dependent. We'll provide some general ideas about how to organize JAR files and create deployment descriptors, but for
a complete description of the deployment process, you'll have to refer to your vendor's documentation.

4.1.1 Setting Up Your Java IDE

To get the most from this chapter, it helps to have an IDE that has a debugger and allows you to add Java files to its
environment. Several Java IDEs—such as BEA's Weblogic Workshop, IBM's Eclipse, Borland's JBuilder, and Sun's Forte—
fulfill this requirement. Some EJB products, such as IBM's WebSphere and BEA's Weblogic, are tightly coupled with an
IDE that makes life a lot easier when it comes to writing, deploying, and debugging your applications.

Once you have an IDE set up, you need to include the Enterprise JavaBeans and other J2EE packages which will be
provided by your application server vendor—usually in a single JAR file (e.g., j2ee.jar).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Developing an Entity Bean
There's no better place to start than the Cabin EJB, which we have been examining throughout the previous chapters.
The Cabin EJB is an entity bean that encapsulates the data and behavior associated with a cruise ship cabin in Titan's
business domain.

4.2.1 Cabin: The Remote Interface

When developing an entity bean, we first want to define its remote interface. The remote interface defines the bean's
business purpose; the methods of this interface must capture the concept of the entity. We defined the remote
interface for the Cabin EJB in Chapter 2; here, we add two new methods for setting and getting the ship ID and the bed
count. The ship ID identifies the ship to which the cabin belongs, and the bed count tells how many people the cabin
can accommodate:

package com.titan.cabin;

import java.rmi.RemoteException;

public interface CabinRemote extends javax.ejb.EJBObject {

 public String getName() throws RemoteException;

 public void setName(String str) throws RemoteException;

 public int getDeckLevel() throws RemoteException;

 public void setDeckLevel(int level) throws RemoteException;

 public int getShipId() throws RemoteException;

 public void setShipId(int sp) throws RemoteException;

 public int getBedCount() throws RemoteException;

 public void setBedCount(int bc) throws RemoteException;

}

The CabinRemote interface defines four properties: name, deckLevel, shipId, and bedCount. Properties are attributes of an
enterprise bean that can be accessed by public set and get methods.

Notice that we have made the CabinRemote interface a part of a new package named com.titan.cabin. Place all the classes
and interfaces associated with each type of bean in a package specific to the bean. Because our beans are for the use of
the Titan cruise line, we placed these packages in the com.titan package hierarchy. We also created directory structures
that match package structures. If you are using an IDE that works directly with Java files, create a new directory called
dev (for development) and create the directory structure shown in Figure 4-1. Copy the CabinRemote interface into your
IDE and save its definition to the cabin directory. Compile the CabinRemote interface to ensure that its definition is
correct. The CabinRemote.class file, generated by the IDE's compiler, should be written to the cabin directory, the same
directory as the CabinRemote.java file. The rest of the Cabin bean's classes will be placed in this same directory.

Figure 4-1. Directory structure for the Cabin bean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.2 CabinHome: The Remote Home Interface

Once we have defined the remote interface of the Cabin EJB, we have defined the remote view of this simple entity
bean. Next, we need to define the Cabin EJB's remote home interface, which specifies how the enterprise bean can be
created, located, and destroyed by remote clients; in other words, the Cabin EJB's life-cycle behavior. Here is a
complete definition of the CabinHomeRemote home interface:

package com.titan.cabin;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

}

The CabinHomeRemote interface extends javax.ejb.EJBHome and defines two life-cycle methods: create() and
findByPrimaryKey(). These methods create and locate remote references to Cabin EJBs. Remove methods (for deleting
enterprise beans) are defined in the javax.ejb.EJBHome interface, so the CabinHomeRemote interface inherits them.

4.2.3 CabinBean: The Bean Class

We have now defined the remote client-side API for creating, locating, using, and removing the Cabin EJB. Now we
need to define CabinBean, the class that provides the implementation on the server for the Cabin EJB. The CabinBean
class is an entity bean that uses container-managed persistence, so its definition will be fairly simple.

In addition to the callback methods discussed in Chapter 2 and Chapter 3, we must also define accessor methods for
the CabinRemote interface and an implementation of the create method defined in the CabinHomeRemote interface. Here is
the complete definition of the CabinBean class:

package com.titan.cabin;

import javax.ejb.EntityContext;

public abstract class CabinBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public Integer ejbCreate(Integer id){

 this.setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id){

 }

 public abstract void setId(Integer id);

 public abstract Integer getId();

 public abstract void setShipId(int ship);

 public abstract int getShipId();

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setBedCount(int count);

 public abstract int getBedCount();

 public abstract void setDeckLevel(int level);

 public abstract int getDeckLevel();

 public void setEntityContext(EntityContext ctx) {

 // Empty implementation.

 }

 public void unsetEntityContext() {

 // Empty implementation.

 }

 public void ejbActivate() {

 // Empty implementation.

 }

 public void ejbPassivate() {

 // Empty implementation.

 }

 public void ejbLoad() {

 // Empty implementation.

 }

 public void ejbStore() {

 // Empty implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Empty implementation.

 }

 public void ejbRemove() {

 // Empty implementation.

 }

}

The CabinBean class can be divided into two sections for discussion: declarations for the container-managed fields and
the callback methods.

4.2.3.1 Container-managed fields

The CabinBean defines several pairs of abstract accessor methods. For example, setName() and getName() are a pair of
abstract accessor methods. These methods are responsible for setting and getting the entity bean's name field. When
the bean is deployed, the EJB container automatically implements all the abstract accessor methods so that the bean
state can be synchronized with the database. These implementations map the abstract accessor methods to fields in the
database. Although all the abstract accessor methods have corresponding methods in the remote interface,
CabinRemote, it's not necessary that they do so. Some accessor methods are for the entity bean's use only and are never
exposed to the client through the remote or local interfaces. Note that, unlike the matching methods in the remote
interface, the abstract accessor methods do not throw RemoteExceptions.

It's customary to consider the abstract accessor methods as providing access to virtual fields and to refer to those fields
by their method names, less the get or set prefix. For example, the getName()/setName() abstract accessor methods
define a virtual container-managed persistence (CMP) field called name (the first letter is always changed to lowercase).
The getDeckLevel()/setDeckLevel() abstract accessor methods define a virtual CMP field called deckLevel, and so on.

The name, deckLevel, shipId, and bedCount fields represent the Cabin EJB's persistent state. They will be mapped to the
database at deployment time. These fields are also publicly available through the entity bean's remote interface.
Invoking the getBedCount() method on a CabinRemote EJB object causes the container to delegate that call to the
corresponding getBedCount() method on the CabinBean instance.

There is no requirement that CMP fields must be exposed. The id field is another container-managed field, but its
abstract accessor methods are not exposed to the client through the CabinRemote interface. This field is the primary key
of the Cabin EJB; it's the entity bean's index to its data in the database. It's bad practice to expose the primary key of
an entity bean—you don't want client applications to be able to change that key.

4.2.3.2 The callback methods

The CabinHomeRemote interface defines one create() method, so there is only one corresponding ejbCreate() method and
one ejbPostCreate() method defined by the CabinBean class. When a client invokes the create() method on the remote
home interface, it is delegated to a matching ejbCreate() method on the entity bean instance. The ejbCreate() method
initializes the fields; in the case of the CabinBean, it sets the id field.

Although it's not required by the EJB specification, some J2EE application vendors insist
that ejbCreate() throw a javax.ejb.CreateException—this is true of the J2EE 1.4 SDK. This has
never been a requirement, but it's an issue that continues to crop up every time there is a
new edition of this book.

The ejbCreate() method always returns the primary key type; with container-managed persistence, this method returns
the null value. It's the container's responsibility to create the primary key. Why does it return null? This convention
makes it easier for EJB vendors that support container-managed persistence using bean-managed persistence—it's a
technique that is more common in EJB 1.1. Bean-managed persistence beans, which are covered in Chapter 10, always
return the primary key type.

Once the ejbCreate() method has executed, the ejbPostCreate() method is called to perform any follow-up operations.
The ejbCreate() and ejbPostCreate() methods must have signatures that match the parameters and (optionally) the
exceptions of the home interface's create() method. The ejbPostCreate() method is used to perform any postprocessing
on the bean after it is created, but before it can be used by the client. Both methods will execute, one right after the
other, when the client invokes the create() method on the remote home interface.

The findByPrimaryKey() method is not defined in container-managed bean classes. Instead, find methods are generated
at deployment and implemented by the container. With bean-managed entity beans, find methods must be defined in
the bean class. In Chapter 10, when you develop bean-managed entity beans, you will define the find methods in the
bean classes you develop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bean classes you develop.

The CabinBean class implements javax.ejb.EntityBean, which defines seven callback methods: setEntityContext(),
unsetEntityContext(), ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), and ejbRemove(). The container uses these callback
methods to notify the CabinBean of certain events in its life cycle. Although the callback methods are implemented, the
implementations are empty. The CabinBean is simple enough that it doesn't need to do any special processing during its
life cycle. When we study entity beans in more detail in Chapter 6 through Chapter 11, we will take advantage of these
callback methods.

4.2.4 The Deployment Descriptor

You are now ready to create a deployment descriptor for the Cabin EJB. The deployment descriptor performs a function
similar to a properties file. It describes which classes make up an enterprise bean and how the enterprise bean should
be managed at runtime. During deployment, the deployment descriptor is read and its properties are displayed for
editing. The deployer can then modify and add settings as appropriate for the application's operational environment.
Once the deployer is satisfied with the deployment information, she uses it to generate the entire supporting
infrastructure needed to deploy the enterprise bean in the EJB server. This may include resolving enterprise bean
references, adding the enterprise bean to the naming system, and generating the enterprise bean's EJB object and EJB
home, persistence infrastructure, transactional support, and so forth.

Although most EJB server products provide a wizard for creating and editing deployment descriptors, we will create ours
directly so that the enterprise bean is defined in a vendor-independent manner. This requires some manual labor, but it
gives you a much better understanding of how deployment descriptors are created. Once the deployment descriptor is
finished, the enterprise bean can be placed in a JAR file and deployed on any EJB-compliant server of the appropriate
version. An XML deployment descriptor has been created for every example in this book; they are available from the
download site.

Vendors often require that you include vendor-specific deployment files along with the
standard ones. This is an unfortunate situation that impacts portability, but something you
need to be aware of. Consult your vendor's documentation to discover what additional
configuration files they require.

Throughout this book, we show both the EJB 2.1 and EJB 2.0 code when they are different. In many cases, the
component interfaces are the same; however, XML deployment descriptors will be different because EJB 2.1 uses XML
Schema, while EJB 2.0 uses an XML DTD. This is the case with the Cabin EJB.

4.2.4.1 EJB 2.1: The Cabin EJB's deployment descriptor

Here's the deployment descriptor for the Cabin bean in EJB 2.1:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <reentrant>False</reentrant>

 <abstract-schema-name>Cabin</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>shipId</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

The ejb-jar element declares its namespace, the XSI namespace, and the location of the XML Schema that is used to
validate it. The meaning of namespaces and XML schemas are described in more detail in Chapter 16.

4.2.4.2 EJB 2.0: The Cabin EJB's deployment descriptor

In EJB 2.0, the deployment descriptor is based on an XML DTD and looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <abstract-schema-name>Cabin</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>

 <cmp-field><field-name>deckLevel</field-name></cmp-field>

 <cmp-field><field-name>shipId</field-name></cmp-field>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cmp-field><field-name>shipId</field-name></cmp-field>

 <cmp-field><field-name>bedCount</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

The <!DOCTYPE> element describes the purpose of the XML file, its root element, and the location of its DTD. The DTD is
used to verify that the document is structured correctly. This element is discussed in detail in Chapter 16. EJB 2.0
specifies the ejb-jar_2_0.dtd as its DTD.

4.2.4.3 EJB 2.1 and 2.0: Defining the XML elements

One important difference between EJB 2.1 and EJB 2.0 is that they use different types of validation for deployment
descriptors. EJB 2.0 uses XML DTDs, which have been employed for the past few years to validate the structure of the
XML deployment descriptor. XML Schema is a new mechanism for validating deployment descriptors. XML Schema can
validate not only the structure but also the values used in the deployment descriptor—something DTDs couldn't do well.
On the other hand, XML Schema is complex and takes time to master, so there is a price to be paid for the added
precision it offers.

The rest of the XML elements are nested one within another and delimited by beginning and ending tags. The structure
is not complicated. If you have done any HTML coding, you already understand the format. An element always starts
with a <name_of_tag> tag and ends with a </name_of_tag> tag. Everything in between—even other elements—is part of
the enclosing element.

The first major element is the <ejb-jar> element, which is the root of the document. All the other elements must lie
within this element. Next is the <enterprise-beans> element. Every bean declared in an XML file must be included in this
section. This file describes only the Cabin EJB, but we could define several beans in one deployment descriptor.

The <entity> element shows that the beans defined within this tag are entity beans. Similarly, a <session> element
describes session beans; since the Cabin EJB is an entity bean, we don't need a <session> element. In addition to a
description, the <entity> element provides the fully qualified class names of the remote interface, home interface, bean
class, and primary key. The <cmp-field> elements list all the container-managed fields in the entity bean class. These
are the fields that will persist in the database and be managed by the container at runtime. The <entity> element also
includes a <reentrant> element that can be set as True or False depending on whether the bean allows reentrant
loopbacks or not.

The deployment descriptor also specifies the <security-identity> as <use-caller-identity/>, which simply means the bean
propagates the calling client's security identity when it accesses resources or other beans. Security identities are
covered in Chapter 3.

The section of the XML file after the <enterprise-beans> element is enclosed by the <assembly-descriptor> element, which
describes the security roles and transaction attributes of the bean. In this example, this section of the XML file is the
same for both EJB 2.1 and EJB 2.0:

<ejb-jar ...>

 <enterprise-beans>

 ...

 </enterprise-beans>

<assembly-descriptor>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the Cabin EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>CabinEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

</assembly-descriptor>

</ejb-jar>

It may seem odd to separate the <assembly-descriptor> information from the <enterprise-beans> information, since it
clearly applies to the Cabin EJB, but in the scheme of things, it's perfectly natural. A single XML deployment descriptor
can describe several beans, which might all rely on the same security roles and transaction attributes. To make it easier
to deploy several beans together, this common information is grouped in the <assembly-descriptor> element.

There is another (perhaps more important) reason for separating information about the bean itself from the security
roles and transaction attributes. Enterprise JavaBeans defines the responsibilities of different participants in the
development and deployment of beans. We don't address these development roles in this book because they are not
critical to learning the fundamentals of EJB. For now, it's enough to know that the person who develops the beans and
the person who assembles the beans into an application have separate responsibilities and therefore deal with separate
parts of the XML deployment descriptor. The bean developer is responsible for everything within the <enterprise-beans>
element; the bean assembler is responsible for everything within the <assembly-descriptor>. Throughout this book you
will play both roles, developing the beans and assembling them. Other roles you will fill are that of the deployer, who
actually loads the enterprise beans into the EJB container, and the administrator, who is responsible for tuning the EJB
server and managing it at runtime. In real projects, these roles may be filled by an individual, several different
individuals, or even teams.

The <assembly-descriptor> contains the <security-role> elements and their corresponding <method-permission> elements. In
this example, there is one security role, everyone, which is mapped to all the methods in the Cabin EJB using the
<method-permission> element. (The * in the <method-name> element means "all methods.")

The <container-transaction> element declares that all the methods of the Cabin EJB have a Required transaction attribute,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <container-transaction> element declares that all the methods of the Cabin EJB have a Required transaction attribute,
which means that all the methods must be executed within a transaction. Transaction attributes are explained in more
detail in Chapter 14. The deployment descriptor ends with the closing tag of the <ejb-jar> element.

Copy the Cabin EJB's deployment descriptor into the META-INF directory and save it as ejb-jar.xml. You have now
created all the files you need to package your Cabin EJB. Figure 4-2 shows all the files that should be in the dev
directory.

Figure 4-2. The Cabin EJB files

4.2.5 cabin.jar: The JAR File

The JAR file is a platform-independent file format for compressing, packaging, and delivering several files together.
Based on the ZIP file format and the ZLIB compression standards, the JAR (Java archive) tool and packages were
originally developed to make downloads of Java applets more efficient. As a packaging mechanism, however, the JAR
file format is a very convenient way to "shrink-wrap" components and other software for delivery to third parties. In
EJB development, a JAR file packages all the classes and interfaces associated with a bean, including the deployment
descriptor, into one file.

Creating the JAR file for deployment is easy. Position yourself in the dev directory that is just above the com/titan/cabin
directory tree, and execute the following command:

\dev % jar cf cabin.jar com/titan/cabin/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\cabin*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first and copy ejb-jar.xml into that directory. The c option tells the jar
utility to create a new JAR file that contains the files indicated in subsequent parameters. It also tells the jar utility to
stream the resulting JAR file to standard output. The f option tells jar to redirect the standard output to a new file
named in the second parameter (cabin.jar). It's important to get the order of the option letters and the command-line
parameters to match. You can learn more about the jar utility and the java.util.zip package in Java in a Nutshell by David
Flanagan, or Learning Java by Pat Niemeyer and Jonathan Knudsen (both published by O'Reilly).

The jar utility creates the file cabin.jar in the dev directory. If you're interested in looking at the contents of the JAR file,
you can use any standard ZIP application (WinZip, PKZIP, etc.), or you can use the command jar tvf cabin.jar.

4.2.6 Creating a CABIN Table in the Database

One of the primary jobs of a deployment tool is mapping entity beans to databases. In the case of the Cabin EJB, we
must map its id, name, deckLevel, shipId, and bedCount container-managed fields to some data source. Before proceeding
with deployment, you need to set up a database and create a CABIN table. You can use the following standard SQL
statement to create a CABIN table that will be consistent with the examples provided in this chapter:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement to create a CABIN table that will be consistent with the examples provided in this chapter:

create table CABIN

(

 ID int primary key NOT NULL,

 SHIP_ID int,

 BED_COUNT int,

 NAME char(30),

 DECK_LEVEL int

)

This statement creates a CABIN table that has five columns corresponding to the container-managed fields in the
CabinBean class. Once the table is created and connectivity to the database is confirmed, you can proceed with the
deployment process.

4.2.7 Deploying the Cabin EJB

Deployment is the process of reading the bean's JAR file, changing or adding properties to the deployment descriptor,
mapping the bean to the database, defining access control in the security domain, and generating any vendor-specific
classes needed to support the bean in the EJB environment. Every EJB server product has its own deployment tools,
which may provide a graphical user interface, a set of command-line programs, or both. Graphical deployment wizards
are the easiest deployment tools to use.

A deployment tool reads the JAR file and looks for ejb-jar.xml. In a graphical deployment wizard, the deployment
descriptor elements are presented using a set of property sheets similar to those used in environments such as
VisualBasic.NET, PowerBuilder, and JBuilder. Figure 4-3 shows the deployment wizard for the J2EE 1.3 SDK (Reference
Implementation) server.

Figure 4-3. J2EE 1.3 SDK Reference Implementation's deployment wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The J2EE Reference Implementation's deployment wizard has fields and panels that match the XML deployment
descriptor. You can map security roles to user groups, set the JNDI lookup name, map the container-managed fields to
the database, etc. EJB deployment tools provide varying degrees of support for mapping container-managed fields to a
data source. Some provide sophisticated graphical user interfaces, while others are simpler and less flexible.
Fortunately, mapping the CabinBean's container-managed fields to the CABIN table is a fairly straightforward process. The
documentation for your vendor's deployment tool will show you how to create this mapping. Once you have finished the
mapping, you can complete the deployment of the Cabin EJB and prepare to access it from the EJB server.

4.2.8 Creating a Client Application

Now that the Cabin EJB has been deployed, we want to access it from a remote client. In this section, we create a
remote client that connects to the EJB server, locates the EJB remote home for the Cabin EJB, and creates and interacts
with several Cabin EJBs. The following code shows a Java application that creates a new Cabin EJB, sets its name,
deckLevel, shipId, and bedCount properties, and then locates it again using its primary key:

package com.titan.cabin;

import com.titan.cabin.CabinHomeRemote;

import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class Client_1 {

 public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin_1 = home.create(new Integer(1));

 cabin_1.setName("Master Suite");

 cabin_1.setDeckLevel(1);

 cabin_1.setShipId(1);

 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);

 CabinRemote cabin_2 = home.findByPrimaryKey(pk);

 System.out.println(cabin_2.getName());

 System.out.println(cabin_2.getDeckLevel());

 System.out.println(cabin_2.getShipId());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.println(cabin_2.getShipId());

 System.out.println(cabin_2.getBedCount());

 } catch (java.rmi.RemoteException re){re.printStackTrace();}

 catch (javax.naming.NamingException ne){ne.printStackTrace();}

 catch (javax.ejb.CreateException ce){ce.printStackTrace();}

 catch (javax.ejb.FinderException fe){fe.printStackTrace();}

 }

 public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

 }

}

To access an enterprise bean, a client starts by using JNDI to obtain a directory connection to a bean's container. JNDI
is an implementation-independent API for directory and naming systems. Every EJB vendor must provide a directory
service that is JNDI-compliant. This means that they must provide a JNDI service provider, which is a piece of software
analogous to a driver in JDBC. Different service providers connect to different directory services—not unlike JDBC,
where different drivers connect to different relational databases. The getInitialContext() method uses JNDI to obtain a
network connection to the EJB server.

The code used to obtain the JNDI Context depends on which EJB vendor you use. Consult your vendor's documentation
to find out how to obtain a JNDI Context appropriate to your product. For example, the code used to obtain a JNDI
Context in WebSphere might look something like the following:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 java.util.Properties properties = new java.util.Properties();

 properties.put(javax.naming.Context.PROVIDER_URL, "iiop:///");

 properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");

 return new InitialContext(properties);

}

The same method developed for BEA's WebLogic Server would be different:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Properties p = new Properties();

 p.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 p.put(Context.PROVIDER_URL, "t3://localhost:7001");

 return new javax.naming.InitialContext(p);

}

Once a JNDI connection is established and a context is obtained from the getInitialContext() method, the context can be
used to look up the EJB home of the Cabin EJB.

Object ref = jndiContext.lookup("CabinHomeRemote");

Throughout this book, we'll use lookup names like "CabinHomeRemote" for remote client applications. The actual name
you use to do a lookup may be different, depending on the requirements of your vendor. You will need to bind a lookup
name to the EJB server's naming service, and some vendors may require a special directory path.

If you are using a standard J2EE component (Servlet, JSP, EJB, or J2EE Application Client), you will not need to set the
properties explicitly when creating a JNDI InitialContext, no matter which EJB vendor you are using. That's because the
JNDI properties can be configured at deployment time and are applied automatically. A J2EE component would obtain
its InitialContext as follows:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 return new javax.naming.InitialContext();

}

This is simpler and more portable than configuring JNDI properties for simple Java clients. All J2EE components use the
same JNDI naming system that enterprise beans use to lookup any service. Specifically, they require that EJB
references be bound to the java:comp/env/ejb/ namespace. For example, for a J2EE component, here's all we need to
look up the Cabin EJB:

Object ref = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

At deployment time you would use the vendor's deployment tools to map that JNDI name to the Cabin EJB's home. In
this book, Java client applictions will need to use explicit parameters for JNDI lookups. As an alternative you could use a
special J2EE component called a J2EE Application Client, but this type of component is outside the scope of this book.
For more information about J2EE Application Client components consult the J2EE 1.3 (for EJB 2.0) or the J2EE 1.4
specifications.

The Client_1 application uses the PortableRemoteObject.narrow() method to narrow the Object ref to a CabinHomeRemote
reference:

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

The PortableRemoteObject.narrow() method was first introduced in EJB 1.1 and continues to be used on remote clients in
EJB 2.1 and 2.0. It is needed to support the requirements of RMI over IIOP. Because CORBA supports many different
languages, casting is not native to CORBA (some languages don't have casting). Therefore, to get a remote reference to
CabinHomeRemote, we must explicitly narrow the object returned from lookup(). This has the same effect as casting and
is explained in more detail in Chapter 5.

The name used to find the Cabin EJB's EJB home is set by the deployer using a deployment wizard like the one pictured
earlier. The JNDI name is entirely up to the person deploying the bean; it can be the same as the bean name set in the
XML deployment descriptor, or something completely different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.8.1 Creating a new Cabin EJB

Once we have a remote reference to the EJB home, we can use it to create a new Cabin entity:

CabinRemote cabin_1 = home.create(new Integer(1));

We create a new Cabin entity using the create(Integer id) method defined in the remote home interface of the Cabin EJB.
When this method is invoked, the EJB home works with the EJB server to create a Cabin EJB, adding its data to the
database. The EJB server creates an EJB object to wrap the Cabin EJB instance and returns a remote reference to the
EJB object. The cabin_1 variable then contains a remote reference to the Cabin EJB we just created. We don't need to
use the PortableRemoteObject.narrow() method to get the EJB object from the home reference, because it was declared as
returning the CabinRemote type; no casting was required. We don't need to explicitly narrow remote references returned
by findByPrimaryKey() for the same reason.

With the remote reference to the EJB object, we can update the name, deckLevel, shipId, and bedCount of the Cabin EJB:

CabinRemote cabin_1 = home.create(new Integer(1));

cabin_1.setName("Master Suite");

cabin_1.setDeckLevel(1);

cabin_1.setShipId(1);

cabin_1.setBedCount(3);

Figure 4-4 shows how the relational database table we created should look after this code has been executed. It should
contain one record.

Figure 4-4. CABIN table with one cabin record

A client locates entity beans using the findByPrimaryKey() method in the home interface. To look up the Cabin bean we
just created, we create a primary key of the correct type—in this case, Integer. When we invoke the finder method on
the home interface using the primary key, we get back a remote reference to the EJB object. We can now interrogate
the remote reference returned by findByPrimaryKey() to get the Cabin EJB's name, deckLevel, shipId, and bedCount:

Integer pk = new Integer(1);

CabinRemote cabin_2 = home.findByPrimaryKey(pk);

System.out.println(cabin_2.getName());

System.out.println(cabin_2.getDeckLevel());

System.out.println(cabin_2.getShipId());

System.out.println(cabin_2.getBedCount());

We are ready to create and run the Client_1 application. Compile the client application and deploy the Cabin EJB into the
container system (see the JBoss Workbook section of this book, Exercise 4.1). Then run the Client_1 application. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container system (see the JBoss Workbook section of this book, Exercise 4.1). Then run the Client_1 application. The
output should look something like this:

Master Suite

1

1

3

Congratulations! You just created and used your first entity bean. Of course, the client application doesn't do much.
Before going on to create session beans, create another client that adds some test data to the database. Here we'll
create Client_2, which is a modification of Client_1 that populates the database with a large number of cabins for three
different ships:

package com.titan.cabin;

import com.titan.cabin.CabinHomeRemote;

import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.ejb.CreateException;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class Client_2 {

 public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 // Add 9 cabins to deck 1 of ship 1.

 makeCabins(home, 2, 10, 1, 1);

 // Add 10 cabins to deck 2 of ship 1.

 makeCabins(home, 11, 20, 2, 1);

 // Add 10 cabins to deck 3 of ship 1.

 makeCabins(home, 21, 30, 3, 1);

 // Add 10 cabins to deck 1 of ship 2.

 makeCabins(home, 31, 40, 1, 2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 makeCabins(home, 31, 40, 1, 2);

 // Add 10 cabins to deck 2 of ship 2.

 makeCabins(home, 41, 50, 2, 2);

 // Add 10 cabins to deck 3 of ship 2.

 makeCabins(home, 51, 60, 3, 2);

 // Add 10 cabins to deck 1 of ship 3.

 makeCabins(home, 61, 70, 1, 3);

 // Add 10 cabins to deck 2 of ship 3.

 makeCabins(home, 71, 80, 2, 3);

 // Add 10 cabins to deck 3 of ship 3.

 makeCabins(home, 81, 90, 3, 3);

 // Add 10 cabins to deck 4 of ship 3.

 makeCabins(home, 91, 100, 4, 3);

 for (int i = 1; i <= 100; i++){

 Integer pk = new Integer(i);

 CabinRemote cabin = home.findByPrimaryKey(pk);

 System.out.println("PK = "+i+", Ship = "+cabin.getShipId()

 + ", Deck = "+cabin.getDeckLevel()

 + ", BedCount = "+cabin.getBedCount()

 + ", Name = "+cabin.getName());

 }

 } catch (java.rmi.RemoteException re) {re.printStackTrace();}

 catch (javax.naming.NamingException ne) {ne.printStackTrace();}

 catch (javax.ejb.CreateException ce) {ce.printStackTrace();}

 catch (javax.ejb.FinderException fe) {fe.printStackTrace();}

 }

 public static javax.naming.Context getInitialContext()

 throws javax.naming.NamingException{

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

 }

 public static void makeCabins(CabinHomeRemote home, int fromId,

 int toId, int deckLevel, int shipNumber)

 throws RemoteException, CreateException {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws RemoteException, CreateException {

 int bc = 3;

 for (int i = fromId; i <= toId; i++) {

 CabinRemote cabin = home.create(new Integer(i));

 int suiteNumber = deckLevel*100+(i-fromId);

 cabin.setName("Suite "+suiteNumber);

 cabin.setDeckLevel(deckLevel);

 bc = (bc==3)?2:3;

 cabin.setBedCount(bc);

 cabin.setShipId(shipNumber);

 }

 }

}

Create and run the Client_2 application against the Cabin EJB we deployed earlier. Client_2 lists all the Cabin EJBs it
added to the database:

PK = 1, Ship = 1, Deck = 1, BedCount = 3, Name = Master Suite

PK = 2, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 100

PK = 3, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 101

PK = 4, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 102

PK = 5, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 103

PK = 6, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 104

PK = 7, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 105

...

We now have 100 cabin records in our CABIN table, representing 100 cabin entities in our EJB system. This amount
provides a good set of test data for the session bean we will create in the next section, and for subsequent examples
throughout the book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Developing a Session Bean
Session beans act as agents to the client, controlling taskflow (the business process) and filling the gaps between the
representation of data by entity beans and the business logic. Session beans are often used to manage interactions
between entity beans and can perform complex manipulations of beans. Since we have defined only one entity bean so
far, we will start by manipulating this bean. The interactions of entity beans within session beans is explored in greater
detail in Chapter 11.

Client applications and other beans use the Cabin EJB in a variety of ways. Some of these uses were predictable when
the Cabin EJB was defined, but many were not. After all, an entity bean represents data—in this case, data describing a
cabin. The uses to which we put that data change over time—hence the importance of separating the data itself from
the taskflow. In Titan's business system, for example, we may need to list and report on cabins in ways that were not
predictable when the Cabin EJB was defined. Rather than change the Cabin EJB every time we need to look at it
differently, we will obtain the information we need using a session bean. The definition of an entity bean should only be
changed within the context of a larger process—for example, a major redesign of the business system.

We'll start developing a TravelAgent EJB that is responsible for the taskflow of booking a passage on a cruise. This
session bean will be used in client applications accessed by travel agents throughout the world. In addition to booking
tickets, the TravelAgent EJB provides information about which cabins are available on the cruise. In this chapter, we
develop the first implementation of this listing behavior. The "list cabins" behavior will be used to provide customers
with a list of cabins that can accommodate their needs. The Cabin EJB does not directly support this kind of list, nor
should it. The list we need is specific to the TravelAgent EJB, so it's the TravelAgent EJB's responsibility to query the
Cabin EJB and produce the list.

Start by creating a development directory for the TravelAgent EJB, as we did for the Cabin EJB. Name this directory
travelagent and nest it below the /dev/com/titan directory, which also contains the cabin directory (see Figure 4-5).
Place all the Java files and the XML deployment descriptor for the TravelAgent EJB into the travelagent directory.

Figure 4-5. Directory structure for the TravelAgent EJB

4.3.1 TravelAgentRemote: The Remote Interface

As before, we start by defining the remote interface so that our focus is on the business purpose of the bean, rather
than its implementation. Starting small, we know that the TravelAgent EJB will need to provide a method for listing all
the cabins available with a specified bed count for a specific ship. We'll call that method listCabins(). Since we need only
a list of cabin names and deck levels, we'll define listCabins() to return an array of Strings. Here's the remote interface
for TravelAgentRemote:

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // String elements follow the format "id, name, deck level"

 public String [] listCabins(int shipID, int bedCount)

 throws RemoteException;

}

4.3.2 TravelAgentHomeRemote: The Remote Home Interface

The second step in the development of the TravelAgent EJB bean is to create the remote home interface. The remote
home interface for a session bean defines the create methods that initialize a new session bean for use by a client.

Find methods are not used in session beans; session beans do not represent data in the database, so a find method
would not be meaningful. A session bean is dedicated to a client for the life of that client (or less). For the same reason,
we don't need to worry about primary keys—since session beans don't represent persistent data, we don't need a key
to access that data.

package com.titan.travelagent;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgentRemote create()

 throws RemoteException, CreateException;

}

In the case of the TravelAgent EJB, we need only a simple create() method to get a reference to the bean. Invoking this
create() method returns the TravelAgent EJB's remote reference, which the client can use for the reservation process.

4.3.3 TravelAgentBean: The Bean Class

Using the remote interface as a guide, we can define the TravelAgentBean class that implements the listCabins() method.
Here's the definition of TravelAgentBean for this example:

package com.titan.travelagent;

import com.titan.cabin.CabinRemote;

import com.titan.cabin.CabinHomeRemote;

import java.rmi.RemoteException;

import javax.naming.InitialContext;

import javax.naming.Context;

import java.util.Properties;

import java.util.Vector;

import javax.rmi.PortableRemoteObject;

import javax.ejb.EJBException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class TravelAgentBean implements javax.ejb.SessionBean {

 public void ejbCreate() {

 // Do nothing.

 }

 public String [] listCabins(int shipID, int bedCount) {

 try {

 javax.naming.Context jndiContext = new InitialContext();

 Object obj = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(obj,CabinHomeRemote.class);

 Vector vect = new Vector();

 for (int i = 1; ; i++) {

 Integer pk = new Integer(i);

 CabinRemote cabin;

 try {

 cabin = home.findByPrimaryKey(pk);

 } catch(javax.ejb.FinderException fe) {

 break;

 }

 // Check to see if the bed count and ship ID match.

 if (cabin.getShipId() == shipID &&

 cabin.getBedCount() == bedCount) {

 String details = i+","+cabin.getName()+

 ","+cabin.getDeckLevel();

 vect.addElement(details);

 }

 }

 String [] list = new String[vect.size()];

 vect.copyInto(list);

 return list;

 } catch(Exception e) {throw new EJBException(e);}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(Exception e) {throw new EJBException(e);}

 }

 public void ejbRemove(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void setSessionContext(javax.ejb.SessionContext cntx){}

}

In order to examine the listCabins() method in detail, let's address the implementation in pieces, starting with the use of
JNDI to locate the CabinHomeRemote:

javax.naming.Context jndiContext = new InitialContext();

Object obj = jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj, CabinHomeRemote.class);

Beans are clients to other beans, just like client applications. This means that they must interact with other beans in the
same way that J2EE application clients interact with beans. For one bean to locate and use another bean, it must first
locate and obtain a reference to the bean's EJB home. This is accomplished using the JNDI default context, which is the
JNDI context that the container provides automatically when you create a new instance of the InitialContext. You don't
need to set any properties on the InitialContext when using a standard J2EE component (EJB, Servlet/JSP, or J2EE
Application Client).

All beans have their own default JNDI context called the environment naming context, which was discussed briefly in
Chapter 3. The default context exists in the name space (directory) called "java:comp/env" and its subdirectories. When
the bean is deployed, any beans it uses are mapped into the subdirectory "java:comp/env/ejb", so that bean references
can be obtained at runtime through a simple and consistent use of the JNDI default context. We'll come back to this
when we look at the deployment descriptor for the TravelAgent EJB.

Once the remote EJB home of the Cabin EJB has been obtained, we can use it to produce a list of cabins that match the
parameters passed into the method. The following code loops through all the Cabin EJBs and produces a list that
includes only those cabins in which the ship and bed count are specified:

Vector vect = new Vector();

for (int i = 1; ; i++) {

 Integer pk = new Integer(i);

 CabinRemote cabin;

 try {

 cabin = home.findByPrimaryKey(pk);

 } catch(javax.ejb.FinderException fe){

 break;

 }

 // Check to see if the bed count and ship ID match.

 if (cabin.getShipId() == shipID && cabin.getBedCount() == bedCount) {

 String details = i+","+cabin.getName()+","+cabin.getDeckLevel();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 vect.addElement(details);

 }

}

This method iterates through all the primary keys, obtaining a remote reference to each Cabin EJB in the system and
checking whether its shipId and bedCount match the parameters passed. The for loop continues until a FinderException is
thrown, which will probably occur when a primary key that isn't associated with a bean is used. (This isn't the most
robust code possible, but it will do for now.) Following this block of code, we simply copy the Vector's contents into an
array and return it to the client.

While this is a very crude approach to locating the right Cabin EJBs—we will define a better method in Chapter 11—it is
adequate for our current purposes. The purpose of this example is to illustrate that the taskflow associated with this
listing behavior is not included in the Cabin EJB, nor is it embedded in a client application. Taskflow logic, whether it's a
process like booking a reservation or like obtaining a list, is placed in a session bean.

4.3.4 The TravelAgent EJB's Deployment Descriptor

The TravelAgent EJB uses an XML deployment descriptor similar to the one used for the Cabin entity bean. The
following sections contain the ejb-jar.xml file used to deploy the TravelAgent bean in EJB. Chapter 11 describes how to
deploy several beans in one deployment descriptor, but for now the TravelAgent and Cabin EJBs are deployed
separately.

4.3.4.1 EJB 2.1: Deployment descriptor

In EJB 2.1, the deployment descriptor for the TravelAgent EJB looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 </ejb-ref>

 <security-identity><use-caller-identity/></security-identity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <security-identity><use-caller-identity/></security-identity>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

4.3.4.2 EJB 2.0: Deployment descriptor

In EJB 2.0, the deployment descriptor for the TravelAgent EJB looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>TravelAgentEJB</ejb-name>

 <home>com.titan.travelagent.TravelAgentHomeRemote</home>

 <remote>com.titan.travelagent.TravelAgentRemote</remote>

 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref>

 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 </ejb-ref>

 <security-identity><use-caller-identity/></security-identity>

 </session>

 </enterprise-beans>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

4.3.4.3 EJB 2.0 and 1.1: Defining the XML elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The only significant difference between the 2.1 and 2.0 deployment descriptors is that EJB 2.1 declares the use of an
XML Schema for validation while EJB 2.0 uses a DTD.

Other than the <session-type> and <ejb-ref> elements, the TravelAgent EJB's XML deployment descriptor should be
familiar: it uses many of the same elements as the Cabin EJB's. The <session-type> element can be Stateful or Stateless,
to indicate which type of session bean is used. In this case, we are defining a stateless session bean.

The <ejb-ref> element is used at deployment time to map the bean references used within the TravelAgent EJB. In this
case, the <ejb-ref> element describes the Cabin EJB, which we already deployed. The <ejb-ref-name> element specifies
the name that must be used by the TravelAgent EJB to obtain a reference to the Cabin EJB's home. The <ejb-ref-type>
tells the container what kind of bean it is, Entity or Session. The <home> and <remote> elements specify the fully qualified
interface names of the Cabin's home and remote bean interfaces.

When the bean is deployed, the <ejb-ref> will be mapped to the Cabin EJB in the EJB server. This is a vendor-specific
process, but the outcome should always be the same. When the TravelAgent EJB does a JNDI lookup using the context
name "java:comp/env/ejb/CabinHomeRemote", it obtains a remote reference to the Cabin EJB's home. The purpose of the
<ejb-ref> element is to eliminate network-specific and implementation-specific use of JNDI to obtain remote bean
references. This makes a bean more portable, because the network location and JNDI service provider can change
without affecting the bean code or even the XML deployment descriptor.

While we haven't yet created a local interface for our beans, it's always preferable to use local references instead of
remote references when beans access each other within the same server. Local references are specified using the <ejb-
local-ref> element, which looks just like the <ejb-ref> element.

The <assembly-descriptor> section of the deployment descriptor is the same for EJB 2.1 and EJB 2.0:

<assembly-descriptor>

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the TravelAgent EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>TravelAgentEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

</assembly-descriptor>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.5 Deploying the TravelAgent EJB

Once you've defined the XML deployment descriptor, you are ready to place the TravelAgent EJB in its own JAR file and
deploy it into the EJB server. Use the same process to JAR the TravelAgent EJB as you used for the Cabin EJB. Shrink-
wrap the TravelAgent EJB class and its deployment descriptor into a JAR file and save the file to the
com/titan/travelagent directory:

\dev % jar cf travelagent.jar com/titan/travelagent/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf travelagent.jar com\titan\travelagent*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first, and copy ejb-jar.xml into that directory. The TravelAgent EJB is
now complete and ready to be deployed.

To make your TravelAgent EJB available to a client application, you need to use the deployment utility or wizard of your
EJB server. The deployment utility reads the JAR file to add the TravelAgent EJB to the EJB server environment. Unless
your EJB server has special requirements, it is unlikely that you will need to change or add any new attributes to the
bean. You will not need to create a database table, since the TravelAgent EJB is using the Cabin EJB and is not itself
persistent. However, you will need to map the <ejb-ref> element in the TravelAgent EJB's deployment descriptor to the
Cabin EJB. Your EJB server's deployment facilities provides a mechanism for accomplishing this task (see Exercise 4.2 in
the Workbook).

4.3.6 Creating a Client Application

To show that our session bean works, we'll create a simple client application that uses it. This client produces a list of
cabins assigned to ship 1 with a bed count of 3. Its logic is similar to the client we created earlier to test the Cabin EJB:
it creates a context for looking up TravelAgentHomeRemote, creates a TravelAgent EJB, and invokes listCabins() to
generate a list of the cabins available. Here's the code:

import com.titan.travelagent.TravelAgentRemote;

import com.titan.travelagent.TravelAgentHomeRemote;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.ejb.CreateException;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class Client_3 {

 public static int SHIP_ID = 1;

 public static int BED_COUNT = 3;

 public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("TravelAgentHomeRemote");

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 TravelAgentRemote travelAgent = home.create();

 // Get a list of all cabins on ship 1 with a bed count of 3.

 String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

 for(int i = 0; i < list.length; i++){

 System.out.println(list[i]);

 }

 } catch(java.rmi.RemoteException re){re.printStackTrace();}

 catch(Throwable t){t.printStackTrace();}

 }

 static public Context getInitialContext() throws Exception {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new InitialContext(p);

 }

}

When you have successfully run Client_3, the output should look like this:

1,Master Suite ,1

3,Suite 101 ,1

5,Suite 103 ,1

7,Suite 105 ,1

9,Suite 107 ,1

12,Suite 201 ,2

14,Suite 203 ,2

16,Suite 205 ,2

18,Suite 207 ,2

20,Suite 209 ,2

22,Suite 301 ,3

24,Suite 303 ,3

26,Suite 305 ,3

28,Suite 307 ,3

30,Suite 309 ,3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have now successfully created the first piece of the TravelAgent session bean—a method that obtains a list of
cabins by manipulating the Cabin EJB entity.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Developing Your First Enterprise Beans
One of the most important features of EJB is that enterprise beans have the ability to work with containers from
different vendors. However, that doesn't mean that selecting a server and installing your enterprise beans on that
server are trivial processes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Locating Beans with JNDI
In Chapter 4, the client application started by creating an InitialContext, which it then used to get a remote reference to
the homes of the Cabin and TravelAgent EJBs. The InitialContext is part of a larger API called the Java Naming and
Directory Interface (JNDI). We use JNDI to look up an EJB home in an EJB server just like we might use a phone book
to find the home number of a friend or business associate.

JNDI is a standard Java package that provides a uniform API for accessing a wide range of services. It is somewhat
similar to JDBC, which provides uniform access to different relational databases. Just as JDBC lets us write code that
doesn't care whether it's talking to an Oracle database or a DB2 database, JNDI lets us write code that can access
different directory and naming services, including the naming services provided by EJB servers. EJB servers are
required to support JNDI by organizing beans into a directory structure and providing a JNDI driver, called a service
provider, for accessing that directory structure. Using JNDI, an enterprise can organize its beans, services, data, and
other resources in a unified directory.

Two of JNDI's greatest features are that it is virtual and dynamic. JNDI is virtual because it allows one directory service
to be linked to another through simple URLs. The URLs in JNDI are analogous to HTML links. Just as an HTML link allows
you to download a new page without worrying about the server on which that page is located, JNDI lets us drill down
through directories to files, printers, and EJB home objects without knowing where the resources—or even the directory
servers holding information about the resources—are located. The directories and subdirectories can be located in the
same host or physically hosted at different locations. As developers or administrators, we can create virtual directories
that span a variety of services over many different physical locations.

JNDI is dynamic because it allows the JNDI drivers (a.k.a. service providers) for specific types of directory services to
be loaded at runtime. A driver maps a specific kind of directory service into the standard JNDI class interfaces. When a
link to a different directory service is chosen, the driver for that type of directory service is automatically loaded from
the directory's host, if it is not already resident on the user's machine. Automatically downloading JNDI drivers makes it
possible for a client to navigate across arbitrary directory services without knowing in advance what kinds of services it
is likely to find.

After the client application locates and obtains a remote reference to the EJB home using JNDI, the client can use the
EJB home to obtain an EJB object reference to an enterprise bean. In Chapter 4 the client applications used the method
getInitialContext() to get a JNDI InitialContext object, which looked like this:

public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

}

An initial context is the starting point for any JNDI lookup—it's similar in concept to the root of a filesystem. The way an
initial context is created is peculiar, but not fundamentally difficult. We start with a properties table of type Properties.
This is essentially a hash table to which we add various values that determine the kind of initial context you get. Of
course, as mentioned in Chapter 4, this code depends on how our EJB vendor has implemented JNDI. For example, with
the Pramati Application Server, getInitialContext() might look something like this:

public static Context getInitialContext() throws Exception {

 Hashtable p = new Hashtable();

 p.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.pramati.naming.client.PramatiClientContextFactory");

 p.put(Context.PROVIDER_URL, "rmi://127.0.0.1:9191");

 return new InitialContext(p);

}

For a more detailed explanation of JNDI, see O'Reilly's Java Enterprise in a Nutshell by David Flanagan, Jim Farley,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a more detailed explanation of JNDI, see O'Reilly's Java Enterprise in a Nutshell by David Flanagan, Jim Farley,
William Crawford, and Kris Magnusson.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 The Remote Client API
Enterprise bean developers are required to provide a bean class, component interfaces, and, for entity beans, a primary
key. The component interfaces and primary key class are visible to the client; the bean class itself is not. The
component interfaces and primary key contribute to the client-side API in EJB.

Any client, whether it is in the same container system or not, may use the Remote Client API, which means that it may
use the remote interface, the remote home interface, and Java RMI to access entity and session beans. Enterprise
beans that are located in the same EJB container have the option of using the Local Client API. The Local Client API
provides local component interfaces and avoids the restrictions and overhead of the Remote Client API. This section
examines the remote component interfaces and the primary key, as well as other Java types that make up EJB's remote
client-side API.

5.2.1 Java RMI-IIOP

Enterprise JavaBeans defines an enterprise bean's remote client API in terms of Java RMI-IIOP, which enforces
compliance with CORBA. This means that the underlying protocol used by remote clients to access enterprise beans can
be anything the vendor wants as long as it supports the types of interfaces and arguments that are compatible with
Java RMI-IIOP. However, in addition to any proprietary protocols, vendors must also support the CORBA IIOP 1.2
protocol as defined in the CORBA 2.3.1 specification.

To use the Remote Client API, define your component interfaces and argument types so that they comply with Java
RMI-IIOP types. It's not all that difficult to comply with this restriction. The next few sections discuss the Java RMI-IIOP
programming model for EJB.

5.2.1.1 Java RMI return types, parameters, and exceptions

As an implementation of Java RMI, Java RMI-IIOP must first comply with the basic restrictions of Java RMI. We'll first
take a look at Java RMI restrictions and then proceed to examine addition restrictions imposed by Java RMI-IIOP.

The supertypes of the remote home interface and remote interface, javax.ejb.EJBHome and javax.ejb.EJBObject, both
extend java.rmi.Remote. As Remote interface subtypes, they are expected to adhere to the Java RMI specification for
Remote interfaces.

5.2.1.2 Return types and parameters

The remote component interfaces must follow several guidelines, some of which apply to the return types and
parameters that are allowed. There are two kinds of return and parameter types: declared types, which are checked by
the compiler, and actual types, which are checked by the runtime. Java RMI requires the use of actual types. The actual
types used in the java.rmi.Remote interfaces must be primitives, java.rmi.Remote types, or serializable types (including the
String type). java.rmi.Remote types and serializable types do not have to implement java.rmi.Remote and java.io.Serializable
explicitly. For example, the java.util.Collection type, which does not explicitly extend java.io.Serializable, is a perfectly valid
return type for a remote finder method, provided that the concrete class implementing Collection, the actual type, does
implement java.io.Serializable.

Java RMI has no special rules regarding declared return types or parameter types. At runtime, a type that is not a
java.rmi.Remote type is assumed to be serializable; if it is not, an exception is thrown. The actual type that is passed
cannot be checked by the compiler; it must be checked at runtime.

Here is a list of the types that can be passed as parameters or returned in Java RMI:

Primitives

These include byte, boolean, char, short, int, long, double, and float.

Java serializable types

Any class that implements or any interface that extends java.io.Serializable.

Java RMI remote types

Any class that implements or any interface that extends java.rmi.Remote.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serializable objects are passed by copy (a.k.a. passed by value), not by reference, which means that changes in a
serialized object on one tier are not automatically reflected on the others. Objects that implement Remote, like
TravelAgentRemote or CabinRemote, are passed as remote references, which are a little different. A remote reference is a
Remote interface implemented by a distributed object stub. When a remote reference is passed as a parameter or
returned from a method, the stub is serialized and passed by value, not the object referenced by the stub. In Chapter
11, the home interface for the TravelAgent EJB is modified so that the create() method takes a reference to a Customer
EJB as its only argument:

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgentRemote create(CustomerRemote customer)

 throws RemoteException, CreateException;

}

The customer argument is a remote reference to a Customer EJB that is passed into the create() method. When a remote
reference is passed or returned in Enterprise JavaBeans, the EJB object stub is passed by copy. The copy of the EJB
object stub points to the same EJB object as the original stub. Therefore, both the enterprise bean instance and the
client have remote references to the same EJB object. Changes made on the client using the remote reference will be
reflected when the enterprise bean instance uses the same remote reference. Figures Figure 5-1 and Figure 5-2 show
the difference between a serializable object and a remote reference argument.

Figure 5-1. Serializable arguments

Figure 5-2. Remote reference arguments in RMIExceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The RMI specification states that every method defined in a Remote interface must throw the java.rmi.RemoteException.
The RemoteException is used when problems occur with distributed object communications, such as a network failure or
inability to locate the object server. Remote interfaces can also throw application-specific exceptions (exceptions defined
by the application developer). The following code shows the remote interface to the TravelAgent EJB discussed in
Chapter 2. The bookPassage() method in the TravelAgentRemote interface throws the RemoteException (as required) in
addition to an application exception, IncompleteConversationalState:

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(int cruise)

 throws RemoteException, FinderException;

 public int getCruiseID() throws RemoteException;

 public void setCabinID(int cabin)

 throws RemoteException, FinderException;

 public int getCabinID() throws RemoteException;

 public int getCustomerID() throws RemoteException;

 public Ticket bookPassage(CreditCardRemote card, double price)

 throws RemoteException,IncompleteConversationalState;

 public String [] listAvailableCabins(int bedCount)

 throws RemoteException;

}

5.2.1.3 Java RMI-IIOP type restrictions

Along with the Java RMI programming model, Java RMI-IIOP imposes restrictions on the remote interfaces and value
types used in the Remote Client API. The restrictions are born of limitations in the Interface Definition Language (IDL)
upon which CORBA IIOP 1.2 is based. The exact nature of these limitations is outside the scope of this book. Here are
two; the others, like IDL name collisions, are rarely encountered:[1]

[1] To learn more about CORBA IDL and its mapping to the Java language, consult "The Common Object Request
Broker: Architecture and Specification" and "The Java Language to IDL Mapping," both available at the OMG web
site (http://www.omg.org).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

site (http://www.omg.org).

Method overloading is restricted; a remote interface may not directly extend two or more interfaces that have
methods with the same name (even if their arguments are different). A remote interface may, however,
overload its own methods and extend a remote interface with overloaded method names. Overloading is
viewed, here, as including overriding. Figure 5-3 illustrates both of these situations.

Serializable types must not directly or indirectly implement the java.rmi.Remote interface.

Figure 5-3. Overloading rules for remote interface inheritance

5.2.1.4 Explicit narrowing using PortableRemoteObject

In Java RMI-IIOP, remote references must be explicitly narrowed using the javax.rmi.PortableRemoteObject.narrow()
method. The typical practice in Java is to cast the reference to the more specific type:

javax.naming.Context jndiContext;

...

CabinHomeRemote home =

 (CabinHomeRemote)jndiContext.lookup("CabinHomeRemote");

The javax.naming.Context.lookup() method returns an Object. In EJB's Local Client API, we can assume that it is legal to
cast the return argument. However, the Remote Client API must be compatible with Java RMI-IIOP, which means that
clients must adhere to limitations imposed by the IIOP 1.2 protocol. To accommodate all languages, many of which
have no concept of casting, IIOP 1.2 does not support stubs that implement multiple interfaces. The stub returned in
IIOP implements only the interface specified by the return type of the remote method that was invoked. If the return
type is Object, as is the remote reference returned by the lookup() method, the stub will implement only methods
specific to the Object type.

Of course, some means for converting a remote reference from a more general type to a more specific type is essential
in an object-oriented environment. In Java RMI-IIOP, the mechanism is javax.rmi.PortableRemoteObject.narrow().
Remember that while the Remote Client API requires that we use Java RMI-IIOP reference and argument types, the
wire protocol need not be IIOP 1.2. Other protocols besides IIOP may also require explicit narrowing.

To narrow the return value of the Context.lookup() method to the appropriate type, we must explicitly ask for a remote
reference that implements the interface we want:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reference that implements the interface we want:

import javax.rmi.PortableRemoteObject;

...

javax.naming.Context jndiContext;

...

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

The narrow() method takes two arguments: the remote reference that is to be narrowed and the type to which it should
be narrowed. When it has executed, it returns a stub that implements the specified Remote interface. Because the stub
is known to implement the correct type, we can then use Java's native casting to narrow the stub to the correct Remote
interface.

The narrow() method is used only when a remote reference to an EJB home or EJB object is returned without a specific
Remote interface type. This occurs in six circumstances:

1. When a remote EJB home reference is obtained using the javax.naming.Context.lookup() method:

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

2. When a remote EJB object reference is obtained from a Collection or Enumeration returned by a remote home
interface finder method:

ShipHomeRemote shipHome = ... // get ship home

Enumeration enum = shipHome.findByCapacity(2000);

while(enum.hasMoreElements()){

 Object ref = enum.nextElement();

 ShipRemote ship = (ShipRemote)

 PortableRemoteObject.narrow(ref, ShipRemote.class);

 // do something with Ship reference

}

3. When a remote EJB object reference is obtained using the javax.ejb.Handle.getEJBObject() method:

Handle handle = // get Handle

Object ref = handle.getEJBObject();

CabinRemote cabin = (CabinRemote)

PortableRemoteObject.narrow(ref,CabinRemote.class);

4. When a remote EJB home reference is obtained using the javax.ejb.HomeHandle.getEJBHome() method:

HomeHandle homeHdle = ... // get home Handle

EJBHome ref = homeHdle.getEJBHome();

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. When a remote EJB home reference is obtained using the javax.ejb.EJBMetaData.getEJBHome() method:

EJBMetaData metaData = homeHdle.getEJBMetaData();

EJBHome ref = metaData.getEJBHome();

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

6. When a wide remote EJB object type is returned from any business method; here is a hypothetical example:

// Officer extends Crewman

ShipRemote ship = // get Ship remote reference

CrewmanRemote crew = ship.getCrewman("Burns", "John", "1st Lieutenant");

OfficerRemote burns = (OfficerRemote)

 PortableRemoteObject.narrow(crew, OfficerRemote.class);

PortableRemoteObject.narrow() is not required when the remote type is specified in the method signature. This is true of
the create and find methods (see Creating and finding beans later in this chapter) in remote home interfaces that return
a single bean. For example, the create() and findByPrimaryKey() methods defined in the CabinHomeRemote interface
(Chapter 4) do not require the use of the narrow() method because these methods already return the correct EJB object
type. Business methods that return the correct type do not need to use the narrow() method either, as the following
code illustrates:

/* The CabinHomeRemote.create() method specifies

 * the CabinRemote interface as the return type,

 * so explicit narrowing is not needed.*/

CabinRemote cabin = cabinHome.create(new Integer(12345));

/* The CabinHomeRemote.findByPrimaryKey() method specifies

 * the CabinRemote interface as the return type,

 * so explicit narrowing is not needed.*/

CabinRemote cabin = cabinHome.findByPrimaryKey(new Integer(12345));

/* The ShipRemote.getCrewman() business method specifies

 * the CrewmanRemote interface as the return type,

 * so explicit narrowing is not needed.*/

CrewmanRemote crew = ship.getCrewman("Burns", "John",

 "1st Lieutenant");

5.2.2 The Remote Home Interface

The remote home interface provides life-cycle operations and metadata. When we use JNDI to access a bean, we obtain
a remote reference, or stub, to the bean's EJB home, which implements the remote home interface. Every bean type
may have one home interface, which extends the javax.ejb.EJBHome interface:

public interface javax.ejb.EJBHome extends java.rmi.Remote {

 public abstract EJBMetaData getEJBMetaData()

 throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws RemoteException;

 public HomeHandle getHomeHandle()

 throws RemoteException;

 public abstract void remove(Handle handle)

 throws RemoteException, RemoveException;

 public abstract void remove(Object primaryKey)

 throws RemoteException, RemoveException;

}

5.2.2.1 Removing beans

The EJBHome.remove() methods are responsible for deleting an enterprise bean. The argument is either the
javax.ejb.Handle of the enterprise bean or, if it's an entity bean, its primary key. The Handle is discussed in more detail
later, but it is essentially a serializable pointer to a specific enterprise bean. When either of the EJBHome.remove()
methods is invoked, the remote reference to the enterprise bean on the client becomes invalid: the stub to the
enterprise bean that was removed no longer works. If for some reason the enterprise bean can't be removed, a
RemoveException is thrown.

The impact of the EJBHome.remove() on the enterprise bean itself depends on the type of bean. For session beans, the
EJBHome.remove() methods end the session's service to the client. When EJBHome.remove() is invoked, the remote
reference to the session bean becomes invalid, and any conversational state maintained by the session bean is lost. The
TravelAgent EJB you created in Chapter 4 is stateless, so no conversational state exists.

When a remove() method is invoked on an entity bean, the remote reference becomes invalid, and any data it
represents is deleted from the database. This operation is destructive because once an entity bean has been removed,
the data it represents no longer exists. The difference between using a remove() method on a session bean and using
remove() on an entity bean is similar to the difference between hanging up on a telephone conversation and actually
killing the caller on the other end.

The following code fragment is taken from the main() method of a client application similar to the clients we created to
exercise the Cabin and TravelAgent EJBs. It shows that we can remove enterprise beans using a primary key (for entity
beans only) or a Handle. Removing an entity bean deletes the entity from the database; removing a session bean results
in the remote reference becoming invalid. Here's the code:

Context jndiContext = getInitialContext();

// Obtain a list of all the cabins for ship 1 with bed count of 3.

Object ref = jndiContext.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote agentHome = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote agent = agentHome.create();

String list [] = agent.listCabins(1,3);

System.out.println("1st List: Before deleting cabin number 30");

for(int i = 0; i < list.length; i++){

 System.out.println(list[i]);

}

// Obtain the home and remove cabin 30. Rerun the same cabin list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Obtain the home and remove cabin 30. Rerun the same cabin list.

ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk = new Integer(30);

c_home.remove(pk);

list = agent.listCabins(1,3);

System.out.println("2nd List: After deleting cabin number 30");

for (int i = 0; i < list.length; i++) {

 System.out.println(list[i]);

}

First, the application creates a list of cabins, including the cabin with the primary key 30. Then it removes the Cabin EJB
with this primary key and creates the list again. The second time the iteration is performed, cabin 30 is not listed; the
listCabin() method will be unable to find a cabin with a primary key equal to 30 because the bean and its data are no
longer in the database. The output should look something like this:

1st List: Before deleting cabin number 30

1,Master Suite ,1

3,Suite 101 ,1

5,Suite 103 ,1

7,Suite 105 ,1

9,Suite 107 ,1

12,Suite 201 ,2

14,Suite 203 ,2

16,Suite 205 ,2

18,Suite 207 ,2

20,Suite 209 ,2

22,Suite 301 ,3

24,Suite 303 ,3

26,Suite 305 ,3

28,Suite 307 ,3

29,Suite 309 ,3

30,Suite 309 ,3

2nd List: After deleting cabin number 30

1,Master Suite ,1

3,Suite 101 ,1

5,Suite 103 ,1

7,Suite 105 ,1

9,Suite 107 ,1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9,Suite 107 ,1

12,Suite 201 ,2

14,Suite 203 ,2

16,Suite 205 ,2

18,Suite 207 ,2

20,Suite 209 ,2

22,Suite 301 ,3

24,Suite 303 ,3

26,Suite 305 ,3

28,Suite 307 ,3

29,Suite 308 ,3

5.2.2.2 Bean metadata

EJBHome.getEJBMetaData() returns an instance of javax.ejb.EJBMetaData that describes the remote home interface, remote
interface, and primary key classes and indicates whether the enterprise bean is a session or entity bean.[2] This type of
metadata is valuable to Java tools such as IDEs that have wizards or other mechanisms for interacting with an
enterprise bean from a client's perspective. A tool could, for example, use the class definitions provided by the
EJBMetaData with Java reflection to create an environment in which deployed enterprise beans can be "wired" together
by developers. Of course, information such as the JNDI names and URLs of the enterprise beans is also needed.

[2] Message-driven beans don't have component interfaces and can't be accessed by Java RMI-IIOP.

Most application developers rarely use the EJBMetaData. Knowing that it's there, however, is valuable when we need to
create code generators or some other automatic facility. In those cases, familiarity with the Reflection API is
necessary.[3] The following code shows the interface definition for EJBMetaData. Any class that implements the
EJBMetaData interface must be serializable; it cannot be a stub to a distributed object. This allows IDEs and other tools
to save the EJBMetaData for later use:

[3] The Reflection API is outside the scope of this book, but it is covered in Java in a Nutshell, by David Flanagan
(O'Reilly).

public interface javax.ejb.EJBMetaData {

 public abstract EJBHome getEJBHome();

 public abstract Class getHomeInterfaceClass();

 public abstract Class getPrimaryKeyClass();

 public abstract Class getRemoteInterfaceClass();

 public abstract boolean isSession();

 public abstract boolean isStatelessSession()

}

The following code shows how the EJBMetaData for the Cabin EJB could be used to get more information about the
enterprise bean. Notice that there is no way to get the bean class using the EJBMetaData; the bean class is not part of
the client API and therefore doesn't belong to the metadata. Here's the code:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

EJBMetaData meta = c_home.getEJBMetaData();

System.out.println(meta.getHomeInterfaceClass().getName());

System.out.println(meta.getRemoteInterfaceClass().getName());

System.out.println(meta.getPrimaryKeyClass().getName());

System.out.println(meta.isSession());

This application creates output like the following:

com.titan.cabin.CabinHomeRemote

com.titan.cabin.CabinRemote

java.lang.Integer

false

In addition to providing the class types of the enterprise bean, the EJBMetaData makes the remote EJB home available
for the bean. Once we get the remote EJB home from the EJBMetaData, we can obtain references to the remote EJB
object and perform other functions. In the following code, we use the EJBMetaData to get the primary key class, create a
key instance, obtain the remote EJB home, and get a remote reference to the EJB object for a specific cabin entity from
the EJB home:

Object primKeyType = meta.getPrimaryKeyClass();

if(primKeyType instanceof java.lang.Integer){

 Integer pk = new Integer(1);

 Object ref = meta.getEJBHome();

 CabinHomeRemote c_home2 = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin = c_home2.findByPrimaryKey(pk);

 System.out.println(cabin.getName());

}

5.2.2.3 The HomeHandle

The HomeHandle is accessed by calling EJBHome.getHomeHandle(). This method returns a javax.ejb.HomeHandle object that
provides a serializable reference to an enterprise bean's remote home. The HomeHandle allows a remote home reference
to be stored and used in the future. It is similar to the javax.ejb.Handle and is discussed in more detail a little later.

5.2.2.4 Creating and finding beans

In addition to the standard javax.ejb.EJBHome methods that all remote home interfaces inherit, the remote home
interfaces also include special create and find methods—find methods are used with entity beans only. The following
code shows the remote home interface defined for the Cabin EJB:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code shows the remote home interface defined for the Cabin EJB:

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

}

Create methods throw a CreateException if something goes wrong during the creation process; find methods throw a
FinderException if there is an error. Since these methods are defined in an interface that subclasses Remote, they must
also declare that they throw the RemoteException.

It is up to the bean developer to define the appropriate create and find methods in the remote home interface.
CabinHomeRemote currently has only one create method, which creates a cabin with a specified ID, and one find method,
which looks up an enterprise bean, given its primary key. However, it is easy to imagine methods that would create and
find a cabin with particular properties—for example, a cabin with three beds, or a deluxe cabin with blue wallpaper.

Beginning with EJB 2.0, the create method names can have suffixes. In other words, all create methods can take the
form create<SUFFIX>(). For example, the Customer EJB might define a remote home interface with several create
methods, each of which takes a different Integer type parameter and has a different method name:

public interface CustomerHome extends javax.ejb.EJBHome {

 public CustomerRemote createWithSSN(Integer id, String socialSecurityNumber)

 throws CreateException, RemoteException;

 public CustomerRemote createWithPIN(Integer personalIdNumber)

 throws CreateException, RemoteException;

 public CustomerRemote createWithBLN(Integer id, String businessLicenseNumber)

 throws CreateException, RemoteException;

 public Customer findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

}

While the use of a suffix in the create method names is allowed, it is not required. You can name all your create
methods create(...) and differentiate them by their parameters (method overloading).

The create and find methods defined in the remote home interfaces are straightforward and easy for the client to use.
The create methods must match the ejbCreate() and ejbPostCreate() methods of the bean class. The create(), ejbCreate(),
and ejbPostCreate() methods match when they have the same parameters, when the arguments are of the same type
and in the same order, and when their method names are the same. This way, when a client calls the create method on
the home interface, the call can be delegated to the corresponding ejbCreate() and ejbPostCreate() methods on the bean
instance.

For bean-managed entities, every find<SUFFIX>() method in the home interface must correspond to an ejbFind<SUFFIX>(
) method in the bean itself. Container-managed entities do not implement ejbFind() methods in the bean class; the EJB
container supports find methods automatically. You will discover more about how to implement the ejbCreate(),
ejbPostCreate(), and ejbFind() methods in the bean in Chapter 6 through Chapter 10.

5.2.2.5 Home methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.2.5 Home methods

In addition to find and create methods, the home interface of entity beans may also define home methods. A home
method is a business method that can be invoked on the home interface (local or remote) and is not specific to one
bean instance. For example, the Cabin EJB could define a home method, getDeckCount(), which returns the number of
cabins on a specific deck level:

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)

 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

 public int getDeckCount(int level) throws RemoteException;

}

Any method in the home interface that is not a create or find method is assumed to be a home method and should have
a corresponding ejbHome() method in the bean class, as shown here:

public class CabinBean implements javax.ejb.EntityBean{

 public int ejbHomeGetDeckCount(int level){

 // implement logic to determine deck count

 }

 ...

}

Clients can use home methods from the enterprise bean's home interface. The client does not need a reference to a
specific EJB object:

Object ref = jndiContext.lookup("CabinHome");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

int count = home.getDeckCount(2);

Home methods are only available to entity beans. They can be used for generic business logic that applies changes
across a group of entity beans or obtains information that is not specific to any single entity bean. Home methods are
discussed in more detail in Chapter 10.

5.2.3 The Remote Interface

The business methods of an enterprise bean can be defined by the bean's remote interface. The javax.ejb.EJBObject
interface, which extends the java.rmi.Remote interface, is the base class for all remote interfaces. Here is the remote
interface for the TravelAgent bean we developed in Chapter 4:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface for the TravelAgent bean we developed in Chapter 4:

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public String [] listCabins(int shipID, int bedCount)

 throws RemoteException;

}

Figure 5-4 shows the TravelAgentRemote interface's inheritance hierarchy.

Figure 5-4. Enterprise bean interface inheritance hierarchy

Remote interfaces are focused on the business problem and do not include methods for system-level operations such as
persistence, security, concurrency, or transactions. System-level operations are handled by the EJB server, which
relieves the client developer of many responsibilities. All remote interface methods for beans must throw a
java.rmi.RemoteException, which identifies problems with distributed communications. In addition, methods in the remote
interface can throw custom exceptions to indicate abnormal business-related conditions or errors in executing the
business method. You will learn more about defining custom exceptions in Chapter 11 and Chapter 15. To deploy the
example discussed in this section, see Exercise 5.1 in the Workbook.

5.2.4 EJBObject, Handle, and Primary Key

All remote interfaces extend the javax.ejb.EJBObject interface, which provides a set of utility methods and return types.
These methods and return types are valuable in managing the client's interactions with beans. Here is the definition of
EJBObject:

public interface javax.ejb.EJBObject extends java.rmi.Remote {

 public abstract EJBHome getEJBHome()

 throws RemoteException;

 public abstract Handle getHandle()

 throws RemoteException;

 public abstract Object getPrimaryKey()

 throws RemoteException;

 public abstract boolean isIdentical(EJBObject obj)

 throws RemoteException;

 public abstract void remove()

 throws RemoteException, RemoveException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

When the client obtains a reference to the remote interface, it is actually obtaining a remote reference to an EJB object.
The EJB object implements the remote interface by delegating business method calls to the bean class; it provides its
own implementations for the EJBObject methods, which return information about the corresponding bean instance on the
server. The server automatically generates the EJB object, so the bean developer doesn't need to write an EJBObject
implementation.

5.2.4.1 Getting the EJBHome

The EJBObject.getEJBHome() method returns a remote reference to the bean's EJB home. The remote reference is
returned as a javax.ejb.EJBHome object, which can be narrowed to the specific enterprise bean's remote home interface.
This method is useful when an EJB object has left the scope of the remote EJB home that manufactured it. Because
remote references can be passed as references and returned from methods, like any other Java object, a remote
reference can quickly find itself in a completely different part of the application from its remote home. The following
code is contrived, but it illustrates how a remote reference can move out of the scope of its home, and how getEJBHome(
) can be used to get a new reference to the EJB home at any time:

public static void main(String [] args) {

 try {

 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("TravelAgentHomeRemote");

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 // Get a remote reference to the bean (EJB object).

 TravelAgentRemote agent = home.create();

 // Pass the remote reference to some method.

 getTheEJBHome(agent);

 } catch (java.rmi.RemoteException re){re.printStackTrace();}

 catch (Throwable t){t.printStackTrace();}

}

public static void getTheEJBHome(TravelAgentRemote agent)

 throws RemoteException {

 // The home interface is out of scope in this method,

 // so it must be obtained from the EJB object.

 Object ref = agent.getEJBHome();

 TravelAgentHomeRemote home = (TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 // Do something useful with the home interface.

}

5.2.4.2 Primary key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.4.2 Primary key

EJBObject.getPrimaryKey() returns the primary key for an entity bean, and isn't supported by EJB objects that represent
other types of beans. To better understand the nature of a primary key, we need to look beyond the boundaries of the
client's view into the EJB container's layer.

The EJB container is responsible for the persistence of entity beans, but the exact mechanism for persistence is up to
the vendor. To locate an instance of a bean in a persistent store, the data that makes up the entity must be mapped to
some kind of unique key. In relational databases, data is uniquely identified by one or more column values that can be
combined to form a primary key. In an object-oriented database, the key wraps an object ID (OID) or some kind of
database pointer. Regardless of the mechanism—which isn't really relevant from the client's perspective—the unique
key for an entity bean's data is represented by the primary key, which is returned by the EJBObject.getPrimaryKey()
method.

The primary key can be used to obtain remote references to entity beans using the findByPrimaryKey() method:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

CabinRemote cabin_1 = home.create(new Integer(101));

Integer pk = (Integer)cabin_1.getPrimaryKey();

CabinRemote cabin_2 = home.findByPrimaryKey(pk);

In this code, the client creates a Cabin EJB, retrieves its primary key, and then uses the key to get a new reference to
the same Cabin EJB. Thus, we have two variables, cabin_1 and cabin_2, that are remote references to EJB objects. The
variables both reference the same Cabin bean, with the same underlying data, because they have the same primary
key.

A primary key is only valid for the correct bean in the correct container. For example, imagine that a third-party vendor
sells the Cabin EJB as a product. The vendor sells the Cabin EJB to both Titan and a competitor. Both companies deploy
the entity bean using their own relational databases with their own data. As you would expect, both cruise companies
have a Cabin bean with a primary key equal to 20, but they represent different cabins for different ships. The Cabin
EJBs come from different EJB containers, so their primary keys are not equivalent.[4] Every entity EJB object has a
unique identity within its EJB home. If two EJB objects have the same home and same primary key, they are considered
identical.

[4] This is, of course, not true if both Cabin EJBs use the same database, which is common in a clustered scenario.

A primary key must implement the java.io.Serializable interface. This means that a primary key can always be obtained
from an EJB object, stored on the client using the Java serialization mechanism, and deserialized when needed. When a
primary key is deserialized, it can be used to obtain a remote reference to the same entity bean using findByPrimaryKey(
), provided that the key is used on the correct remote home interface and container. Preserving the primary key using
serialization might be useful if the client application needs to access specific entity beans at a later date.

The following code shows a primary key that is serialized and then deserialized:

// Obtain cabin 101 and set its name.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk_1 = new Integer(101);

CabinRemote cabin_1 = home.findByPrimaryKey(pk_1);

cabin_1.setName("Presidential Suite");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cabin_1.setName("Presidential Suite");

// Serialize the primary key for cabin 101 to a file.

FileOutputStream fos = new FileOutputStream("pk101.ser");

ObjectOutputStream outStream = new ObjectOutputStream(fos);

outStream.writeObject(pk_1);

outStream.flush();

outStream.close();

pk_1 = null;

// Deserialize the primary key for cabin 101.

FileInputStream fis = new FileInputStream("pk101.ser");

ObjectInputStream inStream = new ObjectInputStream(fis);

Integer pk_2 = (Integer)inStream.readObject();

inStream.close();

// Reobtain a remote reference to cabin 101 and read its name.

CabinRemote cabin_2 = home.findByPrimaryKey(pk_2);

System.out.println(cabin_2.getName());

5.2.4.3 Comparing beans for identity

The EJBObject.isIdentical() method compares two EJB object remote references. It's worth considering why Object.equals()
isn't sufficient for comparing EJB objects. An EJB object is a distributed object stub and therefore contains a lot of
networking and other state. As a result, references to two EJB objects may be unequal, even if they both represent the
same unique bean. The EJBObject.isIdentical() method returns true if two EJB object references represent the same bean,
even if the EJB object stubs are different object instances.

The following code starts by creating two remote references to the TravelAgent EJB. These remote EJB objects both
refer to the same type of enterprise bean; comparing them with isIdentical() returns true. The two TravelAgent EJBs
were created separately, but because they are stateless, they are equivalent. If TravelAgent EJB had been a stateful
bean, the outcome would have been different. Comparing two stateful beans results in false because stateful beans have
conversational state, which makes them unique. When we use CabinHomeRemote.findByPrimaryKey() to locate two EJB
objects that refer to the same Cabin entity bean, we know the entity beans are identical, because we used the same
primary key. In this case, isIdentical() also returns true:

Context ctx = getInitialContext();

Object ref = ctx.lookup("TravelAgentHomeRemote");

TravelAgentHomeRemote agentHome =(TravelAgentHomeRemote)

 PortableRemoteObject.narrow(ref, TravelAgentHomeRemote.class);

TravelAgentRemote agent_1 = agentHome.create();

TravelAgentRemote agent_2 = agentHome.create();

boolean x = agent_1.isIdentical(agent_2);

// x will equal true; the two EJB objects are equal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// x will equal true; the two EJB objects are equal.

ref = ctx.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk_1 = new Integer(101);

Integer pk_2 = new Integer(101);

CabinRemote cabin_1 = c_home.findByPrimaryKey(pk_1);

CabinRemote cabin_2 = c_home.findByPrimaryKey(pk_2);

x = cabin_1.isIdentical(cabin_2);

// x will equal true; the two EJB objects are equal.

The Integer primary key used in the Cabin bean is simple. More complex, custom-defined primary keys require us to
override Object.equals() and Object.hashCode() for the EJBObject.isIdentical() method to work. Chapter 10 discusses the
development of more complex custom primary keys, which are called compound primary keys.

5.2.4.4 Removing beans

The EJBObject.remove() method removes session and entity beans. The impact of this method is the same as the
EJBHome.remove() method. For session beans, remove() releases the session and invalidates the remote EJB object
reference. For entity beans, the data that the bean represents is deleted from the database and the remote reference
becomes invalid. The following code shows the EJBObject.remove() method in use:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote c_home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Integer pk = new Integer(101);

CabinRemote cabin = c_home.findByPrimaryKey(pk);

cabin.remove();

The remove() method throws a RemoveException if for some reason the reference can't be deleted.

5.2.4.5 The enterprise bean Handle

The EJBObject.getHandle() method returns a javax.ejb.Handle object. The Handle is a serializable reference to the remote
EJB object. A Handle allows us to recreate a remote EJB object reference that points to the same type of session bean or
the same unique entity bean from which the Handle originated. The client can save the Handle using Java serialization
and then deserialize it to obtain a reference to the original EJB object.

Here is the interface definition of the Handle:

public interface javax.ejb.Handle {

 public abstract EJBObject getEJBObject()

 throws RemoteException;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The Handle interface specifies only one method, getEJBObject(). Calling this method returns the remote EJB object from
which the Handle was created. Once we've gotten the object back, we can narrow it to the appropriate remote interface
type. The following code shows how to serialize and deserialize an EJB Handle on a client:

// Obtain cabin 100.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Integer pk_1 = new Integer(100);

CabinRemote cabin_1 = home.findByPrimaryKey(pk_1);

// Serialize the Handle for cabin 100 to a file.

Handle handle = cabin_1.getHandle();

FileOutputStream fos = new FileOutputStream("handle100.ser");

ObjectOutputStream outStream = new ObjectOutputStream(fos);

outStream.writeObject(handle);

outStream.flush();

fos.close();

handle = null;

// Deserialize the Handle for cabin 100.

FileInputStream fis = new FileInputStream("handle100.ser");

ObjectInputStream inStream = new ObjectInputStream(fis);

handle = (Handle)inStream.readObject();

fis.close();

// Reobtain a remote reference to cabin 100 and read its name.

ref = handle.getEJBObject();

CabinRemote cabin_2 = (CabinRemote)

 PortableRemoteObject.narrow(ref, CabinRemote.class);

if(cabin_1.isIdentical(cabin_2))

 // This will always be true.

At first glance, the Handle and the primary key appear to do the same thing, but in truth they are very different. Using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At first glance, the Handle and the primary key appear to do the same thing, but in truth they are very different. Using
the primary key requires us to have the correct remote EJB home—if we no longer have a reference to the EJB remote
home, we must look up the container using JNDI and get a new home. Only then can we call findByPrimaryKey() to locate
the actual enterprise bean. Here's how this might work:

// Obtain the primary key from an input stream.

Integer primaryKey = (Integer)inStream.readObject();

// The JNDI API is used to get a root directory or initial context.

javax.naming.Context ctx = new getInitialContext();

// Using the initial context, obtain the EJBHome for the Cabin bean.

Object ref = ctx.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

// Obtain a reference to an EJB object that represents the entity instance.

CabinRemote cabin_2 = home.findByPrimaryKey(primaryKey);

The Handle object is easier to use because it encapsulates the details of doing a JNDI lookup on the container. With a
Handle, the correct EJB object can be obtained in one method call, Handle.getEJBObject(), rather than the three method
calls needed to look up the context, get the home, and find the actual bean. Furthermore, while the primary key can
obtain remote references to unique entity beans, it is not available for session beans; Handle, on the other hand, can be
used with either type of enterprise bean. This makes using a Handle more consistent across bean types.

Consistency is good in its own right, but it isn't the whole story. Normally, we think of session beans as not having
identifiable instances because they exist for only the life of the client session, but this is not exactly true. We have
mentioned (but not yet shown) stateful session beans, which retain state information between method invocations. Two
instances of a stateful session beans are not equivalent. A Handle allows us to work with a stateful session bean,
deactivate the bean, and then reactivate it at a later time. A client could, for example, be using a stateful session bean
to process an order when the process is interrupted for some reason. Instead of losing all the work performed in the
session, a Handle can be obtained from the EJB object and the client application can be closed down. When the user is
ready to continue the order, the Handle can be used to obtain a reference to the stateful session EJB object. Note that
this process is not necessarily fault-tolerant. If the EJB server goes down or crashes, the stateful session bean is lost
and the Handle is useless. It's also possible for the session bean to time out, which would cause the container to remove
it from service. If this happens, the session bean is no longer available to the client.

5.2.4.6 HomeHandle

The javax.ejb.HomeHandle is similar to javax.ejb.Handle. Just as the Handle is used to store and retrieve references to
remote EJB objects, the HomeHandle is used to store and retrieve references to remote EJB homes. In other words, the
HomeHandle can be stored and later used to access an EJB home's remote reference the same way that a Handle can be
serialized and later used to access an EJB object's remote reference. Here's how the HomeHandle can be obtained,
serialized, and used:

// Obtain cabin 100.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHomeRemote");

CabinHomeRemote home = (CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

// Serialize the HomeHandle for the Cabin bean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Serialize the HomeHandle for the Cabin bean.

HomeHandle homeHandle = home.getHomeHandle();

FileOutputStream fos = new FileOutputStream("handle.ser");

ObjectOutputStream outStream = new ObjectOutputStream(fos);

outStream.writeObject(homeHandle);

outStream.flush();

fos.close();

homeHandle = null;

// Deserialize the HomeHandle for the Cabin bean.

FileInputStream fis = new FileInputStream("handle.ser");

ObjectInputStream inStream = new ObjectInputStream(fis);

homeHandle = (HomeHandle)inStream.readObject();

fis.close();

EJBHome homeRef = homeHandle.getEJBHome();

CabinHomeRemote home2 = (CabinHomeRemote)

 PortableRemoteObject.narrow(homeRef,CabinHomeRemote.class);

5.2.4.7 Inside the Handle

Thinking about how Handles might be implemented gives us a better understanding of how they work. (Just remember
that each vendor has its own implementation, which may be completely different from the implemenation we'll discuss.)
Here's an implementation of a Handle for an entity bean:

package com.titan.cabin;

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.ejb.EJBObject;

import javax.ejb.Handle;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.rmi.PortableRemoteObject;

public class VendorX_CabinHandle

 implements javax.ejb.Handle, java.io.Serializable {

 private Integer primary_key;

 private String home_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Properties jndi_properties;

 public VendorX_CabinHandle(Integer pk, String hn, Properties p) {

 primary_key = pk;

 home_name = hn;

 jndi_properties = p;

 }

 public EJBObject getEJBObject() throws RemoteException {

 try {

 Context ctx = new InitialContext(jndi_properties);

 Object ref = ctx.lookup(home_name);

 CabinHomeRemote home =(CabinHomeRemote)

 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 return home.findByPrimaryKey(primary_key);

 } catch (javax.ejb.FinderException fe) {

 throw new RemoteException("Cannot locate EJB object",fe);

 } catch (javax.naming.NamingException ne) {

 throw new RemoteException("Cannot locate EJB object",ne);

 }

 }

}

Our implementation encapsulates the JNDI lookup and the use of the home's findByPrimaryKey() method, so any change
that invalidates the key also invalidates preserved Handle objects that depend on that key. Additionally, the Handle
assumes that the networking configuration and naming—the IP address of the EJB server and the JNDI name of the
bean's home—remain stable. If the EJB server's network address changes or the name used to identify the home
changes, the Handle becomes useless.

In addition, some vendors choose to implement a security mechanism in the Handle that prevents its use outside the
scope of the client application that originally requested it. How this mechanism would work is unclear, but the security
limitation it implies should be considered before attempting to use a Handle outside the client's scope. To deploy the
example in this section, see Exercise 5.2 in the Workbook.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 The Local Client API
Enterprise JavaBeans were originally defined in terms of remote interfaces, such as the ones we've been discussing.
The use of remote interfaces gave a nice, clean design: beans and bean clients did not need to worry about where other
beans were located, because all bean references were treated as remote references. Beans always communicated with
each other using Java RMI.

But in the real world, when two or more enterprise beans interact, they are usually co-located; that is, they are
deployed in the same EJB container system and execute within the same Java Virtual Machine. In this case, RMI really
isn't necessary, and imposes overhead that we'd rather do without. Why treat all beans as remote objects if, in fact,
they are often local? EJB 2.0 introduced the Local Client API to give developers control over whether beans should be
accessed as remote objects, using RMI, or as local objects.

In EJB 2.0 and 2.1, session and entity beans can implement either remote or local component interfaces, or both. Any
type of enterprise bean (entity, session, or message-driven) can become a co-located client of a session or entity bean;
for example, a message-driven bean can call methods on co-located entity beans using its local component interfaces.
The Local Client API is similar to the Remote Client API, but it is less complicated. The Local Client API is composed of
two interfaces, the local and local home interfaces, which are similar to the remote and remote home interfaces.

5.3.1 The Local Interface

The local interface, like the remote interface, defines business methods that can be invoked by other co-located beans
(co-located clients). These business methods must match the signatures of business methods defined in the bean class.
For example, the CabinLocal interface is the local interface defined for the Cabin EJB:

package com.titan.cabin;

import javax.ejb.EJBException;

public interface CabinLocal extends javax.ejb.EJBLocalObject {

 public String getName() throws EJBException;

 public void setName(String str) throws EJBException;

 public int getDeckLevel() throws EJBException;

 public void setDeckLevel(int level) throws EJBException;

 public int getShipId() throws EJBException;

 public void setShipId(int sp) throws EJBException;

 public int getBedCount() throws EJBException;

 public void setBedCount(int bc) throws EJBException;

}

The CabinLocal interface is basically the same as the CabinRemote interface we developed in Chapter 4, with a couple of
key differences. Most importantly, the CabinLocal interface extends the javax.ejb.EJBLocalObject interface, rather than
EJBObject, and its methods do not throw the java.rmi.RemoteException. Here's the definition of the EJBLocalObject interface:

package javax.ejb;

import javax.ejb.EJBException;

import javax.ejb.RemoteException;

public interface EJBLocalObject {

 public EJBLocalHome getEJBLocalHome() throws EJBException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public EJBLocalHome getEJBLocalHome() throws EJBException;

 public Object getPrimaryKey() throws EJBException;

 public boolean isIdentical(EJBLocalObject obj) throws EJBException;

 public void remove() throws RemoveException, throws EJBException;

}

The methods in the EJBLocalObject interface should be familiar to you already. The getEJBLocalHome() method returns a
local home object; getPrimaryKey() returns the primary key (entity beans only); isIdentical() compares two local EJB
objects; and remove() removes the enterprise bean. These methods work just like their corresponding methods in the
javax.ejb.EJBObject interface.

It's also important to notice the differences between EJBLocalObject and EJBObject. EJBLocalObject does not extend the
java.rmi.Remote interface, because it is not a remote object. Nor does EJBLocalObject define a getHandle() method; handles
are not relevant when the client and the enterprise bean are located in the same EJB container system. The Handle is a
serializable reference that makes it easier for a remote client to obtain a reference to an enterprise bean from a remote
node. Since co-located beans are located in the same container system, not across a network, the Handle object is not
necessary.

The EJBLocalObject and the local interfaces that extend it do not throw a java.rmi.RemoteException, which is no longer
needed. Instead, the local interfaces and EJBLocalObject throw EJBException. This exception is thrown by the container
when some kind of system error occurs or when transaction errors cause the bean instance to be discarded.
EJBException is a subtype of the java.lang.RuntimeException and is therefore an unchecked exception. Unchecked
exceptions do not have to be declared in the throws clause of the local component interfaces and do not require the
client to explicitly handle them using try/catch blocks. However, we choose to declare the EJBException in the method
signatures of the CabinLocal interface in order to communicate to the client application that this type of exception is
possible.

5.3.2 The Local Home Interface

The local home interface, like the remote home interface, defines life-cycle methods that can be invoked by other beans
located in the same container. The life-cycle methods of the local home interface include find, create, and remove
methods similar to those of the remote home interface. Here's the definition of CabinHomeLocal, the local home interface
of the Cabin EJB:

package com.titan.cabin;

import javax.ejb.EJBException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CabinHomeLocal extends javax.ejb.EJBLocalHome {

 public CabinLocal create(Integer id)

 throws CreateException, EJBException;

 public CabinLocal findByPrimaryKey(Integer pk)

 throws FinderException, EJBException;

}

The CabinHomeLocal interface is similar to its counterpart, CabinHomeRemote, which we developed in Chapter 4. However,
CabinHomeLocal extends javax.ejb.EJBLocalHome and does not throw the RemoteException from its create and find methods.
You may also have noticed that the create() and findByPrimaryKey() methods return an instance of the CabinLocal
interface, not the remote interface of the Cabin EJB. The create and find methods of local home interfaces always return
EJB objects that implement the enterprise bean's local interface.

Local interfaces must always extend the EJBLocalHome interface, which is much simpler than its remote counterpart,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local interfaces must always extend the EJBLocalHome interface, which is much simpler than its remote counterpart,
EJBHome:

package javax.ejb;

import javax.ejb.RemoveException;

import javax.ejb.EJBException;

public interface EJBLocalHome {

 public void remove(Object primaryKey)

 throws RemoveException, EJBException;

}

Unlike the EJBHome, the EJBLocalHome does not provide EJBMetaData and HomeHandle accessors. The EJBMetaData object,
which is primarily used by visual development tools, is not needed for co-located beans. In addition, the HomeHandle is
not relevant to co-located client beans any more than the Handle was, because co-located beans do not need special
network references. The EJBLocalHome does define a remove() method that takes the primary key as its argument; this
method works the same as its corresponding method in the remote EJBObject interface.

5.3.3 Deployment Descriptor

When an enterprise bean uses local component interfaces, the interfaces must be declared in the XML deployment
descriptor. Here are the changes we need to make to the deployment descriptor for the Cabin bean:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <home>com.titan.cabin.CabinHomeRemote</home>

 <remote>com.titan.cabin.CabinRemote</remote>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

In addition to adding the <local-home> and <local> elements, the <ejb-ref> element is changed to an <ejb-local-ref>
element, indicating that a local EJB object is being used instead of a remote one:

<ejb-local-ref>

 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

</ejb-local-ref>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3.4 Using the Local Client API

We can easily redesign the TravelAgent EJB developed in Chapter 4 so that it uses the Cabin EJB's local component
interfaces instead of the remote component interfaces:

public String [] listCabins(int shipID, int bedCount) {

 try {

 javax.naming.Context jndiContext = new InitialContext();

 CabinHomeLocal home = (CabinHomeLocal)

 jndiContext.lookup("java:comp/env/ejb/CabinHomeLocal");

 Vector vect = new Vector();

 for (int i = 1; ; i++) {

 Integer pk = new Integer(i);

 CabinLocal cabin;

 try {

 cabin = home.findByPrimaryKey(pk);

 } catch(javax.ejb.FinderException fe) {

 break;

 }

 // Check to see if the bed count and ship ID match.

 if (cabin.getShipId() == shipID &&

 cabin.getBedCount() == bedCount) {

 String details =

 i+","+cabin.getName()+","+cabin.getDeckLevel();

 vect.addElement(details);

 }

 }

 String [] list = new String[vect.size()];

 vect.copyInto(list);

 return list;

 } catch(NamingException ne) {

 throw new EJBException(ne);

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Three small changes are needed. The most important change is using local component interfaces for the Cabin EJB
instead of remote interfaces. We do not need to use the PortableRemoteObject.narrow() method when obtaining the Cabin
EJB's home object because we are not accessing the home across the network; we are accessing the home object from
the same JVM, so there's no problem with a regular Java cast. Eliminating this method call makes the code much easier
to read. We also changed the try/catch block to catch the javax.naming.NamingException rather than the EJBException thrown
by the local component interface methods. It is easier to allow those exceptions to propagate directly to the container,
where they can be handled better. Chapter 15 covers exception handling in detail. To deploy the examples in this
section, see Exercise 5.3 in the Workbook.

5.3.5 When to Use Local Component Interfaces

Entity and session beans can provide either local or remote component interfaces, or they may use both so that the
bean is accessible from remote and local clients. Whenever we have enterprise beans accessing each other from within
the same container system, we must seriously consider using local component interfaces, as their performance is likely
to be better than that of remote component interfaces.

However, relying on the Local Client API eliminates the location transparency of enterprise bean references. In other
words, if we provide only a local client API, we cannot move the bean to a different server. The Remote Client API
allows us to move enterprise beans from one server to another without impacting the bean code.

The Local Client API also passes object arguments by reference from one bean to another, as illustrated in Figure 5-5.
This means that an object passed from enterprise bean A to enterprise bean B is referenced by both beans, so if B
changes its values, A will see those changes.

Figure 5-5. Passing by reference with the Local Client API

With the Remote Client API, objects' arguments (parameters or return values) are always copied, so changes made to
one copy are not reflected in the other (see Figure 5-1).

Passing by reference can create some pretty dangerous situations if the enterprise beans that share the object
reference are not coded carefully. In most cases, it is best to pass immutable objects without copying them first.

5.3.6 Are Local Component Interfaces Necessary?

Why is the Local Client API needed at all? Wouldn't it have been possible to amend the specification of the Remote
Client API to account for co-located container optimizations, making those optimizations standard, configurable
attributes in the deployment descriptor? The only problem with that solution is semantics. The remote interfaces extend
java.rmi.Remote, and all subtypes of the java.rmi.Remote interface are required to throw java.rmi.RemoteException types from
methods. It may have been difficult for developers to distinguish between a co-located EJB object and a remote EJB
object, which is an important distinction if one is passing objects by reference while the other passes them by copy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object, which is an important distinction if one is passing objects by reference while the other passes them by copy.

However, it can also be difficult for some EJB developers to use both the Remote and Local Client APIs correctly and
effectively. With local component interfaces, we are locked into a single JVM, and we cannot move beans from one
container to the next at will. The arguments for and against the local component interfaces both have their merits.
Whether we agree with the need for the Local Client API or not, local interfaces are here to stay, and we must learn to
use them appropriately.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. The Remote and Local Client View
Developing the Cabin EJB and the TravelAgent EJB may have raised your confidence, but it also may have raised a lot
of questions. We have glossed over most of the details involved in developing, deploying, and accessing the enterprise
beans. In this chapter and the ones that follow, we will peel away the layers of the Enterprise JavaBeans onion to
expose the details of EJB application development.

This chapter focuses specifically on the client's remote and local view of entity and session beans. The endpoint view,
which is used by Web service clients to access stateless session beans, is significantly different and is addressed
separately in the Web services chapter, Chapter 14. Message-driven beans are not covered in this chapter either—they
are covered in detail in Chapter 12.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 The Abstract Programming Model
In CMP, the container automatically manages the entity beans' state. The container takes care of enrolling the entity
bean in transactions and persisting its state to the database. The developer describes the attributes and relationships of
an entity bean using virtual persistence fields and relationship fields. They are called virtual fields because the bean
developer does not declare these fields explicitly; instead, abstract accessor (get and set) methods are declared in the
entity bean class. The implementations of these methods are generated at deployment time by the EJB vendor's
container tools. It's important to remember that the terms relationship field and persistence field refer to the abstract
accessor methods and not to actual fields declared in the classes.

In Figure 6-1, the Customer EJB has six accessor methods. The first four read and update the last and first names of
the customer. These are examples of persistence fields: simple direct attributes of the entity bean. The last two
accessor methods obtain and set references to the Address EJB through its local interface, AddressLocal. This is an
example of a relationship field called the homeAddress field.

Figure 6-1. Class diagram of Customer and Address EJBs

6.1.1 Abstract Persistence Schema

The CMP entity bean classes are defined using abstract accessor methods that represent virtual persistence and
relationship fields. As already mentioned, the actual fields themselves are not declared in the entity classes. Instead,
the characteristics of these fields are described in the XML deployment descriptor used by the entity bean. The abstract
persistence schema is the set of XML elements in the deployment descriptor that describe the relationship fields and the
persistence fields. Together with the abstract accessor methods and some help from the deployer, the container tool
will have enough information to map the entity and its relationships to other entity beans to the database.

6.1.2 Container Tools and Persistence

One of the responsibilities of the vendor's container-deployment tool is generating concrete implementations of the
abstract entity beans. The concrete classes generated by the container tool are called persistence classes. Instances of
the persistence classes are responsible for working with the container to read and write data between the entity bean
and the database at runtime. Once the persistence classes are generated, they can be deployed into the EJB container.
The container informs the persistence instances (instances of persistence classes) when it's a good time to read and
write data to the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

write data to the database.

The persistence classes may include database access logic optimized for a particular database, database schema, or
database configuration. Persistence classes may employ optimizations such as lazy loading and optimistic locking to
further improve performance. Because the EJB container generates the persistence classes at deployment time,
including the database access logic, bean developers do not have to write the database access code themselves. As an
EJB developer, you will never have to deal with database access code when working with CMP entities. In fact, you
probably won't have access to the persistence classes that contain that logic, because they are generated by the
container tool automatically and aren't available to the bean developer.

Figures Figure 6-2 and Figure 6-3 show different container tools, both of which are being used to map the Customer
entity bean to a relational database.

Figure 6-2. Borland AppServer deployment tool

Figure 6-3. J2EE 1.3 SDK deployment tool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 The Customer EJB
The Customer EJB is a simple CMP entity bean that models the concept of a cruise customer or passenger, but its
design and use are applicable across many commercial domains. This section introduces the Customer bean's
development, packaging, and deployment. We greatly expand the bean's features as we progress through the chapter.

6.2.1 The Customer Table

Although CMP is database-independent, the examples throughout this book assume that you are using a relational
database. This means that we will need a CUSTOMER table from which to get our customer data. The relational database
table definition in SQL is as follows:

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY NOT NULL,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20)

)

6.2.2 The CustomerBean

The CustomerBean class is an abstract class that the container uses for generating a concrete implementation, the
persistence entity class. The mechanism used by the container for generating a persistence entity class varies, but most
vendors generate a subclass of the abstract class provided by the bean developer (see Figure 6-4).

Figure 6-4. The container tool typically extends the bean class

The bean class must declare accessor (set and get) methods for each persistence field and relationship field defined in
the deployment descriptor. The container needs both the abstract accessor methods (defined in the entity bean class)
and the XML elements of the deployment descriptor to fully describe the bean's persistence schema. In this book, the
entity bean class is always defined before the XML elements, because it's a more natural approach for most Java
developers. Here is a very simple definition of the CustomerBean class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

developers. Here is a very simple definition of the CustomerBean class:

package com.titan.customer;

import javax.ejb.EntityContext;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id){

 }

 // abstract accessor methods

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract String getLastName();

 public abstract void setLastName(String lname);

 public abstract String getFirstName();

 public abstract void setFirstName(String fname);

 // standard callback methods

 public void setEntityContext(EntityContext ec){}

 public void unsetEntityContext(){}

 public void ejbLoad(){}

 public void ejbStore(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbRemove(){}

}

The CustomerBean class is required to be abstract in order to reinforce the idea that the CustomerBean is not deployed
directly. Since abstract classes cannot be instantiated, this class must be subclassed by a persistence class generated
by the deployment tool. When generating the persistence class, the deployment tool must generate the accessor
methods, which are themselves declared as abstract.

The CustomerBean extends the javax.ejb.EntityBean interface, which defines several callback methods, including
setEntityContext(), unsetEntityContext(), ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), and ejbRemove(). These methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setEntityContext(), unsetEntityContext(), ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), and ejbRemove(). These methods
are important for notifying the bean instance about events in its life cycle, but we do not need to worry about them yet.
We will discuss these methods in detail in Chapter 10.

The first method in the entity bean class is ejbCreate(), which takes a reference to an Integer object as its only
argument. The ejbCreate() method is called when the remote client invokes the create() method on the entity bean's
home interface. This concept should be familiar, since it's the same way ejbCreate() worked in the Cabin bean developed
in Chapter 4. The ejbCreate() method is responsible for initializing any persistence fields before the entity bean is
created. In this first example, the ejbCreate() method is used to initialize the id persistence field, which is represented by
the setId()/getId() accessor methods.

The return type of ejbCreate() is an Integer, which is the primary key of the entity bean. The primary key is a unique
identifier that can take a variety of forms. In this case, the primary key (the Integer) is mapped to the ID field in the
CUSTOMER table. This will become evident when we define the XML deployment descriptor. However, although the
return type of the ejbCreate() method is the primary key, the value actually returned by the ejbCreate() method is null.
The EJB container and persistence class will extract the primary key from the bean when it is needed. See the sidebar
"Why ejbCreate() Returns Null" for an explanation of ejbCreate()'s return type.

Why ejbCreate() Returns Null
In EJB 1.0, the first release of EJB, the ejbCreate() method in container-managed persistence was
declared as returning void, while the ejbCreate() method in bean-managed persistence returns the
primary key type. However, in EJB 1.1 it was changed to the primary key type, with an actual return
value of null.

EJB 1.1 changed the return value of ejbCreate() from void to the primary key type to facilitate
subclassing; i.e., to make it easier for a bean-managed entity bean to extend a container-managed
entity bean. In EJB 1.0, this was not possible because Java doesn't allow you to overload methods with
different return values. Changing this definition allowed a bean-managed entity bean to extend a
container-managed bean, which in turn allowed vendors to support CMP by extending a container-
managed bean with an automatically generated bean-managed bean—a fairly simple solution to a
difficult problem.

With the changes made to CMP starting in EJB 2.0, this little trick has become less useful. The abstract
persistence schema of EJB CMP beans is, in many cases, too complex for a simple BMP container.
However, it remains in the specification for backward compatibility and to facilitate bean-managed
persistence subclassing, if needed.

The ejbPostCreate() method performs initialization after the entity bean is created but before it services any requests
from the client. Usually, this method is used to perform work on the entity bean's relationship fields, which can occur
only after the bean's ejbCreate() method has been invoked and added to the database. For each ejbCreate() method,
there must be a matching ejbPostCreate() method that has the same method name and arguments but returns void. This
pairing of ejbCreate() and ejbPostCreate() ensures that the container calls the correct methods together. We'll explore the
use of the ejbPostCreate() later; for now, it's not needed, so its implementation is left empty.

The abstract accessor methods (setLastName(), getLastName(), setFirstName(), getFirstName()) represent the persistence
fields in the CustomerBean class. When the bean is processed by a container, these methods will be implemented by a
persistence class based on the abstract persistence schema (XML deployment descriptor elements), the particular EJB
container, and the database used. Basically, these methods fetch and update values in the database and are not
implemented by the bean developer.

6.2.3 The Remote Interface

We need a CustomerRemote interface for the Customer EJB, because the bean will be accessed by clients outside the
container system. The remote interface defines the business methods that clients use to interact with the entity bean.
The remote interface should define methods that model the public aspects of the business concept being modeled; that
is, those behaviors and data that should be exposed to client applications. Here is the remote interface for
CustomerRemote:

package com.titan.customer;

import java.rmi.RemoteException;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public String getLastName() throws RemoteException;

 public void setLastName(String lname) throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setLastName(String lname) throws RemoteException;

 public String getFirstName() throws RemoteException;

 public void setFirstName(String fname) throws RemoteException;

}

Any methods defined in the remote interface must match methods defined in the bean class. In this case, the accessor
methods in the CustomerRemote interface match persistence field accessor methods in the CustomerBean class—with a few
exceptions, methods in the remote interface can match any business method in the bean class

While remote methods can match persistence fields and other business methods in the bean class, the specification
prohibits the remote methods from matching callback methods (ejbRemove(), ejbActivate(), ejbLoad(), etc.) or
relationship fields—relationship fields are used to access other entity beans. In addition, remote methods may not
modify any container-managed persistence fields that are part of the primary key of an entity bean. Notice that the
remote interface does not define a setId() method, which would allow it to modify the primary key.

6.2.4 The Remote Home Interface

The remote home interface of any entity bean is used to create, locate, and remove entities from the EJB container.
Each entity bean type may have its own remote home interface, local home interface, or both. As explained in Chapter
5, the remote and local home interfaces perform essentially the same function. The home interfaces define three basic
kinds of methods: home business methods, zero or more create methods, and one or more find methods. The create()
methods act like remote constructors and define how new entity beans are created. In our remote home interface, we
provide only a single create() method, which matches the corresponding ejbCreate() method in the bean class. The find
method is used to locate a specific Customer EJB using the primary key as a unique identifier.

Here is the complete definition of the CustomerHomeRemote interface:

package com.titan.customer;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public CustomerRemote create(Integer id)

 throws CreateException, RemoteException;

 public CustomerRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

}

A create() method may be suffixed with a name in order to further qualify it when overloading method arguments. This
is useful if we have two different create() methods that take arguments of the same type. For example, we could
declare two create() methods for Customer that both declare an Integer and a String argument. The String argument
might be a Social Security number (SSN) in one case and a tax identification number (TIN) in another—individuals have
Social Security numbers while corporations have tax identification numbers. Here's how these methods might look:

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public CustomerRemote createWithSSN(Integer id, String socialSecurityNumber)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public CustomerRemote createWithSSN(Integer id, String socialSecurityNumber)

 throws CreateException, RemoteException;

 public CustomerRemote createWithTIN(Integer id, String taxIdentificationNumber)

 throws CreateException, RemoteException;

 public CustomerRemote findByPrimaryKey(Integer id)

 throws FinderException, RemoteException;

 }

Each create<SUFFIX>() method must have a corresponding ejbCreate<SUFFIX>() in the bean class. For example, the
CustomerBean class needs to define ejbCreateWithSSN() and ejbCreateWithTIN() methods as well as matching
ejbPostCreateWithSSN() and ejbPostCreateWithTIN() methods. We are keeping this example simple, so we need only one
create() method and, therefore, no suffix.

Enterprise JavaBeans specifies that create() methods in the remote home interface must throw the
javax.ejb.CreateException. In the case of container-managed persistence, the container needs a common exception for
communicating problems that may occur during the create process.

Entity remote home interfaces must define a findByPrimaryKey() method that takes the entity bean's primary key type as
its only argument. No matching method needs to be defined in the entity bean class. The implementation of
findByPrimaryKey() is generated automatically. At runtime, the findByPrimaryKey() method automatically locates and
returns a remote reference to the entity bean with the matching primary key.

The bean developer can also declare other find methods. For example, the CustomerHomeRemote interface could define a
findByLastName(String lname) method that locates all the Customer entities with the specified last name. These types of
find methods are automatically implemented by the deployment tool based on the method signature and an EJB QL
statement. EJB QL is similar to SQL but is specific to EJB. Custom finder methods and EJB QL are discussed in detail in
Chapter 8.

6.2.5 The XML Deployment Descriptor

CMP entity beans must be packaged with an XML deployment descriptor that describes the bean and its abstract
persistence schema. With many commercial containers, the bean developer is not directly exposed to the deployment
descriptor, but instead uses the container's deployment tools to package beans. In this book, however, I describe the
deployment descriptor in detail so you have a full understanding of its content and organization.

Here is the complete XML deployment descriptor for the Customer EJB in EJB 2.1. Many of the elements in this
descriptor should be familiar from Chapter 4; we will focus on the new elements:

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <role-name>Employees</role-name>

 </security-role>

 <method-permission>

 <role-name>Employees</role-name>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 <container-transaction>

 </assembly-descriptor>

</ejb-jar>

The deployment descriptor for EJB 2.0 is exactly the same, except that it uses XML DTD instead of XML Schema, so the
first tag in the EJB 2.0 deployment descriptor is the document declaration followed by the <ejb-jar> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 ...

</ejb-jar>

The first few elements in the Customer EJB's deployment descriptor should be familiar; they declare the Customer EJB
name, (CustomerEJB) as well as its home, remote, and bean class. The <security-identity> element should also be familiar,
as well as the <assembly-descriptor> elements, which declare the security and transaction attributes of the bean. In this
case, they state that all employees can access any CustomerEJB method and that all methods use the Required
transaction attribute.

Container-managed persistence entities also need to declare a persistence type, version, and whether they are
reentrant. These elements are declared under the <entity> element.

The <persistence-type> element tells the container system whether the bean will be a container-managed persistence
entity or a bean-managed persistence entity. In this case it's container-managed, so we use Container. Had it been
bean-managed, the value would have been Bean.

The <cmp-version> element is optional; it tells the container system which version of container-managed persistence is
being used. The value of the <cmp-version> element can be either 2.x or 1.x. The 2.x designator is used for EJB 2.1 and
2.0, while 1.x is used for EJB 1.1. EJB 2.1 and 2.0 containers are required to support EJB 1.1 CMP for backward
compatibility. If it is not declared, the default value is 2.x. It's not really needed here, but it's specified as an aid to
other developers who might read the deployment descriptor.

The <reentrant> element indicates whether reentrant behavior is allowed. In this case the value is False, which indicates
that the CustomerEJB is not reentrant (i.e., loopbacks are not allowed). A value of True would indicate that the
CustomerEJB is reentrant and that loopbacks are permitted.

The entity bean must also declare its container-managed persistence fields and its primary key:

<entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <primkey-field>id</primkey-field>

</entity>

The container-managed persistence fields are the id, lastName, and firstName, as indicated by the <cmp-field> elements.
The <cmp-field> elements must have matching accessor methods in the CustomerBean class. As you can see in Table 6-1,
the values declared in the <field-name> element match the names of abstract accessor methods we declared in the
CustomerBean class.

Table 6-1. Field names for abstract accessor methods
CMP field Abstract accessor method

id
public abstract Integer getId()

public abstract void setId(Integer id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract void setId(Integer id)

lastName
public abstract String getLastName()

public abstract void setLastName(String lname)

firstName
public abstract String getFirstName()

public abstract void setFirstName(String lname)

CMP requires that the <field-name> values start with a lowercase letter. The names of the matching accessor methods
take the form get<field-name>(), set<field-name >() (the first letter of the field name is capitalized). The return type of
the get method and the parameter of the set method determine the type of the <cmp-field>. It's the convention of this
book, but not a requirement of CMP, that field names with multiple words are declared using "camel case," in which
each new word starts with a capital letter (e.g., lastName).

Finally, we declare the primary key using two fields, <prim-key-class> and <primkey-field>. <prim-key-class> indicates the
type of the primary key, and <primkey-field> indicates which of the <cmp-field> elements designates the primary key. The
Customer EJB uses a single-field primary key, in which the bean's identifier is composed of a single container-managed
field. The <primkey-field> must be declared if the entity bean uses a single-field primary key. Compound primary keys,
which use more than one of the persistence fields as a key, are often used instead. In this case, the bean developer
creates a custom primary key. The <prim-key-class> element is always required, whether it's a single-field, compound, or
unknown primary key. Unknown keys use a field that may not be declared in the bean at all. The different types of
primary keys are covered in more detail in Chapter 10.

6.2.6 The EJB JAR File

Now that you have created the interfaces, bean class, and deployment descriptor, you're ready to package the bean for
deployment. As you learned in Chapter 4, the JAR file provides a way to "shrink-wrap" a component so it can be
deployed in an EJB container. The command for creating a new EJB JAR file is:

\dev % jar cf customer.jar com/titan/customer/*.class

com/titan/customer/META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\customer*.class com\titan\customer

\META-INF\ejb-jar.xml

There are a number of tools that create the XML deployment descriptor and package the enterprise bean into a JAR file
automatically. Some of these tools even create the home and remote interfaces automatically, based on input from the
developer.

6.2.7 Deployment

Once the CustomerEJB is packaged in a JAR file, it's ready to be deployed in an EJB container. The point is to map the
container-managed persistence fields of the bean to fields or data objects in the database. (Earlier in this chapter,
Figure 6-2 and Figure 6-3 showed two visual tools used to map the Customer EJB's persistence fields.) In addition, the
security roles need to be mapped to the subjects in the security realm of the target environment and the bean needs to
be added to the naming service and given a JNDI lookup name (name binding).

6.2.8 The Client Application

The Client application is a remote client to the CustomerEJB that creates several customers, finds them, and then removes
them. Here is the complete definition of the Client application:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them. Here is the complete definition of the Client application:

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.naming.NamingException;

import java.util.Properties;

public class Client {

 public static void main(String [] args)) throws Exception {

 //obtain CustomerHome

 Context jndiContext = getInitialContext();

 Object obj=jndiContext.lookup("CustomerHomeRemote");

 CustomerHomeRemote home = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,CustomerHomeRemote.class);

 //create Customers

 for(int i =0;i <args.length;i++){

 Integer primaryKey =new Integer(i);

 String firstName = args [i];

 String lastName = args [i];

 CustomerRemote customer = home.create(primaryKey);

 customer.setFirstName(firstName);

 customer.setLastName(lastName);

 }

 //find and remove Customers

 for(int i = 0;i < args.length;i++){

 Integer primaryKey = new Integer(i);

 CustomerRemote customer = home.findByPrimaryKey(primaryKey);

 String lastName = customer.getLastName();

 String firstName = customer.getFirstName();

 System.out.print(primaryKey+"=");

 System.out.println(firstName+""+lastName);

 //remove Customer

 customer.remove();

 }

 }

 public static Context getInitialContext(

 throws javax.naming.NamingException {

 Properties p =new Properties();

 //...Specify the JNDI properties specific to the vendor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //...Specify the JNDI properties specific to the vendor.

 return new javax.naming.InitialContext(p);

 }

}

The Client application creates several Customer EJBs, sets their first and last names, prints out the persistence field
values, and then removes the entities from the container system and, effectively, the database. To deploy the examples
in this section, see Exercise 6.1 in the Workbook.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Persistence Fields
Container-managed persistence (CMP) fields are virtual fields whose values map directly to the database. Persistence
fields can be Java serializable types and Java primitive types. Java serializable types implement the java.io.Serializable
interface. Most deployment tools easily handle java.lang.String, java.util.Date, and the primitive wrappers (Byte, Boolean,
Short, Integer, Long, Double, and Float), because these types of objects are part of the Java core and map naturally to
database fields.

The CustomerEJB declares three serializable fields, id, lastName, and firstName, which map naturally to the INT and CHAR
fields of the CUSTOMER table in the database.

You can also define your own serializable types, called dependent value classes, and declare them as CMP fields.
However, I recommend that you do not use custom serializable objects as persistence field types unless it is absolutely
necessary—they are usually recommended for unstructured types, such as multimedia data (images, blobs, etc.).
Arbitrary dependent value classes usually will not map naturally to database types, so they must be stored in their
serializable forms in some type of binary database field.

Serializable objects are always returned as copies and not references, so modifying a serializable object will not impact
its database value. The value of a serializable object must be updated using the set<field-name> method.

The primitive types (byte, short, int, long, double, float, and boolean) are also allowed to be CMP fields. These types are
easily mapped to the database and are supported by all deployment tools. As an example, the CustomerEJB might
declare a boolean that represents a customer's credit worthiness:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

 setId(id);

 return null;

 }

 // abstract accessor methods

 public abstract boolean getHasGoodCredit();

 public abstract void setHasGoodCredit(boolean creditRating);

 ...

}

You must add a database field, HAS_GOOD_CREDIT, to the CUSTOMER table for the hasGoodCredit persistent field.
Depending on the kind of database you are using, this field may be a BIT, INT, BOOLEAN, or something else. For
example, Oracle and DB2 use an INT field:

CREATE TABLE CUSTOMER

{

 ID INT PRIMARY KEY,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 HAS_GOOD_CREDIT INT

}

Other databases use different data types for the HAS_GOOD_CREDIT field:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other databases use different data types for the HAS_GOOD_CREDIT field:

In Oracle, it should be INT.

In DB2 UDB, it should be INT.

In SQL*Server, it should be BIT.

In Sybase ASE, it should be BIT.

In Cloudscape, it should be BOOLEAN.

In PointBase, it should be BOOLEAN.

This is an unfortunate SQL portability problem that occurs when you're using different database technologies, but it's
the only inconsistency I discovered while testing the code for this book. Before adding the HAS_GOOD_CREDIT field to the
CUSTOMER table, check your vendor's documentation to determine the field type.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Dependent Value Classes
Dependent value classes are custom serializable objects that can be used as persistence fields (although this use is not
recommended). They are useful for packaging data and moving it between an entity bean and its remote clients. They
separate the client's view of the entity bean from its abstract persistence model, which makes it easier for the entity
bean class to change without affecting existing clients.

The remote interface methods of an entity bean should be defined independently of the abstract persistence schema. In
other words, you should design the remote interfaces to model the business concepts, not the underlying persistence
programming model. Dependent value classes can help separate a remote client's view from the persistence model by
providing objects that fill the gaps in these perspectives.

For example, the CustomerEJB could be modified so that its lastName and firstName fields are not exposed to remote
clients through their accessor methods. This is a reasonable design approach, since most clients access the entire name
of the customer at once. The remote interface might be modified to look like:

import java.rmi.RemoteException;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public Name getName() throws RemoteException;

 public void setName(Name name) throws RemoteException;

}

This remote interface is simpler than the one we saw earlier. It allows the remote client to get all the name information
in one method call instead of two, reducing network traffic and improving performance for remote clients. The use of
the Name object is also more consistent with how the client interacts with the Customer EJB.

To implement this interface, the CustomerBean class adds a business method that matches the remote interface
methods. The setName() method updates the lastName and firstName fields, while the getName() method constructs a
Name object from these fields:

import javax.ejb.EntityContext;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id) {

 }

 // business methods

 public Name getName() {

 Name name = new Name(getLastName(),getFirstName());

 return name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return name;

 }

 public void setName(Name name) {

 setLastName(name.getLastName());

 setFirstName(name.getFirstName());

 }

 // abstract accessor methods

 public abstract String getLastName();

 public abstract void setLastName(String lname);

 public abstract String getFirstName();

 public abstract void setFirstName(String fname);

The getName() and setName() methods are business methods, not abstract persistence methods. Entity beans can have
as many business methods as needed. Business methods introduce business logic to the Customer EJB; otherwise, the
bean would be only a data wrapper. For example, validation logic could be added to the setName() method to ensure
that the data is correct before applying the update. In addition, the entity bean class can use other methods that help
with processing data—these are just instance methods and may not be exposed as business methods in the remote
interface.

How dependent value classes are defined is important to understanding how they should be used. The Name dependent
value class is defined as:

public class Name implements java.io.Serializable {

 private String lastName;

 private String firstName;

 public Name(String lname, String fname){

 lastName = lname;

 firstName = fname;

 }

 public String getLastName() {

 return lastName;

 }

 public String getFirstName() {

 return firstName;

 }

}

You'll notice that the Name dependent value class has get accessor methods but not set methods. It's immutable. This is
a design strategy used in this book, not a requirement of the EJB specification. By making dependent values immutable,
we ensure that remote clients cannot change the Name object's fields. The reason for this design is simple: the Name
object is a copy, not a remote reference. Changes to Name objects are not reflected in the database. Making the Name
immutable helps to ensure that clients do not mistake this dependent value for a remote object reference, thinking that
a change to the Name object is automatically reflected in the database. To change the customer's name, the client is
required to create a new Name object and use the setName() method to update the Customer EJB.

The following listing illustrates how a client would modify the name of a customer using the Name dependent value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following listing illustrates how a client would modify the name of a customer using the Name dependent value
class:

// find Customer

customer = home.findByPrimaryKey(primaryKey);

name = customer.getName();

System.out.print(primaryKey+" = ");

System.out.println(name.getFirstName()+" "+name.getLastName());

// change Customer's name

name = new Name("Monson-Haefel", "Richard");

customer.setName(name);

name = customer.getName();

System.out.print(primaryKey+" = ");

System.out.println(name.getFirstName()+" "+name.getLastName());

The output will look like this:

1 = Richard Monson

1 = Richard Monson-Haefel

Defining the bean's interfaces according to business concepts and not the underlying data is not always reasonable, but
you should try to employ this strategy when the underlying data model doesn't clearly map to the business purpose or
concept being modeled by the entity bean. The bean's interfaces may be used by developers who know the business
but not the abstract programming model. It is important to them that the entity beans reflect the business concept. In
addition, defining the interfaces independently of the persistence model enables the component interfaces and
persistence model to evolve separately. This allows the abstract persistence programming model to change over time,
and allows for new behavior to be added to the entity bean as needed.

Dependent value classes should not be used indiscriminately. Generally speaking, it is foolish to use dependent value
classes when a CMP field will do just fine. For example, checking a client's creditworthiness before processing an order
can be accomplished easily using the getHasGoodCredit() method directly. In this case, a dependent value class would
serve no purpose. Exercise 6.2 in the Workbook shows how to deploy these examples on the JBoss server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Relationship Fields
Entity beans can form relationships with other entity beans. In Figure 6-1, at the beginning of this chapter, the
Customer EJB has a one-to-one relationship with the Address EJB. The Address EJB is a fine-grained business object
that should always be accessed in the context of another entity bean, which means it should have only local interfaces
and not remote interfaces. An entity bean can have relationships with many different entity beans at the same time. For
example, we could easily add relationship fields for Phone, CreditCard, and other entity beans to the Customer EJB. At
this point, we're choosing to keep the Customer EJB simple.

Using Figure 6-1 as a guide, we define the Address EJB as follows:

package com.titan.address;

import javax.ejb.EntityContext;

public abstract class AddressBean implements javax.ejb.EntityBean {

 public Integer ejbCreateAddress(String street, String city,

 String state, String zip)

 {

 setStreet(street);

 setCity(city);

 setState(state);

 setZip(zip);

 return null;

 }

 public void ejbPostCreateAddress(String street, String city,

 String state, String zip) {

 }

 // persistence fields

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract String getStreet();

 public abstract void setStreet(String street);

 public abstract String getCity();

 public abstract void setCity(String city);

 public abstract String getState();

 public abstract void setState(String state);

 public abstract String getZip();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract void setZip(String zip);

 // standard callback methods

 public void setEntityContext(EntityContext ec){}

 public void unsetEntityContext(){}

 public void ejbLoad(){}

 public void ejbStore(){}

 public void ejbActivate(){}

 public void ejbPassivate(){}

 public void ejbRemove(){}

}

The AddressBean class defines several persistence fields (street, city, state, and zip) and an ejbCreateAddress() method,
which is called when a new Address EJB is created. The persistence fields are represented by abstract accessor
methods. These abstract methods are matched with XML deployment descriptor elements. At deployment time, the
container maps the Customer and Address EJB's persistence fields to the database. This means there must be a table in
our relational database that contains columns matching the persistence fields in the Address EJB. In this example, we
will use a separate ADDRESS table for storing address information:

CREATE TABLE ADDRESS

(

 ID INT PRIMARY KEY NOT NULL,

 STREET CHAR(40),

 CITY CHAR(20),

 STATE CHAR(2),

 ZIP CHAR(10)

)

The ID column in this table is an auto-increment field, created automatically by the database or container system. It is
the primary key of the Address EJB. Once the bean is created, its primary key must never again be modified. When
primary keys are autogenerated values, such as the ID column in the ADDRESS table, the EJB container obtains the
primary key value from the database.

The other columns in this table correspond to the Address bean's persistence fields. Entity beans do not have to define
all the columns in the corresponding table as persistence fields. In fact, there's no requirement that an entity bean
correspond to a single table; it may be persisted to columns in several different tables. The bottom line is that the
container allows the abstract persistence schema of an entity bean to be mapped to a database in a variety of ways,
allowing a clean separation between the persistence classes and the database.

In addition to the bean class, we must define the local interface for the Address EJB. This interface allows the EJB to be
accessed by other entity beans (namely, the Customer EJB) within the same address space or process:

// Address EJB's local interface

public interface AddressLocal extends javax.ejb.EJBLocalObject {

 public String getStreet();

 public void setStreet(String street);

 public String getCity();

 public void setCity(String city);

 public String getState();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String getState();

 public void setState(String state);

 public String getZip();

 public void setZip(String zip);

}

// Address EJB's local home interface

public interface AddressHomeLocal extends javax.ejb.EJBLocalHome {

 public AddressLocal createAddress(String street,String city,

 String state,String zip) throws javax.ejb.CreateException;

 public AddressLocal findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FinderException;

}

You may have noticed that the ejbCreate() method of the AddressBean class and the findByPrimaryKey() method of the
home interface both define the primary key type as java.lang.Integer. The primary key is generated automatically. Most
EJB vendors allow entity beans' primary keys to be mapped to autogenerated fields. If your vendor does not support
autogenerated primary keys, you must set the primary key's value in the ejbCreate() method.

The relationship field for the Address EJB is defined in the CustomerBean class using an abstract accessor method, the
same way that persistence fields are declared. In the following code, the CustomerBean has been modified to include the
Address EJB as a relationship field:

import javax.ejb.EntityContext;

import javax.ejb.CreateException;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // persistence relationship

 public abstract AddressLocal getHomeAddress();

 public abstract void setHomeAddress(AddressLocal address);

 // persistence fields

 public abstract boolean getHasGoodCredit();

 public abstract void setHasGoodCredit(boolean creditRating);

 ...

The getHomeAddress() and setHomeAddress() accessor methods are self-explanatory; they allow the bean to access and
modify its homeAddress relationship. The name of the accessor method is determined by the name of the relationship
field, as declared in the deployment descriptor. In this case, we have named the customer's address homeAddress, so
the corresponding accessor method names will be getHomeAddress() and setHomeAddress().

To accommodate the relationship between the Customer EJB and the home address, a foreign key, ADDRESS_ID, is
needed in the CUSTOMER table. The foreign key points to the ADDRESS record. In practice, it would be more common to
give the ADDRESS table a foreign key to the CUSTOMER table. However, the schema used here demonstrates alternative
database mappings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database mappings:

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY NOT NULL,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 ADDRESS_ID INT

)

When a new Address EJB is created and set as the Customer EJB's homeAddress relationship, the Address EJB's primary
key is placed in the ADDRESS_ID column of the CUSTOMER table:

// get local reference

AddressLocal address = ...

// establish the relationship

customer.setHomeAddress(address);

To give the Customer a home address, we need to deliver the address information to the Customer. This appears to be
a simple matter of declaring matching setHomeAddress()/getHomeAddress() accessors in the remote interface, but it's not!
While it's valid to make persistence fields available to remote clients, persistence relationships are more complicated.
The remote interface of a bean is not allowed to expose its relationship fields. In the case of the homeAddress field, we
have declared the type to be AddressLocal, which is a local interface, so the setHomeAddress()/getHomeAddress() accessors
cannot be declared in the remote interface of the Customer EJB. The reason for this restriction on remote interfaces is
fairly simple: the EJBLocalObject, which implements the local interface, is optimized for use within the same address
space or process as the bean instance and is not capable of being used across the network. In other words, references
that implement the local interface of a bean cannot be passed across the network, so a local interface cannot be
declared as a return type of a parameter of a remote interface.

Local interfaces (interfaces that extend javax.ejb.EJBLocalObject), on the other hand, can expose any kind of relationship
field. With local interfaces, the caller and the enterprise bean being called are located in the same address space, so
they can pass around local references without a problem. For example, if we had defined a local interface for the
Customer EJB, it could include a method that allows local clients to access its Address relationship directly:

public interface CustomerLocal extends javax.ejb.EJBLocalObject {

 public AddressLocal getHomeAddress();

 public void setHomeAddress(AddressLocal address);

}

When it comes to the Address EJB, it's better to define a local interface only because it's such a fine-grained bean. To
get around remote-interface restrictions, the business methods in the bean class exchange address data instead of
Address references. For example, we can declare a method in the Customer bean that allows the client to send address
information:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id) {

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 // business method

 public void setAddress(String street,String city,String state,String zip) {

 try {

 AddressLocal addr = this.getHomeAddress();

 if(addr == null) {

 // Customer doesn't have an address yet. Create a new one.

 InitialContext cntx = new InitialContext();

 AddressHomeLocal addrHome = (AddressHomeLocal)

 cntx.lookup("java:comp/env/ejb/AddressHomeLocal");

 addr = addrHome.createAddress(street,city,state,zip);

 this.setHomeAddress(addr);

 } else {

 // Customer already has an address. Change its fields.

 addr.setStreet(street);

 addr.setCity(city);

 addr.setState(state);

 addr.setZip(zip);

 }

 } catch(Exception e) {

 throw new EJBException(e);

 }

 }

 ...

The setAddress() business method in the CustomerBean class is also declared in the remote interface of the Customer EJB,
so it can be called by remote clients:

public interface CustomerRemote extends javax.ejb.EJBObject {

 public void setAddress(String street,String city,String state,String zip)

 throws RemoteException;

 public Name getName() throws RemoteException;

 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean getHasGoodCredit() throws RemoteException;

 public void setHasGoodCredit(boolean creditRating) throws RemoteException;

}

When the CustomerRemote.setAddress() method is invoked on the CustomerBean, the method's arguments are used to
create a new Address EJB and set it as the homeAddress relationship field, if one doesn't already exist. If the Customer
EJB already has a homeAddress relationship, that Address EJB is modified to reflect the new address information.

When creating a new Address EJB, the home object is obtained from the JNDI ENC (environment naming context) and
its createAddress() method is called. This results in the creation of a new Address EJB and the insertion of a
corresponding ADDRESS record into the database. After the Address EJB is created, it's used in the setHomeAddress()
method. The CustomerBean class must explicitly call the setHomeAddress() method, or the new address will not be
assigned to the customer. Creating an Address EJB without assigning it to the customer results in a disconnected
Address EJB. More precisely, it results in an ADDRESS record in the database that is not referenced by any CUSTOMER
records. Disconnected entity beans are fairly normal and even desirable in many cases. In this case, however, we want
the new Address EJB to be assigned to the homeAddress relationship field of the Customer EJB.

The viability of disconnected entities depends, in part, on the referential integrity of the
database. For example, if the referential integrity allows only non-null values for the
foreign key column, creating a disconnected entity may result in a database error.

When the setHomeAddress() method is invoked, the container links the ADDRESS record to the CUSTOMER record
automatically. In this case, it places the ADDRESS primary key in the CUSTOMER record's ADDRESS_ID field and creates a
reference from the CUSTOMER record to the ADDRESS record.

If the Customer EJB already has a homeAddress, we want to change its values instead of creating a new Address EJB. We
don't need to use setHomeAddress() if we are simply updating the values of an existing Address EJB, because the
Address EJB we modified already has a relationship with the entity bean.

We also want to provide clients with a business method for obtaining a Customer EJB's home address information. Since
we are prohibited from sending an instance of the Address EJB directly to the client (because it's a local interface), we
must package the address data in some other form and send that to the client. There are two solutions to this problem:
acquire the remote interface of the Address EJB and return that; or return the data as a dependent value object.

We can obtain the remote interface for the Address EJB only if one is defined. The Address EJB is too fine-grained to
justify creating a remote interface, but in many other circumstances, a bean may indeed want to have a remote
interface. If, for example, the Customer EJB referenced a SalesPerson EJB, the CustomerBean could convert the local
reference into a remote reference. This would be done by accessing the local EJB object, getting its primary key
(EJBLocalObject.getPrimaryKey()), obtaining the SalesPerson EJB's remote home from the JNDI ENC, and then using the
primary key and remote home reference to find a remote interface reference:

public SalesRemote getSalesRep(){

 SalesLocal local = getSalesPerson();

 Integer primKey = local.getPrimaryKey();

 InitialContext cntx = new InitialContext();

 Object ref = cntx.lookup("java:comp/env/ejb/SalesHomeRemote");

 SalesHomeRemote home = (SalesHomeRemote)

 PortableRemoteObject.narrow(ref, SalesHomeRemote.class);

 SalesRemote remote = home.findByPrimaryKey(primKey);

 return remote;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other option is to use a dependent value to pass the Address EJB's data between remote clients and the Customer
EJB. This is the approach recommended for fine-grained beans like the Address EJB—we don't want to expose these
beans directly to remote clients. The following code shows how the AddressDO dependent value class is used in
conjunction with the local component interfaces of the Address EJB (the DO in AddressDO is a convention used in this
book—it's a qualifier that stands for "dependent object"):

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id) {

 setId(id);

 return null;

 }

 public void ejbPostCreate(Integer id) {

 }

 // business method

 public AddressDO getAddress() {

 AddressLocal addrLocal = getHomeAddress();

 if(addrLocal == null) return null;

 String street = addrLocal.getStreet();

 String city = addrLocal.getCity();

 String state = addrLocal.getState();

 String zip = addrLocal.getZip();

 AddressDO addrValue = new AddressDO(street,city,state,zip);

 return addrValue;

 }

 public void setAddress(AddressDO addrValue)

 throws EJBException {

 String street = addrValue.getStreet();

 String city = addrValue.getCity();

 String state = addrValue.getState();

 String zip = addrValue.getZip();

 AddressLocal addr = getHomeAddress();

 try {

 if(addr == null) {

 // Customer doesn't have an address yet. Create a new one.

 InitialContext cntx = new InitialContext();

 AddressHomeLocal addrHome = (AddressHomeLocal)

 cntx.lookup("java:comp/env/ejb/AddressHomeLocal");

 addr = addrHome.createAddress(street, city, state, zip);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 addr = addrHome.createAddress(street, city, state, zip);

 this.setHomeAddress(addr);

 } else {

 // Customer already has an address. Change its fields.

 addr.setStreet(street);

 addr.setCity(city);

 addr.setState(state);

 addr.setZip(zip);

 }

 } catch(NamingException ne) {

 throw new EJBException(ne);

 } catch(CreateException ce) {

 throw new EJBException(ce);

 }

 }

 ...

Here is the definition for an AddressDO dependent value class, which is used by the enterprise bean to send address
information to the client:

public class AddressDO implements java.io.Serializable {

 private String street;

 private String city;

 private String state;

 private String zip;

 public AddressDO(String street, String city, String state, String zip) {

 this.street = street;

 this.city = city;

 this.state = state;

 this.zip = zip;

 }

 public String getStreet() {

 return street;

 }

 public String getCity() {

 return city;

 }

 public String getState() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String getState() {

 return state;

 }

 public String getZip() {

 return zip;

 }

}

The AddressDO dependent value is immutable: it cannot be altered once it is created. As stated earlier, immutability
helps to reinforce the fact that the dependent value class is a copy, not a remote reference. To use the AddressDO, we
add accessor methods to the CustomerRemote interface:

public interface CustomerRemote extends javax.ejb.EJBObject {

 public void setAddress(AddressDO address) throws RemoteException;

 public AddressDO getAddress() throws RemoteException;

 public void setAddress(String street,String city,String state,String zip)

 throws RemoteException;

 public Name getName() throws RemoteException;

 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;

 public void setHasGoodCredit(boolean creditRating) throws RemoteException;

}

You can now use a client application to test the Customer EJB's relationship with the Address EJB. Here is the client
code that creates a new Customer, gives it an address, and then changes the address:

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

import javax.naming.Context;

import javax.naming.NamingException;

import java.util.Properties;

public class Client {

 public static void main(String [] args) throws Exception {

 // obtain CustomerHomeRemote

 Context jndiContext = getInitialContext();

 Object obj=jndiContext.lookup("CustomerHomeRemote");

 CustomerHomeRemote home = (CustomerHomeRemote)

 javax.rmi.PortableRemoteObject.narrow(obj,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 javax.rmi.PortableRemoteObject.narrow(obj,

 CustomerHomeRemote.class);

 // create a Customer

 Integer primaryKey = new Integer(1);

 CustomerRemote customer = home.create(primaryKey);

 // create an address

 AddressDO address = new AddressDO("1010 Colorado",

 "Austin", "TX", "78701");

 // set address

 customer.setAddress(address);

 address = customer.getAddress();

 System.out.print(primaryKey+" = ");

 System.out.println(address.getStreet());

 System.out.println(address.getCity()+","+

 address.getState()+" "+

 address.getZip());

 // create a new address

 address = new AddressDO("1600 Pennsylvania Avenue NW",

 "DC", "WA", "20500");

 // change Customer's address

 customer.setAddress(address);

 address = customer.getAddress();

 System.out.print(primaryKey+" = ");

 System.out.println(address.getStreet());

 System.out.println(address.getCity()+","+

 address.getState()+" "+

 address.getZip());

 // remove Customer

 customer.remove();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static Context getInitialContext()

 throws javax.naming.NamingException {

 Properties p = new Properties();

 // ... Specify the JNDI properties specific to the vendor.

 //return new javax.naming.InitialContext(p);

 return null;

 }

}

The following listing shows the EJB 2.1 deployment descriptor for the Customer and Address EJBs. You don't need to
worry about the details of the deployment descriptor yet; it will be covered in depth in Chapter 7.

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 <entity>

 <ejb-name>AddressEJB</ejb-name>

 <local-home>com.titan.address.AddressHomeLocal</local-home>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <local-home>com.titan.address.AddressHomeLocal</local-home>

 <local>com.titan.address.AddressLocal</local>

 <ejb-class>com.titan.address.AddressBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Address</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>street</field-name></cmp-field>

 <cmp-field><field-name>city</field-name></cmp-field>

 <cmp-field><field-name>state</field-name></cmp-field>

 <cmp-field><field-name>zip</field-name></cmp-field>

 <primkey-field>id</primkey-field>

 <security-identity><use-caller-identity/></security-identity>

 </entity>

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

 <assembly-descriptor>

 <security-role>

 <role-name>Employees</role-name>

 </security-role>

 <method-permission>

 <role-name>Employees</role-name>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>AddressEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>AddressEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <method>

 <ejb-name>CustomerEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The EJB 2.0 deployment descriptor looks the same, except it uses a document declaration that points to a DTD instead
referencing an XML Schema. Here's the difference:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 ...

</ejb-jar>

Exercise 6.3 in the Workbook shows how to deploy this example on the JBoss server.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. CMP: Basic Persistence
In this chapter, we'll take a thorough look at the process of developing entity beans. A good rule of thumb is that entity
beans model business concepts that can be expressed as nouns. Although this is a guideline rather than a requirement,
it helps determine when a business concept is a candidate for implementation as an entity bean. In grammar school,
you learned that nouns are words that describe a person, place, or thing. The concepts of "person" and "place" are
fairly obvious: a person EJB might represent a customer or passenger, and a place EJB might represent a city or port-
of-call. Similarly, entity beans often represent "things": real-world objects like ships, credit cards, and abstractions such
as reservations. Entity beans describe both the state and behavior of real-world objects and allow developers to
encapsulate the data and business rules associated with specific concepts; a Customer EJB encapsulates the data and
business rules associated with a customer, for example. This makes it possible for data associated with a concept to be
manipulated consistently and safely.

In Titan's cruise ship business, we can identify hundreds of business concepts that are nouns and, therefore, could
conceivably be modeled by entity beans. We've already seen a simple Cabin EJB in Chapter 4, and we'll develop
Customer and Address EJBs in this chapter. Titan could clearly make use of a Cruise EJB, a Reservation EJB, and many
others. Each of these business concepts represents data that needs to be tracked and possibly manipulated.

Entities represent data in the database, so changes to an entity bean result in changes to the database. That's
ultimately the purpose of an entity bean: to provide programmers with a simpler mechanism for accessing and
changing data. It is much easier to change a customer's name by calling Customer.setName() than by executing an SQL
command against the database. In addition, using entity beans provides opportunities for software reuse. Once an
entity bean has been defined, its definition can be used throughout Titan's system in a consistent manner. The concept
of a customer, for example, is used in many areas of Titan's business, including booking, accounts receivable, and
marketing. A Customer EJB provides Titan with one complete way of accessing customer information, and thus it
ensures that access to the information is consistent and simple. Representing data as entity beans can make
development easier and more cost-effective.

When a new entity EJB is created, a new record must be inserted into the database and a bean instance must be
associated with that data. As the EJB is used and its state changes, these changes must be synchronized with the data
in the database: entries must be inserted, updated, and removed. The process of coordinating the data represented by
a bean instance with the database is called persistence.

There are two basic types of entity beans, distinguished by how they manage persistence: container-managed
persistence beans and bean-managed persistence beans. For container-managed persistence beans (frequently called
CMP beans), the container knows how a bean instance's persistence and relationship fields map to the database and
automatically takes care of inserting, updating, and deleting the data associated with entities in the database. Entity
beans using bean-managed persistence do all this work manually: the bean developer must write the code to
manipulate the database. The EJB container tells the bean instance when it is safe to insert, update, and delete its data
from the database, but it provides no other help.

This chapter and the two that follow focus on entity beans that use container-managed persistence. In EJB 2.1 and EJB
2.0, the data associated with an entity bean can be much more complex than in earlier versions. Container-managed
beans can have relationships with other entity beans, a function that was not well supported in the older version—as a
result, vendors sometimes offered proprietary solutions that were not portable. In addition, container-managed beans
can be finer in granularity so that they can easily model things such as the address, line item, or cabin. The Customer
EJB that we'll define in this chapter has relationships with several other entities, including the Address, Phone,
CreditCard, Cruise, Ship, Cabin, and Reservation EJBs. In the next few chapters, you'll learn how to use EJB's support
for bean-to-bean relationships, and will also come to understand their limitations. In addition, in Chapter 8, you will
learn about the Enterprise JavaBeans Query Language (EJB QL), which is used to define how the find methods and
select methods should behave at runtime.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 The Seven Relationship Types
Seven types of relationships can exist between EJBs. There are four types of cardinality: one-to-one, one-to-many,
many-to-one, and many-to-many. In addition, each relationship can be either unidirectional or bidirectional. These
options seem to yield eight possibilities, but if you think about it, you'll realize that one-to-many and many-to-one
bidirectional relationships are actually the same thing. Thus, there are only seven distinct relationship types. To
understand relationships, it helps to think about some simple examples:

One-to-one, unidirectional

The relationship between a customer and an address. You clearly want to be able to look up a customer's
address, but you probably don't care about looking up an address's customer.

One-to-one, bidirectional

The relationship between a customer and a credit card number. Given a customer, you obviously want to be
able to look up his credit card number. Given a credit card number, it is also conceivable that you would want to
look up the customer who owns the credit card.

One-to-many, unidirectional

The relationship between a customer and a phone number. A customer can have many phone numbers
(business, home, cell, etc.). You might need to look up a customer's phone number, but you probably wouldn't
use one of those numbers to look up the customer.

One-to-many, bidirectional

The relationship between a cruise and a reservation. Given a reservation, you want to be able to look up the
cruise for which the reservation was made. And given a particular cruise, you want to be able to look up all
reservations. (Note that a many-to-one bidirectional relationship is just another perspective on the same
concept.)

Many-to-one, unidirectional

The relationship between a cruise and a ship. You want to be able to look up the ship that will be used for a
particular cruise, and many cruises share the same ship, though at different times. It's less useful to look up the
ship to see which cruises are associated with it, although if you want this capability, you can implement a
many-to-one bidirectional relationship.

Many-to-many, unidirectional

The relationship between a reservation and a cabin. It's possible to make a reservation for multiple cabins, and
you clearly want to be able to look up the cabin assigned to a reservation. However, you're not likely to want to
look up the reservation associated with a particular cabin. (If you think you need to do so, implement it as a
bidirectional relationship.)

Many-to-many, bidirectional

The relationship between a cruise and a customer. A customer can make reservations on many cruises, and
each cruise has many customers. You want to be able to look up both the cruises on which a customer has a
booking, and the customers that will be going on any given cruise.

7.1.1 Abstract Persistence Schema

In Chapter 6, you learned how to form a basic relationship between the Customer and Address entity beans using the
abstract programming model. In reality, the abstract programming model is only half of the equation. In addition to
declaring abstract accessor methods, a bean developer must describe the cardinality and direction of the entity-to-
entity relationships in the bean's deployment descriptor. This step is handled in the <relationships> section of the XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entity relationships in the bean's deployment descriptor. This step is handled in the <relationships> section of the XML
deployment descriptor. As we discuss each type of relationship, we will examine both the abstract programming model
and the XML elements. The purpose of this section is to introduce you to the basic elements used in the XML
deployment descriptor, to better prepare you for subsequent sections on specific relationship types.

In this book we always refer to the Java programming idioms used to describe relationships—specifically, the abstract
accessor methods—as the abstract programming model. When referring to the XML deployment descriptor elements,
we use the term abstract persistence schema. In the EJB specification, the term "abstract persistence schema" actually
refers to both the Java idioms and the XML elements, but this book separates these concepts so we can discuss them
more easily.

An entity bean's abstract persistence schema is defined in the <relationships> section of the XML deployment descriptor
for that bean. The <relationships> section falls between the <enterprise-beans> section and the <assembly-descriptor>
section.

<ejb-jar>

 <enterprise-beans>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 ...

 </ejb-relation>

 <ejb-relation>

 ...

 </ejb-relation>

 </relationships>

 <assembly-descriptor>

 ...

 </assembly-descriptor>

</ejb-jar>

Defining relationship fields requires an <ejb-relation> element for each entity-to-entity relationship. For each set of
abstract accessor methods that define a relationship field, there must be an <ejb-relation> element in the deployment
descriptor. EJB requires the entity beans that participate in a relationship to be defined in the same XML deployment
descriptor.

Here is a partial listing of the deployment descriptor for the Customer and Address EJBs, with emphasis on the elements
that define the relationship:

<ejb-jar ...>

 ...

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <local-home>com.titan.customer.CusomterHomeLocal</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>AddressEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>AddressEJB</ejb-name>

 <local-home>com.titan.address.AddressHomeLocal</local-home>

 <local>com.titan.address.AddressLocal</local>

 ...

 </entity>

 ...

 </enterprise-beans>

 <relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Address</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Address-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

</ejb-jar>

Every relationship may have a relationship name, which is declared in the <ejb-relation-name> element. This serves to
identify the relationship for individuals reading the deployment descriptor or for deployment tools, but it's not required.

Every <ejb-relation> element has exactly two <ejb-relationship-role> elements, one for each participant in the relationship.
In the previous example, the first <ejb-relationship-role> declares the Customer EJB's role in the relationship. We know
this because the <relationship-role-source> element specifies the <ejb-name> as CustomerEJB. CustomerEJB is the <ejb-name>
used in the Customer EJB's original declaration in the <enterprise-beans> section. The <relationship-role-source> element's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used in the Customer EJB's original declaration in the <enterprise-beans> section. The <relationship-role-source> element's
<ejb-name> must always match an <ejb-name> element in the <enterprise-beans> section.

The <ejb-relationship-role> element also declares the cardinality, or multiplicity, of the role. The <multiplicity> element can
either be One or Many. In this case, the Customer EJB's <multiplicity> element has a value of One, which means that
every Address EJB has a relationship with exactly one Customer EJB. The Address EJB's <multiplicity> element also
specifies One, which means that every Customer EJB has a relationship with exactly one Address EJB. If the Customer
EJB had a relationship with many Address EJBs, the Address EJB's <multiplicity> element would be set to Many.

In Chapter 6, the Customer EJB had abstract accessor methods for getting and setting the Address EJB in the
homeAddress field, but the Address EJB did not have abstract accessor methods for the Customer EJB. In this case, the
Customer EJB maintains a reference to the Address EJB, but the Address EJB doesn't maintain a reference back to the
Customer EJB. This is a unidirectional relationship, which means that only one of the entity beans in the relationship
maintains a container-managed relationship field.

If the bean described by the <ejb-relationship-role> element maintains a reference to the other bean in the relationship,
that reference must be declared as a container-managed relationship field in the <cmr-field> element. The <cmr-field>
element is declared under the <ejb-relationship-role> element:

<ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-an-Address

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

</ejb-relationship-role>

EJB requires that the <cmr-field-name> begin with a lowercase letter. For every relationship field defined by a <cmr-field>
element, there must be a pair of matching abstract accessor methods in the bean class. One method in this pair must
be defined with the method name set<cmr-field-name>(), with the first letter of the <cmr-field-name> value changed to
uppercase. The other method is defined as get<cmr-field-name>(), also with the first letter of the <cmr-field-name> value
in uppercase. In the previous example, the <cmr-field-name> is homeAddress, which corresponds to the getHomeAddress()
and setHomeAddress() abstract accessor methods defined in the CustomerBean class:

// bean class code

public abstract void setHomeAddress(AddressLocal address);

public abstract AddressLocal getHomeAddress();

// XML deployment descriptor declaration

<cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

</cmr-field>

The return type of the get<cmr-field-name>() method and the parameter type of the set<cmr-field-name>() must be the
same. The type must be the local interface of the entity bean that is referenced or one of two java.util.Collection types. In
the case of the homeAddress relationship field, we are using the Address EJB's local interface, AddressLocal. Returning a
collection is discussed later in this chapter.

Now that we have established a basic understanding of how elements are declared, we are ready to discuss each of the
seven types of relationships. In the process, we will introduce additional entity beans that have relationships with the
Customer EJB, including the CreditCard, Phone, Ship, and Reservation EJBs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Customer EJB, including the CreditCard, Phone, Ship, and Reservation EJBs.

It's important to understand that although entity beans may have both local and remote interfaces, a container-
managed relationship field can use only the entity bean's local interface when persisting a relationship. So, for example,
it is illegal to define an abstract accessor method that has an argument type of javax.ejb.EJBObject (a remote interface
type). All container-managed relationships are based on javax.ejb.EJBLocalObject (local interface) types.

7.1.2 Database Modeling

This chapter discusses several different database table schemas. These schemas demonstrate possible relationships
between entities in the database; they don't represent the only way to implement these relationships, or even the best
way. For example, the Address-Customer relationship is implemented by having the CUSTOMER table maintain a foreign
key to the ADDRESS table. This is not how most databases will be organized—instead, they will probably use a link table
or have the ADDRESS table maintain a foreign key to the CUSTOMER. The difference really isn't important for the
purposes of this book, as EJB's container-managed persistence can support different database organizations. If you
have the luxury of defining your own database schema, organize your database in whatever way makes the most sense
for your application. If you've inherited a database schema, container-managed persistence should be flexible enough
to support the database organization you already have.

Throughout this chapter, we assume that the database tables are created before the EJB application—in other words,
that the EJB application is mapped to a legacy database. Some vendors offer tools that generate tables automatically
according to the relationships defined between the entity beans. These tools may create schemas that are very different
from the ones explored here. In other cases, vendors that support established database schemas may not have the
flexibility to support the schemas illustrated in this chapter. As an EJB developer, you must be flexible enough to adapt
to the facilities provided by your EJB vendor.

7.1.3 One-to-One, Unidirectional Relationship

An example of a one-to-one, unidirectional relationship is the one between the Customer EJB and the Address EJB
defined in Chapter 6. In this example, each Customer has exactly one Address, and each Address has exactly one
Customer. Which bean references which determines the direction of navigation. While the Customer has a reference to
the Address, the Address doesn't reference the Customer. The relationship is therefore unidirectional—you can only go
from the Customer to the Address, not the other way around. In other words, an Address EJB has no idea who owns it.
Figure 7-1 shows this relationship.

Figure 7-1. One-to-one, unidirectional relationship

7.1.3.1 Relational database schema

As shown in Figure 7-2, one-to-one, unidirectional relationships normally use a fairly typical relational database schema
in which one table contains a foreign key (pointer) to another table. In this case, the CUSTOMER table contains a foreign
key to the ADDRESS table, but the ADDRESS table doesn't contain a foreign key to the CUSTOMER table. This allows
records in the ADDRESS table to be shared by other tables, a scenario explored in the "Many-to-Many, Unidirectional
Relationship" section.

Figure 7-2. One-to-one, unidirectional relationship in RDBMS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.3.2 Abstract programming model

In unidirectional relationships (navigated only one way), only one of the enterprise beans defines abstract accessor
methods that let it get or set the other bean in the relationship. Thus, inside the CustomerBean class, you can call the
getHomeAddress()/setHomeAddress() methods to access the Address EJBs, but there are no methods inside the
AddressBean class to access the Customer EJB.

The Address EJB can be shared between relationship fields of the same enterprise bean, but it cannot be shared
between Customer EJBs. If, for example, the Customer EJB defines two relationship fields, billingAddress and
homeAddress, as one-to-one, unidirectional relationships with the Address EJB, these two fields can reference the same
Address EJB:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public void setAddress(String street,String city,String state,String zip) {

 ...

 address = addressHome.createAddress(street, city, state, zip);

 this.setHomeAddress(address);

 this.setBillingAddress(address);

 AddressLocal billAddr = this.getBillingAddress();

 AddressLocal homeAddr = this.getHomeAddress();

 if(billAddr.isIdentical(homeAddr))

 // always true

 ...

 }

 ...

}

If at any time you want to make the billingAddress different from the homeAddress, you can simply set it equal to a
different Address EJB. Sharing a reference to another bean between two relationship fields in the same entity is
sometimes very convenient, though. In order to support this type of relationship, a new billing address field might be
added to the CUSTOMER table:

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 HAS_GOOD_CREDIT INT,

 HOME_ADDRESS_ID INT,

 BILLING_ADDRESS_ID INT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BILLING_ADDRESS_ID INT

)

As the earlier example shows, it is possible for two fields in a bean (in this case, the homeAddress and billingAddress fields
in the Customer EJB) to reference the same relationship (i.e., a single Address EJB) if the relationship type is the same.
However, it is not possible to share a single Address EJB between two different Customer EJBs. If, for example, the
home Address of Customer A were assigned as the home Address of Customer B, the Address would be moved, not
shared, so that Customer A wouldn't have a home Address any longer. As you can see in Figure 7-3, Address 2 is
initially assigned to Customer B, but becomes disconnected when Address 1 is reassigned to Customer B.

Figure 7-3. Exchanging references in a one-to-one, unidirectional relationship

This seemingly strange side effect is a result of how the relationship is defined. The Customer-to-Address EJB
relationship was defined as one-to-one, so the Address EJB can be referenced by only one Customer EJB.

If the Customer EJB does not have an Address EJB associated with its homeAddress field, the getHomeAddress() method
will return null. This is true of all container-managed relationship fields that reference a single entity bean.

7.1.3.3 Abstract persistence schema

We defined the XML elements for the Customer-Address relationship earlier in this chapter, so we won't go over them
again. The <ejb-relation> element used in that section declared a one-to-one, unidirectional relationship. If, however, the
Customer EJB maintained two relationship fields with the Address EJB—homeAddress and billingAddress—each of these
relationships would have to be described in its own <ejb-relation> element:

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-HomeAddress</ejb-relation-name>

 <ejb-relationship-role>

 ...

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

 </ejb-relationship-role>

 </ejb-relation>

 <ejb-relation>

 <ejb-relation-name>Customer-BillingAddress</ejb-relation-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-relation-name>Customer-BillingAddress</ejb-relation-name>

 <ejb-relationship-role>

 ...

 <cmr-field>

 <cmr-field-name>billingAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

7.1.4 One-to-One, Bidirectional Relationship

We can expand our Customer EJB to include a reference to a CreditCard EJB, which maintains credit card information.
The Customer EJB will maintain a reference to its CreditCard EJB, and the CreditCard EJB will maintain a reference back
to the Customer—this makes good sense, since a CreditCard should be aware of who owns it. Since each CreditCard
has a reference back to one Customer and each Customer references one CreditCard, we have a one-to-one
bidirectional relationship.

7.1.4.1 Relational database schema

The CreditCard EJB has a corresponding CREDIT_CARD table, so we need to add a CREDIT_CARD foreign key to the
CUSTOMER table:

CREATE TABLE CREDIT_CARD

(

 ID INT PRIMARY KEY NOT NULL,

 EXP_DATE DATE,

 NUMBER CHAR(20),

 NAME CHAR(40),

 ORGANIZATION CHAR(20),

 CUSTOMER_ID INT

)

CREATE TABLE CUSTOMER

(

 ID INT PRIMARY KEY,

 LAST_NAME CHAR(20),

 FIRST_NAME CHAR(20),

 HAS_GOOD_CREDIT INT,

 HOME_ADDRESS_ID INT,

 BILLING_ADDRESS_ID INT,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREDIT_CARD_ID INT

)

One-to-one, bidirectional relationships may model relational database schemas in which the two tables hold foreign
keys for one another (specifically, two rows in different tables point to each other). Figure 7-4 illustrates how this
schema would be implemented for rows in the CUSTOMER and CREDIT_CARD tables.

Figure 7-4. One-to-one, bidirectional relationship in RDBMS

It is also possible for a one-to-one, bidirectional relationship to be established through a linking table, in which each
foreign key column must be unique. Using a linking table is convenient when you do not want to impose relationships
on the original tables. We will use linking tables in one-to-many and many-to-many relationships later in this chapter.
The abstract persistence schema of an entity bean may map to a variety of database schemas; the database schemas
used in these examples are only a few possiblities.

7.1.4.2 Abstract programming model

To model the relationship between the Customer and CreditCard EJBs, we need to declare a relationship field named
customer in the CreditCardBean class:

public abstract class CreditCardBean extends javax.ejb.EntityBean {

 ...

 // relationship fields

 public abstract CustomerLocal getCustomer();

 public abstract void setCustomer(CustomerLocal local);

 // persistence fields

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract Date getExpirationDate();

 public abstract void setExpirationDate(Date date);

 public abstract String getNumber();

 public abstract void setNumber(String number);

 public abstract String getNameOnCard();

 public abstract void setNameOnCard(String name);

 public abstract String getCreditOrganization();

 public abstract void setCreditOrganization(String org);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // standard callback methods

 ...

}

We use the Customer EJB's local interface (assume one has been created), because relationship fields require local
interface types. All the relationships explored in the rest of this chapter assume local interfaces. Of course, the
limitation of using local interfaces instead of remote interfaces is that you don't have location transparency. All the
entity beans must be located in the same process or Java Virtual Machine (JVM).

We can also add a set of abstract accessor methods in the CustomerBean class for the creditCard relationship field:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public abstract void setCreditCard(CreditCardLocal card);

 public abstract CreditCardLocal getCreditCard();

 ...

}

Although a setCustomer() method is available in the CreditCardBean, we do not have to set the Customer reference on the
CreditCard EJB explicitly. When a CreditCard EJB reference is passed into the setCreditCard() method on the
CustomerBean class, the EJB container automatically establishes the customer relationship on the CreditCard EJB to point
back to the Customer EJB:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // The setCreditCard() business method uses the setCreditCard() abstract accessor

 public void setCreditCard(Date exp, String numb, String name, String org)

 throws CreateException {

 ...

 card = creditCardHome.create(exp,numb,name,org);

 // the CreditCard EJB's customer field will be set automatically

 this.setCreditCard(card);

 CustomerLocal customer = card.getCustomer();

 if(customer.isIdentical(ejbContext.getEJBLocalObject())

 // always true

 ...

 }

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The rules for sharing a single bean in a one-to-one, bidirectional relationship are the same as those for one-to-one,
unidirectional relationships. While the CreditCard EJB may be shared between relationship fields of the same Customer
EJB, it can't be shared between different Customer EJBs. As Figure 7-5 shows, assigning Customer A's CreditCard to
Customer B disassociates that CreditCard from Customer A and moves it to Customer B.

Figure 7-5. Exchanging references in a one-to-one, bidirectional relationship

7.1.4.3 Abstract persistence schema

The <ejb-relation> element that defines the Customer-to-CreditCard relationship is similar to the one used for the
Customer-to-Address relationship, with one important difference—both <ejb-relationship-role> elements have a <cmr-
field>:

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-CreditCard</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-a-CreditCard

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>creditCard</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 CreditCard-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CreditCardEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>customer</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

The fact that both participants in the relationship define <cmr-field> elements (relationship fields) tells us that the
relationship is bidirectional.

7.1.5 One-to-Many, Unidirectional Relationship

Entity beans can also maintain relationships with multiplicity. This means one entity bean can aggregate or contain
many other entity beans. For example, the Customer EJB may have relationships with many Phone EJBs, each of which
represents a phone number. This is very different from simple one-to-one relationships—or, for that matter, from
multiple one-to-one relationships with the same type of bean. One-to-many and many-to-many relationships require
the developer to work with a collection of references when accessing the relationship field, instead of a single reference.

7.1.5.1 Relational database schema

To illustrate a one-to-many, unidirectional relationship, we will use a new entity bean, the Phone EJB, for which we
must define a table, the PHONE table:

CREATE TABLE PHONE

(

 ID INT PRIMARY KEY NOT NULL,

 NUMBER CHAR(20),

 TYPE INT,

 CUSTOMER_ID INT

)

One-to-many, unidirectional relationships between the CUSTOMER and PHONE tables could be implemented in a variety
of ways. For this example, we chose to have the PHONE table include a foreign key to the CUSTOMER table.

The table of aggregated data can maintain a column of nonunique foreign keys to the aggregating table. In the case of
the Customer and Phone EJBs, the PHONE table maintains a foreign key to the CUSTOMER table, and one or more PHONE
records may contain foreign keys to the same CUSTOMER record. In other words, in the database, the PHONE records
point to the CUSTOMER records. In the abstract programming model, however, it is the Customer EJB that points to the
Phone EJBs—two schemas are reversed. How does this work? The container system hides the reverse pointer so that it
appears as if the Customer is aware of the Phone EJB, and not the other way around. When you ask the container to
return a Collection of Phone EJBs (invoking the getPhoneNumbers() method), it queries the PHONE table for all the records
with a foreign key matching the Customer EJB's primary key. The use of reverse pointers in this type of relationship is
illustrated in Figure 7-6.

Figure 7-6. One-to-many, unidirectional relationship in RDBMS using reverse
pointers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pointers

This database schema illustrates that the structure and relationships of the actual database can differ from the
relationships as defined in the abstract programming model. In this case, the tables are set up in reverse, but the EJB
container system will manage the beans to meet the specification of the bean developer. When you are dealing with
legacy databases (i.e., databases that were established before the EJB application), reverse-pointer scenarios like the
one illustrated here are common, so supporting this kind of relationship mapping is important.

A simpler implementation of the Customer-Phone relationship could use a link table that maintains two columns with
foreign keys pointing to both the CUSTOMER and PHONE records. We could then place a constraint on the PHONE foreign
key column in the link table to ensure that it contains only unique entries (i.e., that every phone has only one
customer), while allowing the CUSTOMER foreign key column to contain duplicates. The advantage of the link table is
that it doesn't impose the relationship between the CUSTOMER and PHONE records onto either of the tables.

7.1.5.2 Abstract programming model

In the abstract programming model, we represent multiplicity by defining a relationship field that can point to many
entity beans. To do this, we employ the same abstract accessor methods we used for one-to-one relationships, but this
time we set the field type to either java.util.Collection or java.util.Set. The Collection maintains a homogeneous group of local
EJB object references, which means it contains many references to one kind of entity bean. The Collection type may
contain duplicate references to the same entity bean, while the Set type may not.

For example, a Customer EJB may have relationships with several phone numbers (e.g., a home phone, work phone,
cell phone, fax, etc.), each represented by a Phone EJB. Instead of having a different relationship field for each of these
Phone EJBs, the Customer EJB keeps all the Phone EJBs in a collection-based relationship field, which can be accessed
through abstract accessor methods:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // relationship fields

 public abstract Collection getPhoneNumbers();

 public abstract void setPhoneNumbers(Collection phones);

 public abstract AddressLocal getHomeAddress();()

 public abstract void setHomeAddress(AddressLocal local);

 ...

The Phone EJB, like other entity beans, has a bean class and local interface, as shown in the next listing. Notice that the
PhoneBean doesn't provide a relationship field for the Customer EJB. It's a unidirectional relationship; the Customer
maintains a relationship with many Phone EJBs, but the Phone EJBs do not maintain a relationship field back to the
Customer. Only the Customer EJB is aware of the relationship:

// the local interface for the Phone EJB

public interface PhoneLocal extends javax.ejb.EJBLocalObject {

 final public static byte HOME_PHONE = (byte)1;

 final public static byte WORK_PHONE = (byte)2;

 final public static byte CELL_PHONE = (byte)3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 final public static byte CELL_PHONE = (byte)3;

 public String getNumber();

 public void setNumber(String number);

 public byte getType();

 public void setType(byte type);

}

// the bean class for the Phone EJB

public abstract class PhoneBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(String number, byte type) {

 setNumber(number);

 setType(type);

 return null;

 }

 public void ejbPostCreate(String number,byte type) {

 }

 // persistence fields

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract String getNumber();

 public abstract void setNumber(String number);

 public abstract byte getType();

 public abstract void setType(byte type);

 // standard callback methods

 ...

}

To illustrate how an entity bean uses a collection-based relationship field, we define a method in the CustomerBean class
that allows remote clients to add new phone numbers. The method, addPhoneNumber(), uses the phone number
arguments to create a new Phone EJB and then add that Phone EJB to a collection-based relationship field named
phoneNumbers:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 // business methods

 public void addPhoneNumber(String number, byte type) {

 InitialContext jndiEnc = new InitialContext();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InitialContext jndiEnc = new InitialContext();

 PhoneHomeLocal phoneHome = (PhoneHomeLocal)

 jndiEnc.lookup("java:comp/env/ejb/PhoneHomeLocal");

 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = this.getPhoneNumbers();

 phoneNumbers.add(phone);

 }

 ...

 // relationship fields

 public abstract java.util.Collection getPhoneNumbers();

 public abstract void setPhoneNumbers(java.util.Collection phones);

 ...

Note that we created the Phone EJB first, then added it to the phoneNumbers collection-based relationship. We obtained
the phoneNumbers Collection object from the getPhoneNumbers() accessor method, then added the new Phone EJB to the
Collection just as we would add any object to a Collection. Adding the Phone EJB to the Collection causes the EJB container
to set the foreign key on the new PHONE record so that it points back to the Customer EJB's CUSTOMER record. If we had
used a link table, a new link record would have been created. From this point forward, the new Phone EJB will be
available from the phoneNumbers collection-based relationship.

You can also update or remove references using the accessor methods. The following code defines two methods in the
CustomerBean class that allow clients to remove or update phone numbers in the bean's phoneNumbers relationship field:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 // business methods

 public void removePhoneNumber(byte typeToRemove) {

 Collection phoneNumbers = this.getPhoneNumbers();

 Iterator iterator = phoneNumbers.iterator();

 while(iterator.hasNext()) {

 PhoneLocal phone = (PhoneLocal)iterator.next();

 if(phone.getType() == typeToRemove) {

 iterator.remove(phone);

 break;

 }

 }

 }

 public void updatePhoneNumber(String number,byte typeToUpdate) {

 Collection phoneNumbers = this.getPhoneNumbers();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Collection phoneNumbers = this.getPhoneNumbers();

 Iterator iterator = phoneNumbers.iterator();

 while(iterator.hasNext()) {

 PhoneLocal phone = (PhoneLocal)iterator.next();

 if(phone.getType() == typeToUpdate) {

 phone.setNumber(number);

 break;

 }

 }

 }

 ...

 // relationship fields

 public abstract Collection getPhoneNumbers();

 public abstract void setPhoneNumbers(Collection phones);

In the removePhoneNumber() business method, a Phone EJB with the matching type was found and then removed from
the collection-based relationship. The phone number is not deleted from the database; it's just disassociated from the
Customer EJB (i.e., it is no longer referenced by a Customer). Figure 7-7 shows what happens when a Phone EJB
reference is removed from the collection-based relationship.

Figure 7-7. Removing a bean reference from a relationship-field collection

The updatePhoneNumber() method actually modifies an existing Phone EJB, changing its state in the database. The Phone
EJB is still referenced by the collection-based relationship, but its data has changed.

The removePhoneNumber() and updatePhoneNumber() methods illustrate that a collection-based relationship can be
accessed and updated just like any other Collection object. In addition, a java.util.Iterator can be obtained from the
Collection object for looping operations. However, you should exercise caution when using an Iterator over a collection-
based relationship. You must not add elements to or remove elements from the Collection object while you are using its
Iterator. The only exception to this rule is that the Iterator.remove() method may be called to remove an entry. Although
the Collection.add() and Collection.remove() methods can be used in other circumstances, calling these methods while an
Iterator is in use results in a java.util.IllegalStateException exception.

If no beans have been added to the phoneNumbers relationship field, the getPhoneNumbers() method returns an empty
Collection object. The Collection object used with the relationship field is implemented by the container system,
proprietary to the vendor, and tightly coupled with the inner workings of the container. This allows the EJB container to
implement performance enhancements such as lazy loading or optimistic concurrency without exposing those
mechanisms to the bean developer.[1] Application-defined Collection objects may be used with container-manager
relationship fields only if the elements are of the proper type. For example, it is legal to create a new Collection object
and then add that Collection object to the Customer EJB using the setPhoneNumbers() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and then add that Collection object to the Customer EJB using the setPhoneNumbers() method:

[1] A Collection from a collection-based relationship that is materialized in a transaction cannot be modified outside
the scope of that transaction. See Chapter 14 for more details.

public void addPhoneNumber(String number, String type) {

 ...

 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = java.util.Vector();

 phoneNumbers.add(phone);

 // This is allowed

 this.setPhoneNumbers(phoneNumbers);

}

// relationship fields

public abstract Collection getPhoneNumbers();

public abstract void setPhoneNumbers(Collection phones);

We have used the getPhoneNumbers() method extensively, but have not yet used the setPhoneNumbers() method. In most
cases, this method will not be used, because it updates an entire collection of phone numbers. However, it can be
useful for exchanging like relationships between entity beans.

If two Customer EJBs want to exchange phone numbers, they can do so in a variety of ways. The most important thing
to keep in mind is that a Phone EJB, as the subject of a one-to-many, unidirectional relationship, may reference only
one Customer EJB. It can be copied, so that both Customers have Phone EJBs with similar data, but the Phone EJB itself
cannot be shared.

Imagine that Customer A wants to transfer all of its phone numbers to Customer B. It can accomplish this using
Customer B's setPhoneNumbers() method, as shown in the following listing (we assume the Customer EJBs are
interacting through their local interfaces):

CustomerLocal customerA = ... get Customer A

CustomerLocal customerB = ... get Customer B

Collection phonesA = customerA.getPhoneNumbers();

customerB.setPhoneNumbers(phonesA);

if(customerA.getPhoneNumbers().isEmpty())

 // this will be true

if(phonesA.isEmpty()))

 // this will be true

As Figure 7-8 illustrates, passing one collection-based relationship to another disassociates those relationships from the
first bean and associates them with the second. In addition, if the second bean already has a Collection of Phone EJBs in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

first bean and associates them with the second. In addition, if the second bean already has a Collection of Phone EJBs in
its phoneNumbers relationship field, those beans are bumped out of the relationship and disassociated from the bean.

Figure 7-8. Exchanging a relationship collection in a one-to-many, unidirectional
relationship

The result of this exchange may be counterintuitive, but it is necessary to uphold the multiplicity of the relationship,
which says that the Phone EJB may have only one Customer EJB. This explains why Phone EJBs 1, 2, and 3 don't
reference both Customers A and B, but it doesn't explain why Phone EJBs 4, 5, and 6 are disassociated from Customer
B. Why isn't Customer B associated with all the Phone EJBs? The reason is purely a matter of semantics, since the
relational database schema wouldn't technically prevent this from occurring. The act of replacing one Collection with
another by calling setPhoneNumbers(Collection collection) implies that Customer B's initial Collection object is no longer
referenced.

In addition to moving whole collection-based relationships between beans, it is possible to move individual Phone EJBs
between Customers. These cannot be shared either. For example, if a Phone EJB aggregated by Customer A is added to
the relationship collection of Customer B, that Phone EJB changes so that it's now referenced by Customer B instead of
Customer A, as Figure 7-9 illustrates.

Figure 7-9. Exchanging a bean in a one-to-many, unidirectional relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once again, it's the multiplicity of the relationship that prevents Phone 1 from referencing both Customer A and
Customer B.

7.1.5.3 Abstract persistence schema

The abstract persistence schema for one-to-many, unidirectional relationships has a few significant differences from the
<ejb-relation> elements seen so far:

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Phones</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-many-Phone-numbers

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>phoneNumbers</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Phone-belongs-to-Customer

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>PhoneEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

In the <ejb-relation> element, the multiplicity for the Customer EJB is declared as One, while the multiplicity for the
Phone EJB is Many. These keywords establish the relationship as one-to-many. The fact that the <ejb-relationship-role> for
the Phone EJB doesn't specify a <cmr-field> element indicates that the one-to-many relationship is unidirectional; the
Phone EJB doesn't contain a reciprocating reference to the Customer EJB.

The most interesting change is the addition of the <cmr-field-type> element in the Customer EJB's <cmr-field>
declaration. The <cmr-field-type> must be specified for a bean that has a collection-based relationship field (in this case,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

declaration. The <cmr-field-type> must be specified for a bean that has a collection-based relationship field (in this case,
the phoneNumbers field maintained by the Customer EJB). The <cmr-field-type> can have one of two values,
java.util.Collection or java.util.Set, which are the allowed collection-based relationship types. In a future specification, the
allowed types for collection-based relationships may be expanded to include java.util.List and java.util.Map, but these are
not yet supported. Exercise 7.1 in the Workbook shows how to deploy this example on the JBoss server.

7.1.6 The Cruise, Ship, and Reservation EJBs

By now, I imagine that you're bored by all these phone numbers, credit cards, and addresses. To make things more
interesting, we are going to introduce some more entity beans so that we can model the remaining four relationships:
many-to-one unidirectional, one-to-many bidirectional, many-to-many bidirectional, and many-to-many unidirectional.

In Titan's reservation system, every customer (a.k.a. passenger) can be booked on one or more cruises. Each booking
requires a reservation. A reservation may be for one or more (usually two) passengers. Each cruise requires exactly
one ship, but each ship may be used for many cruises throughout the year. Figure 7-10 illustrates these relationships.

Figure 7-10. Cruise, Ship, Reservation, Cabin, and Customer class diagram

7.1.7 Many-to-One, Unidirectional Relationship

Many-to-one unidirectional relationships result when many entity beans reference a single entity bean, but the
referenced entity bean is unaware of the relationship. In the Titan Cruise business, for example, the concept of a cruise
can be captured by a Cruise EJB. As shown in Figure 7-10, each Cruise has a many-to-one relationship with a Ship. This
relationship is unidirectional; the Cruise EJB maintains a relationship with the Ship EJB, but the Ship EJB does not keep
track of the Cruises for which it is used.

7.1.7.1 Relational database schema

The relational database schema for the Cruise-to-Ship relationship is fairly simple; it requires that the CRUISE table
maintain a foreign key column for the SHIP table, with each row in the CRUISE table pointing to a row in the SHIP table.
The CRUISE and SHIP tables are defined below; Figure 7-11 shows the relationship between these tables in the database.

Figure 7-11. Many-to-one, unidirectional relationship in RDBMS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An enormous amount of data would be required to adequately describe an ocean liner, but we'll use a simple definition
of the SHIP table here:

CREATE TABLE SHIP

(

 ID INT PRIMARY KEY NOT NULL,

 NAME CHAR(30),

 TONNAGE DECIMAL (8,2)

)

The CRUISE table maintains data on each cruise's name, ship, and other information that is not germane to this
discussion. (Other tables, such as RESERVATIONS, SCHEDULES, and CREW, would have relationships with the CRUISE table
through linking tables.) We'll keep it simple and focus on a definition that is useful for the examples in this book:

CREATE TABLE CRUISE

(

 ID INT PRIMARY KEY NOT NULL,

 NAME CHAR(30),

 SHIP_ID INT

)

7.1.7.2 Abstract programming model

In the abstract programming model, the relationship field is of type ShipLocal and is maintained by the Cruise EJB. The
abstract accessor methods are similar to those defined in the previous examples:

public abstract class CruiseBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(String name, ShipLocal ship) {

 setName(name);

 return null;

 }

 public void ejbPostCreate(String name, ShipLocal ship) {

 setShip(ship);

 }

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setShip(ShipLocal ship);

 public abstract ShipLocal getShip();

 // EJB callback methods

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Notice that the Cruise EJB requires that a ShipLocal reference be passed as an argument when the Cruise is created; this
is perfectly natural, since a cruise cannot exist without a ship. According to the EJB specification, relationship fields
cannot be modified or set in the ejbCreate() method. They must be modified in the ejbPostCreate(), a constraint that is
followed in the CruiseBean class.

The reason relationships are set in ejbPostCreate() and not ejbCreate() is simple: the primary key for the entity bean may
not be available until after ejbCreate() executes. The primary key is needed if the mapping for the relationship uses the
key as a foreign key, so assignment of relationships is postponed until the ejbCreate() method completes and the
primary key becomes available. This is also true with autogenerated primary keys, which usually require that the insert
be done before a primary key can be generated. In addition, referential integrity may specify non-null foreign keys in
referencing tables, so the insert must take place first. In reality, the transaction does not complete until both the
ejbCreate() and ejbPostCreate() methods have executed, so the vendors are free to choose the best time for database
inserts and linking of relationships.

The relationship between the Cruise and Ship EJBs is unidirectional, so the Ship EJB doesn't define any relationship
fields, just persistence fields:

public abstract class ShipBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer primaryKey,String name,double tonnage) {

 setId(primaryKey);

 setName(name);

 setTonnage(tonnage);

 return null;

 }

 public void ejbPostCreate(Integer primaryKey,String name,double tonnage) {

 }

 public abstract void setId(Integer id);

 public abstract Integer getId();

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setTonnage(double tonnage);

 public abstract double getTonnage();

 // EJB callback methods

 ...

}

This should all be fairly mundane for you now. The impact of exchanging Ship references between Cruise EJBs should
be equally obvious. As shown previously in Figure 7-10, each Cruise may reference only a single Ship, but each Ship
may reference many Cruise EJBs. If you take Ship A, which is referenced by Cruises 1, 2, and 3, and pass it to Cruise 4,
Cruises 1 through 4 will all reference Ship A, as shown in Figure 7-12.

Figure 7-12. Sharing a bean reference in a many-to-one, unidirectional
relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relationship

7.1.7.3 Abstract persistence schema

The abstract persistence schema is simple in a many-to-one, unidirectional relationship. It uses everything you have
already learned, and shouldn't contain any surprises:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 <local-home>com.titan.ship.ShipHomeLocal</local-home>

 <local>com.titan.ship.ShipLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

 <ejb-relation>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-relation>

 <ejb-relation-name>Cruise-Ship</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Cruise-has-a-Ship

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>CruiseEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>ship</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Ship-has-many-Cruises

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>ShipEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

The <ejb-relationship-role> of the Cruise EJB defines its multiplicity as Many and declares ship as its relationship field. The
<ejb-relationship-role> of the Ship EJB defines its multiplicity as One and contains no <cmr-field> declaration, because it's a
unidirectional relationship.

7.1.8 One-to-Many, Bidirectional Relationship

One-to-many and many-to-one bidirectional relationships sound like they're different, but they're not. A one-to-many,
bidirectional relationship occurs when one entity bean maintains a collection-based relationship field with another entity
bean, and each entity bean referenced in the collection maintains a single reference back to its aggregating bean. For
example, in the Titan Cruise system, each Cruise EJB maintains a collection of references to all the passenger
reservations made for that Cruise, and each Reservation EJB maintains a single reference to its Cruise. The relationship
is a one-to-many, bidirectional relationship from the perspective of the Cruise EJB, and a many-to-one, bidirectional
relationship from the perspective of the Reservation EJB.

7.1.8.1 Relational database schema

The first table we need is the RESERVATION table, which is defined in the following listing. Notice that the RESERVATION
table contains, among other things, a column that serves as a foreign key to the CRUISE table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table contains, among other things, a column that serves as a foreign key to the CRUISE table:

CREATE TABLE RESERVATION

(

 ID INT PRIMARY KEY NOT NULL,

 AMOUNT_PAID DECIMAL (8,2),

 DATE_RESERVED DATE,

 CRUISE_ID INT

)

While the RESERVATION table contains a foreign key to the CRUISE table, the CRUISE table doesn't maintain a foreign key
back to the RESERVATION table. The EJB container system can determine the relationship between the Cruise and
Reservations EJBs by querying the RESERVATION table, so explicit pointers from the CRUISE table to the RESERVATION
table are not required. This illustrates the separation between the entity bean's view of its persistence relationships and
the database's actual implementation of those relationships.

The relationship between the RESERVATION and CRUISE tables is shown in Figure 7-13.

Figure 7-13. One-to-many/many-to-one, bidirectional relationship in RDBMS

As an alternative, we could have used a link table that would declare foreign keys to both the CRUISE and RESERVATION
tables. This link table would probably impose a uniqueness constraint on the RESERVATION foreign key to ensure that
each RESERVATION record had only one corresponding CRUISE record.

7.1.8.2 Abstract programming model

To model the relationship between Cruises and Reservations, we first define the Reservation EJB, which maintains a
relationship field to the Cruise EJB:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(CruiseLocal cruise) {

 return null;

 }

 public void ejbPostCreate(CruiseLocal cruise) {

 setCruise(cruise);

 }

 public abstract void setCruise(CruiseLocal cruise);

 public abstract CruiseLocal getCruise();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract CruiseLocal getCruise();

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setAmountPaid(float amount);

 public abstract float getAmountPaid();

 public abstract void setDate(Date date);

 public abstract Date getDate();

 // EJB callback methods

 ...

}

When a Reservation EJB is created, a reference to the Cruise for which it is created must be passed to the create()
method. Notice that the CruiseLocal reference is set in the ejbPostCreate() method, not the ejbCreate() method. As stated
previously, the ejbCreate() method is not allowed to update relationship fields; that is the job of ejbPostCreate().

We need to add a collection-based relationship field to the Cruise EJB so that it can reference all the Reservation EJBs
that were created for it:

public abstract class CruiseBean implements javax.ejb.EntityBean {

 ...

 public abstract void setReservations(Collection res);

 public abstract Collection getReservations();

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setShip(ShipLocal ship);

 public abstract ShipLocal getShip();

 // EJB callback methods

 ...

}

The interdependency between the Cruise and Reservation EJBs produces some interesting results. For example, the act
of creating a Reservation EJB automatically adds that entity bean to the collection-based relationship of the Cruise EJB:

CruiseLocal cruise = ... get CruiseLocal reference

ReservationLocal reservation = reservationHomeLocal.create(cruise);

Collection collection = cruise.getReservations();

if(collection.contains(reservation))

 // always returns true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // always returns true

This is a side effect of the bidirectional relationship. Any Cruise referenced by a specific Reservation has a reciprocal
reference back to that Reservation. If Reservation X references Cruise A, Cruise A must have a reference to Reservation
X. When you create a new Reservation EJB and set the Cruise reference on that bean, the Reservation is automatically
added to the Cruise EJB's reservation field.[2]

[2] This actually depends in large part on the sequence of operations, the transaction context, and even the
isolation levels used in the database. Chapter 14 provides more information on these topics.

Sharing references between beans has some of the ugly consequences we learned about earlier. For example, passing a
collection of Reservations referenced by Cruise A to Cruise B actually moves those relationships to Cruise B, so Cruise A
has no more Reservations (see Figure 7-14).

Figure 7-14. Sharing an entire collection in a one-to-many, bidirectional
relationship

As with the Customer and Phone EJBs, this effect is usually undesirable and should be avoided; it displaces the set of
Reservation EJBs formerly associated with Cruise B.

You can move an entire collection from one bean to another and combine it with the second bean's collection by using
the Collection.addAll() method, as shown in Figure 7-15.[3] If you move Cruise A's collection of references to Cruise B,
Cruise A will no longer reference any Reservation EJBs, while Cruise B will reference those it referenced before the
exchange as well as those it acquired from Cruise A.

[3] The addAll() method must be supported by collection-based relationship fields.

Figure 7-15. Using Collection.addAll() in a one-to-many, bidirectional relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moving an individual Reservation EJB from one Cruise to another is similar to moving an individual bean in a one-to-
many relationship: the result is shown in Figure 7-9, when a Phone was moved from one Customer to another. The net
effect of using Collection.addAll() in this situation is the same as using Collection.add() on the target collection for every
element in the source collection. In both cases, you move every element from the source collection to the target
collection.

Once again, container-managed relationship fields, collection-based or otherwise, must always use the
javax.ejb.EJBLocalObject (local) interface of a bean and never the javax.ejb.EJBObject (remote) interface. It would be illegal
to try to add the remote interface of the Reservation EJB (if it has one) to the Cruise EJB's Reservation Collection. Any
attempt to add a remote interface type to a collection-based relationship field results in a
java.lang.IllegalArgumentException.

7.1.8.3 Abstract persistence schema

The abstract persistence schema for the Cruise-Reservation relationship doesn't introduce any new concepts. The
Cruise and Reservation <ejb-relationship-role> elements both have <cmr-field> elements. The Cruise specifies One as its
multiplicity, while Reservation specifies Many. Here's the code:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>

 <local>com.titan.cruise.CruiseLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home>

 com.titan.reservations.ReservationHomeLocal

 </local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<relationships>

 <ejb-relation>

 <ejb-relation-name>Cruise-Reservation

 </ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Cruise-has-many-Reservations

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CruiseEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>reservations</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Reservation-has-a-Cruise

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>ReservationEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>cruise</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

7.1.9 Many-to-Many, Bidirectional Relationship

Many-to-many, bidirectional relationships occur when many beans maintain a collection-based relationship field with
another bean, and each bean referenced in the Collection maintains a collection-based relationship field back to the
aggregating beans. For example, in Titan Cruises, every Reservation EJB may reference many Customers (a family can
make a single reservation) and each Customer can have many reservations (a person may make more than one
reservation). In this many-to-many, bidirectional relationship, the customer keeps track of all of its reservations, and
each reservation may be for many customers.

7.1.9.1 Relational database schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.9.1 Relational database schema

The RESERVATION and CUSTOMER tables have already been established. To establish a many-to-many, bidirectional
relationship, we create the RESERVATION_CUSTOMER_LINK table. This table maintains two foreign key columns: one for
the RESERVATION table and another for the CUSTOMER table:

CREATE TABLE RESERVATION_CUSTOMER_LINK

(

 RESERVATION_ID INT,

 CUSTOMER_ID INT

)

The relationship between the CUSTOMER, RESERVATION, and CUSTOMER_RESERVATION_LINK tables is illustrated in Figure
7-16.

Figure 7-16. Many-to-many, bidirectional relationship in RDBMS

Many-to-many, bidirectional relationships always require a link table in a normalized relational database.

7.1.9.2 Abstract programming model

To model the many-to-many, bidirectional relationship between the Customer and Reservation EJBs, we need to include
collection-based relationship fields in both bean classes:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(CruiseLocal cruise,Collection customers) {

 return null;

 }

 public void ejbPostCreate(CruiseLocal cruise,Collection customers) {

 setCruise(cruise);

 Collection myCustomers = this.getCustomers();

 myCustomers.addAll(customers);

 }

 public abstract void setCustomers(Set customers);

 public abstract Set getCustomers();

 ...

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The abstract accessor methods defined for the customers relationship field declare the Collection type as java.util.Set. The
Set type should contain only unique Customer EJBs and no duplicates. Duplicate Customers would introduce some
interesting but undesirable side effects in Titan's reservation system. To maintain a valid passenger count, and to avoid
overcharging customers, Titan requires that a Customer be booked only once in the same Reservation. The Set
collection type expresses this restriction. The effectiveness of the Set collection type depends largely on referential-
integrity constraints established in the underlying database.

In addition to adding the getCustomers()/setCustomers() abstract accessors, we have modified the ejbCreate(
)/ejbPostCreate() methods to take a Collection of Customer EJBs. When a Reservation EJB is created, it must be provided
with a list of Customer EJBs that it will add to its own Customer EJB collection. Container-managed relationship fields
cannot be modified in the ejbCreate() method. It's the ejbPostCreate() method's job to modify container-managed
relationships fields when a bean is created.

We have also modified the Customer EJB to allow it to maintain a collection-based relationship with all of its
Reservations. The Customer EJB now includes a reservations relationship field:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 // relationship fields

 public abstract void setReservations(Collection reservations);

 public abstract Collection getReservations();

 ...

When a Reservation EJB is created, it is passed references to its Cruise and to a collection of Customers. Because the
relationship is bidirectional, the EJB container automatically adds the Reservation EJB to the reservations relationship
field of the Customer EJB. The following code illustrates this:

Collection customers = ... get local Customer EJBs

CruiseLocal cruise = ... get a local Cruise EJB

ReservationHomeLocal resHome = ... get local Reservation home

ReservationLocal myReservation = resHome.create(cruise, customers);

Iterator iterator = customers.iterator();

while(iterator.hasNext()) {

 CustomerLocal customer = (CustomerLocal)iterator.next();

 Collection reservations = customer.getReservations();

 if(reservations.contains(myReservation))

 // this will always be true

}

Exchanging bean references in many-to-many, bidirectional relationships results in true sharing, where each
relationship maintains a reference to the transferred collection. This type of relationship is illustrated in Figure 7-17.

Figure 7-17. Using Collection.addAll() in a many-to-many, bidirectional
relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relationship

Of course, using the setCustomers() or setReservations() method changes the references between the entity bean and the
elements in the original collection, but the other relationships held by those elements are unaffected. Figure 7-18
illustrates what happens when an entire collection is shared in a many-to-many bidirectional relationship.

Figure 7-18. Sharing an entire collection in a many-to-many, bidirectional
relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After the setCustomers() method is invoked on Reservation D, Reservation D's Customers change to Customers 1, 2, and
3. Customers 1, 2, and 3 were also referenced by Reservation A before the sharing operation and remain referenced by
Reservation A after it's complete. In fact, only the relationships between Reservation D and Customers 4, 5, and 6 are
impacted. The relationship between Customers 4, 5, and 6 and other Reservation EJBs are not affected by the sharing
operation. This is a unique property of many-to-many relationships (both bidirectional and unidirectional): operations
on the relationship fields affect only those specific relationships; they do not impact either party's relationships with
other beans of the same relationship type.

7.1.9.3 Abstract persistence schema

The abstract persistence schema of a many-to-many, bidirectional relationship introduces nothing new and should
contain no surprises. Each <ejb-relationship-role> specifies Many as its multiplicity and declares a <cmr-field> of a specific
Collection type:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <local-home>com.titan.customer.CustomerHomeLocal</local-home>

 <local>com.titan.customer.CustomerLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home> com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-Reservation</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-many-Reservations

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>reservations</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Reservation-has-many-Customers

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>ReservationEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>customers</cmr-field-name>

 <cmr-field-type>java.util.Set</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

7.1.10 Many-to-Many, Unidirectional Relationship

Many-to-many, unidirectional relationships occur when many beans maintain a collection-based relationship with
another bean, but the bean referenced in the Collection does not maintain a collection-based relationship back to the
aggregating beans. In Titan's reservation system, every Reservation is assigned a Cabin on the Ship. This allows a
Customer to reserve a specific Cabin (e.g., a deluxe suite or a cabin with sentimental significance) on the Ship. In this
case, each Reservation may be for more than one Cabin, since each Reservation can be for more than one Customer.
For example, a family might make a Reservation for five people for two adjacent Cabins (one for the kids and the other
for the parents).

While the Reservation must keep track of the Cabins it reserves, it's not necessary for the Cabins to track all the
Reservations made by all the Cruises. The Reservation EJBs reference a collection of Cabin beans, but the Cabin beans
do not maintain references back to the Reservations.

7.1.10.1 Relational database schema

Our first order of business is to declare a CABIN table:

CREATE TABLE CABIN

(

 ID INT PRIMARY KEY NOT NULL,

 SHIP_ID INT,

 NAME CHAR(10),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NAME CHAR(10),

 DECK_LEVEL INT,

 BED_COUNT INT

)

Notice the CABIN table maintains a foreign key to the SHIP table. While this relationship is important, we don't discuss it
because we covered the one-to-many, bidirectional relationship in this chapter. To accommodate the many-to-many,
unidirectional relationship between the RESERVATION and CABIN table, we need a RESERVATION_CABIN_LINK table:

CREATE TABLE RESERVATION_CABIN_LINK

(

 RESERVATION_ID INT,

 CABIN_ID INT

)

The relationship between the CABIN records and the RESERVATION records through the RESERVATION_CABIN_LINK table is
illustrated in Figure 7-19.

Figure 7-19. Many-to-many, unidirectional relationship in RDBMS

7.1.10.2 Abstract programming model

To model this relationship, we need to add a collection-based relationship field for Cabin beans to the Reservation EJB:

public abstract class ReservationBean implements javax.ejb.EntityBean {

 ...

 public abstract void setCabins(Set cabins);

 public abstract Set getCabins();

 ...

}

In addition, we need to define a Cabin bean. Notice that the Cabin bean doesn't maintain a relationship back to the
Reservation EJB. The lack of a container-managed relationship field for the Reservation EJB tells us the relationship is
unidirectional:

public abstract class CabinBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(ShipLocal ship, String name) {

 this.setName(name);

 return null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return null;

 }

 public void ejbPostCreate(ShipLocal ship, String name) {

 this.setShip(ship);

 }

 public abstract void setShip(ShipLocal ship);

 public abstract ShipLocal getShip();

 public abstract Integer getId();

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract String getName();

 public abstract void setBedCount(int count);

 public abstract int getBedCount();

 public abstract void setDeckLevel(int level);

 public abstract int getDeckLevel();

 // EJB callback methods

}

Although the Cabin bean doesn't define a relationship field for the Reservation EJB, it does define a one-to-many,
bidirectional relationship for the Ship EJB. The effect of exchanging relationship fields in a many-to-many, unidirectional
relationship is basically the same as in a many-to-many, bidirectional relationship. Use of the Collection.addAll() operation
to share entire collections has the same net effect; the only difference is that the arrows point only one way, instead of
both ways.

If a Reservation removes a Cabin bean from its collection-based relationship field, it doesn't affect other Reservation
EJBs that reference the Cabin bean (Figure 7-20).

Figure 7-20. Removing beans in a many-to-many, unidirectional relationship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.10.3 Abstract persistence schema

The abstract persistence schema for the Reservation-Cabin relationship holds no surprises. The multiplicity of both <ejb-
relationship-role> elements is Many, but only the Reservation EJB's <ejb-relationship-role> defines a <cmr-field>:

<ejb-jar>

...

<enterprise-beans>

 <entity>

 <ejb-name>CabinEJB</ejb-name>

 <local-home>com.titan.cabin.CabinHomeLocal</local-home>

 <local>com.titan.cabin.CabinLocal</local>

 ...

 </entity>

 <entity>

 <ejb-name>ReservationEJB</ejb-name>

 <local-home> com.titan.reservation.ReservationHomeLocal</local-home>

 <local>com.titan.reservation.ReservationLocal</local>

 ...

 </entity>

 ...

</enterprise-beans>

<relationships>

 <ejb-relation>

 <ejb-relation-name>Cabin-Reservation</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Cabin-has-many-Reservations

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>CabinEJB</ejb-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-name>CabinEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Reservation-has-many-Customers

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>ReservationEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>cabins</cmr-field-name>

 <cmr-field-type>java.util.Set</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

Exercise 7.2 in the Workbook shows how to deploy this example on the JBoss server.

7.1.11 Co-Location and the Deployment Descriptor

If two entity beans are to have a relationship, they must be deployed by the same deployment descriptor. When
deployed together, the entity beans are seen as a single deployment unit or application, in which all the entities are
using the same database and are co-located in the same JVM. This restriction makes it possible for the EJB container
system to use lazy loading, optimistic concurrency, and other performance optimizations. While it would technically be
possible to support relationships across deployments or even across container systems, the difficulty of doing so,
combined with the expected degradation in performance, was reason enough to limit relationship fields to entity beans
that are deployed together. In the future, entity relationships may be expanded to include remote references to entities
deployed in other containers or other JAR files in the same container.

7.1.12 Cascade Delete and Remove

As you learned in Chapter 5, invoking the remove() operation on the EJB home or EJB object of an entity bean deletes
that entity bean's data from the database. Deleting the bean's data, of course, has an impact on the relationships that
entity bean has with other entity beans.

When an entity bean is deleted, the EJB container first removes it from any relationships it maintains with other entity
beans. Consider, for example, the relationship between the entity beans we have created in this chapter (shown in
Figure 7-21).

Figure 7-21. Titan Cruises class diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If an EJB application invokes remove() on a CreditCard EJB, the Customer EJB that referenced that bean would have a
value of null for its creditCard relationship field, as the following code fragment illustrates:

CustomerLocal customer = ... get Customer EJB

CreditCardLocal creditCard = customer.getCreditCard();

creditCard.remove();

if(customer.getCreditCard() == null)

 // this will always be true

The moment the remove() operation is invoked on the CreditCard EJB's local reference, the bean is disassociated from
the Customer bean and deleted. The impact of removing a bean is even more interesting when that bean participates in
several relationships. For example, invoking remove() on a Customer EJB will affect the relationship fields of the
Reservation, Address, Phone, and CreditCard EJBs. With single EJB object relationship fields, such as the CreditCard
EJB's reference to the Customer EJB, the field for the bean that is removed is set to null. With collection-based
relationship fields, the entity that is deleted is removed from the collection. In some cases, you want the removal of an
entity bean to cause a cascade of deletions. For example, if a Customer EJB is removed, we also want the Address EJBs
referenced in its billingAddress and homeAddress relationship field to be deleted, in order to avoid leaving disconnected
Address EJBs in the database. The <cascade-delete> element requests cascade delete; it can be used with one-to-one or
one-to-many relationships. It does not make sense in many-to-many and many-to-one relationships. For example, in
the many-to-one relationship between the Reservation and Cruise EJBs, cancellation of a reservation by one passenger
should not cancel the cruise itself! In other words, we would not want the deletion of a Reservation EJB to cause the
deletion of its Cruise EJB.

Here's how to modify the relationship declaration for the Customer and Address EJBs in order to obtain a cascade
delete:

<relationships>

 <ejb-relation>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <multiplicity>One</multiplicity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <multiplicity>One</multiplicity>

 <cascade-delete/>

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

If you do not specify a cascade delete, the ADDRESS record associated with the Address EJB is not be removed when the
CUSTOMER record is deleted. This can result in a disconnected entity: rows in the database that are not linked to
anything. In some cases, we want to specify a cascading delete to ensure that no detached entities remain after a bean
is removed. However, it's important to use a cascading delete with care. If, for example, the ADDRESS record associated
with an entity bean is shared by other CUSTOMER records (i.e., if two different customers reside at the same residence),
we probably do not want it to be deleted when the CUSTOMER record is deleted. A cascade delete can be specified only
on an entity bean that has a single reference to the entity being deleted. For example, you can specify a cascade delete
in the <ejb-relationship-role> for the Phone EJB in the Customer-Phone relationship if the Customer is deleted, because
each Phone EJB is referenced by only one Customer. However, you cannot specify a cascade delete for the Customer
EJB in this relationship, because a Customer may be referenced by many Phone EJBs. The entity bean that causes the
cascade delete must have a multiplicity of One in the relationship.

A cascade delete affects only the relationship for which it is specified. So, for example, if you specify a cascade delete
for the Customer-Phone relationship but not the Customer-HomeAddress relationship, deleting a Customer causes all
the Phone EJBs to be deleted, but not the Address EJBs. You must also specify a cascade delete for the Address EJBs if
you want them to be deleted.

Cascade delete can propagate through relationships in a chain reaction. For example, if the Ship-Cruise relationship
specifies a cascade delete on the Cruise relationship field and the Cruise-Reservation relationship specifies a cascade
delete on the Reservation relationship field, when a Ship is removed all of its Cruises and the Reservations for those
Cruises will be removed.

Cascade delete is a powerful tool, but it's also dangerous and should be handled with care. The effectiveness of a
cascade delete depends in large part on the referential integrity of the database. For example, if the database is set up
so that a foreign key must point to an existing record, deleting an entity's data could violate that restriction and cause a
transaction rollback.

Exercise 7.3 in the Workbook shows how to deploy the examples in this section.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. CMP: Entity Relationships
Chapter 6 covered basic container-managed persistence (CMP), including container-managed persistence fields and an
introduction to a basic container-managed relationship field. This chapter develops the Customer EJB and discusses the
seven relationships that entity beans can have with each other.

In order to model real-world business concepts, entity beans must be capable of forming complex relationships. Chapter
6 demonstrated a one-to-one relationship between the Customer and Address EJBs. This relationship was
unidirectional: the Customer had a reference to the Address, but the Address did not have a reference back to the
Customer. This is a perfectly legitimate relationship, but other relationships are possible. For example, each Address
could also reference its Customer, a bidirectional, one-to-one relationship in which both participants maintain references
to each other. Entity beans can also have one-to-many, many-to-one, and many-to-many relationships. For example,
the Customer EJB may have many phone numbers, but each phone number belongs to only one Customer (a one-to-
many relationship). A Customer may have been on many Cruises, and each Cruise has many Customers (a many-to-
many relationship).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Declaring EJB QL
EJB QL statements are declared in <query> elements in an entity bean's deployment descriptor. In the following listing,
the findByName() method defined in the Cruise bean's local home interface has its own query element and EJB QL
statement:

<ejb-jar ...>

 <enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 ...

 <reentrant>False</reentrant>

 <abstract-schema-name>Cruise</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <primkey-field>id</primkey-field>

 <query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Cruise AS c

 WHERE c.name = ?1

 </ejb-ql>

 </query>

 </entity>

 </enterprise-beans>

</ejb-jar>

The <query> element contains two primary elements. The <query-method> element identifies a particular find method,
and the <ejb-ql> element declares the EJB QL statement. The <query> element binds the EJB QL statement to the
proper find method. Don't worry too much about the EJB QL statement just yet; we'll cover that in detail starting in the
next section.

Every entity bean that is referenced in an EJB QL statement must have a special designator called an abstract schema
name, which is declared by the <abstract-schema-name> element. Each element must declare a unique name. These
names must be unique: no two entity beans may have the same abstract schema name. In the entity element that
describes the Cruise EJB, the abstract schema name is declared as Cruise. The <ejb-ql> element contains an EJB QL
statement that uses this identifier in its FROM clause.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 The Query Methods
There are two main types of query methods: find methods and select methods. These are discussed in the following
sections.

8.2.1 Find Methods

Find methods are invoked by EJB clients (applications or beans) to obtain EJB object references to specific entity beans.
For example, you might call the findByPrimaryKey() method on the Customer EJB's home interface to obtain a reference
to a specific Customer bean.

Find methods are always declared in the local and remote home interfaces of an entity bean. Specifying a single remote
or local return type for a find method indicates that the method locates only one bean. findByPrimaryKey() obviously
returns a single remote reference, because there is a one-to-one correspondence between a primary key's value and an
entity. Other single-entity find methods can also be declared. For example, in the following code segment the Customer
EJB declares several single-entity find methods, each of which supports a different query:

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public CustomerRemote findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FinderException, java.rmi.RemoteException;

 public CustomerRemote findByName(String lastName, String firstName)

 throws javax.ejb.FinderException, java.rmi.RemoteException;

 public CustomerRemote findBySSN(String socialSecurityNumber)

 throws javax.ejb.FinderException, java.rmi.RemoteException;

}

Bean developers can also define multi-entity find methods, which return a collection of EJB objects. The following listing
shows a couple of multi-entity find methods:

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome {

 public CustomerLocal findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FinderException;

 public Collection findByCity(String city,String state)

 throws javax.ejb.FinderException;

 public Collection findByGoodCredit()

 throws javax.ejb.FinderException;

}

To return several references from a find method, you must use a java.util.Collection type.[1] A find method that uses this
return type may have duplicates. To avoid duplicates, use the keyword DISTINCT in the EJB QL statement associated
with the find method. Multi-entity finds return an empty Collection if no matching beans are found.

[1] In The java.util.Collection is the only collection type supported for multi-entity find methods in CMP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] In The java.util.Collection is the only collection type supported for multi-entity find methods in CMP.

All query methods (find or select) must be declared as throwing the javax.ejb.FinderException. Find methods that return a
single remote reference throw a FinderException if an application error occurs and a javax.ejb.ObjectNotFoundException if a
matching bean cannot be found. The ObjectNotFoundException is a subtype of FinderException that is thrown only by single-
entity find methods.

With the exception of findByPrimaryKey() methods, all find methods must be declared in <query> elements in the bean's
deployment descriptor. Query declarations for findByPrimaryKey() methods are not necessary and, in fact, are forbidden.
It's obvious what this method should do, and you may not try to change its behavior. The following snippet from the
Customer EJB's deployment descriptor shows declarations of two find methods, findByName() and findByGoodCredit():

<query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer AS c

 WHERE c.lastName = ?1 AND c.firstName = ?2

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>findByGoodCredit</method-name>

 <method-params/>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer AS c

 WHERE c.hasGoodCredit = TRUE

 </ejb-ql>

</query>

The <query> elements allow the bean developer to associate EJB QL statements with specific find methods. When the
bean is deployed, the container attempts to match the find method declared in each of the query elements with find
methods in the entity bean's home interfaces. To do so, it matches the values of the <method-name> and <method-
params> elements with method names and parameter types (ordering is important) in the home interfaces.

When two find methods have the same method name and parameters, the query declaration applies to both methods.
(This situation occurs when similar find methods are in the local home and remote home interfaces.) The container
returns the proper type for each query method: the remote home returns remote EJB objects, and the local home
returns local EJB objects. You can therefore define the behavior of both the local and remote home find methods using
a single <query> element, which is convenient if you want local clients to have access to the same find methods as
remote clients.

The <ejb-ql> element specifies the EJB QL statement for a specific find method. EJB QL statements can use input
parameters (e.g., ?1, ?2, ... ?n), which are mapped to the <method-param> elements of the find method, as well as
literals (e.g., TRUE).

8.2.2 Select Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select methods are similar to find methods, but they are more versatile and can be used only internally, by the bean
class. In other words, select methods are private query methods; they are not exposed to an entity bean's interfaces.

Select and find methods also execute in different transaction contexts. The select method executes in the transaction
context of the business or callback method that is using it, while the find methods execute according to their own
transaction attributes, as specified by the bean provider.

Select methods are declared as abstract methods using the naming convention ejbSelect<METHOD-NAME>. Here are four
select methods declared in the AddressBean class:

public class AddressBean implements javax.ejb.EntityBean {

 ...

 public abstract String ejbSelectMostPopularCity()

 throws FinderException;

 public abstract Set ejbSelectZipCodes(String state)

 throws FinderException;

 public abstract Collection ejbSelectAll()

 throws FinderException;

 public abstract CustomerLocal ejbSelectCustomer(AddressLocal addr)

 throws FinderException;

 ...

}

Select methods can return the values of CMP fields. The ejbSelectMostPopularCity() method, for example, returns a single
String value, the name of the city referenced by the most Address EJBs.

To return several references from a select method, you must declare the return type to be either a Collection or a Set.[2]

Which type to return depends on whether you want to allow duplicate values. By definition, a Set never contains
duplicates, while a Collection may have duplicates. Multi-entity selects return an empty Collection or Set if no matching
beans are found. For example, the ejbSelectZipCodes() method returns a java.util.Set of String values: a unique collection
of all the Zip codes declared for the Address EJBs for a specific state.

[2] Other collection types, such as java.util.List and java.util.Map, may be added in future versions.

Like find methods, select methods can declare arguments that limit the scope of the query. For example, the
ejbSelectZipCodes() and ejbSelectCustomer() methods declare arguments that limit the scope of the results. These
arguments are used as input parameters in the EJB QL statements assigned to the select methods.

Select methods can return local or remote EJB objects. Whether a single-entity select method returns a local or a
remote object is determined by the return type of the ejbSelect() method. The ejbSelectCustomer() method, for example,
returns a local EJB object, the CustomerLocal. This method could easily have been defined to return a remote object by
changing the return type to the Customer bean's remote interface (CustomerRemote). Multi-entity select methods, which
return a collection of EJB objects, return local EJB objects by default. However, you can override this behavior by using
the <result-type-mapping> element in the select method's <query> element.

The following snippet from an XML deployment descriptor declares two select methods. Notice that they are exactly the
same as the find method declarations:

<query>

 <query-method>

 <method-name>ejbSelectZipCodes</method-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <method-name>ejbSelectZipCodes</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT a.homeAddress.zip FROM Address AS a

 WHERE a.homeAddress.state = ?1

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectAll</method-name>

 <method-params/>

 </query-method>

 <result-type-mapping>Remote</result-type-mapping>

 <ejb-ql>

 SELECT OBJECT(a) FROM Address AS a

 </ejb-ql>

</query>

The name given in each <method-name> element must match one of the ejbSelect<METHOD-NAME>() methods defined in
the bean class. This is different from find methods in CMP, which use the names of select methods defined by the bean
class.

By default, the <result-type-mapping> element in the value of <result-type-mapping> can be either Remote or Local. Local
indicates that the select method should return local EJB objects; Remote indicates remote EJB objects. For a single-
entity select, the actual return type of the ejbSelect() method must match the <result-type-mapping>. In the previous
example, the <result-type-mapping> element for the ejbSelectAll() method is declared as Remote, which means the query
should return remote EJB object types (i.e., remote references to the Address EJB).[3]

[3] This is illustrative. As a developer, it is unlikely (although possible) that you would define a remote interface for
the Address EJB, because it is too fine-grained for use by remote clients.

Select methods can be used to query all the entity beans declared in the same deployment descriptor. Select methods
may be called by a bean's ejbHome() methods, by any business methods, or by the ejbLoad() and ejbStore() methods. In
most cases, select methods will be called by ejbHome() or by business methods in the bean class.

The most important thing to remember about select methods is that while they can do anything find methods can and
more, they can be used only by the entity bean class that declares them, not by the entity bean's clients.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 EJB QL Examples
EJB QL is expressed in terms of the abstract persistence schema of an entity bean: its abstract schema name, CMP
fields, and CMR fields. EJB QL uses the abstract schema names to identify beans, the CMP fields to specify values, and
the CMR fields to navigate across relationships.

To discuss EJB QL, we will make use of the relationships among the Customer, Address, CreditCard, Cruise, Ship,
Reservation, and Cabin EJBs defined in Chapter 7. Figure 8-1 is a class diagram that shows the direction and cardinality
(multiplicity) of the relationships among these beans.

Figure 8-1. Titan Cruises class diagram

8.3.1 Simple Queries

The simplest EJB QL statement has no WHERE clause and only one abstract schema type. For example, you could define
a query method to select all Customer beans:

SELECT OBJECT(c) FROM Customer AS c

The FROM clause determines which entity bean types will be included in the select statement (i.e., provides the scope of
the select). In this case, the FROM clause declares the type to be Customer, which is the abstract schema name of the
Customer EJB. The AS c part of the clause assigns c as the identifier of the Customer EJB. This is similar to SQL, which
allows an identifier to be associated with a table. Identifiers can be any length and follow the same rules that are
applied to field names in the Java programming language. However, identifiers cannot be the same as existing <ejb-
name> or <abstract-schema-name> values. In addition, identification variable names are not case-sensitive, so an
identifier of customer would be in conflict with an abstract schema name of Customer. For example, the following
statement is illegal because Customer is the abstract schema name of the Customer EJB:

SELECT OBJECT(customer) FROM Customer AS customer

The AS operator is optional, but it is used in this book to help make the EJB QL statements more clear. The following
two statements are equivalent:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

two statements are equivalent:

SELECT OBJECT(c) FROM Customer AS c

SELECT OBJECT(c) FROM Customer c

The SELECT clause determines the type of any values that are returned. In this case, the statement returns the
Customer entity bean, as indicated by the c identifier.

The OBJECT() operator is required when the SELECT type is a solitary identifier for an entity bean. The reason for this
requirement is pretty vague (and in the author's opinion, the specification would have been better off without it), but it
is required whenever the SELECT type is an entity bean identifier. The OBJECT() operator is not used if the SELECT type is
expressed using a path, which is discussed below.

Identifiers cannot be EJB QL reserved words. In EJB 2.0, the following words are reserved: SELECT, FROM, WHERE,
DISTINCT, OBJECT, NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN, EMPTY, MEMBER, OF and IS. EJB
2.1 adds 10 new reserved words to this list, which include AVG, MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, and MOD.
You shouldn't use these reserved words with EJB 2.0 either, because the queries that use them as identifiers won't be
forward compatible with EJB 2.1. It's a good practice to avoid all SQL reserved words, because you never know which
ones will be used by future versions of EJB QL. You can find more information in the Appendix ("SQL99 and Vendor-
Specific Keywords") of SQL in a Nutshell by Kevin E. Kline with David Kline (O'Reilly).

8.3.2 Simple Queries with Paths

EJB QL allows SELECT clauses to return any CMP or single CMR field. For example, we can define a simple select
statement to return the last names of all of Titan's customers:

SELECT c.lastName FROM Customer AS c

The SELECT clause uses a simple path to select the Customer EJB's lastName field as the return type. EJB QL uses the
CMP and CMR field names declared in <cmp-field> and <cmr-field> elements of the deployment descriptor. To navigate
between fields, use the familiar Java dot (.) operator. The previous EJB QL statement is based on the Customer EJB's
deployment descriptor:

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home>com.titan.customer.CustomerHomeRemote</home>

 <remote>com.titan.customer.CustomerRemote</remote>

 <ejb-class>com.titan.customer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

You can also use CMR field types in simple select statements. The following EJB QL statement selects all the CreditCard
EJBs from all the Customer EJBs:

SELECT c.creditCard FROM Customer AS c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, the EJB QL statement uses a path to navigate from the Customer EJBs to their creditCard relationship fields.
The creditCard identifier is obtained from the <cmr-field> name used in the relationship element that describes the
Customer-CreditCard relationship:

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 ...

 <abstract-schema-name>Customer</abstract-schema-name>

 </entity>

</enterprise-beans>

...

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-CreditCard</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-a-CreditCard

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>creditCard</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

Paths can be as long as required. It's common to use paths that navigate over one or more CMR fields to end at either
a CMR or CMP field. For example, the following EJB QL statement selects all the city CMP fields of all the Address EJBs in
each Customer EJB:

SELECT c.homeAddress.city FROM Customer AS c

In this case, the path uses the abstract schema name of the Customer EJB, the Customer EJB's homeAddress CMR field,
and the Address EJB's city CMP field.

To illustrate more complex paths, we'll need to expand the class diagram. Figure 8-2 shows that the CreditCard EJB is
related to a CreditCompany EJB that has its own Address EJB.

Figure 8-2. Expanded class diagram for CreditCard EJB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-2. Expanded class diagram for CreditCard EJB

Using these relationships, we can specify a more complex path that navigates from the Customer EJB to the
CreditCompany EJB to the Address EJB. Here's an EJB QL statement that selects the addresses of all the credit card
companies used by Titan's customers:

SELECT c.creditCard.creditCompany.address FROM Customer AS c

The EJB QL statement could also navigate all the way to the Address bean's CMP fields. The following statement selects
all the cities in which the credit card companies that distribute credit cards used by Titan's customers are based:

SELECT c.creditCard.creditCompany.address.city FROM Customer AS c

Note that these EJB QL statements return address CMR fields or city CMP fields only for those credit card companies
responsible for cards owned by Titan's customers. The address information of any credit card companies whose cards
are not currently used by Titan's customers won't be included in the results.

Paths cannot navigate beyond CMP fields. For example, imagine that the Address EJB uses a ZipCode class as its zip CMP
field:

public class ZipCode implements java.io.Serializable {

 public int mainCode;

 public int codeSuffix;

 ...

}

You can't navigate to one of the ZipCode class's instance fields:

// this is illegal

SELECT c.homeAddress.zip.mainCode FROM Customer AS c

The paths used in SELECT clauses of EJB QL statements must always end with a single type. They may not end with a
collection-based relationship field. For example, the following is not legal because reservations is a collection-based
relationship field:

// this is illegal

SELECT c.reservations FROM Customer AS c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT c.reservations FROM Customer AS c

In fact, it's illegal to navigate across a collection-based relationship field. The following EJB QL statement is also illegal,
even though the path ends in a single-type relationship field:

// this is illegal

SELECT c.reservations.cruise FROM Customer AS c

If you think about it, this limitation makes sense. You can't use a navigation operator (.) in Java to access elements of a
java.util.Collection object. For example, if getReservations() returns a java.util.Collection type, this statement is illegal:

// this is illegal in the Java programming language

customer.getReservations().getCruise();

Referencing the elements of a collection-based relationship field is possible, but it requires the use of an IN operator
and an identification assignment in the FROM clause.

8.3.3 The IN Operator

Many relationships between entity beans are collection-based, and being able to access and select beans from these
relationships is important. We've seen that it is illegal to select elements directly from a collection-based relationship.
To overcome this limitation, EJB QL introduces the IN operator, which allows an identifier to represent individual
elements in a collection-based relationship field.

The following query uses the IN operator to select the elements from a collection-based relationship. It returns all the
reservations of all the customers:

SELECT OBJECT(r)

FROM Customer AS c, IN(c.reservations) AS r

The IN operator assigns the individual elements in the reservations CMR field to the identifier r. Once we have an
identifier to represent the individual elements of the collection, we can reference them directly and even select them in
the EJB QL statement. We can also use the element identifier in path expressions. For example, the following statement
selects every cruise for which Titan's customers have made reservations:

SELECT r.cruise

FROM Customer AS c, IN(c.reservations) AS r

The identifiers assigned in the FROM clause are evaluated from left to right. Once you declare an identifier, you can use
it in subsequent declarations in the FROM clause. The identifier c, which was declared first, was subsequently used in the
IN operator to define the identifier r.

The OBJECT() operator is used for single identifiers in the select statement and not for path
expressions. While this convention makes little sense, it is required by the EJB
specifications. As a rule of thumb, if the select type is a solitary identifier of an entity bean,
it must be wrapped in an OBJECT() operator. If the select type is a path expression,
OBJECT() is not necessary.

Identification chains can become very long. The following statement uses two IN operators to navigate two collection-
based relationships and a single CMR relationship. While not necessarily useful, this statement demonstrates how a
query can use IN operators across many relationships:

SELECT cbn.ship

FROM Customer AS c, IN (c.reservations) AS r,

IN(r.cabins) AS cbn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IN(r.cabins) AS cbn

To put the examples in this section into action, see Exercise 8.1 in the Workbook.

8.3.4 Using DISTINCT

The DISTINCT keyword ensures that the query does not return duplicates. It is especially valuable when applied to EJB
QL statements used by multivalued find methods. Find methods in CMP have only one return type, java.util.Collection,
which may include duplicates. For example, the following find method and its associated query will return duplicates:

// the find method declared in the remote or local home interface

public java.util.Collection findAllCustomersWithReservations()

// the EJB QL statement associated with the find method

SELECT OBJECT(cust) FROM Reservation AS res, IN (res.customers) AS cust

If a customer has more than one reservation, there will be duplicate references to that Customer EJB in the result
Collection. Using the DISTINCT keyword ensures that each Customer EJB is represented only once in the result:

SELECT DISTINCT OBJECT(cust) FROM Reservation AS res,

IN (res.customers) cust

The DISTINCT keyword can also be used with select methods. It works the same way for select methods that have a
return type of Collection. If the select method's return type is java.util.Set, the DISTINCT keyword has no effect; the Set
object eliminates duplicates by definition.

8.3.5 The WHERE Clause and Literals

You can use literal values to narrow the scope of the elements selected. This is accomplished through the WHERE clause,
which behaves in much the same way as the WHERE clause in SQL.

For example, you can define an EJB QL statement that selects all the Customer EJBs that use a specific brand of credit
card. The literal in this case is a String literal. Literal strings are enclosed by single quotes. Literal values that include a
single quote, like the restaurant name "Wendy's," use two single quotes to escape the quote: 'Wendy''s'. The following
statement returns customers that use American Express:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.creditCard.organization = 'American Express'

Path expressions in the WHERE clause are used in the same way as in the SELECT clause. When making comparisons
with a literal, the path expression must evaluate to a CMP field; you can't compare a CMR field with a literal.

In addition to literal strings, literals can be exact numeric values (long types) and approximate numeric values (double
types). Exact numeric literal values are expressed using the Java integer literal syntax (321, -8932, +22). Approximate
numeric literal values are expressed using Java floating point literal syntax in scientific (5E3, -8.932E5) or decimal (5.234,
38282.2) notation. For example, the following EJB QL statement selects all the ships that weigh 100,000.00 metric tons:

SELECT OBJECT(s)

FROM Ship AS s

WHERE s.tonnage = 100000.00

Boolean literal values use TRUE and FALSE. Here's an EJB QL statement that selects all the customers who have good
credit:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.hasGoodCredit = TRUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE c.hasGoodCredit = TRUE

8.3.6 The WHERE Clause and Input Parameters

Query methods (find and select methods) that use EJB QL statements may specify method arguments. Input
parameters allow those method arguments to be mapped to EJB QL statements and are used to narrow the scope of
the query. For example, the ejbSelectByCity() method selects all the customers who reside in a particular city and state:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public abstract Collection ejbSelectByCity(String city,String state)

 throws FinderException;

 ...

}

The EJB QL statement for this method uses the city and state arguments as input parameters:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state = ?2

AND c.homeAddress.city = ?1

Input parameters use a ? prefix followed by the argument's position, in order of the query method's parameters. In this
case, city is the first argument listed in the ejbSelectByCity() method and state is the second. When a query method
declares one or more arguments, the associated EJB QL statement may use some or all of the arguments as input
parameters.

Input parameters are not limited to simple CMP field types; they can also be EJB object references. For example, the
following find method, findByShip(), is declared in the Cruise bean's local home interface:

public interface CruiseLocalHome extends javax.ejb.EJBLocalHome {

 ...

 public Collection findByShip(ShipLocal ship)

 throws FinderException;

}

The EJB QL statement associated with this method would use the ship argument to locate all the cruises scheduled for
the specified Ship bean:

SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.ship = ?1

When an EJB object is used as an input parameter, the container bases the comparison on the primary key of the EJB
object. In this case, it searches through all the Cruise EJBs looking for references to a Ship EJB with the same primary
key value as the one the Ship EJB passed to the query method.

8.3.7 The WHERE Clause and Operator Precedence

The WHERE clause is composed of conditional expressions that reduce the scope of the query and limit the number of
items selected. Several conditional and logical operators can be used in expressions; they are listed below in order of
precedence:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

precedence:

Navigation operator (.)

Arithmetic operators: +, - unary; *, / multiplication and division; +, - addition and subtraction

Comparison operators: =, >, > =, <, <=, <> (not equal), LIKE, BETWEEN, IN, IS NULL, IS EMPTY, MEMBER OF

Logical operators: NOT, AND, OR

8.3.8 The WHERE Clause and CDATA Sections

EJB QL statements are declared in XML deployment descriptors. XML uses the greater than (>) and less than (<)
characters as delimiters for tags; using these symbols in the EJB QL statements causes parsing errors unless CDATA
sections are used. For example, the following EJB QL statement causes a parsing error, because the XML parser
interprets the > symbol as an incorrectly placed XML tag delimiter:

<query>

 <query-method>

 <method-name>findWithPaymentGreaterThan</method-name>

 <method-params>

 <method-param>java.lang.Double</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 SELECT OBJECT(r) FROM Reservation AS r

 WHERE r.amountPaid > ?1

 </ejb-ql>

</query>

To avoid this problem, place the EJB QL statement in a CDATA section, which takes the form <![CDATA[literal-text]]>:

<query>

 <query-method>

 <method-name>findWithPaymentGreaterThan</method-name>

 <method-params>

 <method-param>java.lang.Double</method-param>

 </method-params>

 </query-method>

 <ejb-ql>

 <![CDATA[

 SELECT OBJECT(r) FROM Reservation AS r

 WHERE r.amountPaid > 300.00

]]>

 </ejb-ql>

</query>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</query>

When an XML processor encounters a CDATA section, it doesn't attempt to parse the contents enclosed by the CDATA
section; instead, the parser treats the contents as literal text.[4]

[4] To learn more about XML and the use of CDATA sections, see XML in a Nutshell by Elliotte Rusty Harold and W.
Scott Means (O'Reilly).

8.3.9 The WHERE Clause and Arithmetic Operators

The arithmetic operators allow a query to perform arithmetic in the process of doing a comparison. Arithmetic operators
can be used only in the WHERE clause, not in the SELECT clause.

The following EJB QL statement returns references to all the Reservation EJBs that will be charged a port tax of more
than $300.00:

SELECT OBJECT(r) FROM Reservation AS r

WHERE (r.amountPaid * .01) > 300.00

The rules applied to arithmetic operations are the same as those used in the Java programming language, where
numbers are widened or promoted in the process of performing a calculation. For example, multiplying a double and an
int value requires that the int first be promoted to a double value. (The result will always be that of the widest type used
in the calculation, so multiplying an int and a double results in a double value.)

String, boolean, and EJB object types cannot be used in arithmetic operations. For example, using the addition operator
with two String values is considered an illegal operation. There is a special function for concatenating String values,
covered later in the section titled "The WHERE Clause and Functional Expressions."

8.3.10 The WHERE Clause and Logical Operators

Logical operators such as AND, OR, and NOT operate the same way in EJB QL as their corresponding logical operators in
SQL.

Logical operators evaluate only Boolean expressions, so each operand (i.e., each side of the expression) must evaluate
to true or false. Logical operators have the lowest precedence so that all the expressions can be evaluated before they
are applied.

The AND and OR operators don't behave like their Java language counterparts, && and ||. EJB QL does not specify
whether the right-hand operands are evaluated conditionally. For example, the && operator in Java evaluates its right-
hand operand only if the left-hand operand is true. Similarly, the || logical operator evaluates the right-hand operand
only if the left-hand operand is false. We can't make the same assumption for the AND and OR operators in EJB QL.
Whether these operators evaluate right-hand operands depends on the native query language into which the
statements are translated. It's best to assume that both operands are evaluated on all logical operators.

NOT simply reverses the Boolean result of its operand; expressions that evaluate to the Boolean value of true become
false, and vice versa.

8.3.11 The WHERE Clause and Comparison Symbols

Comparison operators, which use the symbols =, >, >=, <, <=, and <>, should be familiar to you. The following
statement selects all the Ship EJBs whose tonnage CMP field is greater than or equal to 80,000 tons but less than or
equal to 130,000 tons:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage >= 80000.00 AND s.tonnage <= 130000.00

Only the = and <> (not equal) operators may be used on boolean and EJB object identifiers. In EJB 2.0, the greater-
than and less-than symbols (>, >=, <, <=) can be used only on numeric values. In EJB 2.0, it's illegal to use the
greater-than or less-than symbols to compare two Strings. In EJB 2.1, the greater-than and less-than symbols can also
be used with String values. However, the semantics of these operations are not defined by the EJB 2.1 specification. Is
character case (upper or lower) important? Does leading and trailing whitespace matter? Issues like these affect the
ordering of String values. In order for EJB QL to maintain its status as an abstraction of native query languages (e.g.,
SQL-92, JDOQL, OQL, etc.) it cannot dictate String ordering, because native query languages may have very different
ordering rules. In fact, even different relational database vendors vary on the question of String ordering, which makes
it all but impossible to standardize ordering even for SQL "compliant" databases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it all but impossible to standardize ordering even for SQL "compliant" databases.

Of course, this is all academic if you plan on using the same database well into the future. In such a case, the best thing
to do is to examine the documentation for the database you are using to find out how it orders strings in comparisons.
This tells you exactly how your EJB QL comparisons will work.

8.3.12 The WHERE Clause and Equality Semantics

While it is legal to compare an exact numeric value (short, int, long) to an approximate numeric value (double, float), all
other equality comparisons must compare the same types. You cannot, for example, compare a String value of 123 to
the Integer literal 123. However, you can compare two String types for equality.

In EJB 2.1, you can compare numeric values for which the rules of numeric promotion apply. For example, a short may
be compared to an int, an int to a long, etc. EJB 2.1 also states that primitives may be compared to primitive wrappers
primitives—the rules of numeric promotion apply.

Where EJB 2.0 was very specific about String type comparisons, saying that they must match exactly, character-for-
character, EJB 2.1 drops this requirement, making the evaluation of equality between String types more ambiguous.
Again, this ambiguity arises from the differences between kinds of databases (relational versus object- oriented versus
file), as well as differences between vendors of relational databases. Consult your vendor's documentation to determine
exactly how String equality comparisons are evaluated.

You can also compare EJB objects for equality, but these too must be of the same type. To be more specific, they must
both be EJB object references to beans from the same deployment. As an example, the following method finds all the
Reservation EJBs made by a specific Customer EJB:

public interface ReservationHomeLocal extends EJBLocalHome {

 public Collection findByCustomer(CustomerLocal customer)

 throws FinderException;

 ...

}

The matching EJB QL statement uses the customer argument as a parameter:

SELECT OBJECT(r)

FROM Reservation r, IN (r.customers) AS cust

WHERE cust = ?1

It's not enough for the EJB object used in the comparison to implement the CustomerLocal interface; it must be of the
same bean type as the Customer EJB used in the Reservation's customers CMR field. In other words, they must be from
the same deployment. Once it's determined that the bean is the correct type, the actual comparison is performed on
the beans' primary keys. If they have the same primary key, they are considered equal.

You cannot use java.util.Date objects in equality comparisons. To compare dates, you must use the long millisecond value
of the date, which means that the date must be persisted in a long CMP field, not a DateCMP field. The input value or
literal must also be a long value. Use the java.util.Calandar class to obtain the long millisecond value of a Date object.

8.3.13 The WHERE Clause and BETWEEN

The BETWEEN clause is an inclusive operator specifying a range of values. In this example, we use it to select all ships
weighing between 80,000 and 130,000 tons:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage BETWEEN 80000.00 AND 130000.00

The BETWEEN clause may be used only on numeric primitives (byte, short, int, long, double, float) and their corresponding
java.lang.Number types (Byte, Short, Integer, etc.). It cannot be used on String, boolean, or EJB object references.

Using the NOT logical operator in conjunction with BETWEEN excludes the range specified. For example, the following EJB
QL statement selects all the ships that weigh less than 80,000 tons or greater than 130,000 tons but excludes
everything in between:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

everything in between:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage NOT BETWEEN 80000.00 AND 130000.00

The net effect of this query is the same as if it had been executed with comparison symbols:

SELECT OBJECT(s) FROM Ship AS s

WHERE s.tonnage < 80000.00 OR s.tonnage > 130000.00

8.3.14 The WHERE Clause and IN

The IN conditional operator used in the WHERE clause is not the same as the IN operator used in the FROM clause. In the
WHERE clause, IN tests for membership in a list of literal values. For example, the following EJB QL statement uses the
IN operator to select all the customers who reside in a specific set of states:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state IN ('FL', 'TX', 'MI', 'WI', 'MN')

Applying the NOT operator to this expression reverses the selection, excluding all customers who reside in the list of
states:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state NOT IN ('FL', 'TX', 'MI', 'WI', 'MN')

If the field tested is null, the value of the expression is "unknown", which means it cannot be predicted.

In EJB 2.0, the IN operator is limited to evaluating string values. In EJB 2.1, this operator can be used with operands
that evaluate to either string or numeric values. For example, the following EJB QL statement uses the IN operator to
select all cabins on deck levels 1, 3, 5, and 7:

SELECT OBJECT(cab) FROM Cabin AS cab

WHERE cab.deckLevel IN (1,3,5,7)

EJB 2.1 also allows you to use the IN operator with input parameters; EJB 2.0 does not. For example, the following
select method returns all the customers who live is the designated states:

public Collection ejbSelectCustomersByStates(String state1, String state2, String state3)

The EJB QL assigned to this select method would use the input parameters with the IN operator, as shown in the
following listing:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state IN (?1, ?2, ?3, 'WI', 'MN')

In this case, the input parameters (?1, ?2, and ?3) are combined with string literals ('WI' and 'MN') to show that mixing
literal and input parameters is allowed, providing they are "like" types.

8.3.15 The WHERE Clause and IS NULL

The IS NULL comparison operator allows you to test whether a path expression is null. For example, the following EJB QL
statement selects all the customers who do not have home addresses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement selects all the customers who do not have home addresses:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress IS NULL

Using the NOT logical operator, we can reverse the results of this query, selecting all the customers who do have home
addresses:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress IS NOT NULL

In EJB 2.0, null fields in comparison operations (e.g., IN and BETWEEN) can cause bizarre side effects. In most cases,
evaluating a null field in a comparison operation (other than IS NULL) produces an UNKNOWN result. Unknown
evaluations throw the entire EJB QL result set into question. One way to avoid this situation is to require that fields used
in the expressions have values. This requires careful programming. To ensure that an entity bean field is never null, you
must initialize the field when the entity is created. For primitive values, this not a problem; they have default values, so
they cannot be null. Other fields, such as single CMR fields and object-based CMP fields such as String, must be
initialized in the ejbCreate() and ejbPostCreate() methods.

In EJB 2.1, path expressions are composed using "inner join" semantics. If an entity has a null CMR field, any query that
uses that field as part of a path expression eliminates that entity from consideration. For example, if the Customer EJB
representing "John Smith" has a null value for its address CMR field, then the "John Smith" Customer EJB won't be
included in the result set for the following query:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state = 'TX'

AND c.lastName = 'Smith' AND c.firstName = 'John'

This seems obvious at first, but stating it explicitly helps eliminate much of the ambiguity associated with null CMR
fields. In EJB 2.0, it was unclear what would happen, which is why it was recommended that all CMR fields have values.
This is not necessary in EJB 2.1.

In EJB 2.1, the NULL comparison operator can also be used to test input parameters. In this case, NULL is usually
combined with the NOT operator to ensure that an input parameter is not a null value. For example, the query used in
conjunction with the ejbSelectByCity() method can be modified to test for null input parameters.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...

 public abstract Collection ejbSelectByCity(String city, String state)

 throws FinderException;

 ...

}

The EJB QL statement for this method first checks that the city and state input parameters are not null, and then uses
them in comparison operations.

SELECT OBJECT(c) FROM Customer AS c

WHERE ?1 IS NOT NULL AND ?2 IS NOT NULL

AND c.homeAddress.state = ?2

AND c.homeAddress.city = ?1

In this case, if either of the input parameters are null values, the query returns an empty Collection, avoiding the
possibility of UNKNOWN results from null input parameters.

In EJB 2.1, if the results of a query include a null CMR or CMP field, the results must include null values. For example,
the following query selects the Address EJBs customers with the last name "Smith":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the following query selects the Address EJBs customers with the last name "Smith":

SELECT c.address FROM Customer AS c

WHERE c.lastName = 'Smith'

If the Customer EJB representing "John Smith" has a null value for its address CMR field, the previous query returns a
Collection that includes a null value—the null represents the address CMR field of "John Smith"—in addition to a bunch of
Address EJB references. EJB 2.0 was not clear on whether null values were returned or not, but EJB 2.1 says they are.
You can eliminate null values by including the NOT NULL operator in the query, as shown here:

SELECT c.address.city FROM Customer AS c

WHERE c.address.city NOT NULL AND c.address.state = 'FL'

8.3.16 The WHERE Clause and IS EMPTY

The IS EMPTY operator allows the query to test whether a collection-based relationship is empty. Remember from
Chapter 7 that a collection-based relationship will never be null. If a collection-based relationship field has no elements,
it returns an empty Collection or Set.

Testing whether a collection-based relationship is empty has the same purpose as testing whether a single CMR field or
CMP field is null: it can be used to limit the scope of the query and items selected. For example, the following query
selects all the cruises that have not booked any reservations:

SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.reservations IS EMPTY

The NOT operator reverses the result of IS EMPTY. The following query selects all the cruises that have at least one
reservation:

SELECT OBJECT(crs) FROM Cruise AS crs

WHERE crs.reservations IS NOT EMPTY

It is illegal to use IS EMPTY against collection-based relationships that have been assigned an identifier in the FROM
clause:

// illegal query

SELECT OBJECT(r)

FROM Reservation AS r, IN(r.customers) AS c

WHERE

r.customers IS NOT EMPTY AND

c.address.city = 'Boston'

While this query appears to be good insurance against UNKNOWN results, it's not. It's illegal because the IS EMPTY
operator cannot be used on a collection-based relationship identified in an IN operator in the FROM clause. Because the
relationship is specified in the IN clause, only those Reservation EJBs that have a nonempty customers field will be
included in the query; any Reservation EJB that has an empty CMR field is already excluded because its customers
elements cannot be assigned the c identifier.

8.3.17 The WHERE Clause and MEMBER OF

The MEMBER OF operator is a powerful tool for determining whether an EJB object is a member of a specific collection-
based relationship. The following query determines whether a particular Customer (specified by the input parameter) is
a member of any of the Reservation-Customer relationships:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a member of any of the Reservation-Customer relationships:

SELECT OBJECT(crs)

FROM Cruise AS crs, IN (crs.reservations) AS res, Customer AS cust

WHERE

cust = ?1

 AND

cust MEMBER OF res.customers

Applying the NOT operator to MEMBER OF has the reverse effect, selecting all the cruises on which the specified customer
does not have a reservation:

SELECT OBJECT(crs)

FROM Cruise AS crs, IN (crs.reservations) AS res, Customer AS cust

WHERE

cust = ?1

 AND

cust NOT MEMBER OF res.customers

Checking whether an EJB object is a member of an empty collection always returns false.

8.3.18 The WHERE Clause and LIKE

The LIKE comparison operator allows the query to select String type CMP fields that match a specified pattern. For
example, the following EJB QL statement selects all the customers with hyphenated names, like "Monson-Haefel" and
"Berners-Lee":

SELECT OBJECT(c) FROM Customer AS c

WHERE c.lastName LIKE '%-%'

You can use two special characters when establishing a comparison pattern: % (percent) stands for any sequence of
characters, and _ (underscore) stands for any single character. You can use these characters at any location within a
string pattern. If a % or _ actually occurs in the string, you can escape it with the \ character. The NOT logical operator
reverses the evaluation so that matching patterns are excluded. The following examples show how the LIKE clause
evaluates String type CMP fields:

phone.number LIKE '617%'

True for "617-322-4151"
False for "415-222-3523"

cabin.name LIKE 'Suite _100'

True for "Suite A100"
False for "Suite A233"

phone.number NOT LIKE '608%'

True for "415-222-3523"
False for "608-233-8484"

someField.underscored LIKE '_%'

True for "_xyz"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True for "_xyz"
False for "abc"

someField.percentage LIKE '\%%'

True for "% XYZ"
False for "ABC"

The LIKE operator cannot be used with input parameters. This is an important point that is confusing to many new EJB
developers. The LIKE operator compares a String type CMP field to a String literal. As it is currently defined, it cannot be
used in a comparison with an input parameter, because an input parameter is, by definition, unknown until the method
is invoked. The comparison pattern must be known at deployment time in order to generate the native query code.

8.3.19 Functional Expressions

In the previous edition of this book, I complained about the limited support for functions in EJB QL. EJB 2.1 has started
to address this problem by adding five new aggregate functions for the SELECT clause as well as the MOD function for
the WHERE clause.

8.3.19.1 Functional expressions in the WHERE clause

EJB QL has four functional expressions that allow for simple String manipulation and three functional expressions for
basic numeric operations. The String functions are:

CONCAT(String1, String2)

Returns the String that results from concatenating String1 and String2.

LENGTH(String)

Returns an int indicating the length of the string.

LOCATE(String1, String2 [, start])

Returns an int indicating the position at which String1 is found within String2. If it's present, start indicates the
character position in String2 at which the search should start. Support for the start parameter is optional; some
containers will support it, it while others will not. Don't use it if you want to ensure the query is portable.

SUBSTRING(String1, start, length)

Returns the String consisting of length characters taken from String1, starting at the position given by start.

The start and length parameters indicate positions in a String as integer values. You can use these expressions in the
WHERE clause to refine the scope of the items selected. Here's how the LOCATE and LENGTH functions might be used:

SELECT OBJECT(c)

FROM Customer AS c

WHERE

LENGTH(c.lastName) > 6

 AND

LOCATE(c.lastName, 'Monson') > -1

This statement selects all the customers with Monson somewhere in their last name, but specifies that the name must be
longer than six characters. Therefore, "Monson-Haefel" and "Monson-Ares" evaluate to true, but "Monson" returns false
because it has only six characters.

The arithmetic functions in EJB QL may be applied to primitive as well as corresponding primitive wrapper types:

ABS(number)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ABS(number)

Returns the absolute value of a number (int, float, or double).

SQRT(double)

Returns the square root of a double.

MOD(int, int)

EJB 2.1 only. Returns the remainder for the first parameter divided by the second (i.e., MOD(7, 5) is equal to
2).

8.3.19.2 EJB 2.1: Aggregate functions in the SELECT clause

Aggregate functions are used with queries that return a collection of values. They are fairly simple to understand and
can be handy, especially the COUNT() function. It's important to understand that aggregate functions can only be used
with select methods, not find methods. The find methods may only return EJB object references (local or remote).

8.3.19.2.1 COUNT (identifier or path expression)

This function returns the number of items in the query's final result set. The return type is a long or java.util.Long,
depending on whether it is the return type of the query method. For example, the following query provides a count of
all the customers who live in Wisconsin:

SELECT COUNT(c)

FROM Customers AS c

WHERE c.address.state = 'WI'

The COUNT() function can be used with an identifier, in which case it always counting entities, or with path expressions,
in which case it counts either CMR fields or CMP fields. For example, the following statement provides a count of all the
Zip codes that start with the characters "554":

SELECT COUNT(c.address.zip)

FROM Customers AS c

WHERE c.address.zip LIKE '554%'

In some cases, queries that count a path expression have a corresponding query that can be used to count an
identifier. For example, the result of the following query, which counts Customers instead of the zip CMP field, is
equivalent to the previous query:

SELECT COUNT(c)

FROM Customers AS c

WHERE c.address.zip LIKE '554%'

8.3.19.2.2 MAX(path expression), MIN(path expression)

These functions can be used to find the largest or smallest value from a collection of any type of CMP field. They cannot
be used with identifiers or paths that terminate in a CMR field. The result type will be the type of CMP field that is being
evaluated. For example, the following query returns the highest price paid for a reservation:

SELECT MAX(r.amountPaid)

FROM Reservation AS r

The MAX() and MIN() functions can be applied to any valid CMP value, including primitive types, Strings, and even

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MAX() and MIN() functions can be applied to any valid CMP value, including primitive types, Strings, and even
serializable objects. The result of applying the MAX() and MIN() functions to serializable objects is not specified, because
there is no standard way to determine which serializable object is greater or lesser than another.

The result of applying the MAX() and MIN() functions to a String CMP field depends on the underlying data store. This
has to do with the inherent problems associated with String type comparisons.

8.3.19.2.3 AVG(numeric), SUM(numeric)

The AVG() and SUM() functions can only be applied to path expressions that terminate in a numeric primitive field (byte,
long, float, etc.) or one their corresponding numeric wrappers (Byte, Long, Float, etc.). The result of a query that uses the
SUM() function has the same type as the numeric type it's evaluating. The result type of the AVG() function is a double
or java.util.Double, depending on whether it is used in the return type of the select method.

For example, the following query uses the SUM() function to get the total amount paid by all customers for a specific
Cruise (specified by input parameter):

SELECT SUM(r.amountPaid)

FROM Cruise c, IN(c.reservations) AS r

WHERE c = ?1

8.3.19.2.4 DISTINCT, nulls, and empty arguments

The DISTINCT operator can be used with any of the aggregate functions to eliminate duplicate values. The following
query uses the DISTINCT operator to count the number of different Zip codes that match the pattern:

SELECT DISTINCT COUNT(c.address.zip)

FROM Customers AS c

WHERE c.address.zip LIKE '554%'

The DISTINCT operator first eliminates duplicate Zip codes; if 100 customers live in the same area with the same Zip
code, their Zip code is only counted once. After the duplicates have been eliminated, the COUNT() function counts the
number of items left.

Any CMP field with a null value is automatically eliminated from the result set operated on by the aggregate functions.
The COUNT() function also ignores CMP values with null values. The aggregate functions AVG(), SUM(), MAX(), and MIN(
) return null when evaluating an empty collection. For example, the following query attempts to obtain the average price
paid by customers for a specific Cruise:

SELECT AVG(r.amountPaid)

FROM Cruise As c, IN(c.reservations) AS r

WHERE c = ?1

If the Cruise specified by the input parameter has no reservations, the collection on which the AVG() function operates
is empty (there are no reservations and therefore no amounts paid). In this case, the select method returns null if it
specified a java.lang.Double or java.lang.Float return type. If, however, it returns the select method specified primitive type
return value (e.g., double or float), a javax.ejb.ObjectNotFoundException will be thrown.

The COUNT() function returns 0 (zero) when the argument it evaluates is an empty collection. If the following query is
evaluated on a Cruise with no reservations, the result is 0 (zero) because the argument is an empty collection:

SELECT COUNT(r)

FROM Cruise AS c, IN(c.reservations) AS r

WHERE c = ?1

To deploy these examples in an EJB container, see Exercise 8.2 in the Workbook.

8.3.20 EJB 2.1: The ORDER BY Clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ORDER BY clause allows you to specify the order of the entities in the collection returned by a query. EJB 2.0 didn't
include an ORDER BY clause, and as a result you never knew what order the results would be in. The semantics of the
ORDER BY clause are basically the same as in SQL. For example, we can construct a simple query that uses the ORDER
BY clause to return an alphabetical list of all of Titan's Customers:

SELECT OBJECT(c)

FROM Customers AS c

ORDER BY c.lastName

This might return a Collection of Customer EJBs in the following order (assume their last and first names are printed to
output):

Aares, John

Astro, Linda

Brooks, Hank

.

.

Xerces, Karen

Zastro, William

You can use the ORDER BY clause with or without the WHERE clause. For example, we can refine the previous query by
listing only those customers who reside in Boston, MA:

SELECT OBJECT(c)

FROM Customers AS c

WHERE c.address.city = 'Boston' AND c.address.state = 'MA'

ORDER BY c.lastName

The default order of an item listed in the ORDER BY clause is always ascending, which means that the lesser values are
listed first and the greatest values last. You can explicitly specify the order as ascending or descending by using the key
words ASC or DESC. The default is ASC. Here's a statement that lists customers in reverse (descending) order:

SELECT OBJECT(c)

FROM Customers AS c

ORDER BY c.lastName DESC

The results of this query are:

Zastro, William

Xerces, Karen

.

.

Brooks, Hank

Astro, Linda

Aares, John

You can specify multiple order-by items. For example, you can sort customers by lastName in ascending order and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify multiple order-by items. For example, you can sort customers by lastName in ascending order and
firstName in descending order:

SELECT OBJECT(c)

FROM Customers AS c

ORDER BY c.lastName ASC, c.firstName DESC

If you have five Customer EJBs with the lastName equal to "Brooks", this query sorts the results as follows:

Brooks, William

Brooks, Henry

Brooks, Hank

Brooks, Ben

Brooks, Andy

Although the fields used in the ORDER BY clause must be CMP fields, the value selected can be an entity identifier, a
CMR field, or a CMP field. For example, the following query returns an ordered list of all Zip codes:

SELECT addr.zip

FROM Address AS addr

ORDER BY addr.zip

The following query returns all the Address EJBs for customers named "Smith", ordered by their Zip code.

SELECT c.address

FOR Customer AS c

WHERE c.lastName = 'Smith'

ORDER BY c.address.zip

You must be careful which CMP fields you use in the ORDER BY clause. If the query selects a collection of entities, than
the ORDER BY clause can only be used with CMP fields of the entity type that is selected. The following query is illegal,
because the CMP field used in the ORDER BY clause is not a field of the entity type selected:

// Illegal EJB QL

SELECT OBJECT(c)

FROM Customer AS c

ORDER BY c.address.city

Because the city CMP field is not a direct CMP field of the Customer EJB, you cannot use it in the ORDER BY clause.

A similar restriction applies to CMP results. The CMP field used in the ORDER BY clause must be the same as the CMP
field identified in the SELECT clause. The following query is illegal, because the CMP that identified in the SELECT clause is
not the same as the one used in the ORDER BY clause:

SELECT c.address.city

FROM Customer AS c

ORDER BY c.address.state

In the above query, we wanted a list of all the cities ordered by their state. Unfortunately, this is illegal. You can't order
by the state CMP field if you are selecting the city CMP field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by the state CMP field if you are selecting the city CMP field.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Problems with EJB QL
EJB QL is a powerful new tool that promises to improve performance, flexibility, and portability of entity beans in
container-managed persistence, but it has some design flaws and omissions.

8.4.1 The OBJECT() Operator

The use of the OBJECT() operator is cumbersome and provides little or no value to the bean developer. It's trivial for
EJB vendors to determine when an abstract schema type is the return value, so the OBJECT() operator provides little
real value during query translation. In addition, the OBJECT() operator is applied haphazardly. It's required when the
return type is an abstract schema identifier, but not when a path expression of the SELECT clause ends in a CMR field.
Both return an EJB object reference, so the use of OBJECT() in one scenario and not the other is illogical and confusing.

When questioned about this, Sun replied that several vendors had requested the use of the OBJECT() operator because
it will be included in the next major release of the SQL programming language. EJB QL was designed to be similar to
SQL because SQL is the query language that is most familiar to developers, but this doesn't mean it should include
functions and operations that have no real meaning in Enterprise JavaBeans.

8.4.2 Lack of Support for Date

EJB QL doesn't provide native support for the java.util.Date class. The java.util.Date class should be supported as a natural
type in EJB QL. It should be possible, for example, to do comparisons with Date CMP fields and literal and input
parameters using comparison operators (=, >, >=, <, <=, <>). It should also be possible to introduce common date
functions so that comparisons can be done at different levels, such as comparing the day of the week (DOW()) or month
(MONTH()), etc. In addition, date literals should be supported. For example, a literal like "2004-04-02" for April 2nd,
2004 should be acceptable as a literal. Of course, supporting Date types and literals in EJB QL is not trivial and problems
with interpretation of dates and locales would need to be considered, but the failure to address Date as a supported type
is significant.

8.4.3 Limited Functions

While the aggregate functions and functional expressions provided by EJB QL are valuable to developers, many other
functions should also be added. For example, CAST() (useful for comparing different types) and date functions, such as
DOW(), MONTH(), etc., could be added. The UPPER() and LOWER() functional expressions should also be added—they
make it possible to do caseless comparisons in the LIKE clause.

EJB 2.1 adds some functions to the SELECT clause, including COUNT(), SUM(), AVG(), MAX(
), and MIN().

8.4.4 Multiple SELECT Expressions

In EJB 2.0 and 2.1, EJB QL statements can only declare a single SELECT expression. In other words, it's not possible to
SELECT multiple items. The following query is illegal:

SELECT addr.city, addr.state

FROM Address AS addr

Today, you can only select either the city or the state, but not both.

8.4.5 GROUP BY and HAVING

In SQL, the GROUP BY and HAVING clauses are commonly used to apply stricter organization to a query and narrowing
the results for aggregate functions. The GROUP BY clause is usually used in combination with aggregate functions,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the results for aggregate functions. The GROUP BY clause is usually used in combination with aggregate functions,
because it allows you to cluster data by category. For example, the following query provides a count for all the cities in
each state:

SELECT addr.state, COUNT(addr.city)

FROM Address AS addr

GROUP BY addr.state

The HAVING clause is used with a GROUP BY clause and acts as a filter, restricting the final output. The HAVING clause
employs aggregate functional expressions using only the identifiers used in the SELECT clause. For example, the
following query uses the GROUP BY and HAVING clauses to select and count only the states with more than 200 cities:

SELECT addr.state, COUNT(addr.city)

FROM Address AS addr

GROUP BY addr.state

HAVING COUNT(addr.city) > 200

8.4.6 Subqueries

Subqueries can be useful; they are common to SQL and some other query languages. A subquery is a SELECT statement
inside of another SELECT statement, usually in the WHERE, SELECT, or HAVING clause. For example, the following
subquery finds the average amount paid for a reservation, a value that is subsequently used to find all reservations
where the amount paid is greater than the average.

SELECT OBJECT(res)

FROM Reservations AS res

WHERE res.amountPaid >=

 (SELECT AVG(r.amountPaid) FROM Cruise AS c, IN(c.reservations) AS r

 WHERE c = ?1)

8.4.7 Dynamic Queries

Dynamic queries are supported by most vendors, but not the specification. In EJB 2.0 and 2.1, all EJB QL statements
are statically compiled at deployment time. In other words, you can't make up a query on the fly and submit it to the
EJB container system. This restriction makes it difficult to create reports and do analysis because you always have to
know the queries before the beans are deployed. Most vendors already support dynamic queries—it's a mystery why
EJB QL doesn't.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. CMP: EJB QL
Find methods have been a part of the Enterprise JavaBeans specification since EJB 1.0. These methods are defined on
the entity bean's home interfaces and are used for locating entity beans. All home interfaces must have a
findByPrimaryKey() method, which takes the primary key of the entity bean as an argument and returns a remote or local
reference to that entity bean. For example, the Cruise EJB defines this find method in its home interface as:

public CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public Integer create(String name,ShipLocal ship)

 throws CreateException;

 public CruiseLocal findByPrimaryKey(Integer key)

 throws FinderException;

}

In addition to the mandatory findByPrimaryKey() method, home interfaces can define as many custom find methods as
needed. For example, the Cruise EJB might define a method called findByName() for locating a Cruise with a specific
name:

public CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public Integer create(String name,ShipLocal ship)

 throws CreateException;

 public CruiseLocal findByPrimaryKey(Integer key)

 throws FinderException;

 public CruiseLocal findByName(String cruiseName)

 throws FinderException;

}

It's not obvious to the container how a custom find method should behave. In EJB 1.0 and 1.1, vendors came up with
their own query languages and methods to specify the behavior of these other solutions. Consequently, the custom
methods generally were not portable, and guesswork was required on the part of the deployer to determine how to
properly execute queries against them. EJB 2.0 introduced the Enterprise JavaBeans Query Language (EJB QL)—a
standard query language for declaring the behavior of custom find methods—and the new select methods. Select
methods are similar to find methods, but they are more flexible and are visible to the bean class only. Find and select
methods are collectively referred to as query methods. EJB 2.1 enhances EJB QL by adding aggregate functions, the
ORDER BY clause, and other new features. The differences in EJB QL between EJB 2.1 and EJB 2.0 are clearly stated
throughout this chapter.

EJB QL is a declarative query language similar to the Structured Query Language (SQL) used in relational databases,
but it is tailored to work with the abstract persistence schema of entity beans. EJB QL queries are defined in terms of
the abstract persistence schema of entity beans and not the underlying data store, so they are portable across
databases and data schemas. When an entity bean's abstract bean class is deployed, the EJB QL statements are
translated into data access code optimized for a specific data store. At runtime, query methods defined in EJB QL
usually execute in the native language of the underlying data store. For example, a container that uses a relational
database for persistence might translate EJB QL statements into standard SQL 92, while an object-database container
might translate the same EJB QL statements into an object query language.

EJB QL makes it possible to define queries that are portable across databases and EJB vendors. The EJB QL language is
easy for developers to learn, yet precise enough to be interpreted into native database code. It is a rich and flexible
query language that empowers developers, while executing in fast native code at runtime. However, EJB QL is not a
silver bullet and is not without its problems, as we'll see later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

silver bullet and is not without its problems, as we'll see later in this chapter.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 The Remote Interface
We will need a remote interface for the Ship EJB. This interface is basically the same as any other remote or local
interface. It defines the business methods used by clients to interact with the bean:

package com.titan.ship;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

public interface ShipRemote extends javax.ejb.EJBObject {

 public String getName() throws RemoteException;

 public void setName(String name) throws RemoteException;

 public void setCapacity(int cap) throws RemoteException;

 public int getCapacity() throws RemoteException;

 public double getTonnage() throws RemoteException;

 public void setTonnage(double tons) throws RemoteException;

}

We will not develop a local interface for the bean-managed Ship bean in this chapter; however, bean-managed entity
beans can have either local or remote component interfaces, just like container-managed entity beans.

9.1.1 Set and Get Methods

The ShipRemote definition uses a series of accessor methods whose names begin with "set" and "get." This is not a
required signature pattern, but it is the naming convention used by most Java developers when obtaining and changing
the values of object attributes or fields. These methods are often referred to as setters and getters. These methods
should be defined independently of the anticipated storage structure of the data. In other words, you should design the
remote interface to model the business concepts, not the underlying data. Just because there's a getCapacity() method
doesn't mean that there has to be a capacity field in the bean or the database; the getCapacity() method could
conceivably compute the capacity from a list of cabins by looking up the ship's model and configuration, or with some
other algorithm.

Defining entity business methods according to the business concept and not the underlying data is not always possible,
but you should try to employ this strategy whenever you can. The reason is twofold. First, the underlying data doesn't
always clearly define the business purpose or concept being modeled by the entity bean. Remote and local interfaces
are often used by developers who know the business but not the database configuration. It is important to them that
the entity bean reflect the business concept. Second, defining the properties of the entity bean independently of the
data allows the bean and data to evolve separately. This is important because it allows a database implementation to
change over time; it also allows for new behavior to be added to the entity bean as needed. If the bean's definition is
independent of the data source, the impact change is limited.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.10 The ejbFind() Methods
In bean-managed persistence, the find methods in the remote or local home interface must match the ejbFind()
methods in the actual bean class. In other words, for each method named find<SUFFIX>() in a home interface, there
must be a corresponding ejbFind<SUFFIX>() method in the entity bean class with the same arguments and application
exceptions. When a find method is invoked on an EJB home, the container delegates the find() method to a
corresponding ejbFind() method on the bean instance. The bean-managed entity is responsible for locating records that
match the find requests. There are two find methods in ShipHomeRemote:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote findByPrimaryKey(Integer primaryKey)

 throws FinderException, RemoteException;

 public Collection findByCapacity(int capacity)

 throws FinderException, RemoteException;

}

Here are the signatures of the corresponding ejbFind() methods in the ShipBean:

public class ShipBean implements javax.ejb.EntityBean {

 public Integer ejbFindByPrimaryKey(Integer primaryKey)

 throws FinderException {}

 public Collection ejbFindByCapacity(int capacity)

 throws FinderException {}

}

Aside from the names, there's a significant difference between these two groups of methods. The find methods in the
home interface return either an EJB object implementing the bean's remote interface—in this case, ShipRemote--or a
collection of EJB objects in the form of a java.util.Enumeration or java.util.Collection. The ejbFind() methods in the bean
class, on the other hand, return either a primary key for the appropriate bean—in this case, Integer—or a collection of
primary keys. The methods that return a single value (whether a remote/local interface or a primary key) are used
whenever you need to look up a single reference to a bean. If you are looking up a group of references (for example, all
ships with a certain capacity), you have to use the method that returns either the Collection or Enumeration type. In either
case, the container intercepts the primary keys and converts them into remote references for the client.

The EJB specification recommends that bean-managed persistence beans use the Collection
type instead of the Enumeration type. This recommendation is made so that BMP beans are
more consistent with CMP beans, which use only the Collection type. The Enumeration type is
an artifact of EJB 1.0 and 1.1 and is maintained for backwards compatibility.

It shouldn't come as a surprise that the type returned—whether it's a primary key or a remote (or local) interface—
must be appropriate for the type of bean you're defining. For example, you shouldn't put find methods in a Ship EJB to
look up and return Cabin EJB objects. If you need to return collections of a different bean type, use a business method
in the remote interface, not a find method from one of the home interfaces.

The EJB container takes care of returning the proper (local or remote) interface to the client. For example, the Ship EJB
may define a local and a remote home interface, both of which have a findByPrimaryKey() method. When findByPrimary()
is invoked on the local or remote interface, it will be delegated to the ejbFindByPrimary() key method. After the
ejbFindByPrimaryKey() method executes and returns the primary key, the EJB container takes care of returning a
ShipRemote or ShipLocal reference to the client, depending on which home interface (local or remote) was used. The EJB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShipRemote or ShipLocal reference to the client, depending on which home interface (local or remote) was used. The EJB
container also handles this for multi-entity find methods, returning a collection of remote references for remote home
interfaces or local references for local home interfaces.

Both find methods defined in the ShipBean class throw an EJBException if a failure in the request occurs when an SQL
exception condition is encountered. findByPrimaryKey() throws an ObjectNotFoundException if no records in the database
match the id argument. This is exception should always be thrown by single-entity find methods if no entity is found.

The findByCapacity() method returns an empty collection if no SHIP records with a matching capacity are found; multi-
entity find methods do not throw ObjectNotFoundExceptions if no entities are found.

It is mandatory for all entity remote and local home interfaces to include the findByPrimaryKey() method. This method
returns the remote or local interface type (ShipRemote or ShipLocal). It declares one parameter, the primary key for that
bean type. With local home interfaces, the return type of any single-entity finder method is always the bean's local
interface. With remote home interfaces, the return type of any single-entity find method is the remote interface. You
cannot deploy an entity bean that doesn't include a findByPrimaryKey() method in its home interfaces.

Following the rules outlined earlier, we can define two ejbFind() methods in ShipBean that match the two find() methods
defined in the ShipHomeRemote:

public Integer ejbFindByPrimaryKey(Integer primaryKey) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 // Does the ship ID exist in the database?

 if (!result.next()) {

 throw new ObjectNotFoundException("Cannot find Ship with id = "+id);

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 return primaryKey;

}

public Collection ejbFindByCapacity(int capacity) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where capacity = ?");

 ps.setInt(1,capacity);

 result = ps.executeQuery();

 Vector keys = new Vector();

 while(result.next()) {

 keys.addElement(result.getObject("id"));

 }

 return keys;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

The mandatory findByPrimaryKey() method uses the primary key to locate the corresponding database record. Once it
has verified that the record exists, it simply returns the primary key to the container, which then uses the key to
activate a new instance and associate it with that primary key at the appropriate time. If no record is associated with
the primary key, the method throws an ObjectNotFoundException.

The ejbFindByCapacity() method returns a collection of primary keys that match the criteria passed into the method.
Again, we construct a prepared statement that we use to execute our SQL query. This time, however, we expect
multiple results, so we use the java.sql.ResultSet to iterate through the results, creating a vector of primary keys for each
SHIP_ID returned.

Find methods are not executed on bean instances that are currently supporting a client application. Only bean instances
that are not currently assigned to an EJB object (i.e., instances in the instance pool) are supposed to service find
requests, which means that the ejbFind() methods in the bean instance have somewhat limited use of the EntityContext.
The EntityContext methods getPrimaryKey() and getEJBObject() will throw exceptions because the bean instance is in the
pool and is not associated with a primary key or EJB object when the ejbFind() method is called.

Where do the objects returned by find methods originate? This seems like a simple enough question, but the answer is
surprisingly complex. Remember that find methods aren't executed by bean instances that are actually supporting the
client; rather, the container selects an idle bean instance from the instance pool to execute the method. The container
is responsible for creating the EJB objects and local or remote references for the primary keys returned by the ejbFind()
method in the bean class. As the client accesses these remote references, bean instances are swapped into the
appropriate EJB objects, loaded with data, and made ready to service the client's requests.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.11 The Deployment Descriptor
With a complete definition of the Ship EJB, including the remote interface, remote home interface, and primary key, we
are ready to create a deployment descriptor. XML deployment descriptors for bean-managed entity beans are a little
different from the descriptors we created for the container-managed entity beans in Chapter 6 and Chapter 7. In this
deployment descriptor, the <persistence-type> is Bean and there are no <container-managed> or <relationship-field>
declarations. We also must declare the DataSource resource factory that we use to query and update the database.

Here is the deployment descriptor for EJB 2.1:

<ejb-jar

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

 version="2.1">

 <enterprise-beans>

 <entity>

 <description>

 This bean represents a cruise ship.

 </description>

 <ejb-name>ShipEJB</ejb-name>

 <home>com.titan.ship.ShipHomeRemote</home>

 <remote>com.titan.ship.ShipRemote</remote>

 <ejb-class>com.titan.ship.ShipBean</ejb-class>

 <persistence-type>Bean</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <security-identity><use-caller-identity/></security-identity>

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </entity>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <security-role>

 <description>

 This role represents everyone who is allowed full access

 to the Ship EJB.

 </description>

 <role-name>everyone</role-name>

 </security-role>

 <method-permission>

 <role-name>everyone</role-name>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 </method-permission>

 <container-transaction>

 <method>

 <ejb-name>ShipEJB</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

The EJB 2.0 deployment descriptor is exactly the same except for one thing. It uses a DTD instead of XML schema so
there is a <!DOCTYPE> element declaration instead of XML Schema attribute declarations.

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <enterprise-beans>

Exercise 9.1 in the Workbook shows how to deploy the examples in this section.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 The Remote Home Interface
Entity beans' home interfaces (local and remote) are used to create, locate, and remove objects from EJB systems.
Each entity bean has its own remote or local home interface. The home interface defines two basic kinds of methods:
zero or more create methods, and one or more find methods. In this example, the create methods act like remote
constructors and define how new Ship EJBs are created. The find methods are used to locate a specific Ship or Ships.
The following code contains the complete definition of the ShipHomeRemote interface:

package com.titan.ship;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

import java.rmi.RemoteException;

import java.util.Collection;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(Integer id, String name, int capacity, double tonnage)

 throws RemoteException,CreateException;

 public ShipRemote create(Integer id, String name)

 throws RemoteException,CreateException;

 public ShipRemote findByPrimaryKey(Integer primaryKey)

 throws FinderException, RemoteException;

 public Collection findByCapacity(int capacity)

 throws FinderException, RemoteException;

}

Enterprise JavaBeans specifies that create methods in the home interface must throw the javax.ejb.CreateException. This
provides the EJB container with a common exception for communicating problems experienced during the create
process.

The RemoteException is thrown by all remote interfaces and is used to report network problems that occurred while
processing invocations between a remote client and the EJB container system.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 The Primary Key
In bean-managed persistence, a primary key can be a serializable object defined specifically for the bean by the bean
developer. The primary key defines attributes we can use to locate a specific bean in the database. For the ShipBean we
need only one attribute, id, but in other cases a primary key may have several attributes, which together uniquely
identify a bean's data.

We will examine primary keys in detail in Chapter 10; for now, we specify that the Ship EJB uses a simple single-value
primary key of type java.lang.Integer. The actual persistence field in the bean class is an Integer named id.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 The ShipBean
The ShipBean defined for this chapter uses JDBC to synchronize the bean's state to the database. In reality, an entity
bean this simple could easily be deployed as a CMP bean. The purpose of this chapter, however, is to illustrate exactly
where the resource-access code goes for BMP and how to implement it. When learning about bean-managed
persistence, you should focus on when and where the resource is accessed in order to synchronize the bean with the
database. The fact that we are using JDBC and synchronizing the bean state against a relational database is not
important. The bean could just as easily be persisted to some legacy system, to an ERP application, or to some other
resource that is not supported by your vendor's version of CMP.

Here is the complete definition of the ShipBean:

package com.titan.ship;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.ejb.EntityContext;

import java.rmi.RemoteException;

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.DriverManager;

import java.sql.ResultSet;

import javax.sql.DataSource;

import javax.ejb.CreateException;

import javax.ejb.EJBException;

import javax.ejb.FinderException;

import javax.ejb.ObjectNotFoundException;

import java.util.Collection;

import java.util.Properties;

import java.util.Vector;

import java.util.Collection;

public class ShipBean implements javax.ejb.EntityBean {

 public Integer id;

 public String name;

 public int capacity;

 public double tonnage;

 public EntityContext context;

 public Integer ejbCreate(Integer id, String name, int capacity, double tonnage)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws CreateException {

 if ((id.intValue() < 1) || (name == null))

 throw new CreateException("Invalid Parameters");

 this.id = id;

 this.name = name;

 this.capacity = capacity;

 this.tonnage = tonnage;

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "insert into Ship (id, name, capacity, tonnage) " +

 "values (?,?,?,?)");

 ps.setInt(1, id.intValue());

 ps.setString(2, name);

 ps.setInt(3, capacity);

 ps.setDouble(4, tonnage);

 if (ps.executeUpdate() != 1) {

 throw new CreateException ("Failed to add Ship to database");

 }

 return id;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbPostCreate(Integer id, String name, int capacity,

 double tonnage) {

 // Do something useful with the primary key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public Integer ejbCreate(Integer id, String name) throws CreateException {

 return ejbCreate(id,name,0,0);

 }

 public void ejbPostCreate(Integer id, String name) {

 // Do something useful with the EJBObject reference.

 }

 public Integer ejbFindByPrimaryKey(Integer primaryKey) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 // Does the ship ID exist in the database?

 if (!result.next()) {

 throw new ObjectNotFoundException("Cannot find Ship with id = "+id);

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se){

 se.printStackTrace();

 }

 }

 return primaryKey;

 }

 public Collection ejbFindByCapacity(int capacity) throws FinderException {

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 con = this.getConnection();

 ps = con.prepareStatement("select id from Ship where capacity = ?");

 ps.setInt(1,capacity);

 result = ps.executeQuery();

 Vector keys = new Vector();

 while(result.next()) {

 keys.addElement(result.getObject("id"));

 }

 return keys;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void setEntityContext(EntityContext ctx) {

 context = ctx;

 }

 public void unsetEntityContext() {

 context = null;

 }

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbLoad() {

 Integer primaryKey = (Integer)context.getPrimaryKey();

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 con = this.getConnection();

 ps = con.prepareStatement("select name, capacity,

 tonnage from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 if (result.next()){

 id =primaryKey;

 name = result.getString("name");

 capacity = result.getInt("capacity");

 tonnage = result.getDouble("tonnage");

 } else {

 throw new NoSuchEntityException();

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbStore() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "update Ship set name = ?, capacity = ?, " +

 "tonnage = ? where id = ?");

 ps.setString(1,name);

 ps.setInt(2,capacity);

 ps.setDouble(3,tonnage);

 ps.setInt(4,id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new NoSuchEntityException("ejbStore");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new NoSuchEntityException("ejbStore");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public void ejbRemove() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("delete from Ship where id = ?");

 ps.setInt(1, id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new EJBException("ejbRemove");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

 }

 public String getName() {

 return name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return name;

 }

 public void setName(String n) {

 name = n;

 }

 public void setCapacity(int cap) {

 capacity = cap;

 }

 public int getCapacity() {

 return capacity;

 }

 public double getTonnage() {

 return tonnage;

 }

 public void setTonnage(double tons) {

 tonnage = tons;

 }

 private Connection getConnection() throws SQLException {

 // Implementations shown below.

 }

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Obtaining a Resource Connection
In order for a BMP entity bean to work, it must have access to the database or resource to which it will persist itself. To
get access to the database, the bean usually obtains a resource factory from the JNDI ENC. The JNDI ENC is covered in
detail in Chapter 11, but an overview here will be helpful since this is one of the first times it is actually used in this
book. The first step in accessing the database is to request a connection from a DataSource, which we obtain from the
JNDI environment naming context:

private Connection getConnection() throws SQLException {

 try {

 Context jndiCntx = new InitialContext();

 DataSource ds = (DataSource)jndiCntx.lookup("java:comp/env/jdbc/titanDB");

 return ds.getConnection();

 }

 catch (NamingException ne) {

 throw new EJBException(ne);

 }

}

In EJB, every enterprise bean has access to its JNDI environment naming context (ENC), which is part of the bean-
container contract. The bean's deployment descriptor maps resources such as the JDBC DataSource, JavaMail, J2EE
Connector, and Java Message Service to a context (name) in the ENC. This provides a portable model for accessing
these types of resources. Here's the relevant portion of the deployment descriptor that describes the JDBC resource:

<enterprise-beans>

 <entity>

 <ejb-name>ShipEJB</ejb-name>

 ...

 <resource-ref>

 <description>DataSource for the Titan database</description>

 <res-ref-name>jdbc/titanDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 ...

 </entity>

 ...

</enterprise-beans>

The <resource-ref> tag is used for any resource (e.g., JDBC, JMS, Connector, JavaMail) that is accessed from the ENC. It
describes the JNDI name of the resource (<res-ref-name>), the factory type (<res-type>), and whether authentication is
performed explicitly by the bean or automatically by the container (<res-auth>). In this example, we are declaring that
the JNDI name jdbc/titanDB refers to a javax.sql.DataSource resource manager and that authentication to the database is
handled automatically by the container. The JNDI name specified in the <res-ref-name> tag is always relative to the
standard JNDI ENC context name, java:comp/env.

When the bean is deployed, the deployer maps the information in the <resource-ref> tag to a live database. This is done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the bean is deployed, the deployer maps the information in the <resource-ref> tag to a live database. This is done
in a vendor-specific manner, but the end result is the same. When a database connection is requested using the JNDI
name java:comp/jdbc/titanDB, a DataSource for the Titan database is returned. Consult your vendor's documentation for
details on how to map the DataSource to the database at deployment time.

The getConnection() method provides us with a simple and consistent mechanism for obtaining a database connection for
our ShipBean class. Now that we have a mechanism for obtaining a database connection, we can use it to insert, update,
delete, and find Ship EJBs in the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Exception Handling
Exception handling is particularly relevant to this discussion because, unlike in container-managed persistence, in bean-
managed persistence the bean developer is responsible for throwing the correct exceptions at the right moments. For
this reason, we'll take a moment to discuss the different types of exceptions in BMP. This discussion will be useful when
we get into the details of database access and implementing the callback methods.

Bean-managed beans throw three types of exceptions:

Application exceptions

Application exceptions include standard EJB application exceptions and custom application exceptions. The
standard EJB application exceptions are CreateException, FinderException, ObjectNotFoundException,
DuplicateKeyException, and RemoveException. These exceptions are thrown from the appropriate methods to
indicate that a business logic error has occurred. Custom exceptions are exceptions developed for specific
business problems. We cover developing custom exceptions in Chapter 11.

Runtime exceptions

Runtime exceptions are thrown from the virtual machine itself and indicate that a fairly serious programming
error has occurred. Examples include the NullPointerException and IndexOutOfBoundsException. These exceptions are
handled by the container automatically and should not be handled inside a bean method.

You will notice that all the callback methods (ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), and ejbRemove())
throw an EJBException when a serious problem occurs. All EJB callback methods declare the EJBException and
RemoteException in their throws clauses. Any exception thrown from one of the callback methods must be an
EJBException or a subclass. The RemoteException type is included in the method signature to support backward
compatibility with EJB 1.0 beans. Its use has been deprecated since EJB 1.1. RemoteExceptions should never be
thrown by callback methods of EJB 2.0 or EJB 2.1 beans.

Subsystem exceptions

Checked exceptions thrown by other subsystems should be wrapped in an EJBException or application exception
and rethrown from the method. Several examples of this can be found in the previous example, in which a
SQLException that was thrown from JDBC was caught and rethrown as an EJBException. Checked exceptions from
other subsystems, such as those thrown from JNDI, JavaMail, and JMS, should be handled in the same fashion.
The EJBException is a subtype of the RuntimeException, so it doesn't need to be declared in the method's throws
clause. If the exception thrown by the subsystem is not serious, you can opt to throw an application exception,
but this is not recommended unless you are sure of the cause and the effects of the exception on the
subsystem. In most cases, throwing an EJBException is preferred.

Exceptions have an impact on transactions and are fundamental to transaction processing. They are examined in
greater detail in Chapter 15.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 The ejbCreate() Method
ejbCreate() methods are called by the container when a client invokes the corresponding create() method on the bean's
home. With bean-managed persistence, the ejbCreate() methods are responsible for adding new entities to the
database. This means that the BMP version of ejbCreate() will be much more complicated than the equivalent methods
in container-managed entities; with container-managed beans, ejbCreate() doesn't have to do much more than initialize
a few fields. Another difference between bean-managed and container-managed persistence is that the EJB specification
states that ejbCreate() methods in bean-managed persistence must return the primary key of the newly created entity.
By contrast, in container-managed beans ejbCreate() is required to return null.

The following code contains the ejbCreate() method of the ShipBean. Its return type is the Ship EJB's primary key, Integer.
The method uses the JDBC API to insert a new record into the database based on the information passed as
parameters:

public Integer ejbCreate(Integer id, String name, int capacity, double tonnage)

 throws CreateException {

 if ((id.intValue() < 1) || (name == null))

 throw new CreateException("Invalid Parameters");

 this.id = id;

 this.name = name;

 this.capacity = capacity;

 this.tonnage = tonnage;

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "insert into Ship (id, name, capacity, tonnage) " +

 "values (?,?,?,?)");

 ps.setInt(1, id.intValue());

 ps.setString(2, name);

 ps.setInt(3, capacity);

 ps.setDouble(4, tonnage);

 if (ps.executeUpdate() != 1) {

 throw new CreateException ("Failed to add Ship to database");

 }

 return id;

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

At the beginning of the method, we verify that the parameters are correct and throw a CreateException if the id is less
than 1 or the name is null. This shows how you would typically use a CreateException to report an application-logic error.

The ShipBean instance fields are initialized using the parameters passed to ejbCreate() by setting the instance fields of
the ShipBean. We will use these values to manually insert the data into the SHIP table in our database.

To perform the database insert, we use a JDBC PreparedStatement for SQL requests, which makes it easier to see the
parameters being used (we could also have used a stored procedure through a JDBC CallableStatement or a simple JDBC
Statement object). We insert the new bean into the database using a SQL INSERT statement and the values passed into
ejbCreate() parameters. If the insert is successful (i.e., no exceptions are thrown), we create a primary key and return it
to the container.

If the insert operation is unsuccessful we throw a new CreateException, which illustrates this exception's use in a more
ambiguous situation. Failure to insert the record could be construed as an application error or a system failure. In this
situation, the JDBC subsystem hasn't thrown an exception, so we shouldn't interpret the inability to insert a record as a
failure of the subsystem. Therefore, we throw a CreateException instead of an EJBException. Throwing a CreateException
allows the application to recover from the error, a transactional concept that is covered in more detail in Chapter 15.

When the insert operation is successful, the primary key is returned to the EJB container from the ejbCreate() method.
In this case we simply return the same Integer object passed into the method, but in many cases a new key might be
derived from the method arguments. This is especially true when using compound primary keys, which are discussed in
Chapter 10. Behind the scenes, the container uses the primary key and the ShipBean instance that returned it to provide
the client with a reference to the new Ship entity. Conceptually, this means that the ShipBean instance and primary key
are assigned to a newly constructed EJB object, and the EJB object stub is returned to the client.

Our home interface requires us to provide a second ejbCreate() method with different parameters. We can save work
and write more bulletproof code by making the second method call the first:

public Integer ejbCreate(Integer id, String name) throws CreateException {

 return ejbCreate(id,name,0,0);

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.8 The ejbLoad() and ejbStore() Methods
Throughout the life of an entity, its data will be changed by client applications. In the ShipBean, we provide accessor
methods to change the name, capacity, and tonnage of the Ship EJB after it has been created. Invoking any of these
accessor methods changes the state of the ShipBean instance, and these changes must be reflected in the database.

In container-managed persistence, synchronization between the entity bean and the database takes place
automatically; the container handles it for you. With bean-managed persistence, you are responsible for
synchronization: the entity bean must read from and write to the database directly. The container works closely with
the BMP entities by advising them when to synchronize their state through the use of two callback methods: ejbStore()
and ejbLoad().

The ejbStore() method is called when the container decides that it is a good time to write the entity bean's data to the
database. The container makes these decisions based on all the activities it is managing, including transactions,
concurrency, and resource management. Vendor implementations may differ slightly as to when the ejbStore() method
is called, but this is not the bean developer's concern. In most cases, the ejbStore() method will be called after one or
more business methods have been invoked or at the end of a transaction.

Here is the ejbStore() method for the ShipBean:

public void ejbStore() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "update Ship set name = ?, capacity = ?, " +

 "tonnage = ? where id = ?");

 ps.setString(1,name);

 ps.setInt(2,capacity);

 ps.setDouble(3,tonnage);

 ps.setInt(4,id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new EJBException("ejbStore");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 se.printStackTrace();

 }

 }

}

Except for the fact that we are doing an update instead of an insert, this method is similar to the ejbCreate() method we
examined earlier. We use a JDBC PreparedStatement to execute the SQL UPDATE command, and we use the entity bean's
persistence fields as parameters to the request. This method synchronizes the database with the state of the bean.

EJB also provides an ejbLoad() method that synchronizes the state of the entity with the database. This method is
usually called at the start of a new transaction or business-method invocation. The idea is to make sure that the bean
always represents the most current data in the database, which could be changed by other beans or other non-EJB
applications.

Here is the ejbLoad() method for a bean-managed ShipBean class:

public void ejbLoad() {

 Integer primaryKey = (Integer)context.getPrimaryKey();

 Connection con = null;

 PreparedStatement ps = null;

 ResultSet result = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement(

 "select name, capacity, tonnage from Ship where id = ?");

 ps.setInt(1, primaryKey.intValue());

 result = ps.executeQuery();

 if (result.next()){

 id = primaryKey;

 name = result.getString("name");

 capacity = result.getInt("capacity");

 tonnage = result.getDouble("tonnage");

 } else {

 throw new EJBException();

 }

 } catch (SQLException se) {

 throw new EJBException(se);

 }

 finally {

 try {

 if (result != null) result.close();

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

To execute the ejbLoad() method, we need a primary key. To get the primary key, we query the bean's EntityContext.
Note that we don't get the primary key directly from the ShipBean's id field, because we cannot guarantee that this field
is always valid—the ejbLoad() method might be populating the bean instance's state for the first time, in which case the
fields would all be set to their default values. This situation would occur following bean activation. We can guarantee
that the EntityContext for the ShipBean is valid because the EJB specification requires that the bean instance's EntityContext
reference be valid before the ejbLoad() method can be invoked.

At this point you may want to jump to Chapter 10 and read the section called "EntityContext" to get a better
understanding of the EntityContext's purpose and usefulness in entity beans.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.9 The ejbRemove() Method
In addition to handling their own inserts and updates, bean-managed entities must handle their own deletions. When a
client application invokes the remove method on the EJB home or EJB object, that method invocation is delegated to
the bean-managed entity by calling ejbRemove(). It is the bean developer's responsibility to implement an ejbRemove()
method that deletes the entity's data from the database. Here's the ejbRemove() method for our bean-managed
ShipBean:

public void ejbRemove() {

 Connection con = null;

 PreparedStatement ps = null;

 try {

 con = this.getConnection();

 ps = con.prepareStatement("delete from Ship where id = ?");

 ps.setInt(1, id.intValue());

 if (ps.executeUpdate() != 1) {

 throw new EJBException("ejbRemove");

 }

 }

 catch (SQLException se) {

 throw new EJBException (se);

 }

 finally {

 try {

 if (ps != null) ps.close();

 if (con!= null) con.close();

 } catch(SQLException se) {

 se.printStackTrace();

 }

 }

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Bean-Managed Persistence
From the developer's point of view, bean-managed persistence (BMP) requires more effort than container-managed
persistence, because you must explicitly write the persistence logic into the bean class. In order to write the
persistence-handling code into the bean class, you must know what type of database is being used and the how the
bean class's fields map to that database.

Given that container-managed persistence saves a lot of work, why would anyone bother with bean-managed
persistence? The main advantage of BMP is that it gives you more flexibility in how state is managed between the bean
instance and the database. Entity beans that use data from a combination of different databases or other resources
such as Enterprise Resource Planning (ERP) or legacy systems can benefit from BMP. Essentially, bean-managed
persistence is the alternative to container-managed persistence when the container tools are inadequate for mapping
the bean instance's state to the backend databases or resources. In most cases, you won't need to use BMP because
most projects use relational databases which are supported by CMP, but BMP remains an excellent alternative when you
need to represent data as entities from unsupported resources. When you do use BMP is likely that you will create
entity beans that wrapper a J2EE Connector API that is accessing an ERP (e.g., SAP, PeopleSoft, etc.), legacy system
(e.g., CICS, IMS, etc.), or proprietary resource of some type. You may also employ the JDO API (Java Data Object) to
access an object-oriented database or some other resource. Its also possible that you will use more than one API to
present a single view of data from two or more resources.

The primary disadvantage of BMP is obvious: more work is required to define the bean. You have to understand the
structure of the database or resource and the APIs that access them, and you must develop the logic to create, update,
and remove data associated with entities. This requires diligence in using the EJB callback methods (e.g., ejbLoad() and
ejbStore()) appropriately. In addition, you must explicitly develop the find methods defined in the bean's home
interfaces.

The select methods used in container-managed persistence are not supported in bean-
managed persistence.

Another disadvantage of BMP is that it ties the bean to a specific database or resource type and structure. Any changes
in the database or in the structure of data require changes to the bean instance's definition, and these changes may not
be trivial. A bean-managed entity is not as database independent as a container-managed entity, but it can better
accommodate a complex or unusual set of data.

To help you understand how BMP works, we will create a new Ship EJB that is similar to the one used in Chapter 7. For
BMP, we need to implement the ejbCreate(), ejbLoad(), ejbStore(), and ejbRemove() methods to handle synchronizing the
bean's state with the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animals on the cover of Enterprise JavaBeans, Fourth Edition, are a wallaby and her joey. Wallabies are middle-
sized marsupials belonging to the kangaroo family (Macropodidae, the second-largest marsupial family). They are
grazers and browsers, native to Australia and found in a variety of habitats on that continent. Female wallabies have a
well-developed anterior pouch in which they hold their young. When they are born, the tiny, still-blind joeys
instinctively crawl up into their mothers' pouches and begin to nurse. They stay in the pouch until they are fairly well-
grown. A female wallaby can support joeys from up to three litters at once: one in her uterus, one in her pouch, and
one that has graduated from the pouch but still returns to nurse.

Like all Macropodidae, wallabies have long, narrow hind feet and powerful hind limbs. Their long, heavy tails are used
primarily for balance and stability and are not prehensile. Wallabies resemble kangaroos, but are smaller: they can
measure any-where from less than two feet to over five feet long, with the tail accounting for nearly half of their total
length. Oddly enough, although they can hop along quite quickly (reaching speeds of up to 50 km/h), it is physically
impossible for wallabies to walk backward!

The three main types of wallaby are brush, rock, and nail-tailed. There are 11 species of brush wallaby (genus
Macropus), including the red-necked and pretty-faced wallabies, and 6 named species of rock wallaby (Petrogale).
Brush wallabies usually live in brushland or open woods. Rock wallabies, which are notable for their extreme agility, are
usually found among rocks and near water. There are only three species of nail-tailed wallaby (Onychogalea), which are
so named because of the horny growth that appears on the tip of their tails. Two of these species are endangered-
although they were once the most numerous type of wallaby, their numbers have been seriously depleted by foxes and
feral cats. Aside from hunting and habitat destruction, predation and competition by introduced species such as these
are what threaten wallabies today.

Colleen Gorman was the production editor and copyeditor for Enterprise JavaBeans, Fourth Edition . Leanne Soylemez
was the proofreader. Reg Aubry and Mary Anne Weeks Mayo provided quality control. Julie Hawks wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is an original
engraving from The Illustrated Natural History: Mammalia, by J.G. Wood, published in 1865. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Rachel Wheeler.

Whenever possible, our books use a durable and flexible lay-flat binding. If the pagecount exceeds this binding's limit
Perfect Binding is used.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Part I: Lay of the Land
Chapter 1: Introduction

Chapter 2: Architectural Overview

Chapter 3: Resource Management and the Primary Services

Chapter 4: Developing Your First Enterprise Beans

Chapter 5: The Remote and Local Client View

Chapter 6: CMP: Basic Persistence

Chapter 7: CMP: Entity Relationships

Chapter 8: CMP: EJB QL

Chapter 9: Bean-Managed Persistence

Chapter 10: The Entity-Container Contract

Chapter 11: Session Beans

Chapter 12: Message-Driven Beans

Chapter 13: Timer Service

Chapter 14: EJB 2.1: Web Service Standards

Chapter 15: EJB 2.1 and Web Services

Chapter 16: Transactions

Chapter 17: J2EE

Chapter 18: XML Deployment Descriptors

Chapter 19: EJB Design in the Real World

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

II: JBoss Workbook
Chapter 20: Introduction

Chapter 21: JBoss Installation and Configuration

Chapter 22: Exercises for Chapter 4

Chapter 23: Exercises for Chapter 5

Chapter 24: Exercises for Chapter 6

Chapter 25: Exercises for Chapter 7

Chapter 26: Exercises for Chapter 8

Chapter 27: Exercises for Chapter 9

Chapter 28: Exercises for Chapter 11

Chapter 29: Exercises for Chapter 12

Chapter 30: Exercises for Chapter 13

Chapter 31: Exercises for Chapter 15

Appendix A: Database Configuration

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004, 2003, 2001, 2000, 1999 O'Reilly Media, Inc.

Printed in the United States of America.

The JBoss Workbook section of the book was previously published as JBoss 3.2 Workbook for Enterprise JavaBeans,
Third Edition.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Enterprise JavaBeans?, Fourth Edition, the image of a wallaby and joey, and related trade dress are trademarks of
O'Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in
the United States and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems. Microsoft, Windows,
Windows NT, and the Windows logo are trademarks or registered trademarks of Microsoft Corporation in the United
States and other countries. JBoss is fully owned and operated by JBoss, Inc. in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Author's Note
In the winter of 1997, I was consulting on an e-commerce project that was using Java RMI. Not surprisingly, the project
failed because Java RMI didn't address performance, scalability, failover, security, or transactions, all of which are vital
in a production environment. Although the outcome of that project is not unique to Java RMI—I have seen the same
thing happen with CORBA—the timing of the project was especially interesting. Enterprise JavaBeans™ was first
introduced by Sun Microsystems at around that time, and had Enterprise JavaBeans (EJB) been available earlier, that
same project probably would have succeeded.

At the time I was working on that ill-fated Java RMI project, I was also writing a column for JavaReport Online called
"The Cutting Edge." The column covered what were then new Java technologies such as the Java Naming and Directory
Interface™ (JNDI) and the JavaMail™ API. I was actually looking for a new topic for the third installment of "The Cutting
Edge" when I discovered the first public draft of Enterprise JavaBeans, Version 0.8. I had originally heard about this
technology in 1996, but this was the first time that public documentation had been made available. Having worked on
CORBA, Java RMI, and other distributed object technologies, I knew a good thing when I saw it and immediately began
writing an article about this new technology.

That seems like eons ago. Since I published that article in March 1998, literally thousands of articles on EJB have been
written, and several books on the subject have come and gone. This book, now in its fourth edition, has kept pace with
four versions of the EJB specification in last five years. As the newest version of the specification takes flight, and a slew
of new books on the subject debut, I can't help but remember the days when the words "Enterprise JavaBeans" drew
blank looks from just about everyone. I'm glad those days are over.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What Is Enterprise JavaBeans?
When Java™ was first introduced in the summer of 1995, most of the IT industry focused on its graphical user interface
characteristics and the competitive advantage it offered in terms of distribution and platform independence. Those were
interesting times. The applet was king, and only a few of us were attempting to use Java on the server side. In reality,
we spent about half of our time coding and the other half trying to convince management that Java was not a fad.

Today, the focus has broadened considerably: Java has been recognized as an excellent platform for creating enterprise
solutions, specifically for developing distributed server-side applications. This shift has much to do with Java's emerging
role as a universal language for producing implementation-independent abstractions for common enterprise
technologies. The JDBC™ API is the first and most familiar example. JDBC (Java Database Connectivity) provides a
vendor-independent Java interface for accessing SQL relational databases. This abstraction has been so successful that
it's difficult to find a relational database vendor that doesn't support JDBC. Java abstractions for enterprise technologies
have expanded considerably to include JNDI for abstracting directory services, JTA (Java Transaction API) for
abstracting access to transaction managers, JMS (Java Message Service) for abstracting access to different message-
oriented middleware products, and more.

Enterprise JavaBeans, first introduced as a draft specification in late 1997, has since established itself as one of the
most important Java enterprise technologies provided by Sun Microsystems. EJB provides an abstraction for component
transaction monitors (CTMs), which represent the convergence of two technologies: traditional transaction-processing
(TP) monitors (such as CICS, TUXEDO, and Encina), and distributed object services (such as CORBA, DCOM, and native
Java RMI). Combining the best of both technologies, component transaction monitors provide a robust, component-
based environment that simplifies distributed development while automatically managing the most complex aspects of
enterprise computing, such as object brokering, transaction management, security, persistence, and concurrency.

Enterprise JavaBeans defines a server-side component model that allows business objects to be developed and moved
from one brand of EJB container to another. A component (i.e., an enterprise bean) presents a programming model that
allows the developer to focus on its business purpose. An EJB server is responsible for making the component a
distributed object and for managing services such as transactions, persistence, concurrency, and security. In addition to
defining the bean's business logic, the developer defines the bean's runtime attributes in a way that is similar to
choosing the display properties of visual widgets. The transactional, persistence, and security behaviors of a component
can be defined by choosing from a list of properties. The end result is that EJB makes developing distributed-component
systems that are managed in a robust transactional environment much easier. For developers and corporate IT shops
that have struggled with the complexities of delivering mission-critical, high-performance distributed systems using
CORBA, DCOM, or Java RMI, EJB provides a far simpler and more productive platform on which to base development
efforts.

When Enterprise JavaBeans 1.0 was finalized in 1998, it quickly became a de facto industry standard. Many vendors
announced their support even before the specification was finalized. Since that time, EJB has been enhanced three
times. The specification was updated in 1999, to Version 1.1, and again in 2001, to Version 2.0, which was covered in
the second and third editions of this book. The most recent revision to the specification, Version 2.1, is covered by this,
the fourth edition of Enterprise JavaBeans. This edition also covers EJB 2.0, which is for the most part a subset of the
functionality offered by EJB 2.1.

Products that conform to the EJB standard have come from every sector of the IT industry, including the TP monitor,
CORBA ORB, application server, relational database, object database, and web server industries. Some of these
products are based on proprietary models that have been adapted to EJB; many more wouldn't even exist without EJB.

In short, Enterprise JavaBeans 2.1 and 2.0 provide a standard distributed-component model that greatly simplifies the
development process and allows beans developed and deployed on one vendor's EJB server to be easily deployed on a
different vendor's EJB server. This book will provide you with the foundation you need to develop vendor-independent
EJB solutions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Read This Book?
This book explains and demonstrates the fundamentals of the Enterprise JavaBeans 2.1 and 2.0 programming models.
Although EJB makes distributed computing much simpler, it is still a complex technology that requires a great deal of
time and study to master. This book provides a straightforward, no-nonsense explanation of the underlying technology,
Java classes and interfaces, component model, and runtime behavior of Enterprise JavaBeans. It includes material that
is backward-compatible with EJB 2.0 and provides special notes and chapters when there are significant differences
between 2.1 and 2.0.

Although this book focuses on the fundamentals, it's not a "dummies" book. Enterprise JavaBeans is an extremely
complex and ambitious enterprise technology. While using EJB may be fairly simple, the amount of work required to
understand and master EJB is significant. Before reading this book, you should be fluent in the Java language and have
some practical experience developing business solutions. Experience with distributed object systems is not a must, but
you will need some experience with JDBC (or at least an understanding of the basics) to follow the examples in this
book. If you are unfamiliar with the Java language, I recommend Learning Java by Patrick Niemeyer and Jonathan
Knudsen; this book was formerly Exploring Java (O'Reilly). If you are unfamiliar with JDBC, I recommend Database
Programming with JDBC and Java by George Reese (O'Reilly). If you need a stronger background in distributed
computing, I recommend Java Distributed Computing by Jim Farley (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Organization
This book is organized into two parts: the technical manuscript followed by the JBoss workbook. The technical
manuscript explains what EJB is, how it works, and when to use it. The JBoss workbook provides step-by-step
instructions for installing, configuring, and running the examples from the manuscript on the JBoss 3.0 Application
Server.

Part I: The Technical Manuscript

The technical manuscript is covered in Chapters 1-19 and is about 90% of the content for this book. Chapter 1-Chapter
18 were written by yours truly, Richard Monson-Haefel, while Chapter 19 was written by Keyton Weissenger and Shy
Aberman. Here is a summary of these chapters and their content.

Chapter 1

This chapter defines component transaction monitors and explains how they form the underlying technology of
the Enterprise JavaBeans component model.

Chapter 2

This chapter defines the architecture of the Enterprise JavaBeans component model and examines the
difference between the three basic types of enterprise beans: entity beans, session beans, and message-driven
beans.

Chapter 3

This chapter explains how the EJB-compliant server manages an enterprise bean at runtime.

Chapter 4

This chapter walks the reader through the development of some simple enterprise beans.

Chapter 5

This chapter explains in detail how enterprise beans are accessed and used by remote, local, and web service
client applications.

Chapter 6

This chapter provides an explanation of how to develop basic container-managed entity beans.

Chapter 7

This chapter picks up where Chapter 6 left off, expanding your understanding of container-managed persistence
to complex bean-to-bean relationships.

Chapter 8

This chapter addresses the Enterprise JavaBeans Query Language (EJB QL), which is used to query EJBs and to
locate specific entity beans in EJB 2.1 and 2.0 container-managed persistence.

Chapter 9

This chapter covers the development of bean-managed persistence beans including when to store, load, and
remove data from the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10

This chapter covers the general protocol between an entity bean and its container at runtime and applies to
both container-managed persistence and bean-managed persistence.

Chapter 11

This chapter shows how to develop stateless and stateful session beans.

Chapter 12

This chapter shows how to develop message-driven beans in EJB 2.1 and 2.0.

Chapter 13

This chapter shows how to use the Timer service in EJB 2.1

Chapter 14

This chapter explains Web services standards, XML, SOAP, WSLD, and UDDI.

Chapter 15

This chapter discusses how Web services are supported in EJB using the JAX-RPC API.

Chapter 16

This chapter provides an in-depth explanation of transactions and describes the transactional model defined by
Enterprise JavaBeans.

Chapter 17

This chapter provides an overview of J2EE v1.4 and explains how EJB 2.1 fits into this new platform.

Chapter 18

This chapter provides an in-depth explanation of the XML deployment descriptors used in EJB 2.0 and 2.1.

Chapter 19

This chapter provides some basic design strategies that can simplify your EJB development efforts and make
your EJB system more efficient.

Part II: The JBoss Workbook

The JBoss workbook is an update of the JBoss workbook that was published as a supplement to the third edition of this
book. The JBoss workbook shows how to execute the examples from this book on the JBoss 4.0 Application Server. It's
indispensible to readers who want to code while learning and see the examples from the book run on a real application
server.

The previous edition of this book published the JBoss Workbook as a separate title along with three other workbooks for
J2EE 1.3 SDK, IBM WebSphere and BEA WebLogic. All of the workbooks were critical successes and popular with
readers, but they were not a very big commercial success—you could download them for free—and were difficult to
manage. For this edition, we decided to develop one workbook to reduce expenses. We also decided to bind it with the
rest of the book to make your life easier—you don't have to buy it separately or download it off the Web.

The JBoss workbook is really excellent and I'm proud to include it in this book. It was written by Bill Burke and Sacha
Labourey, two of the people behind JBoss and acknowledged experts in their fields. That said, I want to make it clear to
readers that I'm not endorsing JBoss over other J2EE application servers. The JBoss workbook is included in this edition
for pragmatic reasons:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for pragmatic reasons:

JBoss supported most, if not all, EJB 2.1 features when this book was in the final weeks of development—most
of the other vendors did not.

Bill Burke and Sacha Labourey were willing to commit the time and effort to update their workbook and have it
ready for in time for printing. They are also willing to keep it updated as new JBoss versions come out.

JBoss is free, and in a time when application servers cost tens, if not hundreds of thousands of dollars to
deploy, it's a better choice for developers who are learning how to develop EJB for the first time.

The JBoss workbook shows how to execute examples from most of the chapters in this book—basically any chapter with
at least one significant example is covered by the workbook. You'll want to read the introduction to the workbook to set
up JBoss and configure it for the examples. After that, just go to the workbook chapter that matches the chapter you're
reading. For example, if you are reading Chapter 6 on basic container-managed persistence, use the "Chapter 6
Exercises" section of the workbook to develop and run the examples on JBoss.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Software and Versions
This book covers Enterprise JavaBeans Versions 2.1 and 2.0. It uses Java language features from the Java 1.2 platform
including JDBC. Because the focus of this book is on developing vendor-independent Enterprise JavaBeans components
and solutions, I have stayed away from proprietary extensions and vendor-dependent idioms. Any EJB-compliant server
can be used with this book, but you should be familiar with your server's specific installation, deployment, and runtime-
management procedures to work with the examples. A workbook for the JBoss Application Server is included at the end
of this book to help you get started.

EJB 2.1 and 2.0 have a lot in common, but when they differ, chapters or sections within a chapter that are specific to
each version are clearly marked. Feel free to skip version-specific sections that do not concern you. Unless indicated,
the source code in this book has been written for both EJB 2.1 and 2.0.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions
The following typographical conventions are used in this book:

Italic

Used for filenames and pathnames, hostnames, domain names, URLs, and email addresses. Italic is also used
for new terms where they are defined.

Constant width

Used for code examples and fragments, XML elements and tags, and SQL commands, table names, and column
names. Constant width is also used for class, variable, and method names and for Java keywords used within the
text.

Constant width bold

Used for emphasis in some code examples.

Constant width italic

Used to indicate text that is replaceable. For example, in BeanNamePK, you would replace BeanName with a
specific bean name.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

An Enterprise JavaBean consists of many parts; it's not a single object, but a collection of objects and interfaces. To
refer to an enterprise bean as a whole, we use its business name in Roman type, followed by the acronym EJB. For
example, we will refer to the Customer EJB when we want to talk about the enterprise bean in general. If we put the
name in a constant-width font, we are referring explicitly to the bean's remote interface; thus, CustomerRemote is the
remote interface that defines the business methods of the Customer EJB.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional information. You can access this
page at:

http://www.oreilly.com/catalog/entjbeans4/

To comment on or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly Network, see the O'Reilly
web site at:

http://www.oreilly.com

The author maintains a web site for the discussion of EJB and related distributed computing technologies at
http://www.jmiddleware.com. jMiddleware.com provides news about this book as well as code tips, articles, and an
extensive list of links to EJB resources.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
The credit for this book's development and delivery is shared by many individuals. Michael Loukides, my editor, was
pivotal to the success of every edition of this book. Without his experience, craft, and guidance, this book would not
have been possible. I'm also greatful to the co-authors who contributed greatly to the success of this fourth edition. The
JBoss workbook was written by Bill Burke and Sacha Labourey. It's a significant contribution and I'm proud to have
their names on the cover of this book. Keyton Weissenger and Shy Aberman collaborated to produce Chapter 19, which
is an excellent overview of real-world EJB design and performance issues—that chapter is based on hard-earned
experience deploying several EJB production systems.

Many expert technical reviewers helped ensure that the material was technically accurate and true to the spirit of
Enterprise JavaBeans. Of special note are Lance Anderson, Bill Burke, Dave Cronin, James Pinpin, Tom Mars, and Ricky
Yim. They contributed greatly to the technical accuracy of this book and brought a combination of industry and real-
world experience to bear, helping to make this one of the best books on Enterprise JavaBeans published today.

I would also like to thank the folks at TheServerSide.com and everyone in the community who provided valuable
feedback, including (in alphabetical order) Michael Boyd, Ravi Brewster, Patrick De Clercq, Peter Durcansky, Sudheer
Fernades, Vick Fisher, Thomas Foersch, John Guthrie, George Jiang, Markus Knauss, Madhusudhan Konda, Ravi
Kyamala, Lee Yeow Leong, David McCann, Olav Nybo, Sunil Patil, Zheng Ping, Manfred Rosenboom, Viviane Costa Silva,
Simon Spruzen, Bob Stine, Dave Tuke, Ray Yan, Chunshui Yu, and Ping Zheng.

Special thanks also go to Greg Nyberg, Hemant Khandelwal, Kyle Brown, Robert Castaneda, Joe Fialli, Anil Sharma,
Seth White, Evan Ireland, David Chappell (the .NET guy), Jim Farley, Prasad Muppirala, Sriram Srinivasan, Anne
Thomas, Ian McCallion, Tim Rohaly, James D. Frentress, Andrzej Jan Taramina, Marc Loy, Don Weiss, Mike Slinn, and
Kevin Dick. The contributions of these technical experts were critical to the technical and conceptual accuracy of earlier
editions of this book. Others I would like to thank include Maggie Mezquita, Greg Hartzel, John Klug, and Jon Jamsa of
BORN Information, all of whom suffered though the first draft of the first edition so long ago to provide valuable
feedback.

Thanks also to Vlad Matena and Mark Hapner of Sun Microsystems, the primary architects of Enterprise JavaBeans;
Linda DeMichiel, EJB 2.1/2.0 specification lead; and all the other EJB 2.1 expert group members.

Finally, I extend the most sincere gratitude to my wife, Hollie, for supporting and assisting me through the five years of
painstaking research and writing that were required to produce four editions of this book. Without her unfailing support
and love, this book would not have been completed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Author's Note

What Is Enterprise JavaBeans?

Who Should Read This Book?

Organization

Software and Versions

Conventions

Comments and Questions

Acknowledgments

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<abstract-schema-name> element
ABS arithmetic function
abstract persistence schema 2nd 3rd 4th
 EJBQL and
 terminology conventions and
abstract programming model 2nd
abstract schema name 2nd
<activation-config> element 2nd
<acknowledge-mode> element
access control
 deployment and
 isCallerInRole() method and
 role-driven
AccessLocalException
accessor methods (accessors)
 defining
 element and
 naming conventions and
ACID
 principles, ensuring transactions adhere to
 transactions
acknowledgeMode property (<activation-config> element)
activating enterprise beans
 entity beans and
 MDBs and
 stateful session beans and
 stateless session beans and 2nd
 transient fields and
activation callback methods
actual types
addPhoneNumber() method
Address EJB (sample entity bean)
 queries and
 relationships and
ADDRESS table, creating
Address XML document
AddressBean class 2nd
AddressDO dependent value class
administered objects 2nd
afterBegin() method
aggregate functions in SELECT clause
AND operator
Ant scripts (for exercises)
Ant tool
Apache Axis project
application client component
architecture
 for distributed objects
 of EJB
arithmetic functions
arithmetic operators
 in WHERE clauses
array of Strings
<assembly-descriptor> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nesting inside <ejb-jar> element 3rd
asterisk (*) indicating wildcard 2nd 3rd
asynchronous messaging 2nd 3rd
 JMS and
 MDBs and
ATM transactions
 reliability of
atomicity of transactions 2nd
auditing
authentication
 element and 2nd
 JNDI API and
Auto-acknowledge value
automatic primary-key generation in JBoss CMP 2.0
automatic teller machine (ATM) transactions
AVG() function

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

base classes
 limitations
batch jobs
batch processing
bean class 2nd
 Client API and
 for entity beans
 for session beans
 stateful session beans and
 stateless session beans and
bean instances
 concurrent access to prohibited
 reentrant
bean-managed persistence [See BMP]
bean-managed transaction (BMT) beans [See BMT beans]
BETWEEN clause
<binding> element (WSDL)
bindings
BMP (bean-managed persistence) 2nd 3rd 4th
 code optimization
 deployment descriptors
 disadvantages of
 ejbCreate() method
 ejbFind() method
 ejbLoad() method
 ejbRemove() method
 ejbStore() method
 entity beans [See BMP entity beans]
 primary keys
 remote home interface
 remote interface
 synchronizing bean';s state with database
 versus container-managed persistence 2nd
BMP entity beans 2nd
 exceptions thrown by
 exercises
 methods for
 resource connections and
 XML deployment descriptors for
BMT (bean-managed transaction) beans
 transaction propogation and
bookPassage() method
books, online order transactions for
Borland products, JBuilder IDE and
build.xml file (Cabin EJB exercise)
built-in types (XML)
business concepts, CMP entity beans and 2nd
business logic
 encapsulating into business objects
 session beans and
 stateful session beans and
business methods 2nd
 invoked by clients
 local interface and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transaction attributes and
business objects
business system transactions
business transactions
business-to-business applications
BytesMessage message type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C++ programming language
<cascade-delete> element
Cabin EJB (sample entity bean)
 creating new
 deploying
 deployment descriptor for 2nd
 EJB 2.0 deployment descriptor
 EJB 2.1 deployment descriptor
 exercise
 build.xml file
 local interface, creating for
 many-to-many relationship and
 persistence and
 populating database
 queries and
 using
CABIN table
 creating
 with one cabin record
cabin.jar file
CabinBean class
 callback methods
 complete definition of
 container-managed fields
CabinHomeRemote home interface
CabinRemote interface
callback methods 2nd 3rd
 bean class and
 container and
 EJBException and
 RemoteException and
cardinality
cascade deletes
 caution with
 exercise
casting, programming language support for
Castor JDO
CDATA sections
 WHERE clause and
CheckDO.java
checked exceptions
Class.newInstance() method
classes (bean)
Client API
client applications
 container-managed persistence and
 creating
 entity bean relationships, testing with
 examples of for MDBs
 for JMS
 for session beans
 locating entity beans
 stateful session beans and
client view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RMI protocols and
 stateful session beans and
Client_1.java example program
Client_111a example program
Client_111b example program
Client_112a example program
Client_112b example program
Client_112c example program
Client_2.java example program 2nd
Client_3.java example program
Client_51a.java example program
Client_51b.java example program
Client_52a.java example program
Client_52b.java example program
Client_52c.java example program
Client_53 example program
Client_63 example program
Client_71a example program
Client_71b example program
Client_71c example program
Client_72a example program
Client_72b example program
Client_72c example program
Client_72d example program
Client_72e example program
Client_72f example program
Client_73 example program
Client_81a example program
Client_81b example program
Client_81c example program
Client_82a example program
Client_82b example program
Client_82c example program
Client_82d example program
Client_82e example program
Client_82f example program
Client_82g example program
Client_82h example program
Client_82i example program
Client_82j example program
Client_82k example program
Client_82m example program
Client_82n example program
Client_91.java example program
CLR (Common Language Runtime)
<cmp-version> element
<cmp-field> element
<cmp-version> element
 nesting inside <entity> elements
<cmp-field> element
 nesting inside <entity> elements
CMP (container-managed persistence) 2nd 3rd 4th
 cascade deletes exercise
 collection-based relationships and
 dependent value class
 exercise
 element and 2nd
 entity beans
 primary keys and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 relationships between
 transaction attributes and
 entity relationships
 exercise
 exercise
 fields
 in ORDER BY clause
 in EJB 1.0
 no-argument constructor and
 versus bean-managed persistence 2nd 3rd 4th 5th
CMR fields 2nd
 EJB QL and
<complexType> element
<container-transaction> element 2nd 3rd
<configuration-name> element
<connection-url> element
<container-transaction> element
 nesting inside <assembly-descriptor> element
co-located enterprise beans 2nd
code duplication
Collection type
collection-based relationships
Collection.add() method
Collection.addAll() method
Collection.remove() method
COM (Component Object Model)
COM+
commit option
commit() method 2nd
Common Language Runtime (CLR)
comparison operators 2nd
 unsupported Date class and
 WHERE clause and
complex types
component interfaces
 differentiating between
 EJB 2.0 and
component models
 standard model and
Component Object Model (COM)
components, portable
composition between entity beans
compound primary keys 2nd 3rd 4th
 specifying
CONCAT string function
concurrency
 stateful session beans and
connection factories
Connector-based MDBs
consistency of transactions 2nd
constructors
 definition of prohibited
consumers
container-managed fields
container-managed persistence [See CMP]
container-managed relationship fields
containers
 beans and
 choosing before EJB development

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 deployment tools for
 primary keys
Context class
conventions for enterprise beans 2nd
conversational state 2nd 3rd
 stateful session beans and
CORBA and IDL
COS Timer Event Service
COUNT() function
course-grained abstraction
create methods 2nd
 CMP entity beans and
 enterprise beans, initializing with
 remote references and
 stateful session beans and
 stateless session beans and
 transaction attributes and
 transitioning between states and
CREATE TABLE SQL statement
createAddress() method
CreateException
 CMP entity beans and
createTopicSession() method
CreditCard EJB (sample entity bean)
 queries and
cron utility 2nd
 limitations
Cruise EJB (sample entity bean)
 queries and
Customer EJB (sample entity bean) 2nd
 declaring persistence fields
 deploying
 exercises
 queries and
CUSTOMER table, creating
CustomerBean class

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

data integrity
data types, actual versus declared
data-holding classes
database connection pool, deploying
database locking and transaction isolation
database locks
 types
database mapping, object-to-relational
database pools, setting up
databases
 bean-managed persistence and 2nd
 choosing
 entity beans and
 locking techniques for
 reading versus writing
 tables, schemas for
datapool configuration file
DataSource resource factory
 declaring
Date class
DateRange utility class
DCOM (Distributed Component Object Model)
<definitions> element (WSDL)
<description> element
<destination-jndi-name> element
declarative transaction management
declared types
deleteDbTable() home method
deliverTicket() method
dependent objects
 stateful session beans and
 stateless session beans and
dependent value classes 2nd 3rd
 AddressDO
deploy directory (JBoss)
deploying enterprise beans
 CMP entity beans and
 entity beans and
 multiple deployment and
 session beans and
deployment descriptors 2nd 3rd 4th
 BMP entity beans and
 CMP entity beans and
 co-located enterprise beans and
 contents of
 controlling EJBs transactional behavior
 document header and
 EJB 2.0
 elements
 <ejb-class>
 <ejb-jar>
 <ejb-name>
 <enterprise-beans>
 <entity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <home>
 <persistence-type>
 <prim-key-class>
 <reentrant>
 <remote>
 example downloads
 example for Cabin EJB
 find methods and
 for Cabin Bean in EJB 2.0
 for Cabin Bean in EJB 2.1
 for client components
 for entity beans
 for session beans
 JMS and
 local interface and
 MDBs and
 roles and
 security roles and
 stateful session beans and
 stateless session beans and
 transaction attributes and
 types of validation
 XML elements and
deployment files, vendor specific
deserializing primary keys
designing EJBs
 base classes
 limitations
 choosing container
 choosing databases
 combining technologies
 determining each bean';s sub-type and interface type
 EJB identification
 exceptions
 hierarchy
 identifying entity beans
 identifying MDBs
 identifying session beans
 pre-design
 technical architecture
 Titan application business entities
 UML diagram of business entities and their relationships
 utility classes
destinations
 element and
destinationType property (<activation-config> element)
<display-name> element
directory service 2nd
directory structure
 for entity beans
 for session beans
dirty reads 2nd
DISTINCT keyword
DISTINCT operator
distributed business objects
Distributed Component Object Model (DCOM)
distributed computing
 resources for further reading
distributed functionality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

distributed objects
 architecture/systems for
 concurrency and
 firewalls and
 Titan Cruises sample business illustrating
distributed transactions (2-PC)
DO qualifier
document header
Document Type Definition (DTD)
Does Not Exist state
 MDBs and
 stateful session beans and
 stateless session beans and
 transitioning to from Method-Ready Pool
doGet() method
doPost() method
<driver-class> element
drivers for JNDI
DTD (Document Type Definition)
DuplicateKeyException
duplicates
Dups-ok-acknowledge value
durability of transactions 2nd
Durable value 2nd
Durable value (subscription)
dynamic queries
 in JBoss CMP 2.0

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.ear files
EISs (Enterprise Information Systems)
<ejb-jar> element
<ejb-name> element
<ejb-class> element
<ejb-ql> element
<ejb-client-jar> element
<ejb-relation> element
<ejb-relationship-role> element
<ejb-ref-name> element
 corresponding <ejb-ref> element
<ejb-local-ref> element
 local references and
<ejb-name> element
 nesting inside <session> or <entity> elements
<ejb-class> element
 nesting inside <session> or <entity> elements
<ejb-ref> element
 nesting inside <session> or <entity> elements
<ejb-local-ref> element
 nesting inside <session> or <entity> elements
<ejb-jar> element
 nesting other elements inside
<ejb-name> element
 role
EJB 2.1
 expanded role of MDBs
 message linking
 new element
 new primary service
EJB client view
EJB endpoints
 deployment files
 home objects and
 Mandatory transaction attribute and
 WSDL documents and
EJB home
EJB Query Language (EJB QL)
 basic finder methods
 declaring
 dynamic queries
 ejbSelect methods
 elements/queries
 examples
 IN operator
 programming and functionality exercises
 statements
 weaknesses of
EJB references, stateful session beans and
EJB server
ejb-jar.xml file 2nd 3rd
EJB-to-CORBA mapping
ejbActivate() method 2nd 3rd
 instance swapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transitioning from Pooled state to Ready state via
EJBContext interface 2nd 3rd
 rollback methods and
ejbCreate() method 2nd 3rd
 BMP entity beans and
 CMP entity beans and
 ejbPostCreate() method versus
 MDBs and
 requirements
 return values and
 setting timers on
 stateful session beans and
 stateless session beans and
 transitioning from Pooled state to Ready state via
ejbCreateAddress() method
EJBException
 callback methods and
 EJBLocalObject and
ejbFind() method
 BMP and
ejbFind() methods
 in home interface versus bean class
ejbFindByCapacity() method
ejbFindByPrimaryKey() method
EJBHome interface 2nd 3rd 4th 5th
 Java RMI-IIOP and
 reference to, finding
 stateless session beans and
ejbHome methods
ejbHome() method
ejbLoad() method
 BMP entity beans and
 Ready state and
 using
EJBLocalHome interface 2nd
EJBLocalObject interface 2nd 3rd
 container-managed relationships and 2nd
EJBMetaData interface 2nd
 exercise
 session beans and
EJBObject interface 2nd
 defining
 exercise
 HomeHandle object and
 Java RMI-IIOP and
ejbPassivate() method 2nd
 ejbRemove() method and
 instance swapping
 transitioning from Pooled state to Ready state via
ejbPostCreate() method 2nd 3rd 4th
 CMP entity beans and
 ejbCreate() method versus
ejbRemove() method 2nd 3rd
 BMP entity beans and
 stateless session beans and
EJBs (Enterprise JavaBeans) 2nd 3rd
 accessing from client applications
 activating
 alternatives to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 architecture of
 assembling into applications
 asynchronous messaging and 2nd
 avoiding type confusion
 background and development of
 classes and interfaces
 co-located
 containers and
 creating
 deploying
 in JBoss
 describing
 designing [See designing EJBs]
 developing first
 finding
 home methods and
 identity, comparing for
 interacting with other beans
 interfaces and exceptions
 interoperability and
 J2EE support for
 local interface and 2nd 3rd
 MDBs and 2nd
 nontransactional
 overview
 passivating
 returning data from
 sequential processing
 signing on to connection factory
 source code for
 Sun Microsystems' definition of
 technologies addressed by
 transactional behavior of
 types
 using
 Version1.1
 Version2.0
 versus JavaBeans
 web components and
 when not to use
 when to use
ejbSelect methods 2nd
ejbSelect naming convention 2nd
ejbSelect() method
ejbSelectAll() method
ejbSelectByCity() method
ejbSelectCustomer() method
ejbSelectMostPopularCity() method
ejbSelectZipCodes() method
ejbStore() method
 BMP entity beans and
 Ready state and
 using
ejbTimeout() method
elements
 first
 root
Email-Message Driven Bean (Email-MDB)
<enterprise-beans> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<entity> element 2nd
<env-entry> element
<enterprise-beans> element
 nesting inside <ejb-jar> element
<env-entry> element
 nesting inside <session> or <entity> elements
<env-ref> element
 remote references and
encapsulation
 of business logic into business objects
 primary key data and
 stateful session beans and
endpoint interface 2nd
 defined
 stateless bean class implementing
 WSDL file used to generate
enterprise APIs
enterprise archive (.ear) files
Enterprise Information Systems (EISs)
Enterprise Resource Planning (ERP)
entity beans 2nd [See also CMP, entity beans]
 bean-managed persistence and
 callback methods
 cascade deletes and
 composition between
 concurrency and
 container relationship
 creating
 deploying
 end of life cycle
 getting information from
 identifying
 interactions between exceptions and transactions (synoptic table)
 JMS messages and
 life cycle of 2nd
 logical inheritance and
 newly created
 primary keys and
 read-only
 Ready state
 transitioning from Pooled state
 relationships [See relationships between entity beans]
 removing
 states of
 system exceptions and
 timers
 serious concern
 transactions
 types
 types of
 versus MDBs
 versus session beans 2nd
entity bloat
entity relationships
 exercises
EntityBean interface
 callback methods and 2nd
 CMP entity beans and
EntityContext interface 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enumeration type
 EJB 2.0 and 2nd
environment entries
environment properties, accessing
equality semantics
equals() method
 versus isIdentical() method
ERP (Enterprise Resource Planning)
escape character
escape character ()
event logging
<exclude-list> element
example code for exercises [See workbook, exercises]
example programs
 Client _2.java
 Client _51b.java
 Client _52b.java
 Client_1.java
 Client_111a
 Client_111b
 Client_112a
 Client_112b
 Client_112c
 Client_2.java
 Client_3.java
 Client_51a.java
 Client_52a.java
 Client_52c.java
 Client_53
 Client_63
 Client_71a
 Client_71b
 Client_71c
 Client_72a
 Client_72b
 Client_72c
 Client_72d
 Client_72e
 Client_72f
 Client_73
 Client_81a
 Client_81b
 Client_81c
 Client_82a
 Client_82b
 Client_82c
 Client_82d
 Client_82e
 Client_82f
 Client_82g
 Client_82h
 Client_82i
 Client_82j
 Client_82k
 Client_82m
 Client_82n
 Client_91.java
exceptions 2nd 3rd 4th
 application versus system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bean-managed persistence and
 checked
 container response to
 designing hierarchy
 FinderException and
 package-specific
 runtime
 standard
 stateless session beans and 2nd
 summary of interactions between (table)
 transactions and
 unchecked
 usage
 wrapping subsystem
exclusive write locks
exercises
 arithmetic operators in WHERE clauses
 BMP entity beans
 build.xml files
 Cabin EJB, building, deploying, and executing
 build.xml file
 creating JMS topic in JBoss
 adding through configuration file
 adding through JMX HTTP connector
 Customer EJB
 directory structure
 EJB QL programming and functionality
 EJBMetaData interface
 EJBObject interface
 entity bean relationships
 exposing stateless session bean as web service
 Handle interface
 home interface
 HomeHandle
 JAX-RPC, using client and server-side programming model
 JBoss CMP 2.0
 dependent value class
 dynamic queries in
 entity relationships
 JMS queue
 adding through configuration file
 adding through JMX HTTP connector
 local interfaces
 logic operators in WHERE clauses
 MDBs
 obtaining metadata through EJB APIs
 Ship BMP bean
 stateful session beans
 stateless session beans
 Timer Service
 TravelAgent EJB, building, deploying, and executing
 using JMS as a resource
 web services
explicit narrowing
explicit transaction management 2nd
 caution with
Extensible Markup Language

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

fields
 persistence
 relationship 2nd
finalize() method
find methods 2nd
 bean-managed persistence and
 CMP entity beans and
 custom
 multi-entity
 transaction attributes and
findByCapacity() method
findByGoodCredit() method
findByName() method
 query elements and
findByPrimaryKey() method 2nd 3rd 4th 5th 6th
 BMP entity beans and
 CMP entity beans and
FinderException
 query methods and
fine-grained abstraction
firewalls, e-commerce and
foreign keys
forms, requests for
Forte IDE (Sun Microsystems)
FROM clause
functional expressions
 support for limited in EJBQL
 WHERE clause and

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

get methods 2nd
 BMP and
get() method 2nd
getCallerPrincipal() method 2nd
getConnection() method 2nd 3rd
getCustomers() method
getEJBHome() method
 EJBContext interface and
 EJBMetaData interface and
 HomeHandle interface and
 MDBs and
getEJBLocalHome() method
 EJBContext interface and
 MDBs and
getEJBMetaData() method
getEJBObject() method 2nd
 BMP entity beans and
getEnvironment() method
 replaced with JNDI ENC
getHandle() method
getHomeAddress() method
getHomeHandle() method 2nd
getId() method
getInitialContext() method 2nd
getName() method
 CMP entity beans and
getObject() method
getPhoneNumbers() method
getPrimaryKey() method
 BMP entity beans and
 EJBObject interface and
 EntityContext interface and
 stateless session beans and
getPrimaryKeyClass() method
getRollbackOnly() method
getStatus() method 2nd
getters
getUserTransaction() method
graphical deployment wizards
graphical user interfaces
greater than (>)
GROUP BY clause
GUIs (graphical user interfaces)
 component models and

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Handle interface 2nd
Handles
 exercise
 Handle interface and 2nd
 HomeHandle interface and 2nd
 implementing
 removing enterprise beans with
 serializing/deserializing
 stateless session beans and
 versus primary keys
hashCode() method
HAVING clause
heavyweight mapping file
heuristic decisions
Hibernate
<home> element
 nesting inside <session> or <entity> elements
home interface
 exercises
 stateful session beans and
 stateless session beans and
home methods 2nd 3rd
 custom
HomeHandle interface 2nd
 exercise
HomeHandle object
hot deployment
HTML versus XML
HTTP/HTTPS requests, J2EE support for
Hypersonic SQL

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IBM products
 JMS and
 MQSeries
 VisualAge IDE
 WebSphere
icon elements
identity 2nd
IDEs (integrated development environments)
 vendors of
IDL (Interface Definition Language), CORBA and
IIOP (Internet-Inter-Operability Protocol)
 firewalls and
IllegalArgumentException
IllegalStateException 2nd
implementation independence
 standard server-side component model and
implicit transaction management
 using transaction attributes and
IN operator 2nd
 WHERE clause and
IncompleteConversationalState exception 2nd
initial context
InitialContext class
 client components and
 instance of
input parameters
 LIKE operator and
 WHERE clause and
instance pooling
 MDBs and
 stateful session beans and
 stateless session beans and
 strategies
instance swapping 2nd
 stateful session beans and
instance variables, stateless session beans and
integrated development environments
interfaces
 component
 local versus remote
 recommendations
interoperability
interprocess components
intra-instance method invocation
intraprocess components
IS EMPTY operator
IS NULL comparison operator
isCallerInRole() method 2nd 3rd
isIdentical() method 2nd
isolation conditions
isolation levels, controlling
isolation of transactions 2nd
Iterator.remove() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

J2EE (Java 2 Enterprise Edition) 2nd
 application client component
 components and JNDI properties
 guaranteed services and
 SDK server
 servlets
 web services
J2EE Connector Architecture
J2EE Connector Architecture (J2EE Connectors)
J2EE Connector Architecture 1.0
J2EE Connector Architecture 1.5
J2EE Deployment API
J2EE Management API
<jaxrpc-mapping-file> element
JAF (Java Activation Framework), J2EE support for
JAR files
 cabin.jar and
 CMP entity beans and
 deploying multiple enterprise beans in
 ejb-jar file and
 entity beans and
 session beans and
 zipping/unzipping
jar utility 2nd
Java 2nd
 platform independence and
Java archive files
Java Authorization Service Provider Contract (JACC)
Java Data Objects (JDO)
Java Database Connectivity
Java IDEs
Java Message Service
Java RMI-IIOP 2nd
 J2EE support for
 programming model for
Java RMI-JRMP, J2EE support for
Java Transaction Service (JTS) 2nd
 API
java.rmi.RemoteException
java.util.Timer class
JavaBeans versus EJB
JavaIDL, J2EE support for
JavaMail API, J2EE support for
JavaMail Message object
JavaServer Pages (JSP) 2nd
 J2EE support for
JAX-RPC (Java API for XML-based RPC)
 accessing web services with
 endpoint interface
 generating stubs from WSDL
 mapping file 2nd
 heavyweight
 WSDL document required attributes for package-only
 nillable types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SOAP and
 specification mappings between XML Schema built-in types and Java
 stubs in a transactional environment
 using client and server-side programming model
 using generated stubs
JAXP (Java API for XML Parsing), J2EE support for
JAXR (Java API for XML Registries)
JBoss
 application server
 installing
 binaries, downloading
 bootstrap code
 configuration files
 deployment
 detached invokers
 directory structure
 EJBs deployed in
 hot deployment
 internal structure
 invokers
 micro-kernel architecture
 more information
 net boot
 overview
 services
 WebOS
 workbook [See workbook]
JBoss CMP 2.0
 cascade deletes exercise
 dynamic queries in
 exercises
 primary-key generation
JBoss Server Spine
JBoss-specific deployment descriptor
 options
jboss.xml-specific deployment descriptor
jbosscmp-jdbc.xml file
JBossMQ message invocation layers
JBuilder IDE (Borland)
JCA (J2EE Connector Architecture), J2EE support for
JDBC (Java Database Connectivity)
 as alternative to EJB
 J2EE support for
 JAR file
 obtaining connection to
JMS (Java Message Service) 2nd
 acknowledgment
 advantages of
 application client
 as a resource
 exercises
 client application for
 connection factory
 connection to a message router
 declaing a resource in EJB 2.0
 declaring a resource in EJB 2.1
 J2EE support for
 MDBs and
 messaging models

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 providers
 connecting to
 setting a MessageFormat property on a Message producer
 Unified API
JMS queue
 adding through configuration file
 adding through JMX HTTP connector
JMS topic in JBoss, exercises
 adding through configuration file
 adding through JMX HTTP connector
JMS-based MDBs 2nd
 limitations
 message design
 timers
JmsClient_1.java
JmsClient_ReservationProducer
JmsClient_ReservationProducer.java
JmsClient_TicketConsumer
JmsClient_TicketConsumer.java
JMSReplyTo attribute
<jndi-name> element 2nd
JNDI (Java Naming and Directory Interface)
 authentication and
 features
 J2EE support for
 lookups
 naming service and
 overview
 properties
JNDI ENC 2nd 3rd 4th 5th
 getEnvironment() method and
 MDBs and 2nd
 stateful session beans and
 stateless session beans and
 TravelAgent EJB and
job-scheduling systems [See Timer Service]
JSP [See JavaServer Pages]
JTA (Java Transaction API)
 explicit transaction management and 2nd
 J2EE servers, required access to
JTS (Java Transaction Service)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<large-icon> element
legacy persistence
LENGTH string function
less than (<)
LIKE comparison operator
listAvailableCabins() method
listCabins() method (TravelAgent EJB)
listing behavior
literals
<local> element
<local-home> element
 nesting inside <session> or <entity> elements
Local Client API
 uses for
 using
local home interface 2nd
local interfaces 2nd
 exercise
 stateless session beans and
local references
LOCATE string function
location transparency
logic operators in WHERE clauses
logical inheritance and entity beans
logical operators
 WHERE clause and
lookup APIs
lookup() method
loopbacks 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

main() method
makeDbTable() home method
managed objects
Mandatory transaction attribute 2nd
mandatory, declaring transaction attributes of endpoint methods as
many-to-many bidirectional relationship
many-to-many unidirectional relationship
many-to-many, bidirectional relationship 2nd
many-to-many, unidirectional relationship 2nd
many-to-one unidirectional relationship
many-to-one, unidirectional relationship 2nd
Map of field-value pairs
MapMessage 2nd 3rd
mapping logical roles to user group
MAX() function
MDBs (message-driven bean)
 exercise
MDBs (message-driven beans) 2nd 3rd 4th
 accessing EJB with
 asynchronous messages and
 concurrency and
 Connector-based
 container and
 conversational state and
 deployment descriptors
 EJB 2.0
 EJB 2.1
 deployment descriptors and
 Does Not Exist state
 explicit transaction management and
 identifying
 instance pooling and
 JMS and
 JMS-based 2nd
 limitations
 life cycle of
 limitations in EJB 2.0
 message interface
 message selectors
 Method-Ready Pool
 transitioning out of
 naming
 reentrance and
 sending messages from
 timers
 configuring at deployment
 initializing
 standard configuration properties
 transaction attributes and 2nd
 transaction methods
 versus entity and session beans
<method-name> element
<method-params> element
<message-destination-ref> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<messaging-type> element
<message-destination-type> element
<message-destination-ref> element
<message-destination-link> element 2nd
<message> element (WSDL)
<message-driven> element
<messaging-type> element
<message-destination-type> element
<message-selector> element
<message-driven-destination> element
<method> element
<method-permission> element
<method> element
<method-permission> element
<method-params> element
<method-permission> element
 nesting inside <assembly-descriptor> element
<message-destination-ref> element
 nesting inside <session> or <entity> elements
medical systems transactions
MEMBER OF operator
message brokers
message linking
message selectors
message types
message types (JMS)
message-driven beans [See MDBs]
MessageDrivenBean interface 2nd
MessageDrivenContext
MessageDrivenContext interface 2nd 3rd
MessageListener interface 2nd
messages, consuming
messageSelector property (<activation-config> element)
messaging
 asynchronous [See asynchronous messaging]
 domains
 sending messages from MDBs
 store-and-forward
META-INF directory 2nd
metadata
 obtaining (exercises)
 session beans and
method arguments
method overloading
method permissions, specifying
Method-Ready Pool
 MDBs and
 stateless session beans and 2nd
 transitioning out of
Method-Ready state
 stateful session beans and
methods
 accessor
 business
 life-cycle 2nd
 select
 specifying
 unchecked 2nd
Microsoft products

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .NET Framework
 CTMs and
 MTS
Microsoft Transaction Server (MTS)
MIN() function
MOD arithmetic function
MOM (message-oriented middleware)
 for asynchronous messaging
MQSeries (IBM)
 JMS and
MTS (Microsoft Transaction Server)
<multiplicity> element
multi-entity find methods
multi-entity select methods
multiple-bean deployment
multiplicity 2nd 3rd
 class diagram depicting

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

named declarations
naming (primary service) 2nd
naming conventions
 accessor methods and
 ejbSelect and
 for suffixes used with create method names
narrow() method
navigation operator
.NET Framework (Microsoft)
network communication layer
network connections, reducing with session beans
network traffic, reducing with session beans
Never transaction attribute
newInstance() method
 MDBs and
no state (entity beans)
no-argument constructor
NonDurable value 2nd
NonDurable value (subscription)
nonreentrance
nonrepeatable reads
nontransactional enterprise beans
NOT operator
notifications
NotSupported transaction attribute 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object bindings
Object class
object database persistence
object ID (OID)
object serialization
 bean instance activation and
 Handles and
Object Transaction Service (OTS) 2nd
Object type, primary keys and
OBJECT() operator 2nd 3rd
object-oriented databases, persistence and
object-oriented programming languages
object-to-relational database mapping wizards
object-to-relational persistence
ObjectMessage
ObjectMessage message type
ObjectNotFoundException 2nd
 find methods and
OID (object ID)
one-to-many bidirectional relationship
one-to-many, bidirectional relationship 2nd
one-to-many, unidirectional relationship 2nd
one-to-one, bidirectional relationship 2nd
one-to-one, unidirectional relationship 2nd
online book order transactions
onMessage() method 2nd 3rd 4th
 business-to-business applications and
open connections
operator precedence, WHERE clause and
optimizations, BMP code
OR operator
ORDER BY clause
 CMP fields in
OTS (Object Transaction Service)
overloaded constructor
overloaded methods

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

parameters
passing by reference
Passivated state
 stateful session beans and
passivating enterprise beans 2nd
 ejbPassivate() method and
paths, simple queries with
PAYMENT table
<persistence-type> element 2nd
 nesting inside <entity> element
percent (%)
performance
 across methods
 balancing against consistency
 improving with session beans
persistence
 abstract schema
 bean-managed [See BMP]
 classes
 container-managed [See CMP]
 enterprise beans and
 entity beans and
 fields
 instances
 stateful session beans and
phantom reads 2nd
phantom records
Phone EJB (sample entity bean)
platform independence
 web services and
<portType> element (WSDL)
point-to-point (p2p) messaging model
pointers
Pooled state of entity beans 2nd
 transitioning to Ready state
portability
PortableRemoteObject class
 narrow() method
<prim-key-class> element
<primkey-field> field
<prim-key-class> field
<primkey-field> element
<prim-key-class> element
<primkey-field> element
 nesting inside <entity> element
<prim-key-class> element
 nesting inside <entity> element
Pramati Application Server
 mapping wizard for
Prevayler
primary keys 2nd 3rd
 BMP and
 compound 2nd
 container-managed persistence and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 containers
 deferring defining
 entity beans and
 generating in JBoss CMP 2.0
 mapping to autogenerated fields
 MDBs and
 modifying fields
 removing enterprise beans with
 serializing/deserializing
 session beans and
 single-field 2nd
 specifying
 stateless session beans and
 types of
 undefined
 validity
 versus Handles
primary services
 supported by EJB servers
primitive data types 2nd
primitive wrappers 2nd 3rd
Principal object
 tracking client identity with
process() method
ProcessPayment EJB
 remote interface
ProcessPayment EJB (sample session bean) 2nd
ProcessPayment standard deployment descriptor
ProcessPaymentBean.java 2nd
ProcessPaymentEJB stateless session bean
ProcessPaymentRemote.java
producers
Progress SonicMQ messaging product
properties
 JNDI
publish-and-subscribe (pub/sub) messaging model

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<query> elements 2nd
<query> element
 nesting inside <entity> elements
queries
 dynamic
 EJB QL and, weaknesses of
 simple
 with paths
 subqueries
query methods 2nd
 arguments and
 transitioning from Pooled state to Ready state via
QueryListener (Titan application)
QueueReceiver
 message consumer
 receive() method
queues 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

<remote> element
<reentrant> element 2nd
<relationships> section
<result-type-mapping> element
<resource-ref> element 2nd
<resource-env-ref> element
<res-type> element
<res-auth> element
<resource-env-ref> element
<result-type-mapping> element
<relationships> element
<resource-ref> element
 external references and
<relationships> element
 nesting inside <ejb-jar> element
<reentrant> element
 nesting inside <entity> element
<remote> element
 nesting inside <session> or <entity> elements
<resource-ref> element
 nesting inside <session> or <entity> elements
<resource-env-ref> element
 nesting inside <session> or <entity> elements
Read Committed isolation level
read locks
Read Uncommitted isolation level
 performance and
read-only entities
ready state (entity beans)
Ready state of entity beans
 transitioning from Pooled state
receive methods
receiveNoWait() method
reentrance
reentrance and MDBs
references
 local
 remote
 to EJB home interface, finding
 to enterprise beans
 to external resources
relational databases
 CustomerEJB and
 object-to-relational persistence and
relationship fields 2nd
relationship name
relationships
 IS EMPTY operator and
 MEMBER OF operator and
 paths and
relationships between entity beans
 exercises
 types of
 many-to-many, bidirectional 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 many-to-many, unidirectional 2nd
 many-to-one, unidirectional 2nd
 one-to-many, bidirectional 2nd
 one-to-many, unidirectional 2nd
 one-to-one, bidirectional 2nd
 one-to-one, unidirectional
Remote Client API
remote home interface 2nd 3rd 4th
 BMP and
 CMP entity beans and
 for entity beans
 for session beans
Remote interface
remote interfaces 2nd 3rd 4th 5th
 BMP entity beans and
 CMP entity beans and
 defining
 for entity beans
 for session beans
 restrictions on
 stateful session beans and
 stateless session beans and
remote interfacess
 using as parameters of other EJB methods
remote references 2nd
 comparing
 explicit narrowing of
 Handles, obtaining through
remote types
RemoteException 2nd 3rd
 callback methods and
 stateless session beans and
remove() method
 EJBHome interface and
 EJBObject interface and
 transaction attributes and
RemoveException
 remove() method and
removePhoneNumber() method
removing
 enterprise beans 2nd
 session beans
Repeatable Read isolation level
repeatable reads 2nd
Required transaction attribute
RequiresNew transaction attribute
Reservation EJB (sample entity bean)
 created by ReservationProcessor EJB
 queries and
 reasons for using
Reservation XSD
ReservationListener (Titan application)
ReservationProcessor EJB (sample MDB)
 client applications for
ReservationProcessor MDB
ReservationProcessorBean class
resource connections, managing
resource factories, obtaining
resource management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource-management facilities
resources for further reading
 distributed computing
 Enterprise JavaBeans specification
 Java Message Service
 JavaServer Pages
 JNDI
 servlets
 XML 2nd
resources, sharing
responsibilities, grouping of
return types
RMI loop
RMI over IIOP
RMI protocols 2nd
role names
role-driven access control
roles
rollback() method
RollbackException
rollbacks 2nd
 BMTs and
 database updates and
 EJBContext interface and
 exceptions and
 transactional stateful beans and
root element ()
runAs security identity 2nd
runtime behaviors
 customizing with deployment descriptors
 modifying at deployment in server-side components
runtime exceptions
 BMP and

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

SAAJ (SOAP with Attachments API for Java)
scheduled jobs
scheduleMaintenance() method 2nd
scheduling systems [See Timer Service]
scope
 of transactions
<security-identity> element
<service> element (WSDL)
<session> element
<security-role-ref> element
<service-ref> element
<security-role-ref> element
<session-type> element
<service-ref> element
<service-qname> element
<security-role> element
 nesting inside <assembly-descriptor> element
<session-type> element
 nesting inside <session> element
<service-endpoint> element
 nesting inside <session> or <entity> elements
<security-identity> element
 nesting inside <session> or <entity> elements
secure communication
Secure Socket Layer (SSL)
security
 identities
 runAs 2nd
 methods
 roles 2nd 3rd
 CMP entity beans and
 specifying
 types of
security identities
SELECT clause
 aggregate functions in
 selecting multiple items
select methods 2nd
 bean-managed persistence and
 DISTINCT keyword and
 multi-entity
sequential processing of EJBs
serializable classes
Serializable interface
 persistence fields and
 primary keys and
Serializable isolation level
 performance and
serializable objects
 EJBMetaData and
serializable types 2nd
server-side components
 benefits/importance of standard model
 models for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servers
 choosing/setting up
 containers and
 implementation independence and
 transaction management and
service providers (drivers) for JNDI
services
 guaranteed per J2EE specification
servlets
 J2EE 2nd
session beans 2nd 3rd 4th
 combining
 concurrency and
 creating
 explicit transaction management and
 identifying
 interactions between exceptions and transactions (synoptic table)
 JMS messages and
 modeling workflow with
 naming
 removing
 stateful [See stateful session beans]
 stateful and stateless
 stateless [See stateless session beans]
 system exceptions and
 testing
 transaction attributes and
 types
 versus entity beans 2nd
 versus MDBs 2nd
SessionBean interface 2nd
SessionContext interface 2nd
SessionSynchronization interface
set methods
 BMP and
set() method 2nd
setAddress() method
setCreditCard() method
setCustomer() method
setCustomers() method
setEntityContext() method
 EJBContext interface and
 EntityContext interface and 2nd
setHomeAddress() method
setId() method
setInt() method
setMessageDrivenContext() method 2nd 3rd
setName() method
setPhoneNumbers() method
setReservations() method
setRollbackOnly() method 2nd
setSessionContext() method
setters
setTransactionTimeout() method
sharing resources
Ship EJB (sample entity bean) 2nd
 bean-managed persistence and
 deployment descriptor
 exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 home interface
 modified to enable Timers
 queries and
 testing
ShipBean.java 2nd
ShipMaintenanceBean.java
Simple Object Access Protocol
simple queries
 with paths
single-entity find methods
single-entity select methods
single-field primary keys 2nd
<small-icon> element
 nesting inside <ejb-jar> element
Smalltalk programming language
snapshots
SOAP (Simple Object Access Protocol) 2nd
 defined
SOAP 1.1
 exchanging messages with HTTP
 messaging modes
SonicMQ messaging product (Progress)
source code
 in this book
SQL (Structured Query Language)
 versus EJBQL
SQRT arithmetic function
SSL (Secure Socket Layer)
state
 bean-managed persistence and
 conversational
state-management callback methods
stateful session beans 2nd 3rd 4th 5th
 activating/passivating
 Does Not Exist state
 exercises
 instance pooling and
 life cycle of
 Method-Ready state
 Passivated state
 remote interface and
 transactional
 versus stateless session beans
stateless session beans 2nd 3rd
 accessing TimerService
 creating/cancelling timers
 Does Not Exist state
 exercises
 exposing as web service
 implementing endpoint interface
 instance pooling and
 life cycle of
 Method-Ready Pool
 open connections for
 remote interface and
 timers
 using
 versus stateful session beans
 when declared stateless

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statements
Status interface
store-and-forward messaging
StreamMessage message type
String functions
String types
Strings, array of
Structured Query Language
stubs
 EJB objects and
 reducing number of with session beans
<subscription-durability> element
subqueries
subscribing to topics 2nd
subscription durability
subscriptionDurablity property (<activation-config> element)
SUBSTRING string function
subsystem exceptions
 BMP and
suffixes 2nd
 create methods and 2nd
SUM() function
Sun Microsystems
 EJB-to-CORBA mapping developed by
 Forte IDE developed by
Sun';s JMX (Java Management eXtensions)
Supports transaction attribute
suspended transactions
synchronizing beans state 2nd 3rd 4th
system exceptions 2nd
 subsystem-level
 versus application exceptions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

% percent
> comparison operator
> greater than
>= comparison operator
< comparison operator
< less than
<= comparison operator
= comparison operator
_ underscore
2-PC (two-phase commit protocol)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tables, creating in databases
taskflow
terminology conventions
 abstract persistence schema and
TextMessage
TextMessage message type
thread control
threads
three-tier architecture
TicketDistributor EJB
 consuming messages
TicketDO object 2nd
timeouts
 Passivated state and
 setting
 stateful session beans and
 stateless session beans and
timer attacks
Timer interface
 exceptions
 getNextTimeout() method
Timer Service 2nd
 API
 creating timers
 exceptions
 exercises
 how a bean would register for notification at a set time
 how it works
 improving
 problems with
 transactions
 uses for scheduling systems
TimerHandle object
timers
 cancelling
 entity bean
 serious concern
 identifying
 managing
 MDBs
 configuring at deployment
 initializing
 standard configuration properties
 problems with
 retrieving information from
 stateless session bean
TimerService interface
 createTimer() methods
 definition
 getTimers() method
Titan application
 business entities
Titan Cruises (sample business)
Topic object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TopicConnection
TopicConnectionFactory 2nd
TopicPublisher 2nd
topics (JMS)
TopicSession
TopicSubscriber
toString() method
TPC (two-phase commit protocol)
<trans-attribute> element
<transaction-type> element
 nesting inside <session> element
Transactional Method-Ready state 2nd
transactions 2nd
 accuracy of
 ACID
 atomic
 attributes 2nd
 CMP entity beans and
 definitions of
 EJB endpoints and
 Mandatory
 MDBs and 2nd
 Never
 NotSupported
 Required
 RequiresNew
 setting
 specifying
 Supports
 balancing performance of against consistency
 business
 business systems that employ
 consistency of
 declarative management and
 durability of
 entity beans
 exceptions and
 explicit management and
 how they work
 interoperability
 isolation and database locking
 isolation levels
 isolation of
 database locking
 management, explicit
 managers
 propagation of
 propogation 2nd
 BMT beans and
 scope
 minimizing
 scope of
 stateful session beans and
 summary of interactions between (table)
 suspended
Transfer Object pattern
transient fields 2nd
transitioning between states
 Method-Ready Pool and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 stateful session beans and
 Transactional Method-Ready state and
TravelAgent EJB (sample session bean) 2nd 3rd
 ACID properties
 creating
 deploying
 exercise
 listCabins() method
 MDBs and 2nd
 reasons for using
 transactions and
travelagent.wsdl file
travelagent_mapping.xml file
TravelAgentClientBean.java
TravelAgentEndpoint.java
two-phase commit protocol (2-PC or TPC)
<types> element (WSDL)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI (Universal Description, Discovery and Integration)
 registry
 repository
UML diagram of business entities and their relationships
unchecked exceptions
unchecked methods 2nd
undefined primary keys
underscore (_)
unidirectional relationships, wrong way to modify
unit-of-work 2nd
unsetEntityContext() method 2nd
updatePhoneNumber() method
URLs
 distributed computing technologies
 EJB
 in JNDI
 this book
 XML deployment descriptors and
<use-caller-identity/> element
users
UserTransaction interface 2nd
 definition of
utilities
 container-deployment
 for database tables
utility classes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

valid XML
value types, restrictions on
vendors
 fear of lock-in and
 support for JMS
virtual persistence fields
VisualAge IDE (IBM)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.war (web archive) files
web components
 EJBs and
Web Service Description Language [See WSDL]
web services
 accessing with JAX-RPC
 exercises
 J2EE
 overview
 standards
WebOS
webservices.xml file
WebSphere (IBM)
well formed XML
WHERE clause
 arithmetic and logic operators in
 arithmetic operators and
 BETWEEN clause and
 CDATA sections and
 comparison operators and
 equality semantics and
 IN operator and
 input parameters and
 IS EMPTY operator and
 IS NULL comparison operator and
 LIKE comparison operator and
 literals and
 logical operators and
 MEMBER OF operator and
 operator precedence and
wildcards, asterisk indicating 2nd 3rd
wizards
 for graphical deployment
 for object-to-relational database mapping
workbook
 contents
 example code
 downloading
 exercises [See exercises]
 online resources
workflow scheduling examples
workflow, modeling with session beans 2nd
 stateful session beans and 2nd
wrapper classes for primitive data types
write locks
write once, run anywhere
WSDL
 file used to generate endpoint interface
 generating JAX-RPC stubs from
WSDL (Web Service Description Language) 2nd 3rd
 <binding> element
 <definitions> element
 <message> element
 <portType> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <service> element
 <types> element

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML
 as entity data from EJBs
 correctness
 documents
 element delimiters
 parsers
 using different markup languages in same document
 version of, specifying in documents
 versus HTML
XML deployment descriptors [See deployment descriptors]
XML elements
 defining
 for session beans
XML Namespaces
 declarations
 default namespaces
 prefixes for target namespace
 URI
XML Schema
 built-in types
 built-in types and corresponding Java types
 specification
XSDs for deployment descriptors in EJB 2.1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zipping/unzipping JAR files

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Enterprise JavaBeans, 4th Edition

By Bill Burke, Sacha Labourey, Richard Monson-Haefel

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00530-X

Pages: 788

This authoritative guide includes everything that made previous editions of Enterprise JavaBeans the single must-have
book for EJB developers: the author's solid grasp on the complexities of EJBs; hundreds of clear, practical examples;
adept coverage the key concepts EJBs ; and diagrams to illustrate the concepts presented. The fourth edition also
includes everything you need to get up to speed quickly on the changes in EJB version 2.1 as well as a JBoss
implementation guide.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Enterprise JavaBeans, 4th Edition

By Bill Burke, Sacha Labourey, Richard Monson-Haefel

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00530-X

Pages: 788

 Copyright

 Preface

 Author's Note

 What Is Enterprise JavaBeans?

 Who Should Read This Book?

 Organization

 Software and Versions

 Conventions

 Comments and Questions

 Acknowledgments

 Part I: Lay of the Land

 Chapter 1. Introduction

 Section 1.1. Server-Side Components

 Section 1.2. Distributed Object Architectures

 Section 1.3. Component Models

 Section 1.4. Asynchronous Messaging

 Section 1.5. Titan Cruises: An Imaginary Business

 Section 1.6. What's Next?

 Chapter 2. Architectural Overview

 Section 2.1. The Enterprise Bean Component

 Section 2.2. Using Enterprise Beans

 Section 2.3. The Bean-Container Contract

 Section 2.4. Summary

 Chapter 3. Resource Management and the Primary Services

 Section 3.1. Resource Management

 Section 3.2. Primary Services

 Section 3.3. What's Next?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 4. Developing Your First Enterprise Beans

 Section 4.1. Choosing and Setting Up an EJB Server

 Section 4.2. Developing an Entity Bean

 Section 4.3. Developing a Session Bean

 Chapter 5. The Remote and Local Client View

 Section 5.1. Locating Beans with JNDI

 Section 5.2. The Remote Client API

 Section 5.3. The Local Client API

 Chapter 6. CMP: Basic Persistence

 Section 6.1. The Abstract Programming Model

 Section 6.2. The Customer EJB

 Section 6.3. Persistence Fields

 Section 6.4. Dependent Value Classes

 Section 6.5. Relationship Fields

 Chapter 7. CMP: Entity Relationships

 Section 7.1. The Seven Relationship Types

 Chapter 8. CMP: EJB QL

 Section 8.1. Declaring EJB QL

 Section 8.2. The Query Methods

 Section 8.3. EJB QL Examples

 Section 8.4. Problems with EJB QL

 Chapter 9. Bean-Managed Persistence

 Section 9.1. The Remote Interface

 Section 9.2. The Remote Home Interface

 Section 9.3. The Primary Key

 Section 9.4. The ShipBean

 Section 9.5. Obtaining a Resource Connection

 Section 9.6. Exception Handling

 Section 9.7. The ejbCreate() Method

 Section 9.8. The ejbLoad() and ejbStore() Methods

 Section 9.9. The ejbRemove() Method

 Section 9.10. The ejbFind() Methods

 Section 9.11. The Deployment Descriptor

 Chapter 10. The Entity-Container Contract

 Section 10.1. The Primary Key

 Section 10.2. The Callback Methods

 Section 10.3. ejbHome()

 Section 10.4. EntityContext

 Section 10.5. The Life Cycle of an Entity Bean

 Chapter 11. Session Beans

 Section 11.1. The Stateless Session Bean

 Section 11.2. The Life Cycle of a Stateless Session Bean

 Section 11.3. The Stateful Session Bean

 Section 11.4. The Life Cycle of a Stateful Session Bean

 Chapter 12. Message-Driven Beans

 Section 12.1. JMS and Message-Driven Beans

 Section 12.2. JMS-Based Message-Driven Beans

 Section 12.3. The Life Cycle of a Message-Driven Bean

 Section 12.4. Connector-Based Message-Driven Beans

 Section 12.5. EJB 2.1: Message Linking

 Chapter 13. Timer Service

 Section 13.1. Titan's Maintenance Timer

 Section 13.2. Timer Service API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 13.2. Timer Service API

 Section 13.3. Transactions

 Section 13.4. Entity Bean Timers

 Section 13.5. Stateless Session Bean Timers

 Section 13.6. Message-Driven Bean Timers

 Section 13.7. Final Words

 Chapter 14. EJB 2.1: Web Service Standards

 Section 14.1. Web Services Overview

 Section 14.2. XML Schema and XML Namespaces

 Section 14.3. SOAP 1.1

 Section 14.4. WSDL 1.1

 Section 14.5. UDDI 2.0

 Section 14.6. From Standards to Implementation

 Chapter 15. EJB 2.1 and Web Services

 Section 15.1. Accessing Web Services with JAX-RPC

 Section 15.2. EJB Endpoints

 Chapter 16. Transactions

 Section 16.1. ACID Transactions

 Section 16.2. Declarative Transaction Management

 Section 16.3. Isolation and Database Locking

 Section 16.4. Nontransactional Beans

 Section 16.5. Explicit Transaction Management

 Section 16.6. Exceptions and Transactions

 Section 16.7. Transactional Stateful Session Beans

 Chapter 17. J2EE

 Section 17.1. Servlets

 Section 17.2. JavaServer Pages

 Section 17.3. Web Components and EJB

 Section 17.4. Filling in the Gaps

 Section 17.5. Fitting the Pieces Together

 Chapter 18. XML Deployment Descriptors

 Section 18.1. The ejb-jar File

 Section 18.2. The Contents of a Deployment Descriptor

 Section 18.3. The Document Headerand Schema Declarations

 Section 18.4. The Descriptor's Body

 Section 18.5. Describing Enterprise Beans

 Section 18.6. Describing Relationships

 Section 18.7. Describing Bean Assembly

 Chapter 19. EJB Design in the Real World

 Section 19.1. Pre-Design: Containers and Databases

 Section 19.2. Design

 Section 19.3. Should You Use EJBs?

 Section 19.4. Wrapping Up

 Part II: JBoss Workbook

 Chapter 20. Introduction

 Section 20.1. Contents of the JBoss Workbook

 Chapter 21. JBoss Installation and Configuration

 Section 21.1. About JBoss

 Section 21.2. Installing JBoss Application Server

 Section 21.3. A Quick Look at JBoss Internals

 Section 21.4. Exercise Code Setup and Configuration

 Chapter 22. Exercises for Chapter 4

 Section 22.1. Exercise 4.1: A Simple Entity Bean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 22.2. Exercise 4.2: A Simple Session Bean

 Chapter 23. Exercises for Chapter 5

 Section 23.1. Exercise 5.1: The Remote Component Interfaces

 Section 23.2. Exercise 5.2: The EJBObject, Handle, and Primary Key

 Section 23.3. Exercise 5.3: The Local Component Interfaces

 Chapter 24. Exercises for Chapter 6

 Section 24.1. Exercise 6.1: Basic Persistence in CMP 2.0

 Section 24.2. Exercise 6.2: Dependent Value Classes in CMP 2.0

 Section 24.3. Exercise 6.3: A Simple Relationship in CMP 2.0

 Chapter 25. Exercises for Chapter 7

 Section 25.1. Exercise 7.1: Entity Relationships in CMP 2.0, Part 1

 Section 25.2. Exercise 7.2:Entity Relationships in CMP 2.0, Part 2

 Section 25.3. Exercise 7.3: Cascade Deletes in CMP 2.0

 Chapter 26. Exercises for Chapter 8

 Section 26.1. Exercise 8.1: Simple EJB QL Statements

 Section 26.2. Exercise 8.2: Complex EJB QL Statements

 Chapter 27. Exercises for Chapter 9

 Section 27.1. Exercise 9.1: A BMP Entity Bean

 Chapter 28. Exercises for Chapter 11

 Section 28.1. Exercise 11.1: A Stateless Session Bean

 Section 28.2. Exercise 11.2: A Stateful Session Bean

 Chapter 29. Exercises for Chapter 12

 Section 29.1. Exercise 12.1: JMS as a Resource

 Section 29.2. Exercise 12.2: The Message-Driven Bean

 Chapter 30. Exercises for Chapter 13

 Section 30.1. Exercise 13.1: EJB Timer Service

 Chapter 31. Exercises for Chapter 15

 Section 31.1. Exercise 15.1: Web Services and EJB 2.1

 Appendix A. Database Configuration

 Section A.1. Set Up the Database

 Section A.2. Examine the JBoss-Specific Files

 Section A.3. Start Up JBoss

 Section A.4. Build and Deploy the Example Programs

 Section A.5. Examine and Run the Client Applications

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

